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Abstract 

Star Scientists’ Prediction in the Field of Artificial Intelligence Using Machine Learning 

Techniques  

 

Koosha Shirouyeh 

 

Star scientists are highly influential researchers who have made significant 

contributions to their field, gained widespread recognition, and often attracted substantial 

research funding. They are critical for the advancement of science and innovation, and they 

have a significant influence on the transfer of knowledge and technology to industry. 

Identifying potential star scientists before their performance becomes outstanding is 

important for recruitment, collaboration, networking, or research funding decisions.  The 

objectives of this study are to develop a prediction method for star scientists in the artificial 

intelligence scientific ecosystem and to investigate the features related to their success. 

Bibliographic data was extracted from Scopus and data mining techniques were employed 

to gain insights into the authors’ discipline, gender, and ethnicity. The h-index was used as 

a proxy for research performance, and a dynamic profile of authors was established. Rising 

stars were found to have different patterns compared to their non-rising stars counterparts 

in almost all the early-career features. Social network analysis showed that certain features 

such as gender and ethnic diversity play important role in scientific collaboration and that 

they can significantly impact an author's career development and success. The prediction 

of rising stars was based on the author's early-career characteristics such as quantity and 

quality of research output, metrics obtained from social network analysis, and various 

diversity measures. Several classifiers in machine learning were trained, tested, 

implemented, and compared in the prediction task. It was shown that the Random Forest 

outperformed other classifiers and that the most important combination of features in 

predicting star scientists in the artificial intelligence field is the number of articles, group 

discipline diversity, and weighted degree centrality. Our findings highlight the importance 

of considering the authors' characteristics from different categories of features in the early 

stages of their careers to identify rising stars. This study offers valuable insights for 
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researchers, practitioners, and funding agencies interested in identifying and supporting 

talented researchers. 

Keywords: Star Scientists, Social Network Analysis, Machine Learning, Data 

Mining 
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Chapter1        

Introduction 
 

Star scientists are individuals who have made exceptional contributions to their 

respective fields, characterized by high publication and citation rates, groundbreaking 

research contributions, and influential collaborations (Hirsch, 2005; Ioannidis et al., 2014). 

Identifying and understanding the characteristics of star scientists is crucial for advancing 

research and applications in various fields, as well as recognizing and supporting 

exceptional researchers (Azoulay et al., 2011). Star scientists are particularly important due 

to their ability to drive innovation and interdisciplinary collaborations. They often have the 

expertise and influence to bring together researchers from different fields, leading to new 

insights and breakthroughs in research (Lee & Bozeman, 2005; Uzzi et al., 2013). 

Motivated by the importance of understanding and recognizing star scientists, this 

thesis focuses on developing a method that can accurately predict the individuals becoming 

star scientists in their respective fields. Specifically, this research focuses on predicting star 

scientists in the field of AI, which has seen explosive growth and significant advancements 

in recent years (Figure 1). The motivation for predicting star scientists in AI is multifaceted. 

First, the field of AI is highly competitive and fast-paced, with new developments and 

applications emerging constantly. Predicting star scientists in AI can help researchers, 

funding agencies, and institutions recognize and support exceptional researchers, as well 

as identify emerging research directions and collaborations. Second, predicting star 

scientists in AI can provide valuable insights into the characteristics and patterns of 

successful researchers. By analyzing the features and patterns of star scientists, such as 

their collaboration networks along with publication and citation records, this study aims to 

identify key factors that contribute to research excellence and success in AI. 
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Figure 1. The number of authors and publications over time in the field of AI recorded in Scopus1  database 

 

To achieve these objectives, this study proposes a prediction method that incorporates 

features from different categories with a high contribution to the prediction task. 

Specifically, the research focuses on developing a prediction method that analyzes the 

collaboration network of researchers in the field of AI. By considering factors such as 

network measures, diversity, and research output, this thesis aims to predict the individuals 

becoming star scientists. In addition to predicting star scientists, this research also aims to 

investigate the differences between rising stars and their peers. By comparing the 

characteristics and patterns in early career of these groups, we aim to identify key factors 

that distinguish rising stars and contribute to their success.  

 
1   Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles 

from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject 

fields: life sciences, social sciences, physical sciences, and health sciences. http://www.scopus.com 
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Chapter2        

Literature-Review 
 

2.1. Definition of Star Scientists 

Measuring scientific performance provides helpful information for comparing 

academics and highlighting the star scientists – scholars with outstanding performance 

compared to their peers. Studies on the conceptualization and identification of stars in 

various academic disciplines or sectors considered several techniques, some of which are 

described in Table 1. The fundamental belief that stars have extraordinary value creation 

in organizations serves as the foundation for all conceptualization strategies used by studies 

of star scientists. 
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Table 1. Star scientists’ definitions in literature 

Author(s) Field/Industry Star scientists 

Lowe & Gonzalez-

Brambila (2007) 

Six disciplines from biology and 

chemistry to computer and electrical 

engineering, and materials 

Highly productive scholars that become entrepreneurs. 

Hess & Rothaermel 

(2011) 
Pharmaceutical industry 

“Researchers who had both published and been cited at 

a rate of three standard deviations above the mean” 

Niosi & Queenton (2010) Biotechnology firms and academics 
Those with more than five patents and more than one 

major publication per year 

Azoulay et al. (2010) Academic life sciences 

Scientists who satisfy at least one of the following 

criteria for cumulative scientific achievement: (1) 

Highly funded scientists; (2) highly cited scientists; (3) 

top patentees; and (4) members of the National 

Academy of Sciences. 

Trippl & Maier (2011) All scientific disciplines 

Authors of highly cited research papers, identified by 

the number of citations they generated in journals in 

the ISI databases in the period 1981–2002”. (P. 1654) 

Schiffauerova & Beaudry 

(2011) 
Biotechnology Those have more than 20 patents 

A. Hess & Rothaermel 

(2012) 

All high-tech scientific academic 

disciplines 

Faculty founders of new tech ventures are star 

scientists 

Oettl (2012) Immunology 
People with high levels of scientific productivity 

(publications) and helpfulness 

Moretti & Wilson (2014) Biotechnology 

Those patent assignees whose patent count over the 

previous ten years is in the top 5% of patent assignees 

nationally 

Hoser (2013) Nanotechnology 
Those academics with the maximum number of 

citations 

Tartari et al. (2014) All scientific disciplines 

Academics in the top 1% of the distribution of citations 

in their discipline, and the top 25% of the distribution 

for grants received from the EPSRC” 

Nagane et al. (2018) All scientific disciplines 
Scientists in the list of Highly Cited Researchers 

(HCR) published by Clarivate Analytics company. 

Abramo et al. (2019) All scientific disciplines 
Professors place among the top 10% by fractional 

scientific strength in each scientific disciplinary sector. 

Sá et al. (2020) All scientific disciplines Scientists holding research chairs 

 

2.2. Importance of Star Scientists 

Star scientists are crucial to the advancement of research and applications in various 

fields (Wagner & Leydesdorff, 2005). They can drive innovation and interdisciplinary 

collaborations, often leading to new insights and breakthroughs in research (Wuchty et al., 
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2007). Recognizing and supporting exceptional researchers is therefore critical for the 

progress of science and technology (Azoulay et al., 2019). In this section, we will delve 

deeper into the importance of star scientists and their impact on research and society. 

Star scientists are often characterized by high publication and citation rates, 

groundbreaking research contributions, and influential collaborations (Lee & Bozeman, 

2005). They are often the ones who lead research efforts in their fields, providing guidance 

and inspiration to others. Moreover, they are often the recipients of prestigious awards and 

honors, which can have a significant impact on their careers and research trajectory 

(Bornmann, 2014). 

The impact of star scientists goes beyond their individual accomplishments. They 

have been found to contribute disproportionally across contexts (O’Boyle Jr & Aguinis, 

2012) and collaborate in a wider range of scietntists (Abramo et al., 2019). They play a 

gatekeeper role to boost the knowledge flow within several research groups and affect their 

neighboring researchers in terms of output and recognition (Azoulay et al., 2010; Oettl, 

2012). Stars not only affect academia but also have a significant influence on firms when 

they transfer advanced knowledge to new technology firms through different channels such 

as founders or advisors (Zucker et al., 1998). Their work often leads to the development of 

new technologies and applications, which can have significant economic and societal 

benefits. In addition, they are often involved in policy-making and public engagement, 

helping to shape public discourse and opinion on important issues (Leshner, 2003). 

 

2.3. Predicting Star Scientists 

A researcher's or professional's career appraisal over time shows that individuals 

can go through different phases based on their performance during the course of their career 

(Figure 2). While some people have consistent success throughout their careers, others 

have fluctuating tendencies. Because productive scientists receive greater recognition, 

which encourages their future productivity, star scientists are anticipated to have adominant 

profile during their junior stage, allowing them to reap the benefit of accumulative 

advantage and become a star (Azoulay et al., 2010). Given the importance of star scientists, 

the prediction of rising stars in academia has been an active research area in recent years, 

and various approaches have been proposed to address this task. 
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Figure 2. Evaluation of authors over time (Tsatsaronis et al., 2011) 

Major techniques pertaining to social network analysis (SNA) and machine 

learning (ML2) prediction employing bibliographic networks3 were used to identify rising 

stars. In the beginning, researchers attempted to use the dynamics of author ranking based 

on compiling a list of each author's important scores to carry out SNA (Daud et al., 2013; 

Li et al., 2009). There have also been studies that used ML methods to mine potential future 

star scientists. For instance, Daud et al. (2015) used ML classifiers based on increases in 

the number of citations coupled with three kinds of characteristics (author, venue4, and co-

authorship) to forecast future rising stars. Their findings demonstrated the significance of 

the venue characteristic for the prediction job. Regression approaches were also used, 

taking both temporal and content variables into account (Zhang et al., 2017). They 

discovered that temporal factors, as opposed to venue features, are the strongest predictors 

 
2 ML is a set of methods that can automatically detect patterns in data, and then use the uncovered patterns 

to predict future data, or to perform other kinds of decision making under uncertainty (Bishop & Nasrabadi, 

2006). 

3 Bibliographic networks refer to networks of bibliographic data that capture relationships between 

scholarly publications, authors, and citations. 

4 Venue characteristics typically refer to the characteristics of the publication venue where a researcher's 

work is published. The publication venue could be a journal, conference, or any other academic forum 

where research is presented and published. 
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of rising stars. Considering different times for computing the performance and features, 

this technique could be more reasonable than the previous one. Both, however, use citation 

counts as their assessment measure for identifying rising stars, which may not be a reliable 

signal to fully assess a researcher's success (Nie et al., 2019). 

Nie et al. (2019) proposed a new evaluation method to improve this downside. They 

used the number of articles, their quality, the number of citations, the domain cited factor, 

and the co-impact authors to produce a composite score for each scientist. Then, they 

employed increments in their composite score over two successive five-year periods to 

create their labels. Their techniques outperform earlier research based on citation increase, 

according to a comparative ML analysis, and the venue characteristic was revealed to be a 

key factor in identifying rising stars. 

Despite the numerous approaches proposed for identifying rising stars in scientific 

research, there are still several research gaps in the field. One such gap is the absence of a 

reliable and all-encompassing method for identifying star scientists. A universal scientific 

performance evaluation indicator is the cornerstone of an all-encompassing method for 

identifying rising stars. While Nie et al. (2019) proposed a composite score based on 

multiple indicators to overcome the limitations of single-number indicators such as citation 

counts used in prior studies, they acknowledged this approach require a wide range of 

metadata about citations, coauthors, and venues which   may complicate the assessment of 

scientific performance. 

On one hand, there is a need to develop more precise and effective models that can 

incorporate various features to predict rising stars. Several studies have measured the 

correlation between current research impact and different attributes. For example, SNA has 

been utilized, and significant positive measures were found between degree centrality and 

the h-index (Abbasi & Altmann, 2011). Additionally, diversity measures were investigated 

and revealed that, in general, diversity has a strong association with research performance 

(AlShebli et al., 2018). Including such features may improve prediction results. 

On the other hand, previous researches (e.g. Daud et al., 2015; Nie et al., 2019) 

have compared the predictive results between different categories of features and identified 

the significance of these features based on this comparison. However, a more 

comprehensive approach would be to consider a combination of features from various 
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categories rather than looking at each category in isolation. Furthermore, conventional 

methods have often relied on under-sampling techniques that exclude a portion of the 

researcher population, which should be avoided in the development of more accurate and 

inclusive models. 

Lastly, most existing approaches for identifying rising stars are focused on 

identifying individual researchers. However, scientific research is often a collaborative 

effort, and the success of a researcher may also depend on the success of their 

collaborations. Therefore, approaches that consider not only individual researchers but also 

their collaborations and the dynamics of their scientific networks should be explored. 

In conclusion, identifying rising stars in scientific research is a complex task that 

requires the consideration of various factors. Existing approaches have made significant 

progress in identifying rising stars, but there are still several research gaps that need to be 

addressed. In this study, we tried to cover some of these gaps. The first objective of this 

thesis is developing a prediction method in the field of ML to predict star scientists using 

a combination of features from different categories. The other objective is investigating the 

relationship of early-career features and comparing rising and non-rising star scientists: 

Because the current characteristics of academics may impact their future success, we 

investigate these characteristics to determine if they are linked with each other. 

Furthermore, we compared if there is a significant difference in these features between 

rising and non-rising stars. 
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Chapter3        

Methodology 
 

The Methodology of this thesis includes the several steps (Figure 3). To collect data on 

researchers in the field of AI, various datasets were obtained from the Scopus database. 

These datasets were cleaned and merged using pre-processing techniques. Then, we 

extracted significant metadata such as research themes, gender, and ethnicity of the authors, 

as well as network measures and diversities. Through social network and statistical 

analysis, we gained a thorough understanding of the authors' behavior and academic 

relationships. Finally, based on the increase in their scientific impact over two consecutive 

periods, junior AI scientists were labeled as rising stars or non-rising stars. Then, using 

over-sampling approaches, several classifiers were trained and tested using features in the 

first five years of the authors’ careers. To get the best prediction outcome, candidate 

classifiers' comparison results were employed. In addition, the importance of features was 

examined in order to ascertain which characteristics of scholars in the early stages of their 

careers are crucial for them to develop into star scientists in the future. This leads to 

proposing a combination of features from different categories which are important for the 

prediction task. 

3.1. Scientific Production in Artificial Intelligence 

3.1.1. Data Collection and Preprocessing 

To explore the AI academic ecosystem, considerable data about individuals, their 

publication, their research performance, and collaborations are required. The basic strategy 

of the thesis is based on the extensive use of information gathered from Scopus, the world's 

biggest abstract and citation database of peer-reviewed academic literature. In the field of 

computer science, Scopus retrieved the highest percentage of articles and indexed a high 

number of unique articles (Cavacini, 2015). This was the main motivation in selecting 

Scopus over similar databases since the thesis aims to analyze the AI field. 

The collection of the data required several stages. First, Elsevier's Scopus was used 

to retrieve bibliographic information, which included the title, abstract, keywords, 
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publication date, author list, and other details. The database was filtered to include research 

articles, conference papers, book chapters, and books published between 2000 and 2019. 

Only articles with accessible  title and abstract were included. The search term ("artificial 

intelligence" OR "machine learning" OR "deep learning") is used to find papers on artificial 

intelligence where at least one of the terms was used in the title, abstract, or keywords 

(Hajibabaei et al., 2022). Then, articles without an abstract were eliminated which resulted 

in 45,734 publications written by 162,581 authors. The citation patterns and bibliometric 

indicators of review papers and survey papers might be different from those of other types 

of research papers, which could potentially skew the results, specially the performance 

metrics such as h-index (Radicchi et al., 2008; Radicchi & Castellano, 2012; Stringer et 

al., 2010). As a response, we excluded from our analysis any review publications that we 

could locate based on tell-tale phrases in the paper's keywords, such as "literature review", 

"literature", or "survey". This procedure resulted in the discovery and removal of 965 

papers. 

A new query based on these articles was created and retrieved the historical citation 

count in order to calculate the h-index of the authors throughout different periods of time. 

In addition, historical publisher metadata was taken from the SCImago5 Journal website in 

order to rank the publications according to the publisher's SCImago Journal Rank (SJR6) 

at the time of publication. To this end, publications were ranked into three levels based on 

the SJR of their publisher at the publishing time: 1) if SJR is more than three standard 

deviations above the mean of all journals at the publishing time, the rank of the journal is 

considered as A, 2) if it is more than a standard deviation above the mean but less than 

three standard deviations above the mean, it is considered as rank B, and 3) if it is less than 

a standard deviation above the mean, it is considered as rank C. 

 

 
5 The SCImago Journal & Country Rank is a publicly available portal that includes the journals and country 

scientific indicators developed from the information contained in the Scopus database. 

https://www.scimagojr.com/ 

6 SJR indicator is a measure of the prestige of scholarly journals that accounts for both the number of 

citations received by a journal and the prestige of the journals where the citations come from. 

https://www.scimagojr.com/
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Figure 3. The conceptual flow 
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3.1.2. Research Performance Indicators 

The scientific performance of scientists the cornerstone of finding star scientists. 

Scientific performance evaluation is strongly based on the dissemination of scientific 

research (Lippi & Mattiuzzi, 2017). The use of trustworthy scientific performance metrics 

in the evaluation of the value of individual contributions to science is acknowledged as 

being crucial in many academic communities across the globe (Zerem, 2013). In fact, 
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making these types of analyses is a science itself. Along with evaluating a scientific output, 

a wide range of other scientific activities can also be used to gauge a scientist's scientific 

credibility. Examples of these activities include the quantity and quality of extramural 

funding, leadership in national or international academic societies, service on respected 

journal editorial boards, participation in government-sponsored national peer review 

committees, and the number of students who obtained PhD under the individual’s 

supervision (Larivière et al., 2016; Moed, 2010). Although the aforementioned activities 

are significant and contribute to a certain extent to a scientist's scientific credibility, the 

pertinent science metrics systems only consider publications and ignore other factors of 

scientific relevance that are typically taken into account when determining a scientist's 

promotion and tenure (Greenberg, 2009; Siler et al., 2015). This is due to the fact that these 

activities, regardless of their significance, are quite heterogeneous since each has unique 

characteristics and necessitates the use of various assessment criteria (Bornmann & Mutz, 

2015). As a result, there are no universal evaluation criteria for these scientifically relevant 

factors, and their worth is instead mostly determined by the assessment's objective 

(Wouters, 2014).  

At the universal level of analysis, many indicators are routinely established, typically 

based on both the production of scientists as well as the impact of their documents, such as 

the impact factor (IF), the total number of documents, the number of citations, the number 

of citations per document, or the number of highly cited publications. The use of combined 

indicators that provide information on various elements of scientific output is widely 

suggested (e.g, van Leeuwen et al., 2003). The h-index, on the other hand, was created in 

2005 (Hirsch, 2005), and it combines a measure of the amount and impact of a researcher's 

scientific output into a single metric. According to Hirsch, “A scientist has index h if h of 

his or her papers have at least h citations each and the other papers have less than h citations 

each”. 

This indicator has stimulated the interest of the scientific community, as seen by a large 

number of papers on the subject. The fundamental advantage of the h-index is that it 

combines a measure of quantity and impact into a single indicator. It has been computed 

in several domains such as physics (Hirsch, 2005), biology (Bornmann & Daniel, 2005), 

information science (Cronin & Meho, 2006), and business (Saad, 2006). It may be used for 
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journal evaluation (Braun et al., 2006; Rousseau, 2006), comparative description of 

scientific themes (Banks, 2006), and awarding of scientific prizes (Glanzel & Persson, 

2005). Hirsch demonstrated that this indicator exceeds conventional single-number criteria 

often used to evaluate a researcher's scientific output. Also, anyone with access to 

bibliographic databases can easily retrieve the h-index, and it is also straightforward to 

comprehend. 

Despite the advantages, there are still some limitations to this indicator to address. 

Because of variances in output and citation patterns within areas, there are inter-field 

disparities in typical h values (Hirsch, 2005), hence the h-index should not be used to 

compare scientists from various disciplines. The other limitation would be the effect of 

time. In other words, the h-index is affected by the length of each scientist's career since 

the pool of publications and citations grows over time (Hirsch, 2005; Kelly & Jennions, 

2006). Hirsch (2005) proposed the "m parameter" to compare scientists at different phases 

of their careers, which is calculated by dividing h by a scientist's scientific age (number of 

years from the author's first publication). Moreover, highly cited articles are useful for 

determining the h-index, but once they are chosen to be among the top h papers, the amount 

of citations they get is immaterial. This is an h-index disadvantage that Egghe (2006) has 

attempted to alleviate with a new index dubbed the g-index7.  

In this thesis, h-index is considered a proxy of the research performance of the authors 

and calculated at different stages of the authors’ careers. The nature of the study is what 

led to this choice. First, despite the expectation that stars will produce highly cited research, 

it may not be feasible to evaluate the scholars using the g-index in order to identify rising 

stars. The g-index will be heavily impacted by a few highly referenced articles, for instance, 

if an author has several papers but only one or two of them have high citations while the 

others have low citation counts. A star scientist's outstanding profile gives the impression 

that their work is regularly, if not always, excellent. Second, the h-index performs well in 

this thesis since the focus of study is on authors from the same domain. Finally, as was 

already noted, the h-index is widely available, allowing people of all knowledge levels and 

backgrounds to utilize it. 

 
7 the g-index is the unique largest number such that the top 𝑔 articles received together at least 𝑔2 citations. 
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3.2. Data Mining 

There are some personal characteristics of authors that should be investigated to 

address patterns in academic society. For example, it has been established that there is a 

gender bias in academia, and this has been noted in the community of star scientists as well 

(Sá et al., 2020). It has also been shown that stars have a higher propensity to collaborate 

at the international level compared to their non-star peers (Abramo et al., 2019). 

Furthermore, some diversity measures, such as ethnic diversity, are substantially connected 

with scholars’ scientific achievement (AlShebli et al., 2018). To assess these elements, we 

must first extract information that is not included in the original data. The following are 

descriptions of these metadata and data mining approaches. 

 

3.2.1. Authors’ Disciplinary Profiles 

A topic modeling approach is adopted to find the domain of documents that leads 

to identifying the disciplinary profile of authors. The title and abstract of a paper can 

properly present the special keywords and main idea of the research respectively in a few 

well-chosen words (Ebadi et al., 2020). Latent Dirichlet Allocation (LDA) topic modeling 

(Blei et al., 2003) on the merged titles and abstracts of the AI-related publications is used 

to derive their domain. To apply the LDA model, sequences of preprocessing steps were 

carried out on the corpus including lower-casing, short words removal (i.e., words with 

less than 3 characters), custom stop-words removal, phrase detection, tokenization, and 

non-alphabetic characters removal. 

To find the best number of topics, we built several LDA baseline models with 

different numbers of topics and then evaluated them using metrics, such as perplexity and 

log-likelihood (Griffiths & Steyvers, 2004), in addition to visualizing the inter-topic 

distance mapping (Figures 4 shows the overlap of models considering 8 and 9 topics) to 

find the model with the highest performance. Along with quantitative metrics, the quality 

evaluation was also applied by observing keywords and document-topic distribution of 

models. Combining both quantitative and qualitative analysis, the best number of topics is 

found to be 8. Each topic along with its keywords is presented in Table 2. Afterward, Given 
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the LDA model, each publication has a chance of being related to more than one topic. the 

authors' research disciplines are identified based on the average topic distribution across 

their previous publications using the document-topic probability matrix created by the 

LDA technique. Each author was then represented as an 8-discipline topic distribution 

vector, with each component representing the average subject distribution of the author's 

previous publications in the given field. 

 

 

 

Figure 4. Inter topic distance for LDA model with 8 and 9 topics (via multidimensional scaling). Circles represent the 

different topics in the LDA model, where the size of each circle represents the proportion of documents in the corpus that 

are assigned to that topic. Overlapping circles indicate that some documents in the corpus may be assigned to multiple 

topics with relatively high probability. The marginal topic distribution percentage shows the percentage of documents 

that have a high probability of belonging to each topic, based on the LDA model. The LDA model with 8 topics resulted 

the least overlapping among other LDA models with different number of topics. 
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Table 2. Topics and keywords 

Topic Keywords 

1 network, design, application, time, human, artificial intelligence, information 

2 protein, gene, sequence, prediction, expression, biological, DNA 

3 knowledge, ontology, text, mining, language, annotation, query 

4 image, segmentation, brain, detection, shape, region, magnetic resonance 

5 prediction, machine learning, neural network, cluster, kernel, error, performance 

6 patient, disease, clinical, cancer, machine learning, diagnosis 

7 Classification, feature, support vector machine, accuracy, classifier, recognition, training 

8 Technology, management, sensor, service, decision support, environment, software 

 

3.2.2. Gender Determination 

The gender of the authors is detected by Hajibabaei et al. (2022), members of our 

research group. They used ML and Natural Language Processing (NLP8) to estimate 

researchers' gender from a variety of variables such as their first and last names, affiliation, 

and country of origin, using an automated gender assignment model trained on a large 

labeled dataset of names. On a massive labeled data set of names, the tool trains a 3-class 

ML classifier. It benefits from a customized feature engineering component that increases 

the basic feature set (for example, first and last names and author affiliations) to improve 

model performance. Many aspects, such as language rules in different nations, were taken 

into account when designing and developing new features. For example, most of the female 

surnames in Russian, Czech, and other Slavic languages, finish with the suffix 'ova'. Such 

rules were incorporated into the inference process. Furthermore, they employed NLP 

techniques to further expand the feature set by concentrating on various sections of the first 

and last names. For example, they developed elements that depict the location of 

researchers based on their association, the last n characters of their last names, and so on. 

In addition, they determined areas where a particular first or last name appears frequently 

and added elements to illustrate this information. On this enriched data set, the ML 

 
8 NLP is a subfield of artificial intelligence and computational linguistics that deals with the interactions 

between computers and human (natural) languages (Manning & Schutze, 1999). 
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classifier was trained and produced a label from the set of [“female”, “male”, 

“unisex/unknown”]. 

3.2.3. Author’s Ethnicity 

The ethnicolr9 tool is used to determine each scientist's ethnicity. This classifier, in 

particular, employs a variety of machine-learning approaches to categorize any given name 

into one of the 13 ethnic groups listed below: 

• “Asian, Greater East-Asian, East-Asian”  

• “Asian, Greater East-Asian, Japanese” 

•  “Asian, Indian Sub-Continent” 

•  “Greater African, Africans” 

•  “Greater African, Muslim” 

•  “Greater European, British” 

• “Greater European, East-European” 

• “Greater European, Jewish” 

• “Greater European, West-European, French” 

• “Greater European, West-European, Germanic” 

• “Greater European, West-European, Hispanic” 

• “Greater European, West-European, Italian” 

• “Greater European, West-European, Nordic”. 

 

3.3. Scientific Collaboration Network Analysis and Structural Metrics 

In the early twentieth century, SNA was established with a focus on interactions 

among social entities, such as group communication, commerce between nations, or 

business affairs between entities (Boccaletti et al., 2006). It is a diagnostic technique for 

examining the mechanisms of cooperation and communication among members of various 

groups (Racherla & Hu, 2010). Applying SNA to a certain group of people enables us to 

 
9 “ethnicolr” is a package in Python provided by Sood & Laohaprapanon (2018): 

https://github.com/appeler/ethnicolr/ 

https://github.com/appeler/ethnicolr/
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recognize network member interactions, the quantity, and structure of subgroups within the 

networks, as well as their organization and evolution (Anklam, 2003). The identification 

of both strengths and weaknesses inside and among research organizations, industries, and 

nations as well as the contribution to scientific advancement and financing policies are 

some aims for social network analysis that are addressed in the literature (Owen-Smith et 

al., 2002; Sonnenwald, 2007). 

A graph of actors (or vertices) and links is used to depict social networks (ties, relations, 

or edges). By mapping the graph of authors who have coauthored similar articles, the 

scientific collaboration network serves as an illustration of a social network (Racherla & 

Hu, 2010; Staudt, 2011; Yin et al., 2006). A node represents a researcher in this thesis, and 

a link between two nodes implies that these two scientists have at least one joint 

publication. When two or more scientists interact in a social context, they create a 

collaborative environment that enables the exchange of information and the 

accomplishment of tasks aimed at achieving a mutually shared, overarching goal. This 

collaborative interaction is an essential aspect of scientific research, as it allows researchers 

to pool their expertise, resources, and knowledge to tackle complex problems and make 

important discoveries (Sonnenwald, 2007). This concept states that scientific 

collaborations frequently take place as a result of formal and informal social connections 

made by people who are from different disciplinary, organizational, and national 

backgrounds (Barabâsi et al., 2002; Sonnenwald, 2007). 

The significance of scientific collaboration network analysis is in its potential to aid in 

the understanding of how to efficiently communicate professional and scientific 

information, as well as in evaluating the performance of individuals, organizations, or the 

entire social network. For example, they may use a researcher's social network to reflect 

its collaboration activity within a research community (Abbasi et al., 2010). It is 

demonstrated that in academic society, researchers’ position in collaboration networks 

could affect their performance (Ebadi & Schiffauerova, 2015, 2016). Hence, we try to 

explore the academic collaboration network in AI academic ecosystem and extract 

network-related measures to study the correlation between the position of junior 

researchers in the social network and their status in the future (star or non-star). Moreover, 
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we measure diversity to discover individual and group patterns in early-career of rising 

stars. 

 

 

3.3.1. The Scientific Collaboration Network Matrix and Properties 

Several computer software products are utilized as tools for numerical and visual 

network analysis. Pajek10 is one of these powerful tools. It was created specifically to 

operate, handle, and analyze very large networks with 103 to 106  nodes. It has been 

utilized in academic papers for many years because of its versatility and strong Graphical 

User Interface (GUI), which allows for the simultaneous control of various networks, 

components, and analytic results (Berryman and Angus, 2010). 

Pajek format network files were needed to build in order to prepare the data for analysis. 

We began by exporting the collaboration relations from our database to a two-column 

Excel file for each year to analyze the social network through time. The first column 

provides the authors' identification number (author id) as it appears in the database, 

whereas the second column comprises the coauthors' ids. In the event of numerous 

publications coauthored by this pair of scientists, the same row may appear more than once. 

The number of repetitions is used as a weight for the relationship and shows the regularity 

with which two researchers collaborate. Furthermore, reciprocal rows might occur in the 

dataset if the scholar is listed as an author once and as a collaborator another time. Pajek 

excludes non-identical pairings and persons who name each other reciprocally unless you 

explicitly advise it otherwise for network visualization. Using the Excel2Pajek11 program, 

 
10 Pajek is developed by V. Batagelj and A. Mrvar, Department of Mathematics, Faculty of mathematics 

and physics, University of Ljubljana, in 1999. It is freely available for noncommercial use and can be 

downloaded from the following webpage: http://pajek.imfm.si/doku.php?id=download 

11 Excel2Pajek is a windows program developed in Delphi 7 by Jürgen Pfeffer, from FAS.research, Vienna 

to convert Excel datasets into Pajek format. It can be downloaded from: 

 http://vlado.fmf.uni-lj.si/pub/networks/pajek/howto/excel2Pajek.htm 

http://pajek.imfm.si/doku.php?id=download
http://vlado.fmf.uni-lj.si/pub/networks/pajek/howto/excel2Pajek.htm
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the Excel file was then transformed into a one-mode12 undirected13 network (.net) format 

that Pajek can read. 

Following the creation of the historical social network matrixes, we analytically 

examined the network and determined the following measures for each node (representing 

each author in our network at different points in time). 

• Betweenness Centrality 

 Betweenness centrality may be used to determine if an actor has potential 

influence over network communication (Abbasi & Altmann, 2011; Chung & 

Hossain, 2009). It is determined by dividing the total number of shortest pathways 

by the proportion of shortest paths (between all pairs of nodes) that pass through a 

certain node (Borgatti, 2005). The most central vertices are indicated with the highest 

betweenness centrality (which is between 0 and 1). In other words, high betweenness 

centrality vertices (authors), also known as gatekeepers, are crucial for the 

information transfer between various nodes that are directly connected to the most 

central one (Ebadi & Schiffauerova, 2015a). The betweenness centrality of the given 

node at time t ( 𝑏𝑐𝑡
(𝑖)

) is defined as: 

𝑏𝑐𝑡
(𝑖)

= ∑ ∑
σ𝑗𝑘𝑡

(𝑖)

σ𝑗𝑘𝑡
𝑘𝑗  ∶  𝑖 ≠ 𝑗 ≠ 𝑘  Equation (1) 

Where σ𝑗𝑘𝑡
 denotes the total number of the shortest paths between node 𝑗 and 

𝑘 up to time 𝑡 , and σ𝑗𝑘𝑡

(𝑖)
 is the number of those paths containing node 𝑖 in the same 

period. 

• Degree Centrality 

Indicators of an actor's communication activity include degree centrality 

(Abbasi & Altmann, 2011; Chung & Hossain, 2009). The degree of a node (𝑑𝑐𝑡
(𝑖)

) in 

a straightforward undirected network indicates how many neighbors node 𝑖 has up to 

 
12 One-mode networks are those in which we examine how each actor is connected to every other based on 

a single connection, such as friendship. 

13 Because both parties are equally invested in a connection, undirected ties (edges) are used to represent 

those relationships in undirected networks. 
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time t. Similarly, the degree of each node, which represents a researcher, shows how 

many co-authors that person has collaborated with in the past. 

• Weighted Degree Centrality 

The weight of the linkage 𝑤𝑖𝑗 between nodes 𝑖 and 𝑗 represents the strength 

of their collaboration tie, which reflects how many times they have collaborated. We 

determined each author's weighted degree by dividing the sum of their link weights 

(total number of co-authorships) by the total number of distinct co-authors. Scholars 

who have a strong relationship (often co-authorship with the same partner) are seen 

to be loyal (Abbasi & Altmann, 2011). 

• Clustering Coefficient 

A vertex's clustering coefficient in a network graph indicates how near its 

neighbors are to being a clique14 up to time 𝑡 (complete graph). In other words, it 

demonstrates how closely each scientist is tied to his or her colleagues and the 

likelihood that they will form a closed research network. The clustering coefficient 

is simply the number of edges between neighbors divided by the maximum possible 

for the type of network. It is worth noting that the clustering coefficient has been 

decreasing over periods, with only about a 20% chance of two scientists collaborating 

if both have collaborated with a third scientist (Perc, 2010). For a node 𝑖 with 𝑘𝑡
(𝑖)

 

neighbors at time 𝑡, the local clustering coefficient 𝑡 is defined as: 

𝑐𝑐𝑡
(𝑖)

=
2𝑒𝑡

(𝑖)

𝑘𝑡
(𝑖)

(𝑘𝑡
(𝑖)

−1)
 Equation (2) 

where 𝑒𝑡
(𝑖)

 is the number of edges connecting the 𝑘𝑡
(𝑖)

 neighbors of node i to each 

other at time 𝑡. 

3.3.2. Diversity 

Modern societies place great importance on diversity (Ager & Brückner, 2013; Puritty 

et al., 2017; Wagner & Jonkers, 2017). Diversity has inspired numerous governmental and 

employment practices and has the potential to have far-reaching and long-lasting 

 
14 Based on the graph theory a clique in an undirected graph is a subset of its vertices such that every two 

vertices in the subset are connected by an edge. 
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consequences for society (Arcidiacono et al., 2015; Brown & Langer, 2015; Wagner & 

Jonkers, 2017). Academia is one area where diversity and its effects are widely explored 

(Hong & Page, 2004; Woolley et al., 2010). Co-authorships, which typically involve 

scientists from diverse places, fields, and backgrounds, reveal the structure of academic 

collaboration (Deville et al., 2014; Jia et al., 2017). The tendency towards the collaboration 

network analysis has already prompted endeavors to comprehend the fundamental 

characteristics that contribute to academic performance (Fortunato et al., 2018). Many of 

these characteristics, such as discipline (Hajibabaei et al., 2022), gender (AlShebli et al., 

2018), academic age (Jones & Weinberg, 2011), ethnicity (Freeman & Huang, 2015), and 

affiliation (Gershenson, 2014; Jones et al., 2008), have been researched, and their impact 

on research performance has been described. 

When exploring diversity in research collaborations, we investigate five classes of 

diversity: 

• Ethnic Diversity 

This type of diversity considers each co-author’s ethnic background. As 

explained in the preceding section, we utilize the name ethnicity classifier to 

determine each scientist's ethnicity. 

• Gender Diversity 

This class of diversity takes into consideration the gender of researchers in 

the collaboration networks.  

• Age Diversity: The term age in this context refers to a scientist's academic age, which 

is calculated for each author from the first publication. Classification of authors’ age 

is based on the following bins: 

Academic age group 1: 0-5 years of experience. 

Academic age group 2: 5-10 years of experience. 

Academic age group 3: 10-15 years of experience. 

Academic age group 4: 15-20 years of experience. 

• Discipline Diversity 

Both independently and collaboratively, this category of diversity may be 

quantified. The diversity of co-authors' fields of competence, which correspond to 

the topics with the highest likelihood in each disciplinary author's profile, have been 
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considered at the group level. At the individual level, this diversity is identified by 

the diversity of fields represented in his/her publications. 

• Affiliation Diversity 

This class of diversity takes into consideration the country of the affiliations 

of the co-authors of a paper and measures how diverse this collaboration is at the 

international level. 

Any given diversity measure reveals how unlike its components are from one another. 

A metric of diversity must be used to analyze the connection between this feature and the 

success of the linked group. Shannon entropy (Shannon, 1948) is a widely used diversity 

metric (Aydinoglu et al., 2016; Feng & Kirkley, 2020; Gray, 2011) that evaluates the 

diversity in predicting the type of an element picked at random from the set under study. 

Shannon entropy of set X is calculated as follow: 

𝐻(𝑥) = {
−

1

log(|𝑋|)
∑ 𝑝(𝑥) log 𝑝(𝑥)𝑥∈𝑋    ∀  |𝑋| > 1

0                                                    ∀  |𝑋| = 1
  Equation (3) 

Where 𝑝(𝑥) is the probability of element x in set X. It is notable that in the case of 

categorical elements, this probability is equal to the fraction of the element in the whole 

set. 
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Chapter4        

Result 
 

4.1. Network Visualization and Mathematical Analysis  

A visual depiction of social networks allows for a comprehensive knowledge of huge 

and complicated societies, such as academic research groups (Racherla & Hu, 2010). To 

explore the scientific collaboration network, we constructed a network for each year of the 

study. Analyzing the network of the authors can provide valuable information about the 

structure of the network and its key players. For example, it can help identify the most 

influential authors, the clusters of authors who work closely together, and the key pathways 

or bridges that connect different clusters. To gain a comprehensive understanding of 

scientific collaboration network among AI researchers, we explored their network in 2014 

as an instance. 

At first, by visualizing the network of most central authors, who are often the top 1% 

in terms of betweenness centrality, we gained insights into structure of network, including 

how densely connected different groups or clusters of nodes are, and how these clusters 

may be linked together through the central nodes. This examination can also identify which 

individuals or groups are most influential or have the greatest potential to spread 

information or influence within the network. Overall, it can reveal  the dynamics, structure, 

and key players within a collaboration network (Figure 5). 

The analysis of this network revealed the total number of 99,479 connections (edges) 

between authors, including 5,919 multiple lines representing repeated collaborations. The 

density of the network was found to be 0.0002, indicating that only a small percentage 

(0.019%) of all possible edges are present. This low density is typical in large networks, as 

the number of connections that can be maintained by everyone is limited in comparison to 

the rapidly increasing number of possible connections as the network size increases (de 

Nooy et al., 2005). The average degree centrality of the network was 5.98, indicating that 

on average, each vertex is involved in almost 6 connections. A higher degree leads to a 

denser network. The average degree is a better measure of overall consistency within the 

network than density, as it is not affected by network size and can be compared across 
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networks of different sizes (de Nooy et al., 2005). The average degree with summed lines 

was 3.18, indicating the average number of vertices connected to a specific vertex (or its 

neighbors). Betweenness centralization, which is the variation in betweenness centrality 

scores divided by the maximum possible variation, was found to be 0.0005. Additionally, 

the network clustering coefficient was 0.85, indicating that nodes tend to cluster together 

and create tightly knit groups with a relatively high density of connections. In general, high 

transitivity is considered to be highly clustered or cliquish15. 

 

 

Figure 5. Snapshot of most central authors’ network (who stand for top 1% in terms of betweenness centrality) in 2014. 

 

 
15 A network that is highly clustered or cliquish means that there are a high number of closed triangles of 

connections among the nodes in the network. 
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Table 3. The analysis of the network in 2014 (macro level analysis) 

Number of vertices (n): 31,288 

Total number of lines (Edges) 99,479 

Number of multiple lines 5,919 

Density (no loops allowed) 0.0002 

Average degree 5.98 

With summed lines average degree 3.18 

Network betweenness centralization 0.0005 

Network clustering coefficient (transitivity) 0.85 

 

4.2. Identify and Characterize the Rising Star Scientists 

To study the junior researchers who become star scientists, this thesis includes only 

authors who had their first publication between 2006 and 2010 during the initial decade of 

their careers with at least one collaboration (9,391 authors).    The 10-year time frame was 

chosen as it is widely used in studies of rising stars (e.g., Daud et al., 2015; Nie et al., 

2019), allowing for a better understanding of their upward trend during the early-career 

stage. By choosing authors who began their careers within similar time frame, the study 

allows for a reasonable comparison of relative success while accounting for potential 

confounding factors such as historical context and technological advancements that may 

have impacted the career paths of authors who started at different times. 

In this section, we aim to identify researchers who are rising stars, in order to analyze 

their research performance and early-career behavior. Rising stars are considered to be 

authors who have an h-index growth rate that is significantly higher than the average, 

typically three standard deviations above the mean. This growth rate is calculated by 

comparing the h-index of an author between the first and second five-year period of their 

career.  

𝐻𝐺𝑅  =  
 (ℎ2 − ℎ1)

(𝑡2 − 𝑡1)
  Equation (4) 

Where ℎ1 and ℎ2 are the h-index in the first five years and first ten years respectively, 

and 𝑡1 and 𝑡2 is the time of the first and second period respectively. 
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Table 4. The top ten authors who exhibited the highest growth rate in their h-index during the second  five of their 

careers. 

 

Name 
Year of first publication 

h-index in the first 5 

years 

h-index in the first 10 

years 

h-index growth 

rate 

You Z.-H. 2010 3 14 2.2 

Xu H. 2006 2 10 1.6 

Tang B. 2009 2 10 1.6 

Xu J. 2009 2 9 1.4 

Müller K.-R. 2007 3 10 1.4 

Ekins S. 2009 1 8 1.4 

Ceriotti M. 2010 1 8 1.4 

Heider D. 2009 4 10 1.2 

Ballester P.J. 2010 4 10 1.2 

Sánchez C.I. 2010 1 7 1.2 

 

We identified 171 rising stars, representing roughly 2% of the total population, and 

analyzed their early-career characteristics such as research productivity, diversity 

indicators, and social network measures during the first 5 years of their career. The 

following table lists these features. 
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Table 5. Features 

Feature 

Total number of Articles 

Number of articles based on publisher ranking 

Citations 

h-index 

Individual discipline diversity  

Group discipline diversity 

Ethnic diversity 

Gender diversity 

Affiliation diversity 

Age diversity 

Degree centrality 

Weighted degree centrality 

Clustering Coefficient 

Betweenness centrality 

 

4.3. Statistical Analysis 

Initially, we investigated the relationship between the early-career attributes and 

growth rate of research performance. To do this, we calculated the correlation coefficient 

between these variables. As depicted in Figure 6, there is a strong correlation between the 

growth rate of the h-index and the number of articles, particularly level B articles. 

Additionally, a high correlation was found between the h-index, weighted degree 

centrality, and group discipline diversity within the first five years of a researcher's career. 

Furthermore, a correlation was established between certain diversity, performance, and 

social network measures. For example, gender diversity was found to be correlated with 

degree centrality, weighted degree centrality, and clustering coefficient, while the highest 

correlation was observed between ethnic diversity and clustering coefficient among these 

two groups of features. This could suggest that individuals from diverse ethnic groups tend 

to form close relationships and create dense connections, resulting in a high clustering 

coefficient in the early career of authors. Similarly, it could indicate that authors who 

collaborate with individuals of different genders, rather than only individuals of the same 

gender tend to have a larger network of connections. This highlights the importance of 

gender diversity in scientific collaboration and the potential impact it can have on the 
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growth and success of an author's career. Furthermore, both the number of articles and 

citations demonstrated a correlation with group discipline diversity, which could indicate 

that a diverse research group in terms of the research background of individuals is likely to 

produce more published papers. Finally, as expected, the number of level A articles was 

found to have a strong correlation with citation count, implying that publishing in high-

level venues brings more recognition which can lead to a higher number of citations. 

Furthermore, we aimed to investigate whether rising stars possessed different early-

career characteristics compared to the general population of scientists. To do this, we used 

a statistical method called pairwise comparison hypothesis testing. This method allowed 

us to make decisions based on data from the study and determine if the results were 

statistically significant. A two-sample t-test was implemented to test the null hypothesis, 

which stated that there was no significant difference in the means of the two groups being 

compared. We also assumed that the variances of the two groups were known and that there 

was independence between the samples. The goal of the hypothesis testing was to 

determine if there was enough evidence to reject the null hypothesis and conclude that there 

was a significant difference between the two groups being compared. The result showed 

that a significant difference exists between these two groups in all the features except ethnic 

diversity (Table 6). 
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Figure 6. Correlation heatmap 

Table 6. Two-sample t-test  

Feature Reject Null Hypothesis 

Articles TRUE 

Articles with level A publisher TRUE 

Articles with level B publisher TRUE 

Articles with level C publisher TRUE 

Citations TRUE 

Individual discipline diversity  TRUE 

Group discipline diversity TRUE 

Ethnic diversity FALSE 

Gender diversity TRUE 

Affiliation diversity TRUE 

Age diversity TRUE 

Degree centrality TRUE 

Weighted degree centrality TRUE 

Clustering Coefficient TRUE 

Betweenness centrality TRUE 

h-index TRUE 

 



31 

 

We have conducted an Exploratory Data Analysis (EDA) of our datasets to understand 

their key characteristics. EDA allows us to gain insights from the data beyond traditional 

modeling and hypothesis testing. The approach was first introduced by Tukey (1977) to 

encourage statisticians to actively explore the data and potentially develop new hypotheses 

for further research. The tables presented in this thesis provide basic statistics for the early-

career features of rising star scientists and non-rising star scientists.  

A comparison of the EDA between rising and non-rising stars has uncovered some 

interesting findings about the factors that contribute to career success in academia and 

research. Firstly, we can observe that rising stars have a higher average weighted degree 

centrality than their average degree centrality, while the average weighted degree and 

degree centrality of non-rising stars are almost the same. Furthermore, rising stars have a 

higher average in both weighted degree centrality and degree centrality compared to non-

rising stars. These findings suggest that rising stars tend to collaborate with the same 

partners repeatedly, resulting in a higher weighted degree centrality score. This pattern may 

reflect the establishment of strong and productive collaborations, which could be a key 

factor contributing to their success (Wuchty et al., 2007). On the other hand, non-rising 

stars may have a more diverse set of collaborators, resulting in a lower weighted degree 

centrality score. Secondly, rising stars tend to publish more and receive citations from a 

wider range of publications in their early career compared to non-rising stars. This suggests 

that they are more successful in achieving recognition for their work. They also published 

more higher-level articles on average. 

Together, these findings highlight the importance of both collaboration and publication 

quality in establishing a successful career in academia and research. While it is important 

to produce a substantial amount of work, it is equally important to ensure that the work is 

of high quality, receives recognition from a diverse range of sources, and is accomplished 

through strong and productive collaborations. 
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Table 7. EDA for rising stars 

Feature N Mode Mean STD Sum Min Max 

Articles 171 [1,3] 2.82 1.74 482 1 10 

Level A Article 171 0 0.29 0.6 49 0 3 

Level B Article 171 0 1.35 1.34 231 0 6 

Level C Article 171 [4,10,11,15,32] 1.18 1.44 202 0 9 

Citations 171 10 42.89 41.27 7334 0 237 

Individual discipline diversity  171 0.2 0.19 0.03 32.32 0.09 0.25 

Group discipline diversity 171 0 0.15 0.14 25.39 0 0.36 

Ethnic diversity 171 0.35 0.25 0.1 42.62 0 0.37 

Gender diversity 171 0 0.23 0.12 38.81 0 0.37 

Affiliation diversity 171 0 0.15 0.13 25.1 0 0.37 

Age diversity 171 0 0.12 0.12 20.54 0 0.35 

Degree centrality 171 [3,4] 10.8 9.56 1846 1 63 

Weighted degree centrality 171 4 13.12 12.02 2243 1 76 

Clustering Coefficient 171 0.07 0.05 0.03 9.32 0 0.15 

Betweenness centrality 171 0 0.0002 0.0006 0.03 0 0.005 

h-index 171 1 1.79 0.95 306 0 5 

h-index growth rate 171 0.6 0.74 0.24 126 0.6 2.2 

 

Table 8. EDA for non-rising star 

Feature N Mode Mean STD Sum Min Max 

Articles 9453 1 1.25 0.67 11,769 1 13 

Level A Article 9453 0 0.1 0.32 932 0 4 

Level B Article 9453 0 0.45 0.67 4,221 0 12 

Level C Article 9453 1 0.7 0.74 6,616 0 12 

Citations 9453 0 19.63 35.1 185,604 0 757 

Individual discipline diversity  9453 0.18 0.16 0.03 1,561.14 0.04 0.25 

Group discipline diversity 9453 0 0.04 0.1 410.23 0 0.37 

Ethnic diversity 9453 0 0.23 0.14 2,220.02 0 0.37 

Gender diversity 9453 0 0.17 0.15 1,614.34 0 0.37 

Affiliation diversity 9453 0 0.09 0.13 847.89 0 0.37 

Age diversity 9453 0 0.05 0.1 430.33 0 0.37 

Degree centrality 9453 0 5.2 4.89 49,194 0 57 

Weighted degree centrality 9453 3 5.58 5.59 52,736 0 68 

Clustering Coefficient 9453 0.07 0.06 0.03 645.99 0 0.26 

Betweenness centrality 9453 0 0.0002 0.0002 0.15 0 0.001 

h-index 9453 1 0.58 0.58 9,585 0 8 

h-index growth rate 9453 0 0.04 0.09 372.6 0 0.4 
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4.4. Predicting Star Scientists 

Supervised Learning (SL16) can handle the prediction problem quite well (Witten et al., 

2005), including the prediction of stars (Daud et al., 2015; Nie et al., 2019). When the 

output is categorical, the problem is called classification. In general, instances in a dataset 

are classified according to predefined classifications. Both organized and unstructured 

datasets can benefit from classification (Kadhim, 2019; Sen et al., 2020). Classification 

terminology includes classification model, classification algorithm, and feature. A 

classification algorithm, also known as a classifier, learns from the training dataset and 

assigns each new data point to one of several classes. A classification model, on the other 

hand, employs a mapping function derived from the training dataset to predict the class 

label for the test data. The following sections demonstrate the classification approach used 

in this thesis along with the results. 

 

4.4.1. Classifiers 

Classification is a widely utilized method in ML for solving prediction problems with 

categorical outputs. In the context of rising star prediction, binary classification is often 

employed to categorize individuals as either a rising star or not. In this study, we investigate 

four popular classification algorithms that can be used for this purpose: Logistic Regression 

(LR), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), and Random Forest 

(RF). 

• LR is a simple and well-established algorithm that models the relationship between a 

dependent variable and one or more independent variables using a logistic function 

(Hosmer Jr et al., 2013). It is particularly useful for binary classification problems and 

is known for its interpretability and ease of implementation. 

 
16 Supervised learning is a method of machine learning where a model is trained on a labeled dataset, which 

means the input data is paired with corresponding desired output labels. The model is then able to make 

predictions on new, unseen input data based on the patterns it has learned from the training data. Examples 

of supervised learning tasks include classification and regression. 
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• SVM is a robust classification algorithm that can handle non-linearly separable data 

by using a boundary, known as a hyperplane, to separate the data into different classes 

(Cortes & Vapnik, 1995). SVM is well-suited for high-dimensional data and is known 

for its robustness to overfitting. 

• GNB is a fast and efficient algorithm that is based on Bayes' theorem and the 

assumption of independence between features (H. Zhang, 2004). It is particularly 

useful for text classification problems and is known for its speed and ease of 

implementation. 

• RF is an ensemble learning method that combines the outputs of multiple decision 

trees to make a final prediction (Breiman, 2001). It is useful for improving the accuracy 

and stability of predictions in complex, non-linear problems and is versatile in handling 

both continuous and categorical variables. 

 

4.4.2. Training and Test Sets 

The dataset used in this study includes authors who published their first paper between 

2006 and 2009 (7,311 authors) as the training set and authors who published their first 

paper in 2010 (2,313 authors) as the test set. This division was chosen in order to have a 

clear temporal separation between the training and test sets and to ensure that the 

predictions are made for a relatively recent period of time. 

To address the imbalance in the distribution of rising stars and non-rising stars in the 

training set, an over-sampling method, the Synthetic Minority Over-sampling Technique 

(SMOTE) (Chawla et al., 2002) in the Imbalanced-learn17 package, was used to balance 

the classification. This method helps to increase the number of samples in the minority 

class while still maintaining the characteristics of the original data distribution. 

 

 
17 Imbalanced-learn (imported as imblearn) is an open source, MIT-licensed library in Python and provides 

tools when dealing with classification with imbalanced classes. 
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4.4.3. Classification 

In this section, we will focus on the classification process used in the study. The study used 

four different classifiers: LR, SVM, GNB, and RF in the Scikit-learn library in Python 

(Pedregosa et al., 2011). To ensure that the results were robust and reliable, we used an 

expanding window cross-validation approach for hyperparameter tuning. Expanding 

window cross-validation is a technique used to evaluate the performance of an ML model 

in different studies (e.g., Varma & Simon 2006). The technique is called "expanding 

window" because the size of the training set grows as the validation set moves forward in 

time. In other words, the validation set starts with a small size and expands over time, 

giving the model more and more data to learn from. 

In our study, we used a 3-fold expanding window cross-validation, meaning that the 

validation set consisted of 3 equal-sized (1-year) windows of data (Figure 7). The 

validation process started with the first window as the validation set and the remaining data 

as the training set. Then, the validation set was expanded to include the next window, and 

so on, until the entire dataset was used for validation. This approach allowed us to evaluate 

the performance of the model over time, ensuring that the results were robust and reliable. 

 

 

Figure 7. Expanding window cross-validation 

2006 2007 2008 2009 2010 2011

Fold 1

Fold 2

Fold 3

Training Validation Test (unseen data)
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The expanding window cross-validation technique is particularly useful when dealing 

with time series data, as it allows us to consider the temporal dependencies that may exist 

in the data. By evaluating the performance of the model over time, we can obtain a more 

accurate assessment of the model's ability to generalize to new, unseen data. It is worth 

noting that the expanding window cross-validation technique is more complex than other 

validation techniques, such as k-fold cross-validation, but it can provide more reliable 

results for time series data.  

Additionally, to select the most relevant features for each classifier, we used a 

Recursive Feature Elimination (RFE) (Guyon et al., 2002). RFE is a feature selection 

technique used in ML and data mining to select the most important features in a dataset. 

The goal of RFE is to reduce the dimensionality of the data by removing the least important 

features, while retaining the most important ones. This is achieved by recursively removing 

the feature with the lowest weight until a specified number of features is reached. RFE is 

particularly useful when dealing with high-dimensional datasets, as it can help to improve 

the performance of classifiers by reducing the number of irrelevant or redundant features. 

By removing these features, RFE can also help to mitigate the risk of overfitting, where a 

classifier becomes too complex and performs poorly on new, unseen data. In our study, we 

used RFE to select the most important features for each of the four classifiers. By doing 

so, we aimed to improve the performance of the classifiers and reduce the risk of 

overfitting. 

After performing the classification, we compared the results of each classifier by 

calculating the F1 and ROC AUC scores. The F1 score is a measure of the balance between 

precision18 and recall19, which are both important in classification problems. The F1 score 

provides a comprehensive evaluation of the performance of a classifier, considering both 

the number of false positive and false negative predictions (González, 2010).  

 
18 Precision calculates the percentage of correct positive predictions out of all the predicted positives. 

19 Recall calculates the percentage of actual positives that were correctly identified by the model or 

algorithm. 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  Equation (5) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 Equation (6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 Equation (7) 

Where a true positive (TP) is a result that accurately confirms the presence of a certain 

condition. On the other hand, a false positive (FP) is a result that falsely indicates the 

presence of a condition, while a false negative (FN) wrongly suggests the absence of a 

condition that exists. 

The F1 score does not take into account the ability of the model to distinguish between 

the positive and negative classes, which is important for evaluating the overall quality of 

the model's predictions. The ROC-AUC20 score, on the other hand, measures the model's 

ability to distinguish between the positive and negative classes across all possible 

thresholds. It takes into account both the TP rate and FP rate, and provides a single value 

that reflects the overall quality of the model's predictions. By combining these two metrics, 

we get a better sense of the model's performance, especially in this thesis where the dataset 

is highly imbalanced. 

Based on these scores, the RF classifier demonstrated superior performance with an F1 

score of 0.6 and an AUC-ROC score of 0.75 (Figure 8). This indicates that the selected 

features exhibit strong predictive ability. Nevertheless, the differences in these scores 

between RF and SVM are not substantial. Therefore, it is crucial to consider the advantages 

of each classifier concerning their procedures, data, or other relevant factors. Notably, one 

advantage of RF over SVM is that RF is less sensitive to overfitting, especially when 

dealing with high-dimensional data. RF works by creating many decision trees on random 

subsets of the training data and then averaging their results. This process helps to reduce 

the risk of overfitting and can lead to better generalization performance on unseen data. 

The features selected for the classification based on RFE include the number of articles, 

citation count, individual discipline diversity, ethnic diversity, gender diversity, weighted 

degree centrality, clustering coefficient, and betweenness centrality. 

 
20 AUC-ROC is The area under ROC (Receiver Operating Characteristic) curve that plots the TP rate 

against the FP rate for different threshold values. 
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Figure 8. F1 and AUC-ROC scores of classifiers. 

Our prediction involved using a combination of features in several classifiers to 

determine the status of authors. In the test set, we achieved satisfactory accuracy scores for 

identifying the status of authors using the RF classifier. This is an important 

accomplishment, as it allows us to understand the publishing landscape and identify rising 

stars more effectively. Specifically, our classifier accurately identified 36 out of 55 rising 

stars in the test set. This is a significant finding, as rising stars represent a group of authors 

who are more likely to achieve broader recognition in their field. By identifying these 

individuals early on, we can better support their work and foster the development of 

promising talent. Overall, our findings demonstrate the power of utilizing advanced ML 

techniques to analyze complex datasets. By leveraging a combination of features in RF 

classifiers, we are able to extract valuable insights and make informed decisions that can 

help drive scientific progress forward. 
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Chapter5        

Conclusion and Future Work 
 

The study focuses on the prediction of star scientists in the field of AI using ML 

techniques and data extracted from the Scopus database. One of the main research 

objectives is to determine if ML algorithms can identify early-career scientists who will 

become the star scientists of the AI field in the future. To answer this research question, 

multiple datasets including publication, citation count, and publisher data were merged and 

processed with NLP techniques to extract additional meaningful metadata such as author 

gender, discipline, and ethnicity. social network analysis, diversity measures, and research 

output information were used to further understand the characteristics of authors in the AI 

field. Only authors who published their first paper between 2006 and 2010 were considered 

for the study, and their features were calculated in the first five years of their careers and 

labeled based on the outliers of the h-index growth rate between the first and second five 

years of their careers. 

Social network analysis and visualization were used to gain a deeper understanding of 

the co-authorship network among AI researchers. Moreover, the statistical analysis led to 

valuable insight into the AI researcher, especially rising stars. For example, a strong 

correlation was found between ethnicity diversity and the clustering coefficient of 

researchers at the beginning of their career which suggests that authors from different 

ethnic backgrounds tend to form tight connections and establish dense relationships, 

leading to a notable clustering coefficient. Moreover, a similar relation was found between 

gender diversity and degree centrality which suggest that authors who collaborate with a 

diverse group of individuals in terms of gender tend to have more connections in their 

network compared to those who do not. This underscores the significance of gender 

diversity in the realm of scientific collaboration and how it can significantly impact an 

author's career development and success. On other hand, the strong correlation between 

group discipline diversity of authors with the number of published papers indicates that a 

diverse research group in terms of the research background of individuals is likely to 

produce more published papers. In addition to the correlation test, a hypothesis test 
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revealed that rising stars are significantly different in all the features except ethnic diversity 

compared to the general population. 

This work also brings a methodological contribution. Several classifiers were 

implemented for predictions and their performance was compared. The expanding window 

cross-validation and RFE combined with these classifiers, and it was shown that the RF 

classifier outperformed the other classifiers and that the most important features in the 

prediction task were the number of articles, citation count, individual discipline diversity, 

ethnic diversity, gender diversity,  weighted degree centrality, clustering coefficient, and 

betweenness centrality. The combination of features from different groups of 

characteristics expands upon previous studies, which only evaluated the significance of 

each group of features. 

In conclusion, this thesis contributes to the growing body of literature on the use of ML 

algorithms to predict the success of early-career scientists and highlights the potential of 

these techniques for advancing our understanding of the scientific ecosystem. The results 

of this study suggest that the combination of various ML techniques and NLP provides 

dynamic data on authors and the co-authorship network and can help predict the star 

scientists in the field. The findings of this research can provide valuable insights for 

researchers, practitioners, and funding agencies in the field of AI. 

There were several limitations to this study that need to be considered when interpreting 

the results. Firstly, the dataset used in this study was limited in terms of both period and 

metadata. The period of the data may have influenced the results and a longer period may 

have provided more insights into the research performance of the researchers. In addition, 

the lack of additional metadata, such as the publisher and source of the citations, may have 

limited the accuracy of the research performance metric used. 

Another limitation of this study was the research performance metric itself. While the 

metric used provided some understanding of the research performance, it was limited by 

the lack of complementary data about the citations. Information about cited-by articles 

could have helped to better understand the impact and reach of the researcher's work. For 

instance, self-citations, where an author cites their own work, can impact research metrics 

such as the h-index and other bibliometrics that measure the impact of a researcher's work. 

However, they are generally not considered to have the same weight as citations from other 
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researchers, as self-citations can inflate the apparent impact of an author's work. 

Considering complementary information and adjusting the research performance metric 

accordingly could have improved the accuracy of the research performance metric and the 

overall results of the study. 

Finally, this study was limited to only one sub-field of academia, which is AI. By 

considering only one sub-field, the results may not be generalizable to other fields. It would 

be interesting to explore rising stars in other areas of academia to gain a more generalized 

insight into the factors that contribute to research success. 

In order to address the limitations of this study, there are several directions for future 

research. Firstly, future research could consider collecting data over a longer period and 

including additional metadata from different databases to provide a more comprehensive 

understanding of the research performance. This would help to improve the accuracy of 

the research performance metric and the overall results of the study. Another direction for 

future research could be to incorporate other metrics into the research performance metric. 

This would provide a more accurate representation of the impact and reach of the 

researcher's work, which could improve the results of the study. Additionally, future 

research can further extend this study by considering other factors that may impact the h-

index growth rate, such as the impact of funding. 
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