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Abstract

A Novel Safe Deep Reinforcement Learning Approach for Optimal Dispatch of Energy
Hubs with Compressed Air Energy Storage

Ali Reza Daneshvar Garmroodi

The development of renewable energy and energy storage technologies has resulted in the

emergence of Energy Hubs (EHs) in recent years. Due to the uncertainty associated with energy

supply and load, scheduling EH presents a challenging task. Current model-based optimization ap-

proaches have limitations in terms of solution accuracy and computational efficiency, which hamper

their application. Deep Reinforcement Learning (DRL) is a model-free approach that has demon-

strated superior performance over model-based approaches. The current DRL algorithms, however,

perform poorly in terms of constraint handling and global optimality. The purpose of this study

is to propose a model-free, safe deep reinforcement learning approach, combining primal-dual op-

timization and imitation learning, for the optimal scheduling of an EH with an Advanced Adia-

batic Compressed Air Energy Storage (AA-CAES). First, the operation of an AA-CAES under

off-design conditions is modeled and linearized using Mixed Integer Linear Programming (MILP).

Then, a safe DRL approach is proposed with training and testing steps considering a case study.

The performance of the proposed approach in reducing operational cost and satisfying constraints is

compared to state-of-the-art DRL algorithms as well as a deterministic MILP approach. Addition-

ally, a test set is used to examine the generalizability of the proposed approach. Finally, the effect

of off-design conditions of a tri-generative AA-CAES on the optimal dispatch strategy is investi-

gated. Furthermore, a sensitivity analysis indicates that the proposed approach is reproducible and

reliable. The results indicate that the proposed approach can effectively reduce the operational cost

and satisfy the operational constraints.
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Chapter 1

Introduction

Global warming and Greenhouse Gas (GHG) emissions caused by an unprecedented increase

in worldwide energy consumption have led to a growing interest in developing self-sufficient com-

munities and EHs [1]. An EH is comprised of dispatchable thermal and electrical energy sources

along with Renewable Energy Sources (RES) [2]. Energy Storage Systems (ESSs) play a crucial

role in EHs, providing a buffer capacity that enhances resiliency, flexibility, and reliability of en-

ergy supply. Tri-generative AA-CAES is an emerging energy storage with the ability to generate

heating, cooling, and electricity, acting as a Combined Cooling, Heating, and Power (CCHP) unit

[3]. AA-CAES offers several advantages over other ESSs, including low capital costs, long lifes-

pans, and environmental friendliness [4]. However, it is important to note that since AA-CAES is

a Mechanical Energy Storage System (MESS), its design and operation present greater challenges

than those of conventional electricity in- electricity out ESS. Particularly, part-load and off-design

operating conditions could have a significant effect on AA-CAES performance [5]. As a result, it

is crucial to take into account the off-design characteristics of AA-CAES when establishing a dis-

patch strategy, since ignoring them could result in scheduling and control lags and demand-supply

mismatches. Identifying a optimal dispatch strategy for an EH can be a challenging task due to the

presence of various uncertainties, such as variations in load demand, volatility in the electricity and

gas markets, and intermittent nature of renewable energy sources [6]. There are two methods that

are commonly used to deal with these uncertainties: Stochastic Programming (SP) [7] and Robust

Optimization (RO) [8]. However, these approaches have limitations in terms of computational cost

1



(intensity of computational requirements) and optimality (tendency towards conservative solutions)

[9].

1.1 Problem Statement

Currently, the approaches in order to determine the optimal dispatch of EHs with AA-CAES

under uncertainties rely on a model of uncertainties to deal with them. Reinforcement Learning

(RL), however, is a model-free approach that takes uncertainty into account without the use of

any models [9]. In fact, RL learns from encountering a variety of scenarios during the course

of its learning process in order to understand the behavior and transition of uncertainties. In this

regard, RL has demonstrated its superiority as a model-free approach for optimal dispatch of EHs.

Nevertheless, since this method is based on trial and error, there are a number of limitations to this

solution:

(1) In large search spaces, the RL appraoch may become stuck in local optima and result in a

suboptimal solution.

(2) Due to the lack of a mathematical framework in RL, constraint handling remains a significant

challenge.

There are important constraints in the operation of an EH that should be considered in the

dispatch strategy since neglecting them can lead to catestrophic situations. Constraint handling in

RL has drawn attention to itself which has led to the development of a new field of study called Safe

Deep Reinforcement Learning (SDRL) [10]. However, even SDRL algorithms can not guarantee the

global optimality of the solution and can easily lead to sub-optimal solutions in large scale problems

like optimal scheduling of an EH with many energy flows. In this regard, this thesis proposes

a framework to tackle the above mentioned challenges in operation of an EH with presence of a

tri-generative AA-CAES using a generalizable model-free approach stemmed in SDRL.

2



1.2 Research Objectives and Contributions

As mentioned above, even though model-free approaches, such as DRL approaches, are perfect

for considering uncertainties in optimization problems, some limitations remain in terms of handling

constraints and finding the global optimum. As a result, the following are the major contributions

of this thesis:

(1) In this thesis, a novel SDRL approach based on primal-dual optimization and Imitation Learn-

ing (IL) is proposed. This algorithm considers the operational constraints of the EH by utiliz-

ing cost networks. Unlike the traditional DRL approaches that add constraints to the reward

function as a penalty term, the proposed algorithm considers the constraints as independent

cost functions. To avoid local optima during exploration, expert demonstrations are utilized

to help the agent for more efficient learning process.

(2) The off-design operation of a tri-generative AA-CAES in a CCHP energy hub is modelled and

linearized. As the partial-load operation of AA-CAES affects the charging and discharging

efficiencies of the system, the effect of off-design operation of the trigenerative AA-CAES on

the scheduling of EH equipment is studied.

(3) The performance of the proposed safe DRL approach in terms of operational cost, constraint

violation, and using the potential of AA-CAES as ESS is compared to other DRL and IL

algorithms and the theoretical benchmark for the scheduling problem.

1.3 Thesis Organization

The remainder of the thesis is organized as follows:

• In Section 2, a literature review is presented to review the current approaches to modeling the

AA-CAES dispatch problem and solution approaches, and to highlight gaps in the previous

studies.

• Section 3 explains the mathematical modeling of the EH dispatch problem as well as the

proposed model-free approach as a solution.

3



• Section 4 presents the case study and the hyperparameters used for the proposed and bench-

mark algorithms.

• Section 5 presents the results of the study along with a detailed discussion of the findings.

• Section 6 draws conclusions and a discussion on limitations and future avenues of research.

1.4 Publications

The proposed methodology in this thesis is published as a journal paper in Journal of Energy

Storage:

A. D. Garmroodi, F. Nasiri, and F. Haghighat, “Optimal dispatch of an energy hub with com-

pressed air energy storage: A safe reinforcement learning approach,” Journal of Energy Storage,

vol. 57, p. 106147, 2023
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Chapter 2

Background and Literature Review

2.1 Energy Storage Systems

Burning fossil fuels has devastating effects on our environment, which is why the world is look-

ing for alternative sources of energy [12]. The limited sources of their products and the instability

of their prices are also important reasons that have led us to this decision. There is no doubt that the

energy and climate change crisis are among the major problems facing humanity today. As a result

of population growth and industrialization, total energy demand has increased dramatically [13]. It

is apparent from a closer examination of global energy consumption from 2000 to 2018 that primary

energy consumption is increasing every year (Fig. 2.1 ). Since fossil fuels such as natural gas, oil,

and coal are the most reliable sources to generate energy, they have the most share in energy gen-

eration sources. As a result of our high dependence on fossil fuels, we are currently experiencing

serious climate change. In order to reduce this dependency, renewable energy is considered to be

the most pragmatic approach [14]. This is due to the fact that these sources of energy are both abun-

dant and environmentally friendly. Therefore, the amount of electricity generated from renewable

energy sources is increasing rapidly every year, which has led to a decrease in the amount of energy

generated from burning fossil fuels [12].
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Figure 2.1: Worldwide energy consumption and production sources trend [12].

Despite the many benefits associated with using renewable sources to generate electricity, there

are still challenges with their widespread adoption. The main challenge of these technologies is

their intermittency in energy supply, resulting in a lower level of reliability. This will increase

uncertainty and the importance of provisions for the use of energy storage systems. Consequently,

energy storage systems play a crucial role in smart grids by improving the flexibility of the electric

power system and helping to maintain the balance between supply and demand while coping with

uncertainty arising from a variety of sources. Energy storage performance has a significant effect on

both the efficiency and the overall cost of the system. Today, a wide variety of storage applications

are being investigated, with the majority aiming to lower costs while ensuring long-term viability.

Currently, the most significant challenge to the use of electrical energy storage systems is the capital

requirement as well as the operational costs. Another ultimate goal of researchers is to ensure that

these storage devices do not have a negative impact on the environment [15].
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2.1.1 Energy Storage Systems Advantages

ESSs have a number of advantages in addition to their primary purpose of storing surplus en-

ergy. Since a power plant cannot exclusively rely on renewable energy without an ESS, using an

ESS improves the penetration of renewable energy and reduces curtailment. As a result, fuel con-

sumption and carbon dioxide emissions will decrease [16]. Furthermore, since RES are intermittent,

it is essential to balance supply and demand in order to smooth out fluctuations. This will also help

to mitigate issues with power generation’s electrical systems [17]. Shaving peak energy loads will

reduce the risk of load shedding, particularly if a large storage capacity is considered [18]. Another

benefit of ESSs is that they improve the overall efficiency of a power plant, resulting in a reduction

in long-term operating costs [19]. Furthermore, the versatility of ESSs allows them to cover rural

locations that are frequently out of energy [20].

2.1.2 Energy Storage Systems Types

The development of ESSs has always been in progress, and different storage systems have de-

veloped to accommodate the various uses for energy and the wide range of applications. ESSs are

mainly classified into three main categories as presented in Fig. 2.2

Energy Storage Systems

Electrical Mechanical Thermal

EMESSEngine+FuelElectrochemicalDirect Electrical

Gravity

CAES

PHES

FESS
Sensible

Latent

E-Gravity

EFESS

EPHES

ECAES

Fuel cell

Biogas

Biofuel

SNG

Hydrogen

Flow Battery

Battery

Superconducting
Magnetic Energy
Storage (SMES)

Ultra-capacitor

Figure 2.2: Energy storage systems classifications; most commonly used mechanical energy storage
systems are highlighted [18].

There are two types of mechanical energy storage systems: pure mechanical MESS and mixed
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Electrical Mechanical Energy Storage System (EMESS). A key distinction is whether stored en-

ergy is used directly or via a motor-generator. MESSs are advantageous in a number of ways

over conventional ESSs, including their environmental impact, cost, and long-term viability. Fly-

wheel Energy Storage System (FESS), Pumped Hydro Energy Storage (PHES), and Compressed

Air Energy Storage (CAES) are the three basic types of MESSs, as depicted in Fig. 2.2. The most

significant consideration in selecting the right system among them is energy source, load type, and

available space. It’s also worth noting that there are certain common benefits among the many types

of MESSs, such as a faster response time and no environmental effects. These ESSs create fewer

pollutants at both the operating and construction stages, which is a key component of improving air

quality [18].

Among the many energy storage technologies available, PHES and CAES can support large-

scale energy storage applications. Despite the fact that pumped hydro is a well-known and often

used energy storage method, its heavy dependence on certain geographical factors and environ-

mental issues makes new innovations and advances difficult. CAES is a potential ESS with high

reliability, commercial feasibility, and low environmental impact. Even though large-scale CAES

plants are still in operation, the technology is not widely used due to the high heat of compression

loss. Scientists and researchers are working hard to increase the overall efficiency of CAES to give

a better solution for grid stability, especially with the rise of wind and solar-based power generation

in recent years.

2.1.3 Compressed Air Energy Storage

CAES is among the most affordable storage options in terms of both initial and operational costs

[21]. As a large-scale energy storage device, it can store electrical energy for several hours. More-

over, since CAES stores compressed air in a tank, it is not vulnerable to the effects of self-discharge

and degradation [22]. CAES is therefore a great utility-scale storage technology for large-scale

applications such as facilitating the integration of RES into a power system. Unlike PHES, which

requires certain geographic locations for utilization, CAES is much more flexible because the air

can be stored in both underground caverns and large high-pressure air tanks. CAES is therefore the

only commercially feasible alternative for utility-scale energy storage given current energy storage
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costs [22].

CAES is one of the most promising technologies for combining renewable energy systems-

based plants with electricity supply, and it has a lot of potentials to compensate for renewable

energy’s fluctuating nature [23]. When there is no demand in a CAES system, off-peak grid power or

electricity generated from RES is used to run the compressors and store high-pressure air in a sealed

underground cavern or a large storage tank. When electricity is needed, this high-pressure air from

the underground reservoir is collected and employed to drive the turbine, and power is generated

by the coupled generator. Compressed air is usually mixed with natural gas and burned together in

the same way as a conventionally operated turbine plant does. Due to the higher temperature of the

inlet air for turbines, this approach produces more electricity [23].

CAES concepts exist today at various stages of development, targeting different applications

and possessing different cons and pros. Fig. 2.3 shows a general classification of different types of

CAES systems based on heat utilization (handling the generated heat in the compression process):

(1) Diabatic

(2) Adiabatic

(3) Isothermal

Figure 2.3: Compressed air energy storage general classification

In a Diabatic Compressed Air Energy Storage (D-CAES), to reduce the power consumption of

compressors, the air leaving the compressors needs to be cooled to a lower temperature. The heat
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of compression is dissipated into the atmosphere as waste without being utilized. Consequently, a

large amount of energy is lost in the charging process, which makes the CAES system less efficient.

Generally, if the temperature of pressurized air is too low for the expansion process, condensation

and icing are likely to occur in turbines. Therefore, in a D-CAES, an external heat source like

fossil fuel is needed to preheat air to a specific temperature before entering the turbine to not only

prevent icing but also produce more power. Using fuels in combustion chambers will produce GHGs

which will cause pollution to the environment. To overcome the shortcomings of D-CAES systems,

research has been done on novel concepts of CAES systems. Fig. 2.4 and 2.5 show Huntorf and

McIntosh plants as an example of D-CAES systems. Besides the number of compression stages,

another difference between Huntorf and McIntosh plants is in using a recuperator to utilize the heat

of exhaust air to preheat air before entering turbines which results in an 8% efficiency boost [24].

Figure 2.4: Huntorf plant compressed air energy storage simplified scheme [24]

In contrast to the D-CAES, the Adiabatic Compressed Air Energy Storage (A-CAES) system

utilizes the heat of compression. In an A-CAES, the heat of compression is stored within the air

itself, while in an AA-CAES, the captured heat will be stored in an additional Thermal Energy Stor-

age (TES). During the discharge process, the stored energy can be used to preheat the air before

expansion, or it can be used for heating purposes in buildings or industries. When compression
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heat is not captured through TES, the air must be stored at a higher temperature, resulting in a

lower energy density. Therefore, compressed air must be stored in a reservoir with a higher volume

and greater thermal durability [23]. Fig. 2.6 shows the configuration for A-CAES and AA-CAES.

Moreover, there are many different configurations for AA-CAES based on the temperature of com-

pressed air storage.

Figure 2.5: McIntosh plant compressed air energy storage simplified scheme [24]

Unlike conventional energy storage systems, such as batteries and PHES, CAES is capable of

heat, power, and cooling tri-generation and storage, allowing it to function as a CCHP unit and play a

critical role in integrated heat-power distribution systems. To have such a tri-generative system, the

air leaving the expanders must have a lower temperature than the ambient air to be able to produce

cooling energy and be used in buildings or industrial cooling purposes. This value depends on many

different parameters such as the expanders’ pressure ratio, the inlet temperature of the expanders,

and the isentropic efficiency of the expander. These parameters can affect the final temperature of

the air leaving the expander. It is possible to use the captured thermal energy from the compression

process for heating purposes. On the other hand, in an isothermal system, the goal is to minimize or

even prevent the heat of compression by using different techniques such as spraying water droplets

in the compressor or turbine, or surrounding the air storage with a water tank to maintain a constant

11



temperature in the air storage system. This type of compressed air storage is not yet built in the real

world and it is under investigation [23].

(a) Adiabatic CAES (b) Advanced Adiabatic CAES

Figure 2.6: A-CAES and AA-CAES configurations

2.2 Off-design Operation of CAES

CAES systems consist of three major components: compressors, air storage, and expanders.

Unlike battery devices that have constant values for their charge and discharge efficiency, the charg-

ing and discharge efficiencies of CAES depend on the efficiency of the compressor and expander.

These two components have two different types of efficiency: isentropic efficiency and mechanical

efficiency. Mechanical efficiency is a dimensionless parameter that indicates how well a machine

converts input power into output power. This performance indicator is affected by mechanical losses

such as friction which exist in all mechanical components.

In thermodynamics, if a process is both adiabatic and reversible, it can be considered an isen-

tropic process. In such a process, there is no net heat and/or mass transfer. In engineering, this

process is used as a reference point for real processes because considering a process both adiabatic

and reversible would result in the same initial and final entropies, which is not realistic. The isen-

tropic process is the ideal process for steady-flow devices like compressors and turbines since they

perform under adiabatic conditions. Isentropic or adiabatic efficiency is a parameter that describes
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how well a device resembles a matching isentropic device. The following formulas are used to

indicate the isentropic efficiencies of compressors and turbines:

ηc =
Ws

Wa
=
h2s − h1
h2a − h1

(1)

ηt =
Wa

Ws
=
h1 − h2a
h1 − h2s

(2)

In which ηc and ηt are the isentropic efficiencies of compressor and turbine, respectively; h1 is

the enthalpy of air before entering the compressor or turbine, h2s, and h2a are the isentropic and

actual enthalpy of air leaving the compressor or turbine, respectively. The isentropic efficiency of

compressors and expanders (turbines) varies based on different parameters such as mass flow rate,

inlet air temperature, and rotational speed of the shaft. If the compressor or turbine is operating

under different conditions than its design conditions, the process is called off-design conditions.

The isentropic efficiency of an off-design process is lower than the design-conditioned process and

there are performance curves to estimate the isentropic efficiency if the device is operating off-

design. As mentioned before, if the temperature of the air leaving expanders is significantly lower

than the ambient air temperature, the CAES can be used as a tri-generative system, just like a CCHP

system. Therefore, the variation of CAES operation from design to the off-design condition can

strongly affect the tri-generation functionality of the AA-CAES system.

2.3 Optimal Dispatch of Energy Hubs with ESS

As previously mentioned, energy storage systems play an important role in the efficiency and

reliability of power systems. This technology can be applied to a wide range of applications, rang-

ing from large-scale microgrids or energy hubs to small-scale applications, such as a house. The

intermittent and fluctuating nature of renewable energies in power generation will affect the stabil-

ity and security of the power system. EHs are a solution to utilize renewable energy effectively by

integrating different components such as CCHP unit and ESS . Since there are many components in

an energy hub, different energy flows can be present. One of the main challenges in utilizing ESS
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in EHs is how to optimally control them. Controlling, in this case, means maximizing the efficiency

and reliability of the power system. To be more specific, for a grid-connected energy hub with ESSs,

the main objective is to minimize the total cost, the total fuel consumption, and the corresponding

negative environmental impacts (emissions), while considering uncertainties like power generation

from renewable sources, demand loads, and fluctuating electricity and gas prices and the limitations

of each device in the energy hub. The problem here is to decide the amount of energy that should

be stored or released and the time that a component must be operating. These control problems are

not easily solved since they have high complexities, and the decisions must be taken in each time-

step to find the optimal sets of decisions. Moreover, these optimization problems are not usually

convex, which means that they might have several local minima points. Therefore, gradient-based

optimization methods are not suitable for solving them, and most of the time they converge to local

minima.

The optimal control methods can be classified in two categories [25]:

(1) Classical optimization techniques:

These techniques are the traditional methods that have been used for many years. Here we

will have a brief explanation of each method.

• Linear Programming (LP) method:

In situations where the objective function is linear and the system constraints are linear

equalities or inequalities, linear programming can be used to solve these optimization

problems [26]. It is possible to find a globally optimal solution quickly by using linear

programming techniques because of their simplicity, numerical simplicity, and promis-

ing way to quickly converge to a global optimal solution when the objective function

and the constraints are linear. Linear programming is not able to take the uncertainties

of the system into account which is essential in practical problems.

• Dynamic Programming (DP) method:

In the DP method, the complex problem is divided into a series of simpler sub-problems

by using a multi-stage decision process. This method is very general and can be ap-

plied to both linear and non-linear objective functions and constraints. DP algorithms
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will converge to the global optimal solution regardless of whether the objective function

is convex or non-convex [25]. One disadvantage of this method is that it can be used

only if the objective function can be solved with a recursive formula. Moreover, prior

knowledge of all past and future signals (historical and forecast data) is required. The

number of stages has a linear relationship with the complexity of dynamic programming

algorithms but as the number of state variables increases, the complexity grows expo-

nentially. This phenomenon is called the “curse of dimensionality” [27]. To speak more

vividly, when the number of components in an EH increases, the increase in the number

of equations and states makes the algorithm much more complex than before.

• Stochastic control strategies:

These controlling methods are suitable for optimization problems that involve uncer-

tainties. As an example, for controlling the energy storage devices, we can formulate

the problem as a Markov Decision Process (MDP) and solve it by using stochastic DP.

The advantage of this method is that unlike classical DP, which finds the optimal policy

for predetermined signals, the stochastic approach optimizes the control policy over a

family of possible signals [28]. Therefore, the output of this approach is not a single

optimal solution for the problem, but an optimal control strategy that can be used for

real-time operation of the system. One of the disadvantages of this method compared to

the novel advanced methods like RL is that the stochastic optimization uses a specific

Probability Distribution Function (PDF) for the uncertainties, while in RL, the PDF is

learned through the historical data.

(2) Advanced Optimization Techniques:

There are two types of advanced optimal control methods: metaheuristics and machine learn-

ing.

• Metaheuristic Techniques:

These methods are mainly used when there is a high-dimensional solution space, and

the objective function is nonlinear or non-convex . They might have low computational
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complexity, and converge to the optimal solution, but their performance is not guar-

anteed. Most of these algorithms work based on the same principle. Several random

solutions are generated first. After that, in each iteration, based on what the objective

function is, each of these solutions is ranked and is updated based on a specific mecha-

nism. For instance, this mechanism can be inspired by natural selection, social behav-

ior, the dynamics of ant colonies. Genetic Algorithm (GA), Particle Swarm Optimiza-

tion (PSO), Artificial Bee Colony, and Firefly Algorithm are among the metaheuristic

methods used to solve energy management problems [25].

• Machine Learning Techniques:

The machine learning techniques are mainly divided into three branches: Supervised

Learning, Unsupervised Learning, and Reinforcement Learning [29]. In supervised

learning, the main goal is to find a mathematical expression or function to map the

inputs to outputs. In this case, both the inputs and outputs are known for the learning

process (outputs are labeled). In unsupervised learning, the output data are not avail-

able. The main objective here is to find a pattern in input data. RL, which is much more

complicated than the other branches of machine learning, is mainly used for control pur-

poses. In RL, an agent is interacting with the dynamic environment to find the optimal

sets of actions that lead to the maximum cumulative reward [30]. For energy manage-

ment purposes, the agent receives input signals from the environment that indicate the

current state of it and then takes actions (amount of power flow from/to each component)

which will affect the next state of the environment. After taking the actions, the agent

receives the new states and a reward from the environment. This process is done based

on trial and error by the agent. After the learning process is done, the agent can make

decisions for real-time energy management of the energy hub. One of the advantages

of this approach is that the agent will consider the uncertainties based on the historical

data that is used in the learning process. Therefore, we do not need to consider a spe-

cific probability distribution function for uncertainties and control systems. Moreover,

since the learning process is done before executing the model in real-time operation, the

agent can make decisions in a very short time (0.001 sec), compared to other methods
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and techniques that need to solve the optimization problem in each iteration [9].

2.4 Reinforcement Learning-based Energy Management

Considering the nature of learning, the concept of learning by interacting with the environment

is generally the first that comes to mind. The person is intensely aware of how their environment

responds to what they do, whether they are learning to drive a car or hold a conversation, and they

want to affect what happens through their behavior. Learning from interaction is a fundamental

concept that underpins practically all learning and intelligence theories.

In RL, the agent learns what to do and how to map observed situations to specific actions, in or-

der to maximize a numerical reward signal. One of the most significant differences in reinforcement

learning is that the learner is not told what to do and what actions to take. It must realize which

actions are likely to yield the greatest reward. In most cases, the actions do not only affect the imme-

diate reward, but also the future rewards as well. Therefore, the two most significant distinguishing

properties of reinforcement learning are trial-and-error search and delayed reward [31].

The concept of RL differs from supervised learning, which is the focus of the majority of current

research on machine learning. The process of learning from a set of labeled data is known as

supervised learning. The main goal of this type of learning is to extrapolate or generalize its response

to the data that are not present in the dataset. Although this is an important type of learning, it is

insufficient for learning through interacting with the environment. Moreover, RL is also different

from unsupervised learning in which tries to find a hidden pattern in unlabeled datasets.

In order to provide better illustrations, it is helpful to have some understanding of reinforcement

learning terminology:

(1) Agent: The entity that uses a policy to maximize expected return from transitioning between

states of the environment in RL. (In energy management problems: the control system that

chooses the amount of energy being utilized by each source)

(2) Environment: The environment is the surrounding with which the agent interacts (for exam-

ple the whole microgrid system including renewables, customers, and energy market).
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(3) State: The parameter values that describe the current condition of the environment and that

is used by the agent to decide. (For example, renewables generation, load demands, state of

charge of the energy storage systems, etc. in each time step)

(4) Action: The decision(s) that the agent makes at the current time step (for example the amount

of energy to be stored/released from energy storage)

(5) Policy: The thought behind choosing an action by the agent is called policy, which maps the

states to actions.

Basically, RL is a game between an agent and the environment. The environment is modeled

as a MDP which is a discrete-time stochastic control process. In a MDP, the outcomes are partly

random and partly controlled by the decision-maker. MDPs can be used to study optimization

problems that are solved using DP or RL. The main goal of this game is to find the optimal policy

that maximizes cumulative future rewards. As depicted in Fig. 2.7, the game between the agent and

the environment at each time step is as follow:

(1) Agent observes the environment’s state st.

(2) Agent chooses action at based on policy π.

(3) Agent receives the reward rt+1 = R(st, at) from the evironment.

(4) Agent lands in the next state st+1 ∼ T (st+1

∣∣st, at) in which T (s′
∣∣s, a) is the probability of

landing in state s′ by taking action a in state s.

In energy management problems, many uncertainties such as renewables generation, fluctuating

load demands, and varying prices for electricity and natural gas are present. Since the EH controller

can only control some parameters and sources like ESSs and imported/exported energy to the grid

system and has no control over uncertainties and fluctuations in renewables and loads, this problem

can be modeled as a MDP and solved by RL. The transition probability T (s′
∣∣s, a) is influenced

by uncertainties. In model-based approaches, these uncertainties are predicted using short-term

forecasting models or estimated using Monte Carlo (MC) simulations. However, in model-free ap-

proaches, this transition probability can be learned through massive historical data that represent the
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Figure 2.7: Reinforcement learning MDP framework [32]

uncertainties themselves, instead of considering a distribution function. After the learning process,

the agent can choose the optimal actions in real-time operation of the energy hub to minimize or

maximized the determined objective function.

One of the main disadvantages of RL is its inability to handle existing constraints in the envi-

ronment. There is no mathematical framework for the RL agents, unlike model-based approaches,

which makes it difficult to handle the constraints. Additionally, since RL agents learn policies

through trial and error, the optimality of the learned policy cannot be guaranteed. Section 3.3 dis-

cusses the methods for dealing with constraints and global optimization.

2.5 CAES Optimal Dispatch

Numerous probabilistic and deterministic approaches have been proposed for identifying an op-

timal scheduling of EH in the presence of CAES. A number of significant contributions have been

made in this area. The dispatch problem of a non-linear CAES model was investigated by Men

et al. [33]. They considered a co-generative AA-CAES as the ESS which contributes to the heat

and electricity networks. A new metaheuristic approach for optimizing the dispatch problem for

a tri-generative AA-CAES was proposed by Li et al. [34]. Bai et al. [35] optimized AA-CAES

operation in EHs using a tri-state and off-design model. In this study, they considered an AA-CAES
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that produced only electricity. Li et al. [36] and Ma et al. [37] investigated the optimal dispatch

problem of an EH with a tri-generative CAES without considering the effect of partial-load opera-

tion. Zhang et al. [38] proposed an optimal scheduling strategy for a Regional Integrated Energy

System (RIES), taking into account the trading strategy as well as the applications of cogenerating

AA-CAES in heating and spinning reverse services. Li et al. [39] studied a MILP mathematical

model of AA-CAES, in which its off-design characteristics were considered. It was concluded

that the AA-CAES could mitigate wind curtailment and reduce operating costs. Their proposed

AA-CAES, however, was a co-generative system, and the effect of off-design conditions on its

tri-generative functionality was not investigated.

Despite the fact that the studies mentioned above significantly contributed to the optimal dis-

patch of AA-CAES in EH, none of them addressed uncertainties in the load and renewable en-

ergy generation. In order to address the uncertainty associated with EH dispatch, several methods

have been developed. To determine the optimal day-ahead dispatch strategy for an EH, Jalili et al.

[40, 41] and Wen et al. [42] used a SP approach using PDFs for load demands and renewables

generation. The EH was consisted of four energy flows (electricity, heating, cooling, and natural

gas) and a solar-powered CAES was used as energy storage. Bai et al. [43] used a stochastic DP

algorithm to solve a nonlinear self-dispatch problem for a small grid-connected EH comprised of

an AA-CAES and a Electric Heat Pump (EHP). They considered the off-design operation of the

AA-CAES and EHP. Yang et al. [44] investigated the optimal dispatch strategy for an integrated

energy system with CAES and a demand response program. In order to consider different scenarios

for uncertainty, SP was used. Nevertheless, their CAES system was modeled as a simple (black-box)

input-output energy storage system that does not consider the characteristics of its sub-components.

Jadidbonab et al. [45] developed a Constraint Value at Risk (CVaR) scheduling model for an EH

with D-CAES with the uncertainties modeled using a SP approach. Zeynali et al. [6] modeled

multi-objective optimal EH management with hybrid battery and CAES integration. To deal with

uncertainties, a RO approach was used, taking into account the worst-case scenario. A study by

Mirzaei et al. [46] focused on optimizing the utilization of energy carriers in an integrated EH by

optimizing power-to-gas and D-CAES. Furthermore, MC simulations and SP were used to gener-

ate scenarios and address uncertainties. Jadidbonab et al. [47] investigated the optimal dispatch of
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an EH with a conventional CAES as energy storage to meet the required electricity, heating, and

cooling demands. To model the risk associated with variation in the EH’s operation costs, CVaR

method was applied, and to consider uncertainties, scenario-based SP was applied. According to

a study by Oskouei et al. [48], a novel strategy based on robust-stochastic optimization was de-

veloped for maximizing market participation of a virtual EH that consists of integrated EHs and

multi-energy industrial consumers. The part-load characteristics of a D-CAES and the uncertainty

associated with power regulation were examined by Li et al. [49]. They concluded that CAES

scheduling could be infeasible in actual power system operation without considering the off-design

and part-load characteristics.

As mentioned, earlier studies have investigated the optimal scheduling of different CAES types

in an EH with different energy flows for the day ahead. In order to deal with uncertainties, SP

method is widely used. However, there are several disadvantages to using the SP method, such

as the high computational cost associated with the consideration of a large number of scenarios.

Furthermore, the uncertain parameters are assumed to fit into specific PDFs, which is not the case

in practice. To address this issue, recently, model-free strategies, which do not rely on developing

a model to incorporate uncertainties of the environment, are shown to be advantageous in solving

complex decision-making problems involving high levels of variability and uncertainty [50]. Model-

free techniques such as DRL have emerged in optimization (for design and operation) of EHs and

microgrids.

Different DRL algorithms have been implemented for the optimal dispatch of EHs and micro-

grids. Many studies [51–55] have implemented a Deep Q-Network (DQN) model to optimize the

dispatch of isolated and grid-tied microgrids with battery storage systems. Since the DQN algorithm

can only be applied to discrete action spaces, it could result in suboptimal policies when applied to

large-scale problems. It should be noted that in the mentioned studies, the microgrid operational

constraints are modeled as penalty functions which are then added to the reward function. To deal

with the continuous action space, some studies [56–58, 9, 59] have utilized Deep Deterministic

Policy Gradient (DDPG) and Proximal Policy Optimization (PPO) to find the optimal policy for

controlling microgrids. In spite of this, they employ the same approach as previous studies in order

to address the constraints. Ding et al. [60] and Qiu et al. [61], on the other hand, have used modified
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DDPG algorithms, such as Primal-Dual Deep Deterministic Policy Gradient (PD-DDPG), in order

to control the EHs and smart homes.

In addition to considering uncertainty in optimizing the EH dispatch problem, it is also essential

that the off-design operation of the CAES be taken into account. As a result of the uncertain nature

of energy demand, as well as variations in renewables energy generation, CAES may operate in

off-design and partial-load conditions [5]. In contrast to a battery energy storage system, CAES

is a mechanical energy storage system that cannot be modeled as a simple input-output system.

Therefore, some studies have considered the part-load operation of different types of CAES in

dispatch problems. Part-load operation of CAES is taken into account in modeling electricity-

generating CAES [35, 49] as well as co-generative (electricity and heating) [39, 43]. However,

despite its importance, most of the studies have not considered the effect of part-load operation.

2.6 Gaps and Limitations

Summary of the literature review indicates the following gaps in the existing studies on optimal

dispatch of EH with AA-CAES:

(1) SP is the most common method advocated in the literature for dealing with uncertainties.

This approach utilizes a variety of stochastic scenarios to model the dispatch problem under

uncertainty. The number of scenarios considered for a problem is a major determinant of the

accuracy and performance of the SP approach. Due to the significant increase in computa-

tion costs when there are multiple scenarios, SP is not suitable for large-scale problems, such

as management of a CCHP EH with many energy sources. Furthermore, SP considers spe-

cific probability distribution functions for representing uncertainties, which is not realistic for

real-time optimization. In most cases, real-world data do not follow a particular distribution

function. Consequently, it is necessary to develop a controller that can handle these uncertain-

ties without relying on predetermined probability distributions. This realistics approach could

be made possible using a model-free DRL. Several studies, [9, 61, 59, 62] have shown that a

model-free DRL approach is superior to the SP approach both in terms of computational cost

and optimality in case of scheduling of EHs and microgrids.
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(2) A major problem in the existing DRL algorithms is their inability to handle constraints in

dispatching (optimization) problems. In most studies , for instance in [63–65], the constraints

are added to a reward function in form of a penalty, which could result in sub-optimal (lo-

cal optimal) solutions when the search space of the problem is big. In a few studies, more

advanced algorithms are utilized to handle constraints more effectively, but these algorithms

might not work well for global optimization in large-scale problems [61, 66].

(3) The effect of off-design characteristics is not considered in optimal dispatch of EH for tri-

generative AA-CAES, but it has been considered in some studies for co-generative AA-CAES

and electricity only.

This thesis addresses the shortcomings of previous studies by proposing a safe deep reinforce-

ment learning algorithm based on primal-dual optimization and IL to be used to develop an adaptive

controller for the optimal dispatch problem under uncertainty in EH. In this algorithm, the opera-

tional constraints of real-time scheduling of EH are taken into account by using cost networks. In

contrast to the traditional DRL approaches, in which the constraints are added to the reward function

as a penalty term, the proposed algorithm treats the constraints as independent cost functions. In

order to help the search agent follow a more efficient learning process, expert demonstrations are

used to avoid getting stuck in a local optima during the learning process. The expert demonstrations

are referring to the optimal dispatch results from a MILP solver, for training days only, as a baseline

solution. Moreover, as the partial-load operation of AA-CAES affects the charging and discharging

efficiencies of the system, the effect of off-design operation of the trigenerative AA-CAESon the

scheduling of EH equipment is considered. Finally, the performance of the proposed safe DRL

algorithm in terms of operational cost, constraint violation, and using the potential of AA-CAES

is compared with a base DRL algorithm (DDPG) and a benchmark. The proposed methodology is

summarized in figure 2.8 and will be described in details in section 3.3.4.
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Figure 2.8: Proposed methodology for energy hub dispatching
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Chapter 3

Methodology

This chapter starts with a description of the problem and the mathematical formulation of the

EH in Section 3.1. Next, in Section 3.2, the optimal scheduling problem is modeled as a CMDP.

Afterwards, our proposed safe DRL approach and other DRL algorithms are explained in detail in

Section 3.3.

3.1 Energy Hub Modeling

3.1.1 Energy Hub Description

Fig. 3.1 shows the EH in this study which is connected to both the electric grid system and the

natural gas network. The users in the EH under study have electrical, heating, and cooling demands.

As a RES, the EH consists of Wind Turbine (WT) and Photovoltaic (PV) panels. Moreover, a Micro

Turbine (MT) is utilized for producing both electricity and heating energies. For energy storage

system, an AA-CAES is considered. Other equipment such as an EHP, a Gas Boiler (GB), and an

Absorption Chiller (AC) are also present in EH. Among the mentioned equipment, MT and GB

consume natural gas to produce electricity and heating. In the EH, electricity is supplied by a utility

company, and for the MT and GB, natural gas is supplied by a gas company. Heating energy is

generated by EHP, GB, and the MT’s heat output, while coooling energy is generated by AC and

EHP. In the present study, AA-CAES is a tri-generative ESS, which means that it can produce

heating energy in the charging process and cooling energy (based on the ambient air temperature)

25



Grid RES AA-CAESMT GB

Natural Gas Network

AC

Heating Network Cooling NetworkElectricity Network

Heat Flow

Electricity Flow

Cool Flow

Gas Flow

Electricity
Demand

Heating
Demand

Cooling
Demand

EHP

Figure 3.1: Energy hub’s equipment and configuration.

in the discharging process.

3.1.2 System Modeling

The purpose of this section is to describe the operation of the EH equipment and to present the

mathematical equations that govern its operation. For all equipment except AA-CAES, an input-

output (black-box) model is considered, while AA-CAES is modeled in more detail. Each power

term is expressed in kW .

3.1.2.1 MT Modeling

In addition to producing electricity, the MT generates a substantial amount of heating energy,

which can be reused through heat recovery. Modeling the operation of the MT is as follows:

PMT (t) = GMT (t) · ηMT,p (3)
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HMT (t) = GMT (t) · ηMT,h (4)

where PMT (t) is the electric power generated by the MT and GMT (t) is the amount of power

that corresponds to the amount of natural gas consumed by the MT at time step t. HMT (t) represents

the recovered heat from the MT; ηMT,h represents the heat output efficiency of the MT; and ηMT,p

represents the electric output efficiency of the MT.

3.1.2.2 GB, AC, and EHP Modeling

Using the EHP, electricity can be converted into heat to satisfy the heating demand of the con-

sumers. It can be modeled as follow:

HHP (t) = PHP,h (t) · COPHP (5)

where HHP (t) is the heating energy generated and PHP,h(t) is the electricity consumed by the

EHP for producing heating energy. COPHP is the Coefficient of Performance (COP) of the electric

heat pump. GB is another equipment that participates in meeting the heating load demand. It can

be modeled as:

HGB (t) = GGB (t) · ηGB (6)

where HGB(t) represents the heating energy generated by the GB; GGB(t) represents the

amount of power consumed by the GB; and ηGB represents the GB’s heating efficiency. In or-

der to meet the cooling load demands of the consumers, AC and EHP are utilized. An AC is a

lithium bromide refrigerator that produces cooling energy by utilizing heating energy. Meanwhile,

the EHP consumes electricity to operate its compressor and provide cooling power. In simple terms,

they can be modeled as follows:

CAC (t) = HAC (t) · COPAC (7)

CHP (t) = PHP,c (t) · COPHP (8)

in which CAC(t) and CHP (t) are the cooling energy generated by AC and EHP, respectively.
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HAC(t) is the heating energy fed to AC and PHP,c(t) is the electricity consumed by EHP to produce

cooling energy.

3.1.2.3 AA-CAES Modeling

In this study, AA-CAES is considered as ESS operating in the EH. The heat of the compression

in an AA-CAES is stored in a hot tank by the working fluid, which can be used either to preheat

the air before expansion or to provide heating to industrial and residential buildings. Depending on

the configuration and design parameters of the AA-CAES, the air leaving the air expanders may be

used for cooling purposes if it is lower in temperature than the ambient air temperature.

In modeling of the AA-CAES system, the following assumptions are considered:

• The air is assumed to be an ideal gas.

• The temperature of the air storage is assumed to be constant (20C).

• Both the compression and expansion processes have two stages.

• The temperature of hot and cold tanks is assumed to be constant (do not change over time).

• The pressure drop in heat exchangers and pipes are considered as negligible.

Fig. 3.2 and 3.3 illustrate the AA-CAES configuration and thermal storage subsystem, respec-

tively. Table 3.1 shows the properties of each point in the proposed AA-CAES system in design

condition, and the design parameters are presented in Table 3.2. For the off-design conditions, the

following assumptions are considered:

• The compressor and expander isentropic efficiencies are a function of the partial load ratio.

• The compression ratio of low- and high-pressure compressors are assumed to be constant

over time.

• The expansion ratio of low- and high-pressure expanders are a function of partial load ratio.

28



High-pressure 

Compressor

HE1 HE2

� ✁ ✂

✄

Throttle 

Valve

M/G

Cold Water Tank

Hot Water Tank
Heating 

Energy

HE3

Cooling 

Energy

HE4

Air Storage

2

☎

✆ ✝ ✞ ✟

Low-pressure 

Compressor

High-pressure 

Turbine

Low-pressure 

Turbine

Air Flow Cold Water Flow Hot Water Flow

Figure 3.2: Tri-generative AA-CAES configuration.
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Figure 3.3: AA-CAES thermal storage subsystem.

According to the assumption that air is an ideal gas, its characteristics are as follows:

p = ρ ·R · T (9)

which demonstrates the relationship between the air pressure p(Pa), air density ρ ( kg
m3 ), uni-

versal air constant R( J
kg·K ), and the air temperature T (K) . As air enters the first compressor from

ambient conditions, its temperature and pressure are the same as those of the ambient environment
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Table 3.1: Properties of each point in AA-CAES system at design conditions.

State Pressure Temperature MFR State Temperature MFR
(bar) (K) (kg/s) (K) (kg/s)

0 1.0 293.00 1.257 1′ 293 2.539
1 8.5 598.96 1.257 2′ 293 1.312
2 8.5 323.59 1.257 3′ 293 1.227
3 72.0 650.63 1.257 4′ 368 1.312
4 72.0 328.76 1.257 5′ 368 1.227
5 42.0 293.00 3.674 6′ 368 1.881
6 42.0 360.50 3.674 7′ 368 0.925
7 10.6 278.55 3.674 8′ 368 0.956
8 10.6 359.05 3.674 9′ 303 0.925
9 1.0 227.16 3.674 10′ 293 0.956

11′ 298 1.881
12′ 293 1.227

*MFR : Mass Flow Rate

(T 1
c,in = Tamb and p1c,in = pamb). The pressure and temperature at the inlet of the next compressor

depends on the outlet conditions of the Heat Exchanger (HE) 1. Inlet and outlet temperatures of the

compressors are as follows:

T ic,in (t) =


Tamb, i = 1

T 1
ahec,out(t) i = 2

(10)

pic,in (t) =


pamb, i = 1

p1ahec,out(t) i = 2

(11)

in which T ic,in (t) and pic,in (t) are the temperature and pressure of air entering the ith compressor

at timestep t, respectively; Tamb and pamb are the ambient air temperature and pressure, respectively;

T 1
ahec,out(t) and p1ahec,out(t) are the air outlet temperature and pressure after the first HE in the

charging process at timestep t, respectively.

As the air is compressed, its temperature and pressure increase in accordance with Eqs. (12)

and (13):

T ic,out(t) = T ic,in(t) ·

1 +
(πic)

γa−1
γa − 1

ηc(t)

 (12)

pic,out(t) = pic,in(t) · πic (13)
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Table 3.2: Design parameters of AA-CAES system.

Maximum Compressors Input Power 800 kW
Maximum Expanders Output Power 800 kW
Air Storage Volume 1100 m3

Charging Time ≃ 7.5hr
Discharging Time ≃ 3.5hr
Compressors Isentropic Efficiency 0.83
Expanders Isentropic Efficiency 0.8

In these formulas, T ic,out(t) is the air outlet temperature after compression in the ith compressor,

γa is the isentropic expansion factor, which represents the ratio between the specific heat capacity

of air at constant pressure and constant volume (γa =
cp
cv
); πic is the compression ratio of the ith

compressor and is assumed to be constant over time; and ηc(t) is the compressors’ isentropic effi-

ciency at timestep t. As shown in Fig. 3.4 , the isentropic efficiency of the compressors varies with

partial load.

The air mass flow rate of the compressors (charging mode) is then calculated using following equa-

tion:

ṁc(t) =
Pc(t)

w1
c (t) + w2

c (t)
(14)

Figure 3.4: Variation of compressors’ isentropic efficiency with partial load percentage [67]

in which Pc(t) is the charging power at timestep t; w1
c (t) and w2

c (t) are the work of compressors
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1 and 2 per unit of mass at timestep t, respectively:

w1
c (t) = cp ·

(
T 1
c,out(t)− Tamb

)
(15)

w2
c (t) = cp ·

(
T 2
c,out(t)− T 2

c,in(t)
)

(16)

Following compression in the first compressor, the air is cooled through HE 1 and the captured

heat is used to meet the demand for heating. The amount of this heating power can be calculated as

follow:

Hmax
AA−CAES(t) = ṁc · cp ·

(
T 1
c,out(t)− T 1

ahec,out(t)
)

(17)

During the charging process, the outlet air temperature of the ith HE is equal to the inlet air

temperature of the i+ 1 th compressor. The temperature of air and water after intercooling process

is calculated based on the effectiveness of the heat exchangers. It is assumed that the temperature of

Cold-Water Tank (CWT) is equal to the ambient temperature, and is constant over time. Addition-

ally, it is assumed that the heat capacity of the working water is higher than that of air in all HEs,

and this can be achieved by controlling the mass flow rate of the water. Using the assumptions men-

tioned above, it is possible to determine the temperature of the air leaving the HEs during charging

and discharging processes:

T iahec,out(t) = (1− ϵ)T ic,out(t) + ϵTcwt (18)

T je,in(t) = (1− ϵ)T jahed,in(t) + ϵThwt (19)

T jahed,in(t) =


Tas, j = 1

T 1
e,out(t) j = 2

(20)

where Tcwt and Thwt are the temperature of the cold and hot water tanks, respectively; T je,in(t)

and T je,out(t) are the inlet and outlet air temperatures of the jth expander at timestep t, respectively;

and Tas is the temperature of the air storage. The following equation is used for calculating the
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outlet air temperature of the expanders:

T je,out(t) = T je,in(t) ·

(
1− ηe(t) ·

(
1−

(
βje(t)

) 1−γa
γa

))
(21)

where βje(t) is the expansion ratio of the jth expander at timestep t; and ηe(t) is the isentropic

efficiency of expanders. Figs. 3.5 and 3.6 show the variation of isentropic efficiency and expansion

ratios of the expanders with partial load ratio. The expansion work or the generated electricity per

unit mass by each expander is calculated by Eq. (22) and (23) and follow by that, the mass flow rate

in discharging process is calculated:

w1
e(t) = cp ·

(
Tas(t)− T 1

e,out(t)
)

(22)

w2
e(t) = cp ·

(
T 2
c,in(t)− T 2

e,out

)
(23)

ṁe(t) =
Pd(t)

w1
e(t) + w2

e(t)
(24)

in which ṁe(t) is the discharging mass flow rate at timestep t; Pd(t) is the discharging power

at timestep t; w1
e(t) and w2

e(t) are the generated work of expanders 1 and 2 per unit of mass at

timestep t, respectively. If the system is operating at nominal load, the air leaving the last expander

is cold enough to be used for cooling purposes. Equation (25) calculate the amount of available

cooling/heating power of the tri generative AA-CAES. Whenever the air leaving the second ex-

pander has a lower temperature than the ambient air, it can be used for cooling purposes. If this is

not the case, the AA-CAES system will only be able to provide heating and electricity.

CmaxAA−CAES(t) =


Cooling : ṁe(t) · cp ·

(
Tamb − T 2

e,out(t)
)

if
(
T 2
e,out(t) ≤ Tamb

)
Heating : ṁe(t) · cp ·

(
T 2
e,out(t)− Tamb

)
if
(
T 2
e,out(t) > Tamb

) (25)

The power to power cycle efficiency of the proposed AA-CAES system can be calculated as

follow:

CE =
Pd × tdch
Pc × tch

(26)
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in which tch and tdch are the charging and discharging times, respectively. Moreover, the power

to heat and power to cold cycle efficiencies of the proposed AA-CAES system can be calculated as

follow:

PH =
Hmax
AA−CAES × tch
Pc × tch

(27)

PC =
CmaxAA−CAES × tdch

Pc × tch
(28)

After running simulations, the efficiencies of the proposed AA-CAES is compared with a refer-

ence for validations:

Table 3.3: Efficiency of the proposed AA-CAES system

Efficiency Proposed AA-CAES Reference [68]
CE 41% 44%
PH 38% 31%
PC 11.2% 8.5%

Due to the constant temperature of the AA-CAES air reservoir, its pressure in each time step can

be calculated by Eq. (29). Moreover, the instantaneous State of Charge (SOC) for the air storage is

defined as a function of the current pressure (pas), minimum (pminas ), and maximum (pmaxas ) allowable

pressures of the air storage 30 :

pas(t+ 1) = pas(t) +

((
ṁc(t)− ṁe(t)

)
·∆t

Vas

)
·R · Tas (29)

SOCAA−CAES(t) =
pas(t)− pminas

pminas − pmaxas

(30)

As a result of the off-design characteristics of the AA-CAES, Eqs. (14) and (24) are non-linear.

The equations mentioned above need to be converted to a linear form in order to ensure global

optimality by MILP solver. In this regard, mass flow rates in charging and discharging processes

are calculated for various input/output powers. Fig. 3.7 illustrate the relationship between mass flow

rates and charging/discharging powers. A linear regression model is fitted to each curve to achieve
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Figure 3.5: Variation of expanders’ isen-
tropic efficiency with partial load ratio [69]

Figure 3.6: Variation of high – and low-
pressure expanders’ expansion ratio with
partial load ratio [69]

a linear equation for mass flow rates. Thus, the mass flow rates in charging and discharging can be

expressed as follows:

ṁc/e = a · Pc/e + b (31)

in which ṁc/e is the mass flow rate of compressors or expanders, a and b are the coefficient and

intercept of the regression model, respectively, and Pc/e is the charging or discharging power.

3.1.2.4 Renewable Energy Sources Modeling

The proposed EH includes WTs and PV modules as RES. In addition to wind speed and di-

rection, turbine position, turbine size, generator dynamic performance, and load distribution among

parallel turbines, many factors can affect the amount of electricity generated by WTs [41]. Electrical

output of the WTs are modeled using the following equation [70]:

PWT (t) =



0 v(t) ≤ vci

P ratedWT · v(t)
3−vci3

vr3−vci3 vci < v(t) ≤ vr

P ratedWT vr ≤ v(t) < vco

0 vco ≤ v(t)

∀t ∈ H (32)

35



80 160 240 320 400 480 560 640 720 800

Charging Power (kW)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
A
ir 
M
as
s F

lo
w
 R
at
e 
(k
g/
s)

R2 Score = 0.993
Coeff = 0.0017
Intercept = -0.1165

Charging Mass Flow Rate vs Charging Power

Neglecting Off-Design Condition
Off-Design Condition
Linear Regression of Off-Design Condition

80 160 240 320 400 480 560 640 720 800

Discharging Power (kW)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
ir 
M
as
s F

lo
w
 R
at
e 
(k
g/
s)

R2 Score = 0.994
Coeff = 0.00277
Intercept = 1.223

Discharging Mass Flow Rate vs Discharging Power

Neglecting Off-Design Condition
Off-Design Condition
Linear Regression of Off-Design Condition

Figure 3.7: Variation of charging and discharging mass flow rate with power; the coefficient and
intercept of fitted linear regression models.

where PWT (t) is the power generated by WT in time step t, which is a function of the wind

velocity. v(t), vci, vco, and vr are the wind velocity, cut in velocity, cut out velocity, and rated

velocity (ms ), respectively. P ratedWT is the rated power of WT if the wind velocity in equal to the rated

velocity vr. The cut-in speed for a wind turbine refers to the speed at which it begins to run. Once

the wind speed reaches the wind turbine’s rated speed, the turbine’s power generation increases as

well. As long as the wind speed is between the turbine rated speed and cut-out speed, the turbine

generates its rated power. Whenever the wind speed exceeds the cut-out speed, the turbine stops

working. Eq. (33) shows the output power of PV system as a function of the solar irradiation and

ambient air temperature [71]:

PPV (t) = ηPV · SPV ·G(t) ·
(
1− 0.005(Tamb(t)− 25)

)
∀t ∈ H (33)

in which PPV (t), ηPV , SPV , G(t), and Tamb(t) are the output power of the PV system, effi-

ciency of the PV system, total surface area of PV system (m2), total solar radiation (kW
m2 ), and the

ambient air temperature (°C).
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3.1.3 Objective Function

An Intelligent Energy Management System (IEMS) aims to maximize the economic benefits of

the EH, which means that the output of each device at each timestep is efficiently arranged so that a

maximum economic benefit will be achieved, considering operational constraints.

There are two elements to this objective, which is represented by Eq. (34) . The first term rep-

resents the cost of purchasing from/selling electricity to the grid system, and the second term is the

cost of purchasing natural gas from the gas network. Compared with the daily operational costs,

maintenance and emissions costs of the equipment are relatively small [56]. As a result, they are

not considered in this study. The objective function can be written as follows:

min
H∑
t=1

(
Cpe (t) + Cpg (t)

)
(34)

Cpe(t) = εe,p · Pgrid,p(t)− εe,s · Pgrid,s(t) ∀t ∈ H (35)

Cpg(t) = εg(t) ·
(
PMT (t)

ηMT,p
+
HGB(t)

ηGB

)
·∆t ∀t ∈ H (36)

in which Pgrid,p(t) and Pgrid,s(t) are the amount of electricity purchased from/sold to the grid

system; εe,p and εe,s represent the purchasing and selling prices of electricity from/to grid system

( $
MWh ), εg is the natural gas price ( $

MWh ); and ∆t is the time interval which is an hour.

3.1.4 Constraints

There are a number of constraints associated with the energy management system, including the

energy balance equations and operational limits of the equipment. These constraints are presented

in this section:
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3.1.4.1 Energy Balance Constraints

Electrical network stability and safety depend on the balance between supply and demand of

electricity, as shown in the following equation:

Pgrid,p(t) + PPV (t) + PWT (t) + PAA−CAES,dch + PMT (t) = Pload(t) + PHP,h + PHP,c + PAA−CAES,ch + Pgrid,s(t)

(37)

wherePAA−CAES,ch(t) andPAA−CAES,dch(t) are the charging/discharging power of the AA-CAES,

respectively; and Pload(t) is the electricity demand of the EH. Furthermore, there must be a balance

in heating power at the heating network:

HGB (t) +HMT (t) +HAA−CAES (t) +HHP (t) = Hload (t) +HAC (t) (38)

in which HLoad(t) is the heating demand of the EH. In the same way, the cooling balance is as

follows:

CAC (t) + CHP (t) + CAA−CAES (t) = Cload (t) (39)

where Cload(t) represents the cooling balance of the EH at timestep t.

3.1.4.2 Operational Constraints

There are operational constraints associated with each piece of equipment in the EH. The oper-

ational constraints of each equipment are discussed in this section.

• AA-CAES Operational Constraints

The following constraints should be considered for the operation of AA-CAES:

uchAA−CAES · PminAA−CAES,ch ≤ PAA−CAES,ch(t) ∀t ∈ H (40)

PAA−CAES,ch(t) ≤ uchAA−CAES · PmaxAA−CAES,ch ∀t ∈ H (41)

udchAA−CAES(t) · PminAA−CAES,dch ≤ PAA−CAES,dch(t) ∀t ∈ H (42)
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PAA−CAES,dch(t) ≤ udchAA−CAES(t) · PmaxAA−CAES,dch ∀t ∈ H (43)

uchAA−CAES(t) + udchAA−CAES(t) ≤ 1 ∀t ∈ H (44)

SOCminAA−CAES ≤ SOCAA−CAES (t) ≤ SOCmaxAA−CAES ∀t ∈ H (45)

SOCAA−CAES (0) = SOCAA−CAES (H) (46)

0 ≤ CAA−CAES(t) ≤ CmaxAA−CAES(t) ∀t ∈ H (47)

0 ≤ HAA−CAES(t) ≤ Hmax
AA−CAES(t) ∀t ∈ H (48)

In which constraints (40, 41, 42, 43) indicate the lower and upper bounds of charging and

discharging powers of AA-CAES. Constraint (44) controls the operational mode of AA-CAES

(charge or discharge mode). Moreover, constraint (45) is for controlling the SOC of AA-CAES in

its valid range and constraint (46) makes sure the amount of energy in the AA-CAES at the final

timestep is equal to its initial value. Since utilizing the heating and cooling power of AA-CAES is

optional, its value should be less than the maximum amount that can be utilizied in each timestep.

Variables Hmax
AA−CAES(t) and CmaxAA−CAES(t) depend on the amount of charging and discharging

powers in each timestep (Eqs. (17) and (25)).

• MT, GB, AC, and EHP Operational Constraints

The electrical and thermal power produced by MT in EH should meet the following constraints:

uMT (t) · PminMT ≤ PMT (t) ≤ uMT (t) · PmaxMT ∀t ∈ H (49)

uMT (t) is a binary variable to limit PMT (t) in its valid range. For GB, the following constraint

should be met:

Hmin
GB ≤ HGB(t) ≤ Hmax

GB ∀t ∈ H (50)

Similar to GB constraint, AC should also operate in its valid range:

Hmin
AC ≤ HAC(t) ≤ Hmax

AC ∀t ∈ H (51)
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For the EHP, the operational constraints are as follow:

uHP,h(t) ·Hmin
HP ≤ HHP (t) ≤ uHP,h(t) ·Hmax

HP ∀t ∈ H (52)

uHP,c(t) · CminHP ≤ CHP (t) ≤ uHP,c(t) · CmaxHP ∀t ∈ H (53)

uHP,h(t) + uHP,c(t) ≤ 1 ∀t ∈ H (54)

in which uHP,h(t) and uHP,c(t) are binary variables that determine the status of EHP (heating

or cooling mode). Constraints (52) and (53) are for the upper and lower limits of EHP. Since the

EHP can only operate in heating or cooling modes, constraint (54) is considered.

• Grid Operational Constraints

The amount of power exchanged with the grid system should be within a valid range. Moreover,

selling and purchasing energy can not happen at the same time. Therefore, the following constraints

need to be met:

ugrid,p(t) · Pmingrid ≤ Pgrid,p(t) ≤ ugrid,p(t) · Pmaxgrid ∀t ∈ H (55)

ugrid,s(t) · Pmingrid ≤ Pgrid,s(t) ≤ ugrid,s(t) · Pmaxgrid ∀t ∈ H (56)

ugrid,p(t) + ugrid,s(t) ≤ 1 ∀t ∈ H (57)

3.2 Constrained Markov Decision Process

Optimal dispatch of EH explained in Section 3.1 is a sequential decision-making problem that

can be formulated as a finite CMDP incorporating the operational constraints for each component

in Section 3.1.4. Here, the objective is to find the optimal dispatch policy for the EH compo-

nents in order to minimize daily operational costs and meet the constraints at the same time. In an

MDP, the agent is interacting with the stochastic environment. This process is defined as a tuple

< S,A,P, r >, in which S is the state space;A is the action space; P : S×A ×S is the state tran-

sition probability, and r(st, at) is the immediate scalar reward. The main goal is to find the policy

40



π : S → P (A) that leads to the maximum discounted future reward R(t) =
∑H

i=t γ
i−tr(si, ai),

where γ ∈ [0, 1] is the discount factor that determines the importance of the immediate reward

relative to the expected cumulative reward in the future. A version of MDP, CMDP adds con-

straints on long-term discounted safety costs to the process. Each safety cost function is defined

as Ci : S × A × S → R, which is a mapping from transitions to safety costs. Moreover, the fu-

ture discounted safety cost can be formulated as Ci(t) =
∑H

i=t γ
i−tci(si, ai) where c(st, at) is the

immediate scalar cost. CMDP aims to find the policy π that maximizes discounted future reward

while satisfying constraints Ci(π) ≤ di ∀i ∈ [m], where di is the constraint tolerance and m is the

constraints set.

π∗ = arg max
π∈

∏
θ

R(π) s.t. Ci(π) ≤ di ∀i ∈ [m] (58)

As it is illustrated in Fig. 3.8, in each timestep, the agent observes the current state of the envi-

ronment st and chooses the action at based on the learned policy π(a|s). The probability of the

environment going to the next state st+1 depends on the chosen action at and dynamism in the

environment. As a result, the agent receives an immediate reward rt, some immediate safety costs

ct(i), and information about the next state st+1 which enables continuation of the decision-making

process over the time horizon. This section describes the CMDP’s main elements:

3.2.1 State

In order to allow the agent to choose a proper action, the environment should provide enough

information to the agent. To be more specific, this information represents the current state of

the environment which consists of load demands Pload(t), Hload(t), and Cload(t), power gener-

ated by PV panels PPV (t), power generated by wind turbines PWT (t), SOC of the AA-CAES

SOCAA−CAES(t), electricity purchase and sell real-time price εe,p(t) and εe,s(t), natural gas real-

time price εg(t), ambient air temperature Tamb(t), and the current dispatch timestep t. In the case

study, due to the correlation between the selling and purchasing prices of electricity and the constant

gas price, only the purchasing price of electricity is considered as a state element. Hence, the state
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Figure 3.8: Reinforcement learning framework in CMDP

can be described as a 9-dimentional vector:

st =
[
Pload(t), Hload(t), Cload(t), PPV (t), PWT (t), SOCAA−CAES(t), εe,p(t), Tamb(t), t

]
(59)

3.2.2 Action

The agent performs an action based on the learned policy after observing the state of the environ-

ment. The amount of energy generated or consumed by all dispatchable equipment is considered an

action to ensure the feasibility of actions
(
Constraints (40) to (54), except (45) and (46)

)
. Therefore,

the agent’s action is consisted of the charging or discharging power of AA-CAES (aAA−CAESt ), the

electricity generated by MT (aMT
t ), the electricity consumed by heat pump (aHPt ), the heating

generated by GB (aGBt ), and the heating consumed by the absorption chiller (aACt ). Moreover,

a
H/C AA−CAES
t determines the percentage of maximum amount of heating or cooling power gen-

erated by AA-CAES that can be utilized for dispatch (Constraints (47) and (48)). The AA-CAES

and EHP actions (aAA−CAESt , aHPt ) are scaled between [-1,1] which is the percentage of maxi-

mum charging or discharging power of the AA-CAES or the maximum power consumed by the

EHP (if positive: discharging AA-CAES or EHP generates heating energy, if negative: charging
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AA-CAES or EHP generates cooling energy). On the other hand, the other elements of the agent’s

action (aH/C AA−CAES
t , aMT

t , aGBt , aACt ) are scaled between [0,1] which are the percentage of their

maximum capacity. Finally, the action can be described as a 6-dimentional vector:

at =
[
aAA−CAESt , a

H/C AA−CAES
t , aMT

t , aGBt , aHPt , aACt

]
(60)

3.2.3 State transition

A number of factors contribute to the state transition in the MDP of EH. As a result, the state

transition from st to st+1 can be described as follows:

st+1 = f(st, at, ωt) (61)

in which ωt represents the environment’s uncertainties (electricity and heating and cooling de-

mands, wind turbines and PV panels power generation). Therefore, the state transition is not only a

function of the current state and action, but also a function of the existing uncertainties. However,

the state transition for the SOC of AA-CAES can be determined by the charging/discharging power

of AA-CAES (aAA−CAESt ), while for Pload(t) , Hload(t), Cload(t), PPV (t), PWT (t), and Tamb(t)

the state transition is affected by the community’s energy consumption behavior, weather conditions

such as wind velocity, and solar irradiation. Thus, it is difficult to develop an accurate model for the

probability distribution of randomness and uncertainty in these elements. The agent, however, can

implicitly learn the transition probability between states since it observes the data over a variety of

days during the training process.

3.2.4 Reward

The main goal of the IEMS agent is to minimize the operational cost as described in Section

3.1.3, while considering the operational constraints of the environment. Section 3.3.3 describes the

method for addressing constraints. To minimize the operational cost of the EH, the following reward

function is introduced:

rt = −
[
Cpe(t) + Cpg(t)

]
(62)
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It is the agent’s primary objective to maximize the cumulative reward over an episode in an

MDP. Hence, in order to convert our objective function minimization into an MDP reward function,

a negative sign must be added to it. To put it another way, the objective function will be minimized

by maximizing the reward function.

3.2.5 Safety cost

As mentioned in Section 3.2.2, the action is consisted of the generated or consumed energy

of all dispatchable equipment. Thus, there is no guarantee that the heating and cooling energy

balance constraints (38) and (39) will be met. Additionally, since the exchanged power with the

upstream grid system is derived from the electricity balance (37) and the power of other equipment,

the electricity balance can only be satisfied if the exchanged power with the grid system does not

exceed its valid range (constraints (55) and (56)). For the mentioned constraints to be considered,

a penalty function is necessary. Equipment that has its input/output power defined by the agent’s

action does not violate the constraint. However, there is a possibility that the following constraints

may not be satisfied: heating and cooling balance, power exchanged with the grid system, and the

SOC of AA-CAES (constraint (45)). To deal with each constraint, the following penalty functions

are considered:

c1(t) =
∣∣∣HGB(t) +HMT (t) +HAA−CAES(t) +HHP (t) +HAC(t)−Hload(t)

∣∣∣ (63)

c2(t) =
∣∣∣CAC(t) + CHP (t) + CAA−CAES(t)− Cload(t)

∣∣∣ (64)

c3(t) =
∣∣∣Pgrid(t) + Pmaxgrid

∣∣∣· u+grid + ∣∣∣Pgrid(t) + Pmingrid

∣∣∣· u−grid (65)

c4(t) =
∣∣∣SOCAA−CAES(t)− SOCmaxAA−CAES

∣∣∣· u+SOC · ϑSOC +
∣∣∣SOCAA−CAES(t)− SOCminAA−CAES

∣∣∣· u−SOC · ϑSOC (66)

Eqs. (63) and (64) are the violation from heating and cooling balance constraints (38) and (39),

eq. (65) is the violation from the minimum/maximum allowable power exchange with the grid (55)

and (56), and eq. (67) is the violation from minimum/maximum SOC of AA-CAES (45). The

variables u+grid and u−grid are binary variables that indicate if there is any violation for constraint

(55) and (56). More specifically, u+grid = 1 if Pgrid(t) > Pmaxgrid and u−grid = 1 if Pgrid(t) < Pmingrid .
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The same for the SOC constraint (67), u+SOC = 1 if SOCAA−CAES(t) > SOCmaxAA−CAES and

u−SOC = 1 if SOCAA−CAES(t) < SOCminAA−CAES . Moreover, ϑSOC is a penalty coefficient to

scale the SOC violation to the same scale of other penalty terms. To consider the constraint (46),

the following term is added to the reward function:

PenfinalSOC
(t) =


0 if t ̸= H

ϑSOC ·
∣∣∣SOCAA−CAES(H)− SOCAA−CAES(0)

∣∣∣ if t = H

∀t ∈ H (67)

3.3 Deep Reinforcement Learning Algorithms

The purpose of this section will be to present novel DRL algorithms, followed by a discussion

of our proposed safe reinforcement learning approach at the end of this section.

3.3.1 Q-Learning

Action-value functions are one of the most commonly used functions in reinforcement learning

algorithms. As a result of taking action at at state st following policy π, the action-value function

is described as the expected return [72]:

Qπ(st, at) = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣st, at] (68)

It is well known that many reinforcement learning approaches use the Bellman equation as a

recursive formula:

Qπ(st, at) = Eπ

[
r(st, at) + γ Eπ

[
Qπ(st+1, at+1)

]]
(69)

In this case, the target policy can be described as a function µ : S ← A, avoiding the inner

expectation if the target policy is deterministic:

Qµ(st, at) = Eπ

[
r(st, at) + γ Qµ

(
st+1, µ(st+1)

)]
(70)
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In the RL algorithms, the action value function can be calculated iteratively based on the Bell-

man optimality:

Qi+1(st, at) = Qi(st, at) + α ·
(
r(st, at) + γ ·max

a
Q(st+1, a)−Qi(st, at)

)
(71)

where Qi+1(st, at) and Qi(st, at) are the updated and current Q-values, α ∈ (0, 1] is the learn-

ing rate, and max
a

Q(st+1, a) is the estimated optimal future value. This means that as the agent

interacts with the environment, it gradually learns to improve its policy as the number of iterations

increases. In conventional RL algorithms like Q-learning, the optimal Q-value is calculated by a

Q-table which has all possible state-action pairs [73]. When there is a large number of possible

state-action pairs, then it would be impossible to create a Q-table. Discretizing the state and ac-

tions can be a solution but will surely lead to sub-optimal policy. To address this problem, deep

learning has been utilized to approximate Q(s, a) by Artificial Neural Network (ANN) [50]. The

data for deep learning must be independently and identically distributed (I.I.D.) in order to optimize

the learning process. Due to the high temporal correlation of the transition tuples, the experiences

themselves are not efficient for learning. As a solution to this problem, transitions are stored in an

experience replay memory and are then randomly selected for updating the neural networks [74].

3.3.2 Deep Deterministic Policy Gradient (DDPG)

DDPG algorithm simultaneously learns a Q-function and a policy [72]. To update the Q-

function and use it to learn the policy, DDPG uses the off-policy data. In DDPG, there is one

network for approximating the actor function (θµ), and one network for critic function (ϕQ). Each

one of these networks has its own target network (actor target θµ
′
and critic target ϕQ

′
)

It is the responsibility of the online critic network to provide feedback to the actor network regard-

ing the quality of the state-action pair, in terms of the discounted future reward. The term “online”

refers to the main critic network that its inputs are the current state and action pair. To update the
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online critic network, the following loss function is used:

L
(
ϕQ
)
=

1

N

N∑
j

(
Qtarget −Q

(
sj , aj

∣∣ϕQ))2 (72)

where Qtarget = rj + γ ·Q′
(
sj+1, aj+1 = µ′θ

(
sj+1

)∣∣ϕQ′
)

is the target Q-value and is equal to

the current immediate reward, plus the discount factor times the output of the critic target network.

The parameters of online and target critic networks are updated by:

ϕQ ← ϕQ − αϕ∇ϕQ
(
L
(
ϕQ
))

(73a)

ϕQ
′ ← τϕQ + (1− τ)ϕQ′

(73b)

in which τ is the Poliak averaging ratio (soft update rate) and is a small value, and αϕ is the

critic network’s learning rate. The information from the critic network can be used to update the

parameters of the actor (policy) and its target network:

L
(
θµ
)
=

1

N

N∑
j

(
Q
(
sj , aj = µθ(sj+1)

∣∣ϕQ)) (74a)

θµ ← θµ − αθ∇θµ
(
L
(
θµ
))

(74b)

θµ
′ ← τθµ + (1− τ)θµ′ (74c)

A major challenge of learning in continuous action spaces is exploration. To deal with this

problem, a mean-zero Gaussian exploration noise is added to the actor’s output to increase the

exploration of the agent for better action-values estimations. The learning process of DDPG agent

is fully explained in Algorithm 1.

3.3.3 Primal-Dual Deep Deterministic Policy Gradient (PD-DDPG)

A traditional RL algorithm, such as DQN and DDPG, which are based on MDP, introduces

environment constraints by adding penalties to the reward function [75]. There is a problem with

this approach in terms of the priority and weight of the primary objective function and the penalty
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Algorithm 1 Deep Deterministic Policy Gradient Algorithm

1: Randomly initialize critic network Q(s, a|ϕQ) and actor µ(s|θµ) with weights ϕQ and θµ.
2: Initialize target network Q′ and θ′ with weights ϕQ

′ ← ϕQ, θµ
′ ← θµ

3: Initialize replay bufferR and dual variables λi
4: for episode = 1 to M do
5: Receive initial observation state s1
6: for t = 1 to H do
7: Select action at = clip(µ(st|θµ) + ϵ, aLow, aHigh) where ϵ ∼ N (µ = 0, σ)
8: Execute at in the environment
9: Observe next state st+1, reward rt, and done signal d to indicate whether st+1 is terminal

10: Store (st, at, rt, st+1, d) in replay bufferR
11: If st+1 is terminal, reset environment state.
12: Sample a random minibatch of N transitions (sj , aj , rj , sj+1) fromR

13: Calculate Q-target value Qtarget
j = rj + γ ·Q′

(
sj+1, aj+1 = µ′

θ

(
sj+1

)∣∣ϕQ′
)

14: Update critic by minimizing the loss: L
(
ϕQ
)
=

1

N

N∑
j

(
Qtarget

j −Q
(
sj , aj

∣∣ϕQ))2
15: Update the actor policy using the sampled policy gradient:

∇θµJ ≈ 1

N

N∑
j

∇aj
Q
(
sj , aj = µθ(sj+1)|ϕQ

)
∇θµµ(s|θµ)

16: Update the target networks:
ϕQ

′ ← τϕQ + (1− τ)ϕQ′

θµ
′ ← τθµ + (1− τ)θµ′

17: end for
18: end for
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terms. Considering that the agent is not aware of the constraints as independent functions, it will be

guided toward the policy that maximizes the heavier term in the reward function. To consider the

CMDP in DDPG algorithm, Lagrangian Multipliers are added to (58) formulation to penalize the

constraint violations [66]. Therefore, the CMDP problem is reformulated as follow:

(π∗, λ∗) = argmin
λ≥0

max
π∈

∏
θ

L(π, λ) (75a)

L(π, λ) = R(π)−
m∑
i

λi(Ci(π)− di) ∀i ∈ [m] (75b)

Updating the policy network parameters and the dual variables (λi) is done iteratively by the

following equations:

θµk+1 = θµk + αk∇θ
(
L
(
π(θ)

)
, λki

)∣∣∣
θ=θk

∀i ∈ [m] (76a)

λk+1
i =

[
λki + βk

(
Ci(π)− di

)]+
∀i ∈ [m] (76b)

in which βk is the dual variables’ learning rate and the operator [x]+ = max(0, x). This operator

is used to make sure that dual variables always have non-negative values (λi ≥ 0).

In PD-DDPG algorithm, the online cost networks (ψCi) exist to consider the constraint viola-

tions (cost functions). Each of these networks has its own target network (ψC
′
i). The functionality

of the cost networks is exactly the same as that of the critic networks; however, the critic networks

relate to the main objective (reward function), while the cost networks relate to the constraints. In

other words, both critic and cost networks are used to approximate the action value functions: critic

for Q-value and cost for C-value. Therefore, updating the cost networks’ parameters has the same

procedure as the critic network:
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L
(
ψCi
)
=

1

N

N∑
j

(
Ci

target − Ci
(
sj , aj

∣∣ψCi
))2

∀i ∈ [m] (77a)

Ci
target = ci,j + γ · C ′

i

(
sj+1, aj+1 = µ′θ

(
sj+1

)∣∣ψC′
i

)
∀i ∈ [m] (77b)

ψCi ← ψCi − αψ∇ψCi

(
L
(
ψCi
))

∀i ∈ [m] (77c)

ψC
′
i ← τψCi + (1− τ)ψC′

i ∀i ∈ [m] (77d)

Actor network parameters should be updated in such a manner as to increase reward and reduce

constraint violation. This can be achieved by considering the output of cost networks in the loss

function of the actor network. Accordingly, the loss function for actor network can be written as

follows and its parameters are updated using gradient ascending (74b):

L
(
θµ
)
=

1

N

N∑
j

(
Q
(
sj , aj

∣∣ϕQ)∣∣∣
aj=µθ(sj+1)

−
m∑
i=1

λiCi
(
sj , aj

∣∣ψCi
)∣∣∣
aj=µθ(sj+1)

)
(78)

The learning process of the PD-DDPG agent is explained in Algorithm 2.

3.3.4 Proposed Deep Reinforcement Learning Algorithm

In this section, our proposed algorithm for the optimal dispatch problem in 3.2 is explained in

details. The purpose of this section is to introduce a safe DRL algorithm inspired by [60, 76], re-

ferred to as Primal-Dual Deep Deterministic Policy Gradient from Demonstrations (PD-DDPGfD).

The proposed algorithm is based on PD-DDPG, and IL, which uses expert demonstrations. To as-

sist the agent with initial explorations, IL is used for pre-training the networks because the objective

function is non-convex and the search space is large. The learning process of the proposed algorithm

is explained in the following sub-sections.

3.3.4.1 Pre-training with Imitation Learning

In PD-DDPG, the agent performs random actions in order to gather information about the envi-

ronment. Nevertheless, the initial exploration and the initialization of neural networks parameters
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Algorithm 2 Primal-Dual Deep Deterministic Policy Gradient Algorithm

1: Randomly initialize critic network Q(s, a|ϕQ), cost networks Ci(s, a|ψCi)actor µ(s|θµ) with weights
ϕQ, ψCiand θµ.

2: Initialize target network Q′,C ′
i and µ′ with weights ϕQ

′ ← ϕQ, ψC′
i ← ψCi , θµ

′ ← θµ

3: Initialize replay bufferR
4: for episode = 1 to M do
5: Receive initial observation state s1
6: for t = 1 to H do
7: Select action at = clip(µ(st|θµ) + ϵ, aLow, aHigh) where ϵ ∼ N (µ = 0, σ)
8: Execute at in the environment
9: Observe next state st+1, reward rt, costs cti, and done signal d to indicate whether st+1 is terminal

10: Store (st, at, rt, cti, s
t+1, d) in replay bufferR ▷ ∀i ∈ [m]

11: If st+1 is terminal, reset environment state.
12: Sample a random minibatch of N transitions (sj , aj , rj , ci,j , sj+1) ∀i ∈ [m] fromR

13: Calculate Q-target value Qtarget
j = rj + γ ·Q′

(
sj+1, aj+1 = µ′

θ(si+1)
∣∣ϕQ′

)
14: Calculate C-target values Ctarget

i,j = ci,j + γ · C ′
i

(
sj+1, aj+1 = µ′

θ(sj+1)
∣∣ψC′

i

)
▷ ∀i ∈ [m]

15: Update critic network by minimizing the loss: L
(
ϕQ
)
=

1

N

N∑
j

(
Qtarget

j −Q
(
sj , aj

∣∣ϕQ))2
16: Update cost networks by minimizing the loss:

L
(
ψCi

)
=

1

N

N∑
j

(
Ctarget

i,j − Ci

(
sj , aj

∣∣ψCi
))2

▷ ∀i ∈ [m]

17: Update the actor policy using the sampled policy gradient:

∇θµJ ≈ 1

N

N∑
j

∇aj

(
Q
(
sj , aj

∣∣∣ϕQ)− m∑
i=1

λiCi

(
sj , aj

∣∣∣ψCi

))∣∣∣∣
aj=µθ(sj)

18: Update dual variables using the sampled dual gradient:

∇λiL(θµ, λi) =
1

N

N∑
j

(
Ci(sj , aj)− di

)∣∣∣
aj=µθ(sj)

▷ ∀i ∈ [m]

λk+1
i =

[
λki + βk∇λi

L(θµ, λi)
]+

▷ ∀i ∈ [m]

19: Update the target networks:

ϕQ
′ ← τϕQ + (1− τ)ϕQ′

ψC′
i ← τψCi + (1− τ)ψC′

i ▷ ∀i ∈ [m]

θµ
′ ← τθµ + (1− τ)θµ′

20: end for
21: end for

51



may affect the learning process, resulting in suboptimal solutions with high operating costs and low

constraint violations. Therefore, it can be very difficult for the agent to come up with an acceptable

dispatch policy. As a solution to this problem, imitation learning is used to pretrain the actor, critic,

and cost networks. The objective of imitation learning techniques is to mimic the behavior of an

expert when it comes to a particular task. In order to learn a mapping between observations and ac-

tions, the agent uses expert demonstrations that are the near optimal state-action pairs. For this study,

the “Expert Demonstration” is referred to as the optimal state-action pairs obtained from the MILP

solver [77] for problem 3.1. It is important to note that even actions performed by an experienced

energy hub operator or solutions resulting from a preliminary optimization model could be consid-

ered expert demonstrations. The benchmark for this study is the optimal solutions obtained from

an MILP solver. The process of IL can be viewed as a regression problem. Before starting the pre-

training process, a dataset consisted of expert trajectories from MILP solver is created that has all

the optimal state-action pairs D = [d1, d2, ..., dM ] where dm =
[
(sm0 , a

m
0 ), (sm1 , a

m
1 ), ..., (smH , a

m
H)
]

is a demonstration for each day in the training set with the optimization horizon of (H). In the next

step, a neural network with the same architecture as the actor network is created, which receives

the states as input and outputs the actions. To pre-train the actor network, supervised learning is

conducted to update the actor network parameters in order to minimize the following loss function:

LIL
(
θµ
)
=

1

M

M∑
m=1

(
am − θµ(sm|θµ)

)2
(79a)

θµ ← θµ − αµ,IL∇θµLIL
(
θµ
)

(79b)

where amis the optimal action corresponding to state sm, θµ(sm|θµ) is the output of actor net-

work, and αµ,IL is the IL learning rate. The critic and cost networks are function approximators for

the action-value functions (Q and C) and they will output inaccurate values if not pre-trained. Con-

sequently, they can have an adverse impact on the learning process of the actor netwrok. Therefore,

the transition tuples from expert demonstrations are stored in the replay buffer memory and used to

pre-train the critic and cost networks. The pre-training process is summarized in Algorithm 3.
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Algorithm 3 Pre-training PD-DDPG networks
1: Store expert demonstrations D in replay bufferR.
2: Randomly initialize critic network Q(s, a|ϕQ), cost networks Ci(s, a|ψCi)actor µ(s|θµ) with weights
ϕQ, ψCiand θµ.

3: Initialize target network Q′,C ′
i and µ′ with weights ϕQ

′ ← ϕQ, ψC′
i ← ψCi , θµ

′ ← θµ

4: for epochs = 1 to S do
5: for iterations = 1 to I do
6: Sample a batch of (sm, am) fromR.
7: Update the actor network parameters θµ by (79).
8: end for
9: end for

10: θµ
′ ← θµ

11: for days in training-set do
12: for t = 0 to H do
13: Retrieve (st, at) fromR
14: Execute the action at, and append reward, costs, and next state rt, cti, s(t+1) to (st, at)▷ ∀i ∈ [m]
15: end for
16: end for
17: for episode =1 to P do
18: for iteration =1 to H do
19: Randomly sample a batch of transitions fromR.
20: Update the online critic network parameters ϕQ by (72, 73a) and online cost network parameters

ψCi by (77a, 77c) ▷ ∀i ∈ [m]
21: if iteration % policy_delay then
22: Update target parameters by (73b, 77d) ▷ ∀i ∈ [m]
23: end if
24: end for
25: end for
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3.3.4.2 Online Learning Process

After pre-training the networks, the agent begins optimizing the learned policy in terms of con-

straint violation and operational costs through interaction with the environment. Considering that

the agent is pre-trained, exploration noise is not required to influence its choice of actions. Addi-

tionally, expert demonstrations are again used to speed up the online training process and to accom-

modate the following two modifications:

(1) Initially, the replay buffer contains demonstration data, and data generated by the control

agent is gradually added to it as it interacts with the environment, but it should not overwrite

the demonstration data. When the replay buffer reaches its maximum capacity, new transitions

will overwrite earlier self-generated data.

(2) Due to the high probability that the sampled data from the replay buffer include optimal

actions, an additional term is added to the actor’s loss function to assist the agent in making

more optimal decisions. In this case, the Mean Squared Error (MSE) between the sampled

actions and the network’s output should be considered [78]. By adding this term to (78), the

loss term for the actor network would be:

L
(
θµ
)
=

1

N

N∑
j

(
Q
(
sj , a

∣∣ϕQ)−(aj − a)2 − m∑
i=1

λiCi
(
sj , a

∣∣ψCi
))∣∣∣∣

a=µθ(sj)

(80)

where aj is the sampled action from replay bufferR, and a = µθ(sj) is the actor network’s output.

The added term directs the agent to optimal actions during the online learning process.The online

training process is summarized in Algorithm 4

Fig. 3.9 represents the whole training process of the proposed approach. It is worth mentioning

that the demonstrations used for pre-training and online learning processes are the optimal solutions

from MILP solver for the training set only. Moreover, since there is no model to help the agent in

approximating the future states, the developed approach is model-free.
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Algorithm 4 Online Training Process of PD-DDPGfD
1: for episode =1 to K do
2: Pick a random day from the training set.
3: for t=0 to H do
4: Observe state st and execute action at = µθ(sj)
5: Collect the reward rt and costs cti from the environment and proceed to state st+1 ▷ ∀i ∈ [m]
6: Store transition (st, at, rt, cti, s

t+1) to replay memory B, overwrite the old self-generated transi-
tions if the memory is full.

7: if t = H , reset the environment.
8: end for
9: for iteration 0 = H do

10: Randomly sample a batch of transitions fromR
11: Update the online critic network parameters ϕQ by (72, 73a) and online cost network parameters

ψCi by (77a, 77c) ▷ ∀i ∈ [m]
12: if iteration % policy_delay then
13: Update actor network parameters by (80) ▷ ∀i ∈ [m]
14: Update target parameters by (73b, 77d, and 74c) ▷ ∀i ∈ [m]
15: Update dual variables using the sampled dual gradient:

∇λi
L(θµ, λi) =

1

N

N∑
j

(
Ci(sj , aj)− di

)∣∣∣
aj=µθ(sj)

▷ ∀i ∈ [m]

λk+1
i =

[
λki + βk∇λiL(θµ, λi)

]+
▷ ∀i ∈ [m]

16: end if
17: end for
18: end for
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Chapter 4

Case study

This chapter presents in a brief way the dataset which is being used as a case study, the energy

hub’s specification, and the inputs to the simulations in Section 4.1. Further, the implementation of

the proposed and benchmark algorithms are explained in Section 4.2.

4.1 Input Data and Pre-processing

The data from a community containing residential and commercial buildings in Santa Coloma de

Gramenet, Barcelona, Spain [79] is used to evaluate the performance of the proposed algorithm. The

load consumption data is generated by running simulations in commercial software TRNSYS 18 and

the renewables power generation is calculated based on the weather data used for the simulations.

Fig. 4.1 shows the hourly electricity, heating, and cooling demand and the ambient air temperature

of the community over a year. The yearly data is split into training and test days with the test days

being every fifth day (73 days in total) and the training days being the remaining (292 days). The

statistic characteristics of loads and renewables generation is presented in Table 4.1 . Due to the high

standard deviation of the data, training the agent is quite challenging. A Min-Max normalization

method is used to normalize the data in order to enhance the learning process. In this method, all

data points are scaled from 0 to 1 in order to ensure that all the features have the same scale.

The electricity price profile is obtained from previous study [56] which is based on time-of-use

price. Off-peak electricity prices are 39.9 ( $
MWh ) (23:00-07:00), on-peak prices are 199.9( $

MWh )
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Figure 4.1: Hourly load demands, WT and PV power output, and ambient temperature of the com-
munity in the studied year

Table 4.1: Case study community loads and renewable generations information

Min Max Mean Stdv.
(kWh) (kWh) (kWh) (kWh)

Electricity 272.20 2049.60 842.11 320.88
Heating 0 2073.80 125.44 282.63
Cooling 0 2400.00 99.01 248.86
PV Generation 0 843.59 104.60 179.43
WT Generation 0 800.00 34.39 114.39

(12:00-19:00), and mid-peak prices are 119.9 ( $
MWh ) (08:00-12:00 and 20:00-23:00). It is assumed

that electricity is sold for 0.5 times its purchase price and the natural gas price is fixed at 32.1 ( $
MWh )

[56]. Moreover, the EH equipment specifications and operational constraints are provided in Table

4.2.
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Table 4.2: Energy hub’s equipment specifications and operational constraints

MT, AC, HP, and GB

Parameter Value Parameter Value Parameter Value

PmaxMT 1500 kW CmaxAC 1000 kW PmaxHP 1000 kW

PminMT 200 kW CminAC 0 kW PminHP 0 kW

ηMT,p 0.35 COPAC 0.9 COPHP 3

ηMT,h 0.42 Hmax
GB 1500 kW Hmin

GB 0 kW

ηGB 0.8

AA-CAES

Parameter Value Parameter Value Parameter Value

PmaxAA−CAES 800 kW SOCminAA−CAES 0.2 SOCmaxAA−CAES 0.9

PminAA−CAES 80 kW SOCinitialAA−CAES 0.5

Grid WT [80] PV [81]

Parameter Value Parameter Value Parameter Value

Pmaxgrid 2000 kW P ratedWT 400 kW ηPV 0.186

Pmingrid -2000 kW vci 3.5ms SPV 5000 m2

vr 12ms
vco 25ms
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4.2 Implementation of The Proposed PD-DDPGfD Algorithm

The proposed algorithm is implemented using PyTorch [82] and the computations are done on a

computer with Core i5-10500 CPU and Nvidia GTX 1050Ti GPU. Table 4.3 shows the parameters

of the networks and the algorithms. A trial and error approach has been adopted for the parameter

tuning process. Fig. 4.2 depicts the architecture of the networks with their input, hidden, and output

layers. For the actor network, two hidden layers with 256 and 128 neurons are considered. A similar

set of hidden layers is implemented for the critic and cost networks.

𝑃𝐿𝑜𝑎𝑑 𝑡

𝐻𝐿𝑜𝑎𝑑 𝑡

𝐶𝐿𝑜𝑎𝑑 𝑡

𝑃𝑃𝑉 𝑡

𝑃𝑊𝑇 𝑡
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𝜀𝑒 ,𝑝 𝑡

𝑇𝑎𝑚𝑏 𝑡
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𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟 1
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𝐻𝑖𝑑𝑑𝑒𝑛 𝐿𝑎𝑦𝑒𝑟 2
128 neurons

(Relu)
𝐼𝑛𝑝𝑢𝑡  𝐿𝑎𝑦𝑒𝑟

9 neurons

𝑂𝑢𝑡𝑝𝑢𝑡  𝐿𝑎𝑦𝑒𝑟
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Figure 4.2: Actor, critic, and cost networks’ architecture.
(activation function for each action element depends on its range)

Adam optimizer is utilized for hyperparameter optimization of all neural networks. The learning

rate for actor network is 0.0005 and for critic and cost networks, 0.001 is considered. For the

proposed algorithm, the batch size and replay memory size are 128 and 15,000, respectively. The

target networks are updated using soft-update rate of 0.001. To stabilize the learning process, the

actor and target networks are updated every 4 steps (the online critic and cost networks are updated

in every step).

Since the SOC and grid constraint violations are treated as hard constraints, their constraint

violation tolerance is zero. On the other hand, the heating and cooling constraints are treated as soft

constraints that have the tolerance of one (kWh). For the pre-training process, the actor network
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is pre-trained using expert demonstrations for 1000 epochs, while the critic and cost networks are

pre-trained for 100 episodes. Fig. 4.3 shows the pre-training MSE of the actor, critic, and cost

networks of the proposed algorithm.

Figure 4.3: Actor, critic, and cost networks pre-training MSE loss

4.3 Implementation of The Benchmark Algorithms

In order to evaluate the performance of the proposed algorithm on both training and testing

datasets in terms of operational cost and constraint violation, the results are compared to the existing

state-of-the-art model-free algorithms and Support Vector Regression (SVR). For a fair comparison

of performance, all algorithms are trained for 3000 episodes only. The benchmark algorithms are as

follows:

(1) DDPG: the traditional existing DDPG algorithm in which the constraints of the EH are con-

sidered as a penalty and are added to the reward function. To update the actor network, only

the critic network is involved.

(2) Deep Deterministic Policy Gradient from Demonstrations (DDPGfD): like DDPG, the con-

straints are added to the reward function. However, the actor and critic networks are pre-

trained using the expert demonstrations. Moreover, the MSE between the sampled actions

and the output of the actor network is added to the actor’s loss function in DDPG.
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(3) PD-DDPG: in this algorithm, the constraints have their own cost networks, and the actor

network is updated using the output of the critic and cost networks with lagrangian multiplier.

(4) Behavioral Cloning (BC): In IL, the deep neural network is trained with the expert demon-

strations and then used for real-time decision making. In this study, BC is the pre-trained

actor network that is used in PD-DDPGfD and DDPGfD.

(5) SVR: as IL is a simple regression problem, any regression algorithm may be used for decision

making. Support Vector Regression which works based on Support Vector Machines, is a

powerful algorithm for prediction and is also used as a benchmark algorithm.

(6) Deterministic MILP: The daily dispatch problem in Section 3.1 is modeled and solved as a

deterministic MILP problem, assuming perfect information about the EH mathematical mod-

els and the uncertainties in loads. This study uses the result of this approach as a theoretical

benchmark.

Table 4.3: Algorithms’ parameters

Parameter Value
Actor learning rate 0.0005
Critic and cost networks’ learning rate 0.001
Hidden layers 256/128
Reward and cost discount factor 0.995
Number of training episodes 3000
Soft-update rate 0.001
Initial exploration episodes (for PD-DDPG and DDPG) 200
Experience replay memory size (for PD-DDPGfD and DDPGfD) 15,000
Experience replay memory size (for PD-DDPG and DDPG) 100,000
Mini-batch size 128
Delayed update steps(policy_delay) 4
Initial exploration noise Stdv. 0.15
Minimum exploration noise Stdv. 0.05
Exploration noise decay rate (per episode) 0.0005
Initial dual-variables value 0
Dual-variables’ learning rate 0.0001
SOC and grid constraint tolerance 0
Heating and cooling constraint tolerance 1
SOC penalty scaling coefficient ϑSOC 1500
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Chapter 5

Results and Discussion

5.1 Performance Evaluation During Training Process

This section will compare the performance of the proposed PD-DDPGfD algorithm with the

performance of the model-free algorithms mentioned earlier in Section 4.3 . Fig. 5.1 shows the

reward learning curves of the studied DRL algorithms. It should be noted that the agents with

the same reward functions are plotted on the same figure. There are solid lines on the graph that

represent the sliding average of rewards over 50 episodes. As PD-DDPGfD and DDPGfD agents

are pre-trained with expert policy, they have an immediate jump during the initial episode, and they

have higher episodic rewards.

Considering that the agent performs action on a random day in each episode, the evaluations are

performed every 500 timesteps over all the training days, and their average value is reported on a

daily basis. The average daily operational costs and total constraint violations for each evaluation

are shown in Fig. 5.2 . Since the BC and SVR agents have no interaction with the environment, their

performance is constant over time. As shown in Fig. 5.2 , PD-DDPG and DDPG agents have high

operational costs in the initial evaluation (4738$ and 7133$), whereas PD-DDPGfD and DDPGfD

have lower values (2760$ and 2813$) since they are pre-trained. There is a noticeable difference

between the operational costs of PD-DDPGfD and DDPGfD in each evaluation when compared

with other agents. As a result of the training process, both the PD-DDPGfD and DDPGfD agents

achieve almost optimal operational costs based on the theoretical benchmark. In the final evaluation,
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Figure 5.1: Episodic reward for different DRL algorithms over training process

the PD-DDPGfD and DDPGfD agents reach the average daily operational cost of 1826$ and 1847$,

respectively, while PD-DDPG and DDPG agents reach the values of 2499$ and 2611$, respectively.

This can be explained by the fact that PD-DDPG and DDPG agents are stuck in local optima,

resulting in high operating costs. A further advantage of PD-DDPGfD and DDPGfD is that they

have fewer fluctuations and are more stable. Therefore, expert demonstrations may contribute to

lowering operating costs once they are incorporated into the learning process.

As shown in Fig. 5.2 , the PD-DDPG and PD-DDPGfD agents are capable of handling con-

straints more effectively than other algorithms. The actor network in these agents is penalized when

it violates constraints due to the utilization of primal-dual optimization with dual variables. As

compared to the BC agent, the performance of the agents DDPG and DDPGfD is almost the same.

Since SVR agent is using a regression model for each piece of equipment, it has a poor performance

in handling constraints. As a result, each model can have errors in predicting the optimal action,

resulting in high total constraint violations.

Fig. 5.3 shows the constraint violations in the training process of PD-DDPGfD and the evolution

of dual variables over time. Despite the fact that the cost networks are pre-trained, there is a high
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Figure 5.2: Average daily operational cost and total constraint violation over training process eval-
uations.

constraint violation right after the learning process begins. As the agent interacts more with the

environment and updates the networks, the agent’s ability to handle constraints improves. There are

two possible reasons for this:

(1) The cost networks have been pre-trained with only optimal actions. This problem arises from

the fact that an optimal action does not violate any constraints, and the cost networks have

never encountered a state-action pair that violates a constraint. As a result, when the cost

networks observe a state-action pair that is not optimal, they produce the wrong estimation of

the corresponding C-value for the pair. This results in the agent being guided to actions with

high constraint violations. Fig. 5.4 shows the loss value for cost networks in the first 300

episodes, which supports the explanation provided.

(2) The initial value of the dual variables is zero at the beginning of the learning process. The

reason for this is that we want the agent to improve itself in terms of operational cost at the

beginning. Choosing a higher initial value means that the agent should consider the output

of the critic and cost networks in updating the actor network at the beginning. It is however

notable that the agent’s performance in terms of both operational cost and constraint handling

is improved at the end of the training process.
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Figure 5.3: Constraint violations and dual-variables evolution in PD-DDPGfD learning.

According to Fig. 5.3 , there is a negative correlation between the dual variables and the con-

straints violations. Since lambda values are relatively small when costs are high, there exists a bal-

ance between maximization of rewards and minimization of violations. As a result of the increment

in lambda values, even small violations of constraints will be prevented.

Table 5.1 presents operational cost and constraint violation values of each algorithm over the

evaluations. According to Table 5.1, DDPG and PD-DDPG do not have any SOC constraint vio-

lations. This is primarily due to the fact that the AA-CAES is not used frequently in EH dispatch

strategy. It is possible that the PD-DDPGfD and DDPGfD agents end up in a situation in which

they exceed the maximum or minimum allowable SOC for the AA-CAES. Therefore, they have a

small SOC violation of 20 and 76, respectively. It should be noted that this value is the absolute dif-

ference from the minimum and maximum SOC multiplied by penalty scaling coefficient ϑSOC . In

terms of the grid power violation, all algorithms perform safe actions, except DDPG agent that has

13 kWh of daily average grid violation. Considering violations of heating and cooling constraints,

both PD-DDPGfD and PD-DDPG have acceptable performance due to the cost networks that help

the actor network to deal with the constraints. For PD-DDPGfD and PD-DDPG, the heating viola-

tions are 165 kWh/day and 265 kWh/day and cooling violations are 52 kWh/day and 165 kWh/day,

while these values for DDPG and DDPGfD are 301kWh/day and 557 kWh/day for heating and 206
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Figure 5.4: Loss value for cost networks over the first 300 episodes of learning process.

kWh/day and 117 kWh/day for cooling.
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Table 5.1: Average daily operational cost and constraint violations during the training days

Method Metric Evaluation No.

1 30 60 90 120 140

DDPG

Operational Cost ($) 7133 2506 2550 2663 2654 2611

SOC Violation 66656 0 0 0 0 0

Grid Violation (kWh) 12168 6 12 13 13 13

Heating Violation (kWh) 70637 821 1023 360 379 301

Cooling Violation (kWh) 2385 669 387 279 234 206

DDPGfD

Operational Cost ($) 2813 1943 1950 1859 1842 1847

SOC Violation 6836 6 43 94 76 76

Grid Violation (kWh) 18 0 0 0 0 0

Heating Violation (kWh) 32139 792 533 536 595 557

Cooling Violation (kWh) 3539 154 153 158 156 117

PD-DDPG

Operational Cost ($) 4738 2522 2731 2712 2581 2499

SOC Violation 11038 0 0 0 0 0

Grid Violation (kWh) 1054 3 1 0 0 0

Heating Violation (kWh) 30966 1629 849 480 328 265

Cooling Violation (kWh) 2396 255 204 139 196 100

PD-DDPGfD

Operational Cost ($) 2760 1917 1863 1851 1828 1826

SOC Violation 27953 148 61 80 21 20

Grid Violation (kWh) 3479 0 0 0 0 0

Heating Violation (kWh) 30908 430 247 193 180 165

Cooling Violation (kWh) 18141 88 106 194 88 52

5.2 Generalisation Evaluation

This section focuses on evaluating the performance of the trained agents in dealing with unseen

scenarios from test days data. Once the training process of the agents is done, the trained network

is utilized for dynamic dispatch of EH. The trained online actor network observes the current state

of the EH at each timestep and outputs the action for the equipment.
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5.2.1 Performance Over Test Days

In this section, performance of the proposed PD-DDPGfD method is compared with the bench-

mark methods as discussed in Section 4.3 during the test days by different criteria. Fig.5.5 shows the

cumulative daily operational costs of different algorithms in which the theoretical benchmark has the

lowest cumulative operational cost of 128,946$. In comparison to other algorithms, PD-DDPGfD

and DDPGfD have the lowest cumulative operational costs (133,657$ and 133,917$, respectively).
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Figure 5.5: Cumulative daily operational cost of different algorithms over test days

Table 5.2 shows the average daily operational costs and constraint violations during the test

period (it should be noted that since the model-based optimization approaches are always guaran-

teed to ensure the heat and cool demand–supply balance and electricity grid exchange limits, the

deterministic MILP has no record of constraint violations). SVR agent has the highest heating and

cooling balance constraint violation due to giving a similar action for GB and AC units (Fig. 5.6 ),

even when there is no cooling or heating demand. DDPG, DDPGfD, and BC agents have almost the
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same performance in terms of constraint violation, since they do not utilize primal-dual optimiza-

tion. However, PD-DDPGfD agent outperforms other agents in terms of both operational cost with

2.74% error compared to theoretical benchmark and constraint violation.

Table 5.2: Average daily operational cost and constraint violations during the test days

Method Operational Cost Violation (kWh)

(Error with optimal) SOC Grid Heating Cooling

Behavioral Cloning 1915$ (7.22%) 108 0 643 321

SVR 2125$ (18.98%) 96 0 4018 913

DDPG 2606$ (45.91%) 9 0 483 240

DDPGfD 1839$ (2.96%) 67 0 563 147

PD-DDPG 2572$ (44.0%) 0 0 201 67

PD-DDPGfD (ours) 1835$ (2.74%) 24 0 135 65

Theoretical Benchmark 1786$ (0%) 0 0 0 0
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Figure 5.6: Gas boiler and absorption chiller power outputs for SVR agent over test days
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Figs. 5.7 to 5.9 show the electrical, heating, and cooling balance of all agents over the 73 test

days. Based on Fig. 5.7, it can be seen that the majority of the electrical demand of the community

is met by importing power from the grid system. Some agents with lower operational costs have

however taken advantage of their opportunity to sell electricity to the grid system (similar to the

optimal strategy). Moreover, PD-DDPGfD and DDPGfD act like the theoretical benchmark since

they have a pre-training stage before online learning.
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Figure 5.7: Electrical balance of all agents over test days
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Figure 5.8: Heating balance of all agents over test days
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Figure 5.9: Cooling balance of all agents over test days

According to Fig. 5.8, heat from the heat recovery process of microturbine is mainly satisfying

the heating demand. AA-CAES satisfies a small portion of total heating demand since the charging

process of AA-CAES happens in the hours with low heating demand. PD-DDPGfD and DDPGfD

agents have a similar dispatch strategy as the deterministic MILP approach for the heating demand,

with higher violations for DDPGfD. As discussed in Section 5.1, DDPG and PD-DDPG agents get

stuck in a local optima. The reason for this is that they rely exclusively on heat pumps for heating

and cooling and never use MTs or ACs. By using a specific source for the supply of demand, they

can minimize the constraints violations from heating and cooling balance, without paying attention

to the high operating costs.

5.2.2 Dispatch Strategy Over Two Scenarios

The proposed PD-DDPGfD approach is applied to different scenarios to determine the optimal

dispatch results and analyze generalization performance. Two scenarios from the test set are se-

lected to test the performance of the PD-DDPGfD, a typical winter day (February 16) and a typical

summer day (August 18). On these two days, the load curves and renewable energy generation

are completely different, which illustrates the generalization capabilities of the proposed model. In

winter, there is a high demand for heating, low PV generation, and no cooling demand, whereas

during the summer there is the opposite situation.
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(a) Electrical Balance

(b) Heating Balance

Figure 5.10: Dispatch results of PD-DDPGfD for a typical winter day from test set
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PD-DDPGfD agent’s dispatch results for a typical winter and summer day are shown in Figs.

5.10 and 5.11. Figs. 5.10(a) and 5.11(a) show the electrical balance results of the two scenarios,

including power exchanged with the grid system, power generated by MT, power consumed by

EHP, charge/discharge power of AA-CAES, and renewable generation PV and WT. In electrical

balance, the heat pump has a negative value since it consumes electricity to generate heating or

cooling. Furthermore, the CAES system’s power is negative when it is charging, and positive when

it is discharging. Fig. 5.10(b) shows the heating balance of the winter day including the heating

energies from heat recovery unit, EHP, AA-CAES charging process, and gas boiler. Moreover, Fig.

5.11(b) presents the cooling balance of the summer day including absorption chiller, heat pump, and

cooling from AA-CAES discharging process.

According to Fig. 5.10(a), during off-peak hours, electric load demands are met by importing

energy from the grid system. The MT consumes natural gas to generate electricity during mid-

peak and peak hours, and the rest is supplied by the grid system and AA-CAES. A limit on the

amount of electricity generated by the MT in each hour is imposed by the heating demand, i.e., if

the MT generates more electricity, the heating balance will be violated. Moreover, the charging of

AA-CAES takes place at two different times, firstly during those off-peak hours (6 to 9) when there

is a heating demand, and secondly during those last two hours of the day when the price is low and

the SOC of AA-CAES needs to be recovered to its initial value.

Fig. 5.10(b) illustrates that the early morning heating demand is mostly met by AA-CAES

charging and the heat pump as a result of the low electricity price during off-peak hours. The

remaining portion of the heat is provided by a heat pump due to insufficient heating from AA-CAES

(6AM). The agent decides to charge AA-CAES in the hours of 3 and 4 with partial loads, although

charging AA-CAES with a lower power results in a lower charging efficiency. This is because

AA-CAES can satisfy the heating demand in these two hours without any additional cost, whereas

if AA-CAES was charged with nominal load at hour 3, additional electricity would have to be

imported from the grid system to run the heat pump at hour 4, which would increase the operational

cost. To meet the heating demand during mid-peak and on-peak hours, the heat recovered from MT

is used. Due to the fact that the heating demand in hour 13 is lower than the corresponding heat

recovered from the minimum operational power of the MT, the GB is used to cover the heating
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load. Additionally, AA-CAES attempts to recover its SOC for the next day in the last two hours of

the day. As a consequence, the heating demand in these hours is mainly met by AA-CAES charging

heat and the EHP.

(a) Electrical Balance

(b) Cooling Balance

Figure 5.11: Dispatch results of PD-DDPGfD for a typical summer day from test set
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Fig. 5.11(a) illustrates the electrical balance for the summer day. Similar to a winter day, the

grid system supplies electrical demand during off-peak hours. However, the AA-CAES is charged

in hours 0 to 3 with nominal load. Since PV generation is higher in summer, there is an opportunity

for the agent to sell the excess energy to the grid system and reduce the cost. As a result, AA-CAES

is discharged during peak hours to not only sell excess energy, but also cover a small portion of the

cooling load (hour 18). The amount of electricity MT generates during the summer is limited by

the cooling load because the recovered heat is consumed to generate cooling energy in AC. Thus,

during peak hours with cooling loads, the MT generates electricity and sells it to the grid. The

cooling balance of the summer day is shown in Fig. 5.11(b). In the illustration, the AC is primarily

used during peak hours to cover the cooling load, while the EHP is utilized during off-peak hours.

Even though the AA-CAES is discharged at hour 13, no use is made of its cooling capacity. It

occurs because the agent decides to generate more electricity using MT, sell it to the grid system,

and use the generated heat to run the AC in that hour. In this way, operational costs will be reduced.

Moreover, a small amount of violation from cooling balance can be seen in hours 17 and 18.

5.2.3 AA-CAES Utilization

The purpose of this section is to analyze the performance of each algorithm with regard to utiliz-

ing the AA-CAES in the dispatch strategy. Fig. 5.12 shows the power frequency of the AA-CAES

over the test days (the idle mode is not considered). The deterministic MILP approach illustrates

how AA-CAES should operate optimally. It is shown that AA-CAES charges at nominal load most

of the time. In some cases, however, charging with partial load is more cost-effective than charging

with full load. As a result of considering the off-design characteristics, AA-CAES mostly dis-

charges with nominal loads to have a higher discharge efficiency. It can be seen that AA-CAES in

PD-DDPGfD and DDPGfD approaches have a strategy that is almost the same as the optimal strat-

egy. However, the PD-DDPG and DDPG only charge the AA-CAES in most hours since charging

with partial loads and barely discharging the system is the best way to satisfy the SOC constraint.

BC and SVR agents have prediction errors since they attempt to mimic the deterministic MILP

approach. Consequently, they always discharge the AA-CAES with less than 50% of the nominal

load.
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Figure 5.12: AA-CAES power frequency over test days (only charging/discharging modes)

Fig. 5.13 illustrates the total consumed and generated energies from AA-CAES over the test

days. The total efficiency of the AA-CAES in this period is determined by the following equation:

EffAA−CAES = Discharged Energy+Heating Supplied+Cooling Supplied
Charged Energy × 100% (81)

The PD-DDPGfD and DDPGfD, like the deterministic approach, result in high total efficiencies of

41.01% and 40.72%, respectively. Other approaches, however, have lower efficiency because they

barely discharge the AA-CAES and charge it in most hours. Additionally, since PD-DDPG and

DDPG agents discharge the AA-CAES with small partial loads, the air leaving the last expander

has a higher temperature than the ambient air. It is therefore not possible for AA-CAES to generate

any cooling energy. Additionally, AA-CAES is mainly in charging mode in PD-DDPG and DDPG

approaches, which generates more heat. In comparison to the deterministic approach, PD-DDPGfD

and DDPGfD utilize more cooling energies from the AA-CAES discharge process. This is because
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these agents are not able to understand that using MT and AC is more economically beneficial than

AA-CAES to satisfy cooling loads. It can be concluded that in this EH, the AA-CAES mainly

contributes in satisfying the electrical and heating demands, not the cooling demand.
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Figure 5.13: Total AA-CAES energy generation/consumption and total efficiency in test days

Detailed information about each algorithm’s SOC violation during test days can be found in

Table 5.3. BC, SVR, and DDPG agents have the highest violations against the minimum and maxi-

mum allowable SOCs. As DDPG agent uses AA-CAES less frequently, it violates the constraint in

fewer days than BC and SVR agents. With PD-DDPG agent, AA-CAES is always operated within

the valid range due to the less frequent operation. PD-DDPGfD and DDPGfD agents only violate

from the maximum SOC. The PD-DDPGfD agent, however, violates in less days, compared to the

DDPGfD agent. There is no doubt that the PD-DDPGfD agent utilizes nearly the full potential of

AA-CAES. There is however a small deviation (0.022) from the maximum allowable SOC (0.9),

which is still safe for air tank’s pressure. PD-DDPGfD’s SOC violation in Table 5.2 is caused by

this small violation in 14 days, including the following timesteps where AA-CAES is idle. Although

our proposed algorithm considers the constraints, there is always a trade-off between maximizing

reward and minimizing constraint violation [66]. It can explain the very small violations from even

the hard constraints like SOC constraint.
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Table 5.3: Minimum and maximum AA-CAES SOC and No. of unique days with SOC violation
over test days in each algorithm

Method Min SOC Max SOC Days with Violation

Behavioral Cloning 0.137 0.995 66

SVR 0.119 0.956 38

DDPG 0.188 1.057 2

DDPGfD 0.222 0.933 38

PD-DDPG 0.250 0.708 0

PD-DDPGfD 0.207 0.922 14

5.3 Impact of Partial-load Operation of AA-CAES

This section examines the effects of partial-load operation of AA-CAES on the optimal dispatch

of EH. On Fig. 5.14, the power frequency of the AA-CAES over the test days is shown in two

modes, one in which off-design characteristics are considered and one in which they are neglected.

By neglecting the off-design characteristics, AA-CAES operates as a simple input-output energy

storage system with constant charging/discharging efficiencies. This results in several periods of

discharging with a low partial load ratio.

Table 5.4 shows the results of EH dispatch with charge/discharge powers of AA-CAES while

neglecting the off-design characteristics. Several issues can arise as a result of neglecting the off-

design characteristics, such as violations of the SOC limits and a considerable mismatch between

electricity and cooling loads and the supply of power. Since the isentropic efficiency and expansion

ratio of the expanders is lower than design values in part-load operation, a higher amount of com-

pressed air is needed to be discharged to generate the same amount of power. As a result, the air

storage will be emptied sooner because a lot of air will be discharged for a small amount of power.

Therefore, there will be some timesteps that the AA-CAES receives discharge signals, although the

AA-CAES tank is empty. This leads to a considerable mismatch between electricity supply and

demand. The cooling mismatch is due to the fact that the output air from expanders has a higher
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Figure 5.14: AA-CAES power frequency over test days (only charging/discharging modes) in two
modes of considering and neglecting off-design characteristics

temperature than its designed value when discharged with low part-loads. However, neglecting the

off-design conditions has no considerable impact on the amount of generated heating during the

charging process. This is primarily due to the way compressors work for a given power input. In

fact, at lower part-loads, the given power is used mainly to increase the temperature of the airflow

rather than to achieve a higher mass flow rate. In case of the amount of heat generated, off-design

conditions does not make much of a difference since the higher airflow temperature compensates

for the reduction in compressed air flow rate. Moreover, the SOC of AA-CAES is violated in all

test days due to not considering the off-design characteristics in discharging process.

Table 5.4: SOC violation and power mismatch by neglecting the off-design conditions of AA-CAES

Days with SOC violation
Power Mismatch

Electricity Heating Cooling

73 12.72 (MWh) 1(kWh) 2.01(MWh)
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5.4 Sensitivity Analysis

The purpose of this section is to provide a brief sensitivity analysis of the hyperparameters of

the proposed approach. There are a number of factors that can have an impact on the performance of

black-box approaches, and examining the effect of all the hyperparameters may not give a reliable

and meaningful result. Consequently, this section will only address the effect of the following

hyperparameters:

(1) Random Seed

(2) Discount Factor

5.4.1 Random Seed

In order to generate the same results from a random generator, a random seed is used. The

parameter is used in the initialization of neural networks in deep learning or while creating training

and test datasets. In order to evaluate the performance of different models, the same training and

validation data sets should be obtained while using different hyperparameters or machine learning

algorithms. In this case, a random seed value is necessary. However, in reinforcement learning,

random seed is only used for the initialization of an agent’s neural network in order to ensure that

the results are not obtained by accident. Therefore, in this section, different agents are trained for

five different random seeds to make sure of the reproducablity of the results.

Figs. 5.15 and 5.16 show the operational cost and constraint violation of the agents in the learn-

ing process for five random seeds. Since the results have fluctuations, for better illustration, An

average sliding over 20 evaluations is shown. As illustrated, even with different random seeds, our

proposed approach converges to a near-optimal policy with the lowest operational cost and con-

straint violations compared to other approaches. Accordingly, the results presented in the previous

sections can be reached with a very small error in terms of the accuracy. In contrast, the DDPGfD

approach exhibits different policies depending on the random seed used. According to Fig. 5.15,

compared to our proposed approach, the operational cost of different seeds for DDPGfD has more

fluctuations. As an example, running with random seed 0 results in even worse performance than
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Figure 5.15: Average daily operational cost over training process evaluations for five random seeds

the BC agent. The operational cost of PD-DDPG and DDPG agents is always higher than that of

BC and SVR agents, and they are always stuck in a local optimal state even with different random

seeds. It should be noted that, regardless of the random seed used, the dispatch policy achieved by

the DDPGfD agent is always worse than the BC agent in terms of constraint violation (Fig. 5.16).

In general, the PD-DDPG and PD-DDPGfD agents have low constraint violations with different

random seeds.
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Figure 5.16: Average daily total constraint violation over training process evaluations for five ran-
dom seeds

5.4.2 Discount Factor

Reinforcement learning aims to maximize long-term rewards weighted by a discount factor.

Essentially, the discount factor determines how much reinforcement learning agents care about re-

wards in the distant future compared with the immediate reward. For instance, if γ = 0 then the

agent will be completely myopic and will only be able to learn about actions that have an imme-

diate reward associated with them. In the case of γ = 1, the agent will be equally concerned with

future rewards as with the current immediate reward. Fig. 5.17 shows the weight value for different
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discount factor values in the horizon of t = 24.
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Figure 5.17: Importance of discount factor in considering the future rewards in a finite horizon

This section examines the effect of different discount factors on the performance of our proposed

approach. Fig. 5.18 illustrates the average daily operational cost of the proposed approach for

different discount factor values. The results indicate that in general, a higher discount factor value

will result in lower operating costs. There is, however, a slight difference in the operational costs

for different discount factors. An analysis of the case study in more detail may be able to explain

why this is the case.

84



20 40 60 80 100 120 140

Evaluation

1800

1900

2000

2100

2200

2300

2400

O
pe

ra
tio

na
l C

os
t (

$)

Average Daily Operational Cost For Different Discount Factors
= 0.3
= 0.5
= 0.7
= 0.9
= 0.995

Deterministic MILP
BC

Figure 5.18: Average daily operational cost of PD-DDPGfD over test days for different discount
factors

In the case study, discount factor will only affect how AA-CAES is used by the agent, as other

equipment has an impact only on the immediate reward or cost fuction. As an example, using the

MT in a timestep has no impact on the reward the agent will receive in the future, but this is not

the case with the energy storage. Since the power must be purchased from the grid, charging the

AA-CAES will increase the operational cost. As a result, the agent receives a smaller reward in

this timestep, but if the agent discharges the AA-CAES at a later time (in hours with a high sell

price), it will receive a larger reward that will compensate for the smaller reward received during the

charging process. Fig. 5.19 shows the power frequency of AA-CAES over the test days for different

discount factors. The explanation above can be verified by observing that with a higher discount

factor, agents understand that it is beneficial to charge and discharge CAES more frequently.
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Chapter 6

Conclusion and Future Work

6.1 Summary

In this thesis, a novel SDRL approach that employs primal-dual optimizations and IL is pro-

posed. We aimed at enhancing the performance of DRL algorithms in optimal scheduling of a

trigenerative AA-CAES based EH. In doing so, the effect of considering off-design characteris-

tics of the trigenerative AA-CAES as energy storage was investigated. In order to ensure a global

optimization, the operation of the trigenerative AA-CAES in the presence of off-design conditions

was modeled and linearized. Additionally, the results from an experimental case study revealed that

utilizing only IL as part of DDPG algorithm can effectively reduce the operational cost of tradi-

tional DDPG algorithm, while still violating operational constraints at the same time. Alternatively,

primal-dual optimization could effectively satisfy constraints but could get stuck in local optima

with a high operational cost due to utilizing only a certain source of energy for satisfying heating and

cooling demands. Taking this into account, it can be concluded that the proposed approach, by com-

bining the two methods mentioned above, was able to accomplish both objectives at the same time.

To be more specific, the average daily operational cost of the proposed approach (PD-DDPGfD) is

only 2.74% higher than the theoretical benchmark, as opposed to BC, SVR, DDPG, PD-DDPG, and

DDPGfD approaches with 7.22%,18.98%, 45.91%, 44.0%, and 2.96%, respectively. Based on the

proposed approach, there were fewer average daily heating and cooling violations of 135kWh and

65kWh, respectively, and very few SOC violations. A notable feature of the proposed approach is
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that, unlike the SP approach, it requires no prior model to formulate the uncertainties. Furthermore,

it has been demonstrated that ignoring the off-design characteristics of AA-CAES could result in

a large mismatch between the supply and demand of electricity and cooling at the EH, due to the

discharge of AA-CAES at low partial loads. Moreover, a sensitivity analysis of the random seeds

demonstrated that the proposed method is reliable and gives the same performance over different

runs, whereas other approaches give different results and are not reliable.

6.2 Contributions

The main contributions of this thesis can be summarized as follow:

(1) The operation of a tri-generative AA-CAES with off-design conditions in an EH was mod-

elled and linearized.

(2) The effect of neglecting the off-design operation of a tri-generative AA-CAES in a case study

EH was investigated.

(3) A novel SDRL approach by combining two existing DRL approaches (PD-DDPG and IL)

was proposed to enhance the performance of the traditional DDPG algorithm in terms of

minimizing the operational cost while satisfying the constraints of EH dispatch problem.

(4) The performance of the proposed approach in terms of operational cost and constraint viola-

tion was compared to the existing DRL, SDRL, and IL approaches.

(5) A sensitivity analysis on the random seeds was performed to ensure the reliability and repro-

ducibility of the results.

6.3 Assumptions and Limitations

The present study has a number of limitations. Due to the absence of a mathematical framework

for handling constraints in DRL algorithms, it remains challenging to model the operation of EHs

under a wide range of operational constraints. Therefore, a simplified model of the EH operation is
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considered. For instance, the ramp-up and ramp-down constraints for different equipment such as

MT is not considered.

In regard to the operation of AA-CAES, a simple model is presented for its off-design operation

and thermal storage. It is assumed that the thermal storage is only for the AA-CAES system itself

nad has no contribution in satisfying the heating demand of the community. Moreover, the dynamic

operation and temperature variation of the thermal storage in AA-CAES is not studied. Further-

more, since most of the EH equipment are mechanical components, their response time should be

considered in real-time scheduling. However, in this study, the timestep is assumed to be 1 hour,

which is not realistic for real-time optimization.

Moreover, due to the lack of data for simulations, it is assumed that the gas price and buy/sell

electricity price have the same profile over the whole year. However, in practice, these profiles may

vary from day to day. The cooling and heating consumption data for some buildings are missing in

the case study. Since there is no TES in the EH to store the excess heat of compression in AA-CAES

when there is no demand, this can lead to inaccurate evaluation of the AA-CAES total efficiency.

It is also worth mentioning that in this study, the specification of the EH equipment are pre-

assumed. It is observed in the results section that the sizing of the AC can affect the amount of

utilized cooling energy from AA-CAES. Therefore, in order to have a better insight about the

scheduling probelm, the sizing of the EH should be optimized first.

6.4 Future Works

The following suggestions are provided for future studies:

(1) Considering more operational constraints of the EH equipment and real-time operation of

AA-CAES as mentioned in the limitations.

(2) An analysis of the operational impact of uncertainties and dynamism in the price of electricity

and gas.

(3) Performing data analysis on the train-test split of data in order to determine the generalization

of the proposed approach. In existing studies, it is not clear how test days are chosen from the
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dataset for RL studies. For a better understanding of how to split the dataset for training and

testing, it is recommended to use unsupervised learning and clustering algorithms.

(4) Considering the GHG emission alongside the operational cost of the EH as a multi-objective

problem. Multi-Objective Reinforcement Learning (MORL) is achieving more attentions in

the recent years. Therefore, it would be a good idea to consider it as a field for future studies.
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Appendix A

Operation Optimization Python Codes

Listing A.1: CAES Off-design Modeling Python Code✞ ☎
1 #Importing Libraries

2 import numpy as np

3 import matplotlib .pyplot as plt

4 import pandas as pd

5

6 #AA-CAES Specifications:

7 P_CAES_ch_max = 800 #Maximum Charging Power

8 P_CAES_dch_max = 800 #Maximum Discharging Power

9 gamma = 1 . 4 #Air Isentropic Expansion Factor

10 cp = 1 .0 05 #Air Specific Heat Capacity

11 T_amb = 293 #Ambient Air Temperature

12 T_tank = 293 #Air Tank Temperature

13 V_tank = 1100 .19 #Air Tank Volume

14 timestep = 3600 #1-hour Timestep

15 eff = 0 . 9 #Heat Exchanger Effectiveness

16 T_cold_w = 273+20 #Cold Water Tank Temperature

17 T_hot_w = 273+95 #Hot Water Tank Temperature

18

19 #Functions For Operation:

20

21 #Off-desing Curves:

22 def P_ratio_exp_1_offdesign (P_discharge ) :

23 a1 = 1.0526686612247751e+000

24 a2 = 3.3837646597101853e - 002

25 a3 = - 1.0594350616851346e - 004
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26 a4 = 4.3037073018992756e - 007

27 a = P_discharge /P_CAES_dch_max* 100

28 HPT_R = a1 + a2 * (a ) + a3 * (a**2) + a4 * (a**3)

29 return HPT_R

30

31 def P_ratio_exp_2_offdesign (P_discharge ) :

32 a1 = 1.8675819367444066e+000

33 a2 = 1.1792419504272698e - 001

34 a3 = - 5.0802207851639934e - 004

35 a4 = 1.9700035951777700e - 006

36 a = P_discharge /P_CAES_dch_max * 100

37 LPT_R = a1 + a2 * (a ) + a3 * (a**2) + a4 * (a**3)

38 return LPT_R

39

40 def Isentropic_comp_offdesign (P_charge ) :

41 a1 = 4.6948804252492010e+001

42 a2 = 5.9916135114652325e - 001

43 a3 = - 2.3775603099293894e - 003

44 a = P_charge /P_CAES_ch_max* 100

45 eff_comp = a1 + a2 * (a ) + a3 * (a**2)

46 return (eff_comp / 1 0 0 )

47

48 def Isentropic_exp_offdesign (P_discharge ) :

49 a1 = 4.1390729581326283e+001

50 a2 = 8.6154009677822008e - 001

51 a3 = - 5.7158107778840558e - 003

52 a4 = 9.5398673887267854e - 006

53 a = P_discharge /P_CAES_dch_max* 100

54 eff_exp = a1 + a2 * (a ) + a3 * (a**2) + a4 * (a**3)

55 return (eff_exp / 1 0 0 )

56

57

58 #Outlet Temperature of Compressor 1:

59 def T_out_comp_1_offdesign (P_charge ) :

60

61 T_out_comp_1 = ( (T_amb ) * (1 + ( ( ( P_ratio_comp_1_offdesign (P_tank ) ) * * ( (gamma - 1 ) /gamma )

) - 1 ) /Isentropic_comp_offdesign (P_charge ) ) )

62 return T_out_comp_1

63

64 #Outlet Temperature of Compressor 2:

65 def T_out_comp_2_offdesign (P_charge ) :
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66 T_out_HE1 = T_out_HE1_offdesign (P_charge ,P_tank )

67 T_out_comp_2 = ( (T_out_HE1 ) * (1 + ( ( ( P_ratio_comp_2_offdesign (P_tank ) ) * * ( (gamma - 1 ) /

gamma ) ) - 1 ) /Isentropic_comp_offdesign (P_charge ) ) )

68

69 return T_out_comp_2

70

71 #Outlet Temperature of Heat Exchanger 1:

72 def T_out_HE1_offdesign (P_charge ,P_tank ) :

73 T_out_HE1 = T_out_comp_1_offdesign (P_charge , P_tank ) * (1 -eff ) + T_cold_w * eff

74

75 return T_out_HE1

76

77 #Charging Mass Flow Rate Off Design:

78 def charging_mfr_offdesign (P_charge , P_tank ) :

79 work = cp * (T_out_comp_1_offdesign (P_charge , P_tank ) - T_amb +

T_out_comp_2_offdesign (P_charge ,P_tank ) -

80 T_out_HE1_offdesign (P_charge ,P_tank ) )

81 charging_mfr = P_charge /work

82 return charging_mfr

83

84 #Charging Heat Generation Off Design:

85 def charging_heat_offdesign (P_charge , P_tank ) :

86 heat = charging_mfr_offdesign (P_charge , P_tank ) * (T_out_comp_1_offdesign (P_charge ,

P_tank ) - T_out_HE1_offdesign (P_charge ,P_tank ) )

87 return heat

88

89 #Outlet Temperature of Expander 1:

90 def T_out_exp_1_offdesign (P_discharge ) :

91 T_out_HE3 = T_out_HE3_offdesign (P_discharge )

92 T_out_exp_1 = ( (T_out_HE3 ) * (1 - (Isentropic_exp_offdesign (P_discharge ) *

93 (1 - ( ( 1 / P_ratio_exp_1_offdesign (P_discharge ) ) * * ( (

gamma - 1 ) /gamma ) ) ) ) ) )

94 return T_out_exp_1

95

96 #Outlet Temperature of Expander 2:

97 def T_out_exp_2_offdesign (P_discharge ) :

98 T_out_HE4 = T_out_HE4_offdesign (P_discharge )

99 T_out_exp_2 = ( (T_out_HE4 ) * (1 - (Isentropic_exp_offdesign (P_discharge ) *

100 (1 - ( ( 1 / P_ratio_exp_2_offdesign (P_discharge ) ) * * ( (

gamma - 1 ) /gamma ) ) ) ) ) )

101 return T_out_exp_2
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102

103 #Outlet Temperature of Heat Exchanger 3:

104 def T_out_HE3_offdesign (P_discharge ) :

105 T_out_HE3 = T_amb * (1 -eff ) + T_hot_w * eff

106

107 return T_out_HE3

108

109 #Outlet Temperature of Heat Exchanger 4:

110 def T_out_HE4_offdesign (P_discharge ) :

111 T_out_HE4 = T_out_exp_1_offdesign (P_discharge ) * (1 -eff ) + T_hot_w * eff

112

113 return T_out_HE4

114

115 #Updating the Pressure of Air Storage:

116 def new_pressure_offdesign (P_charge ,P_discharge ,P_tank ) :

117 timestep = 3600

118 old_density = P_tank * 100000 / (287 * T_tank )

119 new_density = (old_density * V_tank + (charging_mfr_offdesign (P_charge ,P_tank ) -

120 discharging_mfr_offdesign (P_discharge ) ) *

timestep ) /V_tank

121

122 new_pressure = new_density * (T_tank ) *287 /100000

123

124 return new_pressure

125

126 #Discharging Mass Flow Rate Off Design:

127 def discharging_mfr_offdesign (P_discharge ) :

128 output_work = cp * (T_out_HE3_offdesign (P_discharge ) - T_out_exp_1_offdesign (

P_discharge ) + T_out_HE4_offdesign (P_discharge ) -T_out_exp_2_offdesign (P_discharge ) )

129

130 discharging_mfr = P_discharge /output_work

131

132 return discharging_mfr

133

134 #Discharging Cooling Generation Off Design:

135 def discharging_cool_offdesign (P_discharge ) :

136 cool = discharging_mfr_offdesign (P_discharge ) * cp * (T_out_exp_2_offdesign (

P_discharge ) )

137 return cool

138

139 #Extra Functions For Linearizing Cooling Power Generation:
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140 def discharging_ambient_cool_offdesign (P_discharge ) :

141 cool = discharging_mfr_offdesign (P_discharge ) * cp

142 return cool

143

144 def cooling_load_off_design (P_discharge ,t_amb ) :

145 cool = discharging_mfr_offdesign (P_discharge ) * cp * (t_amb - T_out_exp_2_offdesign (

P_discharge ) )

146 return cool

147

148

149

150 #Linearizing The Operation:

151

152 # x is the charing and discharging power nad y is the mass flow rate

153 x = np .arange ( 8 0 , 8 0 0 . 1 , 0 . 1 )

154 y1 = list ( )

155 for i in x :

156 y1 .append (discharging_mfr (i ) )

157

158 y2 = list ( )

159 for i in x :

160 y2 .append (discharging_mfr_offdesign (i ) )

161

162 x_ratio = [i /P_CAES_ch_max *100 for i in x ]

163

164

165 from sklearn .preprocessing import PolynomialFeatures

166 poly = PolynomialFeatures (degree=1 , include_bias=False )

167 poly_features = poly .fit_transform (x .reshape ( - 1 , 1 ) )

168 from sklearn .linear_model import LinearRegression

169 poly_reg_model = LinearRegression ( )

170 poly_reg_model .fit (poly_features , y2 )

171 poly_reg_y_predicted_lin = poly_reg_model .predict (poly_features )

172 from sklearn .metrics import mean_squared_error

173 poly_reg_rmse_lin = np .sqrt (mean_squared_error (y2 , poly_reg_y_predicted_lin ) )

174

175 #Reading coefficient and intercept of linear regression

176 coeff = poly_reg_model .coef_

177 intercept = poly_reg_model .intercept_✝ ✆
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Listing A.2: MILP Python Code✞ ☎
1 #Importing Libraries

2 import numpy as np

3 import pandas as pd

4 import pyomo .environ as pyo

5 from pyomo .environ import *

6 from pyomo .opt import SolverFactory

7 import seaborn as sns

8 import matplotlib .pyplot as plt

9 from itertools import cycle , islice

10 import random

11

12 #Reading the consumption, PV, and Wind data

13 data = pd .read_csv ("Dataset.csv" ) .drop (’Unnamed: 0’ , axis=1)

14

15 #Defining the gas and electricity price

16 buy_price = 2 4 * [ 0 ]

17 buy_price [ 0 : 7 ] = 7 * [ 3 . 9 9 ]

18 buy_price [ 2 2 ] = 3 . 9 9

19 buy_price [ 2 3 ] = 3 . 9 9

20 buy_price [ 1 1 : 1 9 ] = 8 * [ 1 9 . 9 9 ]

21 buy_price [ 7 : 1 1 ] = 4 * [ 1 1 . 9 9 ]

22 buy_price [ 1 9 : 2 2 ] = 3 * [ 1 1 . 9 9 ]

23

24 sell_price = [i / 2 for i in buy_price ]

25

26 gas_price = 3 . 2 1

27

28 #Defining AA-CAES functions:

29 P_CAES_ch_max = 800

30 P_CAES_dch_max = 800

31 gamma = 1 . 4

32 cp = 1 .0 05

33 T_amb = 298

34 T_tank = 298

35 V_tank = 1100 .19

36

37 #Discharge Mass Flow Rate Linear Model

38 def discharging_mfr (P_discharge ) :

39 term2 = 0.00278671 * P_discharge + 1.2292957997285587
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40

41 return term2

42

43 #Discharge Cooling Load Linear Model

44 def cooling_load_predicted (P_discharge ,t_amb ) :

45 term1 = 0.39792147*P_discharge + 432.3243866973607

46 term2 = 0.00278671 * P_discharge + 1.2292957997285587

47 cooling_load = term1 - term2 *t_amb

48

49 return - 1 *cooling_load

50

51 #Charging Mass Flow Rate Linear Model

52 def charging_mfr (P_discharge ) :

53 term2 = 0.0017455 * P_discharge - 0 .11658996400

54

55 return term2

56

57 #Updating the air storage pressure

58 def new_pressure (P_charge ,P_discharge ,P_tank ,bin_charge ,bin_discharge ) :

59 timestep = 3600

60 old_density = P_tank * 100000 / (287 * T_tank )

61 new_density = (old_density * V_tank + (charging_mfr (P_charge ) *bin_charge -

62 discharging_mfr (P_discharge ) *bin_discharge ) *

timestep ) /V_tank

63

64 new_pressure = new_density * (T_tank ) *287 /100000

65

66 return new_pressure

67

68 #Defining empty lists and dataframes for optimal policy:

69 df_optimal = pd .DataFrame ( )

70 picked_days = [ ]

71 operation_costs = [ ]

72

73 #Defining Training and Test Days:

74 test_days = np .arange ( 5 , 3 6 6 , 5 )

75 all_days = np .arange ( 1 , 3 6 6 , 1 )

76 training_days = [i for i in all_days if i not in test_days ]

77

78 #Running the Model For Training Days:

79 for a in training_days :
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80

81 #Reading Data For Day (a):

82 t = 24

83 e_load = data [data ["Day" ] == a ] ["Electricity" ] . values

84 h_load = data [data ["Day" ] == a ] ["Heating" ] . values

85 c_load = data [data ["Day" ] == a ] ["Cooling" ] . values

86 wind_data = data [data ["Day" ] == a ] ["WT_power" ] . values

87 PV_data = data [data ["Day" ] == a ] ["PV power" ] . values

88 temp = data [data ["Day" ] == a ] ["Temperature" ] . values

89

90 # Energy Hub Equipment

91 t= range ( 2 4 )

92 t2 = range ( 2 5 )

93

94 #Micro Turbine:

95 P_mt_max = 1500 # Maximum Electricity Power Generated by Micro Turbine

96 P_mt_min = 200 # Minimum Electricity Power Generated by Micro Turbine

97 n_mt = 0 . 3 5 # Electrical Efficiency of Micro Turbine

98 n_hru = 0 . 4 2 # Efficiency of Heat Recovery Unit

99 H_hru_max =P_mt_max*(n_hru /n_mt )

100 H_hru_min =P_mt_min*(n_hru /n_mt )

101 gas_max = 10000

102 gas_min = 0

103

104 # Gas Boiler

105 H_gb_min = 0 # Minimum Heating Power Generated by Gas Boiler

106 H_gb_max = 1500 # Maximum Heating Power Generated by Gas Boiler

107 n_gb = 0 . 8 # Efficiency of Gas Boiler

108

109 #Grid System

110 P_grid_min = 0 # Minimum Electricity Imported/Exported from Grid System

111 P_grid_max = 2000 # Maximum Electricity Imported/Exported from Grid System

112

113 #Absorption Chiller

114 H_ac_max = 1 0 0 0 / 0 . 9 # Maximum Heating Power Consumed by Absorption Chiller

115 H_ac_min = 0 # Minimum Heating Power Consumed by Absorption Chiller

116 n_ac = 0 . 9 # Efficiency of Absorption Chiller

117

118 #Electric Chiller

119 C_ec_max = 1500 # Maximum Cooling Power Generated by Electric Chiller

120 C_ec_min = 0 # Minimum Cooling Power Generated by Electric Chiller
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121 COP_ec = 3 # COP of electric chiller

122

123 #Heat Pump:

124 H_hp_max = 3000 # Maximum Heating Power Generated by Heat Pump

125 C_hp_max = 3000 # Maximum Cooling Power Generated by Heat Pump

126 H_hp_min = 0 # Minimum Heating Power Generated by Heat Pump

127 C_hp_min = 0 # Minimum Cooling Power Generated by Heat Pump

128 COP_hp = 3 # COP of Heat Pump

129

130 #AA-CAES

131 P_CAES_ch_max = 800 # Maximum Charging Power of AA-CAES

132 P_CAES_ch_min = 80 # Minimum Charging Power of AA-CAES

133

134 P_CAES_dch_max = 800 # Maximum Discharging Power of AA-CAES

135 P_CAES_dch_min = 80 # Minimum Discharging Power of AA-CAES

136

137 #Decision Variables:

138 model = pyo .ConcreteModel ( )

139 model .time = pyo .Set (initialize=(i for i in t ) )

140 model .timestep = pyo .Param (model .time ,initialize=3600)

141 model .time_soc = pyo .Set (initialize=(i for i in t2 ) )

142

143 #Micro Turbine

144 model .P_gt = pyo .Var (model .time ,bounds= ( 0 ,P_gt_max ) )

145 model .bin_P_gt = pyo .Var (model .time , bounds= ( 0 , 1 ) , domain=Binary )

146 model .H_hru = pyo .Var (model .time , bounds= ( 0 ,H_hru_max ) )

147

148 #Grid System

149 model .P_grid_buy = pyo .Var (model .time , bounds= (P_grid_min ,P_grid_max ) )

150 model .P_grid_sell = pyo .Var (model .time , bounds= (P_grid_min ,P_grid_max ) )

151 model .bin_grid_buy = pyo .Var (model .time , bounds= ( 0 , 1 ) ,domain=Binary )

152 model .bin_grid_sell = pyo .Var (model .time , bounds= ( 0 , 1 ) ,domain=Binary )

153

154 #AA-CAES System

155 model .P_CAES_ch = pyo .Var (model .time ,bounds = ( 0 ,P_CAES_ch_max ) )

156 model .P_CAES_dch = pyo .Var (model .time ,bounds = ( 0 ,P_CAES_dch_max ) )

157 model .Pressure_CAES = pyo .Var (model .time_soc , bounds= ( 4 5 , 6 9 ) )

158 model .bin_CAES_ch = pyo .Var (model .time , bounds= ( 0 , 1 ) , domain=Binary )

159 model .bin_CAES_dch = pyo .Var (model .time , bounds= ( 0 , 1 ) , domain=Binary )

160 model .heat_caes = pyo .Var (model .time ,bounds = ( 0 ,P_CAES_ch_max ) )

161 model .cold_caes = pyo .Var (model .time ,bounds = ( 0 ,P_CAES_ch_max ) )
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162 model .maximum_cold_caes = pyo .Var (model .time ,bounds = ( 0 ,P_CAES_ch_max ) )

163 model .maximum_heat_caes = pyo .Var (model .time ,bounds = ( 0 ,P_CAES_ch_max ) )

164

165 #Gas Boiler

166 model .H_gb = pyo .Var (model .time ,bounds = (H_gb_min ,H_gb_max ) )

167

168 #Absorption Chiller

169 model .H_ac = pyo .Var (model .time ,bounds = (H_ac_min ,H_ac_max ) )

170 model .C_ac = pyo .Var (model .time ,bounds = (n_ac*H_ac_min ,n_ac*H_ac_max ) )

171

172 #Heat Pump

173 model .H_hp = pyo .Var (model .time ,bounds = (H_hp_min ,H_hp_max ) )

174 model .P_hp_H = pyo .Var (model .time ,bounds = (H_hp_min /COP_hp ,H_hp_max /COP_hp ) )

175 model .P_hp_C = pyo .Var (model .time ,bounds = (C_hp_min /COP_hp ,C_hp_max /COP_hp ) )

176 model .C_hp = pyo .Var (model .time ,bounds = (C_hp_min ,C_hp_max ) )

177 model .bin_HP_H = pyo .Var (model .time , bounds= ( 0 , 1 ) , domain=Binary )

178 model .bin_HP_C = pyo .Var (model .time , bounds= ( 0 , 1 ) , domain=Binary )

179

180 #Re-assiging for simplification

181 bin_P_mt=model .bin_P_mt

182

183 P_hp_H = model .P_hp_H

184 P_hp_C = model .P_hp_C

185 H_hp = model .H_hp

186 C_hp = model .C_hp

187 bin_HP_H = model .bin_HP_H

188 bin_HP_C =model .bin_HP_C

189

190 C_ac = model .C_ac

191 H_hru = model .H_hru

192 timestep = model .timestep

193 P_mt = model .P_mt

194 P_grid_buy = model .P_grid_buy

195 P_grid_sell = model .P_grid_sell

196 H_gb = model .H_gb

197 H_ac = model .H_ac

198

199 bin_grid_buy = model .bin_grid_buy

200 bin_grid_sell = model .bin_grid_sell

201

202
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203 P_CAES_ch =model .P_CAES_ch

204 P_CAES_dch=model .P_CAES_dch

205 Pressure_CAES=model .Pressure_CAES

206 bin_CAES_ch=model .bin_CAES_ch

207 bin_CAES_dch=model .bin_CAES_dch

208 cold_caes = model .cold_caes

209 heat_caes = model .heat_caes

210

211 #Constraints:

212

213 #AA-CAES:

214 def CAES_charge_lower (model ,i ) :

215 return model .bin_CAES_ch [i ]*P_CAES_ch_min <= model .P_CAES_ch [i ]

216 model .CAES_charge_limit_lower = Constraint (model .time , rule=CAES_charge_lower )

217

218 def CAES_charge_upper (model ,i ) :

219 return model .P_CAES_ch [i ] <= model .bin_CAES_ch [i ]*P_CAES_ch_max

220 model .CAES_charge_limit_upper = Constraint (model .time , rule=CAES_charge_upper )

221

222 def CAES_discharge_lower (model ,i ) :

223 return model .bin_CAES_dch [i ]*P_CAES_dch_min <= model .P_CAES_dch [i ]

224 model .CAES_discharge_limit_lower = Constraint (model .time , rule=CAES_discharge_lower )

225

226 def CAES_discharge_upper (model ,i ) :

227 return model .P_CAES_dch [i ] <= model .bin_CAES_dch [i ]*P_CAES_dch_max

228 model .CAES_discharge_limit_upper = Constraint (model .time , rule=CAES_discharge_upper )

229

230 def CAES_operation_mode (model ,i ) :

231 return bin_CAES_ch [i ]+bin_CAES_dch [i] <=1

232 model .CAES_operation_mode_limit = Constraint (model .time , rule=CAES_operation_mode )

233

234 def SOC_initial (model ) :

235 return Pressure_CAES [ 0 ] == 57

236 model .Pressure_CAES_initial = Constraint (rule= SOC_initial )

237

238 def SOC_final (model ) :

239 return Pressure_CAES [ 2 4 ] == Pressure_CAES [ 0 ]

240 model .Pressure_CAES_final = Constraint (rule= SOC_final )

241

242

243 model .Pressure_CAES_new = pyo .ConstraintList ( )
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244 for i in range ( 2 4 ) :

245 model .Pressure_CAES_new .add (expr = Pressure_CAES [i+1] ==

246 new_pressure (P_CAES_ch [i ] ,P_CAES_dch [i ] ,Pressure_CAES [

i ] ,bin_CAES_ch [i ] ,bin_CAES_dch [i ] ) )

247

248 def CAES_heat_mode (model ,i ) :

249 return heat_caes [i ] <= P_CAES_ch [i ]*bin_CAES_ch [i ] * 0 . 3 8

250 model .CAES_heat_mode = Constraint (model .time , rule=CAES_heat_mode )

251

252 def CAES_cold_mode (model ,i ) :

253 return cold_caes [i ] <= cooling_load_predicted (P_CAES_dch [i ] ,temp [i ] + 273) *model .

bin_CAES_dch [i ]

254 model .CAES_cold_mode = Constraint (model .time , rule=CAES_cold_mode )

255

256 def CAES_maximum_heat_caes (model ,i ) :

257 return model .maximum_heat_caes [i ] == P_CAES_ch [i ]*bin_CAES_ch [i ] * 0 . 3 8

258 model .CAES_maximum_heat_caes = Constraint (model .time , rule=CAES_maximum_heat_caes )

259

260

261 def CAES_maximum_cold_caes (model ,i ) :

262 return model .maximum_cold_caes [i ] == cooling_load_predicted (P_CAES_dch [i ] ,temp [i ]

+ 273) *model .bin_CAES_dch [i ]

263 model .CAES_maximum_cold_caes = Constraint (model .time , rule=CAES_maximum_cold_caes )

264

265

266 #Grid Constraints

267 def Grid_buy_limit (model ,i ) :

268 return P_grid_buy [i] <= bin_grid_buy [i ]*P_grid_max

269 model .Grid_buy_limit = Constraint (model .time , rule=Grid_buy_limit )

270

271 def Grid_sell_limit (model ,i ) :

272 return P_grid_sell [i] <= bin_grid_sell [i ]*P_grid_max

273 model .Grid_sell_limit = Constraint (model .time , rule=Grid_sell_limit )

274

275 def Grid_exchange_mode (model ,i ) :

276 return bin_grid_sell [i ]+bin_grid_buy [i] <=1

277 model .Grid_exchange_mode_limit = Constraint (model .time , rule=Grid_exchange_mode )

278

279 #Gas Network Constraints:

280 def gas_max_use (model ,i ) :

281 return (P_mt [i ] / ( n_mt ) + H_gb [i ] / n_gb ) <=gas_max
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282 model .gas_max_use = Constraint (model .time , rule=gas_max_use )

283

284 def gas_min_use (model ,i ) :

285 return (P_mt [i ] / ( n_mt ) + H_gb [i ] / n_gb ) >=gas_min

286 model .gas_min_use = Constraint (model .time , rule=gas_min_use )

287

288

289 #Heat Recovery Unit Constraints:

290 def HRU_convert (model ,i ) :

291 return H_hru [i ] == P_mt [i ] * (n_hru /n_mt )

292 model .HRU_heat = Constraint (model .time , rule=HRU_convert )

293

294 #AC Constraints:

295 def AC_convert (model ,i ) :

296 return C_ac [i ] == n_ac*H_ac [i ]

297 model .AC_convert = Constraint (model .time , rule=AC_convert )

298

299 #Heat Pump Constraints:

300 def HP_convert_1 (model ,i ) :

301 return P_hp_H [i ] == H_hp [i ] / COP_hp

302 model .HP_convert_1 = Constraint (model .time , rule=HP_convert_1 )

303

304 def HP_convert_2 (model ,i ) :

305 return P_hp_C [i ] == C_hp [i ] / COP_hp

306 model .HP_convert_2 = Constraint (model .time , rule=HP_convert_2 )

307

308 def HP_operation (model ,i ) :

309 return bin_HP_C [i ]+bin_HP_H [i] <=1

310 model .HP_operation = Constraint (model .time , rule=HP_operation )

311

312 def HP_heating (model ,i ) :

313 return model .H_hp [i ] <= model .bin_HP_H [i ]*H_hp_max

314 model .HP_heating = Constraint (model .time , rule=HP_heating )

315

316 def HP_cooling (model ,i ) :

317 return model .C_hp [i ] <= model .bin_HP_C [i ]*C_hp_max

318 model .HP_cooling = Constraint (model .time , rule=HP_cooling )

319

320 #Micro Turbine Constraints:

321 def MT_limit_upper (model ,i ) :

322 return P_mt [i ] <= bin_P_mt [i ]*P_mt_max
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323 model .MT_limit_upper = Constraint (model .time , rule=MT_limit_upper )

324 def MT_limit_lower (model ,i ) :

325 return P_mt [i ] >= bin_P_mt [i ]*P_mt_min

326 model .MT_limit_lower = Constraint (model .time , rule=MT_limit_lower )

327

328 #Energy Balance Constraints:

329 def elec_balance (model ,i ) :

330 return e_load [i ] + P_CAES_ch [i ] + P_hp_C [i ] + P_hp_H [i ] +P_grid_sell [i ] == (

wind_data [i ] + PV_data [i ] + P_grid_buy [i ] + P_mt [i ] + P_CAES_dch [i ] )

331 model .elec_balance = pyo .Constraint (model .time , rule = elec_balance )

332

333 def heat_balance (model ,i ) :

334 return H_hp [i ] + H_gb [i ] + H_hru [i ] + heat_caes [i ] == h_load [i ] +H_ac [i ]

335 model .heat_balance = pyo .Constraint (model .time , rule = heat_balance )

336

337

338 def cold_balance (model ,i ) :

339 return C_ac [i ]+ C_hp [i ] + cold_caes [i ] == c_load [i ]

340 model .cold_balance = pyo .Constraint (model .time , rule = cold_balance )

341

342

343 #Objective Function :

344 def objective_function (model ) :

345 return sum (P_grid_buy [i ] * (buy_price [i ] ) - (P_grid_sell [i ] * sell_price [i ] ) +

346 (gas_price ) * (P_mt [i ] / ( n_mt ) + H_gb [i ] / n_gb ) for i in model .time )

347 model .objective_function = pyo .Objective (rule = objective_function , sense=pyo .minimize

)

348

349 #Solver:

350

351 opt = SolverFactory (’gurobi’ )

352 results = opt .solve (model ,tee=True )

353 result = results .Problem ._list [ 0 ] . lower_bound

354

355 #Reading Results

356 df = pd .DataFrame ( )

357 for v in model .component_objects (pyo .Var , active=True ) :

358 if v == Pressure_CAES :

359 Pressure_values = [value (v [key ] ) for key in v ]

360 df [str (v ) ] = Pressure_values [ 0 : 2 4 ]

361 pass
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362

363 else :

364 optimal_values = [value (v [key ] ) for key in v ]

365 df [str (v ) ]=optimal_values

366

367 grid_buy=df ["P_grid_buy" ]

368 grid_sell=df ["P_grid_sell" ]

369 grid = [ ]

370 charge_caes = df ["P_CAES_ch" ]

371 discharge_caes = df ["P_CAES_dch" ]

372 CAES = [ ]

373 for i in range ( 2 4 ) :

374 if grid_buy [i ] = = 0 :

375 grid .append (grid_sell [i ]* - 1 )

376 else :

377 grid .append (grid_buy [i ] )

378 if round (discharge_caes [i ] ) ==0:

379 CAES .append (charge_caes [i ]* - 1 )

380 else :

381 CAES .append (discharge_caes [i ] )

382

383

384 df ["Grid" ] = grid

385 df ["CAES" ] = CAES

386 df ["P_hp" ] = df ["P_hp_C" ]* - 1+ df ["P_hp_H" ]

387 df ["Wind Power" ] = wind_data

388 df ["PV Power" ] = PV_data

389 df ["Electricity" ] = e_load

390 df ["Heating" ] = h_load

391 df ["Cooling" ] = c_load

392 df ["Temperature" ] = temp

393

394 df .drop (axis=1 , columns=[’P_grid_buy’ , ’P_grid_sell’ , ’bin_grid_buy’ ,

395 ’bin_grid_sell’ ,

396 ’P_CAES_ch’ , ’P_CAES_dch’ ,’bin_CAES_ch’ , ’bin_CAES_dch’ ,

397 ] ,inplace=True )

398

399 df ["timestep" ] = np .arange ( 0 , 2 4 , 1 )

400 df ["Day" ] = 24*[a ]

401 df_optimal = pd .concat ( [df_optimal , df ] )

402
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403 days_pd .append (a )

404 operation_costs .append (result )

405

406 #Converting the cooling and heating energy of AA-CAES to action (based on maximum heating

and cooling)

407 cold_ratio = [ ]

408 for i in range (len (df_optimal ["cold_caes" ] ) ) :

409 if df_optimal ["maximum_cold_caes" ] . values [i ] == 0 :

410 cold_ratio .append ( 0 )

411 else :

412 cold_ratio .append (df_optimal ["cold_caes" ] . values [i ] / df_optimal ["maximum_cold_caes"

] . values [i ] )

413

414 heat_ratio = [ ]

415 for i in range (len (df_optimal ["heat_caes" ] ) ) :

416 if df_optimal ["maximum_heat_caes" ] . values [i ] == 0 :

417 heat_ratio .append ( 0 )

418 else :

419 heat_ratio .append (df_optimal ["heat_caes" ] . values [i ] / df_optimal ["maximum_heat_caes"

] . values [i ] )

420

421 heat_cold_ratio = np .array (cold_ratio ) +np .array (heat_ratio )

422 df_optimal ["caes_heat_cool" ] = heat_cold_ratio✝ ✆
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Appendix B

Reinforcement Learning Python Codes

Listing B.1: EH CMDP Environment Python Code✞ ☎
1 #Importing Libraries:

2 import math

3 import random

4 from typing import Optional

5 import pandas as pd

6 import numpy as np

7 import gym

8 from gym import spaces

9 from gym .utils import seeding

10

11 #Reading Data:

12 data = pd .read_csv ("Training Set.csv" )

13 all_data = pd .read_csv ("All_answers.csv" )

14 days_to_train = data ["Day" ] . unique ( )

15 all_days = all_data ["Day" ] . unique ( )

16

17 #maximum and minimum:

18 max_elec = max (all_data ["Electricity" ] )

19 min_elec = min (all_data ["Electricity" ] )

20 max_heat_load = max (all_data ["Heating" ] )

21 min_heat_load = min (all_data ["Heating" ] )

22 max_cold_load = max (all_data ["Cooling" ] )

23 min_cold_load = min (all_data ["Cooling" ] )

24 max_pv = max (all_data ["PV Power" ] )

25 min_pv = min (all_data ["PV Power" ] )
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26 max_wind = max (all_data ["Wind Power" ] )

27 min_wind = min (all_data ["Wind Power" ] )

28 max_temp = max (all_data ["Temperature" ] )

29 min_temp = min (all_data ["Temperature" ] )

30

31 #Defining The CAES Object:

32 class CAES_Class (object ) :

33

34 cp = 1 .0 05

35 P_amb = 1

36 T_amb = 298

37 P_min = 42

38 P_max = 72

39 time_step = 3600

40 T_tank=298

41 R = 287

42 gamma = 1 . 4

43

44 P_CAES_ch_max = 800

45 P_CAES_dch_max = 800

46 gamma = 1 . 4

47 cp = 1 .0 05

48 T_amb = 298

49 T_tank = 298

50 V_tank = 1100 .19

51

52 def __init__ (self ,initial=57) :

53 self .pressure = initial

54 self .SOC = round ( (self .pressure -self .P_min ) / ( self .P_max - self .P_min ) ,ndigits=3)

55

56 def discharging_mfr (self ,P_discharge ) :

57 term2 = 0.00278671 * P_discharge + 1.2292957997285587

58

59 return term2

60

61

62 def cooling_load_predicted (self ,P_discharge ,t_amb ) :

63 term1 = 0.39792147*P_discharge + 432.3243866973607

64 term2 = 0.00278671 * P_discharge + 1.2292957997285587

65 cooling_load = term1 - term2 *t_amb

66
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67 return - 1 *cooling_load

68

69 def charging_mfr (self ,P_discharge ) :

70 term2 = 0.0017455 * P_discharge - 0 .11658996400

71

72 return term2

73

74 def new_pressure (self ,P_charge ,P_discharge ,P_tank ,bin_charge ,bin_discharge ) :

75 timestep = 3600

76 old_density = P_tank * 100000 / (287 * self .T_tank )

77 new_density = (old_density * self .V_tank + (self .charging_mfr (P_charge ) *bin_charge

-

78 self .discharging_mfr (P_discharge ) *

bin_discharge ) *self .time_step ) /self .V_tank

79

80 new_pressure = new_density * (self .T_tank ) *287 /100000

81

82 return new_pressure

83

84 def update (self ,P_charge , P_discharge ) :

85 if P_charge >=80:

86 self .pressure = self .new_pressure (P_charge , 0 ,self .pressure , 1 , 0 )

87 return self .pressure

88 elif P_discharge >=80:

89 self .pressure = self .new_pressure ( 0 ,P_discharge ,self .pressure , 0 , 1 )

90 return self .pressure

91 else :

92 self .pressure = self .new_pressure ( 0 , 0 ,self .pressure , 0 , 0 )

93 return self .pressure

94

95

96 def Charge (self , P_ch , T_amb ) :

97

98 self .update (P_ch , 0 )

99

100 self .SOC = round ( (self .pressure -self .P_min ) / ( self .P_max - self .P_min ) ,ndigits=3)

101 if P_ch>=80:

102 P_ch_heat = P_ch * 0 . 3 8

103 else :

104 P_ch_heat = 0

105
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106 return (P_ch_heat )

107

108

109 def Discharge (self ,P_dch , T_amb ) :

110

111 self .update ( 0 ,P_dch )

112

113 self .SOC = round ( (self .pressure -self .P_min ) / ( self .P_max - self .P_min ) ,ndigits=3)

114 if P_dch>=80:

115 P_dch_cool = self .cooling_load_predicted (P_dch ,T_amb + 273)

116 else :

117 P_dch_cool = 0

118 return P_dch_cool

119

120

121 #Defining Electricity and Gas Prices:

122 elec_price = 2 5 * [ 0 ]

123 elec_price [ 0 : 7 ] = 7 * [ 3 . 9 9 ]

124 elec_price [ 2 2 ] = 3 . 9 9

125 elec_price [ 2 3 ] = 3 . 9 9

126 elec_price [ 1 1 : 1 9 ] = 8 * [ 1 9 . 9 ]

127 elec_price [ 7 : 1 1 ] = 4 * [ 1 1 . 9 9 ]

128 elec_price [ 1 9 : 2 2 ] = 3 * [ 1 1 . 9 9 ]

129 elec_price [ 2 4 ] = 3 . 9 9

130 gas_price = 3 . 2 1

131

132 #Defining The Environment

133 class Train_Env (gym .Env ) :

134 """

135 ###Decription

136

137 The environment is consisted of Grid, WT, PV, MT, HP, AC, GB, CAES and loads.

138

139 The state space is : Electricity Load, Heating Load, Cooling Load, PV Power, WT Power,

SOC of AA-CAES, Buy Price Electricity, Ambient Temp, Timestep = 9 Elements

140

141 The action space is : CAES, MT, HP, AC, GB, Heat/Cool Ratio of CAES

142

143 """

144

145 # Defining The Initial Parameters of Energy Hub
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146 def __init__ (self , p_grid_max=2000 , p_caes_max=800 , p_mt_max=2000 ,

147 p_ec_max = 1000 , p_hp_max = 1000 , h_gb_max = 2000 ,

148 n_mt = 0 . 3 5 , h_ac_max = 1000 , n_hr = 0 . 4 2 , n_gb = 0 . 8 , cop_hp = 3 , cop_ac

= 0 . 9 ,

149 iterations = 24 ,c = 1000) :

150

151 self .penalty_coeff = c #Penalty Coefficient

152 self .iterations = iterations #Iterations

153 self .p_grid_max = p_grid_max #Grid Max Power

154 self .p_caes_max = p_caes_max #CAES Max Power

155 self .p_mt_max = p_mt_max #MT Max Power

156 self .p_hp_max = p_hp_max #HP Max Power

157 self .h_gb_max = h_gb_max #GB Max Power

158 self .h_ac_max = h_ac_max #AC Max Power

159 self .n_hr = n_hr #Heat Recovery Efficiency

160 self .n_gb = n_gb #GB Efficiency

161 self .cop_hp = cop_hp #COP of HP

162 self .cop_ac = cop_ac #COP of AC

163 self .time_step = 0 #Timestep

164 self .n_mt = n_mt #MT Electric Efficiency

165 self .op_cost = [ ] #List for Operational Costs

166 self .elecs_hist = [ [ ] , [ ] , [ ] , [ ] ] #Lists for Storing Electricity Components Powers

167 self .heats_hist = [ [ ] , [ ] , [ ] , [ ] , [ ] ] #Lists for Storing Heating Components Powers

168 self .colds_hist = [ [ ] , [ ] , [ ] ] #Lists for Storing Cooling Components Powers

169 self .picked_days = [ ] #List for Picked Random Days

170 self .penalty_SOC_caes= [ ] #List to Store the SOC Violation

171 self .penalty_c_load = [ ] #List to Store Cooling Violation

172 self .penalty_h_load = [ ] #List to Store Heating Violation

173 self .penalty_p_grid= [ ] #List to Store Grid Violation

174 self .caes_SOC_hist = [ ] #List to Store SOC History

175 self .penalty_cost_1 = [ ] #List to Store Penalty Cost 1

176 self .penalty_cost_2 = [ ] #List to Store Penalty Cost 2

177 self .penalty_cost_3 = [ ] #List to Store Penalty Cost 3

178 self .penalty_cost_4 = [ ] #List to Store Penalty Cost 4

179

180

181 #Defining State and Action Spaces:

182 self .action_space = spaces .Box (low = np .array ( [ - 1 , - 1 , 0 , 0 , 0 , 0 ] ) , high = np .array

( [ 1 , 1 , 1 , 1 , 1 , 1 ] ) , dtype = np .float32 ,

183 shape = ( 6 , ) )

184 self .observation_space = spaces .Box (low = -np .inf , high = np .inf , dtype=np .float32 ,
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185 shape = ( 9 , ) )

186

187

188 #Creating an AA-CAES System

189 def _create_caes (self ) :

190 self .caes = CAES_Class ( )

191 self .initial_SOC_caes = self .caes .SOC

192 return self .caes

193

194 #Defining a Function to Output the Current State of The Environment

195 def _build_state (self ) :

196

197 SOC_caes = self .caes .SOC

198

199 self .wind_data = self .train ["Wind Power" ] . reset_index (drop=True )

200 wind = (self .wind_data [self .time_step ] - min_wind ) / (max_wind - min_wind )

201

202 self .temp = self .train ["Temperature" ] . reset_index (drop=True )

203 temp = (self .temp [self .time_step ] - min_temp ) / (max_temp - min_temp )

204

205 self .PV_data = self .train ["PV Power" ] . reset_index (drop=True )

206 pv = (self .PV_data [self .time_step ] - min_pv ) / (max_pv - min_pv )

207

208 self .elec_load = self .train ["Electricity" ] . reset_index (drop=True )

209 e_load = (self .elec_load [self .time_step ] - min_elec ) / (max_elec - min_elec )

210

211 self .heat_load = self .train ["Heating" ] . reset_index (drop=True )

212 h_load = (self .heat_load [self .time_step ] - min_heat_load ) / (max_heat_load -

min_heat_load )

213

214 self .cold_load = self .train ["Cooling" ] . reset_index (drop=True )

215 c_load = (self .cold_load [self .time_step ] - min_cold_load ) / (max_cold_load -

min_cold_load )

216

217 buy_price = (elec_price [self .time_step ] - min (elec_price ) ) / (max (elec_price ) - min (

elec_price ) )

218

219 state = np .array ( [SOC_caes , wind , pv , e_load , h_load , c_load , temp , buy_price ,

self .time_step / 2 4 ] )

220

221 return state
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222

223 #Defining a Function to Calculate the Operational Cost of a timestep

224 def operation_cost (self , p_grid , p_mt , h_gb ) :

225 grid_prices_1 = 0 . 7 5 * elec_price [self .time_step ]

226 grid_prices_2 = 0 . 2 5 * elec_price [self .time_step ]

227 op_cost_grid = grid_prices_1 * p_grid + grid_prices_2 * abs (p_grid )

228 op_cost_gb = h_gb /self .n_gb * gas_price

229 op_cost_mt = (p_mt / self .n_mt ) * gas_price

230

231 return (op_cost_mt + op_cost_grid + op_cost_gb ) / 1 00

232

233 #Defining Step Function for Performing an Action and Move to Next State

234 def step (self , action ) :

235

236 #Initializing reward and costs

237 reward = 0

238 cost_1 = 0

239 cost_2 = 0

240 cost_3 = 0

241 cost_4 = 0

242

243 #Reading the data from an action

244 caes_action = action [ 0 ]

245 hp_action = action [ 1 ]

246 mt_action = action [ 2 ]

247 ac_action = action [ 3 ]

248 gb_action = action [ 4 ]

249 caes_heat_cool_action = action [ 5 ]

250

251 #Converting the action to power terms

252 p_caes = self .p_caes_max * caes_action

253 p_mt = self .p_mt_max * mt_action

254 p_hp = self .p_hp_max * hp_action

255 h_hr = p_mt * (self .n_hr / self .n_mt )

256 h_ac = ac_action * self .h_ac_max

257 c_ac = h_ac * self .cop_ac

258 h_gb = gb_action * self .h_gb_max

259

260 #Making Sure that Power of MT is less than its Minimum value = 200

261 if p_mt< 1 9 9 . 9 9 9 9 :

262 p_mt=0
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263 h_hr=0

264

265 #Making Sure that Power of CAES is less than its Minimum value = 80:

266 if abs (p_caes ) <79 .999 :

267 p_caes = 0

268

269 #CAES Charging or Discharging:

270 if (p_caes > 0) :

271 c_caes = self .caes .Discharge (p_caes ,self .temp [self .time_step ] ) *

caes_heat_cool_action

272

273 if c_caes <0:

274 h_caes = abs (c_caes ) * caes_heat_cool_action

275 c_caes = 0

276

277 else :

278 h_caes = 0

279

280

281 if (p_caes < 0) :

282 h_caes = self .caes .Charge ( -p_caes ,self .temp [self .time_step ] ) *

caes_heat_cool_action

283 c_caes = 0

284

285 else :

286 c_caes = 0

287 h_caes = 0

288 pass

289

290 #Heat Pump Operation COoling or Heating:

291 if p_hp <0:

292 c_hp = abs (p_hp ) * self .cop_hp

293 h_hp =0

294 else :

295 h_hp = p_hp * self .cop_hp

296 c_hp = 0

297

298

299 #Heating and Cooling Power Generation:

300 cool_generated = c_hp + c_caes + c_ac

301
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302 heat_generated = h_gb + h_hr + h_hp + h_caes

303

304 #Calculating Power Exchanged With Grid:

305 p_grid = self .elec_load [self .time_step ] + abs (p_hp ) - (self .wind_data [self .

time_step ] + self .PV_data [self .time_step ]+ p_caes + p_mt )

306

307

308 #Creating Dataframes of Powers

309 self .elecs_hist [ 0 ] . append (p_grid )

310 self .elecs_hist [ 1 ] . append (p_caes )

311 self .elecs_hist [ 2 ] . append (p_mt )

312 self .elecs_hist [ 3 ] . append (abs (p_hp ) )

313

314

315 self .heats_hist [ 0 ] . append (h_gb )

316 self .heats_hist [ 1 ] . append (h_hr )

317 self .heats_hist [ 2 ] . append (h_hp )

318 self .heats_hist [ 3 ] . append (h_ac )

319 self .heats_hist [ 4 ] . append (h_caes )

320

321

322 self .colds_hist [ 0 ] . append (c_ac )

323 self .colds_hist [ 1 ] . append (c_hp )

324 self .colds_hist [ 2 ] . append (c_caes )

325

326 self .caes_SOC_hist .append (self .caes .SOC )

327

328

329 # Adding operation cost to reward function

330 reward - = self .operation_cost (p_grid , p_mt , h_gb )

331 self .op_cost .append (self .operation_cost (p_grid , p_mt , h_gb ) )

332

333 #Constraints Calculation

334 u_caes_up = 0

335 u_caes_low = 0

336 u_grid_up = 0

337 u_grid_low = 0

338

339 if self .caes .SOC < 0 . 2 :

340 u_caes_low = 1

341
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342 elif self .caes .SOC > 0 . 9 :

343 u_caes_up = 1

344

345 if p_grid > self .p_grid_max :

346 u_grid_up = 1

347

348 elif p_grid < -self .p_grid_max :

349 u_grid_low = 1

350

351 penalty_caes = (abs (self .caes .SOC - 0 . 9 ) *u_caes_up + abs (self .caes .SOC - 0 . 2 ) *

u_caes_low ) *self .penalty_coeff

352 penalty_grid = (abs (p_grid - self .p_grid_max ) *u_grid_up + abs (p_grid + self .

p_grid_max ) *u_grid_low )

353 penalty_h_load = abs (self .heat_load [self .time_step ] - heat_generated )

354 penalty_c_load = abs (self .cold_load [self .time_step ] - (cool_generated ) )

355

356 penalty_cost = penalty_grid + penalty_caes + penalty_h_load + penalty_c_load

357

358 self .penalty_costs .append (penalty_cost )

359 self .penalty_SOC_caes .append (penalty_caes )

360 self .penalty_p_grid .append (penalty_grid )

361 self .penalty_c_load .append (penalty_c_load )

362 self .penalty_h_load .append (penalty_h_load )

363

364 cost_1 += penalty_caes

365 cost_2 += penalty_grid

366 cost_3 += penalty_c_load

367 cost_4 += penalty_h_load

368

369 self .penalty_cost_1 .append (penalty_caes )

370 self .penalty_cost_2 .append (penalty_grid )

371 self .penalty_cost_3 .append (penalty_c_load )

372 self .penalty_cost_4 .append (penalty_h_load )

373

374 #Moving to next state

375 self .time_step += 1

376 done = self .time_step == 24

377

378 #Final SOC of AA-CAES Constraint

379 if done :

380 penalt = abs (self .caes .SOC - 0 . 5 ) *self .penalty_coeff
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381 if penalt <1e - 3 :

382 penalt = 0

383 reward - = penalt

384

385 #Build the Next State of The Environment

386 state = self ._build_state ( )

387 info = None

388

389 return state , reward , cost_1 , cost_2 , cost_3 , cost_4 , done , info

390

391 #Defining a Funciton to reset the Environment at the End of a Day

392 def reset (self ) :

393

394 self .time_step = 0

395 self .caes = self ._create_caes ( )

396 self .op_cost = [ ]

397 self .penalty_costs = [ ]

398 self .penalty_cost_1 = [ ]

399 self .penalty_cost_2 = [ ]

400 self .penalty_cost_3 = [ ]

401 self .penalty_cost_4 = [ ]

402

403 self .elecs_hist = [ [ ] , [ ] , [ ] , [ ] ]

404 self .heats_hist = [ [ ] , [ ] , [ ] , [ ] , [ ] ]

405 self .colds_hist = [ [ ] , [ ] , [ ] ]

406 self .penalty_SOC_caes = [ ]

407 self .penalty_h_load = [ ]

408 self .penalty_gas_consump = [ ]

409 self .penalty_p_grid = [ ]

410 self .penalty_c_load = [ ]

411 self .caes_SOC_hist = [ ]

412 self .get_day ( )

413 return self ._build_state ( )

414

415

416 #Getting the Information of a Random Day in Dataset

417 def get_day (self ) :

418 if len (self .picked_days ) ==len (days_to_train ) :

419 self .picked_days = list ( )

420
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421 available_days = [day for day in list (days_to_train ) if day not in self .

picked_days ]

422 day = available_days [ 0 ]

423

424 if day == 3 65 :

425 self .train = (data [data ["Day"]==day ] ) .append (all_data [all_data ["Day" ] = = 1 ] .iloc

[ 0 ] )

426

427 elif day+1 not in list (days_to_train ) :

428 self .train = (data [data ["Day"]==day ] ) .append (all_data [all_data ["Day" ]==(day+1)

] . iloc [ 0 ] )

429 else :

430 self .train = (data [data ["Day"]==day ] ) .append (data [data ["Day" ]==(day+1) ] . iloc

[ 0 ] )

431

432 self .picked_days .append (day )

433 return self .train

434

435 #Defining a Random Seed For Environment

436 def seed (self , seed ) :

437 random .seed (seed )

438 np .random .seed (seed )✝ ✆
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Listing B.2: Imitation Learning Python Code✞ ☎
1 #Importing Libraries:

2 import numpy as np

3 import pandas as pd

4 import matplotlib .pyplot as plt

5 import torch

6 import numpy as np

7 import torch .nn as nn

8 from torch .autograd import Variable

9 import torch .nn .functional as F

10 import os

11 os .environ [’KMP_DUPLICATE_LIB_OK’ ]=’True’

12

13 #Reading Optimal Answers For Training Days:

14 optimal_answers = pd .read_csv ("Optimal Answers.csv" )

15

16 #Electricity and Gas Price:

17 buy_price = 2 4 * [ 0 ]

18 buy_price [ 0 : 7 ] = 7 * [ 3 . 9 9 ]

19 buy_price [ 2 2 ] = 3 . 9 9

20 buy_price [ 2 3 ] = 3 . 9 9

21 buy_price [ 1 1 : 1 9 ] = 8 * [ 1 9 . 9 ]

22 buy_price [ 7 : 1 1 ] = 4 * [ 1 1 . 9 9 ]

23 buy_price [ 1 9 : 2 2 ] = 3 * [ 1 1 . 9 9 ]

24 gas_price = 3 . 2 1

25

26 #Defining a class for Actor Network:

27

28 class Actor (nn .Module ) :

29

30 def __init__ (self , state_dim , action_dim , max_action ) :

31 super (Actor , self ) .__init__ ( )

32 self .layer_1 = nn .Linear (state_dim , 256)

33 self .layer_2 = nn .Linear ( 2 5 6 , 128)

34 self .layer_3 = nn .Linear ( 1 2 8 , 2 )

35 self .layer_4 = nn .Linear ( 1 2 8 , action_dim - 2 )

36

37 self .max_action = max_action

38

39 def forward (self , x ) :
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40 x = F .relu (self .layer_1 (x ) )

41 x = F .relu (self .layer_2 (x ) )

42 x1 = self .max_action * torch .tanh (self .layer_3 (x ) )

43 x2 = self .max_action * torch .sigmoid (self .layer_4 (x ) )

44 x = torch .cat ( [x1 ,x2 ] , 1 )

45 return x

46

47 #Defining the Actions from Optimal Answers:

48 y_true = optimal_answers [ ["CAES" ,"P_hp" ,"P_gt" ,"H_ac" ,"H_gb" ,"caes_heat_cool" ] ]

49

50 #Normalizing the actions based on maximum capacity of each equipment:

51 y_true ["CAES" ] = y_true ["CAES" ] / 8 0 0

52 y_true ["P_hp" ] = y_true ["P_hp" ] / 1 0 0 0

53 y_true ["P_gt" ] = y_true ["P_gt" ] / 1 5 0 0

54 y_true ["H_ac" ] = y_true ["H_ac" ] / ( 1 0 0 0 / 0 . 9 )

55 y_true ["H_gb" ] = y_true ["H_gb" ] / 1 5 0 0

56

57 #Defining the input features (States of the Problem) and also Normalizing them:

58

59 x = pd .DataFrame ( )

60

61 x ["SOC_CAES" ] = (optimal_answers ["Pressure_CAES" ] - 42) / 3 0

62

63 x ["Wind" ] = (optimal_answers ["Wind Power" ] - min (optimal_answers ["Wind Power" ] ) ) / (max (

optimal_answers ["Wind Power" ] ) - min (optimal_answers ["Wind Power" ] ) )

64

65 x ["PV" ] = (optimal_answers ["PV Power" ] - min (optimal_answers ["PV Power" ] ) ) / (max (

optimal_answers ["PV Power" ] ) - min (optimal_answers ["PV Power" ] ) )

66

67 x ["Electricity" ] = (optimal_answers ["Electricity" ] - min (optimal_answers ["Electricity" ] ) )

/ (max (optimal_answers ["Electricity" ] ) - min (optimal_answers ["Electricity" ] ) )

68

69 x ["Heating" ] = (optimal_answers ["Heating" ] - min (optimal_answers ["Heating" ] ) ) / (max (

optimal_answers ["Heating" ] ) - min (optimal_answers ["Heating" ] ) )

70

71 x ["Cooling" ] = (optimal_answers ["Cooling" ] - min (optimal_answers ["Cooling" ] ) ) / (max (

optimal_answers ["Cooling" ] ) - min (optimal_answers ["Cooling" ] ) )

72

73 x ["Temperature" ] = (optimal_answers ["Temperature" ] - min (optimal_answers ["Temperature" ] ) )

/ (max (optimal_answers ["Temperature" ] ) - min (optimal_answers ["Temperature" ] ) )

74
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75 x ["Buy Price" ] = (buy_price * 365)

76 x ["Buy Price" ] = [ (i - (min (buy_price ) ) ) / (max (buy_price ) - min (buy_price ) ) for i in x ["

Buy Price" ] . values ]

77

78 x ["Time Step" ] = optimal_answers ["timestep" ] / 24

79

80 #Converting X and Y to Tensors:

81 x_train = torch .tensor (x .values ) .float ( )

82 y_train = torch .tensor (y_true .values ) .float ( )

83

84 #Creating a Dataset From Tensors:

85 from torch .utils .data import TensorDataset

86 dataset = TensorDataset (x_train , y_train )

87

88 #Defining MSE Loss and Random batching:

89 from torch .utils .data import DataLoader

90

91 batch_size = 64

92 train_loader = DataLoader (dataset , batch_size=batch_size , shuffle=True )

93

94

95 def mse_loss (predictions , targets ) :

96 difference = predictions - targets

97 return torch .sum (difference * difference ) / difference .numel ( )

98

99

100 #Creating an Actor Network:

101 actor = Actor ( 9 , 6 , 1 )

102

103 #Defining The Adam Optimizer:

104 optimizer = torch .optim .Adam (params = actor .parameters ( ) ,lr= 0 . 0 0 0 1 )

105

106 #Saving The Loss Functions:

107 loss_hist= [ ]

108

109

110 #Starting Learning Process:

111 epochs = 1000

112 from math import sqrt

113 for i in range (epochs ) :

114 # Iterate through training dataloader
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115 for x ,y in train_loader :

116 # Generate Prediction

117 preds = actor (x )

118 # Get the loss and perform backpropagation

119 loss = mse_loss (preds , y )

120 optimizer .zero_grad ( )

121 loss .backward ( )

122 # Let’s update the weights

123 optimizer .step ( )

124 loss_hist .append ( (loss .detach ( ) .item ( ) ) )

125 if loss .detach ( ) .item ( ) <0 .007 : #Stop If loss is lower than 0.007

126 break

127 print (f"Epoch {i}/{epochs}: Loss: {(loss)}" )

128

129

130 #Saving The Learned Actor Network (Behavioral Cloning Network):

131 torch .save (actor .state_dict ( ) , ’pretrained_actor.pth’ )✝ ✆
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Listing B.3: PD-DDPGfD Python Code✞ ☎
1 #Importing Libraries:

2 import torch

3 import torch .nn as nn

4 import torch .nn .functional as F

5 import numpy as np

6

7 #Using Cuda if Available

8 device = torch .device ("cuda" if torch .cuda .is_available ( ) else "cpu" )

9

10 #Defining Actor, Critic, and Cost Networks:

11 #Actor Network:

12 class Actor (nn .Module ) :

13

14 #Initial Layers and Dimentions:

15 def __init__ (self , state_dim , action_dim , max_action ) :

16 super (Actor , self ) .__init__ ( )

17 self .layer_1 = nn .Linear (state_dim , 256) #First Layer

18 self .layer_2 = nn .Linear ( 2 5 6 , 128) #Second Layer

19 self .layer_3 = nn .Linear ( 1 2 8 , 2 ) #Third Layer for Those actions

between [-1,1]

20 self .layer_4 = nn .Linear ( 1 2 8 , action_dim - 2 ) #Third Layer for Those actions

between [0,1]

21 self .max_action = max_action

22

23 #Forward Propagation:

24 def forward (self , x ) :

25 x = F .relu (self .layer_1 (x ) ) #Forward Passing With ReLU

Function Layer 1

26 x = F .relu (self .layer_2 (x ) ) #Forward Passing With ReLU

Function Layer 2

27 x1 = self .max_action * torch .tanh (self .layer_3 (x ) ) #Forward Passing With Tanh

Function for [-1,1]

28 x2 = self .max_action * torch .sigmoid (self .layer_4 (x ) ) #Forward Passing With ReLU

Function for [0,1]

29 x = torch .cat ( [x1 ,x2 ] , 1 ) #Concatenating Layer 3 and

4 for the Action Output

30 return x

31

32 #Critic Network:
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33 class Critic (nn .Module ) :

34

35 def __init__ (self , state_dim , action_dim ) :

36 super (Critic , self ) .__init__ ( )

37 #Defining the critic neural network

38 self .layer_1 = nn .Linear (state_dim + action_dim , 256)

39 self .layer_2 = nn .Linear ( 2 5 6 , 128)

40 self .layer_3 = nn .Linear ( 1 2 8 , 1 )

41

42

43 def forward (self , x , u ) :

44 xu = torch .cat ( [x ,u ] , 1 )

45 #forward propagation on the first critic neural network

46 x1 = F .relu (self .layer_1 (xu ) )

47 x1 = F .relu (self .layer_2 (x1 ) )

48 x1 = self .layer_3 (x1 )

49 return x1

50

51 def Q1 (self , x , u ) :

52 xu = torch .cat ( [x ,u ] , 1 )

53 x1 = F .relu (self .layer_1 (xu ) )

54 x1 = F .relu (self .layer_2 (x1 ) )

55 x1 = self .layer_3 (x1 )

56 return x1

57

58 #Cost Network:

59 class Cost (nn .Module ) :

60

61 def __init__ (self , state_dim , action_dim ) :

62 super (Cost , self ) .__init__ ( )

63 self .layer_1 = nn .Linear (state_dim + action_dim , 256)

64 self .layer_2 = nn .Linear ( 2 5 6 , 128)

65 self .layer_3 = nn .Linear ( 1 2 8 , 1 )

66

67

68 def forward (self , x , u ) :

69 xu = torch .cat ( [x ,u ] , 1 )

70 x1 = F .relu (self .layer_1 (xu ) )

71 x1 = F .relu (self .layer_2 (x1 ) )

72 x1 = self .layer_3 (x1 )

73 return x1
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74

75 def C1 (self , x , u ) :

76 xu = torch .cat ( [x ,u ] , 1 )

77 x1 = F .relu (self .layer_1 (xu ) )

78 x1 = F .relu (self .layer_2 (x1 ) )

79 x1 = self .layer_3 (x1 )

80 return x1

81

82

83 #Defining PD-DDPGfD Algorithm:

84 class PD_DDPGfD (object ) :

85

86 #Initializing the network parameters:

87 def __init__ (self , state_dim , action_dim , max_action , lambda_ , lambda_step ,

constraint_limit_1 , constraint_limit_2 ,

88 constraint_limit_3 , constraint_limit_4 ,lr_critics , lr_actor ) :

89

90 self .actor = Actor (state_dim , action_dim , max_action ) .to (device )

#Creating an Actor Model

91 self .actor .load_state_dict (torch .load (’../Pre-training/pretrained_actor.pth’ ) )

#Loading the Pre-trained Model

92 self .actor_target = Actor (state_dim , action_dim , max_action ) .to (device )

#Creating an Actor-target Model

93 self .actor_target .load_state_dict (self .actor .state_dict ( ) )

#Copying Actor to Actor-target

94 self .actor_optimizer = torch .optim .Adam (self .actor .parameters ( ) , lr=lr_actor )

#Defining Optimizer for Actor Model

95

96 self .critic = Critic (state_dim , action_dim ) .to (device )

#Creating a Critic Model

97 self .critic .load_state_dict (torch .load (’pretrained_critic.pth’ ) )

#Loading Pre-trained Critic Model

98 self .critic_target = Critic (state_dim , action_dim ) .to (device )

#Creating Critic-target Model

99 self .critic_target .load_state_dict (self .critic .state_dict ( ) )

#Copying Critic to Critic-target

100 self .critic_optimizer = torch .optim .Adam (self .critic .parameters ( ) , lr=lr_critics )

#Defining Optimizer for Actor Model

101

102 #Cost Networks are similar to Critic networks:

103 self .cost_1 = Cost (state_dim , action_dim ) .to (device )
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104 self .cost_1 .load_state_dict (torch .load (’pretrained_cost_1.pth’ ) )

105 self .cost_1_target = Cost (state_dim , action_dim ) .to (device )

106 self .cost_1_target .load_state_dict (self .cost_1 .state_dict ( ) )

107 self .cost_1_optimizer = torch .optim .Adam (self .cost_1 .parameters ( ) , lr=lr_critics )

108

109 self .cost_2 = Cost (state_dim , action_dim ) .to (device )

110 self .cost_2 .load_state_dict (torch .load (’pretrained_cost_2.pth’ ) )

111 self .cost_2_target = Cost (state_dim , action_dim ) .to (device )

112 self .cost_2_target .load_state_dict (self .cost_2 .state_dict ( ) )

113 self .cost_2_optimizer = torch .optim .Adam (self .cost_2 .parameters ( ) , lr=lr_critics )

114

115 self .cost_3 = Cost (state_dim , action_dim ) .to (device )

116 self .cost_3 .load_state_dict (torch .load (’pretrained_cost_3.pth’ ) )

117 self .cost_3_target = Cost (state_dim , action_dim ) .to (device )

118 self .cost_3_target .load_state_dict (self .cost_3 .state_dict ( ) )

119 self .cost_3_optimizer = torch .optim .Adam (self .cost_3 .parameters ( ) , lr=lr_critics )

120

121 self .cost_4 = Cost (state_dim , action_dim ) .to (device )

122 self .cost_4 .load_state_dict (torch .load (’pretrained_cost_4.pth’ ) )

123 self .cost_4_target = Cost (state_dim , action_dim ) .to (device )

124 self .cost_4_target .load_state_dict (self .cost_4 .state_dict ( ) )

125 self .cost_4_optimizer = torch .optim .Adam (self .cost_4 .parameters ( ) , lr=lr_critics )

126

127 self .max_action = max_action

128

129 #Defining dual-variables for each cost network

130 self .lambda_1 = torch .tensor ( [lambda_ ] , requires_grad=False ) .to (device )

131 self .lambda_2 = torch .tensor ( [lambda_ ] , requires_grad=False ) .to (device )

132 self .lambda_3 = torch .tensor ( [lambda_ ] , requires_grad=False ) .to (device )

133 self .lambda_4 = torch .tensor ( [lambda_ ] , requires_grad=False ) .to (device )

134

135 #Defining dual-variables learning rate:

136 self .lambda_step = lambda_step

137

138 #defining constraint toleration for each constraint:

139 self .constraint_limit_1 = constraint_limit_1

140 self .constraint_limit_2 = constraint_limit_2

141 self .constraint_limit_3 = constraint_limit_3

142 self .constraint_limit_4 = constraint_limit_4

143

144 #Storing Loss For Each Network:
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145 self .Q_loss = [ ]

146 self .C1_loss = [ ]

147 self .C2_loss = [ ]

148 self .C3_loss = [ ]

149 self .C4_loss = [ ]

150 self .C4_value = [ ]

151 self .actor_losss = [ ]

152 self .Q_value = [ ]

153 self .Q_value_target = [ ]

154

155 #Defining a function for output Action for a given State

156 def select_action (self , state ) :

157 state = torch .Tensor (state .reshape ( 1 , - 1 ) ) .to (device )

158 return self .actor (state ) .cpu ( ) .data .numpy ( ) .flatten ( )

159

160 #Defining a function for training process:

161 def train (self , replaybuffer_pretrain , iterations , batch_size=100 , discount= 0 . 9 9 , tau

= 0 . 0 0 5 , policy_noise= 0 . 2 ,

162 noise_clip= 0 . 5 , policy_freq=2) :

163

164 for it in range (iterations ) :

165

166 # Step 1: We sample a batch of transitions (s, s’, a, r, c1, c2, c3, c4) from

the memory

167 batch_states , batch_next_states , batch_actions , batch_next_actions ,

batch_rewards ,

168 batch_costs_1 , batch_costs_2 , batch_costs_3 , batch_costs_4 , batch_dones =

replaybuffer_pretrain .sample (batch_size )

169

170 # Step 2: Converting numpy arrays to tensors

171 state = torch .Tensor (batch_states ) .to (device )

172 next_state = torch .Tensor (batch_next_states ) .to (device )

173 action = torch .Tensor (batch_actions ) .to (device )

174 reward = torch .Tensor (batch_rewards ) .to (device )

175 cost_1 = torch .Tensor (batch_costs_1 ) .to (device )

176 cost_2 = torch .Tensor (batch_costs_2 ) .to (device )

177 cost_3 = torch .Tensor (batch_costs_3 ) .to (device )

178 cost_4 = torch .Tensor (batch_costs_4 ) .to (device )

179 done = torch .Tensor (batch_dones ) .to (device )

180

181 # Step 3: From the next state s’, the Actor target plays the next action a’
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182 next_action = self .actor_target (next_state )

183

184 # Step 4: The Critic and Cost targets take each the couple (s’, a’) as input

and return two Q-values Qt1(s’,a’) and Ct(s’,a’) as outputs:

185 target_Q = self .critic_target (next_state , next_action )

186 target_C_1 = self .cost_1_target (next_state , next_action )

187 target_C_2 = self .cost_2_target (next_state , next_action )

188 target_C_3 = self .cost_3_target (next_state , next_action )

189 target_C_4 = self .cost_4_target (next_state , next_action )

190

191 # Step 5: We get the final target of the Critic and Cost models, which is: Qt

= r + gamma * min(Qt1, Qt2), where gamma is the discount factor

192 target_Q = reward + ( ( 1 - done ) * discount * target_Q ) .detach ( )

193 target_C_1 = cost_1 + ( ( 1 - done ) * discount * target_C_1 ) .detach ( )

194 target_C_2 = cost_2 + ( ( 1 - done ) * discount * target_C_2 ) .detach ( )

195 target_C_3 = cost_3 + ( ( 1 - done ) * discount * target_C_3 ) .detach ( )

196 target_C_4 = cost_4 + ( ( 1 - done ) * discount * target_C_4 ) .detach ( )

197

198 # Step 6: The Critic model takes the couple (s, a) as input and return two Q-

values Q1(s,a) as output

199 current_Q = self .critic (state , action )

200 self .Q_value .append (current_Q .sum ( ) .detach ( ) )

201 self .Q_value_target .append (target_Q .sum ( ) .detach ( ) )

202

203 # Step 7: We compute the loss coming from the Critic model: Critic Loss =

MSE_Loss(Q(s,a), Qt)

204 critic_loss = F .mse_loss (current_Q , target_Q )

205

206 # Step 8: We backpropagate this Critic loss and update the parameters of

Critic model with an Adam optimizer

207 self .critic_optimizer .zero_grad ( )

208 critic_loss .backward ( )

209 self .critic_optimizer .step ( )

210 self .Q_loss .append (critic_loss .detach ( ) )

211

212 # Step 9: The Cost models take each the couple (s, a) as input and return two

C-values C(s,a) as outputs

213 current_C_1 = self .cost_1 (state , action )

214 current_C_2 = self .cost_2 (state , action )

215 current_C_3 = self .cost_3 (state , action )

216 current_C_4 = self .cost_4 (state , action )
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217

218 # Step 10: We compute the loss coming from the Cost models: Cost Loss =

MSE_Loss(C(s,a), Ct) for each network:

219 cost_loss_1 = F .mse_loss (current_C_1 , target_C_1 )

220 self .cost_1_optimizer .zero_grad ( )

221 cost_loss_1 .backward ( )

222 self .cost_1_optimizer .step ( )

223

224 cost_loss_2 = F .mse_loss (current_C_2 , target_C_2 )

225 self .cost_2_optimizer .zero_grad ( )

226 cost_loss_2 .backward ( )

227 self .cost_2_optimizer .step ( )

228

229 cost_loss_3 = F .mse_loss (current_C_3 , target_C_3 )

230 self .cost_3_optimizer .zero_grad ( )

231 cost_loss_3 .backward ( )

232 self .cost_3_optimizer .step ( )

233

234 cost_loss_4 = F .mse_loss (current_C_4 , target_C_4 )

235 self .cost_4_optimizer .zero_grad ( )

236 cost_loss_4 .backward ( )

237 self .cost_4_optimizer .step ( )

238

239 #Storing C Loss:

240 self .C1_loss .append (cost_loss_1 .detach ( ) )

241 self .C2_loss .append (cost_loss_2 .detach ( ) )

242 self .C3_loss .append (cost_loss_3 .detach ( ) )

243 self .C4_loss .append (cost_loss_4 .detach ( ) )

244

245 # Step 11: Once every some iterations, we update our Actor model by performing

gradient ascent on the output of the Critic and Cost models:

246 if it % policy_freq == 0 :

247 Q1 = self .critic .Q1 (state , self .actor (state ) )

248 C1 = self .cost_1 .C1 (state , self .actor (state ) )

249 C2 = self .cost_2 .C1 (state , self .actor (state ) )

250 C3 = self .cost_3 .C1 (state , self .actor (state ) )

251 C4 = self .cost_4 .C1 (state , self .actor (state ) )

252

253 #Adding an extra term for imitating the expert demonstrations:

254 action_loss = F .mse_loss (action , self .actor (state ) )

255
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256 actor_loss = - (Q1 - self .lambda_1 .detach ( ) * C1 - self .lambda_2 .detach ( )

* C2 - self .lambda_3 .detach ( ) * C3 - self .lambda_4 .detach ( ) * C4 - action_loss ) .mean ( )

257

258 self .actor_optimizer .zero_grad ( )

259 actor_loss .backward ( )

260 self .actor_optimizer .step ( )

261

262 # Step 12: Still once every some iterations, we update the weights of the

Actor target by polyak averaging and dual-variables:

263 for param , target_param in zip (self .actor .parameters ( ) , self .actor_target .

parameters ( ) ) :

264 target_param .data .copy_ (tau * param .data + (1 - tau ) * target_param .

data )

265

266 lambda_gradient_1 = (self .cost_1 .C1 (state , self .actor (state ) ) - self .

constraint_limit_1 ) .mean ( )

267 self .lambda_1 = max (torch .tensor ( [ 0 ] ) .to (device ) ,

268 self .lambda_1 + self .lambda_step * lambda_gradient_1 ) .

detach ( )

269

270 lambda_gradient_2 = (self .cost_2 .C1 (state , self .actor (state ) ) - self .

constraint_limit_2 ) .mean ( )

271 self .lambda_2 = max (torch .tensor ( [ 0 ] ) .to (device ) ,

272 self .lambda_2 + self .lambda_step * lambda_gradient_2 ) .

detach ( )

273

274 lambda_gradient_3 = (self .cost_3 .C1 (state , self .actor (state ) ) - self .

constraint_limit_3 ) .mean ( )

275 self .lambda_3 = max (torch .tensor ( [ 0 ] ) .to (device ) ,

276 self .lambda_3 + self .lambda_step * lambda_gradient_3 ) .

detach ( )

277

278 lambda_gradient_4 = (self .cost_4 .C1 (state , self .actor (state ) ) - self .

constraint_limit_4 ) .mean ( )

279 self .lambda_4 = max (torch .tensor ( [ 0 ] ) .to (device ) ,

280 self .lambda_4 + self .lambda_step * lambda_gradient_4 ) .

detach ( )

281

282 # Step 13: Still once every some iterations, we update the weights of the

Critic and Costs target by polyak averaging:
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283 for param , target_param in zip (self .critic .parameters ( ) , self .

critic_target .parameters ( ) ) :

284 target_param .data .copy_ (tau * param .data + (1 - tau ) * target_param .

data )

285

286 for param , target_param in zip (self .cost_1 .parameters ( ) , self .

cost_1_target .parameters ( ) ) :

287 target_param .data .copy_ (tau * param .data + (1 - tau ) * target_param .

data )

288 for param , target_param in zip (self .cost_2 .parameters ( ) , self .

cost_2_target .parameters ( ) ) :

289 target_param .data .copy_ (tau * param .data + (1 - tau ) * target_param .

data )

290 for param , target_param in zip (self .cost_3 .parameters ( ) , self .

cost_3_target .parameters ( ) ) :

291 target_param .data .copy_ (tau * param .data + (1 - tau ) * target_param .

data )

292 for param , target_param in zip (self .cost_4 .parameters ( ) , self .

cost_4_target .parameters ( ) ) :

293 target_param .data .copy_ (tau * param .data + (1 - tau ) * target_param .

data )

294

295 # Making a save method to save a trained model

296 def save (self , filename , directory ) :

297 torch .save (self .actor .state_dict ( ) , ’%s/%s_actor.pth’ % (directory , filename ) )

298 torch .save (self .critic .state_dict ( ) , ’%s/%s_critic.pth’ % (directory , filename ) )

299 torch .save (self .cost_1 .state_dict ( ) , ’%s/%s_cost_1.pth’ % (directory , filename ) )

300 torch .save (self .cost_2 .state_dict ( ) , ’%s/%s_cost_2.pth’ % (directory , filename ) )

301 torch .save (self .cost_3 .state_dict ( ) , ’%s/%s_cost_3.pth’ % (directory , filename ) )

302 torch .save (self .cost_4 .state_dict ( ) , ’%s/%s_cost_4.pth’ % (directory , filename ) )

303

304 # Making a load method to load a pre-trained model

305 def load (self , filename , directory ) :

306 self .actor .load_state_dict (torch .load (’%s/%s_actor.pth’ % (directory , filename ) ) )

307 self .critic .load_state_dict (torch .load (’%s/%s_critic.pth’ % (directory , filename ) )

)

308 self .cost_1 .load_state_dict (torch .load (’%s/%s_cost_1.pth’ % (directory , filename ) )

)

309 self .cost_2 .load_state_dict (torch .load (’%s/%s_cost_2.pth’ % (directory , filename ) )

)
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310 self .cost_3 .load_state_dict (torch .load (’%s/%s_cost_3.pth’ % (directory , filename ) )

)

311 self .cost_4 .load_state_dict (torch .load (’%s/%s_cost_4.pth’ % (directory , filename ) )

)✝ ✆
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