
CLIP-MESH: GENERATING TEXTURED MESHES FROM

TEXT USING PRETRAINED IMAGE-TEXT MODELS

Nasir Mohammad Khalid

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

April 2023

© Nasir Mohammad Khalid, 2023

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Nasir Mohammad Khalid

Entitled: CLIP-Mesh: Generating textured meshes from text

using pretrained image-text models

and submitted in partial fulĄllment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the Ąnal examining committee:

Chair
Dr. Yiming Xiao

Examiner
Dr. Yang Wang

Co-supervisor
Dr. Eugene Belilovsky

Supervisor
Dr. Tiberiu Popa

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

Approved by
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

CLIP-Mesh: Generating textured meshes from text using pretrained

image-text models

Nasir Mohammad Khalid

The following thesis introduces a novel technique for generating textured mesh

models without any 3D supervision based solely on a text prompt. This is done

by deforming the control shape of a limit subdivided surface along with its texture

and normal map to match an input text prompt. The generated mesh asset can

be easily integrated into games or modeling applications that rely on widespread

rasterization based rendering techniques. The approach relies on a pre-trained

Contrastive Language-Image Pre-Training (CLIP) model to compare the input text

prompt with differentiably rendered images of our initialized 3D model. Unlike

previous works that focused on stylization or required training of generative models,

it performs optimization on mesh parameters directly to generate shape, texture, or

both. To ensure that the optimization produces plausible meshes and textures, this

work introduces several techniques including image augmentations, camera tuning

and use of a pre-trained prior that generates CLIP image embeddings given a text

embedding. Overall, this method offers a promising solution for zero-shot generation

of 3D models, demonstrating the potential of CLIP-based techniques for the Ąeld of

computer graphics.

iii

Acknowledgments

I would like to express my deepest gratitude to my parents, whose unconditional

love and unwavering support have been a constant source of strength throughout my

academic journey. I am also grateful to my brothers, who have always been there

for me, providing encouragement and inspiration. To my beloved wife Misha, thank

you for your patience, understanding, and for believing in me even when I doubted

myself.

I would also like to extend my sincere appreciation to my academic advisors, Dr.

Eugene Belilovsky and Dr. Tiberiu Popa, for their invaluable guidance, wisdom,

and mentorship. Their dedication to my academic success and their willingness to go

above and beyond in their support of my research has been instrumental in shaping the

direction of this thesis. I am truly fortunate to have had such outstanding advisors,

and I will always be grateful for their contributions to my intellectual growth.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Overview . 1

1.2 Main Contributions . 2

1.3 Thesis Outline . 3

2 Background 4

2.1 Mesh Generation . 4

2.2 Multimodal Deep Learning . 5

2.2.1 Contrastive LanguageŰImage Pre-training 5

2.3 Differentiable Rendering . 6

2.4 Limit Subdivision . 7

2.5 Diffusion Models . 7

3 Related Works 10

3.1 Text to 2D . 10

3.2 Text to 3D . 11

4 Method 13

4.1 Overview . 13

4.2 Laplacian Regularizer . 15

4.3 Diffusion Prior . 15

4.4 Implementation Details . 17

4.5 Augmentations . 18

v

5 Results 20

5.1 Single Object Generation . 21

5.2 Complex Modeling Scenarios . 22

5.3 Multi Object Generation . 22

5.4 Texturing . 23

6 Evaluation 26

6.1 Quantative Comparision . 26

6.2 Ablation Study . 27

7 Conclusions 29

7.1 Contributions . 29

7.2 Future Works . 29

References 32

vi

List of Figures

1 Left: The architecture of CLIP. Right: Generation results from

VQGAN-CLIP [1], GLIDE [2] and UnCLIP [3] 11

2 Generation results from CLIP-Forge [4], Text2Mesh [5] and Dream-

Ąelds [6] . 12

3 Overview of our optimization pipeline. The differentiable renderer

creates views which are encoded and compared to the text encoding as

well as the generated image embedding. We optimize for the texture,

normal, vertices position. 13

4 PCA analysis of text and image embeddings showing the modality gap [7] 16

5 Example of our render augmentations applied to outputs from the

differentiable renderer . 18

6 A 3D scene composed of objects generated using only text prompts:

lamp shade, round brown table, photograph of a bust of homer, vase with

pink Ćowers, blue sofa, pink pillow, painting in a frame, brown table,

apple, banana, muffin, loaf of bread, coffee, burger, fruit basket, coca

cola can, red chair, computer monitor, photo of marios cap, playstation

one controller, blue pen, excalibur sword, matte painting of a bonsai

tree; trending on artstation. (The 3D positioning in the scene was

done by a user) . 20

7 Results from a wide variety of prompts. Top: rendered result. Bottom:

3D mesh. a) "a coffee" b) "a photograph of a bust of homer" c) "Globe"

d) "a apple" e) "a brown table" f) "an armchair in the shape of an avocado" 21

8 Reconstruction of famous landmark around the world: a) "pyramid

of giza " b) "Sydney opera house" c) "Eiffel Tower" d) "lighthouse of

alexandria" e) "Burj Al Arab" f) "Taj Mahal" 22

vii

9 Comparison with [6] results from their paper/project website. Top:

results from [6]. Bottom: our results. Prompts: a) "matte painting of

a bonsai tree; trending on art station" b) "matte painting of a castle

made of cheesecake surrounded by a moat made of ice cream; trending

on artstation; unreal engine" c) "a cluster of pine trees are in a barren

area" d) "a cluster of pine trees are in a barren area" e) "a sculpture of

a rooster" . 23

10 Multiple object optimization. Prompts: a) "boat and red lighthouse"

b) "office chair and a desk and a computer monitor" 24

11 Multiple object optimization where one of the objects has Ąxed shape.

a) initial shapes. The following are results of the following captions: b)

"cactus and sand" c) "wooden boat and blue water" d) "brown wooden

table and iranian carpet" e) "fruit basket on grass" 24

12 Texture only optimization of a Cow mesh showing how its texture maps

change over iteration steps to match the text prompt "a cow" 25

13 Comparison with [6]. Shapes generated using CLIP ViT/B-16 Top:

results from [6]. Bottom: our results. Prompts: a) "mount everest" b)

"a vase with pink Ćowers" c) "a hamburger" d) "Eiffel tower" e) "a red

chair" . 27

14 Final output results (left column) with and (right column) without

limit subdivision for the text prompts "Burj Al Arab" (top) and "A

fruit basket" (bottom) . 28

15 Using SDS loss proposed in Dreamfusion [8] to texture a car model,

diffusion based losses outperform CLIP 30

16 Left: Depth map input to depth conditioned diffusion models. Right:

Three output images generated by the model showing its ability to

follow input depth map . 30

viii

List of Tables

1 Quantative comparision of our work with dreamĄelds on COCO

caption object generation . 26

2 Ablation study on the R-Precision quantitative metric where higher

score is better. We observe that starting from a baseline approach,

adding limit subdivision, augmentation, large rendering, and the

generative prior systematically improves performance 28

ix

Chapter 1

Introduction

1.1 Overview

3D models play a crucial role in various Ąelds such as gaming, virtual reality, Ąlm,

architecture, and product design. They enable us to create digital representations of

objects, scenes, and environments that closely resemble their real-life counterparts,

allowing us to study, analyze, and communicate their features and properties in a

virtual environment. In gaming, these models are used to create characters, props,

and environments that are central to gameplay, immersing the player in the game

world. In architecture and product design, they help designers and architects to

visualize and iterate on designs before actual production, saving time and resources.

In medical imaging, models enable doctors and researchers to study anatomy and

simulate surgical procedures, improving patient outcomes. The importance of 3D

models lies in their ability to facilitate efficient and effective visualization, design,

and communication in a wide range of industries and applications.

The creation of 3D models can be accomplished using a variety of techniques,

including volumetric representations, point clouds, and parametric surfaces. However,

the polygonal mesh is the most commonly used format in games and other real-time

applications due to its efficiency and versatility. Meshes consist of a collection of

vertices, edges, and faces that deĄne the shape of the object, which can be rendered

using a variety of shading techniques and texture maps. Additionally, meshes can be

easily transformed and manipulated through various techniques, such as subdivision,

deformation, and sculpting. This Ćexibility and efficiency make meshes an ideal

choice for real-time applications, where computational resources are limited, and

performance is critical.

The demand for 3D models is on the rise and is expected to continue growing in the

1

future. This is due to several factors, including advancements in technology, increased

accessibility, and a growing number of applications. The rise of virtual and augmented

reality technologies has led to a demand for large number of models to create

immersive experiences. Furthermore, multiple industries such as entertainment,

gaming, and advertising has also contributed to the growing demand for 3D models,

as these technologies and industries continue to develop, it is likely that the demand

will continue to grow.

To meet this demand, there is a need to introduce more efficient and accurate

3D mesh generation techniques. Traditional techniques such as modelling and even

procedural generation rely on some manual input and require a signiĄcant amount of

time and effort to setup. Newly introduced deep learning-based 3D mesh generation

techniques rely on neural networks that are trained on large datasets of 3D models

to generate new meshes. These networks are able to learn the underlying patterns

and structures of 3D models, allowing them to generate high-quality meshes that are

accurate and efficient.

Deep learning-based 3D mesh generation techniques have several advantages over

traditional techniques. They are scalable, Ćexible, and can generate high-quality

meshes quickly and efficiently. Additionally, they can be trained to generate meshes

that are speciĄc to certain applications or industries, making them more versatile

than traditional techniques.

However, they rely on large scale 3D shape datasets which are restricted in terms of

size, quality and diversity. Existing datasets cannot allow for varied shape generation

and since creating such a dataset is cost prohibitive we look at alternative techniques

such as leveraging the knowledge of existing multimodal models and attempting to

exploit their image generative capabilities to create 3D meshes and textures

1.2 Main Contributions

Our main contributions can be summarized as follows:

• We introduce a set of techniques that allow zero-shot text guided generation

with a differentiable renderer.

• We use these techniques to directly generate 3D meshes with their texture maps

and normal maps.

• We use the analytical expression of the Loop subdivision limit surface as an

implicit regularizer to improve the quality of the generated model.

2

• We improve on our baseline results by introducing a set of render augmentations

and incorporating a text to image embedding prior.

• The result of this work has been published in SIGGRAPH Asia 2022 [9]

1.3 Thesis Outline

The next Chapter 2 discusses prerequisite information that makes up the core of the

papers methodology. The following Chapter 3 discusses other research and work in

the Ąeld of generative deep learning and brieĆy discusses how our work relates to

them. We then present the main technique used for generating shapes in Chapter 4.

Chapter 5 shows results from our proposed technique and also explores the versatility

of the technique by showing results from various different modeling scenarios. We then

compare our work quantitatively to related research and perform an ablation study

in Chapter 6. Finally we conclude the thesis in Chapter 7 with a short discussion on

future works and contributions.

3

Chapter 2

Background

In this chapter, we explain brieĆy the background materials related to the works

presented in this manuscript.

2.1 Mesh Generation

Polygonal meshes are typically created using specialized 3D modeling software, where

the vertices, edges, and faces of the mesh are manipulated to create the desired object

[10]. This process can be both challenging and labor-intensive, requiring signiĄcant

time and effort to achieve the desired level of detail and accuracy. The texturing of

meshes can be an equally challenging task, requiring expertise in digital painting and

UV mapping.

In order to meet the growing demand mentioned in the previous section,

researchers and industries have turned to automatic mesh generation techniques.

Automatic mesh generation involves using algorithms to generate a 3D mesh based on

certain input parameters, such as the text description, primitive templates or other

modalties such as 2D images.

Research in automatic mesh generation has focused on developing algorithms that

can generate meshes with high levels of detail and accuracy. One approach is to use

machine learning techniques, such as deep neural networks, to learn the mapping

between 2D images and 3D meshes [11,12]. Further methods are discussed in Chapter

3, but one of the biggest challenges amongst all research is the lack of large and diverse

datasets of 3D objects. This limitation has made it difficult to train and evaluate 3D

generative models using real-world data.

One of the most commonly used 3D object datasets is Shapenet [13]. The dataset

contains 55,000 3D models from 50 object categories, and each object is represented

4

by a 3D mesh. While this dataset has been widely used in research, it is limited in

terms of its object variety and natural language descriptions. Similarly, CO3D [14]

is another 3D object dataset that contains 50 object categories with a total of 8,000

objects. While this dataset includes natural language descriptions of the objects, it

is still relatively small compared to large-scale 2D image datasets.

On the other hand, large-scale 2D image datasets such as ImageNet-21K [15]

have been critical to the development of computer vision algorithms. ImageNet-21K

contains 14 million images of 21,000 object categories and has been used to train deep

neural networks for a wide range of computer vision tasks. In addition to the large

number of images, it also includes textual descriptions of each object, which can be

used to train models for object recognition and understanding.

These large image datasets have led to breakthroughs in image generation tasks

[3,16] in terms of quality and scope of generation but the same cannot be said for 3D

generative works with the lack of similar datasets being the key driving factor

2.2 Multimodal Deep Learning

Multimodal deep learning is a subĄeld of deep learning that deals with the processing

of data from multiple modalities [17]. This includes various forms but most commonly

relates to text, images, audio and video. It aims to combine the information from

all these sources to learn a better representation of the underlying data, leading to

improved performance in tasks such as classiĄcation, prediction and generation. [3,18]

One of the key challenges is the integration of data from different modalities.

Since each modality has its own features and characteristics, it is essential to design

models that can effectively combine them. This can be achieved through various

neural network architectures that learn to effectively extract and combine features

from multiple sources, such as using convolutional neural network layers to process

images and recurrent neural networks to process text [19]. Multimodal training also

needs large and diverse datasets which need to contain information from multiple

modalities that are relevantly connected and labelled.

2.2.1 Contrastive LanguageŰImage Pre-training

CLIP (Contrastive LanguageŰImage Pre-training) [20] is a multimodal neural network

that was introduced by OpenAI, the authors of the work argue that existing methods

for training visual models are limited by the availability of annotated data and

5

require expensive and time-consuming annotation processes. Furthermore, they cite

the Ąxed number of classes in datasets as being a limitation to unlocking full scale

image classiĄcation and recognition. Instead, they propose using natural language

descriptions of images as a form of supervision, allowing for more Ćexible and scalable

training.

The authors use a private dataset of images scraped from the internet along

with their alt-text descriptions to train a two part model: The Ąrst being a vision

transformer [21] based image encoder that maps an image to a Ąxed size latent space,

the second being a transformer [22] based text encoder that maps text to the same

latent space. The two models are trained simultaneously using a contrastive learning

framework, which involves learning to discriminate between positive and negative

image-caption pairs. This approach encourages the model to learn representations

that capture the underlying semantic and visual relationships between the images

and their associated text.

The Ąnal result is a powerful model that can provide a score between text and

images. It improves the performance of the model on a variety of downstream visual

and language tasks, including image captioning, visual question answering, and text-

based image retrieval. The method is also Ćexible and can be adapted to different

types of image and text datasets, making it a valuable tool for a wide range of

applications. One of the key beneĄts of this approach is its ability to learn transferable

visual and language representations. This means that the representations learned by

the model can be applied to new datasets and tasks without the need for additional

pre-training.

2.3 Differentiable Rendering

Rendering is a well documented and exhaustively studied topic of computer graphics

research. However, with the recent deep learning revolution there has been a revival

of the fundamental rendering research examined through the lens of backpropogation

and gradient descent. One of the main advantages of differentiable rendering is that it

allows for end-to-end optimization of a rendering pipeline, which means that the entire

rendering process can be optimized using gradient descent and backpropagation. This

means that any part of the rendering pipeline can be replaced with optimizable

parameters or neural networks.

The use of differentiable rendering has led to state of the art results in tasks such as

single view 3D reconstruction tasks [23, 24] and human pose estimation [25] because

6

the underlying shapes can be rendered to images and now be optimized through

image based losses with backpropogation. Additionally, new algorithms for shape

representation and image synthesis have also been enabled such as neural radiance

Ąelds (NeRFs) [26] and neural implicit volumes [27]. These algorithms use neural

networks to learn the implicit representation of a 3D scene from a set of input images,

which can then be used to synthesize new images from different viewpoints or be

used as high resolution shape representations. These implicit representations are

only possible due to the ability to render and optimize them using gradient based

optimization

2.4 Limit Subdivision

Loop subdivision [28] was proposed by Charles Loop in 1987 as an improvement

over existing subdivision algorithms. The basic idea is to iteratively subdivide each

polygon in the mesh into smaller ones, and then adjust the positions of the newly

created vertices based on a weighted average of their neighboring vertices. This

process is repeated several times, resulting in a progressively smoother surface.

One of the advantages of loop subdivision is that it preserves the overall shape

and also has the desirable property of converging to a limit surface that is a piecewise

smooth function with continuous Ąrst and second derivatives. In 1998, Jos Stam

proposed a analytical evaluation method of the Loop subdivision [29] to determine

the limit surface. This analytical and differentiable evaluation makes the subdivision

scheme ideal for shape optimization as it allows the shape to be smoothed without

any additional vertices being introduced and also allows for backpropogations and

gradient Ćows across the subdivision.

2.5 Diffusion Models

Diffusion probabilistic models, or diffusion models for short, have their roots in

nonequilibrium thermodynamics in physics [30]. They consider the generative process

of a diffusion model as a physical system that is driven away from equilibrium by a

random force. The purpose of the model is to learn the dynamics of this system

and generate new samples. These models have been applied in deep unsupervised

learning to create new latent variable generative models that can learn more complex

and realistic data distributions, especially in image synthesis.

Denoising Diffusion Probabilistic Models (DDPM) [31] for image synthesis, which

7

are a variant of Diffusion Probabilistic Models (DPMs) speciĄcally designed to handle

noisy data. DPMs simulate a random walk through a high-dimensional space, where

each step corresponds to a change in the generated image. DDPMs introduce a

denoising mechanism to the generative process by adding a denoising step to the

DPMs.

The idea behind DDPMs is to remove noise from input data while retaining

important features by training a denoising function to map the noisy input data to a

clean version of the data. The denoising function is trained to minimize the difference

between the noisy input data and the clean output data. DDPMs consist of two main

steps: a forward process (diffusion process) and a reverse process (denoising step).

What sets diffusion models apart is the forward process q(xi), which adds Gaussian

noise to the data using a Ąxed Markov chain based on a schedule of variances

(β1, β2, ..., βT). DDPM simpliĄes this process by setting all variances to a constant

value, although they can be learned through reparameterization. This means that

the forward process of DDPM does not have any learnable parameters.

q(x1:T ♣x0) =
T

∏

t=1

q(xt♣xt−1), q(xt♣xt−1) = N (xt;
√

1 − βtxt−1, βtI) (1)

The forward process of diffusion models has an important feature: sampling xt at

any timestep t can be accomplished using a closed-form solution without requiring

multiplication each time. More information can be found in the DDPM paper. By

gradually adding Gaussian noise to the original data x0, we end up with a normal

distribution p(xT) = N (xT ; 0, I) at timestep T . The idea is that if we can train a

neural network to gradually remove noise from generated noisy data, we can start

from any randomly generated normal distribution and generate new samples. This is

exactly what the reverse process aims to achieve. In the reverse process pθ(xi), our

goal is to gradually recover the original data from the noisy images by performing

multiple small denoising steps pθ(xt−1♣xt), rather than attempting to recover the

original data directly. The reverse process can also be deĄned formally as a Markov

chain with learned Gaussian transitions initiated from a random normal distribution

p(xT).

pθ(x0:T) = p(xT)
T

∏

t=1

pθ(xt−1♣xt), pθ(xt−1♣xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (2)

The main objective of DDPM is to acquire knowledge of the reverse process.

8

SpeciĄcally, it is essential to model µθ(xt, t) and Σθ(xt, t), as these are the only

learnable parameters in pθ(xt−1♣xt). To achieve this, they do not teach the covariance

matrix Σθ(xt, t) and establish it as Σθ(xt, t) = σ2

t I, where σ2

t t is a function of β0:t,

indicating that it is a parameter that depends on time.

For the mean µθ(xt, t), DDPM models the forward process posterior means

through a reparameterization. SpeciĄcally, they optimize a neural network fϕ(x)

with the following objective:

L = ♣♣ϵt − fϕ(xt)♣♣
2 (3)

Where L is the loss to be optimized and ϵt is the noise added at timestep t. fϕ(xt)

is the predicted noise, DDPM uses a U-Net neural network for this. After training

the model is able to predict the noise added at a given timestep. To generate novel

images we start with randomly initialized gaussian noise and over a set of timesteps

we ask the model to predict the noise added. By subtracting this noise over time we

can generate images.

This sort of generation is unconditional as it generates images that are just part

of the training distribution. However, much research has focused on conditioning the

generation on some form of class category [32] or textual prompts [3] by adding cross

attention layers in the neural network deĄned by fϕ(xt) changing it to fϕ(xt, y) where

y would be a representation for the text. The cross attention layers use information

n the class/text variable y during training and so at inference time the generation

process can be controlled by setting them as desired.

-

9

Chapter 3

Related Works

3.1 Text to 2D

Image generation is a topic of research that has been studied as much as image

recognition and classiĄcation. Prior to the advent of deep learning, generation

techniques were primarily based on rule-based or statistical methods [33, 34]. These

methods involved deĄning a set of rules or statistical models that could generate

images based on certain input parameters or features. However, these approaches

were limited in their ability to generate realistic images and often produced low-

resolution or blurry results.

With the emergence of deep learning, image generation has been revolutionized.

Generative adversarial networks (GANs) [35] have been particularly successful in

generating high-quality images that are visually indistinguishable from real images.

Further research worked on controlling the generation process by allowing the models

to be conditioned on input classes [36], pushing quality of generation while allowing

for more controllable generation parameters [37] and introducing novel architectures

such as image codebooks to allow for high resolution GAN image generation through

VQ-GAN [38]. However, even with these advancements, research in training GANs

to be conditioned on text or generating from text was not available apart from small

scale works that focused on single class of data like cars or chairs.

Multimodal deep learning discussed in Chapter 2 has paved the way for exciting

research in text-driven 2D image generation. One of the key techniques used is the

previously discussed CLIP model, which learns a joint embedding space for images

and text. This allows researchers to manipulate and generate images using text

prompts as guidance. One notable application of this technique is StyleCLIP [39],

which uses a distance loss function in the shared embedding space to generate images

10

Figure 1: Left: The architecture of CLIP. Right: Generation results from VQGAN-
CLIP [1], GLIDE [2] and UnCLIP [3]

that match a given text prompt, this is done by guiding a pretrained GAN model

through its learned latent space. Another recent work, VQGAN-CLIP [1], combines

the VQGAN image generator with the CLIP model to create high-quality images

based on textual prompts. It uses a similar approach to StyleCLIP but instead guides

the codebook of the VQGAN rather than latent space embedddings. GLIDE [2] trains

a large scale diffusion model to generate high quality images and then guides the

diffusion process using CLIP to generate images that match text prompts. Figure

1 shows the CLIP model architecture on the left along with images generated from

the techniques mentioned, we see that the quality and expressively of generation has

improved dramatically over a short span of time.

The current state of the art in text to image synthesis called UnCLIP [3] has

moved away from using CLIP as a guiding factor but it instead uses the embeddings

from the CLIP image and text encoder as training data.

3.2 Text to 3D

In contrast to text to 2D, research in text to 3D is an underdeveloped Ąeld. However,

there are still some notable works that have attempted to allow for custom shape

generation. These can be broke up to two main approaches. The Ąrst is a generative

based approach where a model is trained and developed for the purpose of outputting

a 3D shape given some text prompt. The other is an optimization based approach

where an initial guess of the shape is iteratively reĄned to produce the desired shape

11

Figure 2: Generation results from CLIP-Forge [4], Text2Mesh [5] and DreamĄelds [6]

requested by a text prompt.

Multiple papers [40,41] proposed a joint embedding between 3D shapes and text,

combined with GANs to produce novel outputs. However, these approaches are

limited by the lack of available matched 3D models and text descriptions which were

restricted by limited shape variation. CLIP-Forge [4] addresses the problem of paired

text and 3D models by training an encoder and decoder only on 3D models, and

then guiding the decoder with CLIP to produce results that match a text prompt.

However, this approach is restricted by the 3D data categories available to train it

and does not produce meshes or textures as seen in Figure 2

Some research has focused purely on stylization of exisiting 3D meshes with

text prompts. AvatarCLIP [42] and CLIPMatrix [43] are the prominent works in

this domain and each focus on deforming a human model slightly and updating its

corresponding texture maps. Text2Mesh [5] generalizes this work further by allowing

stylization of any mesh through training of a neural network that encodes vertex

offsets and vertex colors. As seen in Figure 2 it is able to stylize a preexisting horse

mesh but generate the shape on its own.

The closest research to our is a novel text to 3D method called DreamĄelds [6]

which proposed a zero-shot text-guided generation using a neural radiance Ąeld model

that is iteratively optimized using CLIP as a loss. It requires raycasting and training

a set of neural network parameters, resulting in a large computation overhead even

for low-quality generation. Unlike this approach, our Ągures are all generated on a

single 16GB GPU, and the shape, texture, and normal can be individually modiĄed,

allowing for unique application scenarios. Figure 2

12

Chapter 4

Method

4.1 Overview

An overview of our method is shown in Figure 3. We represent a 3D model using

three components: (1) a 3D mesh whose vertices V0 ∈ R
n×3 are the control vertices

of a Loop [28] subdivision surface V = S(V0), (2) a texture map T and (3) a normal

map T̃ . This is a standard way to represent geometric assets in video games and

modeling applications. Furthermore, using a texture map allows to decouple the

appearance from the geometry and the combination of normal map and subdivision

surface control allows us to reduce the number of optimization parameters of the

geometry while maintaining rendering details. Our method creates a 3D model by

Figure 3: Overview of our optimization pipeline. The differentiable renderer creates
views which are encoded and compared to the text encoding as well as the generated
image embedding. We optimize for the texture, normal, vertices position.

13

optimizing these three components using a differentiable renderer. Our rendering

pipeline uses the initial control mesh to compute the limit surface V of the Loop

subdivision scheme [29]. This limit surface can be computed analytically and it is

a differentiable function. The loop subdivision surface V is also, by construction,

smooth. Therefore, this surface deĄnition acts as an implicit regularizer and helps

avoid triangle inversion during the optimization phase. We render this mesh using a

differentiable renderer R [44] from several camera positions D(φ, θ).

We uniformly sample a camera azimuth angle φ from a range of 0◦ to 360◦ and for

elevation θ we sample from a Beta distribution with αd = 1.0 and βd = 5.0 within a

range of 0◦ to 100◦ this allows the generation to focus on making the object consistent

from a single elevation angle giving it a "front view" but the distribution allows other

elevations so that textures get painted in for triangles in those regions but the shape

does not deform signiĄcantly. Using these camera positions and orientation we render

a set of images I:

I = R(D(φi, θi),V ,T , T̃)

Images Ii are encoded using the CLIP image encoder CI :

E = CI(I)

Where E represents a set of encodings for each image in I. The input to our

method is a text prompt p that is encoded using the CLIP text encoder CT :

et = CT (p)

As the rendered images as well as the text prompt are now encoded in the same space

we can compute the similarity:

LCLIP (V ,T , T̃ ,p) = −
1

K

∑

ei∈E

eT
i et (4)

Note that the encoder functions, CT and CI , include a normalization at the end

thus these are cosine similarities. As computing the limit loop subdivision surface is

differentiable [29] and the renderer is differentiable, our entire pipeline is differentiable

using the chain rule.

14

4.2 Laplacian Regularizer

The uniformly-weighted Laplacian operator, also known as the graph Laplacian, is a

mathematical tool used in graph theory to study the properties of graphs. Given an

undirected graph, the Laplacian operator is a matrix that encodes the relationships

between the vertices of the graph. The matrix is constructed in such a way that the

diagonal entries represent the degree of each vertex, while the off-diagonal entries

represent the weights of the edges connecting the vertices. The uniformly-weighted

Laplacian operator is obtained by setting all the edge weights to 1.

One of the key properties of the uniformly-weighted Laplacian operator is that

it is positive semi-deĄnite. This means that all of its eigenvalues are non-negative,

which has important implications for the study of graph spectra. The eigenvalues of

the Laplacian operator are closely related to the connectivity and structure of the

underlying graph, and can be used to extract useful information about the graph.

The Laplacian operator is used to deĄne the Laplacian energy of a graph, which is a

measure of the "smoothness" of the graphŠs structure and is used in image processing

and computer vision.

We use a laplacian regularizer on the shape of the mesh to maintain the geometry

and keep it intact as used in other related work [45]. We use the uniformly-weighted

Laplacian operator: δi = vi − 1

♣Ni♣

∑

j∈Ni
vj where Ni is the set of one-ring neighbours

for vertex vi. With this formulation the laplacian regularizer can be given by:

Lδ =
1

N

N
∑

i=1

∥δi∥
2 (5)

where N is the number of vertices. This minimizes the difference in position between

each vertex and the average position of its neighbouring vertices.

4.3 Diffusion Prior

So far as part of our methodology we compare text and image embeddings produced by

CLIP. This comparison relies on the assumption that the latent space encoding both

is well behaved, in the sense that similar image and text prompts are nearby. This

assumption helps produce basic results but research [7] has shown that there exists

a "modality gap". In CLIP, the visual and textual inputs are processed separately

by a convolutional neural network (CNN) and a transformer-based language model,

respectively. While the CNN is trained to extract visual features from images, the

15

Figure 4: PCA analysis of text and image embeddings showing the modality gap [7]

language model is trained to extract semantic features from text. This creates a gap

between the two modalities, as the visual features and semantic features may not have

a common representation space. Consequently, when CLIP is used to match images

and text, it may not be able to capture the subtle nuances and context-dependent

relationships between the two modalities. Figure 4 shows a PCA analysis of CLIP

image and text embeddings showing this modality gap.

To further improve results we also train and incorporate a diffusion prior which

attempts to generate image embeddings following p(ei♣et). We use this to sample

image embeddings given a text encoding. Our formulation follows that of [3] and [46].

Once trained, the diffusion sampling process takes input of noise and the CLIP text

embedding et and after applying the forward process for N time steps the output is

a CLIP image embedding which follows p(ei♣et).

We pretrain this prior on a 400 million image and text pair dataset [47] so it

can sample a relevant CLIP image embedding when given a CLIP text embedding

and during optimization time we sample from it using the previously obtained text

embedding et to get a relevant CLIP image embedding êk. As the rendered images are

encoded in the same space as the output embedding we can also compute a similarity

16

between them to use as a loss. This reduces the impact of the modality gap and

improves generation quality.

LP RIOR(V ,T , T̃ ,p) = −
1

K

∑

ei∈E

eT
i êk (6)

Since it is conditioned on the text embedding we can use LP RIOR without LCLIP .

Practically, in our preliminary experiments we found that combining these losses can

be beneĄcial.

We thus formulate our Ąnal problem as an optimization problem with the following

objective function:

min
V0,T ,T̃

LCLIP (S(V0),T , T̃ ,p) + λtLδ(V) + αLP RIOR(S(V0),T , T̃ ,p) (7)

4.4 Implementation Details

Our initial shape is a sphere with 600 vertices. The texture map is initialized with

random values and is set to a resolution of 512x512. The normal map has the same

resolution but is initialized as a uniform blue image representing uniform normals

in +z direction. The Adam [48] optimizer is used for the vertices and texture maps

with a decaying learning starting at 0.001 and a batch size of 25. The diffusion prior

follows the same conĄguration setup as [3] except ours is scaled down with reduced

network size.

The approach for the laplacian regularization follows that of [45], where the weight,

λ, is decayed throughout the optimization process as the shape stabilizes its Ąnal

form. Initially it is set to a high value when the learning rate is high and then

slowly reduces to a minimum value. More speciĄcally, for an epoch t it is deĄned

as λt = (λt−1 − λmin) · 10−kt + λmin. The initial weight and decay parameters are

hyperparameters that can be tuned.

The look-at and up vectors of the cameras are set towards the origin and the

y-axis respectively. Due to the known texture bias of visual recognition models such

as CLIP [49] naively performing the optimization can lead to over emphasis on the

texture versus shape. To deal with this we add in some randomization to the view

generation process by randomly selecting a camera Ąeld of view between 30◦ to 60◦ and

varying the distance of the camera from the object to between 3.0 to 7.0. This variance

in the Ąeld of view and distance has a zoom in/out effect that encourages changes in

the vertex positions versus only changes in the texture. CLIP takes 224x224 input

17

Figure 5: Example of our render augmentations applied to outputs from the
differentiable renderer

images but we Ąnd that rendering at a larger 512x512 resolution and down scaling to

224x224 improves results, it also plays well with the differentiable render we use [44]

since it relies on anti aliasing for gradients and rendering at a larger resolution means

more pixels are affected by anti aliasing which reduces gradient noise.

4.5 Augmentations

To improve quality of results we also employ a set of augmentations that help with

training:

• Distance of the camera from the object is selected from a uniform distribution

between an range of 5.0 to 7.0 units. During training this distance range slowly

gets decreased to a range of 3.0 to 5.0 units. This encourages the shape to

grow outward initially and prevents CLIP from drawing the input prompt in

to the texture right away without changing the shape. The distance ranges

and decreasing can be adjusted by the user but the values above are what have

worked best for us and all Ągures use these values.

• The FOV of the perspective camera is randomly augmented to a value between

30◦ to 60◦. Doing this changes the size of the object in the rendering and

prevents CLIP from falling in to minimas where it relies overly on the texture

18

and just paints it in to shape rather that performing any deformations. Since

the object is viewed from a distance it also encourages CLIP to grow the shape

and mould the object.

• Random background from either solid color, Gaussian noise or checkerboard

pattern. We Ąnd that this qualitatively improves vibrancy of textures and

prevents CLIP from approaching suboptimal solutions where it uses the color of

a Ąxed background towards loss optimization rather than adjusting the texture.

• We also offset the shape to ensure its not always rendered at the center of the

image, this is because images that CLIP was trained on are varied and do not

always have the object perfectly placed at the center.

In Figure 5 we show how these augmentations affect the renderings, the renders on

the left are produced directly from the differentiable render and after augmentationg

we get the images on the right. These images are passed to CLIP for encoding.

19

Chapter 5

Results

We evaluated our methods on a wide variety of prompts and a few different generation

scenarios. We Ąrst look at the single object generation scenario and compare our

method with DreamĄelds [6]. We then follow up with additional modeling scenarios

unique to our method. Finally we provide quantitative evaluations of our results as

well as ablation studies to illustrate the improvement provided by each step of our

method.

Figure 6: A 3D scene composed of objects generated using only text prompts: lamp
shade, round brown table, photograph of a bust of homer, vase with pink Ćowers, blue
sofa, pink pillow, painting in a frame, brown table, apple, banana, muffin, loaf of
bread, coffee, burger, fruit basket, coca cola can, red chair, computer monitor, photo
of marios cap, playstation one controller, blue pen, excalibur sword, matte painting
of a bonsai tree; trending on artstation. (The 3D positioning in the scene was done
by a user)

20

Figure 7: Results from a wide variety of prompts. Top: rendered result. Bottom: 3D
mesh. a) "a coffee" b) "a photograph of a bust of homer" c) "Globe" d) "a apple" e)
"a brown table" f) "an armchair in the shape of an avocado"

5.1 Single Object Generation

In Figure 6 we illustrate a number of household objects generated using the proposed

method. The Ćexibility of the assets created is illustrated as we import and place

them into a 3D scene. In Figure 7 we further illustrate a diverse set of objects and

their corresponding shape (removing the texture). Finally in Figure 8 we further

show the diversity of possible objects that can be generated using the knowledge of

the CLIP model by producing famous landmarks which are visually recognizable. In

all these Ągures we use the CLIP ViT/B-32 model for training.

We also provided visual comparisons to [6]. Fig. 9 shows the results of our

methods results with Ąve prompts from [6] with the results shared in their paper and

project website. We render the meshes from similar angles. Fig. 9 shows a second

comparison with [6] where we chose new prompts and generated the results using

the code available online. Note that because their work uses a NeRF representation

and requires ray casting it comes with a large resource constraint. Therefore we use

the smallest CLIP ViT-B/16 model for the generations and use the medium quality

conĄguration provided in their codebase.

In terms of speed our method is much faster than DreamĄelds [6] where each

shape took over 24 hours to generate using 4 NVIDIA A100 GPUs. For similar

conĄgurations our experiments revealed that our method is faster by a factor of 100

21

Figure 8: Reconstruction of famous landmark around the world: a) "pyramid of giza
" b) "Sydney opera house" c) "Eiffel Tower" d) "lighthouse of alexandria" e) "Burj Al
Arab" f) "Taj Mahal"

as each of our shapes required 50 minutes on a single NVIDIA P100 (16GB) GPU.

In short the reason for this is two-fold: 1) the number of optimizing parameters in

DreamĄelds is much higher (all the weights of a complex neural network as opposed

to vertex positions, texture and normal maps) 2) our rasterization based rendering is

much faster.

5.2 Complex Modeling Scenarios

5.3 Multi Object Generation

Another powerful feature of our method (and unique among NERF based approaches

such as [6]) is the Ćexibility of our optimization framework. The texture and shape

are decoupled allowing us to selectively optimize them if needed, and to generate

multiple objects in context. This provides a number of unique possibilities for user

control of the generation. Additionally since we use meshes it is trivial to combine

multiple meshes in to a single mesh while also freezing some vertices and allowing

others to be optimized. All this allows us to perform simultaneous optimization of

multiple objects as well as separate the shape and texture optimization. This can

be be very useful when modeling a scene where some objects have Ąxed shape while

other objects are allowed to vary.

Figure 10 shows an example of this multiple object optimization. In Figure 10a)

the text caption used was "boat and red lighthouse", the initial setup was a plane with

Ąxed water texture and 2 spheres on either ends. Vertices and texture for the water

were frozen but spheres allowed to optimize. The Ąnal result created two distinct

shapes for each object in the caption that Ąts the scene. In Figure 10b) a similar

22

Figure 9: Comparison with [6] results from their paper/project website. Top: results
from [6]. Bottom: our results. Prompts: a) "matte painting of a bonsai tree; trending
on art station" b) "matte painting of a castle made of cheesecake surrounded by a
moat made of ice cream; trending on artstation; unreal engine" c) "a cluster of pine
trees are in a barren area" d) "a cluster of pine trees are in a barren area" e) "a
sculpture of a rooster"

setup is followed where the carpet and table are static, but the chair and computer

monitor are automatically generated from initial spheres. Note that while the starting

position of one of the sphere was on the table, we did not specify anywhere explicitly

that the monitor should be on the top of the table or that the chair must face the

monitor, all of this was inferred implicitly by the model. Figure 11 shows another

example of our methods diversity and simultaneous optimization where the sphere

allows for shape, texture and normal map optimization while the plane allows only for

texture and normal map optimization. We show results for various distinct captions

and also note that the texture and normal map of the plane optimize to support the

object such as a picnic mat texture appearing when the caption is a "fruit basket on

grass"

5.4 Texturing

Although our research is focused purely on generation of 3D shapes and textures, we

Ąnd that by freezing the shape and allowing textures to be optimized our framework

23

Figure 10: Multiple object optimization. Prompts: a) "boat and red lighthouse" b)
"office chair and a desk and a computer monitor"

Figure 11: Multiple object optimization where one of the objects has Ąxed shape.
a) initial shapes. The following are results of the following captions: b) "cactus and
sand" c) "wooden boat and blue water" d) "brown wooden table and iranian carpet"
e) "fruit basket on grass"

24

Figure 12: Texture only optimization of a Cow mesh showing how its texture maps
change over iteration steps to match the text prompt "a cow"

can be used as a texture generator. This can be further adjusted to generate texture,

normal map or both. In Figure 12 we see an example of this where a single cow mesh

is kept static but its texture maps are allowed to be optimized to match the prompt

"a cow". Similarly in Figure 11 the plane on the Ćoor is optimized in the same way

with its shape intact but normal and texture map optimized

25

Chapter 6

Evaluation

6.1 Quantative Comparision

We quantitatively evaluate our method, comparing it directly with the current closest

work of [6]. We follow the same experiment setup outlined in their paper: two shapes

are generated per caption for a set of 153 text captions, for a total of 306 generated

shapes. During evaluation they are rendered from a held-out pose not seen during

training, a CLIP-R precision score [50] is then computed between the held-out pose

renderings and the captions used to generate the shapes. The captions used are

from [6] and the held out pose is also the same as theirs at a 45◦ elevation where

as training is limited to a 30◦ elevations, we experiment with different sized CLIP

models for generating the shapes and computing the precision.

Table 1 shows the quantitative results of the evaluation. Note that in this

evaluation we do not include the diffusion prior loss as the dataset for training the

prior contains only CLIP ViT-B/32 embeddings, so we are unable to train a prior

that supports the generation model of CLIP ViT-B/16. Regardless, we Ąnd that our

work outperforms [6] across the generation and evaluation models without it.

Table 1: Quantative comparision of our work with dreamĄelds on COCO caption
object generation

Generation Model CLIP ViT-B/16 CLIP ViT-B/32
Evaluation Model ViT-B/16 ViT-B/32 ViT-B/16 ViT-B/32
DreamĄelds 93.5 59.8 74.2 86.6
[6]
CLIP-Mesh [Ours] 96.7 67.8 75.8 91.4

26

Figure 13: Comparison with [6]. Shapes generated using CLIP ViT/B-16 Top: results
from [6]. Bottom: our results. Prompts: a) "mount everest" b) "a vase with pink
Ćowers" c) "a hamburger" d) "Eiffel tower" e) "a red chair"

6.2 Ablation Study

In Table 2 an ablation study is shown for the various components of our pipeline. We

start from a stripped down version of our method (baseline) and sequentially add in

the components of the method. We follow the same evaluation methodology as in

Table 1 but a single shape is generated per caption here instead of two as we found

that it does not have a signiĄcant impact on the metric and reduces the time required

per evaluation. Our results show that the limit subdivision provides an improvement

across all retrieval models. We then add the image augmentations which both provide

improvements, offsetting the mesh from the center of the image provides the largest

boost to the Ąnal results. Similarly, rendering the images at a higher resolution and

then linearly scaling to the CLIP 224x224 resolution does improve results in all cases

except for the largest ViT-L/14 model where it hurts performance. We get our best

overall results when adding the prior loss.

Our experiments also show that the limit subdivision improves the results both

quantitatively and qualitatively. Table 2 shows the quantitative improvement and in

Fig. 14 we show meshes for the same text prompt with and without limit subdivision.

Left is limit subdivision and right is without it - we Ąnd that it reduces mesh tangling

and leads to better triangulation.

27

Table 2: Ablation study on the R-Precision quantitative metric where higher score is
better. We observe that starting from a baseline approach, adding limit subdivision,
augmentation, large rendering, and the generative prior systematically improves
performance

Method (CLIP B/16) CLIP R-Precision ↑

B/16 B/32 L/14

Shape Baseline Method 75.8 41.8 50.9
+ Limit Subdivision 77.7 47.7 53.5

Augmentations + Background 81 47.7 58.8
+ Repositon Shape 90.1 60.5 73.2

Render + 5122 renders 92.1 62.7 70.5

Prior + Prior Loss 91.5 77.7 74.5

Figure 14: Final output results (left column) with and (right column) without limit
subdivision for the text prompts "Burj Al Arab" (top) and "A fruit basket" (bottom)

28

Chapter 7

Conclusions

7.1 Contributions

We have demonstrated a method for generating diverse 3D objects in different

modeling scenarios using only an input text prompt. The results consist of a mesh,

texture map and normal map which allow them to be directly loaded to be used as

assets in games and modelling applications. While the work we propose provides

interesting results there are some limitations of our method.

Genus The genus of the generated object is set by the initial template mesh. We

address this issue partially by allowing a transparency channel in the texture, but a

more principled approach is desirable.

CLIP Limitations Using an image model to generate 3D shapes comes with its

own challenges, since the model is trained with images it often projects artifacts to

the mesh. Some examples of this can be seen in Figure 8 where the pyramid has small

people on its side and Figure 13 where the mount Everest has the text "Everest" on

its side and tip, note that we Ąnd using the larger CLIP ViT/B-32 model alleviates

the text issue.

In future work we will aim to further improve shape based constraints and explore

methods to provide more user control in the generative process.

7.2 Future Works

The speed of development in generative deep learning is unprecedented and even

after publication of our work there are already multiple papers focused on text

29

Figure 15: Using SDS loss proposed in Dreamfusion [8] to texture a car model,
diffusion based losses outperform CLIP

Figure 16: Left: Depth map input to depth conditioned diffusion models. Right:
Three output images generated by the model showing its ability to follow input depth
map

to 3D. The current state of the art method called Dreamfusion [8] is a successor

to the work DreamĄelds and introduces a novel loss that replaces CLIP with

pretrained text to image diffusion models. SpeciĄcally it uses DDPM based models

mentioned previously and relies on their generative capability over CLIP. This

improves performance on quantative and qualitative metrics.

We investigated this loss function and found that it is well suited to neural

representations like NeRF but struggles with our mesh based framework. However, it

can be used in the same texturing framework as discussed in section 5.4 and we Ąnd

that the quality is much better and more akin to a realistic texture generation such

as for the car result shown in Figure 15

30

Although this new loss function improves qualities it still suffers from certain

problems that affect our work as well. The problem of 3D reconstruction based on

2D information is itself very difficult for the same reason that inverse rendering is

hard: there exist many 3D shapes that result in similar 2D images. The optimization

landscape is very non-convex and therefore we often Ąnd bad local minima such as

situations where instead of creating a shape the method paints all the requested

scene information on to a Ćat plane. Without any geometric prior injection it will be

difficult to overcome these issues

Recent open source text based diffusion models also incorporate conditioning on

depth maps, this allows injecting some shape information in to the text to image

generation pipeline, in Figure 16. Exploiting the depth consistency of these newer

diffusion models to create accurate shapes is an interesting avenue of research that

may help in the quest for robust text to 3D shape generation.

31

References

[1] K. Crowson, S. Biderman, D. Kornis, D. Stander, E. Hallahan, L. Castricato,

and E. Raff, ŞVqgan-clip: Open domain image generation and editing with

natural language guidance,Ť in Computer VisionŰECCV 2022: 17th European

Conference, Tel Aviv, Israel, October 23Ű27, 2022, Proceedings, Part XXXVII,

pp. 88Ű105, Springer, 2022. vii, 11

[2] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew,

I. Sutskever, and M. Chen, ŞGlide: Towards photorealistic image generation

and editing with text-guided diffusion models,Ť arXiv preprint arXiv:2112.10741,

2021. vii, 11

[3] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, ŞHierarchical text-

conditional image generation with clip latents,Ť 2022. vii, 5, 9, 11, 16, 17

[4] A. Sanghi, H. Chu, J. G. Lambourne, Y. Wang, C.-Y. Cheng, M. Fumero,

and K. R. Malekshan, ŞClip-forge: Towards zero-shot text-to-shape generation,Ť

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 18603Ű18613, 2022. vii, 12

[5] O. Michel, R. Bar-On, R. Liu, S. Benaim, and R. Hanocka, ŞText2mesh: Text-

driven neural stylization for meshes,Ť arXiv preprint arXiv:2112.03221, 2021. vii,

12

[6] A. Jain, B. Mildenhall, J. T. Barron, P. Abbeel, and B. Poole, ŞZero-shot text-

guided object generation with dream Ąelds,Ť 2022. vii, viii, 12, 20, 21, 22, 23,

26, 27

[7] V. W. Liang, Y. Zhang, Y. Kwon, S. Yeung, and J. Y. Zou, ŞMind the

gap: Understanding the modality gap in multi-modal contrastive representation

learning,Ť Advances in Neural Information Processing Systems, vol. 35,

pp. 17612Ű17625, 2022. vii, 15, 16

32

[8] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, ŞDreamfusion: Text-to-3d

using 2d diffusion,Ť arXiv, 2022. viii, 30

[9] N. Mohammad Khalid, T. Xie, E. Belilovsky, and T. Popa, ŞClip-mesh:

Generating textured meshes from text using pretrained image-text models,Ť in

SIGGRAPH Asia 2022 Conference Papers, pp. 1Ű8, 2022. 3

[10] J. F. Hughes, M. S. McGuire, J. Foley, D. F. Sklar, S. K. Feiner, K. Akeley,

A. Van Dam, and J. D. Foley, Computer graphics. Boston, MA: Addison-Wesley

Educational, 3 ed., Feb. 2009. 4

[11] H. Xie, H. Yao, X. Sun, S. Zhou, and S. Zhang, ŞPix2vox: Context-aware 3d

reconstruction from single and multi-view images,Ť in ICCV, 2019. 4

[12] M. Tucsok, S. H. Gazani, K. Gupta, and H. Najjaran, Ş3d reconstruction from 2d

images: A two-part autoencoder-like tool,Ť 2022 IEEE International Conference

on Systems, Man, and Cybernetics (SMC), pp. 538Ű543, 2022. 4

[13] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q. Huang, Z. Li,

S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu, ŞShapenet: An

information-rich 3d model repository,Ť CoRR, vol. abs/1512.03012, 2015. 4

[14] J. Reizenstein, R. Shapovalov, P. Henzler, L. Sbordone, P. Labatut, and

D. Novotný, ŞCommon objects in 3d: Large-scale learning and evaluation of

real-life 3d category reconstruction,Ť CoRR, vol. abs/2109.00512, 2021. 5

[15] T. Ridnik, E. B. Baruch, A. Noy, and L. Zelnik-Manor, ŞImagenet-21k

pretraining for the masses,Ť CoRR, vol. abs/2104.10972, 2021. 5

[16] J. Ho, A. Jain, and P. Abbeel, ŞDenoising diffusion probabilistic models,Ť in

Advances in Neural Information Processing Systems (H. Larochelle, M. Ranzato,

R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33, pp. 6840Ű6851, Curran

Associates, Inc., 2020. 5

[17] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, ŞMultimodal deep

learning,Ť in Proceedings of the 28th International Conference on International

Conference on Machine Learning, ICMLŠ11, (Madison, WI, USA), p. 689Ű696,

Omnipress, 2011. 5

[18] X. Hu, Z. Gan, J. Wang, Z. Yang, Z. Liu, Y. Lu, and L. Wang, ŞScaling up

vision-language pre-training for image captioning,Ť CoRR, vol. abs/2111.12233,

2021. 5

33

[19] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhutdinov, R. S. Zemel,

and Y. Bengio, ŞShow, attend and tell: Neural image caption generation with

visual attention,Ť CoRR, vol. abs/1502.03044, 2015. 5

[20] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,

G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,

ŞLearning transferable visual models from natural language supervision,Ť CoRR,

vol. abs/2103.00020, 2021. 5

[21] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,

T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,

and N. Houlsby, ŞAn image is worth 16x16 words: Transformers for image

recognition at scale,Ť CoRR, vol. abs/2010.11929, 2020. 6

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

č. Kaiser, and I. Polosukhin, ŞAttention is all you need,Ť Advances in neural

information processing systems, vol. 30, 2017. 6

[23] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, ŞEnd-to-end recovery of

human shape and pose,Ť CoRR, vol. abs/1712.06584, 2017. 6

[24] Y. Jiang, D. Ji, Z. Han, and M. Zwicker, ŞSdfdiff: Differentiable rendering of

signed distance Ąelds for 3d shape optimization,Ť in The IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June 2020. 6

[25] G. Pavlakos, L. Zhu, X. Zhou, and K. Daniilidis, ŞLearning to estimate 3d human

pose and shape from a single color image,Ť in Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 459Ű468, 2018. 6

[26] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and

R. Ng, ŞNerf: Representing scenes as neural radiance Ąelds for view synthesis,Ť

in ECCV, 2020. 7

[27] L. Yariv, J. Gu, Y. Kasten, and Y. Lipman, ŞVolume rendering of neural implicit

surfaces,Ť in Thirty-Fifth Conference on Neural Information Processing Systems,

2021. 7

[28] C. Loop, Smooth Subdivision Surfaces Based on Triangles. PhD thesis, January

1987. 7, 13

34

[29] J. Stam, ŞEvaluation of loop subdivision surfaces,Ť in SIGGRAPHŠ98 CDROM

Proceedings, Citeseer, 1998. 7, 14

[30] J. Kurchan, ŞFluctuation theorem for stochastic dynamics,Ť Journal of Physics

A: Mathematical and General, vol. 31, no. 16, p. 3719, 1998. 7

[31] J. Ho, A. Jain, and P. Abbeel, ŞDenoising diffusion probabilistic models,Ť

Advances in Neural Information Processing Systems, vol. 33, pp. 6840Ű6851,

2020. 7

[32] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, ŞCascaded

diffusion models for high Ądelity image generation.,Ť J. Mach. Learn. Res.,

vol. 23, no. 47, pp. 1Ű33, 2022. 9

[33] L.-Y. Wei and M. Levoy, ŞFast texture synthesis using tree-structured vector

quantization,Ť in Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH Š00, (USA), p. 479Ű488, ACM

Press/Addison-Wesley Publishing Co., 2000. 10

[34] S. Dass, A. Jain, and X. Lu, ŞFace detection and synthesis using markov random

Ąeld models,Ť in 2002 International Conference on Pattern Recognition, vol. 4,

pp. 201Ű204 vol.4, 2002. 10

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

and Y. Bengio, ŞGenerative adversarial networks, 1Ű9,Ť arXiv preprint

arXiv:1406.2661, 2014. 10

[36] M. Mirza and S. Osindero, ŞConditional generative adversarial nets,Ť arXiv

preprint arXiv:1411.1784, 2014. 10

[37] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and

T. Aila, ŞAlias-free generative adversarial networks,Ť in Proc. NeurIPS, 2021. 10

[38] P. Esser, R. Rombach, and B. Ommer, ŞTaming transformers for high-resolution

image synthesis,Ť in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, pp. 12873Ű12883, 2021. 10

[39] O. Patashnik, Z. Wu, E. Shechtman, D. Cohen-Or, and D. Lischinski, ŞStyleclip:

Text-driven manipulation of stylegan imagery,Ť in Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), pp. 2085Ű2094, October

2021. 10

35

[40] K. Chen, C. B. Choy, M. Savva, A. X. Chang, T. Funkhouser, and S. Savarese,

ŞText2shape: Generating shapes from natural language by learning joint

embeddings,Ť arXiv preprint arXiv:1803.08495, 2018. 12

[41] K. Fukamizu, M. Kondo, and R. Sakamoto, ŞGeneration high resolution 3d

model from natural language by generative adversarial network,Ť arXiv preprint

arXiv:1901.07165, 2019. 12

[42] F. Hong, M. Zhang, L. Pan, Z. Cai, L. Yang, and Z. Liu, ŞAvatarclip:

Zero-shot text-driven generation and animation of 3d avatars,Ť arXiv preprint

arXiv:2205.08535, 2022. 12

[43] N. Jetchev, ŞClipmatrix: Text-controlled creation of 3d textured meshes,Ť arXiv

preprint arXiv:2109.12922, 2021. 12

[44] S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehtinen, and T. Aila, ŞModular

primitives for high-performance differentiable rendering,Ť ACM Transactions on

Graphics, vol. 39, no. 6, 2020. 14, 18

[45] J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala, and S. Laine, ŞAppearance-

driven automatic 3d model simpliĄcation,Ť in Eurographics Symposium on

Rendering, 2021. 15, 17

[46] J. Ho, A. Jain, and P. Abbeel, ŞDenoising diffusion probabilistic models,Ť

Advances in Neural Information Processing Systems, vol. 33, pp. 6840Ű6851,

2020. 16

[47] C. Schuhmann, R. Vencu, R. Beaumont, R. Kaczmarczyk, C. Mullis, A. Katta,

T. Coombes, J. Jitsev, and A. Komatsuzaki, ŞLaion-400m: Open dataset of

clip-Ąltered 400 million image-text pairs,Ť ArXiv, vol. abs/2111.02114, 2021. 16

[48] D. P. Kingma and J. Ba, ŞAdam: A method for stochastic optimization,Ť in

3rd International Conference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and

Y. LeCun, eds.), 2015. 17

[49] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and

W. Brendel, ŞImagenet-trained CNNs are biased towards texture; increasing

shape bias improves accuracy and robustness.,Ť in International Conference on

Learning Representations, 2019. 17

36

[50] D. H. Park, S. Azadi, X. Liu, T. Darrell, and A. Rohrbach, ŞBenchmark for

compositional text-to-image synthesis,Ť in NeurIPS Datasets and Benchmarks,

2021. 26

37

