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Abstract
Inter-Contrast and Inter-Modal Medical Image Registrations:
From Traditional Energy-Based to Deep Learning Methods

Nima Masoumi, Ph.D.
Concordia University, 2023

Image registration is a crucial step in many medical image processing pipelines. The pro-

cess aligns images of the same tissue taken at different times or with different imaging

modalities. The first focus of this thesis is on the registration of ultrasound (US) images,

which are low-cost, portable, safe, real-time, and commonly employed in several image-

guided operations. Image registration of intraoperative US with preoperative images is re-

quired in image-guided surgeries. Computed Tomography (CT) scans and Magnetic Res-

onance Imaging (MRI) generally visualize the bones and soft tissues with better spatial

details than US. Therefore, surgeons and interventionalists prefer them to US for the pre-

operative planning. These preoperative images should be registered to the intraoperative

US images in image-guided interventions, which is a challenging task and an open area of

research. Beyond image-guided interventions, image registration is a critical step in several

other medical image analysis pipelines. The second focus of this work is on inter-contrast

CT and MRI registrations. MRI is the primary modality for diagnosing neurodegenerative

diseases such as Alzheimer’s Disease. MRI comes with various contrasts, and the fusion of

these contrasts taken at different times or from many subjects can give clinicians valuable

information. However, MRI has a longer waiting time and less availability than CT. Thus,

designing inter-modal image registration techniques to align MRI data with CT scans is

essential in medical image analysis. Novel methods to tackle this problem are proposed

in this thesis. The traditional image registration methods, which solve an optimization

problem iteratively, can be time-inefficient for analyzing large datasets. Image registra-

tion using Deep Learning (DL) can accelerate the process but usually require training data.

In this thesis, several novel methods for performing inter-contrast image registration are

proposed in Chapters 3 to 5. These methods span both energy- and DL-based techniques

with DL-based methods being more computationally efficient. We conclude the thesis in

Chapter 6 by providing possible future research directions.
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Chapter 1

Introduction

This chapter provides a necessary background to image registration. It motivates the re-

quirement of medical image alignments by reviewing some clinical applications. Then,

Section 1.2 and Section 1.3 elaborate on the thesis statement and the objective of the the-

sis, respectively. The organization of this thesis is provided in Section 1.4. Lastly, the

publications arising from the thesis are listed in Section 1.5.

1.1 Image registration

Image registration is the process of aligning data acquired from different sensors. This

process is required in various applications of engineering and clinics. Aligning images

taken by medical imaging devices, namely medical image registration, is an active area

of research. Thanks to the numerous radiological modalities for image-guided diagnosis

and interventions, the development of image registration algorithms has been expanded and

accelerated.

Magnetic Resonance Imaging (MRI) visualizes the connective and muscle tissues with

excellent spatial details. MRI acquisition has multiple controllable parameters offering the

practitioners a range of MRI contrasts. MR images with T1-weighted (T1w) contrast are

commonly acquired for brain analysis, diagnosis, and surgical planning. Brain tissues and

subcortical structures are distinguishable in standard T1w MR images. T1w MR images

1



of patients are routinely acquired for analysis of neurodegenerative disease progression.

Early diagnosis of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) potentially en-

hances the life expectancy of patients. Registration algorithms play a crucial role in study-

ing the inter-variability of these data. The techniques help align images with monitoring

the progress of disorders in a longitudinal study. Besides, the inter-subject study of brain

inter-variability by constructing a template from a large cohort of anatomical brain images

has provided essential information about the human cerebrum. Building such a template

involves several image registrations of the data.

In some clinical applications, multiple MRI contrasts are acquired. Other popular

contrasts are T2-weighted (T2w) and Proton Density-weighted (PDw) MR. Some brain

anatomical structures or anomalies may be better highlighted with T2w than T1w. For ex-

ample, brain gliomas are hypo-intense in T1w but hyper-intense in T2w. Therefore, it is

easier to identify them from normal tissues in T2w MR. Given this example, inter-contrast

MR image registration can be helpful. Although radiologists and clinicians prefer MRI over

other modalities in many applications, MRI has a longer patient waiting and acquisition

time and less availability than Computed Tomography (CT). For instance, in minimally in-

vasive abdominal surgeries, patients may be offered only one session of preoperative MRI.

Nevertheless, several CT scans should be done preoperatively, intraoperatively, and post-

operatively to monitor patients’ prognoses. Ultrasound (US) imaging is the other common

modality combined with MRI or CT. It is more accessible and non-ionizing. Designing

inter-modal image registration techniques to match MRI data with CT scans and US images

can be helpful. Nevertheless, inter-contrast/modal image registrations are challenging, and

the current algorithms are generally application specific. Some of these registration prob-

lems are ill-posed and demand multiple image pre-processing steps. Furthermore, more

public datasets for developing these methods are needed.

Multiple categorizations of image registration algorithms are feasible. In group-wise

registration, more than two images are usually registered at once. In pairwise registrations,

two images are registered; one image is fixed, and the other image, namely the moving

image, is transformed to be aligned with the fixed image. The transformation model can
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be rigid (rotation and translation), affine (rotation, translation, sheering, and scaling), and

deformable. The pairwise registration problems are conventionally broken into rough align-

ment by a rigid and affine transformation, followed by a deformable transformation of the

moving image. For densely sampled images, deformable transformations are free-form

deformations formulable by B-splines. Several clinical applications require the transfor-

mations to be smooth and invertible. Invertible transformation is possible by setting con-

straints while estimating the deformation fields. The time-dependent smooth deformation

fields are called diffeomorphisms. The process to align the images via diffeomorphisms is

diffeomorphic image registration.

Several studies have been conducted over the last decade to tailor inter-modal diffeo-

morphic image registration techniques for clinical applications. Mitra et al. [1] imple-

mented diffeomorphic registration of 2D Transrectal US (TRUS) images to MR slices. Kut-

ten et al. [2] built the Mutual Information (MI)-based Large-Deformation Diffeomorphic

Metric Mapping (LDDMM) [3] on a Hamiltonian framework to align inter-modal images.

Reaungamornrat et al. [4] proposed a diffeomorphic MRI-CT registration for image-guided

surgery by leveraging Symmetric Normalization (SyN) [5], diffeomorphic Demons [6], and

MIND features [7]. However, performing inter-modal image registration of medical images

is still an open area of research, given that the strategies are application-dependent.

Traditional image registration methods optimize a cost function to estimate the de-

formation field. These methods can be intensity-based or feature-based. Feature-based

methods extract some features from the input images and then match them in the feature

space. Intensity-based methods are formulated to register the data in the spatial domain of

images. Traditional methods are computationally expensive and generally time-inefficient

in analyzing large datasets. As mentioned earlier, Deep Learning (DL) approaches have

been invented to tackle the issue. DL-based methods are usually faster in test time than

traditional methods. However, training DL-based methods faces many challenges, such as

unavailability and the small number of publicly annotated datasets. Although unsupervised

DL methods aim to tackle the annotation issue, training such methods is still a challenging

problem to solve.
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Recently, DL-based approaches could perform excellently in various image registra-

tion problems [8–10]. Yang et al. [11] built on LDDMM to develop QuickSilver. Their

method performs atlas-to-subject and inter-subject registrations. Balakrishnan et al. [12]

proposed VoxelMorph, a diffeomorphic image registration technique using unsupervised

learning. VoxelMorph was validated in several datasets and compared with the state-

of-the-art SyN and NiftyReg. Mok et al. [13] developed a symmetric diffeomorphic al-

gorithm to execute atlas-to-subject registration of brain images. Wang et al. [14] lever-

aged the Fourier-approximated Lie Algebras for Shooting (FLASH) [15] to implement

DeepFLASH. DeepFLASH computationally outperformed FLASH, Quicksilver, and Vox-

elMorph, while achieving better image alignments regarding Dice scores of overlapping

brain structures. Zhang et al. [16] trained a novel dual-transform network utilizing large

datasets of brain images to perform monomodal registration efficiently.

The DL-based methods can assist radiologists with time-consuming tasks. The review

of existing DL-based methods can be helpful for guidance to possible future research di-

rections. The methods that can potentially assist US-guided surgeries/interventions are

reviewed in several publications. Some papers highlight the clinical applications of US-

guided surgeries/interventions. Pino et al. [17] and Dixon et al. [18] provided reviews of

intraoperative US in brain glioma resection surgeries. Intraoperative US practices in breast

cancer surgeries were reviewed in [19]. Sorenson et al. [20] and Gaudino et al. [21] studied

the role of US-guided femoral and coronary arteries access in interventional neuroradiol-

ogy, respectively. A review of US-guided percutaneous nephrolithotomy was provided by

Alexandru et al. [22]. Danilo et al. [23] reviewed the intraoperative US practices of liver

metastasis detection during the resection of colorectal cancer. Karagyozov et al. [24] stud-

ied US-guided biliary drainage practices. In a recent publication, Carstensen et al. [25]

reviewed the US-guided injection in musculoskeletal interventions. Pain management in

interventions using US imaging was reviewed by Diep et al. [26] and Gomez et al. [27].

The reviews of US-guided spinal surgeries were provided by Jiao et al. [28] and Viderman

et al. [29]. The focus of some review papers was on the US imaging acquisition styles.

Kessner et al. [30] and Nolsoe et al. [31] reviewed contrast-enhanced US practices for
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interventional procedures. Dewitt et al. [32] reviewed the endoscopic interventional US

cases. Antico et al. [33] reviewed the cases of robot-assisted US-guided interventions in an

interesting study. In some other review publications, US guidance’s goal was focused rather

than the clinical application and imaging styles. For instance, Yang et al. [34] and Beigi et

al. [35] reviewed medical instrument detection and localization techniques in US-guided

surgeries/interventions. There are also reviews focusing on artificial intelligence and DL

in US-guided interventions, such as the work of Shen et al. [36] and Jia et al. [37]. The

works mentioned above included both diagnostic and therapeutic interventional US. How-

ever, the literature needs to include the focused study of DL-based methods in therapeutic

interventional US.

1.2 Thesis statement

This thesis showcases novel techniques to register medical images of several modalities.

The proposed algorithms have been rigorously validated to perform CT-US, MR T1w-

T2w and T1w-PDw, and CT-MR T1w image registrations. These methods extend across

energy- and DL-based techniques, with DL-based approaches being more computation-

ally efficient. The dissimilarity metrics are primarily based on Correlation Ratio (CR),

and the deformation models span rigid, diffeomorphic, and free-form transformations. The

optimization strategies are carefully adopted according to the complexity of the registra-

tion task. Some clinical applications of novel algorithms developed in the thesis include

US-guided spinal surgery, quantifying inter-subject variability of the brain, diagnosis and

study of AD, estimation of tissue deformation for surgery, and diagnostic and follow-up of

abdominal conditions.

1.3 Objective of the thesis

The methods that can potentially assist US-guided surgeries are reviewed in a multitude

of publications. However, there are papers that highlight the clinical applications of US-
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guided interventions [18,23,28], and the focus of some review papers is on the US imaging

acquisition [30–33]. Given that the DL-based methods showed promising capability in

enhancing the value of intra-operative US, we found that the review on advancing DL-based

techniques in US-guided surgeries is beneficial. Therefore, Chapter 2 comprehensively

reviews DL algorithms in US-guided interventions.

Previous works have developed CT-US image registration algorithms [38, 39], and we

spotted several shortcomings. The datasets are private, their single-scale methods may not

tackle larger misalignment, and exhaustive image registrations have not been performed for

each range of initial misalignment. Chapter 3 addresses these research gaps by developing

novel registration methods validated on the proposed public database.

Implementing inter-contrast and inter-modal medical image registrations remains a

challenging task. Robust PaTch-based cOrrelation Ratio (RaPTOR) could successfully per-

form inter-modal image registrations [40–42], and FLASH computationally outperformed

vector momentum LDDMM [43] in diffeomorphic registrations [15]. However, RaPTOR

and FLASH have some pitfalls that should be implied. First, the transformation model

of RaPTOR may not have a smooth inverse. Second, the dissimilarity metric of FLASH

cannot provide a reliable measurement for inter-modal images [44]. Third, FLASH does

not implement the standard multiresolution image pyramids to tackle larger deformations.

Given these facts, Chapter 4 intends to design a diffeomorphic image registration to align

images of different modalities and mitigate the drawbacks of RaPTOR and FLASH.

DL-based image registration techniques were designed to estimate a deformation field

for image alignments. Recent studies perform image registrations in a number of challeng-

ing scenarios. Huang et al. [45] and Hoffmann et al. [46] proposed algorithms to perform

inter-contrast MR image registrations. Nevertheless, their strategies are prone to fail in esti-

mating a larger deformation fields, including the registration of AD patients’ brain images.

Given the success of CR [47,48]-based methods, such as RaPTOR, in traditional image reg-

istrations, we intend to design a DL-based algorithm to estimate correct deformation fields

in challenging registration problems. Chapter 5 proposes Deep Learning-based deformable

image registration using Correlation Ratio (DLCR) by employing semi-supervised learning
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to minimize a CR-based loss function.

1.4 Organization of the thesis

The remaining thesis is organized as follows. Chapter 2 presents a comprehensive review

of deep-learning algorithms in US-guided intervention applications, summarizes current

trends, and suggests future directions. Chapter 3 showcases three different datasets of ver-

tebrae with corresponding CT, US, and simulated US images. Besides, two patch-based

rigid image registration algorithms are proposed, one based on Normalized Cross Correla-

tion (NCC) and the other based on CR to register misaligned CT and US images. Chapter

4 presents an inter-modal/contrast registration algorithm that leverages the RaPTOR metric

to allow inter-modal/contrast image alignment and bandlimited geodesic shooting demon-

strated in FLASH algorithm for fast diffeomorphic registration. Chapter 5 elaborates on

our newly developed method DLCR which stands for Deep Learning-based deformable

image registration using Correlation Ratio. A proposed loss function consists of a CR-

based dissimilarity metric and Dice loss. A model with U-Net architecture is trained in a

semi-supervised setup to estimate a displacement field for 3D pairwise image registration of

MRI data. The method is validated and tested by inter-subject registration of OASIS3 [49]

and OASIS1 [50] datasets, respectively.
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Chapter 2

The big bang of deep learning in

ultrasound-guided surgery: a review

US is a non-ionizing imaging modality that is commonly employed in the clinic, offer-

ing 2D, 3D, and 4D data. Although ultrasound probes are often operated in a free-hand

manner by a physician or technician, to ensure image quality, semi-automatic or fully au-

tomatic image acquisitions are performed with the assistance of robotic arms in some ap-

plications [51]. While avoiding radiation risks, US scanners are portable and cost-effective

as opposed to other staple imaging techniques, such as MRI and CT. In addition, US offers

real-time anatomical and physiological information with great flexibility in applications,

such as endoscopic, laparoscopic, transrectal, and transvaginal imaging. In addition to the

most commonly seen B-mode contrast for structural imaging, US also provides additional

contrasts, including Doppler US for flow imaging and ultrasound elastography computed

from raw Radio Frequency (RF) scans to visualize biophysical properties of tissues. These

advantages of US imaging make it a favourable modality for image-guided interventions,

where it is used for instrument and biological tissue (e.g., lesions) detection and track-

ing [52, 53].

Despite multiple benefits, ultrasound still faces several drawbacks primarily as a result

of its inherent imaging principle. First, US scans are often noisy and prone to imaging

artifacts such as reverberations, refraction, and shadowing, making recognition of anatomy
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and surgical tools difficult at times. Second, US usually has limited imaging depth, which

can restrict the field of view for inspecting the pathological region. Lastly, unlike modal-

ities such as MRI and CT that have standardized planes, the unique image contrast and

arbitrary and unfamiliar imaging planes make it challenging to interpret US images. So

far, a great number of image processing techniques were proposed to tackle these afore-

mentioned drawbacks, including denoising [54], structure or instrument detection [55, 56],

segmentation [57], and image registration [40–42, 58]. Before the advances in frameworks

of Graphical Processing Units (GPUs) for model training, these techniques heavily rely on

time-consuming iterative optimization methods or sub-optimal hand-crafted features for

class Machine Learning (ML) algorithms. In comparison to conventional techniques, DL-

based methods have shown excellent results in many US processing tasks by leveraging the

computing power of modern GPUs [8,59]. In addition, DL-based methods are faster in test

time especially for large images [12]. With high requirement in accuracy, robustness, and

efficiency, deep learning is well suited to facilitate US-guided interventions.

To date, a number of literature reviews have been conducted on the topic of US-guided

interventions. However, most of these previous reviews focus on the survey of clinical

applicability of intra-operative US [18, 23, 28] or related acquisition techniques [30–33].

With the great promise of DL techniques to enhance the value of intra-operative US, it

is beneficial to provide a comprehensive review on the advancement of DL techniques in

therapeutic interventional US. Based on the survey, we also identify the unmet clinical

needs and suggest future research directions in the domain. This study intends to con-

duct a comprehensive review on deep-learning algorithms in the applications of US-guided

interventions, summarize the current trends, and suggest future directions on the topic [60].

2.1 Literature selection

We searched the literature using Google Scholar database. The search was performed for

publications from January 2015 to December 2022, in the period that DL-based techniques

gain popularity in medical imaging. The search criteria “Ultrasound AND (Guided OR
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Surgery OR Intraoperative) OR (Convolution OR Deep Learning)” was utilized. The pa-

pers reviewed are on the technical development and validation of the algorithms, and review

articles, case reports, and clinical reports are excluded from the search. The selected papers

were carefully read to ensure they were relevant to US-guided surgery and percutaneous

interventions. The US-guided diagnosis and biopsies were excluded from our search to

focus our review on the therapeutic application of US imaging. The survey resulted in 58

papers. A breakdown of reviewed papers’ numbers for each year is shown in Fig 2.1. A

breakdown of DL methods in this study is shown in Fig 2.2.

Figure 2.1: A breakdown of reviewed papers’ numbers for each year is presented. In total,
58 papers were studied. We did not find relevant publications in 2015 and 2016. The
number of DL-based approaches in US-guided therapeutic interventions has grown from
2016 until 2020. The drop in publications in the year 2021 is likely due to the COVID-19
pandemic, which substantially impacted performing US experiments.

2.2 Clinical applications

The main clinical applications of the reviewed papers are US-guided cardiac catheteriza-

tion, brachytherapy, regional anesthesia, liver ablation, and brain glioma resection. While

most papers focus on one applications, the others validated the proposed techniques in mul-
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Figure 2.2: The methods were classified into three categories: 1. segmentation, detection,
and localization, 2. image registration, and 3. other methods. Most methods perform
segmentation, detection, and localization of medical instruments and target tissues. These
methods can be further broken down into tissue and instrument segmentation, detection,
and localization. The other methods include the classification of tissues, motion detection,
etc.

tiple. Since typically different surgical procedures have different needs, the review for the

developed techniques is conducted with respect to their clinical applications.

2.2.1 US-guided cardiac catheterization

Catheterization is common in various cardiac interventions, such as angioplasty and heart

valve surgery. The catheter has a narrow tubular shape inserted into the patient’s artery.

The intraoperative X-ray is commonly acquired to localize the catheter. X-ray imaging

has risks for interventionalists and patients due to its ionizing radiation. Given this fact, a

safer choice, US-guided catheterization, is gaining popularity over intraoperative X-rays.

However, locating the catheter in US images, especially near the heart chamber, is arduous.

Computer-assisting image processing algorithms can automatically detect and localize the

catheter in US images. Furthermore, they might segment the voxels showing the catheter

with submillimeter precision. The segmentation task is challenging, and clinical require-

ments demand its adequate rapidness. Yang et al., in several studies, showed that DL
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Table 2.1: A summary of DL-based methods for heart catheterization is presented. The
methods are mostly focused on catheter segmentation. The examined datasets are all pri-
vate.

Reference Task Proposed approach Dataset Key metric and performance
Yang et al. [61] Catheter localization A CNN with binary pre-

selection of candidate voxels,
and applied a Frangi vessel-
ness filter [72] with adaptive
thresholding

3D ex-vivo porcine heart US Hausdorff distance of 1.64 ±
1.82voxels

Yang et al. [62] Instrument localization A modified multi-scale U-
Net [73] with a hybrid loss
consisting of a contextual loss
and a class-balanced focal
loss

3D ex-vivo porcine heart US
and 3D US of in-vivo human
heart during TAVI operations

Dice score (%) of 69.6± 10.9
for ex-vivo and 65.8± 9.2 for
in-vivo data

Yang et al. [63] Catheter localization A 3D U-Net [73] with a
cross-entropy focal loss

3D ex-vivo porcine heart US Skeleton error of 1.28mm

Yang et al. [64] Catheter detection An early fusion CNN and a
late fusion CNN [74] with a
weighted cross-entropy loss

3D ex-vivo porcine heart US Position error of 1.7voxels

Yang et al. [65] Instrument segmentation Path-of-interest selection
with fusion of a Pyramid-
UNet [62] and a direction-
fused U-Net which is based
on a VGG16 encoder [75]

3D ex-vivo porcine heart US
and 3D US of in-vivo human
heart during TAVI operations

Dice score (%) of 70.5 ± 9.2
for ex-vivo and 66.5± 8.3 for
in-vivo data

Yang et al. [66] Instrument segmentation Semi-supervised learning of a
deep Q-network using a hy-
brid loss that consists of un-
certainty and contextual con-
straints

3D ex-vivo porcine heart US
and 3D US of in-vivo human
heart during TAVI operations

Dice score (%) of 69.1 ± 7.3
for ex-vivo and 68.6± 7.9 for
in-vivo data

Yang et al. [67] Catheter segmentation Weakly-supervised learn-
ing using a ResNet10
encoder [76] with the class
attention maps-guided [77]
pseudo-label generation

3D ex-vivo porcine heart frus-
tum US

Dice score (%) of 65.4± 9.7

Yang et al. [70] Catheter segmentation and
localization

A direction-fused U-Net
which is based on a VGG16
encoder [75]

3D ex-vivo porcine heart US Dice score (%) of 67.7± 12.0

Min et al. [71] Catheter segmentation A VGG encoder [75] with
pre-selection of candidate
voxels, and applied a Frangi
vesselness filter [72]

3D ex-vivo porcine heart frus-
tum US

Dice score (%) of 67.3± 14

approaches could help the localization and detection of the catheter in US images [61–71].

They proposed methods to segment pixels/voxels into catheter and non-catheter classes.

The methods were validated in several applications, such as Transcatheter Aortic Valve

Implantation (TAVI). The methods are summarized in Table 2.1. The methods are pri-

marily validated using private 3D ex-vivo animal and in vivo human datasets. In terms of

instrument segmentation, these methods achieved Dice scores up to 70%.

2.2.2 US-guided brachytherapy

Brachytherapy is a procedure for treating certain kinds of cancers. In this procedure, ra-

dioactive small-size seeds are placed into the targeted region of the patient’s body using
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needles or a catheter. The radiation dose of seeds in brachytherapy is well-localized to the

target and spares the adjacent tissues. Therefore, it has gained the attention of radiation

therapists. For prostate brachytherapy, TRUS is commonly used to guide multiple med-

ical instruments to the targeted region for the correct placement of seeds. Multi-needle

localization, detection, and segmentation in US images can help the accurate insertion of

radioactive seeds and possibly improve the treatment efficacy. The algorithms are ideally

required to process US images in real-time. Robust techniques to handle noise and signal

distortion are required for employment in clinical applications. Zhang et al., in two differ-

ent studies, proposed multi-needle localization methods using an attention U-Net [73] and a

Region-based Convolutional Neural Network (R-CNN) ( [78] and [79] respectively). They

validated their method on 3D TRUS of patients who underwent High-Dose-Rate (HDR)

brachytherapy. A CNN model was developed by Andersen et al. [80] to digitize needles

in 3D TRUS of prostate HDR brachytherapy patients. Wang et al. [81] proposed a U-NET

and an additional VGG16-based deep network to segment brachytherapy needles in 3D

volumes reconstructed from 2D TRUS slices. Liu et al. [82] trained and tested a U-Net

model to localize catheter in 3D reconstructed TRUS images taken during several prostate

HDR brachytherapies.

Intraoperative prostate segmentation can accelerate the brachytherapy procedure, im-

prove the patient’s prognosis, and reduce costs. Girum et al. [83, 84] proposed DL ap-

proaches using a U-Net and a generative CNN respectively to segment the prostate in 3D

reconstructed volumes from 2D TRUS slices. Orlando et al. [85] proposed a DL method

using a modified U-Net for prostate segmentation on clinically diverse 3D TRUS images.

Later, they developed two DL methods using a modified U-Net and a U-Net++ [86, 87],

which were trained on 2D TRUS slices [88]. Nevertheless, the methods were tested on

3D TRUS volumetric images. A prostate segmentation method using multidirectional

V-Net [89] was proposed by Lei et al. [90]. A clinical subject delineation method us-

ing residual neural networks for low-dose-rate brachytherapy was developed by Anas et

al. [91]. The method was validated on 2D TRUS slices with manual segmentations avail-

able. Karimi et al. [92, 93] proposed a novel CNN architecture for prostate segmentation
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in 2D TRUS images. Xiuxiu et al. [94] proposed a deep-attentional GAN-based method

to improve the resolution of 3D TRUS images. Golshan et al. [95] proposed a modified

LeNet architecture [96] for radioactive seeds segmentation in 3D TRUS images. Accu-

rate implantation of radioactive seeds in the targeted region can improve the efficacy of

brachytherapy.

Pre- and possibly intra-operative MRIs are acquired for operation planning, visualiza-

tion and detection of medical instruments in prostate brachytherapy. MRIs generally have

less noisy images and show better details of the target area. Image registration of intraoper-

ative TRUS with the MRI can leverage the prostate and medical instruments segmentation.

Chen et al. [97] proposed a DL approach using V-Net and U-Net architectures to segment

and register the prostate in MR and TRUS. Zeng et al. [98] performed 3D non-rigid regis-

tration of MR-TRUS using convolutional and recurrent neural networks.

Brachytherapy is not confined to prostate cancer treatment. Rodgers et al. [99] pro-

posed a DL-based method for needle localization in 3D transvaginal US images of intersti-

tial gynecologic HDR brachytherapy. Sun et al. [100] generated pseudo-CT images from

intraoperative US images of cervical cancer patients for brachytherapy. The DL methods

in this section are summarized in Table 2.2. The Dice score, followed by the shaft and

needle tip localization errors, are the key metrics for quantitative performance assessment.

In general, the algorithms achieved sub-millimeter shaft and needle tip localization errors.

2.2.3 US-guided regional anesthesia

Needle-based regional anesthesia is conventionally used in operating rooms. It usually re-

quires an experienced expert to deliver the anesthetic injection. US-guided regional anes-

thesia can help the anesthesiologist with the procedure. Detection and localization of the

injection needle shaft and tip can be challenging. In 2D US scans, needle tips are occasion-

ally out-of-plane or not visible. Processing US original RF data or reconstructed images is

helpful for accurate and reliable procedures. The algorithms are ideally required to process

US data in real-time. DL approaches can help with needle localization in US images [106].

Mwikirize et al. [107–109] developed CNNs in three studies to localize the needle tip in
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Table 2.2: A summary of DL-based methods for US-guided brachytherapy is presented.
The methods are mostly focused on target and instrument segmentation. Public datasets
are marked with “*”.

Reference Task Proposed Approach Dataset Key metrics and Performance
Zhang et al. [78] Multi-needle localization A deep supervised attention U-

Net with a weighted total varia-
tion regularization

3D in-vivo TRUS of prostate HDR brachytherapy Shaft localization error of
0.29±0.23mm and needle tip
localization error of 0.44 ±
0.83mm

Zhang et al. [79] Multi-needle localization A reformulated large-margin
mask R-CNN [101] that is com-
bined with a density-based spatial
clustering [102]

3D in-vivo TRUS of prostate HDR brachytherapy Shaft localization error of
0.09±0.04mm and needle tip
localization error of 0.33 ±
0.36mm

Andersen et al. [80] Digitization of prostate
brachytherapy needles

A 3D U-Net architecture [73]
with a Dice loss

3D in-vivo TRUS volumes reconstructed from 2D slices
of prostate HDR brachytherapy

Root-Mean-Square Deviation
(RMSD) median (interquar-
tile range) of 0.55 (0.35 −
0.86)

Wang et al. [81] Needle segmentation A U-Net followed by a VGG16
network with a categorical cross-
entropy loss

3D in-vivo TRUS volumes reconstructed from 2D slices
of prostate HDR brachytherapy

Resolution of needle trajecto-
ries of 0.66mm and 0.31mm
in x and y direction respec-
tively

Liu et al. [82] Catheter localization A U-Net architecture with a focal
Tversky loss function [103]

3D in-vivo TRUS volumes reconstructed from 2D slices
of prostate HDR brachytherapy

80% within 2mm catheter re-
constructions

Girum et al. [83] Prostate clinical target-
volume boundary detec-
tion

A modified U-Net with an in-
tegrated regression model using
global average pooling

3D in-vivo TRUS volumes reconstructed from 2D slices
of prostate HDR brachytherapy

Dice score (%) of 88.0± 2.0

Girum et al. [84] Prostate clinical target-
volume segmentation

A CNN for prior-knowledge gen-
erator and a CNN for the segmen-
tation

3D in-vivo TRUS volumes reconstructed from 2D slices
of prostate HDR brachytherapy, 3D in-vivo postoperative
CT scans of prostate HDR brachytherapy, and *2D in-
vivo echocardiography images

Dice score (%) of 96.9 ±
0.9, 95.4 ± 0.9, and 96.3 ±
1.3 for TRUS, CT, and 2D
echocardiography images re-
spectively

Orlando et al. [85] Prostate segmentation A 2D modified U-Net with a Dice
loss

3D in-vivo TRUS volumes reconstructed from 2D slices
of prostate HDR brachytherapy and biopsy

A median (first quartile - third
quartile) absolute Dice score
(%) of 94.1 (92.6− 94.9)

Orlando et al. [88] Prostate segmentation Trained U-Net and U-Net++ [86,
87] architectures separately using
2D slices

3D in-vivo TRUS volumes reconstructed from 2D slices
of prostate HDR brachytherapy and biopsy

A median (first quartile - third
quartile) absolute Dice score
(%) of 94.1 (92.6 − 94.9)
and 94.0 (92.2 − 95.1) for
U-Net and U-Net++ respec-
tively

Lei et al. [90] Prostate segmentation A multidirectional deeply super-
vised V-Net [89] with a hybrid
loss that consists of a binary
cross-entropy loss and a batch-
based Dice loss

3D in-vivo TRUS volumes reconstructed from 2D slices
of prostate

Dice score (%) of 91.9± 2.8

Anas et al. [91] Clinical target-volume de-
lineation

CNNs based on ResNets [76] and
dilated convolution at deeper lay-
ers

2D in-vivo TRUS of prostate brachytherapy patients Dice score (%) of 93.67±3.71

Karimi et al. [92, 93] Clinical target-volume
segmentation

Sparse subspace clustering [104]
of features learned with a convo-
lutional auto-encoder and a modi-
fied U-Net architecture

2D in-vivo TRUS of prostate brachytherapy patients Dice score (%) of 93.9± 3.5

Xiuxiu et al. [94] Improving US image reso-
lution

Integrating a deeply supervised
attention model into a generative
adversarial network-based

3D in-vivo TRUS volumes reconstructed from 2D slices
of prostate

Mean absolute error of 6.5 ±
0.5

Golshan et al. [95] Brachytherapy seeds de-
tection

A LeNet [96] architecture with a
cross-entropy loss

3D in-vivo volumes reconstructed from 2D original
TRUS RF data of prostate brachytherapy patients

Precision, recall, and F1-
score (%) of 78.0±8.0, 64.0±
10.0, and 70.0 ± 8.0 respec-
tively

Chen et al. [97] MR to TRUS image reg-
istration and prostate seg-
mentation

Segmentation-based registration
using two weakly-supervised 3D
V-Nets [89] for segmentations
and a 3D U-Net for the registra-
tions

3D in-vivo T2w MRI and 3D in-vivo TRUS volumes re-
constructed from 2D slices of prostate HDR brachyther-
apy

Dice score (%) of 97.0 ± 0.0
and 87.0± 5.0 for segmented
mask and manual contours re-
spectively

Zeng et al. [98] MR to TRUS prostate reg-
istration

A modified U-Net [73] and a bidi-
rectional convolutinoal LSTM
with a hybrid loss that consists of
a bending energy loss and a Dice
loss

3D in-vivo T2w MRI and 3D in-vivo TRUS volumes re-
constructed from 2D slices of prostate HDR brachyther-
apy

Dice score (%) 90.0± 4.0

Rodgers et al. [99] Needle localization A 2D U-Net [120] for 2D data
and randomized 3D Hough trans-
forms [105] for 3D data

3D in-vivo transvaginal US (TVUS) volumes recon-
structed from 2D slices of interstitial gynecological HDR
brachytherapy, 2D US slices of phantom brachytherapy,
and 2D US slices of ablation therapy

Median position difference
(first quartile - third quartile)
of 0.27 (0.20 − 0.68)mm
and 0.79 (0.62 − 0.93)mm
for 2D and 3D TVUS respec-
tively

Sun et al. [100] Pseudo-CT image synthe-
sis from US

A part of VGG19 [75] network
and a hybrid loss that consists of
a content loss, a style loss, and a
Dice loss

3D in-vivo CT scans and 3D in-vivo US volumes of cer-
vical cancer patients, additional 3D CT scans of cervical
cancer patients, and 3D US phantom data

T-test of structural similar-
ity index between the ground-
truth and synthesized CT with
t = 3.22 and t = 2.86 for
background and foreground
regions respectively
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real-time 2D US images. Gao et al. [110] proposed a needle segmentation method using a

U-Net architecture. Pourtaherian et al. [111] proposed a needle tip detection method using

orthogonal-plane CNNs. They validated their method on ex-vivo chicken breast 3D US im-

ages. Later, they developed a method for the localization of needle tips with submillimeter

domain accuracy using dilated CNNs [112].

Nerve segmentation in images of US-guided regional anesthesia can help the prac-

titioners with the process. Automatic non-learning methods using Kalman filters could

rapidly perform nerve and artery segmentations [113]. Generally, these methods are com-

putationally expensive and require intensive hyperparameter tuning. Esmistad et al. [114]

proposed a technique using U-Net for musculocutaneous, median, ulnar, and radial nerve

segmentation during axillary nerve block procedures. Baby et al. [115] developed a U-

Net model to delineate the brachial plexus in 2D US images. A conditioned U-Net model

(www.kaggle.com/harolddiaz1018/unet-cond) was trained by Diaz-Vargas et al. [116] to

segment ulnar, median, femoral, and sciatic nerves in 2D US images. Maneas et al. [117]

modified an established residual neural network to improve the axial and lateral resolution

of tracked US images for needle localization. They trained their model on synthetic data,

and the model was validated on a fetal sheep heart in-vivo data. The DL methods in this

section are summarized in Table 2.3. The shaft and needle tip localization errors are the key

metrics for quantitative performance assessment. The algorithms achieved submillimeter

errors.

2.2.4 US-guided liver ablation

Image-guided microwave ablation (MWA) is a promising therapeutic percutaneous inter-

vention that provides a high intralesional temperature. Real-time US imaging techniques

can visualize the target for accurate lesion MWA and complete tumour eradication. How-

ever, the ablation region margin is not easily detectable in US images. While ablation

region delineation is feasible using techniques such as ultrasound elastography [122], we

focus our review on DL techniques. Unsupervised classification of target region tissues by

leveraging an ML/DL-based method is a candidate approach. Zhang et al. [123] utilized the
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Table 2.3: A summary of DL-based methods for US-guided regional anesthesia is pre-
sented. Anesthesia needle tip localization is the focus of the majority of works. Public
datasets are marked with “*”.

Reference Task Proposed Approach Dataset Key metrics and Performance
Mwikirize et al. [107] Real-time needle detection A region-based CNN [118]

and a region-proposal CNN
2D ex-vivo US bovine and
porcine tissues, and 2D US of
bovine/porcine tissues over-
laid on lumbosacral spine
phantom

Shaft localization error of
0.82◦ ± 0.4◦, and needle tip
localization error of 0.23 ±
0.05mm

Mwikirize et al. [108] Real-time needle tip local-
ization

Needle enhancement fol-
lowed by a CNN for needle
tip classification, and a CNN
regression network

2D ex-vivo US of bovine,
porcine, and chicken tissues
overlaid on lumbosacral spine
phantom

Needle tip localization error
of 0.55± 0.07mm

Mwikirize et al. [109] Needle tip localization A novel network that con-
sists of convolutional layers
and recurrent layers (CNN-
LSTM) with a Mean Squared
Error (MSE) loss

2D ex-vivo US of bovine,
porcine, and chicken tissues
overlaid on lumbosacral spine
phantom

Needle tip localization error
of 0.52± 0.06mm

Gao et al. [110] Needle localization and
enhancement

Beam steering followed by a
modified U-Net for segmen-
tation, and a needle fusion al-
gorithm

2D ex-vivo US of bovine,
porcine, and chicken tissues

Needle tip localization error
of 0.29± 0.02mm

Pourtaherian et al. [111] Needle detection Two CNNs with shared and
independent convolutional
filters respectively using a
categorical cross-entropy cost

3D ex-vivo US of a chicken
breast

Precision 83% at 76% recall

Pourtaherian et al. [112] Needle localization CNNs with dilated convo-
lutions and spatial pyramid
pooling features

3D ex-vivo US of a porcine
leg

Qualitative assessment

Esmistad et al. [114] Nerve segmentation A modified U-Net 2D in-vivo US of volunteers
and patients undergoing axil-
lary nerve block procedures

Precision of 88%, 63% 79%,
67%, and 44%, and recall of
0.81, 0.56, 0.71, 0.62, and
0.37 for blood vessel, mus-
culocutaneous nerve, median
nerve, ulnar nerve, and radial
nerve respectively

Baby et al. [115] Nerve segmentation A modified U-Net *2D in-vivo US of patients’
brachial plexus

Dice score 71%

Diaz-Vargas et al. [116] Peripheral nerve segmen-
tation

A conditioned U-Net with a
Dice loss

2D in-vivo US of patients’ ul-
nar, median, femoral, and sci-
atic nerves

Dice score (%) of 70.0± 27.0

Maneas et al. [117] Instrumented ultrasonic
tracking

ResNet architecture [121]
with a L1-loss

2D synthetic US RF data, and
2D in-vivo US of fetal sheep
heart

Root-mean-square error of
0.15 ± 0.03 for the synthetic
data, and signal energy con-
centration ration of 99.9% for
the in-vivo data
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Table 2.4: A summary of DL-based methods for US-guided liver ablation is presented. The
examined datasets are all private.

Reference Task Proposed Approach Dataset Key metrics and Performance
Zhang et al. [123] Thermal lesion detection Matched pathology images to

US RF data followed by train-
ing a CNN with two paths

2D ex-vivo US B-mode and
RF data liver tissues

Dice score 86.88%

Wang et al. [124] Thermal lesion detection Image registration of RF data
and optical images followed
by training a CNN

2D ex-vivo US B-mode and
RF data, and optical images
of the porcine liver tissues

Receiver operating character-
istic curve of 0.87

Kondo et al. [125] Tumour motion detection A VGG16 [75] followed by a
U-Net architecture with a hy-
brid loss

2D US of liver phantom Mean absolute error of
0.342mm/frame

Arif et al. [126] Needle detection Image registration of needles
in different time points and
needle segmentation using a
compressed V-Net [89]

3D in-vivo US of liver biopsy
patients, and 3D US of punc-
turing phantoms

Mean absolute error of
1.00mm and 2.0◦ for needle
position and orientation
respectively

original US RF data matrices and trained a CNN network to delineate the ablation region

in ex-vivo data of the porcine liver. Wang et al. [124] proposed a CNN-based method for

ablation region detection and monitoring MWA. They performed image registration of US

RF data and optical images to boost the accuracy of their method in terms of receiver oper-

ating characteristic curves. Kondo et al. [125] proposed an out-of-plane motion detection

system using CNNs to track the liver tumour movement in ablation therapies.

Ablation needle detection and visualization can help interventionalists during the MWA

procedure. Arif et al. [126] proposed a real-time bi-planar needle detection and visual-

ization for liver 3D US images. Their method utilizes a U-Net architecture and specific

post-processing to perform the needle detection. They execute the registration of images

in different time frames acquired from liver phantom and ten patients. The DL methods in

this section are summarized in Table 2.4. Dice score and mean absolute error are the key

metrics for quantitative performance assessment.

2.2.5 US-guided brain glioma resection

US machines’ portability and cost-effectiveness of US imaging contributed to the growing

popularity of intraoperative US acquisition. The US machines and probes can be calibrated

and synced with a neuronavigation system in operating rooms. Practitioners may execute

an image registration of preoperative images and the intraoperative US to update the surgi-

cal plan. For instance, in brain glioma surgery, intraoperative US images can be registered
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to the preoperative MRIs (or US images). Because after surgeons open the dura, the brain

shifts up to 18mm due to several causes, including gravity, cerebrospinal fluid loss, drug

administration, retraction, resection etc [127, 129]. This phenomenon is commonly named

brain shift. Brain shift can make the preoperative planning invalid. Therefore, fast regis-

tration of preoperative and intraoperative data is crucial. Public datasets of BITE [127] and

RESECT [129] impacted the development of DL-based methods for brain-shift correction.

In the CuRIOUS2018 Challenge, which was held in conjunction with MICCAI 2018, the

participating teams were asked to register preoperative MRI to intraoperative US images

of RESECT dataset. The challenge results and participating teams’ methods are summa-

rized and compared in [128]. Canilini et al. [130] proposed a DL method using a CNN to

segment sulci and falx cerebri in US images. Then, they used the segmentation masks to

register intraoperative, preoperative and postoperative US images. The method was tested

on BITE and RESECT datasets. Given the fact that these datasets provide manual homol-

ogous landmarks, Canilini et al. calculated mean Target Registration Error (mTRE) for the

quantitative validation of their method. Later, they trained a U-Net architecture to gener-

ate segmentation masks of resection cavities [131]. They registered the US volumes using

these masks.

Zeineldin et al. proposed DL-based methods with U-Net architectures in different stud-

ies to register preoperative MRI to intraoperative US images [132–134]. They employed

MSE Loss for their model training in [132]. Later, they used MSE loss and NCC loss in a

comparison study in [133] and NCC loss in [134]. Pirhadi et al. [135] employed a Siamese

neural network [136] to perform landmark-based registration of pre-resection intraopera-

tive US to post-resection intraoperative US scans.

Finding the precise boundaries of the tumour and its segmentation can assist the sur-

geons to optimize the resection boundary. Zeineldin et al. [137] employed U-Net and Tran-

sUNet networks [138] to segment brain tumours in US images. Carton et al. [139] proposed

a DL-based method with a 3D U-Net architecture to segment the brain tumours of RESECT

dataset intraoperative US images. In addition to lesion segmentation, classification of the

lesion into different glioma grades or solitary brain metastases can be substantial because
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Table 2.5: A summary of DL-based methods for US-guided brain glioma resection is pre-
sented. Most methods perform image registration for brain shift correction in BITE [127]
and RESECT [129] datasets. Public datasets are marked with “*”.

Reference Task Proposed Approach Dataset Key metrics and Performance
Canilini et al. [130] Segmentation and registra-

tion of US volumes
Segmentation by a modified
U-Net [73] and registration of
generated masks

*3D in-vivo US volumes
reconstructed from 2D
slices of RESECT [129] and
BITE [127] datasets

mTRE of 2.05± 1.12mm for
RESECT and 2.48±2.67mm
for BITE dataset

Canilini et al. [131] Resection cavity segmen-
tation and registration of
US volumes

Segmentation by a modified
U-Net [73] and registration of
generated masks

*3D in-vivo US volumes
reconstructed from 2D
slices of RESECT [129] and
BITE [127] datasets

mTRE of 1.21± 0.66mm for
volumes before and after re-
section of RESECT, 1.22 ±
1.20mm for volumes before
and during resection of RE-
SECT, and 2.38±2.78mm for
BITE dataset

Zeineldin et al. [132] MR to US registration A U-Net architecture with a
MSE loss

*3D in-vivo US volumes re-
constructed from 2D slices
and 3D T2-FLAIR MRI of
RESECT [129]

Mean squared error of 85

Zeineldin et al. [133] MR to US registration Two U-Net architecture with
MSE and NCC losses respec-
tively

*3D in-vivo US volumes re-
constructed from 2D slices
and 3D T2-FLAIR MR of
RESECT [129] and BITE
datasets

mTRE of 0.84± 0.16mm for
RESECT and 1.47±0.61mm
for BITE dataset

Zeineldin et al. [134] MR to US registration A U-Net architecture with a
NCC loss

*3D in-vivo US volumes re-
constructed from 2D slices
and 3D T2-FLAIR MRI of
RESECT [129] and BITE
datasets

mTRE of 0.99± 0.22mm for
RESECT and 1.68±0.65mm
for BITE dataset

Pirhadi et al. [135] Landmark-based US vol-
umes registration

A Siamese network [136] for
detecting landmarks with a
2.5D approach [141]

*3D in-vivo US volumes
reconstructed from 2D
slices of RESECT [129] and
BITE [127] datasets

mTRE of 1.22± 0.46mm for
volumes before and after re-
section of RESECT, 1.11 ±
0.43mm for volumes before
and during resection of RE-
SECT, and 1.76±1.48mm for
BITE dataset

Zeineldin et al. [137] Brain tumour segmenta-
tion

U-Net [120] and Tran-
sUNet [138] architectures

*3D in-vivo US volumes re-
constructed from 2D slices of
RESECT [129] dataset

Dice scores (%) of 93.50 and
93.70 for U-Net and Tran-
sUNet respectively

Carton et al. [139] Brain tumour segmenta-
tion

Three U-Net networks with
Dice losses

*3D in-vivo US volumes re-
constructed from 2D slices of
RESECT [129] dataset

Median Dice score (%) of
72.00

Capeda et al. [140] Glioblastoma and solitary
brain metastases classifi-
cation

Employed Inception V3 net-
work from Orange software
version 3.26 (University of
Ljubljana, Slovenia)

2D in-vivo US images
of supratentorial tumour
patients who underwent
craniotomy

Classification accuracy val-
ues of 0.79 to 0.94 for B-
mode US and 0.84 to 0.97 for
elastography data

the surgical procedures vary for each case. Cepeda et al. [140] proposed a DL approach to

analyze the candidate lesions in patients who underwent craniotomy. They used B-mode

and strain elastography images to correctly classify the lesions as glioblastoma or solitary

brain metastases. The DL methods in this section are summarized in Table 2.5.
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2.2.6 Other clinical applications

Sections III.A-E reviewed the DL approaches in widely studied clinical applications. This

section reviews the clinical applications with a few DL-based approaches. Lee et al. [142]

proposed a DL method to classify liver fibrosis. They utilized the data for patients who

underwent liver resection surgery. Gillies et al. [143] employed a U-Net architecture with a

Dice loss to detect general interventional tools in 2D US images. They utilized the datasets

of prostate and interstitial gynecologic brachytherapy, liver, and kidney ablations. Wang

et al. [144] proposed a deep attentive method for prostate segmentation. Hu et al. [145]

developed an adversarial deformation regularization method for preoperative and procedu-

ral TRUS image registration. However, the developed methods of Wang et al. [144] and

Hu et al. [145] have not been designed for a focused application, and they can be used for

prostate brachytherapy or prostatectomy.

2.3 Discussion and future directions

Based on the literature included in the review, deep learning techniques have shown great

promise to enhance the value of intra-operative US in surgical interventions. While seg-

mentation, detection, and localization are the main techniques under development, these

also need to be adapted to the application-specific needs and from the current state-of-the

arts, we identified a few unmet clinical needs that could be addressed by DL methods in

the future. In the literature of brachytherapy, most efforts in DL techniques were dedicated

to prostate treatment, even though US-guided brachytherapy was also practised for lung

cancer, breast cancer, anal cancer, and abdominal wall metastases. Similarly, deep learning

approaches in US-guided ablation is primarily focused on liver while kidney and prostate

ablation therapies still have potentials for further technical development. In US-guided tu-

mour resection procedures, similar DL methods can be further adapted for lumpectomy,

prostatectomy, tongue cancer resection, laparotomy, pancreatic cancer resection, and blad-

der cancer resection. Finally, although, US was investigated as an intraoperative imaging

tool in orthopedic surgery procedures, extensive evaluation studies is still lacking. Cur-
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rently, most focus in this domain has been given to developing accurate, robust, and fast

bone segmentation [146, 147]. We believe a similar effort should be directed to evaluate

US bone registration approaches [148].

Despite the excellent performance, deep learning techniques, including those reviewed

in this article still have several drawbacks. First, most algorithms still require large well-

annotated data to achieve good performance; second, the trained networks often have lim-

ited adaptability to new domains (e.g., images from different scanner types or setting).

Lastly, most existing algorithms still lack of transparency to help verify the quality of the

outcomes. Currently, the lack of large-scale well annotated databases, especially the public

repositories poses a bottleneck in algorithm development and fair performance benchmark-

ing, and this also partially contributed to the various under-explored clinical applications

as mentioned earlier, besides their application-specific challenges. Compared with MRI

and CT scans, clear structural delineations in US is more difficult due to the nature of the

imaging principles, and often co-registered biopsy, MRI, and CT data may be required

when it comes to confirmation of pathological tissue segmentation. As direct contact is

needed, for endoscopic applications, image acquisition also demands elaborate setup using

surgical navigation systems or robotic assistance. These further complicate the construc-

tion of relevant datasets besides the privacy concerns commonly associated with medical

data sharing.

In current literature, convolutional neural networks, especially different variants of U-

Net architecture [120] have dominated the reviewed methods. In many applications, to

overcome the limited data, CNNs previously trained with other imaging modalties (e.g.,

natural images) were adapted to the application domain with transfer learning [149]. How-

ever, partially due to the lack of public data, general purpose DL algorithms that are more

tolerating to scanner types and clinical applications still face major challenges. A few ini-

tiatives in MRI and CT DL registration and segmentation, such as the Learn2Reg MICCAI

Challenge [150] and the Medical Segmentation Decathlon challenges [151] have attempted

to help development these types of algorithms, but there is still a lack of similar endeavors

in US. The more recent Vision Transformers (ViT) has shown better performance in learn-
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ing long-range spatial dependencies than CNNs, which require more elaborate architecture

design to model spatial context of the image [152]. Adoption of ViT and its variants may

further improve the accuracy of existing and future DL-methods for intra-operative US.

Interpretability and trustworthiness of deep learning algorithms are crucial for the wide-

spread adoption of the end products to the clinic. Conventional algorithms often have a

goal-driven black-box design, and in this case, without careful verification, faulty automatic

outputs can cause harms to the patients. The latest trend in explainable AI (XAI) intends to

improve algorithm transparency through techniques, including spatial attention/activation

visualization [153, 154], uncertainty estimation, and multi-task learning [155]. For various

surgical applications, XAI methodologies can potentially further detect and explain prob-

lematic results from DL-based iUS processing that offer real-time feedback to improve

the robustness and reliability of the algorithms, and thus the safety and efficiency of the

surgery.

2.4 Summary

This literature review studied 58 DL-based approaches for US-guided heart catheterization,

brachytherapy, regional anesthesia, liver ablation, and glioma resection. Near 74% of re-

viewed methods perform segmentation, detection, and localization of medical instruments

and target tissues. Possible research directions for DL-based approaches were discussed in

Section 2.3.
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Chapter 3

Multi-modal 3D ultrasound and CT

in image-guided spinal surgery: public

database and new registration

algorithms

Intraoperative US is non-invasive, renders real-time images of soft tissue, and has been

used in IGS to help increase the accuracy of surgical interventions [156, 157]. Acquiring

intraoperative US for IGS is beneficial in multiple types of spinal surgeries: for lumbar

vertebrae spinal fusion surgery for DDD, for canine spinal cord surgery (mostly in the

middle vertebrae) for IVDD, and for spinal surgeries that stabilize vertebral fractures [158,

159].

Prior to a spinal surgery, CT images are acquired pre-operatively to plan the interven-

tion. To help guide the surgical procedure during surgery, intra-operative US images corre-

sponding to the pre-operative CT images can help increase the accuracy of the surgery. Im-

age registration in IGS is required because the intra-operative US must be spatially aligned

with the pre-operative image so that the image fusion algorithm can be applied to integrate

the information during the operation. Simulation of the US image from the pre-operative

image can increase the accuracy of this multi-modal image registration [160].
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Current US simulation techniques are divided into two categories: ray-based methods

and wave-based methods [161, 162]. Ray-based methods are quicker in computation time

but they do not provide realistic images whereas wave-based methods are more realistic but

lack US specific artifacts such as shadowing [163]. Alternatively, wave-based methods, for

instance Field II simulation software, can be used as a ground-truth for other simulation

techniques at the expense of having a greater computation time [164].

Previous work has developed multi-modal image registration algorithms to align the

CT-US and CT-simulated US images [38, 39]. However, the following shortcomings exist

in the implementation and validation of their methods. First, the utilized datasets are not

publicly available. Employing a publicly available data can provide researchers a valu-

able information to further compare their methods with the existing ones. Second, the

implementation of single-scale methods restrict performing registration on larger initial

misalignment. Third, by assuming that the rigid registration is sufficient to compensate the

initial misalignment, given the 6 Degree Of Freedom (DOF), the resolution of images, and

the machine precision, exhaustive image registrations may require to be performed for each

range of initial misalignment. This can reveal valuable information about the robustness

and applicability of method in real applications.

Following the success of our database of US and MR images [129], we created a

database of CT scans and corresponding US images, and proposed a simple and realis-

tic wave-based US simulation method to simulate the US images from the CT images. In

the first part of the database, the US from The Cancer Genome Atlas Sarcoma of the three

patients’ lumbar vertebrae (TCGA-SARC) [165, 166] were simulated from their CT im-

ages. In the second part of the database, the CT scan, the spatially tracked US, and the

simulated US of the canine thoracic and cervical vertebrae phantom are provided. In the

third part of the database, the CT scan, the spatially tracked US, and the simulated US of

the lamb lumbar vertebrae are provided. For each of the two latter datasets, we provided

16 landmarks of analogous structures in the CT and US images and performed fiducial

registration to acquire a silver standard ground-truth of the registration.

This dataset is the first of its kind and the images can be used for the evaluation of
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image registration techniques to improve image–guidance in spinal surgery. The simulated

US images provide a gold standard ground–truth for the registration techniques while the

spatially tracked US images give a more realistic view of the vertebrae. In addition, the

simulated US images can be used as a guide to validate real–time US simulation methods

that are used in some image registration techniques [167, 168], as well as preoperative

simulation and planning [169].

In light of the above facts, we implemented two patch-based rigid registration algo-

rithms: one based-on NCC and the other based-on the CR [40,41,170]. The barrier method

with the logarithmic barrier function was used as the optimization technique [171]. Then,

6000 registration problems were created on the proposed datasets. By applying the methods

on the set of registration problems, 12000 registrations were performed to align the images

and compare the performance of methods. Our results show that both methods were able

to register CT and US images of the proposed datasets successfully. This study intends to

design an algorithm to perform inter-modal image registration [42].

3.1 Potential applications of proposed database

The database consists of three different sets. In each set, the CT scan of the subject and the

corresponding simulated US image have been included. The US images are simulated from

the CT scans using the Field II software and are similar to real US images. The simulated

US image displays the shadowing artifact of US images below the bone surface. They

also provide a gold standard ground-truth in alignment with the CT scans as it is difficult

to obtain with ex-vivo and in-vivo data. Thus, CT scans and simulated US images are an

ideal resource for evaluating multimodal image registration techniques. Medical image

registration methods can be used in IGS systems in order to help surgeons obtain accurate

intraoperative surgical information.

The simulated US images are perfectly aligned with the CT scans. One of the volumes

can be displaced by a transformation. The motivation of using simulated US is that to use

an image registration algorithm to find the transformation and align the images perfectly.
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For datasets two and three, the spatially tracked intraoperative US images were acquired

immediately after acquiring the CT scans from resulting 15 homologous which were se-

lected. Thus, the provided landmarks provide a silver standard ground-truth in alignment

for the evaluation of image registration techniques. Since the simulated US images are

aligned with CT scans, the homologous landmarks can be used for monomodal image reg-

istration of simulated US images and intraoperative US images.

We proposed a novel US simulation method to simulate US images from the CT scans.

The simulated images are realistic and display US artifacts such as shadowing. Therefore,

the simulated US images can be used to validate real-time US simulation methods that

are used in some image registration techniques, as well as preoperative simulation and

planning. Real-time US simulation techniques can be used for more accurate preoperative

planning, multimodal image registration, training of physicians and clinicians for PoCUS,

and to enhance US transducer designs.

In addition to the US simulation and image registration, the database can be used for

other image processing applications such as denoising, segmentation, and training of su-

pervised learning methods. As this database is the first of its kind and the similar databases

with these features are rare, online availability of this database give a rudimentary access

of data to researchers, clinicians, and specialists.

3.2 Acquisition and validation methods

3.2.1 Subjects

The first dataset consists of the CT images provided by TCGA-SARC [165, 166]. Pa-

tients were imaged with the CT scanner (GE LightSpeed VCT) using the protocol 5.7 CAP

STANDARD-3CC/SEC. The axial slices had a thickness of 5.00mm and an in-slice res-

olution of 0.74 × 0.74mm2. We extracted the lumbar vertebrae of the three patients with

ID numbers TCGA-QQ-ASV2, TCGA-QQ-ASVC, and TCGA-QQ-A8VG using the 3D

Slicer software.

The second database consists of the canine thoracic and cervical vertebrae phantom
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data. The phantom gel was created using a mixture of water, Knox unflavored gelatin,

sugar-free Metamucil psyllium fiber supplement [172], and a Rubbermaid Premium Dry

Food Storage Canister to store the mixture. The canine spine model was formed using vinyl

tubing, a wooden skewer, rubber O-rings, and 10 vertebrae, namely the section of the canine

cervical vertebrae (C6-C7) and a section of the thoracic vertebrae (T1-T8). Figure 3.1

shows the canine vertebrae before having it immersed into the gel.

Figure 3.1: Canine vertebrae, with the vinyl tubing inserted through the cavities and the
rubber O-rings between each vertebrae, prior to complete immersion into the gel.

The third database consists of the lamb vertebrae phantom data. Lamb vertebrae are

most similar to human vertebrae in both the lumbar and thoracic regions [173]. Herein,

we acquired our data using the L1-L5 vertebrae for a lamb. To simulate the spinal surgery,

we created a surgical cavity (hemilaminectomy) on the posterior side of the vertebrae, and

we performed a dorsal midline incision and removed the soft tissue covering that area

(Fig. 3.2a). A means for US imaging was created by immersing the lumbar vertebrae into

a gel as using the methods described earlier (Fig. 3.2b). Table 3.1 shows the summary of

the subjects.
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Figure 3.2: The ex-vivo phantom. a) Lamb lumbar vertebrae before complete immersion
into the gel and after removing the tissues over the dorsal midline. b) The lamb lumbar
vertebrae in the gel phantom.

Table 3.1: Subjects’ information
Patient Dataset Vertebrae

Included
CT

Scan
Intra-operative

US
Simulated

US

TCGA-QQ-
ASV2

1 L1-L5 Yes No Yes

TCGA-QQ-
ASVC

1 L1-L5 Yes No Yes

TCGA-QQ-
A8VG

1 L1-L5 Yes No Yes

Canine Phantom 2 C6-C7-T1-T2 Yes Yes Yes
Lamb Phantom 3 L2-L5 Yes Yes Yes

3.2.2 Simulation of US from CT

The Field II simulation software [174] was employed to simulate US images based on the

CT scans. The simulated transducer assumes that the data was acquired with the patients

lying in the prone position with the probe being perpendicular to the patients’ back. The

transducer consists of 192 elements with 64 active elements at a time having a frequency

of 3.6 MHz and a propagation speed of 1540 m/s. The Field II simulation generated 50

raw RF lines of data from 10,000 scatterers. Each scatterer point is randomly located in a

continuous space from the corresponding interpolated CT image where a Gaussian noise

was added with a mean of zero and unit variance as its parameters.

After generating simulated RF signals, 2D B-mode US images were created from the
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RF data, followed by reconstruction of 3D volumes. Furthermore, the volumetric US image

was resampled to the resolution of the CT volumetric image and as a result, the US and CT

images were aligned by construction.

The simulator does not simulate shadowing artifacts of US below the bone surface.

Hence, the CT volumetric image was used as a template to correct the US image. Similar

to [38], forward ray-tracing followed by backward ray-tracing were used to extract the bone

surfaces from the CT image. In the forward (backward) ray-tracing, the transducer radiates

the sound waves through the CT images from anterior to posterior direction (posterior to

anterior direction) and when they reach tissues with intensities of T or larger, it identifies

the tissue as the bone surface. Consequently, the rest of the image in the wave’s direction

would appear as a dark shadow. The value of T was set to 150 Hounsfield in [38] given the

acquired datasets. By inspecting the bone surfaces in the CT volumes in our datasets, we

found that T = 270 is the optimal value. Finally, the processed CT volumetric image was

multiplied voxel-wise to the US volumetric image as a mask. Figure 3.3 shows a slice of the

simulated US images in the first row and, the second row displays the slice of the simulated

US image overlaid on their corresponding CT image. The texture of the simulated US

images is similar to real US images because they show the bone surfaces as back-scatters

from the US wave. It is important to note that there are shadows below the bone surfaces

where the US wave could not penetrate the tissues. Inherently co-registered, the aligned CT

and US images make a gold standard ground-truth to validate image registration algorithms.

3.2.3 CT scan imaging

The phantom CT scan was acquired at Concordia University’s PERFORM Centre in Mon-

treal, Canada using a GE Discovery PET/CT 690 (Waukesha, WI) scanner with a 7.4

90000133 L-Spine Survey Helical protocol. The CT image has 0.351 × 0.351mm2 in-

slice resolution and 0.625mm of slice thickness. The CT scan was executed while the

patient remained in the prone position with the orientation of the head facing the machine.

The CT scan was acquired for the canine phantom and the lamb lumbar vertebrae.
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Figure 3.3: Axial view of a slice of overlaying of US images on their corresponding CT
images for Patient TCGA-QQ-ASV2 (column 1), Patient TCGA-QQ-ASVC (column 2),
and Patient TCGA-QQ-ASVG (column 3) in the first row and simulated US images in the
second row. US probe is located at the top of the image.

3.2.4 Ultrasound imaging

Following the CT scan, we immediately acquired the spatially tracked US image of the

canine and lamb phantoms to minimize potential deformations of the models. The US

images were acquired with an Alpinion E-CUBE 12R ultrasound machine (Bothell, WA)

at the PERFORM Centre. The SC1-4H curvilinear 2D phase array transducer was set to a

frequency of 4.0 MHz and a depth of 10.0 cm. Prior to the data acquisition, the probe was

calibrated by N.M. at the PERFORM Centre using the PLUS Toolkit [175]. The probe was

calibrated according to the method elaborated in [176]. The RMSE of 0.2mm and 3.7mm

has been achieved for the pivot and US probe calibration. As it was explained in [176],

The RMSE does not reflect the true error of calibration. There are some situations where

the accuracy of calibration improves while the RMSE increases. The best way to verify the

calibration is the qualitative validation, so the calibrations were validated by N.M.. The US

images were tracked with Northern Digital Inc. (NDI, Waterloo, ON) Polaris camera and

NDI passive reflective markers. The US images were recorded with the Epiphan Systems
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Figure 3.4: Imaging the lamb vertebrae phantom. Acquiring CT scan (left) and tracked
US (right).

Inc. DVI2USB3.0 using the PLUS Toolkit [175], OpenIGTLink and the 3D Slicer as the

acquisition software. Figure 3.4 shows the acquisition of the CT scan on the left side of the

figure, and the acquisition of the spatially tracked US on the right of the figure.

3.2.5 Landmark selection for validation

For each of the canine and lamb phantom, two sets of 21 landmark pairs based on homol-

ogous structures between the CT and US images were selected. Each set of landmarks

were independently selected by N. M. and C. B. using the ’register’ software which is a

part of the MINC Toolkit (https://bic-mni.github.io). The first 16 landmarks were used

for the fiducial registration and the remaining landmarks for the evaluation of registration.

Clear points of reference in each vertebra’s surface structure such as inferior facet, supe-

rior facet, spinous process, transverse process were used to accurately select landmarks.

We performed fiducial registration on each set of landmarks using affine transformations

through the 3D Slicer software (https://www.slicer.org) and then resampled the US volu-

metric image to the CT volumetric image on each set of landmarks. We obtained Fiducial
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Registration Errors (FREs) of 3.5mm and 3.8mm for the first set of landmarks (selected

by N. M.) of the canine and lamb phantom respectively and FREs of 1.3mm and 0.9mm

for the second set of landmarks (Selected by C. B.) of the canine and lamb phantom re-

spectively. As a result of the registration, the US and CT images were aligned with a silver

standard ground truth. In order to validate the registration, using the last 5 landmarks, the

FRE of less than 0.1mm was achieved for the canine and lamb phantom case. The set of

21 landmark pairs with FREs of 1.3mm and 0.9mm were provided in the database for the

canine and lamb phantom respectively. Figure 3.5, shows axial view of intra-operative US

and simulated US of the canine phantom C8 vertebra in the first and second rows respec-

tively. From the left column, the figure shows CT, US, and overlaid CT-US respectively.

Figure 3.5: Axial view of intra-operative US and simulated US of the canine phantom C8
vertebra in the first and second rows respectively. From the left column, the figure shows
CT, US, and overlaid CT-US respectively.

Figure 3.6 demonstrates the CT, US, and overlaid CT-US images of lumbar vertebrae

the lamb in columns one, two, and three respectively. The rows show the sagittal view

of intra-operative US and simulated US respectively. Table 3.2 shows the summary of
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Table 3.2: Summary of landmark selection
Subject Number of

Landmarks
FRE for Rater 1 FRE for Rater 2

Canine Phantom 16 3.52mm 1.31mm
Lamb Phantom 16 3.82mm 0.93mm

landmark selection for canine phantom case and lamb lumbar vertebrae case.

Figure 3.6: The sagittal view of the lamb lumbar vertebrae. The first row shows the in-
traoperative US and the second row shows the simulated US. Columns from the left to the
right show CT, US, and overlaid US on the CT image respectively.

3.2.6 Data format and usage notes

All images are provided with NIFTI and MINC formats. The first dataset can be used

immediately after loading NIFTI or MINC images and the CT scans and simulated US

images are aligned with a gold-standard ground-truth. The second and third datasets (the

canine phantom and the lamb phantom) contain the CT scan, the intraoperative US, and

the simulated US. For the CT scans and intraoperative US, 21 landmarks in MNI tag files
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are included so that they are aligned with a silver standard ground-truth and can also be

used immediately after loading the NIFTI or MINC files. The CT scans and simulated

US are aligned with a gold standard ground-truth. The data and the code are available

at https://doi.org/10.5281/zenodo.2652540 and https://github.com/nimamasoumi/CT-US-

Registration respectively. Potential application of the dataset is elaborated in Section S1.

3.2.7 Pre-processing of CT and US for registration

The CT and US images have different modalities and show different features of the ren-

dered tissues. By inspecting the images, one might notice that in both modalities, the

vertebral surface have rather high intensity compared to the other features in the images.

Therefore by extracting the common features which are the bone surfaces in both volumes,

the image registration will be facilitated.

The bone surface extraction in the images are based-on the method explained in [38]

which is originally based- on [177]. Instead of applying the backward ray-tracing directly

on the US images [38], it was applied on the gradient of US image from top to bottom

in the axial view followed by a 3D median filter to remove some outliers. A slice of a

pre-processed CT and US were demonstrated in Fig. 3.7 and Fig. 3.8 respectively. It is

worth to mention that, the US pre-processing was only applied to the real US images and

the simulated US images were utilized directly in the registration process.

3.2.8 Registration methods

Two different registration methods were implemented and later in this paper were com-

pared. Both methods are rigid registration using interior-point optimization technique,

namely the barrier method [171]. The formulation of transformation is provided in Sec-

tion S2.
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Figure 3.7: Axial view of a CT image (left) and its corresponding extracted bone surface
(right).

Figure 3.8: Axial view of an intra-operative US image (left) and its corresponding extracted
bone surface (right).

Similarity metrics

Two different similarity metrics were employed to evaluate the dissimilarity of correspond-

ing 7 × 7 × 7 patches of images. The patches are selected randomly and the number of

patches have a direct relationship on the area of bone surfaces in the US images. The first

method is based-on the NCC. Given the fact that the registration is pairwise, if a patch of
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the moving image is Y and a patch of the fixed image is X , the calculation of NCC over

the NP number of patches is as Eq. 3.1, 3.2:

DNCC(Y,X) =
1

Np

Np∑︂
i=1

(1− |ψ(Y,X;Ωi)|) (3.1)

ψ(Y,X) =

∑︁
(Y.X)√︁∑︁
Y 2.
√︁∑︁

X2
(3.2)

where | · | operator takes the absolute value. The second dissimilarity matrix is based on the

Correlation Ratio and it was elaborated in [40]. The Eq. 3.3, 3.4, 3.5 are the CR equations

as it was used in the optimization.

DCR(Y,X) =
1

Np

Np∑︂
i=1

(1− η(Y |X;Ωi)) (3.3)

1− η(Y |X) =
1

Nσ2

(︄
N∑︂
t=1

Y 2
t −

Nb∑︂
j=1

Njµ
2
j

)︄
(3.4)

µj =

∑︁N
t=1 λt,jYt
Nj

, Nj =
∑︂
t

λt,j (3.5)

where λt,j is the contribution of sample t to bin j in X , N is the total number of samples

in a patch, and σ2 = V ar[Y ] is the variance of patch.

Transformation formulation

Since the salient features of the CT and US images are representing the bone surfaces and

they are rigid objects, the rigid transformation was employed to estimate the misalignment

of images using the optimization technique. The rigid transformation has six parameters

θx, θy, θz, tx, ty, tz which are the first three are the rotation along the x, y, and z axis re-

spectively and the last three are the translation in the x, y, and z direction respectively. The

parameters form a rigid transformation matrix with six degrees of freedom which com-

monly known as ”Euler angles” parameterization of rigid transformation (Eq.3.6, 3.7)
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T =

⎛⎜⎜⎜⎜⎜⎜⎝
cycz (sxsycz − cxsz) (cxsycz + sxsz) tx

cysz (sxsysz + cxcz) (cxsysz − sxcz) ty

−sy sxcy cxcy tz

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (3.6)

sx = sin(θx), cx = cos(θx), sy = sin(θy), cy = cos(θy), sz = sin(θz), cz = cos(θz) (3.7)

Optimization technique

The barrier method [171] was employed to find the optimal rigid transformation which

minimizes the DNCC and DCR in Eq. 3.1 and Eq. 3.3 respectively. The natural logarithm

was set as the barrier function using the multi-scale pyramid processing to estimate larger

displacements. In the finest to most coarse resolution, maximum number of 15, 50, and

100 iterations were used (three levels).

3.3 Results

In the pre-processing, the bone surface of the CT images are extracted and they are already

registered to the simulated US images as well as the real US images. In the following, the

images are misaligned and using the registration methods, they were reregistered.

3.3.1 Synthetic data

Figure 3.9 shows the synthetic volume created by MATLAB. This volume was created

to register to itself later in the experiments. Brighter part of the image has a range of

intensities with additive Gaussian noise. The volume has general similarities to the bone

surface extracted from the CT images and the US images. Registration of synthetic volume

to itself is the simplified version of registering the bone surface extracted from the CT

images to the US images.
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Figure 3.9: Axial view of the synthetic volume (left) and the 3D view (right).

3.3.2 Registration Problems

Given the fact that the CT images and the US images are pre-registered and aligned, in

order to evaluate the registration methods described in Section 3.2.8, first the images are

required to be misaligned. Therefore, 100 different registration problems were created for

each misalignment intervals of 0−2 voxels (vox), 2−4vox, 4−6vox, 6−8vox, 8−10vox,

and 10 − 12vox which gives the total number of 600 registration problems for each pairs

of images. Each misalignment problem was created by only rotation and the translation of

images. The pairs which are selected to be misaligned and then registered are synthetic data

to itself, CT to the simulation US of the subject TCGA-QQ-ASV2, CT to the simulation

US of the subject TCGA-QQ-ASVC, CT to the simulation US of the subject TCGA-QQ-

A8VG, CT to the simulation US of the Canine Phantom, CT to the intraoperative US of

the subject the Canine Phantom, CT to the simulation US of the Lamb Phantom part 1,

CT to the simulation US of the Lamb Phantom part 2, CT to the intraoperative US of the

subject the Lamb Phantom part1, and CT to the intraoperative US of the subject the Lamb

Phantom part 2. Note that the Lamb phantom volumes had almost twice number of slices

than the other volumes and was divided into roughly two equal parts for the speed and the

simplicity of registration problems.
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3.3.3 Registration procedure

Having the pairs of images in the Section 3.3.2 (total ten pairs), the pre-processed CT

images and the corresponding US pairs are passed to the misalignment unit. In our experi-

ments, the pre-processed CT is fixed and the corresponding US pair was misaligned. Then

the misaligned US pair is pre-processed (only for the intraoperative US) and then passed

through the registration unit. The registration unit estimates a rigid transformation which

aligns the images and passes the transformation to the validation unit. The validation unit

compares the warping index before and after the registration.

3.3.4 Succes rate and box plots

The success rate is the number of registration problems which the methods could decrease

the warping index for each pair and each error (misalignment) interval over the total num-

ber of registration for that pair and that interval (which is 100 for all intervals and pairs

here). The following box plots are comparing the CR and NCC for each pair in registra-

tion problems where the methods could decrease the warping index. Figure 3.10 is the

result of registration for the CT and intraoperative US of the Canine Phantom. Figure 3.11

shows the success rate for the corresponding pair. In these pairs, NCC outperformed CR in

both decreasing the warping index and having better success rate. Figure 3.12 is the result

of registration for the synthetic data to itself. Figure 3.13 shows the success rate for the

corresponding pair. Both methods have high success rate in which CR had slightly better

performance.

Figure 3.14 is the result of registration for the CT and simulated US of the Subject

TCGA-QQ-ASVC. Figure 3.15 shows the success rate for the corresponding pair. The

CR has slightly better performance in decreasing the warping index and generally better

success rate.

Figure 3.16 is the result of registration for the CT and simulated US of the Subject

TCGA-QQ-A8VG. Figure 3.17 shows the success rate for the corresponding pair. The CR

has slighty better performance in decreasing the warping index and better success rate.
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Figure 3.10: Comparison of NCC and CR methods in registration of the CT and intraoper-
ative US of the Canine Phantom.

Figure 3.11: Success rate of the registration of CT and intraoperative US of the Canine
Phantom for the NCC and CR.
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Figure 3.12: Comparison of NCC and CR methods in registration of the synthetic data to
itself.

Figure 3.13: Success rate of the registration of synthetic data to itself for the NCC and CR.
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Figure 3.14: Comparison of NCC and CR methods in registration of the CT and simulated
US of the Subject TCGA-QQ-ASVC.

Figure 3.15: Success rate of the registration of CT and simulated US of the Subject TCGA-
QQ-ASVC for the NCC and CR.
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Figure 3.16: Comparison of NCC and CR methods in registration of the CT and simulated
US of the Subject TCGA-QQ-ASVC.

Figure 3.17: Success rate of the registration of CT and simulated US of the Subject TCGA-
QQ-A8VG for the NCC and CR.
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Figure 3.18: Comparison of NCC and CR methods in registration of the CT and simulated
US of the Canine Phantom.

Figure 3.18 is the result of registration for the CT and simulated US of the Canine

Phantom. Figure 3.19 shows the success rate for the corresponding pair. Except for the

10 − 12vox error interval, CR had a better performance in decreasing the warping index

while for the last three intervals, NCC had better success rate and for the first three intervals,

CR had better success rate.

Figure 3.20 is the result of registration for the CT and simulated US of the Lamb Phan-

tom part 1. Figure 3.21 shows the success rate for the corresponding pair. The NCC method

had slightly better performance in decreasing the warping index while the CR method had

generally better success rate.

Figure 3.22 is the result of registration for the CT and simulated US of the Lamb Phan-

tom part 2. Figure 3.23 shows the success rate for the corresponding pair. Except for the

10 − 12vox error interval, CR had a better performance in decreasing the warping index

and it had a better success rate.

Figure 3.24 is the result of registration for the CT and intraoperative US of the Lamb

Phantom part 1. Figure 3.25 shows the success rate for the corresponding pair. The NCC
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Figure 3.19: Success rate of the registration of CT and simulated US of the Canine Phantom
for the NCC and CR.

Figure 3.20: Comparison of NCC and CR methods in registration of the CT and simulated
US of the Lamb Phantom part 1.
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Figure 3.21: Success rate of the registration of CT and simulated US of the Lamb Phantom
part 1 for the NCC and CR.

Figure 3.22: Comparison of NCC and CR methods in registration of the CT and simulated
US of the Lamb Phantom part 2.
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Figure 3.23: Success rate of the registration of CT and simulated US of the Lamb Phantom
part 2 for the NCC and CR.

method outperformed the CR method in both decreasing the warping index and have better

success rate.

Figure 3.26 is the result of registration for the CT and intraoperative US of the Lamb

Phantom part 2. Figure 3.27 shows the success rate for the corresponding pair. The NCC

method outperformed the CR method in both decreasing the warping index and have better

success rate.

3.4 Discussions

In Section 3.2.2, a method was elaborated to produce simulated US images using the Field

II package [174]. Since this package does not allow modeling the full reflection of the wave

at the bone surface, we set the scatterer intensities below the bone surface to zero. This

creates sharp edge artifacts at the bone surface, which can be considered as a limitation of

this database.

The NCC registration method could show better performance in the registration prob-
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Figure 3.24: Comparison of NCC and CR methods in registration of the CT and intra-
operative US of the Lamb Phantom part 1.

Figure 3.25: Success rate of the registration of CT and intraoperative US of the Lamb
Phantom part 1 for the NCC and CR.
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Figure 3.26: Comparison of NCC and CR methods in registration of the CT and intraoper-
ative US of the Lamb Phantom part 2.

Figure 3.27: Success rate of the registration of CT and intraoperative US of the Lamb
Phantom part 2 for the NCC and CR.
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lems where real US image is involved while the CR generally had better performance where

simulated US images are registered to the CT images. The registration algorithms were ex-

ecuted in a machine with 4 CPU workers and a machine with 12 CPU workers. Obviously

the registrations that were implemented by the 12 CPU workers were 2 to 3 times faster.

The NCC method was implemented in MATLAB (MathWorks, Inc., Natick, USA), and

the CR implementation was in MATLAB and C++ to decrease the execution time of image

binning.

In the small error intervals, especially 0 − 2vox, compared to NCC, CR did not have

good success in the alignment of CT and intra-operative US images. One reason is that both

Canine Phantom and the Lamb Phantom have pre-existing initial misalignment even after

fiducial registration. This may leave CR method with no improvement of the alignment

which reduces the success rate.

3.5 Summary

In this chapter, a database of CT, intraoperative US, and simulated US were presented. This

database consists of 3 datasets and in total 5 subjects. For each subject, the simulated US

from CT was provided. The database provides a resource for evaluating image registration

techniques. The simulated data have two applications. First, they provide the gold stan-

dard ground–truth which is difficult to obtain with ex–vivo and in–vivo data for validating

US–CT registration methods. Second, the simulated US images can be used to validate

real–time US simulation methods, since our database is simulated using the computation-

ally expensive but physically realistic Field II package. Two patched-based rigid image

registration methods were implemented to register the CT and US images after misaligning

them. The methods are employing NCC and CR as the similarity metrics and the barrier

method to optimize similarity of images. The results of registration show that the meth-

ods were successful in aligning the pre-processed CT and US images by decreasing the

warping index. Given this fact, the proposed image registration techniques can be useful to

potentially improve ultrasound-guided interventions of the spine.
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Chapter 4

DiffeoRaptor: diffeomorphic

inter-modal image registration using

RaPTOR

Diffeomorphic image registration allows the computation of a smooth and invertible de-

formation field, and thus ensures that salient image features are not lost after image re-

sampling with the obtained deformation fields. A key step in many clinical applications,

diffeomorphic image registration can be employed in quantifying inter-subject variability

of brain [179], studying Alzheimer’s disease [180], statistical shape analysis [181], brain

atlas construction [182], and estimation of tissue deformation for surgery [183].

Several studies have proposed diffeomorphic algorithms to perform intra-modal/contrast

image registration. Beg et al. [3] implemented the LDDMM to register brain MRIs of

Alzheimer’s and Schizophrenia patients, but their computational cost was high. Later,

many algorithms were proposed to make the computation more efficient. Vialard et al. [184]

shortened the computational time by employing geodesic shooting to register 3D MRI

scans of fetus brains. Zhang et al. [15] proposed FLASH to perform inter-subject regis-

tration of 3D brain MRIs. Similar to [184], they also employed geodesic shooting and

improved the efficiency by performing the calculations in a band-limited space. Wu et

al. [185] implemented Cross-Correlation (CC)-based LDDMM for fast brain image regis-
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tration via GPU acceleration.

In general, performing diffeomorphic image registration with iterative optimization can

be computationally expensive and time-consuming. Therefore, a number of DL-based al-

gorithms were designed to tackle this problem [8]. In [187], the comparison with multiple

registration tasks suggests that compared with DL-based techniques, classic registration

methods still have good performance and can offer satisfactory speed with the option of

parallel computing.

In the last decade, several groups have attempted to design inter-modal diffeomor-

phic image registration techniques in various applications. Mitra et al. [1] proposed an

inter-modal diffeomorphic algorithm to register 2D transrectal ultrasound images to MR

slices. Kutten et al. [2] implemented the MI-based LDDMM on a Hamiltonian frame-

work to register CLARITY images. Reaungamornrat et al. [4] proposed a MIND Demons

which is based on SyN [5], diffeomorphic Demons [6], and MIND features [7] to perform

deformable MRI-CT registration for image-guided surgery. However, inter-modal image

registration remains a challenging task in medical image registration. In general, the algo-

rithms should show a certain degree of robustness against intensity inhomogeneities, noise,

and image artifacts. Moreover, the algorithms should be time-efficient for real clinical ap-

plications. To address some of these requirements, Rivaz et al. [40] proposed RaPTOR to

register 3D inter-modal images of the BITE database [127]. Later in [41], an affine ver-

sion of RaPTOR was used to successfully register inter-modal images of RESECT [129]

and BITE [127] databases. Recently in [42], a rigid version of RaPTOR was employed to

register preoperative CT and intraoperative US images of lumbar vertebrae.

This study intends to design a diffeomorphic algorithm to perform intra- and inter-

modal image registration [178]. In [40–42], it was shown that RaPTOR could success-

fully align images with different modalities. In [15], it was shown that FLASH could

perform computationally efficient diffeomorphic registrations compared to vector momen-

tum LDDMM [43]. However, RaPTOR and FLASH have the following drawbacks. First,

RaPTOR uses B-spline as the transformation model which does not guarantee a smooth

inverse transformation. Second, FLASH uses Sum-of-Squared Differences (SSD) that is
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unable to directly measure the similarity between images of different modalities and con-

trasts [44]. Therefore, FLASH cannot be used to perform inter-modal/contrast image reg-

istration. Third, FLASH does not use multiresolution image pyramids to tackle larger

deformations which is a standard approach in many inter-modal image registration meth-

ods. In [178], we proposed DiffeoRaptor, a novel algorithm to bring together the benefits

of RaPTOR and FLASH while mitigating their drawbacks. We decided to build on RaP-

TOR to propose a novel diffeomorphic registration technique. Other excellent choices are

normalized Gaussian fields (NGF) and MIND. FLASH framework was selected in favor

of other diffeomorphic approaches. Because it is based on the well-established LDDMM

framework. The performance of DiffeoRaptor was demonstrated in three applications, in-

cluding 1) healthy individual MRI-to-template registration; 2) registration between AD and

healthy brains, as well as brain scans at different stages of AD; 3) nonlinear registration of

MR and CT abdominal data. The contributions of [178] are three-fold:

1. Proposing a diffeomorphic image registration framework using RaPTOR.

2. Devising inter-modal/contrast image registration with geodesic shooting in the ban-

dlimited space of velocity fields.

3. Employing gradient descent (GD) with momentum to improve the convergence in

contrast to classical GD optimization in FLASH and RaPTOR .

Our results show that DiffeoRaptor could achieve 1) better alignment of brain and ab-

dominal images compared to Mattes MI+SyN, NiftyReg [188], and FLASH as assessed by

Dice scores; 2) smoother deformation fields compared to Mattes MI+SyN and NiftyReg

in the alignment of brain MR images, and 3) comparable computation time with FLASH

while performing more challenging tasks.

4.1 Methodology

In this section, backgrounds of bandlimited space of velocity fields, bandlimited geodesic

shooting, and formulation of RaPTOR metric are presented. Then, the formulation of Dif-
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feoRaptor objective function is derived. Lastly, the optimization technique to minimize the

objective function is detailed.

4.1.1 Space of bandlimited velocity fields

In pairwise diffeomorphic image registration, the reference image X ∈ Ω and the source

image Y ∈ Ω are given. Ideally, the objective is to find a mapping ϕ ∈ Diff(Ω) such that

X◦ϕ ≈ Y and Y ◦ϕ−1 = X . Diffeomorphisms ϕ : Ω → Ω are a smooth mapping that has a

smooth inverse ϕ−1. The tangent vector space at the identity id ∈ Diff(Ω) over the space of

diffeomorphisms is defined as V = TidDiff(Ω). Given V , the space of bandlimited velocity

fields ˜︁V was constructed and proper Lie algebra in this space was defined in [15]. Time

series t ∈ [0, 1] of dffeomorphisms ϕt ∈ Diff(Ω) is created in the process of solving an

ordinary differential equation (ODE). The time series of bandlimited velocity fields ṽt ∈ ˜︁V
are related to ϕ−1

t by Eq (4.1).

dϕ−1
t

dt
= −Dϕ−1

t · ι (ṽt) (4.1)

where D is the derivative operator and ι : ˜︁V → V is the inverse Fourier transform from

the bandlimited space to the space of dense velocity fields [15]. The geodesic shooting is

the process of integrating the geodesic path of diffeomorphisms forward in time which is

uniquely determined with the velocity ṽ0 in t = 0. The geodesic evolution equation in the

discrete Fourier space is defined in Eq (4.2).

∂ṽt
∂t

= − ˜︁K[︃( ˜︁Dṽ)T ⋆ m̃t + ˜︁Γ(m̃t ⊗ ṽt)

]︃
(4.2)

where K is the smoothing operator which is the inverse of the differential operator L.

There is an in-depth discussion of possible choices of L in [3, 189, 190]. In this paper, it

is set L = (−α∆ + I)c similar to [3, 15] where ∆ is the Laplacian operator. ˜︁K is the

smoothing operator in the bandlimited space [15], ⋆ is the truncated auto-correlation, ˜︁Γ is

the discrete divergence, mt˜ = ˜︁Lṽt is the momentum, ˜︁L is the representation of L in the

frequency domain, ⊗ denotes the tensor product, and ˜︁D is an operator that computes the
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spatial gradient in the bandlimited Fourier space [15].

4.1.2 Geodesic shooting in the bandlimited space

By setting the geodesic shooting as the constraint of the cost function, it does not require

calculating the velocity fields ṽt and diffeomorphisms ϕt in a dense time grid and it suffices

to calculate the initial velocity ṽ0 ∈ ˜︁V . The cost function for FLASH was defined as

Eq. (4.3).

E(ṽ0) =
1

2σ2

⃦⃦
Y ◦ ϕ−1

1 −X
⃦⃦2

+ ⟨˜︁Lṽ0, ṽ0⟩, s.t.Eq. (4.2) (4.3)

where σ is the noise variance, ∥ · ∥ is the norm operator in the space Ω, ˜︁L is the inverse of˜︁K, and ⟨, ⟩ is the inner-product in the space ˜︁V [15]. Gradient of the energy function E can

be calculated as in Eq. (4.4) for the minimization of cost.

∇ṽ1E = ν

(︃
−K

(︃
1

σ2
(Y ◦ ϕ−1

t −X) · ∇(Y ◦ ϕ−1
1 )

)︃)︃
(4.4)

where ν : V → ˜︁V is the projection mapping to the bandlimited space of velocity fields and

K is the smoothing operator.

4.1.3 RaPTOR

One possible choice for the similarity metric is the CR [47]. For challenging inter-modal

image registration tasks, calculation of CR needs to be robust and possibly time-efficient.

RaPTOR is a dissimilarity metric that is based on CR [40] and addresses the shortcomings

of CR [47]. RaPTOR and its derivative can be calculated as in Eq. (4.5). It calculates CR

in local patches Θ. Instead of calculating the iso-sets of X , the histogram of X over Nb

bins are calculated and then Parzen windowing was applied to make the bins continuous
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and differentiable.

1− η(Y |X) =
1

Nσ2

(︃ N∑︂
i=1

y2i −
Nb∑︂
j=1

Njµ
2
j

)︃
(4.5a)

µj =

∑︁N
i=1 λijyi
Nj

, Nj =
∑︂
i

λij (4.5b)

RaPTOR(Y,X) = Ψ(Y,X) =
1

Np

Np∑︂
i=1

(1− η(Y |X; Θi)) (4.5c)

∇φΨ =
∂Ψ

∂φ
=
∂ϕ

∂φ
· ∂Y
∂ϕ

· ∂Ψ
∂Y

(4.5d)

∂(1− η)

∂yi
=

2

Nσ2

(︃
yi − λi,j−1µj−1 − λijµj−

1

(N − 1)σ2
(yi − µ)

(︃ N∑︂
a=1

y2a −
Nb∑︂
c=1

Ncµ
2
c

)︃)︃ (4.5e)

where N is the number of pixels in a image patch Θi, σ2 = Var[Y ; Θi] is the variance of a

patch i in Y , yi is the intensity of sample i in image Y , let j and j− 1 be the closest bins to

sample xi (intensity of sample i in X) then according to its distance to these bins centers,

λij is the linear contribution of xi to the bin j, Np is the number of patches, φ is the param-

eter of transformation ϕ, and µ = E[Y ] is the average value of Y . η(Y |X) can measure the

functional dependence between the input images. When there is no functional dependence

η(Y |X) = 0 and when η(Y |X) = 1 there is a deterministic relationship between X and

Y. Calculating gradient of RaPTOR analytically enables efficient minimization of the dis-

similarity metric using gradient-based optimization and employing the outlier suppression

technique elaborated in [40].

4.1.4 DiffeoRaptor

The energy function in Eq. (4.3) can be generalized to the form in Eq. (4.6).

E(ṽ0) = dist
(︁
Y ◦ ϕ−1

1 , X
)︁
+ ⟨˜︁Lṽ0, ṽ0⟩, s.t.Eq. (4.2) (4.6)

where dist(, ) is a normalized distance function or a dissimilarity function. DiffeoRaptor
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is the cost function in the form of Eq. (4.6) with the RaPTOR defined in Eq. (4.5) as the

dissimilarity function. So it takes the form in Eq. 4.7.

E(ṽ0) = Ψ
(︁
Y ◦ ϕ−1

1 , X
)︁
+ ⟨˜︁Lṽ0, ṽ0⟩, s.t.Eq. (4.2) (4.7)

Eq. (4.4) is no longer valid for Eq. (4.7) and the gradient of cost function needs to be

calculated for the optimization. A similar approach to [3] is taken to calculate ∂uΨ, the

variation of cost in Eq. (4.7) with respect to the velocity u = Dϕ−1
1 which is obtained by

taking the derivative of ϕ−1
1 .

Given the fact that we are working with image intensities in a grid according to Eq. (4.5),

the variation of energy ∂uE takes the form ∂uE = ⟨∇uE, u⟩Vg and therefore ∂uΨ =

⟨∇uΨ, u⟩Vg . The inner-product ⟨, ⟩Vg calculation is over a finite grid (Vg is the space of

velocities where the inner-product ⟨, ⟩Vg is taken). To calculate the Gateaux derivative of

cost in Eq. (4.7), one is required to derive ∂uΨ first as in Eq. (4.8).

∂uΨ = ⟨∂Ψ
∂Y

· ∇(Y ◦ ϕ−1
1 ), u⟩Vg (4.8)

Detailed derivation of Eq. (4.8) is presented in the following. The variation of RaPTOR

can be calculated using the Eq. 4.9 by perturbing the diffeomorphism ϕ−1
1 . The diffeomor-

phism is perturbed by the velocity u = Dϕ−1
1 which is obtained by taking the derivative of

ϕ−1
1 .
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∂uΨ =
1

Np

Np∑︂
k=1

∂u(1− η(Y ◦ ϕ−1
1 |X; Θk)) =

1

Np

Np∑︂
k=1

lim
ϵ→0

1

ϵ

(︃
η(Y ◦ ϕ−1

1 |X; Θk)− η(Y ◦ (ϕ−1
1 + ϵu)|X; Θk)

)︃
=

1

Np

Np∑︂
k=1

lim
ϵ→0

1

ϵ

(︃
1

Nσ2

(︃ N∑︂
i=1

y2i −
Nb∑︂
c=1

Ncµ
2
c

)︃

− N − 1

N
∑︁N

i=1(zi(ϵ)− µ)2

(︃ N∑︂
i=1

(zi(ϵ))
2 − 1

Nj

N∑︂
i=1

λij(zi(ϵ))
2

− 1

Nj−1

N∑︂
i=1

λij−1(zi(ϵ))
2 +

1

Nj

N∑︂
i=1

λijy
2
i +

1

Nj−1

N∑︂
i=1

λij−1y
2
i

)︃)︃
=

(︃
1

Np

Np∑︂
k=1

2

Nσ2

(︃ N∑︂
i=1

yihiui −
N∑︂
i=1

λi,j−1µj−1hiui−

N∑︂
i=1

λijµjhiui −
1

(N − 1)σ2

(︃ N∑︂
i=1

(yi − µ)hi

)︃(︃ N∑︂
i=1

y2i −
Nb∑︂
c=1

Ncµ
2
c

)︃)︃)︃
=⟨∂Ψ
∂Y

· ∇(Y ◦ ϕ−1
1 ), u⟩Vg

(4.9)

where z(ϵ) = Y ◦ (ϕ−1
1 + ϵu), h = ∇(Y ◦ϕ−1

1 ), and ∇(Y ◦ϕ−1
1 )u = limϵ→0

1
ϵ

(︃
Y ◦ (ϕ−1

1 +

ϵu) − Y ◦ ϕ−1
1

)︃
is used in the fourth equality. The term ∂Ψ

∂Y
is a vector with N elements.

Eq. 4.10 shows element ith of the vector using the notation {∂Ψ
∂Y

}Ni=1.

{︃
∂Ψ

∂Y

}︃N
i=1

=
1

Np

Np∑︂
k=1

2

Nσ2

(︃
yi − λi,j−1µj−1 − λijµj

− 1

(N − 1)σ2

(︃
yi − µ

)︃(︃ N∑︂
a=1

y2a −
Nb∑︂
c=1

Ncµ
2
c

)︃)︃ (4.10)

Eq. (4.8) indicates that ∇uΨ = ∂Ψ
∂Y

· ∇(Y ◦ ϕ−1
1 ) which is known and can be calculated

using the Eq. (4.5e). By similar calculations to [3] and [15], the gradient of cost can be

written as Eq. (4.11).
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∇ṽ1E = ν

(︃
−K

(︃
∂Ψ

∂Y
· ∇(Y ◦ ϕ−1

1 )

)︃)︃
(4.11)

the gradient in Eq. (4.11) for the velocity in t = 1 can be used to find the gradient ∇ṽ0E in

t = 0 with the reduced adjoint Jacobi field in bandlimited velocity fields elaborated in [15].

This process is called backward integration. To minimize the cost in Eq. 4.7, forward

integration of Eq. 4.2 is used to find the velocity in t = 1. Then ∇ṽ0E is used in GD

with momentum optimization to update the velocity. Finally, Eq. 4.1 is used to calculate

diffeomorphisms. Since similar process was used in [15] to calculate diffeomorphisms, the

diffeomorphic registration is guaranteed. The employment of multi-resolution pyramid,

gradient descent with momentum, and implementation details of DiffeoRaptor can be found

in the following sections.

4.1.5 Mutli-resolution pyramid and gradient descent with momentum

For DiffeoRaptor, the GD with momentum was used to break the zig-zag pattern of GD and

reduce the chance of trapping in a local minimum. Thus, the convergence for DiffeoRaptor

could be possibly better than FLASH and RaPTOR. The update equation in iteration i for

GD with momentum is outlined in Eq. 4.12. In Eq. 4.12, pi is the momentum parameter,

and (ṽ0)i is the velocity field in iteration i. Setting pi = 0.1
1−(0.9)i+1 produces best results for

us.

(ṽ0)i+1 = (ṽ0)i − ϵ∇ṽ0E + pi((ṽ0)i − (ṽ0)i−1) (4.12)

Multi-resolution image pyramid is employed often in image registration techniques to

improve convergence of the algorithm. However, FLASH does not implement this tech-

nique. In DiffeoRaptor, it was implemented for up to three levels of image pyramids to

produce larger deformations. Fig. 4.1 shows image energy term (Ψ), total energy (E), and

MSE between the template and source image over the iterations for three image pyramid

levels. In this test case, there were maximum ten iterations needed for the convergence.

Since RaPTOR and followingly DiffeoRaptor use random patches to calculate Ψ, the quan-
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tities over the iterations are not strictly decreasing. Moreover, for the Level 0, MSE is in-

creasing after the 5th iteration which does not necessarily mean that the image alignment

has been deteriorated.

Figure 4.1: Image energy term (Ψ), tatal energy (E), and MSE between the template and
source image over the iterations for three image pyramid levels. In this test case which
is a T1 image to a template registration, maximum five iterations were needed for the
convergence,

4.1.6 Implementation Details

Parameter settings for DiffeoRaptor are similar to what is elaborated in RaPTOR [40] and

FLASH [3]. The patch size of 7× 7× 7 and number of patches of 3000, 2000, and 200 for

the finest to the coarse level respectively, produce the best result according to the following

parameter search experiment. In this experiment, six subjects of IXI dataset are selected

which are not used (hold-out validation set) in the image registrations experiments of Sec-

tion 3.2.
(︁
6
2

)︁
= 15 image registrations are performed by selecting two distinct subjects each

time. Table 4.1 shows five different parameter setups and mean Dice score of overlapping
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regions. Setup 1 has better mean Dice score than the other setups. Setup 1 and 5 have simi-

lar mean Dice scores, however, the image registrations using Setup 5 takes more execution

time due to the selection of more patches.

Table 4.1: Mean Dice score evaluation of 15 T1-T1 inter-subject registrations of hold-
out validation set of IXI data for DiffeoRaptor in overlapping regions of brain tissues and
sixteen subcortical structures for 5 parameter setups. Note that the number of patches are
for the finest to the coarse level respectively.

Setup Patch size Number of patches Dice - brain tissue Dice - subcortical structure

1 7× 7× 7 3000, 2000, 200 0.70± 0.01 0.83± 0.02
2 5× 5× 5 3000, 2000, 200 0.70± 0.01 0.82± 0.02
3 9× 9× 9 3000, 2000, 200 0.70± 0.01 0.82± 0.02
4 7× 7× 7 1500, 1000, 100 0.69± 0.01 0.82± 0.02
5 7× 7× 7 5000, 3000, 400 0.70± 0.01 0.83± 0.02

Given the discussion on the size of bandlimited space in [15], the bandlimited space

size is set to 16 × 16 × 16. However, the maximum number of iterations are smaller for

each level of image pyramids compared to FLASH’s maximum number of iterations in the

full resolution. Note that the registration in the full resolution has the greatest impact on

the overall computational time. Typically in our experiments, the number of iterations are

fewer than 30 for each level of image pyramids.

Similar to Rivaz et al. [40], by using a test dataset, we noticed that setting Y as the

moving image and X as the fixed image produced the best results for us. Note that in all

the registrations, X is the reference T1w image and Y can be T1w, T2w, PDw, or CT.

4.2 Experiments and results

DiffeoRaptor was validated on three public datasets: IXI1, OASIS3 [49], and The Cancer

Imaging Archive (TCIA) MR-CT abdominal data [165]. It is compared against Mattes

MI+SyN, which is available in Advanced Normalization Tools (ANTs) [191] and NiftyReg

[188] (using the normalized mutual information (NMI) as the similarity metric), as well

1http://brain-development.org/ixi-dataset
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Table 4.2: Abbreviation of subcortical structures which were automatically labelled in the
segmentation of brain volumes using volBrain [193].

Subcortical Structure Abbreviation

Left/Right Ventricle LV/RV
Left/Right Caudate LC/RC
Left/Right Putamen LP/RP
Left/Right Thalamus LT/RP
Left/Right Globus Pallidus LGP/RGP
Left/Right Hippocampus LH/RH
Left/Right Amygdala LA/RA
Left/Right Accumbens LAC/RAC

as in several tasks with FLASH. Dice scores of overlapping regions are used as evaluation

metrics. The default parameters for NiftyReg with the GD optimization produced the best

results for us. Mattes MI+SyN is a diffeomorphic algorithm which uses Mattes MI as the

similarity metric and models the deformation fields with SyN, and is suitable for inter-

modal/contrast image registration. The parameters for Mattes MI+SyN were tuned such

that it produced the optimal results. The number of bins for MI was set to 32 and the

gradient step, the update field variance, and total field variance were set to 0.5, 3, and 0.5

for SyN respectively.

4.2.1 Pre-processing of brain MRI

Brain MR images of the IXI and OASIS3 datasets, were first skull-stripped using nonlo-

cal intracranial cavity extraction [192]. For each case, the extracted brain was carefully

inspected. Then, two types of segmentations were generated for each volume using the

volBrain algorithm [193] so that Dice scores can be used to evaluate registration accuracy.

Here, in the first one, brain tissues are classified into Cerebrospinal Fluid (CSF), Gray

Matter (GM), and White Matter (WM). The second type of segmentation consists of 16

subcortical structures which are abbreviated in Table 4.2. Lastly, the volumes were affinely

registered using ANTs with Mattes MI as the metric (see Fig. 4.2).
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Figure 4.2: Coronal view of two slices (rows) of four different IXI dataset subjects
(columns). The images are overlaid by the segmentation of CSF, GM, and WM. The large
variability of structures across subjects require a deformable registration.

4.2.2 IXI Dataset: inter-subject registration

Twenty young adult subjects (age < 30yo) of the IXI dataset were selected randomly.

Given the fact that the IXI datatset offers T1w, T2w, and PDw for each subject, three dif-

ferent tasks were designed, including T1-T1, T1-T2, and T1-PD registrations. T1w MRI

scans of three subjects (Subject 15, 17, and 21) were randomly selected as the reference

volume and the rest are set as the source volumes for inter-subject registration (in total

Table 4.3: Dice score (mean±std) evaluation of T1-T1, T1-T2, and T1-PD registrations
of IXI dataset for DiffeoRaptor, Mattes MI+SyN, FLASH, and NiftyReg in overlapping
regions of brain tissues and sixteen subcortical structures.
Task and Evaluation Region Affine only DiffeoRaptor Mattes MI+SyN FLASH NiftyReg

T1-T1 Brain Tissues 0.62± 0.03 0.72± 0.04 0.72± 0.04 0.64± 0.04 0.67± 0.03
T1-T1 Subcortical Structures 0.67± 0.06 0.78± 0.03 0.78± 0.04 0.67± 0.06 0.74± 0.05
T1-T2 Brain Tissues 0.62± 0.03 0.67± 0.04 0.67± 0.04 0.64± 0.03 0.64± 0.04
T1-T2 Subcortical Structures 0.67± 0.06 0.71± 0.06 0.71± 0.06 0.66± 0.05 0.65± 0.05
T1-PD Brain Tissues 0.62± 0.03 0.67± 0.04 0.67± 0.04 0.64± 0.03 0.64± 0.04
T1-PD Subcortical Structures 0.67± 0.06 0.71± 0.05 0.69± 0.06 0.67± 0.06 0.68± 0.06
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Table 4.4: Dice score (mean±std) evaluation of ICBM152-T1, ICBM152-T2, and
ICBM152-PD registrations of IXI dataset for DiffeoRaptor, Mattes MI+SyN, FLASH, and
NiftyReg in overlapping regions of brain tissues and sixteen subcortical structures.

Task and Evaluation Regions Affine only DiffeoRaptor Mattes MI+SyN FLASH NiftyReg

ICBM152-T1 Brain Tissues 0.62± 0.04 0.68± 0.04 0.70± 0.04 0.63± 0.04 0.71± 0.05
ICBM152-T1 Subcortical Structures 0.70± 0.06 0.80± 0.02 0.78± 0.04 0.71± 0.04 0.74± 0.07
ICBM152-T2 Brain Tissues 0.62± 0.04 0.65± 0.05 0.67± 0.06 0.62± 0.04 0.65± 0.05
ICBM152-T2 Subcortical Structures 0.70± 0.06 0.76± 0.04 0.76± 0.08 0.67± 0.06) 0.73± 0.08
ICBM152-PD Brain Tissues 0.62± 0.04 0.66± 0.04 0.66± 0.05 0.63± 0.04 0.64± 0.05
ICBM152-PD Subcortical Structures 0.70± 0.06 0.75± 0.05 0.73± 0.07 0.70± 0.05 0.73± 0.07

3 × 19 = 57 registrations). The results of Dice score evaluation are summarized in Ta-

ble 4.3, which shows that DiffeoRaptor, Mattes MI+SyN, and NiftyReg could successfully

align volumes in each task whereas FLASH underperformed in terms of Dice scores in

intra-contrast tasks and failed in inter-contrast tasks as expected. It can also be seen that

DiffeoRaptor in general did better than Mattes MI+SyN.

4.2.3 IXI dataset: subject-to-template registration

Given the IXI subjects in Section 4.2.2, the volumes are set as the source volumes and they

were registered to the T1w ICBM152 template [194]. Here, the template is set as the refer-

ence volume and similar tasks were performed as Section 4.2.2 for subject-to-template reg-

istration. The results are summarized in Table 4.4, which shows that DiffeoRaptor, Mattes

MI+SyN, and NiftyReg could successfully align volumes in each task while DiffeoRap-

tor in general did better than Mattes MI+SyN and NiftyReg in alignment of subcortical

structures.

Figure 4.3 demonstrates two coronal views of registration results. The subcortical

structures are shown in the figure as colored outlines. DiffeoRaptor show better alignment

of slices and anatomical structures compared to other methods. The cerebrum shape with

DiffeoRaptor registration looks closer to the ICBM152 template than other methods.
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Figure 4.3: From the left to right: coronal slices of the ICBM152 (reference volume),
the PDw source volume of the IXI dataset, result of NiftyReg, FLASH, Mattes MI+SyN,
and DiffeoRaptor respectively. Rows show different coronal views. Subcortical structural
segmentations are shown in colored contours. Arrows are pointing to the regions where the
image alignments are more visible.

Table 4.5: Dice score evaluation (mean±std) of T1-T2 inter-subject registration of IXI data
with OASIS3 data for DiffeoRaptor, Mattes MI+SyN, and NiftyReg in overlapping regions
of brain tissues and sixteen subcortical structures.
Task and Evaluation Regions Affine only DiffeoRaptor Mattes MI+SyN NiftyReg

T1-T2 Brain Tissues Mean 0.51± 0.13 0.61± 0.07 0.54± 0.16 0.56± 0.16
T1-T2 Subcortical Structures 0.56± 0.17 0.71± 0.11 0.63± 0.21 0.59± 0.18

4.2.4 OASIS3 dataset: intra- and inter-subject registration

The OASIS3 dataset consists of subjects intended for investigating AD [49]. Twenty AD

patients from this dataset were randomly selected with matching T1w and T2w MRIs. In

the first sub-task, intra-contrast intra-subject registration was performed for brain scans

obtained at different stages of AD progression, where the T1w volume at the baseline

was set as the reference and the T1w image from the latest session (> 6 months apart)

with visible atrophy was registered to the reference. This sub-task represents the need in

neuroimage analysis for tracking disease-related anatomical changes.

The results of intra-subject registration of OASIS3 data were summarized in Table 4.6.

In Table 4.6, it can be seen that for the first task (T1-T1 intra-subject registration), Diffeo-

Raptor, Mattes MI+SyN, and NiftyReg improved the Dice score by 0.01. The reason is that

the affine registration aligned the images such that there was less room for improvement.
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Table 4.6: Mean Dice score evaluation of T1-T1 intra-subject registration of OASIS3 data
for DiffeoRaptor, Mattes MI+SyN, and NiftyReg in overlapping regions of brain tissues
and sixteen subcortical structures.
Task and Evaluation Regions Affine only DiffeoRaptor Mattes MI+SyN NiftyReg

T1-T1 Brain Tissues 0.83± 0.02 0.84± 0.01 0.83± 0.01 0.84± 0.02
T1-T1 Subcortical Structures 0.87± 0.02 0.88± 0.01 0.88± 0.01 0.88± 0.01

Figure 4.4: From the left to right: axial slices of the T1w reference volume from the IXI
dataset, the T2w MRI source volume of the OASIS3 dataset, result of NiftyReg, Mattes
MI+SyN, and DiffeoRaptor respectively. Rows show different axial views. Subcortical
segmentations are shown in colored contours.

In the second sub-task, T1w MRIs of four young healthy adults of the IXI datatset in

Section 4.2.2 were used as the references and the T2w MRI scans of the latest session for

each subject from the OASIS3 dataset were set as the source volumes, resulting in 4×20 =

80 registrations. This way, we defined a more challenging, inter-contrast, inter-subject, and

inter-dataset task to better compare DiffeoRaptor with Mattes MI+SyN and NiftyReg.The

results of T1-T2 registrations are summarized in Table 4, where DiffeoRaptor outperformed

Mattes MI+SyN and NiftyReg. Note that FLASH was not included in these experiments

because it continuously failed to perform inter-contrast registration. In Fig. 4.4, it can be

seen that DiffeoRaptor has improved the alignment of subcortical structures and ventricles
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Table 4.7: Dice score (mean±std) evaluation of MR-CT intra-subject registration for TCIA
abdominal data using DiffeoRaptor, RaPTOR [40], Mattes MI+SyN, and NiftyReg.

Evaluation Regions DiffeoRaptor RaPTOR Mattes MI+SyN NiftyReg

Liver 0.81± 0.07 0.81± 0.09 0.80± 0.10 0.79± 0.11
Spleen 0.71± 0.13 0.71± 0.16 0.69± 0.10 0.71± 0.13
Left Kidney 0.70± 0.15 0.71± 0.15 0.68± 0.17 0.65± 0.22
Right Kidney 0.70± 0.19 0.69± 0.19 0.67± 0.17 0.65± 0.22

Average 0.78± 0.10 0.77± 0.10 0.77± 0.11 0.76± 0.13

better than Mattes MI+SyN and NiftyReg.

4.2.5 TCIA abdominal MR-CT intra-subject registration

The TCIA dataset contains eight subjects. Each subject has a T1w MRI scan and CT scan

(with deformation) of the abdomens. The manual segmentations of the liver, spleen, left

kidney, and right kidney are provided by the Learn2Reg organizers (https://learn2reg.grand-

challenge.org). By setting the MRI scan for each subject as the reference volume, CT scans

were aligned to perform intra-subject registrations. The deformable registration for MR-

CT of these subjects are required because the images were taken in different time points,

with different modalities, and misalignments due to patient movement, respiration, and etc.

The results are summarized in Table 4.7.

Figure 4.5: From left to right: coronal slices of Subject 7’s MRI (reference volume), the
corresponding CT source volume, results of NiftyReg, Mattes MI+SyN, DiffeoRaptor, and
NiftyReg respectively. Rows show different slices of volumes. Segmentations of key or-
gans are shown with colored contours. Arrows are pointing to the regions where the image
alignments are more visible.
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Table 4.8: Dice scores (mean±std) of cumulative results for DiffeoRaptor, Mattes
MI+SyN, and NiftyReg in overlapping subcortical structures. The p-values from ANOVA
are shown for each anatomical structure.

Evaluation Regions DiffeoRaptor Mattes MI+SyN NiftyReg p-value

LV 0.65± 0.14 0.60± 0.18 0.58± 0.18 1.21× 10−5

RV 0.64± 0.13 0.59± 0.17 0.57± 0.16 1.60× 10−6

LC 0.73± 0.11 0.70± 0.17 0.66± 0.16 4.30× 10−6

RC 0.72± 0.11 0.68± 0.19 0.64± 0.17 1.15× 10−5

LP 0.79± 0.08 0.75± 0.14 0.73± 0.14 4.90× 10−7

RP 0.78± 0.08 0.73± 0.15 0.70± 0.16 2.33× 10−11

LT 0.80± 0.09 0.78± 0.16 0.73± 0.15 1.58× 10−7

RT 0.78± 0.09 0.77± 0.15 0.71± 0.15 6.56× 10−8

LGP 0.70± 0.10 0.65± 0.14 0.60± 0.17 1.04× 10−13

RGP 0.68± 0.10 0.64± 0.14 0.57± 0.17 2.44× 10−15

LH 0.69± 0.09 0.65± 0.14 0.64± 0.14 7.31× 10−5

RH 0.73± 0.09 0.69± 0.14 0.67± 0.14 8.56× 10−8

LA 0.60± 0.15 0.55± 0.18 0.53± 0.18 3.37× 10−5

RA 0.60± 0.14 0.57± 0.17 0.53± 0.17 7.06× 10−6

LAC 0.50± 0.17 0.43± 0.21 0.37± 0.22 1.22× 10−11

RAC 0.46± (0.18 0.45± 0.20 0.36± 0.21 7.70× 10−9

Average 0.72± 0.08 0.68± 0.14 0.65± 0.13 1.14× 10−8

Given the fact that the initial affine registration achieved mean Dice score of 0.72 ±

0.10, Table 4.7 shows DiffeoRaptor, RaPTOR [40], Mattes MI+SyN, and NiftyReg could

successfully improve the image alignment. Besides, DiffeoRaptor outperformed Mattes

MI+SyN and NiftyReg in alignment of all the targeted regions. Note that two subjects

didn’t have the segmentation of the right kidney and thus they were excluded from the

Mean Dice calculation of Table 4.7. In Fig. 4.5, it can be seen that compared to the

affine registration, Mattes MI+SyN and DiffeoRaptor show improvement in alignment of

segmented organs. However, DiffeoRaptor shows better alignment of organs compared to

Mattes MI+SyN and NiftyReg.
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Figure 4.6: The box plots of average Dice score for the total of 291 brain image registra-
tions. DiffeoRaptor has a higher mean and lower std with fewer outliers.

Table 4.9: Post-hoc multiple comparison (Tukey-Kramer) tests of DiffeoRaptor against
Mattes MI+SyN and NiftyReg for the average Dice in overlapping subcortical structures.
DiffeoRaptor results are better than Mattes MI+SyN and NiftyReg (p < 0.05).

Methods p-value

DiffeoRaptor vs Mattes MI+SyN 1.92× 10−2

DiffeoRaptor vs NiftyReg 3.62× 10−6

4.2.6 Cumulative results

Given the inter-contrast registration results (total 291) in Section 4.2.2, 4.2.3, and 4.2.4

for brain structures, the mean Dice scores and the associated p-values from comparing the

three methods using the one-way analysis of variance (ANOVA) were listed for the sixteen

subcortical structures in Table 4.8. Furthermore, post-hoc multiple comparison (Tukey-

Kramer) tests were performed to reveal the performance of the methods (Table 4.9). With

the statistical tests, we confirm that DiffeoRaptor outperforms the rest in terms of Dice

scores for aligning each subcortical region, as well as the mean Dice score (p < 0.05). It

is worth mentioning that the average mean Dice is 0.63 ± 0.12 for the affine registration.

To better visualize the results for the last row of Table 4.8, the box plots of average Dice

scores over all evaluation regions are demonstrated in Fig. 4.6.
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4.2.7 Deformation smoothness analysis

Figure 4.7: The logarithm of determinant of Jacobian log10(det(J)) was calculated for each
voxel of the deformation field. Then they were accumulated in bins for Mattes MI+SyN
and DiffeoRaptor.

With the cumulative results in Section 4.2.6, in each registration, the determinant of

Jacobian J was calculated for each voxel of the deformation field. Figure 4.7 shows

log10(det(Jϕ)) for each voxel that they were accumulated in bins for DiffeoRaptor and

Mattes MI+SyN. For example, the bin centred at the origin means no deformation, bins

with the negative centres show contraction, and bins with positive centre show expansion.

The further the bin from the centre, the more deformation the bin represents. From the

experiments, we observed that the number of non-zero samples is similar across Diffe-

oRaptor, Mattes MI+SyN, and NiftyReg. However, DiffeoRaptor has fewer samples far

from the central bin (Fig. 4.7).

Table 4.10: Comparison of deformation smoothness of DiffeoRaptor, Mattes MI+SyN, and
NiftyReg by the determinant of Jacobians of deformation fields (Jϕ).

Method log10(det(Jϕ)) ̸= 0
∑︁

|log10(detJϕ)| det(Jϕ) ≤ 0

(i) Mattes MI+SyN 1.49× 108 2.61× 107 9038
(ii) NiftyReg 1.49× 108 3.62× 107 47048
(iii) DiffeoRaptor 1.49× 108 1.95× 107 0

Difference of (i) and (iii) 9038 6.58× 106 9038
Difference of (ii) and (iii) 47048 1.67× 107 47048

To further validate the smoothness of deformation fields, the quantity
∑︁

|log10(det(J))|

was calculated where the summation is over all the samples available and the results are
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summarized in Table. 4.10. It can be seen that the summation values in Mattes MI+SyN

and NiftyReg are higher than DiffeoRaptor. This suggests that DiffeoRaptor generates

smoother deformations while having generally better performance. The other way to com-

pare the deformation fields is counting the number of voxels in which det(Jϕ) ≤ 0. If

det(Jϕ) ≤ 0, it means the mapping of that voxel was not diffeomorphic. Last column of

Table. 4.10 shows that Mattes MI+SyN and NiftyReg had many voxels with this property,

whereas DiffeoRaptor did not have any voxels in which det(Jϕ) ≤ 0.

Figure 4.8: The visualization of Jacobian determinants for DiffeoRaptor, Mattes MI+SyN,
and NiftyReg is presented. DiffeoRaptor shows smoother deformation compared to other
methods.

Figure 4.8 shows the visualization of Jacobian determinants for DiffeoRaptor, Mattes

MI+SyN, and NiftyReg. The registration is performed between ICBM152 T1w and Subject

15 of IXI dataset (PDw). For this registration, the number of negative and zero Jacobian de-

terminants (det(Jϕ) ≤ 0) are zero for all the cases. However, the value of
∑︁

|log10(detJϕ)|

for DiffeoRaptor, Mattes MI+SyN, and NiftyReg are 12954.1, 204088.1, and 360751.5 re-

spectively. This indicates that the deformation by DiffeoRaptor is smoother than the other

methods. DiffeoRaptor ensures diffeomorphic transformations, while SyN and NiftyReg

do not guarantee them. So, DiffeoRaptor has the advantage of generating diffeomorphisms

according to the experiments, which conforms with the theory.

Table. 4.11 presents the comparison of DiffeoRaptor, RaPTOR [40], Mattes MI+SyN,

and NiftyReg in terms of deformation smoothness for TCIA abdominal MR-CT intra-

subject registration. The quantity
∑︁

|log10(det(Jϕ))| is calculated where the summation is

over all the samples available. For the ablation study, DiffeoRaptor suggests smoother de-

formation compared to RaPTOR [40]. NiftyReg generated 76118 samples with det(Jϕ) ≤

0 which means the deformations are not diffeomorphic. While DiffeoRaptor outperformed
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Table 4.11: Comparison of deformation smoothness of DiffeoRaptor, RaPTOR [40], Mat-
tes MI+SyN, and NiftyReg by the determinant of Jacobians of deformation fields (Jϕ) for
TCIA abdominal MR-CT intra-subject registration.

Method log10(det(Jϕ)) ̸= 0
∑︁

|log10(detJϕ)| det(Jϕ) ≤ 0

(i) Mattes MI+SyN 4.71× 107 2.39× 106 0
(ii) NiftyReg 4.71× 107 1.55× 106 76118
(iii) RaPTOR 5.11× 107 4.61× 107 0
(iv) DiffeoRaptor 5.11× 107 3.75× 107 0

Difference of (i) and (iv) 3.95× 106 3.51× 107 0
Difference of (ii) and (iv) 4.01× 106 3.59× 107 76118
Difference of (iii) and (iv) 0 8.62× 106 0

other methods in terms of average Dice, Mattes MI+SyN generated smoother deformations

compared to other methods.

4.3 Limitations

In the work of Rohlfing et al. [195], it was shown that although similarity metric and auto-

matically generated tissue overlaps are commonly used for validation of image registration

accuracy, they can be unreliable. They investigated two possible solutions for this problem:

1) utilization of localized labels and 2) using manually generated segmentations. For our

experiments, the registration accuracy is validated on 16 subcortical regions. Our valida-

tion using subcortical regions showed the agreement across the results on tissue overlaps,

qualitative validation, and our similarity metric (RaPTOR). Similar approaches were used

for validation of image registration in most of the current registration techniques (e.g. Vox-

elMorph [186]). However, we admit that these validation approaches (tissue overlap and

similarity metrics) have their limitations. When resources are available, validation using

an established manually labelled dataset and multi-modal ground truths (e.g. addition of

matching anatomical landmarks) will form better assessments.

The segmentations of 16 subcortical structures are generated by the automated al-

gorithm (volBrain [193]). The algorithm uses non-local means patch-based segmenta-

tion and only affine registration to align the target MRI and the atlas library. The algo-
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rithm was compared against the widely used brain tissue/structure segmentation software,

FreeSurfer [196] and FIRST [197] in in terms of Dice coefficients on a manually labelled

dataset [193]. The average Dice scores of 0.91 ± 0.05, 0.73 ± 0.11, and 0.77 ± 0.10 were

reported for volBrain, FreeSurfer, and FIRST, respectively [193], showing excellent perfor-

mance of volBrain. Worth to mention that most of the current learning-based registration

works (e.g. VoxelMorph [186]) use automatic segmentation, such as FreeSurfer for valida-

tion purposes due to limited resources for manually labeled datasets.

In Section 3.3, the T1w ICBM152 template was used in the automated algorithm vol-

Brain to generate tissue maps and segmentation of subcortical structures. Due to partial

volume effects from averaging several subjects, the generated segmentations may not be as

accurate as expected. This could possibly be mitigated by manual segmentations of individ-

ual subject’s brain MRI that contributed towards the T1w ICBM152, and then thresholding

the averaged tissue maps. Unfortunately, this is not feasible due to limitation of resources

and public availability of the data.

The Task 1 training dataset of Learn2Reg challenge is used in our MR-CT registration

in Section 3.5. However, the leader-board only shows the result for the test dataset, which

can be downloaded from the challenge website2 but it does not include the associated image

segmentations for validation purposes. Therefore, we decided to compare our results with

those official participants of the Learn2reg challenge, whose verified results are published

in the associated challenge summary paper [187]. In the report, the top three methods for

Task 1 achieved the average Dice score of 0.78, 0.76, and 0.75 respectively. Given our re-

sults in Table 5 of the manuscript, the average Dice score of 0.78 was achieved. Therefore,

DiffeoRaptor potentially has a similar performance to the top methods that participated in

the challenge.

2https://learn2reg.grand-challenge.org/Learn2Reg2021/
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4.4 Discussions

When RaPTOR is employed as the similarity metric, it may require additional parameter-

tuning. This motivates more advanced optimization technique rather than the classical

GD to minimize the cost function. This was shown and explored in [41] and [42]. For

DiffeoRaptor, the parameter settings were mostly the default values from RaPTOR and

FLASH as elaborated previsouly. However, for the cases where affine registration fails

to perform good initial alignments, we should be careful in choosing the step size for the

gradient update and the maximum number of iterations. The average computational times

were calculated for DiffeoRaptor and FLASH on a single core of a 6 core Linux Mint

system for 10 T1-T1 brain MRI registrations with the image size of 176 × 256 × 256

voxels. The mean computational time per registration of DiffeoRaptor (384.50± 0.01s) is

comparable to that of FLASH (416.14± 0.01s).

4.5 Summary

We present DiffeoRaptor, a diffeomorphic inter-modal/contrast image registration algo-

rithm based on RaPTOR and geodesic shooting in bandlimited space. The algorithm is

validated on several different applications. Compared with FLASH, Mattes MI+SyN,

and NiftyReg, it achieves comparable or better results. In addition, DiffeoRaptor offers

smoother deformation fields than Mattes MI+SyN and NiftyReg.
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Chapter 5

DLCR: Deep Learning-based

deformable image registration

using Correlation Ratio

MRI has been used extensively in clinical applications such as non-invasive diagnosis of

soft tissue diseases, surgical procedures, and quantification of neurodegenerative disor-

ders such as PD and AD. RF pulse sequences are used to acquire MRI volumetric images.

Different pulse sequences can produce a variety of contrasts. T1w contrast is used more

than other MRI contrasts in specific applications such as voxel-based morphometry and

characterization of brain anatomy because brain anatomical structures and tissues are in-

terpretable in T1w images [199, 200]. Inter/intra-subject registration of T1w scans is a key

component in various clinical studies. A standard practice to perform image registration

starts with resampling the images to a common coordinate space. Then, an affine image

registration algorithm is employed for rough alignments. Next, fine alignment of images

can be achieved by performing a deformable image registration —an essential component

of many neuroimaging pipelines [201–203]. Therefore, designing and implementing a

time-efficient deformable image registration algorithm can be substantial.

Time-efficient image registration methods can reduce the waiting time for surgeons

during operations and facilitate the exploitation of large datasets for researchers. Several
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traditional methods have been proposed to achieve these objectives. Avants et al. [5] pro-

posed the Symmetric Normalization (SyN) method. They validated their method on MRI

subjects with frontotemporal dementia. Modat et al. [188] implemented a fast image reg-

istration to maximize normalized mutual information using GPUs. The method is called

NiftyReg and could successfully perform fast registration of T1w images for AD patients.

Zhang et al. [15] and Wu et al. [185] proposed fast diffeomorphic methods based on the

well-known LDDMM [3] to register T1w images. Traditional image alignment methods

can still offer a good speed for pairwise registrations when parallel computing and GPUs

are employed. However, analyzing large datasets using these methods can take time and

effort.

Recently, DL-based image registration methods could achieve promising results [8–10].

Yang et al. [11] proposed QuickSilver, based on LDDMM, to perform atlas-to-subject and

inter-subject registration. Balakrishnan et al. [12] proposed VoxelMorph to perform inter-

subject registration of brain MRIs. They trained, validated, and tested their network on

several datasets and compared their method with SyN and NiftyReg. Mok et al. [13] pro-

posed a symmetric diffeomorphic algorithm, and the method was evaluated on atlas-based

registration T1w images of the OASIS dataset [50]. Wang et al. [14] proposed a fast method

based on FLASH [15] to register 3D brain MRIs. They named their method DeepFLASH,

and they demonstrated that the method could outperform FLASH, Quicksilver, and Vox-

elMorph in terms of Dice scores of overlapping brain structures and time efficiency. In a

recent study, Zhang et al. [16] proposed a novel dual transform network to register brain

MRIs. However, training a model to align images that require the estimation of large de-

formations is a challenging task and is still an open research area.

The aforementioned DL-based image registration methods were designed to estimate

a deformation field for inter/intra-subject alignment of brain images. Nevertheless, these

methods may fail to estimate a correct displacement field when larger deformations are

required. One such example is the challenging task of image registration involving AD

patients’ data. Because the ventricles in AD patients are often enlarged, and the brain is

deformed compared to a normal healthy subject. The motivation of this work is to propose
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a DL-based image registration which is efficacious in challenging scenarios. This can be

realized by carefully designing the loss function for the model’s training to estimate large

deformations.

Some recent unsupervised and semi-supervised DL-based methods perform challeng-

ing MR image registrations. Huang et al. [45] proposed an unsupervised inter-contrast

MR image registration. They used an MI-based loss function to estimate large deforma-

tions between the subjects with stroke. Hoffmann et al. [46] proposed SynthMorph, a

contrast-invariant image registration method that can successfully align brain MR images

with different contrasts.

CR [47,48] has been used successfully in traditional inter-modal and inter-contrast reg-

istrations. Rivaz et al. [40] proposed a time-efficient method to calculate CR. The method

is called RaPTOR, and it was used for the automatic registration of MR and US of the

BITE dataset [127]. Later, RaPTOR was employed in other methods to do inter-modal reg-

istration of MR-US of RESECT dataset [41, 129] and MR-CT lumbar vertebrae [42]. In a

recent study, a diffeomorphic algorithm of RaPTOR, namely DiffeoRaptor, was employed

to perform inter-contrast registration of MR images and inter-modal MR-CT registration

of abdominal data [178]. To our knowledge, RaPTOR has not been used in DL-based im-

age registration. However, employing RaPTOR in a loss function can be computationally

expensive.

In this chapter, Deep Learning-based deformable image registration using Correlation

Ratio (DLCR) is proposed. Semi-supervised training is used to minimize a loss func-

tion based on CR and Dice loss. A model with U-Net architecture [73] is trained to es-

timate a displacement field for 3D pairwise inter-subject registration of OASIS1 and OA-

SIS3 [49] datasets. The proposed method is compared with the learning-based VoxelMorph

using Mean Square Error loss function (VM-MSE) and two traditional methods, Symmet-

ric image Normalization using Mattes Mutual Information metric (Mattes MI+SyN) and

NiftyReg. The method is evaluated using the Dice scores of overlapping subcortical brain

structures and tissues. Given the Dice scores, the method shows comparable improvement

in image alignments with other methods. The contribution of this work is proposing a
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new loss function to perform T1w-T1w image registration efficiently. The loss function is

based on CR. In RaPTOR [40], Parzen windowing was used to calculate its derivative ana-

lytically. Instead, we use Kernel Density Estimation (KDE) using the derivative of logistic

regression function [204] to make the loss function differentiable. This study intends to

design an algorithm to perform intra-modal image registration [198].

5.1 Methodology

In this section, a background of CR is presented. Then, calculation of CR, DLCR, and

implementation details of DLCR are elaborated.

5.1.1 Correlation Ratio (CR)

We choose the sample space, a d-dimensional torus with periodic boundary conditions

Ω = Rd/Zd. Let A be a σ-algebra of Ω. Given two images, X : Ω → R and Y : Ω → R,

to be registered, which are measurable functions with respect to A. Since the images

are randomly selected, they can be viewed as random variables. In general, the function

ψ : Ω → Ω, which maps X to Y , may not exist. That means the images may not be

functionally dependent. Given the probability function P : A → [0, 1], the expected

value of X defined in the probability space (Ω,A,P) is given by the Lebesque integral

E(X) =
∫︁
Ω
XdP . According to this definition, ψ can be selected such that it minimizes

Var
(︁
Y −ψ

(︁
X
)︁)︁

where V ar(X) =
∫︁
Ω
(X −E(X))2dP indicates the variance. Therefore,

finding the optimal function ψ∗ : Ω → Ω can be formulated as in the equation below:

ψ∗ = argmin
ψ

Var
[︁
Y − ψ

(︁
X
)︁]︁

(5.1)

It is known that Eq. 5.1 can be uniquely minimized, and the solution will be the con-

ditional expectation of Y , given X [205], i.e. E
(︁
Y |X

)︁
= ψ∗(︁X)︁. This fact motivates the

definition of CR as in Eq. 5.2:
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η(Y |X) =
Var[E[Y |X]]

Var[Y ]
= 1− Var[Y − E[Y |X]]

Var[Y ]
(5.2)

where η(Y |X) varies between 0 and 1. It approaches 1 when there is a strong functional

dependency between X and Y and it is 0 when there is no functional relationship.

Previous works proposed different methods to calculate CR. A nonparametric mapping

was suggested by Roche et al. [47,48] to calculate CR over the iso-sets ofX . RaPTOR [40]

calculates CR over local patches. Instead of iso-sets ofX , histograms with Parzen window-

ing technique were used to calculate the derivative of RaPTOR analytically.

5.1.2 DLCR

Given the definitions in Section 5.1.1, let X be the fixed image and Y be the image reg-

istered to X . The formulation allows the images to be 2D or higher dimensions; in our

case, the images are 3D. We assume the images are affinely registered as part of the prepro-

cessing. It is intended to estimate a deformation field ϕ : Ω → Ω such that the deformed

moving image Y ◦ ϕ is similar to X . The U-Net architecture of Fig 5.1 is employed to de-

rive the deformation field. Other neural network architectures may be applicable; the U-Net

architecture was successfully employed and tested in several DL-based image registrations.

Figure 5.1: The employed U-Net architecture to estimate the deformation field ϕ is pre-
sented. Image volumes are shown in blue cubes. Besides each volume, the resolution
compared to inputs X and Y is indicated. The convolution size is shown near the filters
with yellow color. Arrows show the duplication of volumes.

Let F(Ω) be the space of smooth deformation fields associated with Ω and ϕ ∈ F(Ω).

The tangent velocity space at the identity id ∈ F(Ω) is denoted by V = TidF(Ω). Then,
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the U-Net model M with parameters θ approximates the velocity u ∈ V given the input

images with the equation u = Mθ(X, Y ). The time-dependent deformation fields φt(ω) =

φ(t, ω), ω ∈ Ω are defined such that φ0(ω) = φ(0, ω) = id and φ1(ω) = φ(1, ω) =

ϕ(ω). The smooth deformation field ϕ associated with u can be obtained by solving the

ODE dφt

dt
= vt ◦ φt, where the velocity at time t = 1 is v1 = u. We integrate the velocity

field vt and use the Euler method to solve the ODE given the boundary conditions φ0 = id

and v1 = u. The tripartite loss function (Lss) of the equation below is employed for semi-

supervised learning of the U-Net model.

Lss(X, Y,Xseg, Yseg, ϕ) = Lsim(X, Y ◦ ϕ) + γLseg(Xseg, Yseg ◦ ϕ) + λLreg(ϕ) (5.3)

where Lsim(X, Y ◦ϕ) = 1−η(Y ◦ϕ|X) is the image dissimilarity metric that is built on CR,

Lseg(Xseg, Yseg ◦ϕ) is Dice loss whichXseg and Yseg ◦ϕ are labelled images ofX and Y ◦ϕ,

respectively, Lreg(ϕ) is the regularization loss, and λ and γ are weight constants. Minimiz-

ing the loss Lss can obtain optimal θ∗ parameters; in other words, θ∗ = argminθ Lss. The

calculation of each term of the loss function is elaborated in the following.

Similar to [40], we perform nonparametric estimation of E(Y |X) and bining of X

values to calculate CR (Eq.5.4).

1− η(Y |X) =
1

Nσ2

(︃ N∑︂
i=1

y2i −
Nb∑︂
j=1

Njµ
2
j

)︃
(5.4a)

µj =

∑︁N
i=1 λijyi
Nj

, Nj =
∑︂
i

λij (5.4b)

where N is the number of voxels in image Y , Var(Y ) = σ2 is the variance of Y , yi is the

intensity of voxel i in image Y , Nb is the number of bins, and λij is the contribution of xi

(the intensity of voxel i in image X) to the bin j. Instead of Parzen windowing with linear

kernel, KDE using the derivative of logistic regression function is utilized. This makes the

derivative of CR available for optimization purposes using the automatic differentiation in
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PyTorch [206]. A similar approach to Avi-Aharon et al. [204] is taken to calculate the value

of the jth bin in a differentiable histogram (see the equation below).

λij = ς

(︃
xi − cj + L/2

W

)︃
− ς

(︃
xi − cj − L/2

W

)︃
(5.5)

where ς(z) = 1
1+e−z z ∈ R is the logistic regression function, L = 1

Nb
is the bin width,

cj = −1 + L(j + 1
2
) are the bin centres, and W = L

2.5
. In fig. 5.2, the histogram of a

subject’s MRI is shown with the KDE differentiable curve using Eq. 5.5.

Figure 5.2: The histogram of a subject’s MRI (orange) is shown with the KDE differen-
tiable curve using the derivative of the logistic regression function (green).

In labelled images, Xseg and Yseg, the anatomical structures are segmented and anno-

tated into K integer values. The image background is commonly annotated with 0. Let

Xk(Xseg) and Yk(Yseg ◦ ϕ) denote the set of voxels that labelled with integer k ∈ [1, K]

in Xseg and Yseg ◦ ϕ, respectively. The Dice score for structure k and the Dice loss for the
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entire labelled images are calculated by Eq. 5.6a and Eq. 5.6a, respectively.

Dice
(︁
Xk(Xseg),Yk(Yseg ◦ ϕ)

)︁
= 2 · |Xk(Xseg) ∩ (Yk(Yseg) ◦ ϕ)|

|Xk(Xseg)|+ |Yk(Yseg ◦ ϕ)|
(5.6a)

Lseg(Xseg, Yseg ◦ ϕ) = − 1

K

K∑︂
k=1

Dice
(︁
Xk(Xseg),Yk(Yseg ◦ ϕ)

)︁
(5.6b)

where |Xk(Xseg)| is the cardinal number of the set Xk(Xseg). Lseg is near −1 when Xseg

and Yseg are similar and 0 when the labelled images are completely different.

There are several applicable formulations of the regularization term Lreg(ϕ) in Eq. 5.3.

In [207], a mathematical proof was established to demonstrate that a regularization term of

the form of Sobolev norm of velocity field over the smooth deformation fields can ensure

diffeomorphic image registration. Later this theory was validated in the well-established

LDDMM methods [3,15]. A similar approach was employed in [12] to approximate diffeo-

morphic image registration. Analogously, we formulate the regularization term in Eq. 5.7

as a squared Sobolev norm of the velocity fields ||u ◦ ϕ||2V on the space V = {u : u ∈ V }.

Lreg(ϕ) = ||u ◦ ϕ||2V =

∫︂
ω∈Ω

||D(u ◦ ϕ)||22dω (5.7)

where D(u ◦ϕ) is the derivative operator and ||D(u ◦ϕ)||22 = ⟨D(u ◦ϕ), D(u ◦ϕ)⟩W is the

squared L2-norm of the vector D(u ◦ ϕ) which takes value on the tangent space W = TV

and inner-product ⟨, ⟩W operator is defined in the space W . In practice, the vector D(u◦ϕ)

is a Jacobian matrix and the inner product is the Frobenius norm ⟨D(u ◦ ϕ), D(u ◦ ϕ)⟩W =

||D(u ◦ ϕ)||2F .

5.2 Experiments

The experimental setup and the experiments to validate our method is presented in this

section. Then, the comparison of DLCR with other methods is demonstrated.
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5.2.1 Experimental Setup

This section includes details about datasets, evaluation metrics, preprocessing steps, and

parameter setups.

Datasets

T1w MRI from subjects of three public datasets is employed for training, validation, and

testing. Twenty-five subjects of the IXI dataset http://brain-development.org/ixi-dataset,

twenty subjects of the OASIS3 dataset [49], and twenty subjects of the OASIS1 [50]

are randomly selected. The IXI subjects’ MRIs are collected from normal healthy sub-

jects. OASIS1 dataset MRI data are collected from young, middle=aged, nondemented

and demented older adults. OASIS3 consists of subjects with longitudinal MRIs col-

lected in different visits to investigate AD progression. The data for their latest visit,

which shows visible atrophies, are chosen for our experiments. The IXI subjects and

fourteen OASIS3 subjects are used for training. The permutation of these subjects gives

(25 + 14) × (25 + 14 − 1) = 1482 images for pairwise registration. The permutation of

the remaining six subjects of OASIS3 gives 6× (6− 1) = 30 image pairs, and the twenty

subjects of OASIS1 provide 20 × (20 − 1) = 380 image pairs for validation and testing,

respectively.

Evaluation metric

The Dice similarity metric for overlapping regions is used to measure the alignment of

registered images. Dice scores for brain tissues, cortical, and subcortical structures are

calculated according to Eq. 5.6a.

Preprocessing

First, the images were skull-stripped using nonlocal intracranial cavity extraction [192].

Then, they were resampled to 1×1×1mm3. The images were resized to 176×208×176.

The image sizes were fixed for convenience throughout the experiments. Then, the images
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were transformed to the MNI Talairach-like brain-based coordinate space [208] and affinely

registered to the ICBM152 template [194]. We carefully inspected the images to ensure

linear alignments were successful. For each subject of IXI and OASIS3 datasets, two

automatic segmentations were generated by the online tool volBrain [193]. In the first

one, the segmentation of brain tissues classifies the cerebrum into CSF, GM, and WM. The

second one annotates sixteen subcortical structures of the brain. For the OASIS1 dataset,

manual segmentations were outlined by highly trained neuroanatomical technicians using

Neuromorphemtrics’ software [209]. Neuroanatomical delineation of each subject’s MRI

was carried out at Neuromophometrics, Inc. (http://neuromorphometrics.com), using the

methods described in Caviness et al. [210].

Implementation details

The method is implemented using PyTorch [206] and built on the VM framework [12].

Adam optimizer [211] is used with a learning rate of 10−4. The implementation allows

for mini-batch stochastic optimization. In our experiments, one image volume per batch

produced the best results. The weight parameters were set to λ = 1 and γ = 1 in Eq. 5.3.

The method is trained with 6000 epochs. For each epoch, the loss of Lss and its parts Lsim,

Lseg, and Lreg are demonstrated in Fig. 5.3. Lss, Lsim, and Lseg generally decrease with

epochs.

Baseline methods

DLCR is compared with Mattes MI+SyN, NiftyReg, and VM-MSE. Mattes MI+SyN and

NiftyReg are traditional image registration methods, and VM-MSE is a DL-based method.

Mattes MI+SyN is a diffeomorphic image registration method available in Advanced Nor-

malization Tools [191]. The method uses Mattes MI as the similarity metric and models the

deformation fields with SyN [5]. The number of bins for Mattes MI was set to 32, and the

gradient step, the update field variance, and the total field variance were set to 0.5, 3, and

0.5 for SyN, respectively. NiftyReg was employed with normalized mutual information

as the similarity metric, cubic b-splines control points for modelling free-form deforma-
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Figure 5.3: The loss Lss (top left) and its parts Lsim (top right), Lseg (below left), and Lreg
(below right) are demonstrated for each epoch. Loss function values are shown in green
points, and the moving average of these data is plotted in orange.

tion fields, and conjugate gradient descent optimization with a maximum of 150 iterations.

The default parameters of the software package were used. The baseline methods’ pa-

rameters were tuned to produce optimal results. Mattes MI+SyN and NiftyReg were run

on a Linux Mint system six CPU core. Parallel computing in the software packages was

utilized to boost the computation time. VM-MSE was trained with a similar parameters

setup described in Section 5.2.1. The batch size of four-volume images was used because

it produced better results for us.

5.2.2 Inter-subject registrations of the OASIS3 dataset

Given six subjects of the OASIS3 dataset, 6 × (6 − 1) = 30 image pairs are available

for registration. These sets of registration cases are used for validation and tuning the

hyperparameters. The set defines a rather challenging task because the patients’ ventricles

are enlarged compared to healthy patients. The alignment quality is validated over sixteen

subcortical structures and brain tissues using the Dice score of overlapping regions. The

results are summarized in Table. 5.1. It can be seen that our method outperformed the

DL-based VM-MSE method. However, traditional methods Mattes MI+SyN and NiftyReg
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achieved better performance.

Table 5.1: Mean Dice score evaluation of the OASIS3 dataset for DLCR, Mattes MI+SyN,
NiftyReg, and VM-MSE in overlapping regions of brain tissues and sixteen subcortical
structures are presented. Note that standard deviation (std) is also calculated for each case.

Task and Evaluation Region Affine only DLCR Mattes MI+SyN NiftyReg VM-MSE

T1-T1 Brain Tissues 0.51± 0.07 0.62± 0.05 0.67± 0.04 0.72± 0.04 0.53± 0.07
T1-T1 Subcortical Structures 0.60± 0.10 0.72± 0.08 0.77± 0.07 0.77± 0.07 0.63± 0.08

In Fig. 5.4 , the registered images using different methods are presented. It can be seen

that our method shows comparable alignment of image with the other methods.

Figure 5.4: From left to right: axial slices of the reference volume, the source volume, and
the performances of DLCR, Mattes MI+SyN, and NiftyReg are shown, respectively. Rows
show the same slice of different subjects. Subcortical structural segmentations are shown
in colored contours. The arrows for DLCR results show visible improvements in image
alignments.

5.2.3 Inter-subject registrations of the OASIS1 dataset with manual

segmentations

Given twenty subjects of the OASIS1 dataset, 20 × (20 − 1) = 380 image pairs are avail-

able for registration. The alignment quality is validated over 229 cortical and subcortical

structures using the Dice score of overlapping regions. Manual segmentations are available

for these subjects. Rholling et al. [195] showed that using automatic segmentations and a
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similarity metric to evaluate the registration quality can be inaccurate in some cases. They

demonstrated that using manual segmentations can mitigate this problem. Therefore, the

evaluation of registration quality using manual segmentations can further validate the ef-

fectiveness of our method. Similar to Section. 5.2.3, the method is compared with Mattes

MI+SyN, NiftyReg, and VM-MSE. The results are summarized in Table. 5.2. It can be

seen that our method has a similar performance compared to VM-MSE. However, Mattes

MI+SyN and NiftyReg achieved better Dice scores. In Fig. 5.5, the registered images using

different methods are presented. It can be seen that DLCR could improve the alignment

of images. The average test-time of each registration for DLCR is 2.57s on the CPU of a

Ubuntu 20.04 LTS with four CPUs of AMD EPYC 7502 32-Core Processor, and 64.8ms

on a NVIDIA A100 SXM4 GPU with 40GB RAM.

Table 5.2: Mean Dice score evaluation of the OASIS1 dataset for DLCR, Mattes MI+SyN,
NiftyReg, and VM-MSE in overlapping regions of 229 cortical and subcortical structures
is presented. Note that standard deviation (std) is also calculated for each case.
Task and Evaluation Region Affine only DLCR Mattes MI+SyN NiftyReg VM-MSE

T1-T1 Cortical and Subcortical Structures 0.24± 0.22 0.29± 0.26 0.32± 0.29 0.33± 0.29 0.29± 0.26

Figure 5.5: From left to right: axial slices of the reference volume, the source volume,
result of DLCR, Mattes MI+SyN, and NiftyReg are shown, respectively. Rows show the
same slice of different subjects. The arrows for DLCR results show visible improvements
in image alignments.
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5.3 Discussions

Given the training data, the model is trained to perform T1w-T1w registrations. The vali-

dation and testing of the model are also done for T1w-T1w image pairs. Trained weights of

the model can be used for inter-contrast T1w-T2w and T1w-PDw registration. Therefore,

more data are required to be added to training, validation, and test sets. Adding an ablation

study of the method can complement the experiments to better show the difference between

the DL-based and baseline methods. The deformation smoothness analysis of the DL-based

and traditional methods can be helpful. The analysis purports to quantitatively show the dif-

ference between comparing methods and diffeomorphic image registration. Diffeomorphic

image registration is considered superior to non-diffeomorphic ones because they generate

smooth and invertible deformation fields (diffeomorphisms) that can be employed in var-

ious applications such as quantifying inter-subject variability of the brain [179] and brain

atlas construction [181].

5.4 Summary

A model is trained to perform intra-contrast MR T1w-T1w registrations. The training is

conducted on IXI and the OASIS3 datasets. It is validated and tested on OASIS3 and

OASIS1 datasets, respectively. The proposed image registration method, i.e. DLCR, is

compared with Mattes MI+SyN, NiftyReg, and VM-MSE. DLCR showed improvement in

image alignments, could outperform the comparing DL-based method VM-MSE given the

qualitative validation and achieved better Dice scores of overlapping cortical and subcorti-

cal structures.
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Chapter 6

Conclusion

Section 6.1 summarizes the methods elaborated in the previous chapters. Given the pre-

sented methods, Section 6.2 illustrates the future direction of this thesis.

6.1 Concluding remarks

Chapter 1 gave a necessary introduction to image registration. Chapter 2 provided a lit-

erature review of DL approaches in US-guided surgery. Given the methods’ validation

datasets, we studied the techniques in six clinical applications: cardiac catheterization,

brachytherapy, regional anesthesia, liver ablation therapy, and brain glioma resection. The

methods were summarized, and we identified the unmet clinical needs.

Inter-contrast/modal medical image registration is a challenging problem, and the al-

gorithms are application specific. Some registration problems involving US imaging are

ill-posed. Previous chapters showcased novel techniques to register MR, CT, and US im-

ages. Chapter 3 presented a public database of US and CT lumbar vertebrae scans. The

image acquisition and the potential application of the database were provided. The database

consists of simulated and ex-vivo data. Besides, two rigid image registration methods were

presented: one based on CR and the other based on NCC. The methods were validated and

compared in exhaustive CT-US registration problems.

Chapter 4 elaborated on a diffeomorphic image registration approach. The method
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was named DiffeoRaptor, and it was validated using inter-contrast brain MRIs. Further-

more, the method could successfully register abdominal CT-MR images. The deformation

smoothness analysis showed that DiffeoRaptor produced smoother deformation fields than

the state-of-the-art methods.

Chapter 5 presented a DL-based image registration approach based on CR. A model

was trained in a semi-supervised manner given the generated brain segmentations. The

method showed improvement in image alignments in terms of Dice score, compared with

three other methods.

6.2 Future direction

Validation of registration methods in in-vivo datasets is crucial to show the potential of their

applicability in clinics. The presented database in Chapter 2 can be expanded by adding

in-vivo data. Public datasets of in-vivo CT and US scans of vertebrae are rare, and these

datasets can help validate methods in US-guided surgeries. However, such data collection

requires ethical approval, planning image acquisitions, and post-processing. The presented

CT and US datasets can be employed to validate CT and US image segmentation tech-

niques. Segmentation of US images is challenging, and these datasets provide a valuable

resource for developing such techniques. Chapter 2 elaborated on two rigid image registra-

tion methods. Nevertheless, the datasets have the potential to perform experiments using

affine and deformable image registrations.

Chapter 3 presented the validation of DiffeoRaptor [178] in inter-modal registration

of abdominal CT-MR. Image registration of RESECT and BITE datasets using DifeoRap-

tor can be investigated. The performance of DiffeoRaptor in those datasets can be com-

pared with RaPTOR [40] and ARENA [41]. DiffeoRaptor, RaPTOR, and ARENA use

an identical similarity metric but employ diffeomorphic, B-spline, and affine transforma-

tions, respectively. This study may shed some insights into the choice of transformation

model when the validation datasets and similarity metric is unchanged. The performance of

DiffeoRaptor in image alignments and deformation smoothness should be compared with
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learning-based methods. Several DL-based methods estimate smooth deformation fields;

however, they do not guarantee diffeomorphic registrations. Building a DL-based method

on DiffeoRaptor is another possible future direction. Since DiffeoRaptor produces smooth

deformation fields, this DL-based method may show great potential in atlas building and

brain inter-variability studies.

The need for time-efficient methods to analyze large datasets increases as the size

of datasets grows. DL showed good performance and time efficiency in analyzing these

datasets. In Chapter 5, DLCR was presented to validate intra-contrast T1w MR images.

The method has the potential to be validated for inter-contrast/modal registration problems.

A similar validation of DLCR to DiffeoRaptor in Chapter 4 can be interesting since DLCR

reduced implementation time. The accuracy and robustness of DLCR in image alignment

can be improved by expanding the training set and optimizing the training strategy. It

would be interesting to train the method in a fully unsupervised manner, experiment with

different loss functions, and explore more network architectures. Inter-modal registration

using ViTs is an emerging area of research that can be explored and built on the proposed

methods in this thesis.
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Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pat-

tern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055.

Springer, Cham.

[117] E. Maneas et al., ”Deep Learning for Instrumented Ultrasonic Tracking: From

Synthetic Training Data to In Vivo Application,” in IEEE Transactions on Ultra-

sonics, Ferroelectrics, and Frequency Control, vol. 69, no. 2, pp. 543-552, Feb.

2022,

[118] R. Girshick, (2015) Fast R-CNN. In: Proceedings of IEEE international conference

on computer vision, pp 1440–148

[119] C. Mwikirize, J.L. Nosher, and I. Hacihaliloglu: Learning needle tip localization

from digital subtraction in 2D ultrasound. Int. J. CARS 14(6), 1017–1026 (2019)

109



[120] O. Ronneberger, P. Fischer, and T. Brox, (2015). U-Net: Convolutional Networks

for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.,

Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention

– MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(), vol 9351.

Springer, Cham.

[121] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR), Jun. 2016, pp.

770–778.

[122] H. Rivaz, et al. (2008). Ablation Monitoring with Elastography: 2D In-vivo and

3D Ex-vivo Studies. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds)
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