

EFSM-based Test Suite Generation for MC/DC Compliant Systems:

Tool Design

Amine Rahj

A Thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science in Quality Systems Engineering

Concordia University

Montreal, Quebec, Canada

January

2023

© Amine Rahj, 2023

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Amine Rahj

Entitled: EFSM-based Test Suite Generation for MC/DC Compliant Systems: Tool Design

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Quality Systems Engineering

complies with the regulations of this University a n d meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

 Chair
Dr. Amr Youssef

 Examiner
Dr. Nizar Bouguila

 Examiner
Dr. Amr Youssef

 Supervisor
Dr. Rachida Dssouli

 Co-supervisor
Dr. Jamal Bentahar

Approved by

Dr. Zachary Patterson Graduate Program Director

 2023

Dr. Mourad Debbabi Dean of Gina Cody School of

Engineering and Computer Science

iii

Abstract

EFSM-based Test Suite Generation for MC/DC Compliant Systems: Tool Design

Amine Rahj

As Model-based Testing (MBT) approaches mature, they become a promising prospect for Safety-

critical software systems testing. It is necessary to abide by RTCA DO-178C regarding requirement

coverage, structural coverage, and traceability. The satisfaction of Modified Condition/Decision

Coverage (MC/DC) is a must for avionics software certification. This thesis proposes a tool design

for a test generation approach that satisfies the Modified Condition/Decision Coverage (MC/DC)

and addresses path feasibility issues using constraints solving. The proposed methodology has

several steps. It starts by transforming Low-Level Requirements (LLR), modelled as Extended

Finite State Machines (EFSM), into a data-flow graph and a control-flow graph. Then, we highlight

MC/DC information on both graphs, using graph labelling, before applying SMT-constraint solving

to generate an executable test suite. Throughout, we keep records of the transformation between the

models to prepare for requirements traceability as per RTCA DO-178C. The approach is based on

the EFSM model, meaning that the assessment of MC/DC and other structural coverage criteria are

on the model under the assumptions that the predicates are the same in the code and the model, and

the model is valid.

iv

Acknowledgments

I would like to express my deepest gratitude to my thesis supervisors, Dr. Rachida Dssouli

and Dr. Jamal Bentahar, for their guidance, encouragement, support and help throughout the

course of my master's thesis. Their knowledge, expertise and dedication have been a constant

source of inspiration for me.

I would also like to extend my appreciation to the members of my thesis committee, Dr.

Amr Youssef and Dr. Nizar Bouguila, for their valuable feedback and suggestions.

I would like to thank my family, friends, and colleagues for their unwavering support and

encouragement throughout my studies.

I am grateful to Concordia University for providing me with the opportunity to conduct

this research, and for the facilities and resources that have been made available to me during

the course of my studies.

Finally, I would like to acknowledge NSERC, CMC Electronics Inc., CRIAQ, and CS

Canada for funding this research under the Collaborative Research and Development Grant

– Project (CRDPJ 463076 - 14) entitled "Specification and verification of design models for

certifiable avionics software".

Thank you all for being a part of this journey.

v

Table of Content

List of Figures .. vii

List of Tables ... viii

1. Introduction .. 1

2. Background Information and Related Work .. 4

2.1 Research Context ..4

2.2 Background Information ..5
2.2.1 RTCAD O178C ... 5

2.3 Related Work ...9
2.3.1 Model-based Testing .. 9
2.3.2 Test Coverage Criteria ... 11
2.3.3 Modified Condition/Decision Coverage (MC/DC) .. 12
2.3.4 Test Cases Generation based on EFSM .. 13
2.3.5 Test Data Generation Techniques .. 15

3. Test Generation Approaches .. 17

3.1 Overview ... 17

3.2 Model-based Verification and Testing Methodology .. 18

3.3 Model-based Testing Methodology with Constraint Solving ... 21
3.3.1 Approach Overview .. 21
3.3.2 Process Steps ... 22
3.3.3 Step 1: Graph Rewriting .. 24
3.3.4 Step 2: Preparation for the Path Selection ... 35
3.3.5 Step 3: Path Selection ... 38
3.3.6 Step 4: Data Selection ... 39
3.3.7 Step 5: Coverage Analysis.. 40

3.4 Architectural View .. 42
3.4.1 Test Generation Module .. 43
3.4.2 Data Module .. 44

vi

3.4.3 Graph Operation Module .. 45

3.5 Data View .. 45
3.5.1 MC/DC Tables .. 45
3.5.2 State Graphs and Rule Graphs ... 46
3.5.3 Transformation Records .. 48

3.6 Conclusion .. 50

4. Discussion and Conclusion ... 51

References .. 53

vii

List of Figures

Figure 2.1: General overview of the Research Project .. 5

Figure 2.2: Testing in DO-178C [1] ... 6

Figure 2.3: RTCA Do-178C required traceability, from [1] ... 8

Figure 2.4: Coverage Criteria [5] .. 12

Figure 3.1: Overview of the methodology (from [12]) .. 19

Figure 3.2: Test generation process (from [12]) .. 19

Figure 3.3: Alternative test generation process from [12] .. 21

Figure 3.4: EFSM test generation process ... 23

Figure 3.5: Graph rewriting overview .. 24

Figure 3.6: Pushout diagram .. 25

Figure 3.7: Example of graph rewriting through CFG rules derivation .. 32

Figure 3.8: Example of graph rewriting through DFG rules derivation .. 35

Figure 3.9: Preparation for path selection (graph labeling) .. 36

Figure 3.10: Application of Step 2 from graph rewriting of Figure 3.7 .. 37

Figure 3.11: Application of Steps 3 and 4 from graph rewriting of Figure 3.7 .. 41

Figure 3.12: EFSM test generator architecture.. 43

Figure 3.13: MC/DC table class diagram .. 46

Figure 3.14: Guard ... 47

Figure 3.15: Control flow graph ... 48

Figure 3.16: Data flow graph ... 49

viii

List of Tables

Table 2.1: EFSM-based test sequences generation approaches .. 15

Table 3.1: Grammars used in MC/DC-TGT .. 26

viii

List of Abbreviations

CC Condition Coverage

CEFSM Communicating Extended Finite State

Machine

CFG Control Flow Graph

CSP Constraint Satisfaction Problem

DC Decision Coverage

DFG Data Flow Graph

EFSM Extended Finite State Machine
FIFO First In First Out

HLR High Level Requirement

IDAL Item Development Assurance Level

IUT Implementation Under Test

IEEE Institute of Electrical and Electronics

Engineers

LLR Low Level Requirement

MBT Model-Based Testing

MCC Multiple condition coverage

MDD Model-Driven Development

MC/DC Modified Condition / Decision Coverage

RTCA Radio Technical Commission for Aeronautics

SMT Satisfiability Modulo Theory

SPO Sigle Pushout

TGT Test Generation Tool

UIO Unique Input Output

UML Unified Model Language

1

Chapter 2

Introduction

The Institute of Electrical and Electronics Engineers (IEEE) defines safety-critical software

as “software whose use in a system can result in unacceptable risk. Safety-critical software

includes software whose operation or failure to operate can lead to a hazardous state, software

intended to recover from hazardous states, and software intended to mitigate the severity of an

accident” [IEEE Standard Glossary of Software Engineering Terminology, IEEE Std-610-1990,

Los Alamitos, CA: IEEE Computer Society Press, 1990). This thesis is concerned with testing

such software in avionics, namely from the perspective of RTCA DO-178C [1]. In fact, in the

avionics industry, software products must be certified according to the RTCA standards [1]. The

RTCA DO-178C standard promotes requirement-based testing and provides guidance on

addressing safety in software development, i.e. tests are written/generated and executed to prove

requirements are fulfilled, and safety concerns are addressed. From a testing viewpoint, there are

two requirement types - high-level requirements (HLR) and low-level requirements (LLR), and

five safety levels (A, B, D, C, and E), also known as Item Development Assurance Level (IDAL)

as per APA4754 [2] - where Level A software are software items in which failure is deemed

catastrophic, and Level E software have no effect on safety. DO178 summarizes the objectives

of test case development and execution as follows:

• Objective 1: “Executable Object Code complies with high-level requirements”.

• Objective 2: “Executable Object Code is robust with high-level requirements”.

• Objective 3: “Executable Object Code complies with low-level requirements”.

• Objective 4: “Executable Object Code is robust with low-level requirements”.

2

• Objective 5: “Executable Object Code is compatible with target computer”.

DO-178C defines a test case as “A set of test inputs, execution conditions, and expected

results developed for a particular objective, such as to exercise a particular program path or to

verify compliance with a specific requirement” and promotes the development of two types of

test cases to comply with aforementioned objectives. Two test cases are distinguished: normal

test cases and robustness test cases. Normal test cases aim to find errors in the software under

normal conditions and/or receiving expected inputs and robustness test cases show how the

software behaves under abnormal conditions and/or receiving unexpected inputs. The type of

testing required by DO-178C depends on the IDAL. For instance, for levels A and B, normal

LLR are required with independence, while they are not required for the other levels. DO-178C

uses the term independence to refers to “separation of responsibilities which ensures the

accomplishment of objective evaluation”. For software verification process activities,

independence is achieved when the verification activity is performed by a person(s) other than

the developer of the item being verified, and a tool may be used to achieve equivalence to the

human verification activity. For the software quality assurance process, independence includes

the authority to ensure corrective action.

Testing is required to validate avionics software systems. Testing is a labor intensive and an

expensive activity. It can count for more than 50% of the development cost [3,4]. The avionics

industry is looking for ways to reduce the cost of testing and improve the effectiveness of tests

by automating the testing process. Despite the availability of commercial tools, there are

categories of complex systems that do not benefit from the current level of automation. The

testing process includes several activities. The most challenging one is test case generation. This

activity requires adequate coverage criteria that can show the effectiveness and the efficiency of

the derived tests and guide the test case generation. The proposed research in this thesis looks at

the automatic generation of LLR test cases for level A software. The thesis introduces a Model-

Based Testing (MBT) approach, presents a tool design for this approach and shows how our

MBT approach addresses testing requirements from RTCA DO-178C for Level A software.

Moreover, we integrate model-based verification and MBT within one framework. We present

thus a new methodology for the verification and testing of parallel communicating agents based

on formal models. Properties are extracted from requirements and formally verified at the design

3

level, while the verified properties are propagated to the implementation level via testing. DO-

331 [1] defines a model as “An abstract representation of a given set of aspects of a system that

is used for analysis, verification, simulation, code generation, or any combination thereof. A

model should be unambiguous, regardless of its level of abstraction”. Our MBT approach

requires the selection of a modelling scheme, deciding on test generation criteria, and designing

a test generation approach. First, we present a model-based test generation technique guided by

Modified Condition / Decision Coverage (MC/DC) and du-path coverage criteria. Du-path with

respect to a graph x is a simple path where the initial node of the path is the only defining node

of x in the path. The proposed approach combines two coverage criteria to improve the efficiency

of the derived tests and to enhance their error detection power. The criteria are selected to satisfy

the industrial needs for avionics software certification. The MC/DC criterion is required by the

RTCA DO-178 C standard [1]. Second, we design of an automated Test Generation Tool (TGT)

for the proposed approach.

4

Chapter 3

Background Information and Related

Work

2.1 Research Context

This research work is part of an industrial research project funded by the Collaborative

Research and Development Grant – Project (CRDPJ 463076 - 14), by NSERC, CMC Electronics

Inc., CRIAQ, CS Canada. It is entitled “Specification and Verification of Design Models for

Certifiable Avionics Software (see Figure 2.1). This project addresses the issues of specification,

testing based on models and verification of avionics software to produce some artifacts that can

be used for software certification in compliance with RTCA DO 187C standards [1].

The stated objectives of the project are to:

1. Specify, develop, and verify software using design models;

2. Enable verification techniques in the context of Model Driven Development (MDD);

3. Develop Low Level Requirement (LLR) testing techniques in conformity with avionics

software standards RTCA DO-178C [1]; and

4. Enable low level requirement-based automatic test sequence generation.

5

The project is composed of several activities. The first activity is concerned with the

requirements specification for avionics systems with UML and SIMULINK. The focus is to

develop new UML profiles and Simulink Design standards. The second activity uses models’

transformation to perform testing and verification. All specifications should lead to an output or

a pivot that is in this project an Extended Finite State Machine (EFSM). The third activity

transforms the EFSM and the communicating EFSMs (CEFSM) into specific models or graphs

that can be used for verification and testing. As an example, the obtained model for testing can

be transformed into a control flow graph and data flow graph that will be used in automatic test

case generation for MC/DC. The transformation of an EFSM to a graph is done using the graph

rewriting technique.

Figure 2.1: General overview of the Research Project

2.2 Background Information

2.2.1 RTCAD O178C

The avionics industry has developed a set of standards to prevent catastrophic events from

occurring in their systems. The RTCA DO-178C, Software Considerations in Airborne Systems

and Equipment Certification is the main stands document by which the certification authorities

approve all commercial software-based aerospace systems [1]. The RTCA DO 178C was

approved in 2011 and replaced the previous document Do 178B. The document is published

by RTCA. It became available for sale and use in January 2012. The DO 178C has more

clarifications in comparison with Do178B. It also has 3 supplement documents: 1) DO-

6

331 "Model-Based Development and Verification” that addresses Model-Based Development

(MBD) and verification and the capacity to use modeling techniques to improve development

and verification in the development cycle and minimizes the pitfalls of using models [2]; 2) DO-

332 "Object-Oriented Technology and Related Techniques” that addresses object-oriented

software and the conditions under which it may be used. And 3) DO-333 "Formal Methods”

addresses the use of formal methods to complement (but not replace) testing.

Figure 2.2 shows the testing in RTCA DO 178C. Our work is related to the last 3 objectives

of RTCA DO 178C that are listed below, where * means that the objectives are partially or not

met.

The executable code complies with the high-level requirements.

The executable code complies with the specification (low-level requirements).

Test coverage of high-level requirements is achieved. *

Test coverage of specification (low-level requirements) is achieved. *

Test coverage of the executable code is achieved. *

Figure 2.2: Testing in DO-178C [1]

Software
Requirements-

Based Test
Generation

Additional
Verification

Considerations
Low-level Tests

Software
Integration Tests

Hardware/Software
Integration Tests

Software Requirements-Based
Test Coverage Analysis

Software Structural
Coverage Analysis

Extraneous, Dead
and Disactivated
Code Resolution End of Testing

Conditional Path

Direct Path

To Software
Development

Process

From Software
Development

process

7

The defined Software Levels by ARP4754 [2], also known as Item Development Assurance

Levels (IDAL), are mentioned in RTCA DO-178C and are from the safety assessment

process and hazard analysis that examines the effects of a failure condition in the system. The

failure conditions are categorized by their effects on the aircraft, crew, and passengers and are

quoted as follows:

A- Catastrophic - Failure may cause deaths, usually with loss of the airplane.

B- Hazardous - Failure has a large negative impact on safety, performance, or reduces the

ability of the crew to operate the aircraft due to physical distress or a higher workload or causes

serious or fatal injuries among the passengers.

C- Major - Failure significantly reduces the safety margin or significantly increases crew

workload. May result in passenger discomfort (or even minor injuries).

D- Minor - Failure slightly reduces the safety margin or slightly increases crew workload.

Examples might include causing passenger inconvenience or a routine flight plan change.

E- No Effect - Failure has no impact on safety, aircraft operation, or crew workload.

Figure 2.3 illustrates the required tracing between certification artifacts, as required by the

RTCA DO-178C standard. Red-colored traces are required only for level A. Purple-colored

traces are required for levels A, B, and C. Green-colored traces are for levels A, B, C, and D.

Our work is related to level A.

8

Figure 2.3: RTCA Do-178C required traceability, from [1]

9

2.3 Related Work

2.3.1 Model-based Testing

In this research, the target model is the extended finite state machine (EFSM) that it models

control and data. When EFSMs include communication between components, they form

Communicating Finite State Machines (CEFSM). Model-based testing tries to establish a

conformance relationship between the specification and its implementations. Models are

extracted from specifications and used for test cases generation. More precisely, it establishes a

relationship between the model specification and an assumed abstract model of the

implementation under test. Testers should be cautious not to extrapolate those results to the entire

implementation under test (IUT). For example, if we test the control aspect, then only that aspect

can be the subject of inference relations under certain assumptions. The model for testing the

control aspect is limited, it cannot express data and time aspects. If the control aspect of the IUT

after testing is error free, this does not allow the tester to declare that the IUT is error free. In the

following, we define an EFSM, a CEFSM, and a global system. In the rest of this thesis, we will

focus on EFSM model for test case generation for the MC/DC coverage.

Definition 1. An EFSM is formally represented as an 8-tuple < S, s0, I, O, T, A, δ, V> where

1. S is a non-empty set of states,

2. s0 is the initial state,

3. I is a non-empty set of input interactions,

4. O is a nonempty set of output interactions,

5. T is a nonempty set of transitions,

6. A is a set of actions,

7. δ is a transition relation: δ: S×A→S,

8. V is the set variables.

Each element of A is a 5-tuple t = (initial state, final state, input, predicate, block). Here

“initial state” and “final state” are the states in S representing the starting state and the tail state

of t, respectively. “input” is either an input interaction from I or empty. “predicate” is a predicate

expressed in terms of the variables in V, the parameters of the input interaction and some

10

constants. “block” is a set of assignment and output statements.

Definition 2. A CFSM is a 2k-tuple (C1, C2, ..., Ck, F1, F2, ..., Fk) where

• Ci = <S, s0, I, O, T, A, V> is an agent’s model

• Fi is a First In First Out (FIFO) list for Ci, i=1, …, k.

Suppose an agent system consists of k communicating CEFSMs: C1, C2, ..., Ck. Then its state

is a k-tuple <s(1), s(2),..., s(k), m1, m2,...,mk> where s(j) is a state of Cj and mj, j=1..k are set of

messages contained in F1, F2,...,Fk respectively. The CEFSMs exchange messages through

bounded storage input FIFO channels. We suppose that a FIFO list exists for each CEFSM and

that all messages to a CEFSM go through its list. We suppose in that case that an internal message

identifies its sender and receiver. An input interaction for a transition may be internal (if it is sent

by another CEFSM) or external (if it comes from the environment). The model obtained from a

communicating system via reachability analysis is called a global model. This model is a directed

graph G = (V, E) where V is a set of global states and E corresponds to the set of global

transitions.

Definition 3. A global state of G is a 2k-tuple <s(1), s(2), ..., s(k), m1, m2, ..., mk> where mj,

j = 1, …, k are set of messages contained in F1, F2, ..., Fk respectively.

Definition 4. A global transition in G is a pair t = (i, α) where α ∈ Ai (set of actions). t is

firable in s = <s(1), s(2), ..., s(k), m1, m2, ..., mk> if and only if the following two conditions are

satisfied where = (input, predicate, output, compute-block).

• A transition relation δi(S, α) is defined

• input = null and predicate = True or input= α and mi= α W,

where W is a set of messages to Ci, and predicate = True.

After t is fired, the system goes to s’ = <s’(1), s’(2), ..., s’(k),m’1, m’2, ..., m’k> and messages

contained in the channels are m’j where

• s′(i) = δ(s(i),α) and s′(j) = s (j) ∀ (j≠ i)

• if input = Ø and output = Ø, then m’j = mj

• if input = Ø and output = b, then m’k = mk b (Ck is the agent which receives b)

• if input ≠ Ø and output = Ø, then m’i = W and m’j = mj ∀ (j≠ i)

11

• if input ≠ Ø and output = b, then m’i = W and m’k = mk
b

Definition 5. A test case in composed <preamble, target, post-amble, verdict> where the

preamble is a sequence of transitions that start at the initial state and ends at the target, it might

be empty. A post-amble is the sequence of transition that starts at the ending state of the target

and end at the final state, this might be empty. The target is the element to test. The verdict is in

the set {pass, fail, inconclusive}.

Definition 6. A test sequence is a set of test cases.

2.3.2 Test Coverage Criteria

The notion of coverage is important in test case generation. It characterizes the quality of a

test case and test suite. It also helps determine the efficiency of test cases. There are several

coverage criteria, among them requirement coverage, structural coverage, data flow coverage,

input domain coverage, and fault coverage. Test coverage is very often used to measure how

thoroughly software is tested. It is also used by software developers and vendors to indicate their

confidence in the quality of their software product. Despite decades of research on coverage

criteria and metrics, the traditional coverage notions that are used in software testing, such as

statement coverage, branch coverage, and path coverage [5, 6, 7, 8, 9, 10], are not sufficient to

ensure that a tested software satisfying a coverage criterion is error free. The only way to ensure

that a software is error free via testing is to perform exhaustive testing which is very often very

expensive or impossible due to very large or infinite input set. Coverage criteria provide a cost

trade-off in testing. This research focusses on coverage criteria that are important to avionics

software systems such as requirement coverage, and MC/DC [3, 11, 12, 13, 14, 15]. Coverage

criteria were widely studied. In the following, we will focus on du-paths and MC/DC criteria

(see Figure 2.4). These two criteria are not comparable. They can be used separately or integrated

in a test sequence generation algorithm to enhance the quality of test cases.

12

Figure 2.4: Coverage Criteria [5]

All-du-paths criterion is a dataflow coverage criterion that links the definition and usages of

variables. A definition of a variable is any statement that modifies the value of a variable. It is

equivalent to “write” in the memory zone associated with the variable name such as assignment

and read input that modifies the value of the variable. A usage of a variable is all operations that

read the value of a variable without modification such as computation use (C-use) and Predicate

use (P-Use) and output use (O-use). A du-path is a definition-usage path that links the definition

of a variable to its usage. It is desirable that the path is definition clear, meaning that there is no

redefinition of the variable within the path. All-du-paths is a criterion less strong but manageable

than all-paths [5].

2.3.3 Modified Condition/Decision Coverage

The objective of Modified Condition/Decision Coverage (MC/DC) criterion is to

demonstrate that all conditions involved in an expression (decision) can influence the result of

that expression. All safety critical systems have decisions that need testing. Some of the specified

decisions are complex and need specific techniques to address them. MC/DC criterion is stronger

that condition and decision criteria. The satisfaction of MC/DC criterion is required by DO-178C

standards for software avionics systems [1]. More details about MC/DC and challenges of its

testing are provided in [3, 15]. A decision is a Boolean expression that is composed of conditions

and zero or more Boolean operators. A decision without a Boolean operator is a condition. A

condition is in fact a leaf-level Boolean expression. It is atomic and cannot be broken down into

 All-paths

All-du-paths

All-uses

All-c-uses/some-p-uses All-p-uses/some-c-uses

All-c-uses All-p-usesAll-defs

All-branches

All-statements

DC CC

C/DC

MC/DC

M-CC

13

a simpler Boolean expression. MC/DC is a structural coverage criterion, developed as a trade-

off between Multiple-Condition Coverage criterion and Condition/Decision Coverage criterion

that has a lower number of test cases . MC/DC was used for code testing with the following

requirements:

(1) Every decision in the program must be tested for all possible outcomes at least once.

(2) Every condition in a decision within the program must be tested for all possible

outcomes at least once.

(3) Every condition in a decision must be shown to independently affect that decision's

outcome. This requirement ensures that the effect of each condition is tested relative

to the other conditions; and

(4) Every exit and entry point in the program (or model) should be invoked at least once.

Several test sequence generations with the MC/DC coverage exist and all of them are

dedicated to code testing [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. The proposed

techniques are based on one of the following categories: Binary Trees [16], truth table for each

Boolean expression [12, 22, 18, 23], n-cube graph [26], and constraints solving [10, 27]. Each of

the proposed techniques, if not combined with other techniques that optimize the well-known

issues, suffers from scalability and state explosion problem. The techniques that are based on

graphs suffer from state explosion and decidability issues in relation with the number of

variables. There are very few approaches to MC/DC test cases generation for system’s

specifications that consist of complex decisions. Most of them assume that each decision is

independent. TING SU et al. [10] presented 3 different approaches, essentially based on binary

trees and constraint solvers to generate MC/DC test cases for decisions. For each approach, we

discuss its advantages and limitations [17, 18, 23, 24, 27]. Most of the proposed techniques do

not address multiple decisions and cycles in test case generation. Very few automatic tests case

generation tools exist and suffer from the above challenges [17, 18, 23, 24, 27].

2.3.4 Test Cases Generation based on EFSM

EFSM model extends the Finite State Machine (FSM) model that represents the control

aspect with variables and predicates (data flow aspects). Test sequence generation is thus more

complex for an EFSM.

The challenges are:

1. The state explosion problem, which leads to incomplete coverage.

14

2. Data selection, which can often be undecidable; and

3. Path feasibility (executability), which is very expensive.

Extensive research has been carried in model-based testing (MBT). The first comprehensive

survey was published by Bourhfir et al. [7, 28, 29]. In 2015, Yang et al published a more recent

and exhaustive survey entitled “EFSM-based Test Case Generation: Sequences, Data and

Oracle” [8]. Additional information on control and data flow-based test generation techniques

can also be found in a book chapter published in 2017 [9]. Another approach for the test sequence

generation for MC/DC was developed in the case of Communicating EFSM [30].

In data flow testing, all test strategies aim at selecting complete paths using the control flow

to link the definitions of variables to their respective usages. Choosing the paths when executing

is assumed to stimulate errors and detect faults related to the data aspect of a

program/specification. To determine the quality of a test sequence, metrics or coverage criteria

are used for two purposes:

1. In test generation to satisfy, by design, the desired criteria; and

2. In the evaluation of the existing test sequences and of the software.

Coverage criteria are often used for the assessment of software test data. A coverage criterion

for software, if integrated within a test generation algorithm, will measure the amount of testing

to be performed by executing the generated set of tests. It also provides a notion of a test

sequence’s quality. Testing based on the EFSM has been searched extensively. The EFSM is a

model that extends the FSM model with variables and predicates that appear within condition

statements. Test sequence generation is more complex in EFSM, and very often faces a state

explosion problem that leads to incomplete coverage [8, 9, 10]. The data selection that is needed

is often undecidable and path feasibility/executability is not cost efficient.

Bourhfir et al. proposed an EFSM-based test sequence generation method that generates

executable test sequences [7 , 27, 28, 29]. A complete test sequence is obtained in five steps.

First, the technique transforms an EFSM model into a dataflow graph. Second, it selects input

values for the input parameter that affects the control flow. Third, executable sequences are

generated using du-paths and removing any sub path inclusion, while appending the state

15

identification sequence and post-amble to each du-path [29]. The executability of each path is

verified in the fourth step. They used cycle analysis, symbolic execution, and CSP techniques to

solve the path executability problem. Fifth, relevant paths are added to cover any uncovered

transitions. This technique verifies the executability of a path during its generation. It uses

optimized IO-df-chains [29] criterion and multiple UIO with Wp as the state identification

method. Table 2.1 presents a summary and comparison criteria of the relevant EFSM-based

methods [20, 23, 24, 25, 26, 27]. A more exhaustive list can be found in [8, 19, 30].

Table 2.1: EFSM-based test sequences generation approaches

 (- means not given or not addressed)

Authors and Date Model Transformation Coverage

Criteria

Signature Data

Selection

Path

Executability

Technique

Ural 1991, 1993

[31, 32]

EFSM to Control graph

and Data Flowgraph

IO-df-chain - - -

Bourhfir 1997,

2001 [27, 29]

EFSM to Data

Flowgraph

IO-df chains M-UIO Wp Rando

m

Cycle analysis,

Symbolic

execution, CLP-

BNR technique

Heirons 2002 [34] SDL-EFSM to NF-

EFSM to

EEFSM/PEFSM

all-uses - - Path splitting,

state

decomposition,

Predicate

decomposition

simplex

algorithm

Wong 2008, 2009

[35]

EFSM all-nodes,all-

edges Hot

spots

- Symbolic

execution

Conflict

detection

Possibility to

use CSP

2.3.5 Test Data Generation Techniques

Testing based on EFSM requires test data generation. To test a system, both variables and

parameters need values that must be selected from their domain definition in combinatorial

manner. The selected data has the important role of stimulating the path and revealing any errors.

The selected data should simultaneously satisfy all the predicates along the path for its feasibility

(executability). The difficulty is that the input domain that combines all the variables and

parameters domains is too large or infinite to consider its complete coverage. It is known that

16

test data generation is an undecidable problem [37]. Several techniques have been explored for

test data generation and selection. One of the techniques is exhaustive testing, which refers to

using every input sequence from the input domain that is a combinatorial set of all variables and

parameters domains. Exhaustive testing can only be considered for very small models. To cope

with large input domains, partition testing is preferred, as it consists of dividing the input domain

into several equivalence classes from which only one test data is chosen. The challenge is to

define the equivalence relation that can best meet the requirements. Another technique used for

software testing is boundary testing, which tests boundaries’ limits [39]. Test data generation and

selection techniques can be grouped in the following categories: symbolic execution [37, 38, 39,

40, 41], random, mutation, linear regression to narrow intervals, and search-based techniques

[26].

17

Chapter 4

Test Generation Approaches

3.1 Overview

In this chapter, we describe the design of our MC/DC-TGT by investigating different views,

each governed by a design viewpoint and outlining pertinent design elements and design

relationships. We describe the tool along four design views: context view, process and algorithm

view, architecture view, and data view. The context view provides for automatic test case

generation and generates global test sequences. In the process view, we provide a high-level

description of the approach and the rationale behind the theoretical decisions. The architecture

view presents how the approach is structured into modules, recursively establishing the roles

and interactions of the constituent submodules. In the data view, we describe the substantial

persistent data and the data management strategies when applicable. Finally, in the algorithmic

view, we wrap up the design views by detailing select routines and justifying some of the design

choices in term of performance.

An automatic model-based test case generation approach that generates local test cases based

on an existing EFSM test generation technique was modified to handle the MC/DC criterion in

addition to the all-du-paths and published in [30] by Elqortobi et al. The approach also generates

global test sequences for an integrated system. It uses parallel communicating agents for

modeling the system to be tested. The approach also uses model checking for the verification of

18

properties at the design level and validates their propagation to the product level via testing. For

the context view, the proposed MC/DC-TGT will operate as an alternate solution for EFSM-

based local test case generation.

3.2 Model-based Verification and Testing Methodology

In this thesis, we overview the issue of safety-critical software verification and testing that

are key requirements for achieving RTCA DO-178C [1] regulatory compliance for airborne

systems. As argued in [30], formal verification and testing are considered two different activities

within the airborne standards, and they belong to two different levels in avionics software

development cycle. The objective is to integrate model-based verification and model-based

testing within one framework. This objective is achieved by proposing a new methodology for

the verification and testing of parallel communicating agents based on formal models. In this

methodology, properties are extracted from requirements and formally verified at the design

level, while the verified properties are propagated to the implementation level via testing. The

methodology is composed of five steps as depicted in Figure 3.1.:

1) modeling behaviors and specifying properties for formal verification at the design stage.

2) performing verification using and extending existing tools.

3) transforming the verification model to testing model using refinement.

4) generating test case automatically for testing individual agents in their context

(conformity); and

5) generating test case automatically for the integration of all agents based on partial

reachability graph, and finally checking that the verified properties hold at the implementation

level via testing.

The results of formal verification and testing can be used as evidence for avionics software

certification.

19

Figure 3.1: Overview of the methodology (from [12])

Figure 3.2: Test generation process (from [12])

ISPL+

Informal Specification

Test cases

properties Model for TestingModel for Verification

General purpose model
FSM-like Model

Modeling

Test Cases
generation

Model Checking
MACMAS+

Refinement and Model
transformation

System Under Test
SUT

Witness
Simulation

Violation
Simulation

Test Results
Analysis

Design level
Verification

Implementation Level
Testing

Document
Activity
System

CTL

Manual extraction of properties
Legend

Validation of Properties via Testing

EFSM

Local Test

Sequences

Communication

Graph

Global Test

Sequences

Global System

(CEFSM)

Communication
Graph Derivation

Local Test
Generation

Global System
Composition

Global Test
Generation

Local Test

Sequences

20

The integration of verification and testing in our methodology is designed in compliance

with RTCA DO-178C standards [1]. This design follows the following steps:

✓ Verification of properties at the design stage.

✓ Low-level requirements model-based testing. The test generation

process, depicted in Figure 3.2, generates:

✓ local test cases based on EFSM model of LLR;

✓ global test cases based on CEFSM model, that is the integration

of components (agents).

✓ Handling the mandatory coverage criterion MC/DC in addition to all du

paths.

✓ Checking the propagation of properties at the implementation via testing

as required by the standard [1].

✓ Addressing forward traceability (HLR → LLR → test cases) by

construction.

✓ Producing some of the certification artifact, such as models, local test

cases, global tests cases, and their relationship with LLR.

The proposed approach extends an existing test generation technique [30]. The extension

is important as it modifies the coverage criteria that guides the test case generation. Bourhfir

et al. proposed an approach that automatically and incrementally generates executable test

sequences for Communicating Extended Finite State Machines CEFSMs model [27, 28, 29].

The communication mode is asynchronous. The approach does not compute the product of all

communicating machines. It only generates test sequences by incrementally computing a

partial product for each CEFSM, which mean, considering only transitions that influence (or

are influenced by) the considered CEFSM and generating test sequences for it. The partial

product for an CFSM represents its behavior when composed with parts of the other CEFSMs,

the communicating transitions. They generate test sequences using the Extended Finite state

machine Test Generator EFTG tool that was published in [29]. The tool generates executable

test cases for EFSM specified protocols covering both control and data flow. The control flow

criterion used is the UIO (Unique Input Output) sequence [33, 42] and the data flow criterion

is the all-def-uses criterion [30]. Their approach is incremental and suitable for testing large

systems. The objective is not to cover all transitions in the cross product of all CEFSMs, but

21

to cover all transitions in all CEFSMs and all global transitions as well as all data-flow paths

in each partial product. State explosion problem is possible in this technique [30, 31, 32, 34,

35, 36, 43, 44].

3.3 Model-based Testing Methodology with Constraint Solving

3.3.1 Approach Overview

The proposed approach addresses the generation of local test cases with complementary

features. This test generation technique (see Figure 3.3) is an alternative solution to local test

case generation presented in Figure 3.2. The focus here is to advance transition path feasibility

and preparatory work to show requirements’ traceability.

The main objective is to develop a methodology that generates test cases for local components

and design a tool for its support. The idea is to build on our previous solution and improve test

case generation based on models that handles path selection using both control flow and data

flow graphs, and the required MC/DC coverage criterion. For path feasibility we use the

constraints solving technique.

Figure 3.3: Alternative test generation process from [30]

EFSM

Local Test
generation

Local Test
Sequences

Communication
graph derivation

Communication
Graph

Global Test
generation

Global Test
Sequences

Global system
composition

Global
System

(CEFSM)

ME-Contribution

AR-Contribution

22

3.3.2 Process Steps

We start by defining exactly how a test suite satisfies MC/DC for a given decision. After

the desired MC/DC configuration is given in the form of an MC/DC table, we need to generate

a test sequence for each row. The execution path on the sequence must include the control point

where the decision is being evaluated (to satisfy the first MC/DC requirement). This is done

while ensuring that the constituent conditions of the decision are allocated the desired outcome

by checking that:

1. The variable definitions influencing the said conditions are coherent (to satisfy the second

MC/DC requirement); and

2. The variable definitions are independent from each other, i.e. ensuring that different

variables are involved in changing the values of the conditions in terms of i-use, d-use and c-use

(to satisfy the third MC/DC requirement).

To handle MC/DC, we are faced with a challenge that requires analyzing data flow and

control flow aspects to be solved. We therefore generate the necessary graphs for test generation.

MC/DC-TGT outputs an executable test suite along with the coverage data, given user-provided

input as an EFSM model, MC/DC tables and complementary test criteria. Figure 3.4 shows how

MC/DC- TGT gradually constructs the executable test suit. Our approach is designed to combine

several test criteria while reducing their search space by introducing the coverage element

construct. In the following, we focus on the MC/DC criterion alone.

The first step of our approach is to formally generate the Data Flow Graph (DFG) and the

Control Flow Graph (CFG) from the EFSM. The primary goal is to separate the data flow aspects

from the control flow aspects, thereby simplifying the task of finding the targeted information.

This information is obtained from the MC/DC tables (or coverage elements), and is used to label

the EFSM, DFG and CFG. Selecting an executable path will become a matter of finding a path

on a labeled graph. The path selection is guided by path feasibility using constraints-solving.

We create an abstract test suite by associating the selected paths to the coverage elements they

potentially satisfy if the proper test data is selected. Test data selection follows and gives us an

executable test suite. We ran a coverage analysis to verify that the target coverage has been

achieved and compile a test report in terms of expected outcomes as a verdict on the test

23

sequence execution.

Figure 3.4: EFSM test generation process

The key steps of the approach are:

1. Automatic model transformation to obtain control and data flow graphs using

graph rewriting (EFSM → graphs).

2. Preparation for path selection using graph labeling to obtain location of the

relevant information on graphs.

24

3. Feasible path selection to obtain feasible paths and unfeasible paths that compose

a set of abstract test sequences.

4. Data selection to obtain executable test sequences.

5. Coverage analysis where all MC/DC requirements are assessed again.

3.3.3 Step 1: Graph Rewriting

Here we provide a simplified explanation of the Single-Pushout (SPO) approach for graph

rewriting and the concepts involved, and what it means in practice. Rigorous mathematical

semantics based on category theory are provided in Rozenberg’s book [45]. First, we define the

following: Grammar, Rule Graph, State Graph, Match, Rule Morphism, Rules and Rule

Application. Figure 3.5 provides an overview of the graph rewriting approach.

Figure 3.5: Graph rewriting overview

Start

EFSM
(Java Object)

Define
Grammars

Grammars

Define Rule
Graphs

EFSM
Rule Graph

Generate EFSM State
Graph

(Match Morphism)

CFG
(resp. DFG)
 Rule Graph

EFSM
State
Graph

Rule
Morphism

Define Rule
Morphism

Graph
Derivation

CFG
 (resp. DFG)
 State Graph

End

Generate
CFG

(resp. DFG)
Java Object

CFG
 (resp DFG)

(Java Object)

Transformation
records

Transformation
records

Transformation
Records

25

A Grammar is the formal definition of the graph elements. In an attributed grammar, vertices

and edges are assigned types and may have attributes. Defining an attributed graph grammar

amounts to defining a set of vertex types, a set of edge types, and for each type specify whether

it has attributes (and whether those attributes have typed on untyped members).

A Rule Graph is a graph (usually a type graph) that uses a predefined grammar. It defines the

vertices types each edge type can link, as well as the multiplicities. A State Graph is a graph G

that adheres to the rules defined in a given rule graph R. In practice, the graph we aim to transform

is a state graph. It is defined by a graph morphism m: R→G called Match. A Rule Morphism is

a graph morphism between two graph Rule Graphs L and R. In practice, a rule morphism is a set

of Rules, where a Rule is a graph morphism between a subgraph of L and a subgraph of R.

A graph transformation is a series of rule applications. A Rule Application (a.k.a rewriting

step) in the SPO approach is defined by the pushout diagram depicted in Figure 3.6 [45, 46].

Figure 3.6: Pushout diagram

In the Pushout diagram, G (resp. G’) is the source (resp. target) state graph adhering to the Rule

Graph L (resp. R), and r: L → R is a rule morphism and m: R → G a match. We say that we

derive G’ from G via rule application of r at a match m. A rule can only be applied if its conditions

(subset L’ of L) are satisfied in G. Checking whether a condition is satisfied equates to checking

whether m(L’) is empty. In the SPO approach, a match has to be total. This will ensure that all

the rules can be applied.

Via the SPO, we transform a graph without the need to construct an isomorphism (or

morphism and a reverse morphism) between the elements of the source and target state graphs.

In practice we must define Grammars and Rule Graphs for each formalism used (EFSM, Data

Flow Graph and Control Flow graph.). EFSM, being the source Model, defining a match is as

simple as defining an EFSM instance. For each Transformation (EFSM to DFG and EFSM to

CFG) we have to define a rule morphism [45, 46]..

26

We use SMTlib [47] to express the guard content on the EFSM. The main goal is to simplify

the parsing of the guards and their content, otherwise we would have needed to define the

variables and inputs used in the formal definition of an EFSM, as part of the grammar. The Input

values on the Input Edge in the Control Flow Graph grammar would be one from the Input List

attribute of the Input Points preceding it. An input could be either a simple control instruction or

values meant to be assigned to a variable, i.e. they potentially affect both control and data flow.

Next, we define the rule graphs for each grammar as shown in Figure 3.6. The graph outlines

the relationships between node types by means of arc. The arcs used to link the nodes are typed

from the grammars in Table 3.1, thus defining how components of the grammar are related to

each other.

Table 3.1: Grammars used in MC/DC-TGT

Grammar Nodes/Arcs Type Attributes Members Member Type

 EFSM

Nodes State Yes
Name String

ID Integer

Arcs Transition

Yes

Input SMTLib Expression

expression Predicate SMTLib Expression

Computation

Bloc

SMTLib Expression

Control Flow

Graph

Nodes Merge

Point

Yes ID Integer

Input

Point

Yes Input List Enumeration

Decision

Point

Yes Predicate SMTlib Expression

Computation

Bloc

Yes Computations SMTlib Expression

Arcs Simple

Edge

No N/A N/A

Boolean

Edge

Yes Decision Value Boolean

Input

Edge

Yes Decision Value Input Value

Data Flow

Graph

Nodes Computation

Bloc

Yes Computations SMTlib Expression

Arcs Simple

Edge

No N/A N/A

Predicated

Edge

Yes Decision Value SMTlib

Input

Edge

Yes Decision Value Input Value

The final activity is to define a state graph for the EFSM.

27

A: Graph rewriting – Grammars (EFSM to CFG)

EFSM and CFG grammars are defined as follows:

EFSM Grammar

Node Types

State

Has attributes: Yes

Name: String

ID: Integer

Arc Types

Transition

Has Attribute: Yes

Input: SMTLib Expression

Predicate: SMTLib Expression

Computation Bloc: SMTLib Expression

CFG Grammar

Node Types

Merge Point

Has attributes: Yes

ID: Integer

Decision Point Type “input”

Has attributes: Yes

Input List: Enumeration

Decision Point Type “Predicate:

Has attributes: Yes

Predicate: SMTLiB expression

Computation Bloc

Has attributes: Yes

Predicate: SMTLiB expression

Arc Types

Simple Edge

Has attributes: No

Decision Edge Type “input”

28

Has attributes: Yes

Decision Value: Input Value (From enum)

Decision Edge Type “Boolean”

Has attributes: Yes

Decision Value: Boolean

B: Graph rewriting – Rule graphs and rule morphisms (EFSM to CFG)

The EFSM (source) and CFG (target) rule graphs are as follows:

EFSM Rule Graph:

CFG Rule Graph:

The EFSM to CFG rules are self-explanatory. Graphically, they are as follows:

State

Transition

Input/Predicate/Computations

1

1

Merge Point

Decision Point
Type “Input”

Decision Point
 Type

“Predicate”

Computation
Bloc

Input
Received

Input Received

Decision
Value

Input Received

Decision Value

29

Rule 1: States are mapped to merge points with conservation of ID

Rule 2: (Source-Null-Target mapping)

Rule 3: (Source-Input-Target mapping)

Rule 4: (Source-Predicate-Target mapping)

State

Name
ID

Merge Point

ID = State.ID
Rule 1

Rule 2

Source

Target

Null

Merge Point

ID = Transition.Target.ID

Merge Point

ID = Transition.Source.ID

Source

Target

Input

Merge Point

ID =
Transition.Target.ID

Merge Point

ID =
Transition.Source.ID

Input Received

{Input}
Rule 3

Source

Target

Predicate

Merge Point

ID = Transition.Target.ID

Merge Point

ID = Transition.Source.ID

Predicate

True

False

Rule 4

30

Rule 5: (Source-Computation-Target mapping)

Rule 6: (Source-Input/Predicate-Target mapping)

Rule 7: (Source-Input/Computation-Target mapping)

Source

Target

Computation

Merge Point

ID = Transition.Target.ID

Merge Point

ID = Transition.Source.ID

Computation

Rule 5

Source

Target

Input/Predicate

Merge Point

ID =
Transition.Target.ID

Merge Point

ID =
Transition.Source.ID

Input Received

{Input}

Predicate

Rule 6

Source

Target

Input/Computation

Merge Point

ID =
Transition.Target.ID

Merge Point

ID =
Transition.Source.ID

Input Received

{Input}

Computation

Rule 7

31

Rule 8: (Source-Predicate/Computation-Target mapping)

Rule 9: (Source-Input/Predicate/Computation-Target mapping)

Rule 10: (Source-Input|Input’-Target|Target’ mapping)

Source

Target

Predicate/Computation

Merge Point

ID =
Transition.Target.ID

Merge Point

ID =
Transition.Source.ID

Predicate
True

False

Computation

Rule 8

Source

Target

Input/Predicate/Computation

Merge Point

ID =
Transition.Target.ID

Merge Point

ID =
Transition.Source.ID

Input Received

{Input}

PredicateTrue

False

Computation

Rule 9

Source

Target

Input

Target’

Input’

Merge Point

ID = Transition.Target.ID

Merge Point

ID =
Transition.Source.ID

Input Received

{Input,Input’}

Merge Point

ID = Transition.Target’.ID

Input’ Received

Rule
10

32

Figure 3.7 shows an example of the use of the aforementioned rules to rewrite an EFSM into

a CFG.

Figure 3.7: Example of graph rewriting through CFG rules derivation

C: Graph rewriting – Grammars (EFSM to DFG)

EFSM Grammar

Node Types

• State

• Has attributes: Yes

• Name: String

• ID: Integer

Arc Types

• Transition

• Has Attribute: Yes

• Input: SMTLib Expression

• Predicate: SMTLib Expression

• Computation Bloc: SMTLib Expression

DFG Grammar

s0

s1 s1

t01: {b==true}[v1++,v2--]

t10: [v1,v2 ←0;b ←NOT(b)]

t0 : p [v1,v2 ←0;b ←p]

t20: [v1,v2 ←0;b ← NOT(b)]

t12: {b==true AND v1>0 AND v2<0}

t02: {b==false}[v1--,v2++]

t21: {b==false AND v1<0 AND v2>0}

[C0]
v1,v2 ←0;

b ←p

I0: p

s0

[P10]=Not[P02]
b==true

False

s2s1

[P21]
b==false AND v1<0 AND v2>0

[P12]
b==true AND v1>0 AND v2<0

FalseFalse

True

True
True

[C10]
v1,v2 ←0

b ←NOT(b)

[C20]
v1,v2 ←0;

b ←NOT(b)

[C01]
v1++,v2--

[C02]
V1--,v2++

s2

33

Node Types

• Vertex

• Has attribute: Yes

• Definition/Computation: SMTLIB Expression

Arc Types

• Simple Edge

• Has attributes: No

• Predicated Edge

• Has attributes: Yes

• Predicate: Input Value (From enum)

D: Graph rewriting – Rule graphs and rule morphisms (EFSM to DFG)

The EFSM (source) rule graph is already given, and the DFG (target) rule graph is as follows:

The EFSM to DFG rules are self-explanatory. Graphically, they are as follows:

Rule 1: State are mapped to vertex with state variable

Vertex

Predicate

State

Name
ID

Vertex

State_Variable ← State
Rule 1

34

Rule 2: (Source-Null-Target mapping)

Rule 3: (Source-Input-Target mapping)

Rule 4: (Source-Predicate-Target mapping)

Rule 2

Source

Target

Null

State_Variable ← State

State_Variable ← Target

Source

Target

Input/Predicate/Computation
Rule 3

State_Variable ← State

State_Variable ← Target

ReadTarget ==Input

Computation

Read(input)

Predicate

Source

Target

Input

Target’

Input’
Rule 4

State_Variable ← State

State_Variable ← Target

ReaderTarget == Input

Read(input)

State_Variable ← Target’

Read(input’)

ReaderTarget == Input’

35

Figure 3.8 shows an example of the use of the aforementioned rules to rewrite an EFSM into

a DFG.

Figure 3.8: Example of graph rewriting through DFG rules derivation

3.3.4 Step 2: Preparation for the Path Selection

The goal of the approach is to generate executable test cases that satisfy the MC/DC criterion.

To derive an executable test sequence, we need a feasible path along which the MC/DC

requirements are satisfied. In other terms, we have two governing criteria: the values of Decisions

and the Conditions (and thus the values of the variables influencing these Conditions), and the

feasibility of the path being considered for selection. The goal of this step is to annotate the

graphs using information from the MC/DC tables, which reduces the risk of state explosion when

performing a multi-objective search on the EFSM/DFG/CFG by reducing the search space.

Figure 3.9 goes through the steps of the labelling. There are four information we want to

pinpoint on the graphs’ elements. The MC/DC Tables (or Decision) affected by the graph

element, the Rows, The conditions and the values of the Conditions. Thus, the final label would

depend on each graph element as shown in Figure 3.9. We start by labelling the decision points

from the CFG with the MC/DC tables ids as each MC/DC table is associated with one Decision

(and thus with one predicate). Then for each table, we label the outgoing branches from the

decision points with the row id that match the Decision outcome of that row. We also label the

s0

s1 s1

t01: {b==true}[v1++,v2--]

t10: [v1,v2 ←0;b ←NOT(b)]

t0 : p [v1,v2 ←0;b ←p]

t20: [v1,v2 ←0;b ← NOT(b)]

t12: {b==true AND v1>0 AND v2<0}

t02: {b==false}[v1--,v2++]

t21: {b==false AND v1<0 AND v2>0}

s2

Read(p)

S ←s0

C0:v1,v2 ←0;
b ←p

[C01]
v1++,v2--

S ←s1

[C02]
v1--,v2++

S ←s2

[P01]b==true P02: b==false

[P12]b==true AND v1>0 AND v2<0

[P21]b==false AND v1<0 AND v2>0

[C10]
v1,v2 ←0

b ←NOT(b)

[C20]
v1,v2 ←0;b
←NOT(b)

36

predicate edges from the DFG by means of the transformation records. And finally, for each

condition we move to labeling the d-use for all variables affecting that Condition on the DFG.

Figure 3.10 (a and b) shows an example of the application of Step 2: preparation for the path

selection from the example shown in Figure 3.7.

Figure 3.9: Preparation for path selection (graph labeling)

MCDC Tables

CFG

MCDC Table
Ti

Select MCDC Table
Associated with

Predicate Pi

Select Row next
Row

Select next
Condition

Row Ri

Select Decision
Point associated
with Predicate Pi

Decision
Point DPi

Label DPi
and outgoing
Branch with

appropriate Value
with the Lable

(Ti,Ri,Pi, Value of
Decision)

Condition
Ci

Variable Vi

Find all def-use(Vi)
And Label them

(Ti,Ri,Ci,Value of CI)

Labelled DPi
and Branch

Predicate
Edge

Labelled
with (Ti,Ri,Pi,

Value of
Decision)

Label Predicate
Edge

Transformati
on Record

DFG

True

Has another
Varable

Select next Variable
in Ci

False

Has another
Row

True

True

Has Another
MCDC Table

Has another
Condition

True

False

False

FalseEnd

Start

37

Figure 3.10: Application of Step 2 from graph rewriting of Figure 3.7

a

b

38

3.3.5 Step 3: Path Selection

The aim is to select paths that have the potential to produce executable test cases and decide

on their feasibility [55]. In TGT, we use jSMTLIB for parsing SMTLIB expressions and using

the solvers with test generation tool. In the following we describe briefly how we address the

selection of feasible paths. A search algorithm A* is used for finding the “shortest” path and a

multi-objective search algorithm. Short path is expressed in terms of feasibility and uses of the

involved variables. A* is used between the “nearest” def-use and the p-use. We also use a multi-

objective search algorithm based on [52].

For SMT-constraint solving, any SMT-LIB solver can be used. For this step, the following

data is required: Labelled DFG, Transformation records, Heuristics, Temporal Logic, and

Theory. We obtain Feasible/unfeasible Paths (see Algorithm 1). The following is the Feasibility

Analysis approach:

Precondition: MC/DC tables, labeled DFG

Labels applied during the previous steps

<T, R, C, Value of C> for def-uses

<T, R, P, Value of P> for p-uses

Where:

T: table

R: Row of MC/DC table

C: Condition

P: Predicate/ decision

For each table T in the set of MC/DC table

 For each (Row) R in T

 Find p-use in labeled <T, R, P, Value of P> in labeled DGF

 For each C in R find def-use with label <T, R, C, value of C>

Link p-use(C) and min-def-use(C)* with a def-clear-path**,

Add feasible preamble and post-amble to form a complete path.

(*) min-def-use(C) in the nearest of def-uses of the variables involved in C in term of

“Approximation Level” [52].

(**) If there is a c-use w.r.t. that particular variable, we ignore it for the MC/DC approach.

39

The def-clear path is constructed using a standard A* algorithm with feasibility as heuristic:

H(t) = +1 if the transition is feasible, H(t) =+ 100 if not.

Link the other def-use(C) with min-def-use(C)

3.3.6 Step 4: Data Selection

Once the feasible/unfeasible paths are selected and associated to the coverage element, they

form an Abstract Test Case. If the path is feasible, it means there exists a succession of variable

assignments that ensures each transition along the path is satisfied. If the path is unfeasible, it

means no such succession exist. However, in the context of MC/DC that eventuality has to be

tested as well. The goal of this step to find the variable assignments needed in case of feasible

paths. The constraint solver works on the deciding satisfiability of the system of equations along

the path. This has already been done in the previous step as it is the basis for selecting the path.

A Path is feasible if the system of equations derived from it is satisfiable. Data selection is simply

finding and selecting one of the solutions.

40

We use a temporal logic to express the succession of the predicates [47, 49]. For unfeasible

paths, no “selection” is needed if test should fail no matter what the input is. However, we should

make sure that the Decision and Conditions take the proper valuations as is specified in the

coverage element (or MC/DC table row). We truncate the path up to the transition with Decision.

The path should be feasible up to that point and thus the data selected is mainly to satisfy MC/DC,

which bring us to the final step. Figure 3.11 (a, b, and c) shows the application of Step 3 (path

selection) and Step 4 (data selection) on the example of Figure 3.7.

3.3.7 Step 5: Coverage Analysis

After the generation of test sequences, test criteria coverage needs to be analyzed. This step

is important for test sequences that aims at satisfying the MC/DC criterion. In the case of MC/DC,

there is also the need to analyze the satisfaction of its requirements. The goal of this step is

twofold: verifying the requirement coverage and the MC/DC (or structural coverage if the

generation has been parameterized with additional coverage criteria). This is a preliminary step

that precedes the execution of the test cases. We run a symbolic execution along the path to

calculate two metrics:

• Requirement Coverage =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑎 "𝑃𝑎𝑠𝑠" 𝑉𝑒𝑟𝑑𝑖𝑐𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

• MC/DC Coverage =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑎𝑛𝑑 𝑢𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

This step is performed independently from the other steps. One of its goals is to verify that

the test suite indeed achieves 100% MC/DC coverage, and the other is to ensure forward

requirement traceability (by construction) and backward traceability between the test cases and

the LLR (by labelling).

41

Figure 3.11: Application of Steps 3 and 4 from graph rewriting of Figure 3.7

Read(p)

S ←s0

C0:v1,v2 ←0;
b ←p

[C01]
v1++,v2--

S ←s1

[C02]
v1--,v2++

S ←s2

[P01]b==true P02: b==false

[P12]b==true AND v1>0 AND v2<0

[P21]b==false AND v1<0 AND v2>0

[C10]
v1,v2 ←0

b ←NOT(b)

[C20]
v1,v2 ←0;b
←NOT(b)

(R1,P,T)

(R1,P,T)

(R1,A,T)

(R1,A,T)

(R1,B,T)
(R1,B,T)

(R1,C,T)
(R1,C,T)

• min-def-use(A==T) = 3
• min-def-use(B=T) = 1, min-def-use(C=T) = 1 [C01]

• We form a def- clear-path* between [C01] and and
[P12]

• Vertex [C01] is selected.
• We link either [C20] or [C0] to a [C01] (both are feasible

depending on the value of “p” which will be selected at
step 4)

• Add feasible preamble and feasible postamble w.r.t. all
the variables starting with the one(s) that had min-def-
use

s0

s1 s1

t01: {b==true}[v1++,v2--]

t10: [v1,v2 ←0;b ←NOT(b)]

t0 : p [v1,v2 ←0;b ←p]

t20: [v1,v2 ←0;b ← NOT(b)]

t12: {b==true AND v1>0 AND v2<0}

t02: {b==false}[v1--,v2++]

t21: {b==false AND v1<0 AND v2>0}

Read(p)

S ←s0

C0:v1,v2 ←0;
b ←p

[C01]
v1++,v2--

S ←s1

[C02]
v1--,v2++

S ←s2

[P01]b==true P02: b==false

[P12]b==true AND v1>0 AND v2<0

[P21]b==false AND v1<0 AND v2>0

[C10]
v1,v2 ←0

b ←NOT(b)

[C20]
v1,v2 ←0;b
←NOT(b)

Selected Feasible Path (after adding feasible
preambles and postambles) is:
t0-t01-t12-t20-t0

a

b

c

42

3.4 Architectural View

The main module in our approach is the Test Generation Module. It implements the main

routines of our approach. We supplement it with two auxiliary modules: a Data Module, and a

Graph Operations Module. Figure 3.12 outlines the high-level view of the architecture MC/DC-

TGT. In this section, we justify the technical decisions as we outline the function and

information’s exchange for each module. In general, we preferred Java open source libraries

whenever possible. The tool is designed so that those libraries could be substituted for others as

long as they serve the same theoretical functions (e.g. graph rewriting using attributed grammar).

The Graph Operations module is dedicated to frequently used, general purposed, graph

operations. Its goal is to ensure maintainability and reconfigurability of the algorithms. The data

module retrieves user input, constructs, manages data, and provides proxies to external libraries

involved in creating and transforming the different graphs. The Data Module is open to the rest

of the MC/DC-TGT in read-only mode. In the upcoming sections, we detail each of the

submodules, their functions, the information and data they exchange and/or modify, as well as

when they are used.

43

Figure 3.12: EFSM test generator architecture

3.4.1 Test Generation Module

The test generation module implements major steps of the methodology such as preparation

of path selection, path selection, test data selection and coverage analysis, as described in process

view. The three main submodules are treated as chain of responsibility pattern. The Data Facade

submodule is a proxy to the Data module and provides a read-only access to all the data

structures. The Path selection submodule has two sub-submodules of its own that collaborate in

selecting the feasible paths. It takes a collection of MC/DC tables and labeled EFSM, DFG, and

CFG as issued from Step 2 (preparation for path selection) and produces a collection of feasible

and unfeasible paths. The path selector uses the graph explorer, multi-objective graph explorer,

and du-path extractors to select candidate paths that satisfy the MC/DC Row. Concurrently, the

feasibility analyzer module provides feasibility verdicts with the help of an SMT solver. Calls to

the SMT solver are done using the SMT solver facade.

44

The test data selector is responsible for Step 4 (test data selection) also uses the SMT solver

since data selection is akin to choosing a solution to the SMT equation across the selected feasible

path. The Coverage Analysis module is responsible for generating coverage data according to

the formulas from Section 3.3.7. It needs access to the labeled graphs and the test suite.

3.4.2 Data Module

The data module is composed of proxies to external libraries and tools. It is composed of

AGG factories, jGraphT wrappers, a Transformation Manager, a GraphML I/O handler, a

SMTlib parser, and MC/DC tables’ factory. The input data for the MC/DC-TGT tool are the test

criteria given as a simple parameter, MC/DC Tables and EFSM. The other two inputs are not as

simple to handle. The first module is the MC/DC factory, which parses user input into instances

of the class. The second Module is a GraphML I/O parser. We chose the GraphML [50] format

for its simplicity and versatility as it can express both the pseudo-graph structure (EFSM) and

graph structures (DFG, CFG). The “output” part of the module is necessary for persistence and

logging purposes.

The graph factory module is responsible for creating the graph objects. It proxies the jGraphT

library [52] and creates objects compliant to the graph grammars detailed in graph rewriting. The

obtained objects are as described in the Data View section. While EFSM is received through user

input, DFG and CFG are generated by the Graph rewriter module which implements the process

via the AGG library [53]. As graph rewriting is being carried, records are made to a database

through the Transformation Manager.

The last module is another proxy to an external library: jSMTlib [54], a parsing library for

SMTlib expressions. Guard elements are created using this library. It is also used for generating

SMTlib scripts that are fed into the SMT constraint solver in feasible path selection and test data

selection.

45

3.4.3 Graph Operation Module

This module separates the graph-related operations from the test generation itself. Each

submodule is implemented as a strategy pattern, enabling for a freedom of varying the

subroutines used on the graphs. The test generation module only needs access graph operations

sub-module from the data module. The graph operation module is dedicated to exploring various

graph with search algorithms and path extractors. It is composed of Graph Labeler, Graph

Explorer with simple algorithm, Graph Explorer with multi-objective search algorithm, Heuristic

Configurator, and Du-path extractor.

3.5 Data View

Due to the large amount of data manipulated in this approach, and the increasing complexity

of information therein after each step, it is necessary to persist relevant data. We need to keep

track of how data was generated, as the information used in the approach is spread between the

different graphs and the MC/DC tables. To that end we create a “transformation records” data

structure, which will be generated as the graph rewriting step takes place. Each transformation

records entry is a result of a rule application. The transformation records simplify the graph-

related operations as well. In addition to describing each of the data structures in this section, we

will explain how traceability, in terms of DO-178C, is assured. The data will be represented by

UML class diagrams, except for the transformation records, which is a database table.

3.5.1 MC/DC Tables

The MC/DC truth tables are the “central” data structures for many control decisions in

numerous algorithms of our approach. An erroneous representation compromises the reliability

of our tool. It is recommended to opt for a simple and lightweight structure to avoid errors and

overhead associated with traversal and search in traditional table structures. In the context of this

research, MC/DC tables are provided externally. Their validation is outside the scope of our

research, but we allow for extending the structure to include validating them internally. Figure

3.13 shows the class diagram of the MCDC/data structure. An MC/DC table is associated with a

46

Decision. Each row is a tuple R =< P, C >, where P Boolean value which represents the outcome

the Decision takes when each Condition is given a value. C is the vector of those values. The

table has N + 1 rows, where N = #(C).

Figure 3.13: MC/DC table class diagram

3.5.2 State Graphs and Rule Graphs

The relationship between rule graphs and their state graphs is homologous to the one between

classes and their instances in OOP. The proper description for state graphs would be object

diagrams. However, we will narrow this subsection to describing the classes of (Figures 3.14 to

3.16), i.e. we will only cover the rule graphs. Having used attributed grammar to express the type

graphs, describing them in object form is a simple one-to-one transformation. Each type is a

class, each subtype is a subclass, and each attribute is a property/field (depending on the desired

encapsulation).

47

These classes use the JGraphT library [51] which offers a flexible way to manipulate graph

structures. It is especially convenient for us as it offers routines adapted to pseudo-graphs such

as the EFSM structure. The design of the classes is in conformance with the rule graphs provided

in graph rewriting. We opted for nested classes for constructs such as states in an EFSM, to

restrict the existence of such object outside of an already defined EFSM.

The guard construct is an exception to this design choice, as the class proved too complex to

be implemented as a nested class. Furthermore, direct references to guards are preferred as we

need to be able to manipulate the guards without added overhead of lookup through the parent

EFSM (see Figure 3.14). Another contributing factor to this decision is that the MC/DC tables

are associated with predicates - an element of the guard; and as mentioned previously, MC/DC

tables in the context of this research are externally defined. Such data need to be instantiated

before the construction and validation of the EFSM.

Figure 3.14: Guard

48

3.5.3 Transformation Records

The complexity of the data structures and algorithms involved in this approach means that it

would be useful to keep a detailed record of the results of the rule applications from the graph

rewriting. Aside from being mandatory for V&V, they also simplify the Steps 2 to 5. Recording

the direct references to graph morphism images will help us bypass search algorithms using

object properties.

We use a static database as the transformation is done only once per graph type. Any change

to the EFSM requires rerunning the graph rewriting from scratch, which means dynamic data

bases have no use in our case. Once the graph rewriting is completed, access to the transformation

records database is read-only. And since graph rewriting is a finite process, we favor consistency

and availability of data above scalability. As such, a relational database is the recommended

option.

Figure 3.15: Control flow graph

49

Figure 3.16: Data flow graph

The key entries are constructed using references to the EFSM constituents used in the rule

morphism. Each entry corresponds to a rule application. The columns are populated with the

references to resulting elements from the target graph. We use the same database for both the

DFG and CFG transformation, which will inherently give a link between the two graphs, even

though the transformations are done separately. Querying a transition from the EFSM returns

both a Data Flow Subgraph and a Control Flow Subgraph as per preparation for path selection,

thus bypassing an algorithmic search on the graphs. Using the same database will put those

subgraphs on the same row. As such, moving between the DFG and the CFG is more efficient.

This “direct” link between the DFG and the CFG reduces the complexity of representing the

MC/DC tables on the data structures and adheres to the design choice. In addition to the

functional contribution, these transformation records allow us to ensure traceability as per the

DO-178C standard.

50

3.6 Conclusion

In this chapter, we addressed the tool design of automatic test sequence generation based on

model for the satisfaction of MC/DC and du-path criteria. MC/DC is a requirement for avionics

software certification according to DO-178C for level A. We followed the IEEE standard to

describe the 4 views: the context view, the process view, the architecture view and the data view.

The design of the proposed test generation tool is being developed for educational purposes. The

developed techniques use constraints solving, handle cycles and uses multi-objectives search

algorithms. Several existing tools have been integrated to solve some aspects of the problem.

There is room for exploring an integrated set of coverage criteria and techniques to lower the risk

of state explosion problem and enhance the efficiency of the generated tests cases. We also

addressed the issue of validation in terms of compliance with DO-178C requirements and

traceability as per the RTCA standard.

51

Chapter 5

Discussion and Conclusion

Quality assurance is the way to ensure the quality software that conforms to its

specification and the required standards. Testing is the preferred activity in avionics industry

and is mandatory by the standards [1, 57, 58]. In fact, the avionic software needs to be

thoroughly tested before deployment. Exhaustive testing is not always feasible. Until now,

the avionics industry is generating test cases manually. This technique requires significant

resources in term of cost and manpower. Model-based testing is now explored by avionics

industry to achieve automation of test case generation. This work is part of this exploration

work.

In this thesis, we addressed the tool design of automatic test sequence generation based

on model for the satisfaction of MC/DC and du-path criteria. MC/DC is a requirement for

avionics software certification according to DO-178C for level A. The design of the

proposed test generation tool is being developed for the need of avionics industry and for

educational purposes. The proposed approach uses constraints solving, handles cycles and

uses multi-objectives search algorithms. Several existing tools have been integrated to solve

some aspects of the problem. There is room for exploring an integrated set of coverage

criteria and techniques to lower the risk of state explosion problem and enhance the

efficiency of the generated tests cases. We also addressed the issue of validation in terms of

52

compliance with DO-178C requirements and both ways traceability as per the RTCA

standard. This work has been published in conference and Journal paper [59,60].

The proposed methodology in this thesis can be used to test complex avionics software.

Possible extensions of this methodology for future work includes:

✓ More validation, coverage assessment and metrics.

✓ Integration of more sophisticated model checking algorithms with the testing

activity to check intelligent and autonomous components; and

✓ Integration of test and verification results analysis in a unified framework.

53

References

[1] http://www.rtca.org. RTCA/DO-178C (2011) "Software Considerations in Airborne Systems and

Equipment Certification", December 13, DO-332 Object-Oriented Technology and Related Techniques

Supplement to DO-178C and DO-278A, DO-331

[2] ARP4754A Guidelines for Development of Civil Aircraft and Systems. SAE International.. S–18 (2010).

[3] G. Zoughbi, L. Briand, Y. Labiche, “Modeling safety and airworthiness (RTCA DO-178B) information:

conceptual model and UML profile”, Journal of Software & Systems Modeling, Volume 10, Issue 3, pp.

337-367, 2011

[4] J. Rushby, “New Challenges in Certification for Aircraft Software”, Proceedings of the 9th ACM

International Conference on Embedded Software, pp. 211-218, 2011,

www.csl.sri.com/users/rushby/papers/emsoft11.pdf

[5] S. Rapps, E. Weyuker, Selecting software test data using data flow information, IEEE Trans. Softw. Eng.

(1985) 367–375.

[6] R. Dssouli, K. Saleh, El M. Aboulhamid, A. En-Nouaary, C. Bourhfir: Test development for

communication protocols: towards automation. Computer Networks 31(17): 1835-1872 (1999)

[7] C. Bourhfir, R. Dssouli, E.M. Aboulhamid, in: Automatic Test Generation for EFSM Based Systems,

Technical Report IRO 1043, University of Montreal, 1996.

[8] R. Yang, Z. Chen, Z. Zhang, B. Xu, EFSM-based test case generation: sequence, data, and oracle, Int. J.

Softw. Eng. Knowl. Eng. 25 (4) (2015) 633–667. (© World Scientific).

[9] R. Dssouli, A. Khoumsi, M. Elqortobi, J. Bentahar, Testing the control-flow, data-flow and time aspects

of communication systems: a survey, Book Chapter in Advances in Testing Communication Systems, Atif

Memon, Ed. 1, v.17, ISBN 978-0-12-812228-0, Elsevier, 2017 pp. 95-155.

[10] T. Su, C. Zhang, Y. Yan, L. Fan, G. Pu, Y. Liu, et al., Towards Efficient Data-flow Test Data

Generation, 2019, [online] Available: http://arxiv.org/abs/1803.10431.

[11] J. J. Chilenski and S. P. Miller, Applicability of modified condition/decision coverage to software

testing, Software Eng. J. 9 (1994), no. 5, 193-200. https://doi.org/10.1049/sej.1994.0025.

[12] T. Ayav, Prioritizing MCDC test cases by spectral analysis of boolean functions. Softw Test Verif

Reliab. 2017;e1641. https://doi.org/10.1002/stvr.1641

[13] Ackermann, C.: MCDC in a nutshell, Fraunhofer CESE, Maryland USA, 2006

[14] Prestschner, A.: Compositional generation of MCDC integration test suites, Elsevier Science B.V,

2003

54

[15] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, A Practical Tutorial on Modified

Condition / Decision Coverage, no. May. 2001.

[16] J. Wang, B. Zhang, and Y. Chen, “Test case set generation method on MC/DC based on binary tree,”

vol. 8783, no. Icmv 2012, p. 87831P, Mar. 2013.

[17] J. R. Chang and C. Y. Huang, “A study of enhanced MC/DC coverage criterion for software testing,”

Proc. - (a) (b) 79 Int. Comput. Softw. Appl. Conf., vol. 1, no. Compsac, pp. 457–464, 2007.

[18] R. Bloem, K. Greimel, R. Koenighofer, and F. Roeck, “Model-Based MCDC Testing of Complex

Decisions for the Java Card Applet Firewall,” VALID 2013, Fifth Int. Conf. Adv. Syst. Test. Valid.

Lifecycle, no. c, pp. 1–6, 2013. 2013

[19] A. Haque, I. Khalil, and K. Z. Zamli, “An Automated Tool for MC / DC Test Data Generation,” 2014

IEEE Symp. Comput. Informatics, Kota Kinabalu, Sabah, Malaysia, 2014.

[20] Z. Awedikian, K. Ayari, and G. Antoniol, “MC/DC Automatic Test Input Data Generation,” in

Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, 2009, pp. 1657–

1664. 2009

[21] M. Whalen, G. Gay, D. You, M. P. E. Heimdahl, and M. Staats, “Observable modified

condition/decision coverage,” 2013 35th International Conference on Software Engineering (ICSE), 102-

111, 2013

[22] J. J. Chilenski, “An investigation of three forms of the modified condition decision coverage (MCDC)

criterion,” DTIC Document, Tech, no. April. 2001

[23] P. Ammann, J. Offutt, and H. H. H. Huang, “Coverage criteria for logical expressions,” 14th Int.

Symp. Softw. Reliab. Eng. 2003. ISSRE 2003., 2003.

[24] M. A. Salem, K. I. Eder, “Novel MC/DC Coverage Test Sets Generation Algorithm, and MC/DC

Design Fault Detection Strength Insights”, 2015 16th International Workshop on Microprocessor and SOC

Test and Verification (MTV), 2015.

[25] Jun-Ru, C., & Chin-Yu, H. 2007. "A Study of Enhanced MC/DC Coverage Criterion for Software

Testing." In Proceeding of 31st Annual IEEE International Computer Software and Applications

Conference, Beijing, 2007, pp-457-464.

[26] Sartaj, H., Iqbal, M.Z., Jilani, A.A.A., Khan, M.U. (2019). A Search-Based Approach to Generate

MC/DC Test Data for OCL Constraints. In: Nejati, S., Gay, G. (eds) Search-Based Software Engineering.

SSBSE 2019. Lecture Notes in Computer Science(), vol 11664. Springer, Cham.

https://doi.org/10.1007/978-3-030-27455-9_8

[27] C. Bourhfir, R. Dssouli, E. Aboulhamid, N. Rico, in: Automatic executable test case generation for

extended finite state machine protocols, Proceedings of the the 10th International IFIP Workshop on

Testing of Communicating Systems, Jeju Island, Korea, 1997, pp. 75–90.

55

[28] C. Bourhfir, R. Dssouli, E. Aboulhamid, N. Rico, in: A guided incremental test case generation

procedure for conformance testing for CEFSM specified protocols, IWTCS, 1998, pp. 275–290.

[29] C. Bourhfir, E. Abdoulhamid, F. Khendek, R. Dssouli, Test cases selection from SDL specifications,

Comput. Netw. 35 (6) (2001) 693–708.

[30] Mounia Elqortobi, Warda El-Khouly, Amine Rahj, Jamal Bentahar, Rachida Dssouli:

Verification and testing of safety-critical airborne systems: A model-based methodology. Comput. Sci.

Inf. Syst. 17(1): 271-292 (2020)

[31] H. Ural, B. Yang, A test sequence selection method for protocol testing, IEEE Trans. Commun. 39

(4) (1991) 514–523.

[32] H. Ural, A.W. Williams, in: Test generation by exposing control and data dependencies within system

specifications in SDL, FORTE 1993, 1993, pp. 335–350.

[33] X. Li, T. Higashino, M. Higuchi, K. Taniguchi, Automatic generation of extended UIO sequences for

communication protocols in an EFSM model, in: in: 7th International Workshop on Protocol Test Systems,

Tokyo, Japan, November, 1994, pp. 225–240.

[34] R.M. Hierons, T.H. Kim, H. Ural, in: Expanding an extended finite state machine to aid testability,

Proceedings of the 26th Annual International Computer Software and Applications, Oxford, UK, 2002,

pp. 334–339.

[35] W.E. Wong, A. Restrepo, Y. Qi, in: An EFSM-based test generation for validation of SDL

specifications, Proceedings of the 3rd International Workshop on Automation of Software Test, Leipzig,

Germany, 2008, pp. 25–32.

[36] J. Yao, Z. Wang, X. Yin , X. Shi , J. Wu, “Reachability Graph Based Hierarchical Test Generation

for Network Protocols Modeled as Parallel Finite State Machines”, 22nd International Conference on

Computer Communication and Networks (ICCCN), (2013) 1-9.

[37] P. McMinn, Search-based software test data generation: a survey, Softw. Test. Verif. Reliab. 14 (2)

(2004) 105–156.

[38] P. Coward, Symbolic execution and testing, Inf. Softw. Technol. 33 (1) (1991) 53–64.

[39] L.A. Clarke, A system to generate test data and symbolically execute programs, IEEE Trans. Softw.

Eng. 2 (3) (1976) 215–222.

[40] J.C. King, Symbolic execution and program testing, Commun. ACM 19 (7) (1976) 385–394.

[41] J. Zhang, C. Xu, X. Wang, in: Path-oriented test data generation using symbolic execution and

constraint solving techniques, Proceedings of the 2nd International Conference on Software Engineering

and Formal Methods, Beijing, China, 2004, pp. 242–250.

56

[42] S. Fujiwara, G. V. Bochmann, F. Khendec, M. Amalou, A. Ghedamsi, “Test Selection Based on

Finite State Models”, IEEE Transaction on Software Engineering, June (1991) 17 (6) 591-603.

[43] J. Li and W. Wong, “Automatic test generation from communicating extended finite state machine

(CEFSM)-based models,” in Proceedings of 5th IEEE International Symposium on Object-Oriented Real-

Time Distributed Computing. ISORC (2002), 181–185.

[44] W. E. Wong, and Y. Lei, "Reachability Graph-Based Test Sequence Generation For Concurrent

Programs", Int. J. Soft. Eng. Knowl. Eng. International Journal of Software Engineering and Knowledge

Engineering 18.06 (2008) 803-822.

[45] Rozenberg, Grzegorz (1997), Handbook of Graph Grammars and Computing by Graph

Transformations, Volumes 1-3, World Scientific Publishing, ISBN 9810228848.

[46] Ehrig, H.; R. Heckel; M. Korff; M. Löwe; L. Ribeiro; A. Wagner; A. Corradini (1997). "Chapter 4.

Algebraic approaches to graph transformation. Part II: single pushout approach and comparison with

double pushout approach". In Grzegorz Rozenberg (ed.). Handbook of Graph Grammars and Computing

by Graph Transformation. World Scientific. pp. 247-312. CiteSeerX 10.1.1.72.1644. ISBN 978-981-238-

472-0

[47] Barrett, C., Stump, A., & Tinelli, C. (2010, July). The smt-lib standard: Version 2.0. In Proceedings

of the 8th international workshop on satisfiability modulo theories (Edinburgh, England) (Vol. 13, p. 14).

[48] Bersani, M. M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., & San Pietro, P. (2010, September).

Bounded reachability for temporal logic over constraint systems. In 2010 17th International Symposium

on Temporal Representation and Reasoning (pp. 43-50). IEEE.

[49] Finkbeiner, B., & Schewe, S. (2007, November). SMT-based synthesis of distributed systems. In

Proceedings of the second workshop on Automated formal methods (pp. 69-76).

[50] Brandes, U., Eiglsperger, M., Lerner, J., & Pich, C. (2013). Graph markup language (GraphML) (pp. 517-541).

[51] Michail, D., Kinable, J., Naveh, B., & Sichi, J. V. (2020). JGraphT—A Java Library for Graph Data Structures and

Algorithms. ACM Transactions on Mathematical Software (TOMS), 46(2), 1-29.

[52] Yano, T., Martins, E., and de Sousa, F. L., (2011): MOST: A Multi-objective Search-Based testing

from EFSM, in Proc. 4th International Conference on Software Testing, Verification and Validation

Workshops, IEEE Computer Society, Berlin, Germany, (2011) 164-173.

[53] Löwe, M., & Beyer, M. (1993, June). AGG—an implementation of algebraic graph rewriting. In International

Conference on Rewriting Techniques and Applications (pp. 451-456). Springer, Berlin, Heidelberg.

[54] Cok, D. R. (2011, April). jSMTLIB: Tutorial, validation and adapter tools for SMT-LIBv2. In NASA Formal Methods

Symposium (pp. 480-486). Springer, Berlin, Heidelberg.

[55] Kalaji, A.S., Hierons, R.M., and Swift, S., (2009): Generating feasible transition paths for testing from an extended

finite state machine (EFSM)”, International Conference on Software Testing Verification and Validation, ICST,

pp.230–239.

57

[56] D. Hedley, M.A. Hennell, in: The causes and effects of infeasible paths in computer programs,

Proceedings of the 8th International Conference on Software Engineering, London, UK, 1985, pp. 259–

266.

[57] Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Virginie Wiels, Ameur,

Y.A., Schewe, K.D. (eds.) Proceeding of 4th International Conference on Abstract State Machines, Alloy,

B, TLA, VDM, and Z. Communications in Computer and Information Science, vol. 433, pp. 1–18.

Springer (2014)

[58] C. Efkemann and J. Peleska, Model-based testing for the second generation of integrated modular

avionics, in Proceedings of the 2011 IEEE Fourth International Conference on Software Testing,

Verification and Validation Workshops, ICSTW ’11, Washington, DC, USA, 2011, IEEE Computer

Society, pp. 55–62.

[59] A. Rahj, M. Elqortobi, J. Bentahar, R. Dssouli, Test Generation Tool Design For Modified Condition/

decision Coverage: Model Based Approach, International Journal of Computer Science and Applications,

©Technomathematics Research Foundation Vol. 18, No. 1, pp. 1 – 25, 2021.

[60] M. Elqortobi, A. Rahj, J. Bentahar, R. Dssouli, Test Generation Tool for Modified

Condition/Decision Coverage: Model Based Testing. SITA 2020: 38:1-38:6

