
 

EFSM-based Test Suite Generation for MC/DC Compliant Systems: 

Tool Design 
 
 
 
 
 

Amine Rahj 
 
 
 

 
A Thesis 

in 

The Department 

of 

Concordia Institute for Information Systems Engineering 
 
 
 
 

 
Presented in Partial Fulfillment of the Requirements 

for the Degree of 

Master of Applied Science in Quality Systems Engineering 

  
 

Concordia University 
 

Montreal, Quebec, Canada 
 
 
 
 
 
 

January 

2023 
 
 
 
 

© Amine Rahj, 2023 



 

CONCORDIA UNIVERSITY 
 

School of Graduate Studies 
 
 

 
This is to certify that the thesis prepared 

 

 

By: Amine Rahj 
 

Entitled: EFSM-based Test Suite Generation for MC/DC Compliant Systems: Tool Design 
 

 

and submitted in partial fulfillment of the requirements for the degree of 
 

 

Master of Applied Science in Quality Systems Engineering 
 

 

complies with the regulations of this University a n d  meets the accepted standards with respect to 

originality and quality. 

Signed by the Final Examining Committee: 
 
 
 

  Chair 
Dr. Amr Youssef 

 

 

 Examiner 
Dr.  Nizar Bouguila 

 

 

  Examiner 
Dr. Amr Youssef 

 

 

  Supervisor 
Dr. Rachida Dssouli 

 

 

  Co-supervisor 
Dr. Jamal Bentahar 

 
 

 
Approved by      

Dr. Zachary Patterson Graduate Program Director  
 

 
  2023  

 

Dr. Mourad Debbabi Dean of Gina Cody School of 

Engineering and Computer Science 



iii  

 

 
 
 
 

Abstract 

EFSM-based Test Suite Generation for MC/DC Compliant Systems: Tool Design 

Amine Rahj 

 
 

 
 
 

As Model-based Testing (MBT) approaches mature, they become a promising prospect for Safety-

critical software systems testing. It is necessary to abide by RTCA DO-178C regarding requirement 

coverage, structural coverage, and traceability. The satisfaction of Modified Condition/Decision 

Coverage (MC/DC) is a must for avionics software certification.  This thesis proposes a tool design 

for a test generation approach that satisfies the Modified Condition/Decision Coverage (MC/DC) 

and addresses path feasibility issues using constraints solving. The proposed methodology has 

several steps. It starts by transforming Low-Level Requirements (LLR), modelled as Extended 

Finite State Machines (EFSM), into a data-flow graph and a control-flow graph. Then, we highlight 

MC/DC information on both graphs, using graph labelling, before applying SMT-constraint solving 

to generate an executable test suite. Throughout, we keep records of the transformation between the 

models to prepare for requirements traceability as per RTCA DO-178C. The approach is based on 

the EFSM model, meaning that the assessment of MC/DC and other structural coverage criteria are 

on the model under the assumptions that the predicates are the same in the code and the model, and 

the model is valid. 
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Chapter 2  
 

Introduction 
 

 

The Institute of Electrical and Electronics Engineers (IEEE) defines safety-critical software 

as “software whose use in a system can result in unacceptable risk. Safety-critical software 

includes software whose operation or failure to operate can lead to a hazardous state, software 

intended to recover from hazardous states, and software intended to mitigate the severity of an 

accident” [IEEE Standard Glossary of Software Engineering Terminology, IEEE Std-610-1990, 

Los Alamitos, CA: IEEE Computer Society Press, 1990). This thesis is concerned with testing 

such software in avionics, namely from the perspective of RTCA DO-178C [1]. In fact, in the 

avionics industry, software products must be certified according to the RTCA standards [1]. The 

RTCA DO-178C standard promotes requirement-based testing and provides guidance on 

addressing safety in software development, i.e. tests are written/generated and executed to prove 

requirements are fulfilled, and safety concerns are addressed. From a testing viewpoint, there are 

two requirement types - high-level requirements (HLR) and low-level requirements (LLR), and 

five safety levels (A, B, D, C, and E), also known as Item Development Assurance Level (IDAL) 

as per APA4754 [2] - where Level A software are software items in which failure is deemed 

catastrophic, and Level E software have no effect on safety. DO178 summarizes the objectives 

of test case development and execution as follows:  

• Objective 1: “Executable Object Code complies with high-level requirements”. 

• Objective 2: “Executable Object Code is robust with high-level requirements”. 

• Objective 3: “Executable Object Code complies with low-level requirements”. 

• Objective 4: “Executable Object Code is robust with low-level requirements”. 
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• Objective 5: “Executable Object Code is compatible with target computer”. 

 

DO-178C defines a test case as “A set of test inputs, execution conditions, and expected 

results developed for a particular objective, such as to exercise a particular program path or to 

verify compliance with a specific requirement” and promotes the development of two types of 

test cases to comply with aforementioned objectives. Two test cases are distinguished: normal 

test cases and robustness test cases.  Normal test cases aim to find errors in the software under 

normal conditions and/or receiving expected inputs and robustness test cases show how the 

software behaves under abnormal conditions and/or receiving unexpected inputs. The type of 

testing required by DO-178C depends on the IDAL. For instance, for levels A and B, normal 

LLR are required with independence, while they are not required for the other levels.  DO-178C 

uses the term independence to refers to “separation of responsibilities which ensures the 

accomplishment of objective evaluation”. For software verification process activities, 

independence is achieved when the verification activity is performed by a person(s) other than 

the developer of the item being verified, and a tool may be used to achieve equivalence to the 

human verification activity. For the software quality assurance process, independence includes 

the authority to ensure corrective action. 

 

Testing is required to validate avionics software systems. Testing is a labor intensive and an 

expensive activity. It can count for more than 50% of the development cost [3,4]. The avionics 

industry is looking for ways to reduce the cost of testing and improve the effectiveness of tests 

by automating the testing process. Despite the availability of commercial tools, there are 

categories of complex systems that do not benefit from the current level of automation. The 

testing process includes several activities. The most challenging one is test case generation.  This 

activity requires adequate coverage criteria that can show the effectiveness and the efficiency of 

the derived tests and guide the test case generation. The proposed research in this thesis looks at 

the automatic generation of LLR test cases for level A software. The thesis introduces a Model-

Based Testing (MBT) approach, presents a tool design for this approach and shows how our 

MBT approach addresses testing requirements from RTCA DO-178C for Level A software. 

Moreover, we integrate model-based verification and MBT within one framework. We present 

thus a new methodology for the verification and testing of parallel communicating agents based 

on formal models. Properties are extracted from requirements and formally verified at the design 
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level, while the verified properties are propagated to the implementation level via testing. DO-

331 [1] defines a model as “An abstract representation of a given set of aspects of a system that 

is used for analysis, verification, simulation, code generation, or any combination thereof. A 

model should be unambiguous, regardless of its level of abstraction”. Our MBT approach 

requires the selection of a modelling scheme, deciding on test generation criteria, and designing 

a test generation approach. First, we present a model-based test generation technique guided by 

Modified Condition / Decision Coverage (MC/DC) and du-path coverage criteria. Du-path with 

respect to a graph x is a simple path where the initial node of the path is the only defining node 

of x in the path. The proposed approach combines two coverage criteria to improve the efficiency 

of the derived tests and to enhance their error detection power. The criteria are selected to satisfy 

the industrial needs for avionics software certification. The MC/DC criterion is required by the 

RTCA DO-178 C standard [1]. Second, we design of an automated Test Generation Tool (TGT) 

for the proposed approach. 
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Chapter 3  
 

 

Background Information and Related 

Work 
 
 
 
 
 

2.1 Research Context 
 

This research work is part of an industrial research project funded by the Collaborative 

Research and Development Grant – Project (CRDPJ 463076 - 14), by NSERC, CMC Electronics 

Inc., CRIAQ, CS Canada. It is entitled “Specification and Verification of Design Models for 

Certifiable Avionics Software (see Figure 2.1). This project addresses the issues of specification, 

testing based on models and verification of avionics software to produce some artifacts that can 

be used for software certification in compliance with RTCA DO 187C standards [1].  

The stated objectives of the project are to: 

1. Specify, develop, and verify software using design models; 

2. Enable verification techniques in the context of Model Driven Development (MDD); 

3. Develop Low Level Requirement (LLR) testing techniques in conformity with avionics 

software standards RTCA DO-178C [1]; and 

4. Enable low level requirement-based automatic test sequence generation. 
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The project is composed of several activities. The first activity is concerned with the 

requirements specification for avionics systems with UML and SIMULINK. The focus is to 

develop new UML profiles and Simulink Design standards. The second activity uses models’ 

transformation to perform testing and verification. All specifications should lead to an output or 

a pivot that is in this project an Extended Finite State Machine (EFSM). The third activity 

transforms the EFSM and the communicating EFSMs (CEFSM) into specific models or graphs 

that can be used for verification and testing. As an example, the obtained model for testing can 

be transformed into a control flow graph and data flow graph that will be used in automatic test 

case generation for MC/DC. The transformation of an EFSM to a graph is done using the graph 

rewriting technique. 

 

Figure 2.1: General overview of the Research Project 

 

2.2 Background Information 

2.2.1 RTCAD O178C 

 

The avionics industry has developed a set of standards to prevent catastrophic events from 

occurring in their systems. The RTCA DO-178C, Software Considerations in Airborne Systems 

and Equipment Certification is the main stands document by which the certification authorities 

approve all commercial software-based aerospace systems [1]. The RTCA DO 178C was 

approved in 2011 and replaced the previous document Do 178B. The document is published 

by RTCA. It became available for sale and use in January 2012. The DO 178C has more 

clarifications in comparison with Do178B. It also has 3 supplement documents: 1) DO-
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331 "Model-Based Development and Verification” that addresses Model-Based Development 

(MBD) and verification and the capacity to use modeling techniques to improve development 

and verification in the development cycle and minimizes the pitfalls of using models [2]; 2) DO-

332 "Object-Oriented Technology and Related Techniques” that addresses object-oriented 

software and the conditions under which it may be used. And 3) DO-333 "Formal Methods” 

addresses the use of formal methods to complement (but not replace) testing. 

 

Figure 2.2 shows the testing in RTCA DO 178C. Our work is related to the last 3 objectives 

of RTCA DO 178C that are listed below, where * means that the objectives are partially or not 

met.  

The executable code complies with the high-level requirements.  

The executable code complies with the specification (low-level requirements).  

Test coverage of high-level requirements is achieved. * 

Test coverage of specification (low-level requirements) is achieved. * 

Test coverage of the executable code is achieved. * 

 

 

Figure 2.2: Testing in DO-178C [1] 
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The defined Software Levels by ARP4754 [2], also known as Item Development Assurance 

Levels (IDAL), are mentioned in RTCA DO-178C and are from the safety assessment 

process and hazard analysis that examines the effects of a failure condition in the system. The 

failure conditions are categorized by their effects on the aircraft, crew, and passengers and are 

quoted as follows: 

A- Catastrophic - Failure may cause deaths, usually with loss of the airplane. 

B- Hazardous - Failure has a large negative impact on safety, performance, or reduces the 

ability of the crew to operate the aircraft due to physical distress or a higher workload or causes 

serious or fatal injuries among the passengers. 

C- Major - Failure significantly reduces the safety margin or significantly increases crew 

workload. May result in passenger discomfort (or even minor injuries). 

D- Minor - Failure slightly reduces the safety margin or slightly increases crew workload. 

Examples might include causing passenger inconvenience or a routine flight plan change. 

E- No Effect - Failure has no impact on safety, aircraft operation, or crew workload. 

 

Figure 2.3 illustrates the required tracing between certification artifacts, as required by the 

RTCA DO-178C standard. Red-colored traces are required only for level A. Purple-colored 

traces are required for levels A, B, and C. Green-colored traces are for levels A, B, C, and D. 

Our work is related to level A. 
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Figure 2.3: RTCA Do-178C required traceability, from [1] 
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2.3 Related Work 

2.3.1 Model-based Testing 

 

In this research, the target model is the extended finite state machine (EFSM) that it models 

control and data. When EFSMs include communication between components, they form 

Communicating Finite State Machines (CEFSM).  Model-based testing tries to establish a 

conformance relationship between the specification and its implementations. Models are 

extracted from specifications and used for test cases generation. More precisely, it establishes a 

relationship between the model specification and an assumed abstract model of the 

implementation under test. Testers should be cautious not to extrapolate those results to the entire 

implementation under test (IUT). For example, if we test the control aspect, then only that aspect 

can be the subject of inference relations under certain assumptions. The model for testing the 

control aspect is limited, it cannot express data and time aspects. If the control aspect of the IUT 

after testing is error free, this does not allow the tester to declare that the IUT is error free. In the 

following, we define an EFSM, a CEFSM, and a global system. In the rest of this thesis, we will 

focus on EFSM model for test case generation for the MC/DC coverage. 

 

Definition 1. An EFSM is formally represented as an 8-tuple < S, s0, I, O, T, A, δ, V> where  

1. S is a non-empty set of states, 

2. s0 is the initial state,  

3. I is a non-empty set of input interactions,  

4. O is a nonempty set of output interactions,  

5. T is a nonempty set of transitions,  

6. A is a set of actions,  

7. δ is a transition relation: δ: S×A→S, 

8. V is the set variables. 

 

Each element of A is a 5-tuple t = (initial state, final state, input, predicate, block). Here 

“initial state” and “final state” are the states in S representing the starting state and the tail state 

of t, respectively. “input” is either an input interaction from I or empty. “predicate” is a predicate 

expressed in terms of the variables in V, the parameters of the input interaction and some 
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constants. “block” is a set of assignment and output statements. 

 

Definition 2. A CFSM is a 2k-tuple (C1, C2, ..., Ck, F1, F2, ..., Fk) where  

• Ci = <S, s0, I, O, T, A, V> is an agent’s model 

• Fi is a First In First Out (FIFO) list for Ci, i=1, …, k. 

Suppose an agent system consists of k communicating CEFSMs: C1, C2, ..., Ck. Then its state 

is a k-tuple <s(1), s(2),..., s(k), m1, m2,...,mk> where s(j) is a state of Cj and mj, j=1..k are set of 

messages contained in F1, F2,...,Fk respectively. The CEFSMs exchange messages through 

bounded storage input FIFO channels. We suppose that a FIFO list exists for each CEFSM and 

that all messages to a CEFSM go through its list. We suppose in that case that an internal message 

identifies its sender and receiver. An input interaction for a transition may be internal (if it is sent 

by another CEFSM) or external (if it comes from the environment). The model obtained from a 

communicating system via reachability analysis is called a global model. This model is a directed 

graph G = (V, E) where V is a set of global states and E corresponds to the set of global 

transitions. 

  

Definition 3. A global state of G is a 2k-tuple <s(1), s(2), ..., s(k), m1, m2, ..., mk> where mj,     

j = 1, …, k are set of messages contained in F1, F2, ..., Fk respectively. 

 

Definition 4. A global transition in G is a pair t = (i, α) where α ∈ Ai (set of actions). t is 

firable in s = <s(1), s(2), ..., s(k), m1, m2, ..., mk> if and only if the following two conditions are 

satisfied where = (input, predicate, output, compute-block).  

• A transition relation δi(S, α) is defined  

• input = null and predicate = True or input= α and mi= α W, 

where W is a set of messages to Ci, and predicate = True. 

After t is fired, the system goes to s’ = <s’(1), s’(2), ..., s’(k),m’1, m’2, ..., m’k> and messages 

contained in the channels are m’j where 

• s′(i) = δ(s(i),α)  and s′(j) = s (j) ∀ (j≠ i) 

• if input = Ø and output = Ø, then m’j = mj 

• if input = Ø and output = b, then m’k = mk b (Ck is the agent which receives b)  

• if input ≠ Ø and output = Ø, then m’i = W and m’j = mj ∀ (j≠ i) 
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• if input ≠ Ø and output = b, then m’i = W and m’k = mk
b

  

 

Definition 5. A test case in composed <preamble, target, post-amble, verdict> where the 

preamble is a sequence of transitions that start at the initial state and ends at the target, it might 

be empty. A post-amble is the sequence of transition that starts at the ending state of the target 

and end at the final state, this might be empty. The target is the element to test. The verdict is in 

the set {pass, fail, inconclusive}. 

 

Definition 6. A test sequence is a set of test cases. 

 

2.3.2 Test Coverage Criteria 

The notion of coverage is important in test case generation. It characterizes the quality of a 

test case and test suite. It also helps determine the efficiency of test cases. There are several 

coverage criteria, among them requirement coverage, structural coverage, data flow coverage, 

input domain coverage, and fault coverage. Test coverage is very often used to measure how 

thoroughly software is tested.  It is also used by software developers and vendors to indicate their 

confidence in the quality of their software product. Despite decades of research on coverage 

criteria and metrics, the traditional coverage notions that are used in software testing, such as 

statement coverage, branch coverage, and path coverage [5, 6, 7, 8, 9, 10], are not sufficient to 

ensure that a tested software satisfying a coverage criterion is error free. The only way to ensure 

that a software is error free via testing is to perform exhaustive testing which is very often very 

expensive or impossible due to very large or infinite input set. Coverage criteria provide a cost 

trade-off in testing. This research focusses on coverage criteria that are important to avionics 

software systems such as requirement coverage, and MC/DC [3, 11, 12, 13, 14, 15]. Coverage 

criteria were widely studied. In the following, we will focus on du-paths and MC/DC criteria 

(see Figure 2.4). These two criteria are not comparable. They can be used separately or integrated 

in a test sequence generation algorithm to enhance the quality of test cases.  
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Figure 2.4: Coverage Criteria [5] 

 

 

 

All-du-paths criterion is a dataflow coverage criterion that links the definition and usages of 

variables. A definition of a variable is any statement that modifies the value of a variable. It is 

equivalent to “write” in the memory zone associated with the variable name such as assignment 

and read input that modifies the value of the variable. A usage of a variable is all operations that 

read the value of a variable without modification such as computation use (C-use) and Predicate 

use (P-Use) and output use (O-use). A du-path is a definition-usage path that links the definition 

of a variable to its usage.  It is desirable that the path is definition clear, meaning that there is no 

redefinition of the variable within the path. All-du-paths is a criterion less strong but manageable 

than all-paths [5]. 

 

2.3.3 Modified Condition/Decision Coverage   

The objective of Modified Condition/Decision Coverage (MC/DC) criterion is to 

demonstrate that all conditions involved in an expression (decision) can influence the result of 

that expression. All safety critical systems have decisions that need testing. Some of the specified 

decisions are complex and need specific techniques to address them. MC/DC criterion is stronger 

that condition and decision criteria. The satisfaction of MC/DC criterion is required by DO-178C 

standards for software avionics systems [1]. More details about MC/DC and challenges of its 

testing are provided in [3, 15]. A decision is a Boolean expression that is composed of conditions 

and zero or more Boolean operators. A decision without a Boolean operator is a condition. A 

condition is in fact a leaf-level Boolean expression. It is atomic and cannot be broken down into 
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a simpler Boolean expression. MC/DC is a structural coverage criterion, developed as a trade-

off between Multiple-Condition Coverage criterion and Condition/Decision Coverage criterion 

that has a lower number of test cases . MC/DC was used for code testing with the following 

requirements: 

(1) Every decision in the program must be tested for all possible outcomes at least once. 

(2) Every condition in a decision within the program must be tested for all possible 

outcomes at least once. 

(3) Every condition in a decision must be shown to independently affect that decision's 

outcome. This requirement ensures that the effect of each condition is tested relative 

to the other conditions; and  

(4) Every exit and entry point in the program (or model) should be invoked at least once. 

Several test sequence generations with the MC/DC coverage exist and all of them are 

dedicated to code testing [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. The proposed 

techniques are based on one of the following categories: Binary Trees [16], truth table for each 

Boolean expression [12, 22, 18, 23], n-cube graph [26], and constraints solving [10, 27]. Each of 

the proposed techniques, if not combined with other techniques that optimize the well-known 

issues, suffers from scalability and state explosion problem. The techniques that are based on 

graphs suffer from state explosion and decidability issues in relation with the number of 

variables. There are very few approaches to MC/DC test cases generation for system’s 

specifications that consist of complex decisions. Most of them assume that each decision is 

independent. TING SU et al. [10] presented 3 different approaches, essentially based on binary 

trees and constraint solvers to generate MC/DC test cases for decisions. For each approach, we 

discuss its advantages and limitations [17, 18, 23, 24, 27]. Most of the proposed techniques do 

not address multiple decisions and cycles in test case generation. Very few automatic tests case 

generation tools exist and suffer from the above challenges [17, 18, 23, 24, 27]. 

 

2.3.4 Test Cases Generation based on EFSM 

EFSM model extends the Finite State Machine (FSM) model that represents the control 

aspect with variables and predicates (data flow aspects). Test sequence generation is thus more 

complex for an EFSM. 

The challenges are: 

1. The state explosion problem, which leads to incomplete coverage. 
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2. Data selection, which can often be undecidable; and 

3. Path feasibility (executability), which is very expensive. 

Extensive research has been carried in model-based testing (MBT). The first comprehensive 

survey was published by Bourhfir et al. [7, 28, 29]. In 2015, Yang et al published a more recent 

and exhaustive survey entitled “EFSM-based Test Case Generation:  Sequences, Data and 

Oracle” [8]. Additional information on control and data flow-based test generation techniques 

can also be found in a book chapter published in 2017 [9]. Another approach for the test sequence 

generation for MC/DC was developed in the case of Communicating EFSM [30]. 

 

In data flow testing, all test strategies aim at selecting complete paths using the control flow 

to link the definitions of variables to their respective usages. Choosing the paths when executing 

is assumed to stimulate errors and detect faults related to the data aspect of a 

program/specification. To determine the quality of a test sequence, metrics or coverage criteria 

are used for two purposes: 

1. In test generation to satisfy, by design, the desired criteria; and 

2. In the evaluation of the existing test sequences and of the software.   

 

Coverage criteria are often used for the assessment of software test data. A coverage criterion 

for software, if integrated within a test generation algorithm, will measure the amount of testing 

to be performed by executing the generated set of tests. It also provides a notion of a test 

sequence’s quality. Testing based on the EFSM has been searched extensively. The EFSM is a 

model that extends the FSM model with variables and predicates that appear within condition 

statements. Test sequence generation is more complex in EFSM, and very often faces a state 

explosion problem that leads to incomplete coverage [8, 9, 10]. The data selection that is needed 

is often undecidable and path feasibility/executability is not cost efficient. 

 

Bourhfir et al. proposed an EFSM-based test sequence generation method that generates 

executable test sequences [7 , 27, 28, 29]. A complete test sequence is obtained in five steps. 

First, the technique transforms an EFSM model into a dataflow graph. Second, it selects input 

values for the input parameter that affects the control flow. Third, executable sequences are 

generated using du-paths and removing any sub path inclusion, while appending the state 
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identification sequence and post-amble to each du-path [29]. The executability of each path is 

verified in the fourth step. They used cycle analysis, symbolic execution, and CSP techniques to 

solve the path executability problem. Fifth, relevant paths are added to cover any uncovered 

transitions. This technique verifies the executability of a path during its generation. It uses 

optimized IO-df-chains [29] criterion and multiple UIO with Wp as the state identification 

method. Table 2.1 presents a summary and comparison criteria of the relevant EFSM-based 

methods [20, 23, 24, 25, 26, 27]. A more exhaustive list can be found in [8, 19, 30]. 

 

Table 2.1: EFSM-based test sequences generation approaches 
 

  (- means not given or not addressed)       

Authors and Date Model Transformation Coverage 

Criteria 

Signature Data 

Selection 

Path 

Executability 

Technique 

Ural 1991, 1993    

[31, 32] 

EFSM to Control graph 

and Data Flowgraph 

 

IO-df-chain - - - 

Bourhfir 1997, 

2001 [27, 29] 

EFSM to Data 

Flowgraph 

IO-df chains M-UIO Wp Rando

m 

Cycle analysis, 

Symbolic 

execution, CLP-

BNR technique 

Heirons 2002 [34] SDL-EFSM to NF-

EFSM to 

EEFSM/PEFSM 

all-uses - - Path splitting, 

state 

decomposition, 

Predicate 

decomposition 

simplex 

algorithm 

Wong 2008, 2009 

[35] 

EFSM all-nodes,all-

edges Hot 

spots 

- Symbolic 

execution 

Conflict 

detection 

Possibility to 

use CSP 

 

 

2.3.5 Test Data Generation Techniques 

Testing based on EFSM requires test data generation. To test a system, both variables and 

parameters need values that must be selected from their domain definition in combinatorial 

manner. The selected data has the important role of stimulating the path and revealing any errors. 

The selected data should simultaneously satisfy all the predicates along the path for its feasibility 

(executability). The difficulty is that the input domain that combines all the variables and 

parameters domains is too large or infinite to consider its complete coverage. It is known that 
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test data generation is an undecidable problem [37]. Several techniques have been explored for 

test data generation and selection. One of the techniques is exhaustive testing, which refers to 

using every input sequence from the input domain that is a combinatorial set of all variables and 

parameters domains. Exhaustive testing can only be considered for very small models. To cope 

with large input domains, partition testing is preferred, as it consists of dividing the input domain 

into several equivalence classes from which only one test data is chosen. The challenge is to 

define the equivalence relation that can best meet the requirements. Another technique used for 

software testing is boundary testing, which tests boundaries’ limits [39]. Test data generation and 

selection techniques can be grouped in the following categories: symbolic execution [37, 38, 39, 

40, 41], random, mutation, linear regression to narrow intervals, and search-based techniques 

[26]. 
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Chapter 4  

 

Test Generation Approaches 
 
 
 
 
 

3.1 Overview 
 

In this chapter, we describe the design of our MC/DC-TGT by investigating different views, 

each governed by a design viewpoint and outlining pertinent design elements and design 

relationships. We describe the tool along four design views: context view, process and algorithm 

view, architecture view, and data view. The context view provides for automatic test case 

generation and generates global test sequences. In the process view, we provide a high-level 

description of the approach and the rationale behind the theoretical decisions.  The architecture 

view presents how the approach is structured into modules, recursively establishing the roles 

and interactions of the constituent submodules. In the data view, we describe the substantial 

persistent data and the data management strategies when applicable. Finally, in the algorithmic 

view, we wrap up the design views by detailing select routines and justifying some of the design 

choices in term of performance. 

 

An automatic model-based test case generation approach that generates local test cases based 

on an existing EFSM test generation technique was modified to handle the MC/DC criterion in 

addition to the all-du-paths and published in [30] by Elqortobi et al. The approach also generates 

global test sequences for an integrated system. It uses parallel communicating agents for 

modeling the system to be tested. The approach also uses model checking for the verification of 
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properties at the design level and validates their propagation to the product level via testing. For 

the context view, the proposed MC/DC-TGT will operate as an alternate solution for EFSM- 

based local test case generation. 

 

3.2 Model-based Verification and Testing Methodology  
 

In this thesis, we overview the issue of safety-critical software verification and testing that 

are key requirements for achieving RTCA DO-178C [1] regulatory compliance for airborne 

systems. As argued in [30], formal verification and testing are considered two different activities 

within the airborne standards, and they belong to two different levels in avionics software 

development cycle. The objective is to integrate model-based verification and model-based 

testing within one framework. This objective is achieved by proposing a new methodology for 

the verification and testing of parallel communicating agents based on formal models. In this 

methodology, properties are extracted from requirements and formally verified at the design 

level, while the verified properties are propagated to the implementation level via testing. The 

methodology is composed of five steps as depicted in Figure 3.1.: 

1) modeling behaviors and specifying properties for formal verification at the design stage.  

2) performing verification using and extending existing tools.  

3) transforming the verification model to testing model using refinement.  

4) generating test case automatically for testing individual agents in their context 

(conformity); and  

5) generating test case automatically for the integration of all agents based on partial 

reachability graph, and finally checking that the verified properties hold at the implementation 

level via testing. 

The results of formal verification and testing can be used as evidence for avionics software 

certification. 
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Figure 3.1: Overview of the methodology (from [12]) 
 

 

 

Figure 3.2: Test generation process (from [12]) 
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The integration of verification and testing in our methodology is designed in compliance 

with RTCA DO-178C standards [1]. This design follows the following steps: 

✓ Verification of properties at the design stage. 

✓ Low-level requirements model-based testing. The test generation 

process, depicted in Figure 3.2, generates: 

✓ local test cases based on EFSM model of LLR; 

✓ global test cases based on CEFSM model, that is the integration 

of components (agents). 

✓ Handling the mandatory coverage criterion MC/DC in addition to all du 

paths. 

✓ Checking the propagation of properties at the implementation via testing 

as required by the standard [1]. 

✓ Addressing forward traceability (HLR → LLR → test cases) by 

construction. 

✓ Producing some of the certification artifact, such as models, local test 

cases, global tests cases, and their relationship with LLR. 

 

The proposed approach extends an existing test generation technique [30]. The extension 

is important as it modifies the coverage criteria that guides the test case generation. Bourhfir 

et al. proposed an approach that automatically and incrementally generates executable test 

sequences for Communicating Extended Finite State Machines CEFSMs model [27, 28, 29]. 

The communication mode is asynchronous. The approach does not compute the product of all 

communicating machines. It only generates test sequences by incrementally computing a 

partial product for each CEFSM, which mean, considering only transitions that influence (or 

are influenced by) the considered CEFSM and generating test sequences for it. The partial 

product for an CFSM represents its behavior when composed with parts of the other CEFSMs, 

the communicating transitions. They generate test sequences using the Extended Finite state 

machine Test Generator EFTG tool that was published in [29]. The tool generates executable 

test cases for EFSM specified protocols covering both control and data flow. The control flow 

criterion used is the UIO (Unique Input Output) sequence [33, 42] and the data flow criterion 

is the all-def-uses criterion [30]. Their approach is incremental and suitable for testing large 

systems. The objective is not to cover all transitions in the cross product of all CEFSMs, but 
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to cover all transitions in all CEFSMs and all global transitions as well as all data-flow paths 

in each partial product. State explosion problem is possible in this technique [30, 31, 32, 34, 

35, 36, 43, 44]. 

  

3.3 Model-based Testing Methodology with Constraint Solving 

3.3.1 Approach Overview 

 

The proposed approach addresses the generation of local test cases with complementary 

features. This test generation technique (see Figure 3.3) is an alternative solution to local test 

case generation presented in Figure 3.2. The focus here is to advance transition path feasibility 

and preparatory work to show requirements’ traceability.  

 

The main objective is to develop a methodology that generates test cases for local components 

and design a tool for its support. The idea is to build on our previous solution and improve test 

case generation based on models that handles path selection using both control flow and data 

flow graphs, and the required MC/DC coverage criterion. For path feasibility we use the 

constraints solving technique.   

 

 

 

  

Figure 3.3: Alternative test generation process from [30] 
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3.3.2 Process Steps 

 

We start by defining exactly how a test suite satisfies MC/DC for a given decision.  After 

the desired MC/DC configuration is given in the form of an MC/DC table, we need to generate 

a test sequence for each row. The execution path on the sequence must include the control point 

where the decision is being evaluated (to satisfy the first MC/DC requirement). This is done 

while ensuring that the constituent conditions of the decision are allocated the desired outcome 

by checking that: 

1. The variable definitions influencing the said conditions are coherent (to satisfy the second 

MC/DC requirement); and 

2. The variable definitions are independent from each other, i.e. ensuring that different 

variables are involved in changing the values of the conditions in terms of i-use, d-use and c-use 

(to satisfy the third MC/DC requirement). 

 

To handle MC/DC, we are faced with a challenge that requires analyzing data flow and 

control flow aspects to be solved. We therefore generate the necessary graphs for test generation. 

MC/DC-TGT outputs an executable test suite along with the coverage data, given user-provided 

input as an EFSM model, MC/DC tables and complementary test criteria.  Figure 3.4 shows how 

MC/DC- TGT gradually constructs the executable test suit. Our approach is designed to combine 

several test criteria while reducing their search space by introducing the coverage element 

construct.  In the following, we focus on the MC/DC criterion alone. 

 

The first step of our approach is to formally generate the Data Flow Graph (DFG) and the 

Control Flow Graph (CFG) from the EFSM. The primary goal is to separate the data flow aspects 

from the control flow aspects, thereby simplifying the task of finding the targeted information. 

This information is obtained from the MC/DC tables (or coverage elements), and is used to label 

the EFSM, DFG and CFG. Selecting an executable path will become a matter of finding a path 

on a labeled graph. The path selection is guided by path feasibility using constraints-solving.  

We create an abstract test suite by associating the selected paths to the coverage elements they 

potentially satisfy if the proper test data is selected. Test data selection follows and gives us an 

executable test suite. We ran a coverage analysis to verify that the target coverage has been 

achieved and compile a test report in terms of expected outcomes as a verdict on the test 
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sequence execution. 

 

Figure 3.4: EFSM test generation process 
 

The key steps of the approach are: 

1. Automatic model transformation to obtain control and data flow graphs using 

graph rewriting (EFSM → graphs). 

2. Preparation for path selection using graph labeling to obtain location of the 

relevant information on graphs.  
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3. Feasible path selection to obtain feasible paths and unfeasible paths that compose 

a set of abstract test sequences.  

4. Data selection to obtain executable test sequences.  

5. Coverage analysis where all MC/DC requirements are assessed again. 

 

3.3.3 Step 1: Graph Rewriting 

Here we provide a simplified explanation of the Single-Pushout (SPO) approach for graph 

rewriting and the concepts involved, and what it means in practice. Rigorous mathematical 

semantics based on category theory are provided in Rozenberg’s book [45]. First, we define the 

following: Grammar, Rule Graph, State Graph, Match, Rule Morphism, Rules and Rule 

Application. Figure 3.5 provides an overview of the graph rewriting approach. 

 

 

Figure 3.5: Graph rewriting overview 
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A Grammar is the formal definition of the graph elements. In an attributed grammar, vertices 

and edges are assigned types and may have attributes. Defining an attributed graph grammar 

amounts to defining a set of vertex types, a set of edge types, and for each type specify whether 

it has attributes (and whether those attributes have typed on untyped members).  

A Rule Graph is a graph (usually a type graph) that uses a predefined grammar. It defines the 

vertices types each edge type can link, as well as the multiplicities. A State Graph is a graph G 

that adheres to the rules defined in a given rule graph R. In practice, the graph we aim to transform 

is a state graph. It is defined by a graph morphism m: R→G called Match. A Rule Morphism is 

a graph morphism between two graph Rule Graphs L and R. In practice, a rule morphism is a set 

of Rules, where a Rule is a graph morphism between a subgraph of L and a subgraph of R. 

A graph transformation is a series of rule applications. A Rule Application (a.k.a rewriting 

step) in the SPO approach is defined by the pushout diagram depicted in Figure 3.6 [45, 46]. 

   

 

Figure 3.6: Pushout diagram 
 

In the Pushout diagram, G (resp. G’) is the source (resp. target) state graph adhering to the Rule 

Graph L (resp. R), and r: L → R is a rule morphism and m: R → G a match. We say that we 

derive G’ from G via rule application of r at a match m. A rule can only be applied if its conditions 

(subset L’ of L) are satisfied in G. Checking whether a condition is satisfied equates to checking 

whether m(L’) is empty. In the SPO approach, a match has to be total. This will ensure that all 

the rules can be applied. 

Via the SPO, we transform a graph without the need to construct an isomorphism (or 

morphism and a reverse morphism) between the elements of the source and target state graphs. 

In practice we must define Grammars and Rule Graphs for each formalism used (EFSM, Data 

Flow Graph and Control Flow graph.). EFSM, being the source Model, defining a match is as 

simple as defining an EFSM instance. For each Transformation (EFSM to DFG and EFSM to 

CFG) we have to define a rule morphism  [45, 46].. 
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We use SMTlib [47] to express the guard content on the EFSM. The main goal is to simplify 

the parsing of the guards and their content, otherwise we would have needed to define the 

variables and inputs used in the formal definition of an EFSM, as part of the grammar. The Input 

values on the Input Edge in the Control Flow Graph grammar would be one from the Input List 

attribute of the Input Points preceding it. An input could be either a simple control instruction or 

values meant to be assigned to a variable, i.e. they potentially affect both control and data flow. 

Next, we define the rule graphs for each grammar as shown in Figure 3.6. The graph outlines 

the relationships between node types by means of arc. The arcs used to link the nodes are typed 

from the grammars in Table 3.1, thus defining how components of the grammar are related to 

each other.   

Table 3.1: Grammars used in MC/DC-TGT 

Grammar Nodes/Arcs    Type Attributes Members Member Type 

 

  EFSM 

Nodes State Yes 
Name String 

ID Integer 

Arcs Transition  

Yes 

Input SMTLib Expression 

expression Predicate SMTLib Expression 

Computation 

Bloc 

SMTLib Expression 

 

Control Flow 

Graph 

Nodes Merge 

Point 

Yes ID Integer 

Input 

Point 

Yes Input List Enumeration 

Decision 

Point 

Yes Predicate SMTlib Expression 

Computation 

Bloc 

Yes Computations SMTlib Expression 

Arcs Simple 

Edge 

No N/A N/A 

Boolean 

Edge 

Yes Decision Value Boolean 

Input 

Edge 

Yes Decision Value Input Value 

 

Data Flow 

Graph 

Nodes Computation 

Bloc 

Yes Computations SMTlib Expression 

Arcs Simple 

Edge 

No N/A N/A 

Predicated 

Edge 

Yes Decision Value SMTlib 

Input 

Edge 

Yes Decision Value Input Value 

 

The final activity is to define a state graph for the EFSM. 
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A: Graph rewriting – Grammars (EFSM to CFG) 

EFSM and CFG grammars are defined as follows: 

 

EFSM Grammar 

Node Types 

State 

Has attributes: Yes  

Name: String 

ID: Integer 

Arc Types  

Transition 

Has Attribute: Yes 

Input: SMTLib Expression 

Predicate: SMTLib Expression 

Computation Bloc: SMTLib Expression 

 

 

CFG Grammar 

Node Types 

Merge Point 

Has attributes: Yes 

ID: Integer 

Decision Point Type “input” 

Has attributes: Yes  

Input List: Enumeration 

Decision Point Type “Predicate: 

Has attributes: Yes 

Predicate: SMTLiB expression 

Computation Bloc 

Has attributes: Yes 

Predicate: SMTLiB expression  

Arc Types  

Simple Edge 

Has attributes: No 

Decision Edge Type “input” 



28  

Has attributes: Yes 

Decision Value: Input Value (From enum) 

Decision Edge Type “Boolean” 

Has attributes: Yes  

Decision Value: Boolean 

 

 

B: Graph rewriting – Rule graphs and rule morphisms (EFSM to CFG) 

The EFSM (source) and CFG (target) rule graphs are as follows: 

EFSM Rule Graph: 

 

 

 

 

CFG Rule Graph: 

 

 

The EFSM to CFG rules are self-explanatory. Graphically, they are as follows: 

 

 

 

State

Transition
-----------------------------------------
Input/Predicate/Computations

1

1

Merge Point

Decision Point 
Type “Input”

Decision Point
 Type 

“Predicate” 

Computation 
Bloc

Input 
Received 

Input Received

Decision 
Value

Input Received

Decision Value
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Rule 1: States are mapped to merge points with conservation of ID 

 

Rule 2: (Source-Null-Target mapping) 

 

 

Rule 3: (Source-Input-Target mapping) 

 

Rule 4: (Source-Predicate-Target mapping) 

 

 

 

State

Name
ID

Merge Point

ID = State.ID
Rule 1

Rule 2

Source

Target

Null

Merge Point

ID = Transition.Target.ID

Merge Point

ID = Transition.Source.ID

Source

Target

Input

Merge Point

ID = 
Transition.Target.ID

Merge Point

ID = 
Transition.Source.ID

Input Received

{Input}
Rule 3

Source

Target

Predicate

Merge Point

ID = Transition.Target.ID

Merge Point

ID = Transition.Source.ID

Predicate

True

False

Rule 4
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Rule 5: (Source-Computation-Target mapping) 

 

 

Rule 6: (Source-Input/Predicate-Target mapping) 

 

 

Rule 7: (Source-Input/Computation-Target mapping) 

 

 

Source

Target

Computation

Merge Point

ID = Transition.Target.ID

Merge Point

ID = Transition.Source.ID

Computation

Rule 5

Source

Target

Input/Predicate

Merge Point

ID = 
Transition.Target.ID

Merge Point

ID = 
Transition.Source.ID

Input Received

{Input}

Predicate

Rule 6

Source

Target

Input/Computation

Merge Point

ID = 
Transition.Target.ID

Merge Point

ID = 
Transition.Source.ID

Input Received

{Input}

Computation

Rule 7



31  

Rule 8: (Source-Predicate/Computation-Target mapping) 

 

 

Rule 9: (Source-Input/Predicate/Computation-Target mapping) 

 

Rule 10: (Source-Input|Input’-Target|Target’ mapping) 

 

 

Source

Target

Predicate/Computation

Merge Point

ID = 
Transition.Target.ID

Merge Point

ID = 
Transition.Source.ID

Predicate
True

False

Computation

Rule 8

Source

Target

Input/Predicate/Computation

Merge Point

ID = 
Transition.Target.ID

Merge Point

ID = 
Transition.Source.ID

Input Received

{Input}

PredicateTrue

False

Computation

Rule 9

Source

Target

Input

Target’

Input’

Merge Point

ID = Transition.Target.ID

Merge Point

ID = 
Transition.Source.ID

Input Received

{Input,Input’}

Merge Point

ID = Transition.Target’.ID

Input’ Received

Rule 
10
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Figure 3.7 shows an example of the use of the aforementioned rules to rewrite an EFSM into 

a CFG. 

 

 

 

Figure 3.7: Example of graph rewriting through CFG rules derivation 

 

 

C: Graph rewriting – Grammars (EFSM to DFG) 

EFSM Grammar 

 

Node Types 

• State 

• Has attributes: Yes  

• Name: String 

• ID: Integer 

Arc Types  

• Transition 

• Has Attribute: Yes 

• Input: SMTLib Expression 

• Predicate: SMTLib Expression 

• Computation Bloc: SMTLib Expression 

 

DFG Grammar  

 

s0

s1 s1

t01: {b==true}[v1++,v2--]

t10: [v1,v2 ←0;b ←NOT(b)]

t0 : p [v1,v2 ←0;b ←p]

t20: [v1,v2 ←0;b ← NOT(b)]

t12: {b==true AND v1>0 AND v2<0}

t02: {b==false}[v1--,v2++]

t21: {b==false AND v1<0 AND v2>0}

[C0]
v1,v2 ←0;

b ←p

I0: p

s0

[P10]=Not[P02]
b==true

False

s2s1

[P21]
b==false AND v1<0 AND v2>0

[P12]
b==true AND v1>0 AND v2<0

FalseFalse

True

True
True

[C10]
v1,v2 ←0

b ←NOT(b)

[C20]
v1,v2 ←0;

b ←NOT(b)

[C01]
v1++,v2--

[C02]
V1--,v2++

s2
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Node Types 

• Vertex 

• Has attribute: Yes 

• Definition/Computation: SMTLIB Expression 

Arc Types  

• Simple Edge 

• Has attributes: No 

• Predicated Edge  

• Has attributes: Yes 

• Predicate: Input Value (From enum) 

 

D: Graph rewriting – Rule graphs and rule morphisms (EFSM to DFG) 

 

The EFSM (source) rule graph is already given, and the DFG (target) rule graph is as follows: 

 

 

 

The EFSM to DFG rules are self-explanatory. Graphically, they are as follows: 

 

Rule 1: State are mapped to vertex with state variable 

 

 

 

 

 

 

 

Vertex

Predicate

State

Name
ID

Vertex

State_Variable ← State 
Rule 1
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Rule 2: (Source-Null-Target mapping) 

 

 

 

 

Rule 3: (Source-Input-Target mapping) 

 

Rule 4: (Source-Predicate-Target mapping) 

 

 

 

 

 

 

 

 

Rule 2

Source

Target

Null

State_Variable ← State 

State_Variable ← Target 

Source

Target

Input/Predicate/Computation
Rule 3

State_Variable ← State 

State_Variable ← Target 

ReadTarget ==Input

Computation

Read(input)

Predicate

Source

Target

Input

Target’

Input’
Rule 4

State_Variable ← State 

State_Variable ← Target 

ReaderTarget == Input

Read(input)

State_Variable ← Target’ 

Read(input’)

ReaderTarget == Input’
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Figure 3.8 shows an example of the use of the aforementioned rules to rewrite an EFSM into 

a DFG. 

 

 

 

Figure 3.8: Example of graph rewriting through DFG rules derivation 

 

3.3.4 Step 2: Preparation for the Path Selection 

 

The goal of the approach is to generate executable test cases that satisfy the MC/DC criterion. 

To derive an executable test sequence, we need a feasible path along which the MC/DC 

requirements are satisfied. In other terms, we have two governing criteria: the values of Decisions 

and the Conditions (and thus the values of the variables influencing these Conditions), and the 

feasibility of the path being considered for selection. The goal of this step is to annotate the 

graphs using information from the MC/DC tables, which reduces the risk of state explosion when 

performing a multi-objective search on the EFSM/DFG/CFG by reducing the search space.   

 

Figure 3.9 goes through the steps of the labelling. There are four information we want to 

pinpoint on the graphs’ elements. The MC/DC Tables (or Decision) affected by the graph 

element, the Rows, The conditions and the values of the Conditions.  Thus, the final label would 

depend on each graph element as shown in Figure 3.9. We start by labelling the decision points 

from the CFG with the MC/DC tables ids as each MC/DC table is associated with one Decision 

(and thus with one predicate). Then for each table, we label the outgoing branches from the 

decision points with the row id that match the Decision outcome of that row. We also label the 

s0

s1 s1

t01: {b==true}[v1++,v2--]

t10: [v1,v2 ←0;b ←NOT(b)]

t0 : p [v1,v2 ←0;b ←p]

t20: [v1,v2 ←0;b ← NOT(b)]

t12: {b==true AND v1>0 AND v2<0}

t02: {b==false}[v1--,v2++]

t21: {b==false AND v1<0 AND v2>0}

s2

Read(p)

S ←s0

C0:v1,v2 ←0;
b ←p

[C01]
v1++,v2--

S ←s1

[C02]
v1--,v2++

S ←s2

[P01]b==true P02: b==false

[P12]b==true AND v1>0 AND v2<0

[P21]b==false AND v1<0 AND v2>0

[C10]
v1,v2 ←0

b ←NOT(b)

[C20]
v1,v2 ←0;b 
←NOT(b)
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predicate edges from the DFG by means of the transformation records. And finally, for each 

condition we move to labeling the d-use for all variables affecting that Condition on the DFG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 (a and b) shows an example of the application of Step 2: preparation for the path 

selection from the example shown in Figure 3.7. 

 

 

Figure 3.9: Preparation for path selection (graph labeling) 
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Figure 3.10: Application of Step 2 from graph rewriting of Figure 3.7 

 

 

 

 

a 

b 
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3.3.5 Step 3: Path Selection 

 

The aim is to select paths that have the potential to produce executable test cases and decide 

on their feasibility [55]. In TGT, we use jSMTLIB for parsing SMTLIB expressions and using 

the solvers with test generation tool. In the following we describe briefly how we address the 

selection of feasible paths. A search algorithm A* is used for finding the “shortest” path and a 

multi-objective search algorithm. Short path is expressed in terms of feasibility and uses of the 

involved variables. A* is used between the “nearest” def-use and the p-use. We also use a multi-

objective search algorithm based on [52]. 

For SMT-constraint solving, any SMT-LIB solver can be used. For this step, the following 

data is required: Labelled DFG, Transformation records, Heuristics, Temporal Logic, and 

Theory. We obtain Feasible/unfeasible Paths (see Algorithm 1). The following is the Feasibility 

Analysis approach: 

 

Precondition: MC/DC tables, labeled DFG 

Labels applied during the previous steps 

<T, R, C, Value of C> for def-uses 

<T, R, P, Value of P> for p-uses 

Where: 

T: table  

R: Row of MC/DC table 

C: Condition 

P: Predicate/ decision 

For each table T in the set of MC/DC table 

   For each (Row) R in T 

      Find p-use in labeled <T, R, P, Value of P> in labeled DGF 

         For each C in R find def-use with label <T, R, C, value of C> 

Link p-use(C) and min-def-use(C)* with a def-clear-path**, 

Add feasible preamble and post-amble to form a complete path.  

(*) min-def-use(C) in the nearest of def-uses of the variables involved in C in term of 

“Approximation Level” [52]. 

(**) If there is a c-use w.r.t. that particular variable, we ignore it for the MC/DC approach.  
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The def-clear path is constructed using a standard A* algorithm with feasibility as heuristic: 

H(t) = +1 if the transition is feasible, H(t) =+ 100 if not. 

Link the other def-use(C) with min-def-use(C) 

 

 
 

 

3.3.6 Step 4: Data Selection 

 

Once the feasible/unfeasible paths are selected and associated to the coverage element, they 

form an Abstract Test Case. If the path is feasible, it means there exists a succession of variable 

assignments that ensures each transition along the path is satisfied. If the path is unfeasible, it 

means no such succession exist. However, in the context of MC/DC that eventuality has to be 

tested as well. The goal of this step to find the variable assignments needed in case of feasible 

paths. The constraint solver works on the deciding satisfiability of the system of equations along 

the path. This has already been done in the previous step as it is the basis for selecting the path. 

A Path is feasible if the system of equations derived from it is satisfiable. Data selection is simply 

finding and selecting one of the solutions. 
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We use a temporal logic to express the succession of the predicates [47, 49]. For unfeasible 

paths, no “selection” is needed if test should fail no matter what the input is. However, we should 

make sure that the Decision and Conditions take the proper valuations as is specified in the 

coverage element (or MC/DC table row). We truncate the path up to the transition with Decision. 

The path should be feasible up to that point and thus the data selected is mainly to satisfy MC/DC, 

which bring us to the final step. Figure 3.11 (a, b, and c) shows the application of Step 3 (path 

selection) and Step 4 (data selection) on the example of Figure 3.7.  

 

3.3.7 Step 5: Coverage Analysis 

 

After the generation of test sequences, test criteria coverage needs to be analyzed. This step 

is important for test sequences that aims at satisfying the MC/DC criterion. In the case of MC/DC, 

there is also the need to analyze the satisfaction of its requirements. The goal of this step is 

twofold: verifying the requirement coverage and the MC/DC (or structural coverage if the 

generation has been parameterized with additional coverage criteria). This is a preliminary step 

that precedes the execution of the test cases.  We run a symbolic execution along the path to 

calculate two metrics: 

 

• Requirement Coverage = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑎 "𝑃𝑎𝑠𝑠" 𝑉𝑒𝑟𝑑𝑖𝑐𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠
 

• MC/DC Coverage = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑎𝑛𝑑 𝑢𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠
 

 

This step is performed independently from the other steps. One of its goals is to verify that 

the test suite indeed achieves 100% MC/DC coverage, and the other is to ensure forward 

requirement traceability (by construction) and backward traceability between the test cases and 

the LLR (by labelling).  
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Figure 3.11: Application of Steps 3 and 4 from graph rewriting of Figure 3.7 
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t01: {b==true}[v1++,v2--]
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t02: {b==false}[v1--,v2++]
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Read(p)

S ←s0
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b ←p
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3.4 Architectural View 
 

The main module in our approach is the Test Generation Module. It implements the main 

routines of our approach. We supplement it with two auxiliary modules: a Data Module, and a 

Graph Operations Module. Figure 3.12 outlines the high-level view of the architecture MC/DC-

TGT.  In this section, we justify the technical decisions as we outline the function and 

information’s exchange for each module. In general, we preferred Java open source libraries 

whenever possible. The tool is designed so that those libraries could be substituted for others as 

long as they serve the same theoretical functions (e.g. graph rewriting using attributed grammar). 

  

The Graph Operations module is dedicated to frequently used, general purposed, graph 

operations. Its goal is to ensure maintainability and reconfigurability of the algorithms. The data 

module retrieves user input, constructs, manages data, and provides proxies to external libraries 

involved in creating and transforming the different graphs. The Data Module is open to the rest 

of the MC/DC-TGT in read-only mode. In the upcoming sections, we detail each of the 

submodules, their functions, the information and data they exchange and/or modify, as well as 

when they are used. 
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Figure 3.12: EFSM test generator architecture 

 

3.4.1 Test Generation Module 

 

The test generation module implements major steps of the methodology such as preparation 

of path selection, path selection, test data selection and coverage analysis, as described in process 

view. The three main submodules are treated as chain of responsibility pattern.  The Data Facade 

submodule is a proxy to the Data module and provides a read-only access to all the data 

structures. The Path selection submodule has two sub-submodules of its own that collaborate in 

selecting the feasible paths. It takes a collection of MC/DC tables and labeled EFSM, DFG, and 

CFG as issued from Step 2 (preparation for path selection) and produces a collection of feasible 

and unfeasible paths. The path selector uses the graph explorer, multi-objective graph explorer, 

and du-path extractors to select candidate paths that satisfy the MC/DC Row. Concurrently, the 

feasibility analyzer module provides feasibility verdicts with the help of an SMT solver. Calls to 

the SMT solver are done using the SMT solver facade. 
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The test data selector is responsible for Step 4 (test data selection) also uses the SMT solver 

since data selection is akin to choosing a solution to the SMT equation across the selected feasible 

path. The Coverage Analysis module is responsible for generating coverage data according to 

the formulas from Section 3.3.7. It needs access to the labeled graphs and the test suite. 

 

3.4.2 Data Module 

 

The data module is composed of proxies to external libraries and tools. It is composed of 

AGG factories, jGraphT wrappers, a Transformation Manager, a GraphML I/O handler, a 

SMTlib parser, and MC/DC tables’ factory. The input data for the MC/DC-TGT tool are the test 

criteria given as a simple parameter, MC/DC Tables and EFSM. The other two inputs are not as 

simple to handle. The first module is the MC/DC factory, which parses user input into instances 

of the class. The second Module is a GraphML I/O parser. We chose the GraphML [50] format 

for its simplicity and versatility as it can express both the pseudo-graph structure (EFSM) and 

graph structures (DFG, CFG). The “output” part of the module is necessary for persistence and 

logging purposes.  

 

 

 

The graph factory module is responsible for creating the graph objects. It proxies the jGraphT 

library [52] and creates objects compliant to the graph grammars detailed in graph rewriting. The 

obtained objects are as described in the Data View section. While EFSM is received through user 

input, DFG and CFG are generated by the Graph rewriter module which implements the process 

via the AGG library [53]. As graph rewriting is being carried, records are made to a database 

through the Transformation Manager.  

The last module is another proxy to an external library: jSMTlib [54], a parsing library for 

SMTlib expressions. Guard elements are created using this library.  It is also used for generating 

SMTlib scripts that are fed into the SMT constraint solver in feasible path selection and test data 

selection. 
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3.4.3 Graph Operation Module 

 

This module separates the graph-related operations from the test generation itself. Each 

submodule is implemented as a strategy pattern, enabling for a freedom of varying the 

subroutines used on the graphs. The test generation module only needs access graph operations 

sub-module from the data module. The graph operation module is dedicated to exploring various 

graph with search algorithms and path extractors. It is composed of Graph Labeler, Graph 

Explorer with simple algorithm, Graph Explorer with multi-objective search algorithm, Heuristic 

Configurator, and Du-path extractor. 

 

3.5 Data View 
 

Due to the large amount of data manipulated in this approach, and the increasing complexity 

of information therein after each step, it is necessary to persist relevant data. We need to keep 

track of how data was generated, as the information used in the approach is spread between the 

different graphs and the MC/DC tables. To that end we create a “transformation records” data 

structure, which will be generated as the graph rewriting step takes place. Each transformation 

records entry is a result of a rule application. The transformation records simplify the graph-

related operations as well. In addition to describing each of the data structures in this section, we 

will explain how traceability, in terms of DO-178C, is assured. The data will be represented by 

UML class diagrams, except for the transformation records, which is a database table. 

 

3.5.1 MC/DC Tables 

 

The MC/DC truth tables are the “central” data structures for many control decisions in 

numerous algorithms of our approach. An erroneous representation compromises the reliability 

of our tool. It is recommended to opt for a simple and lightweight structure to avoid errors and 

overhead associated with traversal and search in traditional table structures. In the context of this 

research, MC/DC tables are provided externally. Their validation is outside the scope of our 

research, but we allow for extending the structure to include validating them internally. Figure 

3.13 shows the class diagram of the MCDC/data structure. An MC/DC table is associated with a 
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Decision. Each row is a tuple R =< P, C >, where P Boolean value which represents the outcome 

the Decision takes when each Condition is given a value. C is the vector of those values. The 

table has N + 1 rows, where N = #(C).  

 

 

Figure 3.13: MC/DC table class diagram 

 

3.5.2 State Graphs and Rule Graphs 

 

The relationship between rule graphs and their state graphs is homologous to the one between 

classes and their instances in OOP. The proper description for state graphs would be object 

diagrams. However, we will narrow this subsection to describing the classes of (Figures 3.14 to 

3.16), i.e. we will only cover the rule graphs. Having used attributed grammar to express the type 

graphs, describing them in object form is a simple one-to-one transformation. Each type is a 

class, each subtype is a subclass, and each attribute is a property/field (depending on the desired 

encapsulation). 
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These classes use the JGraphT library [51] which offers a flexible way to manipulate graph 

structures. It is especially convenient for us as it offers routines adapted to pseudo-graphs such 

as the EFSM structure. The design of the classes is in conformance with the rule graphs provided 

in graph rewriting. We opted for nested classes for constructs such as states in an EFSM, to 

restrict the existence of such object outside of an already defined EFSM.  

 

The guard construct is an exception to this design choice, as the class proved too complex to 

be implemented as a nested class. Furthermore, direct references to guards are preferred as we 

need to be able to manipulate the guards without added overhead of lookup through the parent 

EFSM (see Figure 3.14). Another contributing factor to this decision is that the MC/DC tables 

are associated with predicates - an element of the guard; and as mentioned previously, MC/DC 

tables in the context of this research are externally defined. Such data need to be instantiated 

before the construction and validation of the EFSM. 

 

Figure 3.14: Guard 
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3.5.3 Transformation Records 

 

The complexity of the data structures and algorithms involved in this approach means that it 

would be useful to keep a detailed record of the results of the rule applications from the graph 

rewriting. Aside from being mandatory for V&V, they also simplify the Steps 2 to 5. Recording 

the direct references to graph morphism images will help us bypass search algorithms using 

object properties. 

 

We use a static database as the transformation is done only once per graph type. Any change 

to the EFSM requires rerunning the graph rewriting from scratch, which means dynamic data 

bases have no use in our case. Once the graph rewriting is completed, access to the transformation 

records database is read-only. And since graph rewriting is a finite process, we favor consistency 

and availability of data above scalability. As such, a relational database is the recommended 

option. 

 

 

 

Figure 3.15: Control flow graph 
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Figure 3.16: Data flow graph 

 

 

The key entries are constructed using references to the EFSM constituents used in the rule 

morphism. Each entry corresponds to a rule application. The columns are populated with the 

references to resulting elements from the target graph. We use the same database for both the 

DFG and CFG transformation, which will inherently give a link between the two graphs, even 

though the transformations are done separately. Querying a transition from the EFSM returns 

both a Data Flow Subgraph and a Control Flow Subgraph as per preparation for path selection, 

thus bypassing an algorithmic search on the graphs. Using the same database will put those 

subgraphs on the same row. As such, moving between the DFG and the CFG is more efficient. 

This “direct” link between the DFG and the CFG reduces the complexity of representing the 

MC/DC tables on the data structures and adheres to the design choice. In addition to the 

functional contribution, these transformation records allow us to ensure traceability as per the 

DO-178C standard.  
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3.6 Conclusion 
 

In this chapter, we addressed the tool design of automatic test sequence generation based on 

model for the satisfaction of MC/DC and du-path criteria. MC/DC is a requirement for avionics 

software certification according to DO-178C for level A. We followed the IEEE standard to 

describe the 4 views: the context view, the process view, the architecture view and the data view. 

The design of the proposed test generation tool is being developed for educational purposes. The 

developed techniques use constraints solving, handle cycles and uses multi-objectives search 

algorithms. Several existing tools have been integrated to solve some aspects of the problem. 

There is room for exploring an integrated set of coverage criteria and techniques to lower the risk 

of state explosion problem and enhance the efficiency of the generated tests cases. We also 

addressed the issue of validation in terms of compliance with DO-178C requirements and 

traceability as per the RTCA standard. 
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Chapter 5  
  

Discussion and Conclusion 
 

 
 

  
Quality assurance is the way to ensure the quality software that conforms to its 

specification and the required standards. Testing is the preferred activity in avionics industry 

and is mandatory by the standards [1, 57, 58]. In fact, the avionic software needs to be 

thoroughly tested before deployment. Exhaustive testing is not always feasible. Until now, 

the avionics industry is generating test cases manually. This technique requires significant 

resources in term of cost and manpower. Model-based testing is now explored by avionics 

industry to achieve automation of test case generation. This work is part of this exploration 

work. 

 

In this thesis, we addressed the tool design of automatic test sequence generation based 

on model for the satisfaction of MC/DC and du-path criteria. MC/DC is a requirement for 

avionics software certification according to DO-178C for level A. The design of the 

proposed test generation tool is being developed for the need of avionics industry and for 

educational purposes. The proposed approach uses constraints solving, handles cycles and 

uses multi-objectives search algorithms. Several existing tools have been integrated to solve 

some aspects of the problem. There is room for exploring an integrated set of coverage 

criteria and techniques to lower the risk of state explosion problem and enhance the 

efficiency of the generated tests cases. We also addressed the issue of validation in terms of 
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compliance with DO-178C requirements and both ways traceability as per the RTCA 

standard. This work has been published in conference and Journal paper [59,60]. 

 
 
 
 

The proposed methodology in this thesis can be used to test complex avionics software. 

Possible extensions of this methodology for future work includes: 

✓ More validation, coverage assessment and metrics. 

✓ Integration of more sophisticated model checking algorithms with the testing 

activity to check intelligent and autonomous components; and 

✓ Integration of test and verification results analysis in a unified framework. 
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