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Abstract
Graph Neural Networks For 3D Human Pose Estimation

Md. Tanvir Hassan

In human pose estimation methods based on graph convolutional architectures, the human skele-

ton is usually modeled as a graph whose nodes are body joints and edges are connections between 

neighboring joints. However, most of these methods tend to focus on learning relationships be-

tween body joints of the skeleton using first-order neighbors, ignoring higher-order neighbors and 

hence limiting their ability to exploit relationships between distant joints. In this thesis, we intro-

duce a higher-order regular splitting graph network (RS-Net) for 2D-to-3D human pose estimation 

using matrix splitting in conjunction with weight and adjacency modulation. The core idea is to 

capture long-range dependencies between body joints using multi-hop neighborhoods and also to 

learn different modulation vectors for different body joints as well as a modulation matrix added to 

the adjacency matrix associated to the skeleton. This learnable modulation matrix helps adjust the 

graph structure by adding extra graph edges in an effort to learn additional connections between 

body joints. Instead of using a shared weight matrix for all neighboring body joints, the proposed 

RS-Net model applies weight unsharing before aggregating the feature vectors associated to the 

joints in order to capture the different relations between them. Experiments and ablations stud-

ies performed on two benchmark datasets demonstrate the effectiveness of our model, achieving 

superior performance over strong baselines for 3D human pose estimation.

The other contribution of this thesis consists of designing a spatio-temporal 3D human pose 

estimation model using multilayer perceptrons and graph neural networks. Despite the success of 

graph convolutional networks and their variants in 3D human pose estimation tasks, most of these 

methods only consider spatial correlations between body joints and do not take into account tempo-

ral correlations, thereby limiting their ability to capture relationships in the presence of occlusions 

and inherent ambiguity. To address this issue, we propose a spatio-temporal network architecture 

composed of a joints-mixing multi-layer perceptron block that facilitates communication among 

different joints and a graph weighted Jacobi network block that enables communication among 

various feature channels. Extensive experiments on two benchmark datasets demonstrate the com-

petitive performance of our model, outperforming recent state-of-the-art methods for 3D human 

pose estimation. In addition, we perform a runtime analysis and conduct a comprehensive ablation 

study to show the effect of the key components of our model.
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Introduction

In this chapter, we present the motivation behind this work, followed by the problem statement,

objectives of the study, literature review, an overview of convolutional neural networks, graph

convolution networks, and thesis contributions.

1.1 Framework and Motivation

The objective of 3D human pose estimation is to predict the positions of a person’s joints in still

images or videos. It is one of the most rapidly evolving computer vision technologies, with diverse

real-world applications ranging from activity recognition and pedestrian behavior analysis [7] to

sports and safety surveillance in assisted living retirement homes. In healthcare, for instance,

potential benefits of human pose estimation include posture correction during exercise and reha-

bilitation of the limbs, thereby helping people adopt a healthy lifestyle.

Existing 3D human pose estimation methods can be broadly categorized into two main streams:

single-stage [8] and two-stage approaches [9,10]. Single-stage methods typically use a deep neural

network to regress 3D keypoints from images in an end-to-end manner. On the other hand, two-

stage approaches, also referred to as lifting methods, consist of two decoupled stages. In the

first stage, 2D keypoints are extracted from an image using an off-the-shelf 2D pose detector

such as the cascaded pyramid network [11] or the high-resolution network [12]. In the second

stage, the extracted 2D keypoints are fed into a regression model to predict 3D poses [13±18].

These keypoints include the shoulders, knees, ankles, wrists, pelvis, hips, head, and others on

the human skeleton. Two-stage approaches generally outperform the single-stage methods thanks,

1



in part, to recent advances in 2D pose detectors, particularly the high-resolution representation

learning networks that learn not only semantically strong representations, but are also spatially

precise [12]. For example, Martinez et al. [13] introduce a simple two-stage approach to 3D human

pose estimation by designing a multilayer neural network with two blocks comprised of batch

normalization, dropout, and a rectified linear unit activation function. This multilayer network also

uses residual connections to facilitate model training and improve generalization performance.

Pavllo et al. [19] use dilated temporal convolutions to leverage temporal correlations in 2D pose

sequences for video data analysis.

1.2 Objectives

In this thesis, we propose deep learning approaches for 3D human pose estimation.

• We propose a higher-order regular splitting graph network for 3D human pose estimation

using matrix splitting in conjunction with weight and adjacency modulation. We follow

the two-stage paradigm by employing a state-of-art 2D pose detector, followed by a lifting

network for predicting the 3D pose locations from the 2D predictions.

• We also propose a novel spatio-temporal network architecture, which we call MLP-GraphWJ

mixer, for 3D human pose estimation by incorporating multi-layer perceptrons (MLPs) to

capture global information and a graph weighted Jacobi network to capture local information

between adjacent joints across different channels.

1.3 Literature Review

Both graph convolutional networks and 3D human pose estimation have received a flurry of re-

search activity over the past few years. Here, we only review the techniques most closely related

to ours. Like much previous work discussed next, we approach the problem of 3D human pose

estimation using a two-stage pipeline.

Graph Convolution Networks. GCNs and their variants have recently become the method of

choice in graph representation learning, achieving state-of-the-art performance in numerous down-

stream tasks [20±23], including 3D human pose estimation [1,24,25]. However, GCNs apply graph

convolutions in the one-hop neighborhood of each node, and hence fail to capture long-range re-

lationships between body joints. This weakness can be mitigated using higher-order graph con-

volution filters [26] and concatenating the features of body joints from multi-hop neighborhoods
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with the aim of improving model performance in 3D human pose estimation [3, 27]. To capture

higher-order information in the graph, Wu et al. [28] also propose a simple graph convolution by

removing the nonlinear activation functions between the layers of GCNs and collapsing the result-

ing function into a single linear transformation using the normalized adjacency matrix powers.

Transformer and MLP-based Architectures. Transformer-based models have shown promis-

ing results in 3D human pose estimation and are an active area of research [29±33]. A Transformer

encodes 2D joint positions into a series of feature vectors using a self-attention mechanism, which

allows the model to capture long-range dependencies between different joints and to attend to the

most relevant joints for predicting the 3D joint positions. For example, Zheng et al. [30] introduce

PoseFormer, a spatio-temporal approach for 3D human pose estimation in videos that combines

spatial and temporal transformers. This approach uses two separate transformers, one for model-

ing spatial information and the other for modeling temporal information. The spatial transformer

focuses on modeling the 2D spatial relationships between the joints of the human body, while the

temporal transformer models the temporal dependencies between frames. However, Poseformer

only estimates human poses from the central frame of a video, which may not provide sufficient

context for accurate pose estimation in complex scenarios. While Transformers have shown great

potential in 3D human pose estimation, they typically require large amounts of labeled data to train

effectively and are designed to process sequential data. Also, as with any spatio-temporal method,

the quality of the input video can significantly impact the accuracy of the model’s pose estimations.

In contrast, GCNs are specifically designed for processing graph-structured data, more efficient on

sparse data, produce interpretable feature representations, and require less training data to achieve

good performance.

Motivated by the good performance of the MLP-mixer model [34] in image classification tasks,

Wenhao el at. [35] propose GraphMLP, a neural network architecture comprised of multilayer

perceptrons (MLPs) and GCNs, showing competitive performance in 3D human pose estimation.

GraphMLP integrates the graph structure of the human body into an MLP model, which facilitates

both local and global spatial interactions. It employs a GCN block to aggregate local information

between neighboring joints and a prediction head to estimate the 3D joint positions.

3D Human Pose Estimation. The basic goal of 3D human pose estimation is to predict the

locations of a human body joints in images or videos. To achieve this goal, various methods

have been proposed, which can learn to categorize human poses. Most of these methods can

be classified into one-stage approaches that regress 3D keypoints from images using deep neural

networks in an end-to-end manner [8] or two-stage approaches that employ an off-the-shelf 2D

pose detector to extract 2D keypoints and then feed them into a regression model to predict 3D
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poses [2±5, 14±19, 36, 37]. Fully-connected networks (FCNs) have been shown to be effective

at regressing 3D poses from 2D keypoints [13]. Pavllo et al. [19] takes this one step further by

using dilated temporal convolutions which add gaps (or dilations) between the time steps that the

convolutional kernel is applied, in order to exploit the temporal correlations in 2D pose sequences,

allowing FCNs to be applied to video data.

Spatio-Temporal Methods. Current monocular 3D pose estimation methods can be classified

into two mainstream types: single-frame or image-based and multi-frame or video-based ap-

proaches. Single-frame-based methods aim to predict 3D pose from a single RGB image. In

contrast, video-based methods take advantage of the temporal dependencies between frames in

the video clip. Due to the ill-posed characteristic of generating accurate 3D poses from a single

RGB image, a number of techniques [4, 30, 38±41] have been developed that rely on temporal

correlations to improve the robustness and accuracy of the resulting 3D poses. Hossain et al. [38]

introduce a recurrent neural network that incorporates Long Short-Term Memory (LSTM) to take

advantage of temporal correlations in the input sequence. Liu et al. [39] develop graph attention

blocks in conjunction with dilated temporal convolution that is capable of estimating 3D pose from

consecutive 2D pose sequences. Zheng et al. [30] utilize a Transformer-based approach that is de-

signed to capture both the correlations between human joints and their temporal dependencies.

Zeng et al. [41] introduce a temporal aware dynamic graph convolution where the graph updates

by physical skeleton topology, and through the features of nodes. Most of the state-of-art methods

tend to be computationally demanding and utilize dilated temporal convolutions to capture global

dependencies, however, these methods are inherently restricted in their ability to establish temporal

connectivity. Moreover, most GCN-based approaches have been constrained by the fact that they

share a feature transformation for capturing the relationships between each node and its adjacent

nodes in a graph convolution layer. This weight-sharing may not be able to fully represent the

diverse range of relational patterns present in a graph.

Our proposed graph neural network falls under the category of 2D-to-3D lifting. While GCNs

have proven powerful at learning discriminative node representations on graph-structured data,

they usually extract first-order neighborhood patterns for each joint, ignoring higher-order neigh-

borhood information and hence limiting their ability to exploit relationships between distant joints.

Moreover, GCNs share the same feature transformation for each node, hampering the efficiency of

information exchange between body joints. Our work differs from existing approaches in that we

use higher-order neighborhoods in combination with weight and adjacency modulation in order to

not only capture long-range dependencies between body joints but also learn additional connec-

tions between body joints by adjusting the graph structure via a learnable modulation matrix. In
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addition, we design a variant of the ConvNeXt block and integrate it into our model architecture

with the goal of improving accuracy in human pose estimation, while maintaining the simplicity

and efficiency of standard convolutional networks. Moreover, we propose a novel spatio-temporal

graph neural network architecture, dubbed MLP-GraphWJ mixer, which leverages spatio-temporal

correlations and also makes use of weight and adjacency modulation.

1.4 Overview and Contributions

The organization of this thesis is as follows:

• Chapter 1 begins with the motivations and goals for this research, followed by the problem

statement, the objective of this study, and a literature review with a brief discussion of some

algorithms relevant to deep learning in 3D human pose estimation.

• In Chapter 2, we propose a higher-order regular splitting graph network for 3D human pose

estimation using matrix splitting in conjunction with weight and adjacency modulation along

with a new objective function for training our proposed graph network by leveraging the

regularizer of the elastic net regression. In addition, we design a variant of the ConvNeXT

residual block and integrate it into our graph network architecture. We demonstrate through

experiments and ablation studies that our proposed model achieves state-of-the-art perfor-

mance in comparison with strong baselines.

• In Chapter 3, we propose a graph weighted Jacobi (GraphWJ) network, which employs a

weighted Jacobi (WJ) feature propagation rule obtained via graph filtering with implicit fair-

ing, and also leverages weight and adjacency modulation to improve accuracy and model

generalization capability. In addition, We design a novel spatio-temporal network architec-

ture, which we call MLP-GraphWJ mixer, for 3D human pose estimation by incorporating

multi-layer perceptrons (MLPs) to capture global information and a graph weighted Jacobi

network to capture local information between adjacent joints across different channels. Ex-

tensive experiments on two benchmark datasets demonstrate the effectiveness of our model,

outperforming recent state-of-the-art methods for 3D human pose estimation.

• Chapter 4 presents a summary of the contributions of this thesis, its limitations, and outlines

several directions for future research in this area of study.
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Regular Splitting Graph Network for 3D Human

Pose Estimation

In this chapter, we introduce a higher-order regular splitting graph network (RS-Net) for 2D-to-3D

human pose estimation using matrix splitting in conjunction with weight and adjacency modula-

tion. The core idea is to capture long-range dependencies between body joints using multi-hop

neighborhoods and also to learn different modulation vectors for different body joints as well as a

modulation matrix added to the adjacency matrix associated to the skeleton. This learnable mod-

ulation matrix helps adjust the graph structure by adding extra graph edges in an effort to learn

additional connections between body joints. Instead of using a shared weight matrix for all neigh-

boring body joints, the proposed RS-Net model applies weight unsharing before aggregating the

feature vectors associated to the joints in order to capture the different relations between them.

Experiments and ablations studies performed on two benchmark datasets demonstrate the effec-

tiveness of our model, achieving superior performance over recent state-of-the-art methods for 3D

human pose estimation.

2.1 Introduction

Recently, graph convolutional networks (GCNs) and their variants have emerged as powerful meth-

ods for 2D-to-3D human pose estimation [1±3, 25, 27, 42] due largely to the fact that a 2D human

skeleton can naturally be represented as a graph whose nodes are body joints and edges are con-

nections between neighboring joints. For example, Zhao et al. [2] propose a semantic GCN archi-
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tecture to capture local and global node relationships that are learned through end-to-end training,

resulting in improved 3D pose estimation performance. While graph neural networks, particularly

GCNs, have shown great promise in effectively tackling the 3D human pose estimation problem,

they suffer, however, from a number of issues. First, GCNs focus primarily on learning relation-

ships between body joints using first-order neighbors, ignoring higher-order neighbors; thereby

limiting their ability to exploit relationships between distant joints. This challenge can be mit-

igated using higher-order graph neural networks [26], which have proven effective at capturing

long-range dependencies between body joints [3,27]. Second, GCNs share the transformation ma-

trix in the graph convolutional filter for all nodes, hindering the efficiency of information exchange

between nodes, especially for a multi-layer network. To overcome this limitation, Liu et al. [25] in-

troduce various weight unsharing mechanisms and apply different feature transformations to graph

nodes before aggregating the associated features. The downside of these mechanisms is that they

increase the model size by a factor equal of the number of body joints. This challenge can be

alleviated by incorporating both weight and affinity modulation into the shared weight matrix and

adjacency matrix, respectively [1] in order to help improve model generalization.

Another recent line of work leverages Transformer architectures, which employ a multi-

head self-attention mechanism, to capture spatial and temporal information from 2D pose se-

quences [30, 43]. While Transformer-based architectures are able to encode long-range depen-

dencies between body joints in the spatial and temporal domains, they often require, however,

large-scale training datasets to achieve comparable performance in comparison with their convolu-

tional networks counterparts, particularly on visual recognition tasks. This can make training and

inference computationally expensive. Moreover, the attention mechanism used in Transformers

involves computing an attention score between every pair of tokens in the input sequence, which

can be computationally expensive, especially for longer sequences. More recently, Zhuang et

al. [44] have proposed ConvNeXt architecture, competing favorably with Transformers in terms of

accuracy and scalability, while maintaining the simplicity and efficiency of standard convolutional

networks. Similar to the Transformer block and unlike the ResNet block, the ConvNeXt block

is comprised of convolutional layers, followed by layer normalization and a Gaussian error linear

unit activation function [44].

To address the aforementioned issues, we introduce a higher-order regular splitting graph net-

work, dubbed RS-Net, for 3D human pose estimation by leveraging regular matrix splitting to-

gether with weight and adjacency modulation. The layer-wise propagation rule of the proposed

method is inspired by the iterative solution of a sparse linear system via regular splitting. We

follow the two-stage approach for 3D human pose estimation by first applying a state-of-art 2D
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pose detector to obtain 2D pose predictions, followed by a lifting network for predicting the 3D

pose locations from the 2D predictions. The key contributions of this work can be summarized as

follows:

• We propose a higher-order regular splitting graph network for 3D human pose estimation

using matrix splitting in conjunction with weight and adjacency modulation.

• We introduce a new objective function for training our proposed graph network by leveraging

the regularizer of the elastic net regression.

• We design a variant of the ConvNeXT residual block and integrate it into our graph network

architecture.

• We demonstrate through experiments and ablation studies that our proposed model achieves

state-of-the-art performance in comparison with strong baselines.

The rest of this chapter is structured as follows. In Section 2.2, we summarize the basic notation

and concepts, and then provide a problem formulation. In Section 2.3, we formulate the learning

task at hand and then describe the main building blocks of the proposed graph network architecture,

including a generalization to higher-order settings. In Section 2.4, we present empirical results

comparing our model with state-of-the-art approaches for 3D pose estimation on a large-scale

standard benchmark.

2.2 Preliminaries

Basic Notions. Consider a graph G = (V , E), where V = {1, . . . , N} is the set of N nodes

and E ⊆ V × V is the set of edges. In human pose estimation, nodes correspond to body joints

and edges represent connections between two body joints. We denote by A = (Aij) an N × N

adjacency matrix (binary or real-valued) whose (i, j)-th entry Aij is equal to the weight of the edge

between neighboring nodes i and j, and 0 otherwise. Two neighboring nodes i and j are denoted

as i ∼ j, indicating that they are connected by an edge. We denote by Ni = {j ∈ V : i ∼ j} the

neighborhood of node i. We also denote by X = (x1, ...,xN)
⊺

an N × F feature matrix of node

attributes, where xi is an F -dimensional row vector for node i.

Spectral Graph Theory. The normalized Laplacian matrix is defined as

L = I−D−1/2AD−1/2 = I− Â, (2.1)

8



where D = diag(A1) is the diagonal degree matrix, 1 is an N -dimensional vector of all ones,

and Â = D−1/2AD−1/2 is the normalized adjacency matrix. Since the normalized Laplacian

matrix is symmetric positive semi-definite, it admits an eigendecomposition given by L = UΛU
⊺
,

where U = (u1, . . . ,uN) is an orthonormal matrix whose columns constitute an orthonormal basis

of eigenvectors and Λ = diag(λ1, . . . , λN) is a diagonal matrix comprised of the corresponding

eigenvalues such that 0 = λ1 ≤ · · · ≤ λN ≤ 2 in increasing order [45]. Hence, the eigenvalues of

the normalized adjacency matrix lie in the interval [−1, 1], indicating that the spectral radius (i.e.

the highest absolute value of all eigenvalues) ρ(Â) is less than 1

Regular Matrix Splitting. Let S be an N ×N matrix. The decomposition S = B−C is called

a regular splitting of S if B is nonsingular and both B−1 and C are nonnegative matrices [46].

Using this matrix splitting, the solution of the matrix equation Sx = r, where r is a given vector,

can be obtained iteratively as follows

x(t+1) = B−1Cx(t) +B−1r, (2.2)

where x(t) and x(t+1) are the t-th and (t+ 1)-th iterations of x, respectively. This iterative method

is convergent if and only if the spectral radius of the iteration matrix B−1C is less than 1. It can

also be shown that given a regular splitting, ρ(B−1C) < 1 if and only if S is nonsingular and its

inverse is nonnegative [46].

2.3 Proposed Method

In this section, we first start by defining the learning task at hand, including the objective func-

tion. Then, we present the main components of the proposed higher-order regular splitting graph

network with weight and adjacency modulation for 3D human pose estimation.

2.3.1 Problem Statement

Let Dl = {(xi,yi)}
N
i=1 be a training set of 2D joint positions X = (x1, . . . ,xN)

⊤ ∈ R
N×2 and

their associated 3D joint positions Y = (y1, . . . ,yN)
⊤ ∈ R

N×3. An example of a 2D human pose

graph G = (V , E), which comprises |V| = 16 nodes (joints) and |E| = 15 edges, is illustrated in

Figure 2.1. The skeletal graph encompasses 16 keypoints or joints distributed throughout the body,

including shoulders, knees, ankles, wrists, pelvis, hips, head, among others. The pelvis joint is

typically chosen as the root joint.
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9. Head

8. Throax

0. Pelvis

4. L. Hip 1. R. Hip

5. L. Knee 2. R. Knee

6. L. Ankle 3. R. Ankle

7. Spine

10. L. Shoulder

11. L. Elbow 14. R. Elbow

12. L. Ankle 15. R. Ankle

13. R. Shoulder

Figure 2.1: Example of a 2D human pose skeletal graph.

The goal of 3D human pose estimation is to learn the parameters w of a regression model f :

X → Y by finding a minimizer of the following loss function

w∗ = argmin
w

1

N

N∑

i=1

L(f(xi),yi), (2.3)

where L(f(xi),yi) is an empirical loss function defined by the learning task. Since human pose

estimation is a regression task, we define L(f(xi),yi) as a weighted sum (convex combination) of

the ℓ2 and ℓ1 loss functions

L(f(xi),yi) = (1− α)
N∑

i=1

∥yi − f(xi)∥
2
2 + α

N∑

i=1

∥yi − f(xi)∥1, (2.4)

where α ∈ [0, 1] is a weighting factor controlling the contribution of each term. It is worth point-

ing out that our proposed loss function (3.2) is inspired by the regularizer used in the elastic net

regression technique [47], which is a hybrid of ridge regression and lasso regularization.

2.3.2 Spectral Graph Filtering

The goal of spectral graph filtering is to use polynomial or rational polynomial filters defined as

functions of the graph Laplacian in order to attenuate high-frequency noise corrupting the graph

signal. Since the normalized Laplacian matrix is diagonalizable, applying a spectral graph filter

with transfer function h on the graph signal X ∈ R
N×F yields

H = h(L)X = Uh(Λ)U
⊺
X = U diag(h(λi))U

⊺
X, (2.5)
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where H is the filtered graph signal. However, computing all the eigenvalue/eigenvectors of the

Laplacian matrix is notoriously expensive, particularly for very large graphs. To circumvent this

issue, spectral graph filters are usually approximated using Chebyshev polynomials [48±50] or

rational polynomials [51±53].

2.3.3 Implicit Fairing Filter

The implicit fairing filter is an infinite impulse response filter whose transfer function is given by

hs(λ) = 1/(1 + sλ), where s is a positive parameter [27, 54]. Substituting h with hs in Eq. (2.5),

we obtain

H = (I+ sL)−1X, (2.6)

where I+ sL is a symmetric positive definite matrix (all its eigenvalue are positive), and hence ad-

mits an inverse. Therefore, performing graph filtering with implicit fairing is equivalent to solving

the following sparse linear system:

(I+ sL)H = X, (2.7)

which can be efficiently solved using iterative methods [46].

2.3.4 Regular Splitting and Iterative Solution

Regular Splitting. For notational simplicity, we denote Ls = I + sL, which we refer to as the

implicit fairing matrix. Using regular splitting, we can split the matrix Ls as follows:

Ls = (1 + s)I− sÂ = B−C, (2.8)

where

B = (1 + s)I and C = sÂ = sD−1/2AD−1/2.

Note that B is a scaled identity matrix and C is a scaled normalized adjacency matrix. It should

be noted that for both matrices, the scaling is uniform (i.e. constant scaling factors). Since Â is a

nonnegative matrix and its spectral radius is less than 1, it follows that ρ(sÂ) < s+ 1. Therefore,

the implicit fairing matrix Ls is an M -matrix, and consequently its inverse is a nonnegative matrix.

In words, an M -matrix can be defined as a matrix with positive diagonal elements, nonpositive

off-diagonal elements and a nonnegative inverse.

Iterative Solution. Using regular splitting, the implicit fairing equation (3.3) can be solved iter-

atively as follows:

H(t+1) = B−1CH(t+1) +B−1X

= (s/(1 + s))ÂH(t) + (1/(1 + s))X,
(2.9)
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Since the spectral radius of the normalized adjacency matrix Â is smaller than 1, it follows that the

spectral radius of the iteration matrix B−1C is less than s/(1 + s), which is in turn smaller than 1.

Therefore, the iterative method is convergent. This convergence property can also be demonstrated

by noting that Ls is nonsingular and its inverse is nonnegative; thereby B−1C < 1.

We can rewrite the iterative solution given by Eq. (2.9) in matrix form as follows

H(t+1) = ÂH(t)Ws +XW̃s, (2.10)

where Ws = diag(s/(1 + s)) and W̃s = diag(1/(1 + s)) are F × F diagonal matrices, each of

which has equal diagonal entries, and H(t) is the t-th iteration of H.

Theoretical Properties. In the regular splitting Ls = B − C given by Eq. (2.8), both Ls and

B are nonsingular because Ls is a symmetric positive definite matrix and B is a scaled identity

matrix. Hence, the following properties hold:

• The matrices B−1C and L−1
s C commute, i.e. B−1CL−1

s = L−1
s CB−1.

• The matrices B−1C and L−1
s C have the same eigenvectors.

• If µi and τi are the eigenvalues of B−1C and L−1
s C, respectively, then µi = τi/(1 + τi).

• The regular splitting is convergent if and only if τi > −1/2 for all i = 1, . . . , N .

• Since both B−1C and L−1
s C are nonnegative matrices, the regular splitting is convergent and

ρ(B−1C) =
ρ(L−1

s C)

1 + ρ(L−1
s C)

.

Detailed proofs of these properties for a regular splitting of any matrix can be found in [55].

2.3.5 Regular Splitting Graph Network

In order to learn new feature representations for the input feature matrix of node attributes over

multiple layers, we draw inspiration from the iterative solution given by Eq. (2.10) to define a

multi-layer graph convolutional network with skip connections as follows:

H(ℓ+1) = σ(ÂH(ℓ)W(ℓ) +XW̃(ℓ)), ℓ = 0, . . . , L− 1 (2.11)

where W(ℓ) ∈ R
Fℓ×Fℓ+1 and W̃(ℓ) ∈ R

F×Fℓ+1 are learnable weight matrices, σ(·) is an element-

wise nonlinear activation function such as the Gaussian Error Linear Unit (GELU), H(ℓ) ∈ R
N×Fℓ

is the input feature matrix of the ℓ-th layer and H(ℓ+1) ∈ R
N×Fℓ+1 is the output feature matrix.
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The input of the first layer is the initial feature matrix H(0) = X. Notice that the key difference

between (2.10) and (2.11) is that the latter defines a representation updating rule for propagating

node features layer-wise using trainable weight matrices for learning an efficient representation of

the graph, followed by an activation function to introduce non-linearity into the network in a bid to

enhance its expressive power. This propagation rule is essentially comprised of feature propagation

and feature transformation. The skip connections used in the proposed model allow information

from the initial feature matrix to bypass the current layer and be directly added to the output of the

current layer. This helps preserve important information that may be lost during the aggregation

process, thereby improving the flow of information through the network.

The i-th row of the output feature matrix can be expressed as follows

h
(ℓ+1)
i = σ

(
∑

j∈Ni

âijh
(ℓ)
j W(ℓ) + xiW̃

(ℓ)

)
, (2.12)

where âij is the (i, j)-th entry of the normalized adjacency matrix and h
(ℓ)
j is the neighboring fea-

ture vector of node i in the input feature matrix. In words, the feature vector of each node i is

updated by transforming (i.e. embedding) the feature vectors of its neighboring nodes via the same

projection matrix (i.e. shared weight matrix) W(ℓ), followed by aggregating the transformed fea-

ture vectors using a sum aggregator and then adding them to the transformed initial feature vector.

Using a shared weight matrix is, however, suboptimal for articulated body modeling due largely

to the fact the relations between different body joints are different [25]. To address this limitation,

Liu et al. [25] introduce various weight unsharing mechanisms in an effort to capture the different

relations between body joints, and hence improve human pose estimation performance. The basic

idea is to use different weight matrices to transform the features vectors of the neighboring nodes

before applying the sum aggregator:

hℓ+1
i = σ

(
∑

j∈Ni

âijh
(ℓ)
j W

(ℓ)
j + xiW̃

(ℓ)

)
, (2.13)

where W
(ℓ)
j is the weight matrix for feature vector h

(ℓ)
j at the ℓ-th layer. This weight unsharing

mechanism is referred to as pre-aggregation because weight unsharing is applied before feature

vectors’ aggregation. In addition, the pre-aggregation method performs the best in 3D human pose

estimation [25].

Weight Modulation. While weight unsharing has proven affective at capturing the different rela-

tions between body joints, it also increases the model size by a factor equal to the number of joints.

To tackle this issue, we use weight modulation [1] in lieu of weight unsharing. Weight modulation
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employs a shared weight matrix, but learns a different modulation vector for each neighboring

node j according to the following update rule

h
(ℓ+1)
i = σ

(
∑

j∈Ni

âijh
(ℓ)
j

(
W(ℓ) ⊙m

(ℓ)
j

)
+ xiW̃

(ℓ)

)
, (2.14)

where m
(ℓ)
j ∈ R

Fℓ+1 is a learnable modulation (row) vector for each neighboring node j and ⊙

denotes element-wise multiplication.

Hence, the layer-wise propagation rule with weight modulation can be written in matrix form as

follows

H(ℓ+1) = σ
(
Â((H(ℓ)W(ℓ))⊙M(ℓ)) +XW̃(ℓ)

)
, (2.15)

where M(ℓ) ∈ R
N×Fℓ+1 is a weight modulation matrix whose j-th row is the modulation vector

m
(ℓ)
j .

Adjacency Modulation. Following [1], we modulate the normalized adjacency matrix in order

to capture not only the relationships between neighboring nodes, but also the distant nodes (e.g.

arms and legs of a human skeleton)

Ǎ = Â+Q, (2.16)

where Q ∈ R
N×N is a learnable adjacency modulation matrix. Since we consider undirected

graphs (e.g. the human skeleton graph), we symmetrize the adjacency modulation matrix Q by

adding it to its transpose and dividing by 2. Therefore, the layer-wise propagation rule of the

regular splitting graph network with weight and adjacency modulation is given by

H(ℓ+1) = σ
(
Ǎ((H(ℓ)W(ℓ))⊙M(ℓ)) +XW̃(ℓ)

)
. (2.17)

The proposed layer-wise propagation rule is illustrated in Figure 2.2, where each block consists

of a skip connection and a higher-order graph convolution with weight and adjacency modulation.

The idea of skip connection is to carry over information from the initial feature matrix.

2.3.6 Higher-Order Regular Splitting Graph Network

In order to capture high-order connection information and long-range dependencies, we use k-

hop neighbors to define a higher-order regular splitting network with the following layer-wise

propagation rule:

H(ℓ+1) = σ

(
K

∥
k=1

(H̃
(ℓ)
k +XW̃

(ℓ)
k )

)
(2.18)

where

H̃
(ℓ)
k = Ǎk((H(ℓ)W

(ℓ)
k )⊙M

(ℓ)
k ) (2.19)
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+ +

skip connection skip connection

Figure 2.2: Illustration of the layer-wise propagation rule for the proposed RS-Net model. Each

block is comprised of a skip connection and a higher-order graph convolution with weight and

adjacency modulation.

and Ǎk is the k-th power of the normalized adjacency matrix with adjacency modulation. The

learnable weight and modulation matrices W
(ℓ)
k and M

(ℓ)
k are associated with the k-hop neigh-

borhood, and ∥ denotes concatenation. For each k-hop neighborhood, the node representation is

updated by aggregating information from its neighboring nodes using weight and adjacency mod-

ulation as well as carrying over information from the initial node features via skip connection.

Then, high-order features are concatenated, as illustrated in Figure 3.1, followed by applying a

non-linear transformation. Notice how additional edges, shown as dashed lines, are created as a

result of adding a learnable modulation matrix to the normalized adjacency matrix.

Model Architecture. Figure 3.2 depicts the architecture of our proposed RS-Net model for 3D

human pose estimation. The input consists of 2D keypoints, which are obtained via a 2D pose

detector. We use higher-order regular splitting graph convolutional layers defined by the layer-wise

propagation rule of RS-Net to capture long-range connections between body joints. Inspired by

the architectural design of the ConvNeXt block [44], we adopt a residual block comprised of two

higher-order regular splitting graph convolutional (RS-NetConv) layers. The first convolutional

layer followed by layer normalization, while the second convolutional layer is followed by a GELU

activation function, as illustrated in Figure 3.2. We also employ a non-local layer [56] before the

last convolutional layer and we repeat each residual block four times.

Model Prediction. The output of the last higher-order graph convolutional layer of HOIF-Net
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Figure 2.3: Illustration of RS-Net feature concatenation for K = 3 with weight and adjacency

modulation. Dashed lines represent extra edges added to the human skeleton via the learnable

matrix in adjacency modulation.
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Figure 2.4: Overview of the proposed network architecture for 3D pose estimation. Our model

takes 2D pose coordinates (16 or 17 joints) as input and generates 3D pose predictions (16 or 17

joints) as output. We use ten higher-order graph convolutional layers with four residual blocks.

In each residual block, the first convolutional layer is followed by layer normalization, while the

second convolutional layer is followed by a GELU activation function, except for the last convolu-

tional layer which is preceded by a non-local layer.
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contains the final output node embeddings, which are given by

Ŷ = (ŷ1, . . . , ŷN)
⊺
∈ R

N×3, (2.20)

where ŷi is a three-dimensional row vector of predicted 3D pose coordinates.

Model Training. The parameters (i.e. weight matrices for different layers) of the proposed

HOIF-Net model for 3D human pose estimation are learned by minimizing the loss function

L =
1

N

[
(1− α)

N∑

i=1

∥yi − ŷi∥
2
2 + α

N∑

i=1

∥yi − ŷi∥1

]
, (2.21)

which is a weighted sum of the mean square and mean absolute errors between the 3D ground truth

poses yi and estimated 3D joint poses ŷi over a training set consisting of N human poses.

2.4 Experiments

In this section, we conduct experiments on real-world datasets to evaluate the performance of the

proposed model in comparison with competitive baselines for 3D human pose estimation.

2.4.1 Experimental Setup

Datasets. We evaluate our approach on two large-scale benchmark datasets: Human 3.6M and

MPI-INF-3DHP. Human 3.6M is the most widely-used dataset in 3D human pose estimation [6],

comprised of 3.6 million 3D human poses for 5 female and 6 male actors as well as their corre-

sponding images captured from four synchronized cameras at 50 Hz. A total of 15 actions are

performed by each actor in an indoor environment. These actions include directions, discussion,

eating, greeting, talking on the phone, and so on, as shown in Figure 2.5. Following [3, 13], we

apply normalization to the 2D and 3D poses before feeding the data into the model. For the MPI-

INF-3DHP dataset [57], there are 8 actors performing 8 actions from 14 camera views, covering a

greater diversity of poses. This dataset includes a test set of 6 subjects with confined indoor and

complex outdoor scenes.

Evaluation Protocols and Metrics. We adopt different metrics to evaluate the performance of

our model in comparison with strong baselines for 3D human pose estimation. For the Human

3.6M dataset, we employ two widely-used metrics: mean per joint position error (MPJPE) and

Procrustes-aligned mean per joint position error (PA-MPJPE). Both metrics are measured in mil-

limeters, and lower values indicate better performance. MPJPE, also referred to as Protocol #1,

computes the average Euclidean distance between the predicted 3D joint positions and ground
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Directions Discussion Eating Greeting Phone

Photo Posing Purchase Sitting Sitting Down

Smoking Waiting Walk Dog Walk Walk Together

Figure 2.5: Various types of actions performed by actors in the Human 3.6M dataset.

truth after the alignment of the root joint (central hip). PA-MPJPE, also known as Protocol #2,

is computed after rigid alignment of the prediction with respect to the ground truth. Both pro-

tocols use 5 subjects (S1, S5, S6, S7, S8) for training and 2 subjects (S9, S11) for testing. For

the MPI-INF-3DHP datset, we also employ two commonly-used evaluation metrics: Percentage of

Correct Keypoints (PCK) under 150mm and the Area Under the Curve (AUC) in line with previous

works [14, 17, 27, 58±60]. Higher values of PCK and AUC indicate better performance.

Baseline Methods. We evaluate the performance of our RS-Net model against various state-

of-the-art pose estimation methods, including Semantic GCN [2], High-order GCN [3], Weight

Unsharing [25], Compositional GCN [58], and Modulated GCN [1].

Implementation Details. Following the 2D-to-3D lifting approach [1, 4, 19, 43], we employ the

high-resolution network (HR-Net) [12] as 2D detector and train/test our model using the detector’s
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output. We use PyTorch to implement our model, and all experiments are conducted on a single

NVIDIA GeForce RTX 3070 GPU with 8G memory. We train our model for 30 epochs using

AMSGrad, a variant of ADAM optimizer, which employs the maximum of past squared gradients

in lieu of the exponential average to update the parameters. For 2D pose detections, we set the

batch size to 512 and the filter size to 96. We also set the initial learning rate to 0.005 and the

decay factor to 0.90 per 4 epochs. The weighting factor α is set to 0.1. For the 2D ground truth,

we set the batch size to 128 and the filter size to 64. The initial learning rate is set to 0.001 with

a decay factor of 0.95 applied after each epoch and 0.5 after every 5 epochs. For K-hop feature

concatenation, we set the value of K to 3. Following [4], we incorporate a non-local layer [56] and

a pose refinement network to improve the performance. We also decouple self-connections from

the modulated normalized adjacency matrix [25]. In addition, we apply horizontal flip augmen-

tation [1, 43]. Furthermore, to prevent overfitting we add dropout with a factor of 0.2 after each

graph convolutional layer.

2.4.2 Results and Analysis

Quantitative Results. In Table 3.1, we report the performance comparison results of our RS-Net

model and various state-of-the-art methods for 3D human pose estimation. As can be seen, our

model yields the best performance in most of the actions and also on average under both Protocol

#1 and Protocol #2, indicating that our RS-Net is very competitive. This is largely attributed to

the fact that RS-Net can better exploit high-order connections through multi-hop neighborhoods

and also learns not only different modulation vectors for different body joints, but also additional

connections between the joints. Under Protocol #1, Table 3.1 shows that RS-Net performs better

than ModulatedGCN [1] on 13 out of 15 actions by a relative improvement of 4.86% on average.

It also performs better than high-order GCN [3] on all actions, yielding an error reduction of

approximately 15.47% on average. Moreover, our model outperforms SemGCN [2] by a relative

improvement of 18.40% on average.

Under Protocol #2, Table 3.2 shows that RS-Net outperforms ModulatedGCN [1] on 11 out of

15 actions, as well as on average. Our model also performs better than high-order GCN [3] with a

11.67% error reduction on average, achieving better performance on all 15 actions, and indicating

the importance of weight and adjacency modulation. Another insight from Tables 3.1 and 3.2 is

that our model outperforms GCN with weight unsharing [25] on all actions under Protocol #1 and

Protocol #2, while using a fewer number of learnable parameters. This indicates the usefulness of

not only higher-order structural information, but also weight and adjacency modulation in boosting

human pose estimation performance.
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Table 2.1: Performance comparison of our model and baseline methods using MPJPE (in millime-

ters) between the ground truth and estimated pose on Human3.6M under Protocol #1. The average

errors are reported in the last column. Boldface numbers indicate the best performance, whereas

the underlined numbers indicate the second best performance.

Action

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Martinez et al. [13] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Sun et al. [10] 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1

Yang et al. [14] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Fang et al. [15] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Hossain & Little [16] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3

Pavlakos et al. [17] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Sharma et al. [18] 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0

Zhao et al. [2] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6

Li et al. [61] 62.0 69.7 64.3 73.6 75.1 84.8 68.7 75.0 81.2 104.3 70.2 72.0 75.0 67.0 69.0 73.9

Banik et al. [62] 51.0 55.3 54.0 54.6 62.4 76.0 51.6 52.7 79.3 87.1 58.4 56.0 61.8 48.1 44.1 59.5

Xu et al. [63] 47.1 52.8 54.2 54.9 63.8 72.5 51.7 54.3 70.9 85.0 58.7 54.9 59.7 43.8 47.1 58.1

Zou et al. [3] 49.0 54.5 52.3 53.6 59.2 71.6 49.6 49.8 66.0 75.5 55.1 53.8 58.5 40.9 45.4 55.6

Quan et al. [27] 47.0 53.7 50.9 52.4 57.8 71.3 50.2 49.1 63.5 76.3 54.1 51.6 56.5 41.7 45.3 54.8

Zou et al. [58] 48.4 53.6 49.6 53.6 57.3 70.6 51.8 50.7 62.8 74.1 54.1 52.6 58.2 41.5 45.0 54.9

Liu et al. [25] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4

Zou et al. [1] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4

Ours 41.0 46.8 44.0 48.4 47.5 50.7 45.4 42.3 53.6 65.8 45.6 45.2 48.9 39.7 40.6 47.0

Table 2.2: Performance comparison of our model and baseline methods using PA-MPJPE between

the ground truth and estimated pose on Human3.6M under Protocol #2.

Action

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Zhou et al. [64] 47.9 48.8 52.7 55.0 56.8 49.0 45.5 60.8 81.1 53.7 65.5 51.6 50.4 54.8 55.9 55.3

Pavlakos et al. [9] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9

Martinez et al. [13] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Sun et al. [10] 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3

Fang et al. [15] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Hossain & Little [16] 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1

Li et al. [61] 38.5 41.7 39.6 45.2 45.8 46.5 37.8 42.7 52.4 62.9 45.3 40.9 45.3 38.6 38.4 44.3

Banik et al. [62] 38.4 43.1 42.9 44.0 47.8 56.0 39.3 39.8 61.8 67.1 46.1 43.4 48.4 40.7 35.1 46.4

Xu et al. [63] 36.7 39.5 41.5 42.6 46.9 53.5 38.2 36.5 52.1 61.5 45.0 42.7 45.2 35.3 40.2 43.8

Zou et al. [3] 38.6 42.8 41.8 43.4 44.6 52.9 37.5 38.6 53.3 60.0 44.4 40.9 46.9 32.2 37.9 43.7

Quan et al. [27] 36.9 42.1 40.3 42.1 43.7 52.7 37.9 37.7 51.5 60.3 43.9 39.4 45.4 31.9 37.8 42.9

Zou et al. [58] 38.4 41.1 40.6 42.8 43.5 51.6 39.5 37.6 49.7 58.1 43.2 39.2 45.2 32.8 38.1 42.8

Liu et al. [25] 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2

Zou et al. [1] 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1

Ours 34.2 38.2 35.6 40.8 38.5 41.8 36.0 34.0 43.9 56.2 38.0 36.3 40.2 31.2 33.3 38.6
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In Table 3.3, we report the quantitative comparison results of RS-Net and several baselines on

the MPI-INF-3DHP dataset. As can be seen, our method achieves significant improvements over

the comparative methods. In particular, our model outperforms the best baseline with relative

improvements of 7.94% and 15.90% in terms of the PCK and AUC metrics, respectively. Overall,

our model consistently outperforms the baseline methods in terms of all evaluation metrics on both

datasets, indicating its effectiveness in 3D human pose estimation.

Table 2.3: Performance comparison of our model and baseline methods on the MPI-INF-3DHP

dataset using PCK and AUC as evaluation metrics. Higher values in boldface indicate the best

performance, while the best baselines are underlined.

Method PCK(↑) AUC(↑)

Chen et al. [60] 67.9 -

Yang et al. [14] 69.0 32.0

Pavlakos et al. [17] 71.9 35.3

Habibie et al. [59] 70.4 36.0

Quan et al. [27] 72.8 36.5

Zou et al. [58] 79.3 45.9

Ours 85.6 53.2

Qualitative Results. Figure 3.3 shows the qualitative results obtained by the proposed RS-Net

model for various actions. As can be seen, the predictions made by our model are better than

ModulatedGCN and match more closely the ground truth, indicating the effectiveness of RS-Net

approach in tackling the 2D-to-3D human pose estimation problem. Notice that ModulatedGCN

fails to properly predict the hand poses when there are occlusions. In comparison, our model is

able to reliably predict the hand poses.

2.4.3 Ablation study

In order to verify the impact of the various components on the effectiveness of the proposed RS-

Net model, we conduct ablation experiments on the Human3.6M dataset under Protocol #1 using

MPJPE as evaluation metric.

Effect of Skip Connection. We start by investigating the impact of the initial skip connection

on model performance. Results reported in Table 2.4 show that skip connection helps improve the

performance of our model, yielding relative error reductions of .58% and .74% in terms of MPJPE

and PA-MPJPE, respectively. While these improvements may not sound significant, they, however,

add up because the evaluation metrics are measured in millimeters.
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Figure 2.6: Qualitative comparison between our model and ModulatedGCN on the Human 3.6M

dataset for different actions. The green circle indicates the locations where our model yields better

results.

Table 2.4: Effectiveness of initial skip connection (ISC). Boldface numbers indicate the best per-

formance.

Method Filters Param. MPJPE(↓) PA-MPJPE(↓)

w/o ISC 64 0.7M 51.7 40.4

w/ ISC 48 0.7M 51.4 40.1

Effect of Batch/Filter Size. We also investigate the effect of using different batch and filter

sizes on the performance of our model. We report the results in Figure 2.7, which shows that the

best performance is achieved using a batch size of 128. Similarly, filter sizes of 96 and 64 yield

the best performance in terms of MPJPE and PA-MPJPE, respectively.
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Figure 2.7: Performance of our proposed RS-Net model on the Human3.6M dataset using various

batch and filter sizes.

Effect of Pose Refinement. Following [4], we use a pose refinement network, which is com-

prised of two fully connected layers. Pose refinement helps improve the estimation accuracy of
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3D joint locations. Through experimentation, we find that using a batch size of 512 with pose

refinement yields improvements around .52 mm in MPJPE and .32 mm in PA-MPJPE compared

to a batch size of 128. Figure 2.8 shows the performance of our model with and without pose

refinement under Protocol #1 (top) and Protocol #2 (bottom). As can be seen, lower errors are ob-

tained when integrating pose refinement into our model, particularly under Protocol #1 for various

human actions. In the case of the Sitting Down action, for example, pose refinement yields an error

reduction 5.32% in terms of MPJPE.

Effect of Residual Block Design. In Table 2.5, we report the comparison results between two

residual block designs: the first design employs blocks consisting of convolutional layers followed

by batch normalization (BatchNorm) and a ReLU activation function, while the second design

uses blocks comprised of convolutional layers followed by layer normalization (LayerNorm) and a

GELU activation function, which is a smoother version of ReLU and is commonly used in Trans-

formers based approaches. As can be seen, using the ConvNext architectural block design, we

obtain relative performance gains of 1.67% and 1.28% in terms of MPJPE and PA-MPJPE, respec-

tively.

Table 2.5: Effect of residual block design of the performance of our model. We use filters of size

96. Lower values in boldface indicate the best performance.

Method MPJPE(↓) PA-MPJPE(↓)

Ours w/ BatchNorm and ReLU 47.8 39.1

Ours w/ LayerNorm and GELU 47.0 38.6

We also compare our model to ModulatedGCN [1], Weight Unsharing [25], SemGCN [2], and

High-order GCN [3] using ground truth keypoints, and we report the results in Table 2.6. As can

be seen, our model consistently performs better than these baselines under both Protocols #1 and

#2. Under Protocol #1, our RS-Net model outperforms ModulatedGCN, Weight Unsharing, High-

order GCN and SemGCN by .15 mm, .55 mm, 2.24 mm and 3.50 mm, which correspond to relative

error reductions of .40%, 1.45%, 5.67%, and 8.58%, respectively. Under Protocol #2, our RS-Net

model performs better than ModulatedGCN, Weight Unsharing, High-order GCN, and SemGCN

by .66 mm, 1.02 mm, 2 mm and 2.39 mm, which translate into relative improvements of 2.22%,

3.39%, 6.44% and 7.60%, respectively.

In order to gain further insight into the importance of pose refinement, we train our model with

pose refinement on the Human3.6M dataset using 2D poses from three different 2D pose detectors,

including cascaded pyramid network (CPN) [11], Detectron [65] and high-resolution network (HR-
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Figure 2.8: Performance of our model with and without pose refinement using MPJPE (top) and

PA-MPJPE (bottom).

Net) [12]. As shown in Figure 2.9, the best performance is achieved using the HR-Net detector in

terms of both MPJPE and PA-MPJPE.
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Table 2.6: Performance comparison of our model and other GCN-based methods without pose

refinement using ground truth keypoints. Boldface numbers indicate the best performance.

Method Filters Param. MPJPE(↓) PA-MPJPE(↓)

SemGCN [2] 128 0.43M 40.78 31.46

High-order GCN [3] 96 1.20M 39.52 31.07

Weight Unsharing [25] 128 4.22M 37.83 30.09

ModulatedGCN [1] 256 1.10M 37.43 29.73

Ours 64 1.77M 37.28 29.07
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Figure 2.9: Performance of our model with pose refinement using different 2D detectors.
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Spatio-Temporal MLP-Graph Network for 3D

Human Pose Estimation

In this chapter, we introduce a spatio-temporal network architecture composed of a joints-mixing

multi-layer perceptron block that facilitates communication among different joints and a graph

weighted Jacobi network block that enables communication among various feature channels. The

major novelty of our approach lies in a new weighted Jacobi feature propagation rule obtained via

graph filtering via implicit fairing. We leverage temporal information from the 2D pose sequences

and show that temporal correlations can be modeled effectively in a straightforward manner with a

minimal increase in computational cost, even for longer pose sequences. We also integrate weight

modulation into the model to enable untangling of the feature transformations of distinct nodes.

Moreover, we employ adjacency modulation in an effort to learn meaningful correlations beyond

defined linkages between body joints by altering the graph topology through a learnable modula-

tion matrix. Extensive experiments on two benchmark datasets demonstrate the effectiveness of

our model, outperforming recent state-of-the-art methods for 3D human pose estimation. In addi-

tion, we perform a runtime analysis and conduct a comprehensive ablation study to show the effect

of the key components of our model.

3.1 Introduction

3D human pose estimation is a fundamental task in computer vision, with the aim of predicting the

3D pose of a human body from monocular images or videos [13]. It is a challenging problem due
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in large part to the complex and articulated nature of the human body, as well as the difficulty of

estimating 3D information from 2D images [9,66], which are often adversely affected by occlusion

and lighting. Its real-world applications range from activity recognition and augmented reality

to gaming, robotics, and human-computer interaction. It is also used in physical therapy and

rehabilitation to help track patients progress and monitor their movements during exercises [67].

Existing methods for 3D human pose estimation can broadly categorized into two main ap-

proaches: single-stage and two-stage. Single-stage approaches involve the direct prediction of

3D keypoints from images using deep neural networks, while two-stage approaches, also known

as lifting methods, consist of two separate stages. The initial stage of the two-stage approaches

involves using a pre-trained 2D pose detector, such as the cascaded pyramid network [11] or the

high-resolution network [12], to extract 2D keypoints from the input image. In the second stage, a

regression model is used to predict 3D human poses from these 2D keypoints. The superiority of

two-stage methods over single-stage approaches can be attributed, in part, to the advancements in

2D pose detection, particularly the high-resolution representation learning networks that provide

meaningful and spatially accurate representations [12].

Most of the existing methods for 3D human pose estimation rely solely on spatial correlations,

which can make it challenging to infer a reliable 3D pose in cases of occlusion or inherent ambi-

guity. Cai et al. [4] propose local-to-global network architecture which forms a spatial-temporal

graph based on the 2D pose sequence and human skeleton topology to predict 3D pose. Liu et

al. [39] propose graph attention blocks that take the advantage of dilated temporal convolution

to predict 3D pose from consecutive 2D pose sequences. Despite their promising results, these

methods have their limitations. First, they use the same transformation matrix for all nodes in

graph convolution, limiting information exchange, especially for multi-layer networks. To address

this limitation, Liu et al. [25] introduce various weight unsharing mechanisms. One drawback of

these mechanisms is that they result in a larger model size that scales with the number of body

joints. Zou et al. [1] propose weight and adjacency modulation to tackle this issue. Second, GCNs

suffer from oversmoothing problem [68], where the model may struggle to accurately distinguish

between nodes and learn meaningful representations due to repeated graph convolutions as the

network depth increases. Chen et al. [23] solve this problem with initial residual connection and

identity mapping. Third, to leverage temporal correlations, they require significant computational

resources to process a larger number of input sequences such as 243 frames. To overcome this

limitation, Li et al. [69] propose a skeleton embedding module that can effectively process a larger

number of input sequences without significantly increasing the model size. Furthermore, GCNs

may not be able to capture more global contextual information or long-range dependencies be-
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tween nodes in the graph, which can limit their ability to learn more complex relationships and

patterns in the data.

Another recent line of research employs Transformer architectures, which utilize a multi-

head self-attention mechanism to capture both spatial-temporal correlations from sequences of

2D poses [30]. While these architectures can effectively capture long-range dependencies be-

tween body joints in spatio-temporal domains, the complexity of the self-attention block increases

quadratically with the number of input sequences, which can make training and inference more

computationally expensive. Taking this into account, Tolstikhin et al. [34] propose MLP-Mixer,

which has shown competitive performance compared to more complex architectures such as Trans-

former networks. Compared to multi-layer perceptrons (MLPs), which use fully-connected layers

to model interactions between features, the MLP-Mixer model has been shown to be effective at

modeling long-range dependencies in the input data. This model is comprised of two main com-

ponents: a token-mixing layer and a channel-mixing layer. The former enables effective commu-

nication among distinct spatial locations, facilitating the extraction of global features. The latter

enables communication between different feature channels, thereby facilitating the extraction of

local features. This combination of token- and channel-mixing layers is intended to improve the

network ability to learn complex patterns in the input data. However, such ML-based models do

not adequately capture the local information due largely to the lack of prior knowledge about the

human skeleton topology.

In this chapter, we address the aforementioned challenges by proposing a novel spatio-temporal

graph neural network architecture, dubbed MLP-GraphWJ mixer, which leverages spatio-temporal

correlations and also makes use of weight and adjacency modulation. The proposed framework

employs a weighted Jacobi (WJ) feature propagation rule obtained via graph filtering with implicit

fairing. One of the key benefits of our model is that it presents a simple and competitive alternative

to existing approaches that do not use self-attention mechanisms, while outperforming previous

work and retaining a small model size, as illustrated in Figure 3.1. Our model accepts a sequence

of 2D joints shaped as joints × channels as input and preserves this dimensionality throughout

the network. As shown in Figure 3.2, the MLP-GraphWJ mixer architecture consists of a series

of layers, each of which has two components: a joints-mixing MLP layer and a GraphWJ mixing

layer. The joints-mixing MLP layer facilitates communication among different joints, while the

GraphWJ mixing layer enables communication among various feature channels, with the former

responsible for capturing global information and the latter for capturing local information between

adjacent joints across different channels. Moreover, our approach effectively merges temporal

information within the feature channels, while incurring minimal computational cost in terms of
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sequence length. In summary, this work makes the following key contributions:
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Figure 3.1: Performance and model size comparison between our proposed model and state-of-

the-art approaches for 3D human pose estimation, including MGCN [1], SemGCN [2], High-Order

GCN [3], ST-GCN [4], and Weight Unsharing [5]. Lower Mean Per Joint Position Error (MPJPE)

values indicate better performance. Evaluation conducted on a single frame of Human3.6M [6]

dataset with ground truth 2D joints as input. (§) - uses a pose refinement network.

• We propose a graph weighted Jacobi (GraphWJ) network, which employs a weighted Jacobi

(WJ) feature propagation rule obtained via graph filtering with implicit fairing, and also

leverages weight and adjacency modulation to improve accuracy and model generalization

capability.

• We design a novel spatio-temporal network architecture, which we call MLP-GraphWJ

mixer, for 3D human pose estimation by incorporating multi-layer perceptrons (MLPs) to

capture global information and a graph weighted Jacobi network to capture local informa-

tion between adjacent joints across different channels.

• We demonstrate through experiments and ablation studies that our proposed model outper-

forms strong baselines, attaining state-of-the-art performance in 3D human pose estimation,

while retaining a small model size.

The outline of this chapter is as follows. In Section 2, we review related work on 3D pose esti-

mation. In Section 3, we formulate the learning task at hand and then describe the main building
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Figure 3.2: Schematic diagram of the proposed network architecture for 3D human pose esti-

mation. The architecture is comprised of three main components: skeleton embedding, MLP-

GraphWJ mixer layer, and a regression head. The MLP-GraphWJ mixer layer consists of a joints

mixing MLP layer and a GraphWJ mixing layer. The architecture also includes additional com-

ponents such as skip connections, dropout, layer normalization, and batch normalization. The 2D

poses (16 or 17 joints) are fed as input to our model, which then produces 3D pose predictions as

output.

blocks of the proposed spatio-temporal graph network architecture for 3D human pose estimation.

In Section 4, we present empirical results comparing our model with state-of-the-art approaches on

two standard benchmarks. Finally, we conclude in Section 5 by summarizing our key contributions

and pointing out future work directions.
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3.2 Proposed Method

In this section, we start by defining the learning task. Then, we present the main components of

the proposed MLP-GraphWJ mixer model for 3D human pose estimation, including a weighted

Jacobi (WJ) feature propagation rule obtained via graph filtering with implicit fairing.

3.2.1 Preliminaries and Problem Formulation

Basic Notions. Let G = (V , E ,X) be an attributed graph, where V = {1, . . . , N} is a set of

nodes that correspond to body joints, E is the set of edges representing connections between two

neighboring body joints, and X = (x1, ...,xN)
⊺

is an N×F feature matrix of node attributes whose

i-th row xi is an F -dimensional feature vector associated to node i. These attributes describe the

nodes characteristics or properties such as node embeddings or any other relevant information. We

denote by A an N × N adjacency matrix whose (i, j)-th entry aij is equal to 1 if there the edge

between neighboring nodes i and j, and 0 otherwise. We also denote by Â = D−1/2AD−1/2 the

normalized adjacency matrix, where D = diag(A1) is the diagonal degree matrix and 1 is an

N -dimensional vector of all ones

Problem Statement. Let D = {(xi,yi)}
N
i=1 be a training set consisting of 2D joint positions

xi ∈ X ⊂ R
2 and their associated ground-truth 3D joint positions yi ∈ Y ⊂ R

3. The aim of 3D

human pose estimation is to learn the parameters w of a regression model f : X → Y by finding

a minimizer of the following loss function

w∗ = argmin
w

1

N

N∑

i=1

l(f(xi),yi), (3.1)

where l(f(xi),yi) is an empirical loss function defined by the learning task. Since human pose

estimation is a regression task, we define l(f(xi),yi) as a weighted sum (convex combination) of

the ℓ2 and ℓ1 loss functions

l(f(xi),yi) = (1− λ)
N∑

i=1

∥yi − f(xi)∥
2
2 + λ

N∑

i=1

∥yi − f(xi)∥1, (3.2)

where λ ∈ [0, 1] is a weighting factor controlling the contribution of each term. It is noteworthy that

the proposed loss function draws inspiration from the regularizer employed in elastic net regression

method, which is a blend of lasso and ridge regularization. Elastic net regression combines the ℓ1

regularization of Lasso regression with the ℓ2 regularization of Ridge regression, and is designed

to address some of the limitations of Lasso and Ridge regression by allowing for both variable

selection and shrinkage of coefficients.
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3.2.2 Graph Filtering with Implicit Fairing

Graph filtering refers to the process of applying a filtering operation to signals defined on a graph.

The aim of this filtering operation is to smooth or enhance the signal while preserving the under-

lying structure of the graph.

A popular graph filtering operation is graph filtering with implicit fairing, which is a technique

used in computer graphics to smooth surfaces while preserving important features such as edges

and boundaries [54]. In the context of graph filtering, the implicit fairing approach is applied by

defining a Laplacian operator on the graph, which captures the connectivity and structure of the

graph. More specifically, graph filtering with implicit fairing can be performed by solving the

following sparse linear system:

(I+ sL)H = X, (3.3)

where X is the feature matrix of node attributes, L = I − Â is the normalized Laplacian matrix,

H is the filtered graph signal, and s is a positive scalar. This sparse linear system can be efficiently

solved using iterative methods [46], such as the weighted Jacobi method, which is a variant of

the Jacobi method that adds a weighting parameter to the iterative equation in order to improve the

convergence speed of the method. More specifically, the weighted Jacobi iteration uses a parameter

ω to compute the k-th iteration as follows

H(k+1) = ω(diag(I+ sL))−1X

+
(
I− ω(diag(I+ sL))−1(I+ sL)

)
H(k)

= αωX+
(
I− αωI− (1− α)ω(I− Â)

)
H(k)

= H(k) − ωH(k) + (1− α)ωÂH(k) + αωX

(3.4)

where α = 1/(1 + s).

The weighting parameter ω can be chosen to optimize the convergence speed of the method.

In general, larger values of ω will lead to faster convergence, but may also increase the risk of

numerical instability or oscillation in the iteration process.

3.2.3 Graph Weighted Jacobi Network

Drawing inspiration from the weighted Jacobi iterative solution for graph filtering with implicit

fairing, we define a weighted Jacobi (WJ) layer-wise propagation rule as

H(ℓ+1) = σ(WJ
(
H(ℓ))

)
, ℓ = 0, . . . , L− 1 (3.5)

where σ(·) is a non-linear activation function such as the Gaussian Error Linear Unit (GELU) [70]

and L is the number of network layers. The weighted Jacobi operation on the input feature matrix
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H(ℓ) of the ℓ-th layer is given by

WJ(H(ℓ)) = H(ℓ)W1 −Ω⊙ (H(ℓ)W2)

+ (1− α)Ω⊙ (ÂH(ℓ)W2)

+ αΩ⊙ (XW3),

(3.6)

where ⊙ denotes element-wise matrix multiplication, W1, W2, W3 are learnable weight matrices,

and Ω is a learnable weight modulation matrix.

Adjacency Modulation. The graph structure, derived from the topology of the human skeleton,

is modeled as an undirected graph. However, this graph structure has a limitation in that it cannot

capture relationships between distant nodes. To tackle this issue, we use adjacency modulation [1]

to modulate the normalized adjacency matrix Â as follows

Ǎ = Â+Q, (3.7)

where Q is an N ×N learnable adjacency modulation matrix. This adjacency modulation enables

us to capture some meaningful relations apart from the predetermined connection between distant

nodes such as the hip and ankle of the human skeleton. As we are dealing with undirected graphs,

such as the human skeleton graph, the adjacency modulation matrix Q needs to be symmetrized. To

this end, we take the sum of the adjacency modulation matrix and its transpose, and subsequently

divide the result by 2.

3.2.4 MLP-Graph Weighted Jacobi Mixer Model

Model Architecture. Inspired by the MLP-Mixer [34] and its recent variants for 3D human pose

estimation and human motion forecasting tasks [69, 71], the architecture of the proposed MLP-

GraphWJ mixer consists of three main stages: skeleton embedding, MLP-GraphWJ mixer layer,

and regression head. The overall architecture of the proposed model is illustrated in Figure 3.2,

which shows that the joints-mixing layer aggregates information across different positions within

each channel using MLPs, while the GraphWJ mixing layer is responsible for aggregating informa-

tion across different channels of the input using the weighted Jacobi (WJ) feature propagation rule.

The output of the final GraphWJ mixing layer is then passed on to the regression head network.

Each joints-mixing block consists of two fully connected layers, followed by a layer normalization

operation and a GELU activation function. The first fully connected layer takes the entire sequence

of input joints and produces an intermediate representation. The second fully connected layer then

takes this intermediate representation and produces the final output for the entire sequence. The
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layer normalization operation is used to improve the stability and convergence of the training pro-

cess, by normalizing the output of the second fully connected layer across the sequence dimension.

Also, each GraphWJ mixing block consists of two WJ layers, followed by batch normalization and

a GELU activation function.

1) Skeleton Embedding: Following [69], our skeleton embedding module takes the detected 2D

joints as input and treats each joint as a distinct token. The next step involves learning more

complex representations of each joint using a fully-connected layer, which captures the input data

in a more concise and informative manner. To incorporate temporal information, the architecture

adopts a video representation approach inspired by [69]. For a 2D pose sequence S ∈ R
T×N×2,

where T represents the number of frames and N represents the number of joints, the features of

each joint for all frames are merged into S̃ ∈ R
N×2T and passed through a fully-connected layer.

Hence, the skeleton embedding layer can be defined as follows:

X = S̃W4 ∈ R
N×F , (3.8)

where W4 ∈ R
2T×F is a learnable weight matrix and F is the embedding dimension.

2) MLP-GraphWJ Mixer Layer: MLP-based models are not well-suited for handling graph-structured

data, as they simply connect all nodes without considering the graph structure. To address this

issue, we propose the MLP-GraphWJ mixer layer, which takes the advantages of both MLPs

and graph neural networks in a single layer. Compared to the MLP-Mixer, our proposed MLP-

GraphWJ mixer layer leverages graph neural networks to extract features of different channels,

thereby helping preserve domain-specific knowledge pertaining to human body configurations.

More specifically, our MLP-GraphWJ mixer layer consists of two sub-layers: a joints-mixing MLP

and a GraphWJ mixing layer. The joints-mixing MLP block allows communication between dif-

ferent joints, while the GraphWJ mixing layer allows communication between different channels.

The joints-mixing MLP acts on the columns of the input feature matrix H(ℓ) ∈ R
N×F (i.e., applied

to the transpose of H(ℓ)). On the other hand, the GraphWJ mixing layer acts on the rows of its

input feature. The joints-mixing MLP block contains two fully-connected layers. We also add a

skip connection between the input and output. Hence, the output of the joints-mixing MLP is an

N × F matrix given by

U(ℓ+1) = H(ℓ) +
(
W6σ

(
W5

(
LN
(
H(ℓ)

)⊺)))⊺
, (3.9)

where LN(·) is layer normalization [72], W5 ∈ R
N×F and W6 ∈ R

F×N are learnable weight

matrices.
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On the other hand, our GraphWJ mixing layer consists of two weighed Jacobi (WJ) layers. The

output U(ℓ+1) of the joints-mixing MLP layer is fed into the GraphWJ mixing layer, which acts on

the rows of its input matrix. Hence, the outputs of the first and second WJ layers are given by

P(ℓ+1) = σ
(

BN
(

WJ
(
U(ℓ+1)

)))
∈ R

N×R (3.10)

and

Q(ℓ+1) = σ
(

BN
(

WJ
(
P(ℓ+1)

)))
∈ R

N×F , (3.11)

where BN(·) is a batch normalization layer. Batch normalization is similar to layer normalization,

but instead of normalizing across the features of each input, it normalizes across a batch of inputs.

Finally, the output Z of the last MLP-GraphWJ mixing layer is obtained by adding a skip con-

nection as follows:

Z = U(L) +Q(L) ∈ R
N×F (3.12)

3) Regression Head: The output Z of the last MLP-GraphWJ mixing layer is passed on to the

regression head network which consists of a layer normalization followed by a fully-connected

layer, yielding a prediction Ŷ = (ŷ1, . . . , ŷN)
⊺ ∈ R

N×3 of estimated 3D joint positions.

Model Training. To train the MLP-GraphWJ mixer model for 3D human pose estimation, the

weight matrices for various layers are optimized by minimizing the following loss function

L =
1

N

[
(1− λ)

N∑

i=1

∥yi − ŷi∥
2
2 + λ

N∑

i=1

∥yi − ŷi∥1

]
. (3.13)

The loss function, computed over a training set comprised of N joints, is a weighted combination

of the mean square and mean absolute errors between the estimated 3D joint positions ŷi and the

ground-truth positions yi.

3.3 Experiments

3.3.1 Experimental Setup

Datasets. Our proposed approach is evaluated on two popular and extensively utilized datasets

in the domain of 3D human pose estimation: Human 3.6M and MPI-INF-3DHP. The Human 3.6M

dataset, which is regarded as the benchmark for evaluating 3D human pose estimation [6], contains

3.6 million 3D human poses for 5 female and 6 male actors, along with their corresponding images

captured by four cameras organized into 15 scenarios, such as greeting, posing, walking like a dog,

waiting, etc. During training, we use 5 subjects (S1, S5, S6, S7, S8), and during testing, we use 2

36



subjects (S9, S11) from the dataset. Prior to feeding the data into our model, we normalize both

the 2D and 3D poses according to the standard normalization method used in [3, 13].

The MPI-INF-3DHP dataset [57] contains 1.3 million frames and features 8 actors performing

8 actions, providing a wider range of poses. This dataset includes a test set with 6 subjects in both

indoor and complex outdoor scenes, enabling the evaluation of the model’s generalization ability

to unseen environments. We use the test set from this dataset to evaluate the performance of our

proposed model.

Evaluation Protocols and Metrics. Our model’s performance is evaluated using various metrics

compared to strong baselines in the 3D human pose estimation task. For the Human 3.6M dataset,

we adopt two commonly used metrics, mean per joint position error (MPJPE) and Procrustes-

aligned mean per joint position error (PA-MPJPE), which are measured in millimeters. A lower

value of these metrics indicates better performance. Additionally, for the MPI-INF-3DHP dataset,

we evaluate our model using two standard metrics: Percentage of Correct Keypoints (PCK) within

150mm and Area Under the Curve (AUC), consistent with previous studies [1, 14, 17, 27, 59, 60].

Improved model performance is indicated by higher values of PCK and AUC.

Baseline Methods. We evaluate the performance of our MLP-GraphWJ mixer model against

various state-of-art methods, including ST-GCN [4], Semantic GCN [2], High-Order GCN [3],

Weight Unsharing [25], and MGCN [1].

Implementation Details. Our approach utilizes the 2D-to-3D lifting technique following [73,

74], in which we adopt the high-resolution network (HR-Net) [12] as our 2D detector and train/test

our model with the detector’s output. Our model is implemented in PyTorch, and we conduct all

experiments on a single NVIDIA GeForce RTX 3070 GPU with 8G memory. The task of predict-

ing 3D poses from 2D detections is more complex compared to doing the same from 2D ground

truth, due to the added uncertainty that needs to be managed in the 2D space. Therefore, follow-

ing previous work [1, 75], we use different configurations for them. To update the parameters, we

employ AMSGrad, a variant of the ADAM optimizer, which uses the maximum of past squared

gradients instead of the exponential average. Our model is trained for 50 epochs using this op-

timizer. For 2D pose detections, we set the batch size to 256, the number of layers L = 3, the

skeleton embedding layer hidden dimension and the MLP hidden dimension F = 384, and the

GraphWJ mixing layer hidden dimension R = 768 . We also set the initial learning rate to 0.005

and the decay factor to 0.90 per 4 epochs. For the 2D ground truth, we set the batch size to 256,

the number of layers L = 3, the skeleton embedding layer hidden dimension and the MLP hidden

dimension F = 128, and the GraphWJ mixing layer hidden dimension R = 256 and the initial

learning rate is set to 0.001 with a decay factor of 0.95 applied after each epoch and 0.5 after every
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5 epochs. We set the weighting factor λ to 0.1, α to 0.1 and the total number of input frames to

243 for both 2D detected poses and ground truth poses. Following [1, 4], we incorporate a pose

refinement network to improve the performance. In the ablation study, the pose refinement net-

work is excluded. In addition, we apply horizontal flip augmentation both in training and testing

following [1, 19, 30]. Furthermore, to prevent overfitting we add dropout with a factor of 0.2 after

each graph weighted Jacobi layer.

3.3.2 Results and Analysis

Quantitative Results. In Table 3.1, we report the performance comparison results of our MLP-

GraphWJ mixer model and various state-of-art methods for 3D human pose estimation. Based on

the results, our proposed model demonstrates superior performance with detected 2D pose as an

input across most actions and overall, as evidenced by both Protocol #1 and Protocol #2. These

findings suggest that our MLP-GraphWJ mixer is highly competitive. This is largely attributed to

the fact that MLP-GraphWJ mixer can better exploit joint connections through the proposed graph

propagation rule and also learns not only different modulation vectors for different body joints, but

also additional connections between the joints. Under Protocol #1, Table 3.1 shows that using a

single frame MLP-GraphWJ mixer performs better than MGCN [1] on 14 out of 15 actions by a

relative improvement of 10.73% on average. Of significance is the fact that MGCN [1] employs

a non-local layer, unlike our method. Despite this difference, our model demonstrates superior

performance compared to MGCN [1], highlighting the efficacy of our approach. Our method also

performs better than Skeletal GCN [41] which is the recent state-of-art method based on temporal

GCN, yielding an error reduction of approximately 3.92% on average.

Table 3.2 shows the results of our MLP-GraphWJ mixer model compared to various state-of-

the-art methods for 3D human pose estimation when using ground truth keypoints as input. The

findings indicate that our proposed model outperforms Graphmdn [76] on 12 out of 15 actions

with an average error reduction of approximately 2.42% under Protocol #1. Moreover, our model

shows better performance compared to MGCN [1], High-Order GCN [3], SemGCN [2], and weight

unsharing [25] on average, while having a lower number of learnable parameters and inference

time. These results highlight the effectiveness of our proposed method.

In Table 3.3, we report the quantitative comparison results of MLP-GraphWJ mixer using a

single frame and several baselines on the MPI-INF-3DHP dataset. As can be seen, our method

achieves significant improvements over the comparative methods. In particular, our model outper-

forms the best baseline with relative improvements of .81% and 1.30% in terms of the PCK and

AUC metrics, respectively. Although we train the model using only the Human3.6M, our method
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Table 3.1: Performance comparison of our model and baseline methods on Human3.6M under

protocol #1& protocol #2 using the detected 2D pose as input. The average errors are reported in

the last column. Boldface numbers indicate the best performance, whereas the underlined numbers

indicate the second-best performance. (Υ) - uses temporal information.

Action

Protocol #1 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Zhao et al. [2] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6

Quan et al. [27] 47.0 53.7 50.9 52.4 57.8 71.3 50.2 49.1 63.5 76.3 54.1 51.6 56.5 41.7 45.3 54.8

Liu et al. [25] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4

Lin et al. [77] - - - - - - - - - - - - - - - 54.0

Zhao et al. [78] 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8

Lee et al. [75] 46.8 51.4 46.7 51.4 52.5 59.7 50.4 48.1 58.0 67.7 51.5 48.6 54.9 40.5 42.2 51.7

Zhang et al. [79] 45.0 50.9 49.0 49.8 52.2 60.9 49.1 46.8 61.2 70.2 51.8 48.6 54.6 39.6 41.2 51.6

Gong et al. [73] - - - - - - - - - - - - - - - 50.2

Zou et al. [1] 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4

Cai et al. [4] (Υ) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8

Li et al. [69] 43.7 49.3 45.5 47.8 50.5 56.0 46.3 44.1 55.9 59.0 48.4 45.7 51.2 37.1 39.1 48.0

Pavllo et al. [19] (Υ) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Oikarinen et al. [76] 40.0 43.2 41.0 43.4 50.0 53.6 40.1 41.4 52.6 67.3 48.1 44.2 49.0 39.5 40.2 46.2

Zeng et al. [41] (Υ) - - - - - - - - - - - - - - - 45.7

Zeng et al. [40] (Υ) 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8

Liu et al. [39] (Υ) 43.3 46.1 40.9 44.6 46.6 54.0 44.1 42.9 55.3 57.9 45.8 43.4 47.3 30.4 30.3 44.9

Zheng et al. [80] (Υ) 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3

Ours (Υ) 38.9 44.5 41.4 43.7 45.0 48.7 42.8 39.5 54.9 67.1 42.5 43.1 44.0 33.2 33.0 44.1

Protocol #2 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Lee et al. [81] (Υ) 34.9 35.2 43.2 42.6 46.2 55.0 37.6 38.8 50.9 67.3 48.9 35.2 31.0 50.7 34.6 43.4

Quan et al. [27] 36.9 42.1 40.3 42.1 43.7 52.7 37.9 37.7 51.5 60.3 43.9 39.4 45.4 31.9 37.8 42.9

Liu et al. [25] 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2

Lee et al. [75] 35.7 39.6 37.3 41.4 40.0 44.9 37.6 36.1 46.5 54.1 40.9 36.4 42.8 31.7 34.7 40.3

Zhang et al. [79] 35.3 39.3 38.4 40.8 41.4 45.7 36.9 35.1 48.9 55.2 41.2 36.3 42.6 30.9 33.7 40.1

Zou et al. [1] 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1

Gong et al. [73] - - - - - - - - - - - - - - - 39.1

Cai et al. [4] (Υ) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0

Lin et al. [77] - - - - - - - - - - - - - - - 36.7

Pavllo et al. [19] (Υ) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

Ours (Υ) 33.0 36.8 34.3 37.5 36.4 40.4 34.1 31.9 45.4 57.0 35.6 34.8 36.2 26.5 26.9 36.4

outperforms others on MPI-INF-3DHP, indicating that our approach has strong generalization ca-

pabilities to unseen datasets.

Qualitative Results. Figure 3.3 depicts some visualization results of the proposed MLP-

GraphWJ mixer model on the Human3.6M dataset. As depicted, the 3D predictions on various

actions made by our model are superior to those of MGCN [1] and more closely match the ground

truth. This implies that the MLP-GraphWJ mixer approach is more effective. It is worth noting

that MGCN [1] struggles to accurately predict hand poses when there are overlapping or occlu-

39



Table 3.2: Performance comparison of our model and baseline methods on Human3.6M under

protocol #1 using the ground truth 2D pose as input. Boldface numbers indicate the best perfor-

mance, whereas the underlined numbers indicate the second-best performance. (Υ) - uses temporal

information.

Action

Protocol #1 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Martinez et al. [13] 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Pavlakos et al. [17] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9

Hossain et al. [38] (Υ) 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39. 44.1

Cai et al. [4] (Υ) 32.9 38.7 32.9 37.0 37.3 44.8 38.7 36.1 41.0 45.6 36.8 37.7 37.7 29.5 31.6 37.2

Liu et al. [25] 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8

Pavllo et al. [19] (Υ) 35.2 40.2 32.7 35.7 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8

Zou et al. [1] - - - - - - - - - - - - - - - 37.4

Oikarinen et al. [76] 33.9 39.9 33.0 35.4 36.8 44.4 38.9 33.0 41.0 50.0 36.4 38.3 37.8 28.2 31.5 37.2

Lee et al. [75] 34.6 39.6 31.3 34.7 33.9 40.3 39.5 32.2 35.4 43.5 34.0 35.0 36.9 29.7 31.4 35.6

Zhang et al. [79] - - - - - - - - - - - - - - - 35.3

Zhao et al. [78] 32.0 38.0 30.0 34.4 34.7 43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2

Zhan et al. [82] (Υ) 31.2 35.7 31.4 33.6 35.0 37.5 37.2 30.9 42.5 41.3 34.6 36.5 32.0 27.7 28.9 34.4

Ours (Υ) 31.6 35.6 31.5 31.0 32.1 35.1 36.3 30.1 38.8 41.4 32.6 34.6 31.4 25.5 25.8 32.9

Table 3.3: Performance comparison of our model without pose refinement and baseline methods on

the MPI-INF-3DHP dataset using PCK and AUC as evaluation metrics. Higher values in boldface

indicate the best performance.

Method PCK(↑) AUC(↑)

Chen et al. [60] 67.9 -

Yang et al. [14] 69.0 32.0

Pavlakos et al. [17] 71.9 35.3

Habibie et al. [59] 70.4 36.0

Quan et al. [27] 72.8 36.5

Zeng et al. [40] 77.6 43.8

Zhang et al. [79] 81.1 49.9

Zeng et al. [41] 82.1 46.2

Zou et al. [1] 86.1 53.7

Ours 86.8 54.4

sions, whereas our model is able to predict them with reliability. Moreover, we also show the

performance of our method in the in-the-wild images in Figure 3.4.
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Input MGCN Ours Ground Truth

Figure 3.3: Qualitative comparison between our model and MGCN on the Human 3.6M dataset

for different actions. The red circle indicates the locations where our model yields better results.

3.3.3 Ablation study

In order to verify the impact of the various components on the effectiveness of the proposed MLP-

GraphWJ mixer model, we conduct ablation experiments on the Human3.6M dataset under Proto-
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Input Prediction Ours

Figure 3.4: Qualitative results of our method on in-the-wild images.

col #1 using MPJPE as the evaluation metric.

Hyper-Parameter Sensitivity Analysis. We start by investigating the impact of the different

hyper-parameters on model performance. Results are reported in Table 3.4. It can be observed that

the expanding ratio of 2 (F = 384, R = 768) performs better than the commonly used ratio of 4 in

vision Transformers and MLPs. The value of the skeleton embedding hidden dimension F affects

the model ability to capture patterns. After increasing F from 128 to 384 and R from 256 to 768,
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the MPJPE decreases from 47.5 mm to 45.3 mm. However, the number of trainable parameters

increases from 0.65M to 5.48M. The best results are obtained using F = 384, and R = 768. Using

three MLP-GraphWJ mixer layers yields the best performance, while increasing or decreasing the

number of layers negatively impacts performance.

Table 3.4: Ablation study on various configurations of our approach without pose refinement on

Human3.6M under protocol#1 using detected 2D pose as input. L is the number of MLP-GraphWJ

mixer layers, F is the hidden dimension of skeleton embedding and joints mixing MLP and R is

the hidden dimension of GraphWJ mixing layer. The number of input frames is set to T = 81.

Boldface numbers indicate the best performance.

L F R Params. (M) MPJPE (↓)

3 128 256 0.65 47.5

3 256 256 1.28 47.7

3 256 512 2.47 47.9

3 256 1024 4.86 47.3

3 384 384 2.80 46.8

3 384 768 5.48 45.3

3 384 1536 10.83 46.1

1 384 768 1.87 48.3

2 384 384 3.68 46.6

4 384 768 7.29 46.6

Effect of Model Components. We also investigate the effectiveness of each component in our

network architecture. The results are presented in Table 3.5, with the first row representing the

performance of the baseline model (MLP-Mixer [34]) that does not include any GCN components.

The remaining rows in the table display the results of replacing various components of the baseline

model. We fix the number of parameters to be about 0.95M by merely changing the number of

hidden dimensions of each model. Our proposed MLP-GraphWJ mixer clearly outperforms the

baseline model by a margin of 1.9mm, demonstrating that the combined use of these components

leads to more accurate 3D pose estimation.

In order to bypass the influence of 2D pose detectors and gain further insight into the importance

of our network architecture and graph propagation rule, we train our model on the Human3.6M

dataset using 2D ground truth poses by maintaining the expanding ratio of 2 (F = 128, R = 256)

and we report the results in Table 3.6. Our method demonstrates superior performance compared

to recent state-of-art methods based on a single frame, despite utilizing fewer trainable parameters.

Runtime Analysis. We report the model performance, the total number of parameters, and es-

timated floating-point operations (FLOPs) per frame with various input sequence lengths (T ) in
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Table 3.5: Effectiveness of each component used in our method without pose refinement on Hu-

man3.6M under protocol#1 using detected 2D poses as input. Boldface number indicates the best

performance.

Skeleton

Embed.

Joint-

Mixing

MLP

Channel-

Mixing

MLP

GraphWJ

Mixing

Layer

Vanilla

GCN

Weighted

Jacobi

MPJPE (↓)

✓ ✓ ✓ × × × 53.1

✓ ✓ × ✓ ✓ × 51.5

✓ ✓ × ✓ × ✓ 51.2

Table 3.6: Performance comparison of our model and baseline methods without pose refinement

using ground-truth keypoints. Boldface numbers indicate the best performance.

Method Filters Params

(M)
MPJPE

(↓)

PA-

MPJPE(↓)

Infer.

Time

SemGCN [2] 128 0.43 40.78 31.46 .012s

High-Order GCN [3] 96 1.20 39.52 31.07 .013s

Weight Unsharing [25] 128 4.22 37.83 30.09 .032s

MGCN [1] 256 1.10 37.43 29.73 .008s

Ours - 0.63 36.34 28.97 .005s

Table 3.7. Increasing the sequence length of our model leads to improved accuracy without a sig-

nificant increase in the total number of parameters. This is because the number of frames only im-

pacts the skeleton embedding layer, which does not require a large number of parameters. We also

compare our method with some recent state-of-art methods in Table 3.7. Our model demonstrates

a 2.40% reduction in MPJPE error and a 43.78% decrease in trainable parameters while using the

same number of frames when compared to transformer-based methods such as Poseformer [30],

highlighting the effectiveness of our approach.

Improvements on Hard Poses. Hard poses, which are characterized by high prediction errors,

are specific to the model being used. These poses often have certain inherent characteristics, such

as overlapping and self-occlusion. The way in which such cases are dealt with, however, may

vary across different models [2, 40, 41]. Our proposed method aims to address this challenge

by learning to capture the complex relationships between the joints via the joints mixing MLP

layer and GraphWJ mixing layer. Our method yields better performance on hard poses such as

Directions, Sitting Down, Photo, Purchase, etc. compared to the recent state-of-art methods [1,

2, 41] based on GCN, as shown in Table 1. In addition, we test our model on the top 5% hardest

poses following [40, 41]. As shown in Figure 3.5, our model performs better than others.
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Table 3.7: Comparison of our model and baselines in terms of total number of parameters, MPJPE,

FLOPs. The evaluation is performed without pose refinement on Human3.6M under protocol#1

using detected 2D poses as input. Boldface numbers indicate the best performance. (§) - uses a

pose refinement network.

Method Frames Params. FLOPs MPJPE(↓)

(T ) (M) (M)

Videopose [19] 27 8.56 17.09 48.8

ST-GCN (§) [4] 7 5.18 469.81 48.8

Poseformer [80] 9 9.58 150.0 49.9

Ray3D [80] 9 27.50 - 49.7

Ours 1 5.42 29.01 50.8

Ours 9 5.43 29.21 48.7
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Figure 3.5: Comparison of our model and baselines on the 5% hardest poses under Protocol #1.
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Conclusions and Future Work

In this thesis, novel deep neural network architectures for 3D human pose estimation have been

presented. To achieve this, a higher-order graph convolutional network was proposed, which draws

inspiration from the concept of iterative solution of the implicit fairing equation using regular ma-

trix splitting. The network takes 2D poses as input and uses a two-stage paradigm consisting of

an off-the-shelf 2D pose detector and a graph convolutional network to predict the 3D poses of the

human body. The proposed approach employs a residual connection-based aggregation scheme to

address the oversmoothing problem and multi-hop neighborhoods to capture long-range dependen-

cies between body joints. We also proposed a novel spatio-temporal network architecture, for 3D

human pose estimation by incorporating multi-layer perceptrons (MLPs) to capture global infor-

mation and a graph weighted Jacobi network to capture local information between adjacent joints

across different channels. To evaluate the efficacy of both proposed approaches for 3D human

pose estimation, quantitative and qualitative evaluations were performed on a large-scale dataset.

The average Euclidean distance between the predicted 3D joint positions and the ground truth was

used to assess the results after the alignment of the root joint. Additionally, the Procrustes-aligned

mean per joint position error was also evaluated. Finally, in Section 4.1, the concluding outcomes

of the associated research work in each of the previous chapters are discussed along with the con-

tributions made. Moreover, Section 4.2 addresses the limitations of the proposed approach, while

Section 4.3 provides suggestions for potential research directions related to this thesis.
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4.1 Contributions of the Thesis

4.1.1 Regular Splitting Graph Network for 3D Human Pose Estimation

In Chapter 2, we introduced an effective higher-order graph network with initial skip connection for

3D human pose estimation using regular matrix splitting in conjunction with weight and adjacency

modulation. The aim is to capture not only the long-range dependencies between body joints, but

also the different relations between neighboring joints and distant ones. In our proposed model

architecture, we designed a variant of the ConvNeXt residual block, comprised of convolutional

layers, followed by layer normalization and a GELU activation function. Experimental results

on two standard benchmark datasets demonstrate that our model can outperform qualitatively and

quantitatively several recent state-of-the-art methods for 3D human pose estimation.

4.1.2 Spatio-Temporal MLP-Graph Network for 3D Human Pose Estimation

In Chapter 3, we proposed a novel network architecture, named MLP-GraphWJ mixer, which is

comprised of an MLP-mixer layer and a GraphWJ mixer layer. The MLP-mixer layer aggre-

gates information across different positions within each channel, while the graph weighted Jacobi

network layer aggregates information across different channels. We introduced a weighted Ja-

cobi feature propagation rule obtained via graph filtering via implicit fairing, and we integrated

both weight and adjacency modulation into the model. We also showed that leveraging tempo-

ral information for input sequences of larger lengths can be achieved with only a slight increase

in computational cost. Our proposed method for 3D human pose estimation outperforms recent

state-of-the-art techniques on two widely-used benchmark datasets, as demonstrated by our exper-

imental results. Moreover, our approach achieves this improved performance while employing a

model with a smaller parameter count.

4.2 Limitations

Although the proposed methods show improvements in the robustness and accuracy of 3D human

pose estimation tasks, they also have certain limitations. Despite its capability to capture long-

range dependencies between body joints as well as different relations between neighboring joints

and distant ones, the proposed HigherOrderRS-Net framework has a relatively large number of

trainable parameters compared to state-of-the-art methods. In addition, our Spatio-Temporal MLP-

Graph relies on MLP to capture global information, which can be computationally expensive,

especially for large datasets or deep networks, making it challenging to scale the model to real-
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time applications where low latency is crucial. Furthermore, both methods are not end-to-end

solutions for regressing 3D keypoints from images or videos, as they consist of two distinct stages

that are typically decoupled. To address this issue, one potential solution is to leverage extensively

trained, deep models.

4.3 Future Work

Several interesting research directions, motivated by this thesis, are discussed below:

4.3.1 RS-Net for Exploiting Temporal Information

In order to further improve the accuracy of 3D pose estimation, we are planning to incorporate

temporal information into our model. This will be achieved by constructing a spatiotemporal graph

on skeleton sequences, which will enable us to capture both spatial and temporal relationships

between body joints. By incorporating this temporal information, we hope to make our model

more robust to variations in the input data, such as changes in body position and movement over

time. This will enable us to better estimate the 3D poses of human subjects, even in situations

where the input data is noisy or incomplete. Additionally, by leveraging both spatial and temporal

relationships between body joints, we aim to improve the generalization performance of our model,

enabling it to perform well on a wide range of 3D pose estimation tasks in diverse settings. Overall,

we believe that the incorporation of temporal information will be a key step in advancing the state-

of-the-art in 3D pose estimation

4.3.2 MLP-Graph with Multi-hop Neighbors

We aim to develop a method that takes into account the high-order connectivity between joints. To

achieve this, we plan to aggregate information from multi-hop neighbors, which will allow us to

capture more complex relationships between body joints. By incorporating high-order connectivity

into our model, we hope to improve the accuracy of 3D pose estimation and enable it to perform

better in challenging situations such as overlapping or occlusions. Additionally, we believe that

our approach may have broader applications beyond 3D pose estimation, and we are interested in

exploring its potential in other downstream computer vision and learning tasks. For example, our

method may be useful for tasks such as action recognition, human-object interaction detection, and

scene understanding, where capturing local and global relationships between objects and entities

is crucial for achieving high performance. By applying our method to these tasks, we hope to gain
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a better understanding of its strengths and limitations and to identify potential avenues for future

research.
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