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Abstract 

Non-Intrusive Load Monitoring using Machine and Deep Learning Techniques 

Mohammad Kaosain Akbar 

 
 Non-intrusive Load Monitoring (NILM) is a computational technique that extracts individual 
appliance consumption and operation state change information from the aggregate power consumption 
made by a single residential or commercial unit. This technique has emerged as a reliable energy 
management approach that intends to reduce energy wastage and inform customers about their electricity 
consumption. NILM is considered as both Supervised and Semi-supervised Learning problems. The main 
contribution of this thesis is three-fold. 
 
 First, we evaluated some regression algorithms commonly used in NILM research based on 8 
different training and testing scenarios which according to our knowledge covered major demographic 
factors that affect the appliance usage. The dataset used for the evaluation of the regression models, was 
collected from a research lab at Grenoble INP, in Grenoble, France. Furthermore, a novel Bayesian 
optimized Ensemble regressor model for predicting individual appliance consumption from aggregated load 
data is also proposed. Instead of just using the aggregated power information, the proposed model also uses 
demographic information from the dataset to estimate accurate consumption output of individual 
appliances. 
 
 NILM research often requires significant labeled data and obtaining such data by installing smart 
meters at the end of consumers’ appliances is laborious and expensive and exposes users to severe privacy 
risks. Moreover, most NILM research uses empirical observations instead of proper mathematical 
approaches to obtain the threshold value for determining appliance operation states (On/Off) from their 
respective energy consumption value. The second fold of the thesis proposes a novel semi-supervised 
multilabel deep learning technique based on Temporal Convolutional Networks (TCN) and Long short-
term memory (LSTM) for classifying appliance operation states from labeled and unlabeled data. The two 
thresholding techniques, namely Middle Point Thresholding and Variance Sensitive Thresholding, which 
are needed to derive the threshold values for appliance operation states, were also compared thoroughly. 
The proposed models were then evaluated using Redd, Uk-Dale and Refit datasets. 
 
 Third, we propose a novel NILM algorithm that utilizes deep learning Temporal Convolutional 
Networks (TCN) for the regression and classification NILM tasks. Most NILM models cannot 
simultaneously classify appliance operational status or estimate individual appliance power consumption. 
The deep TCN layers in the proposed architecture of the third fold of the thesis allow the simultaneous 
extraction of complex patterns in the data of the power consumption and the operational state of individual 
appliances. Refit data is used for the evaluation of this model. 
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Chapter 1 

Introduction 

1.1    Background 
  
 The majority of the world’s electricity, approximately 73%, is generated by fossil fuels and nuclear 
power, with coal-fired power making up the remaining 36.4% [1]. From the total electricity 
generated, residential and commercial electricity usage accounts for nearly 60% of the world's 
energy consumption [2]. High dependency on fossil fuel-based energy and increasing energy 
consumption created significant ecological concerns, especially regarding carbon dioxide (CO2) 
emissions, resulting in global warming [3]. In the past decade, there has been significant interest in 
optimizing energy management by analyzing the energy consumption of appliances in buildings. 
It is crucial to provide precise and fine-grained power usage information and operation patterns of 
individual appliances to increase energy efficiency and reduce greenhouse gas emissions for 
environmental sustainability. According to multiple studies [4-6], users can reduce their annual 
energy consumption by up to 12% when receiving feedback through load utilization data as seen 
in Figure 1.1. This can also help to facilitate communication between energy providers and end 
users. When electricity bills for each period are provided, consumers can keep track of their 
electricity costs while controlling and monitoring appliance status usage [7]. 
 
  The conventional Intrusive Load monitoring (ILM) technique offers the benefit of 
acquiring more precise and comprehensive metering data since this approach requires the 
installation of sensors in each appliance to monitor changes in the appliance's status and gather data 
in real time. Unfortunately, installing numerous sensors leads to high construction and maintenance 
expenses and breaches customers' privacy [8]. Non-Intrusive Load Monitoring (NILM) technique 
does not require to deploy smart meters to each appliance but can estimate the power demand of 
each of them from the aggregate consumption of a household measured by a single meter installed 
at the entrance of the user’s residential or commercial unit [9]. Figure 1.2 represents the difference 
between ILM and NILM. NILM is also often termed "Energy Disaggregation," as this technique 
breaks down the total energy consumed by numerous appliances into individual appliance 
consumption records [10]. The mathematical foundation and the framework behind this technique 
were first proposed by Hart in 1980s, where he explained how he monitored the active and reactive 
power of the load operation to estimate the number and operating characteristics of individual loads 
[9]. A general NILM framework is shown in Figure 1.3. This technique is gaining quick attention 
not only for developing the smart grid, but also due to its indisputable advantages. Some of those 
advantages are [11]: 
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• Detailed information on consumption: The key benefit for customers is that they will be 

able to adopt an energy-saving behaviour due to the analytical power consumption. Real-
time information about running devices could also be a helpful tool, serving as a reminder 
for people to turn off appliances before they leave the house, particularly those devices that 
are dangerous or consume a lot of energy. 
 

• Individual device power usage: This enables users to assess which appliances use the most 
energy in their homes and, more generally, how much each appliance contributes to overall 
energy usage. 
 

• Identifying and detecting dysfunctional devices: This technique creates a detailed device 
usage record that helps monitor device status and identify defective equipment. 
 

• Illegal load detection: It is more accurate to report potential energy theft in public and 
private buildings when abnormal loads are detected in homes. 
 

• Environmental intelligence: NILM allows for alternative detection scenarios without the 
use of new sensors. Through this technique, one smart meter is sufficient to provide the 
data required to execute multiple energy-saving rules rather than having to convert all 
devices to smart ones, which is expensive and unsustainable for the environment. 
 

 

 
Figure 2.1: Representation of a study conducted by [4] regarding residential electricity consumption savings 
based on different types of consumption feedback. 
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  NILM approaches are typically divided into supervised and unsupervised learning methods 
[12]. In the supervised NILM learning method, predicting the consumption of each device from the 
aggregated power data is formulated as a regression problem, whereas determining whether a 
device is On or Off is formulated as a classification problem. The unsupervised learning method, 
on the other hand, is often used to identify devices from the aggregate power load. It is important 
to note that a drawback of supervised NILM approach is the lack of sufficient labeled data. 
Acquiring labeled data can be expensive and time consuming which can lead to the limitation of 
scalability of NILM systems [13]. Individual appliances in a residential or a commercial unit of 
interest might be purchased anytime, so sensors might be needed to install or uninstall, requiring 
utility personnel to visit the building unit frequently. Thus, it may comprise the privacy of the 
occupants of the building, which is often not socially acceptable [14]. Furthermore, since there is 
a lack of a labeling stage that assigns appliance names to disaggregated profiles, unsupervised 
NILM approaches are primarily helpful for domain experts and not for any end customer [13]. 
Therefore, semi-supervised learning approach can also be used for NILM problems. The 
motivation behind using semi-supervised learning in NILM is to improve the performance of the 
model by leveraging both labeled and unlabeled data and to reduce the need for obtaining labeled 
data for each appliance, which can be time-consuming and expensive. 

 

 
 
 
 
Figure 1.2: Difference between Intrusive and Non-Intrusive Load Monitoring. 

  

a) Intrusive Load Monitoring (ILM) b) Non - Intrusive Load Monitoring (NILM) 
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1.2    Related Works 
 
 There were numerous studies conducted regarding supervised NILM for appliance load 
decomposition and states classification. Initially, for NILM research, the most applied techniques 
were different Hidden Markov Models (HMMs) approaches, some of which are highlighted in [22] 
and [23]. Buddhahai, and Makonin [24] proposed a multi-target regression using multi-target 
regression tree and rule induction from a Java-based data learning API called CLUS [25]. A key 
feature of the approach proposed in [24] was that apart from just considering the aggregate power 
load, several other relevant features to problems were considered. The approach required only a 
handful of model configurations for parameter tuning but had limited performance for appliances 
that had multiple operation states. Bi-directional LSTM NILM optimized by Bayesian inference 
was proposed in [26] to predict appliance consumption of four different appliances from AMPds 
dataset [27] and the superiority of the model is reflected by the MAE, RMSE scores when compared 
to NILM models implemented using generic LSTM or CNN architecture. Lin et al. [28] proposed 
a temporal convolutional neural network which is a CNN architecture that not only estimates 
appliance load but also offers the advantage of transfer learning where labelled data are obtained 
from source and unlabelled data are obtained from the target domain.  

 
 Hadi et al. [29] proposed a supervised machine learning network architecture which uses 

less computational space and time for decomposing accurate appliance load, but the proposed 
model was prone to overfitting with no option to extrapolate. The study in [30] used Gradient 
Boosting Regression through Empirical Mode Decomposition (EMD) to find consumption made 
by five different appliances. Schirmer et al [31] performed evaluation of four algorithms namely 
K-Nearest Neighbours, Support Vector Machines, Deep Neural Networks and Random Forest to 
find appliance load. After experimenting on five different datasets, Random Forest Regressor 
outperformed all the other three techniques with an accuracy of up to 93%. A combined regression 
along with classification subnetwork for NILM problem was proposed in [32], where an encoder-
decoder mechanism is implemented in the regression network. Like the method proposed in [31], 
Konstantopoulos et al. [33] also proposed a similar approach using Decision Tree, Random Forest 
and k-NN to predict appliance consumption based on active power, reactive power, and crest factor. 
The experimental results show that Decision Tree and Random Forest generate more accurate 
output than k-NN. 

 
 Rao et al. [34] proposed an approach using Support Vector Machines with edge analysis 

for identifying devices and Autoregressive Moving Average method for predicting future appliance 
consumption. The proposed technique had an accuracy of 90% in predicting future consumption. 
A hybrid deep learning method using convex hull data selection technique was proposed in [35] 
for NILM but often predicts irrelevant consumption that does not fall under the target appliance. In 
[36] three steps energy decomposition method is proposed that is composed of a state identification 
stage, followed by individual power consumption estimation and daily electricity fitting. 
LightGBM shows the most promising result for obtaining the power consumption estimation from 
a dataset obtained from a gas station. Shin et al. [10] proposed a subtask gated network which is 
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comprised of two separate Deep Neural Networks – one for regression NILM and the other for 
classification.  

 
 A multi-output CNN architecture was proposed in [37], where the proposed approach 

solves both the classification and regression problems at the same time. Similar research to detect 
the state and estimate the power of the appliances was done in [21], where the researchers proposed 
a one-dimension CNN based on U-Net architecture. Another CNN-based architecture named Scale 
and Context-aware CNN was used by Chen et al. in [38] for obtaining improved disaggregation 
results from multiple appliances. A temporal convolutional network (TCN) based on the sequence-
to-point model for NILM was proposed in [39], where the authors showed that for a certain number 
of appliances, TCN outperformed the conventional CNN in predicting appliance load. There are 
also other notable works on NILM based on machine learning techniques such as Decision Trees 
[40], Support Vector Machines [41], k-NN and Naïve-Bayes [42]. Even genetic algorithms and 
graph signal processing approaches have been also used for NILM research [43] and [44].  

 
 Similarly, to [39], a bi-directional TCN used by a sequence to point model is proposed in 

[45], that estimates the consumption of five appliances. Another NILM regression-based task was 
done in [46] where fully convolutional and casual neural network comprised of encoder-decoder 
and TCN is used for estimating appliance load consumption. An improved TCN composed of two 
casual convolution and one non-linearity layer was proposed in [47] and used for load prediction 
of four appliances in REDD dataset. Another TCN based sequence model for predicting appliance 
load and states is proposed in [48] and a temporal convolutional network integrated with a graphical 
model called conditional random field (CRF) for predicting multiple states of appliances is 
proposed in [49]. Handful of works using LSTM have also been done in NILM research. In [52] 
LSTM is used in disaggregating appliance load from the total consumption signal through 
experimenting with different numbers of layers and hidden units. Another deep learning model 
comprised of a CNN, a LSTM layer and random forest algorithm, used for identifying appliances 
was proposed in [50]. In [51] another appliance identification for NILM was proposed based on 
multilayer LSTM. All these deep learning methods for NILM based on TCN or LSTM are 
supervised and require large number of labeled data.  

 
 Annotating large amount of data for NILM research is expensive, time consuming and 

might compromise privacy of the residents or users of the commercial/residential building of 
interest. Thus, semi-supervised approach is feasible for NILM tasks as this learning uses small 
number of labeled data and large number of unlabeled data. A semi-supervised learning (SSL) 
based on support vector machine (SVM) for NILM task in classifying appliance states was 
proposed in [13]. This SSL NILM model trains the SVM using labeled data and then set labels for 
the unlabeled data which are then again reintegrated in the model’s learning. NILM multilabel 
classification based on a mean teacher-student model for semi-supervised learning is proposed in 
[56]. The model uses both labeled and unlabeled data to classify operational states of multiple 
appliances at once. UK-DALE and REDD datasets are used to train and evaluate a model that 
adopted teacher-student structure based on Gaussian kernel trick-based maximum mean 
discrepancy (gkMMD) and TCN in [57]. The efficiency of the proposed model is presented by 
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comparing its performance with five other models. Semi-supervised learning for automated 
residential appliance annotation (SARAA) classifies state of a single appliance by using 1-NN 
semi-supervised technique [55]. When compared to the benchmarking techniques SARAA had a 
F1 score about 15% lower. Using decision tree classifier as eager learner and nearest-neighbor as 
lazy learner, a semi-supervised learning approach was proposed in [54] where features are extracted 
with the help of wavelet design and Procrustes Analysis. Graph based semi-supervised learning 
was proposed in [14] where graph-based technique is used to label the data and Multilabel K-
Nearest Neighbor (MLkNN) is used to train the multiple classifiers to predict appliance state. In 
[58] a combination of semi-supervised (based on random forest classifier) and active learning is 
proposed which simultaneously handles shortage of labeled data and improves classification 
accuracy. An expectation maximization based semi-supervised multi-label classification technique 
for NILM was proposed in [53] where random k-label set (RAKEL) is used as base classifier for 
semi-supervised learning. The proposed approach achieved higher accuracy in classifying 
appliance states when compared to classification algorithms such as RAKEL and MLkNN.  

 
 A Convolutional Neural Network (CNN) based architecture was proposed to classify the 

operational states of the appliance in the LIT dataset by da Silva Nolasco et al. [59]. The model had 
around 95% accuracy in estimating the appliances’ operating status. Feed Forward Neural network 
for predicting the appliance states was proposed in [60], where the model achieved an average F1 
score of 0.77 for six appliances in the UK-Dale dataset. Xiao et al. [61] used five fully connected 
Deep Neural Networks (DNN) for appliance state classification. When compared to the existing 
Hidden Markov model (HMM) and RNN-based models, the proposed technique in [61] had a 
significantly better F-Measure score obtained from classifying various appliances in three houses 
of the REDD dataset. Kim et al. [62] proposed a combination of Gated Recurrent Unit (GRU) and 
Recurrent Neural Network (RNN) architectures to classify states of a total of 20 appliances in five 
different houses of the UK-Dale Dataset, and the proposed model achieved an average F-Measure 
score of 0.86 across all the houses.  

 
 When comes to NILM Deep Learning techniques for regression tasks, Zhang et al. [63] 

proposed a sequence to point technique based on five convolutional layer, one dense layer and two 
seq2seq layers. A Seq2Seq layer used for the model was comprised of CNN and RNN layer [64]. 
The model presented in [64] predicted the consumption made by five household appliances and 
had an overall Mean Absolute Error (MAE) score of 95. Serafini et al. [65] used Convolutional 
Recurrent Neural Network (CRNN), a combination of convolutional layer, gated recurrent units 
and linear layer to predict the power consumption of five different appliances from the aggregate 
load of five houses in the UK-Dale dataset. Based on predicted consumption values, the model had 
an average (MAE) score of 70. LightNILM model for predicting appliance power consumption was 
proposed in [66] which is comprised of a convolutional layer and sliced recurrent neural network 
block. Five appliances from houses of three publicly available NILM datasets were used to train 
and evaluate the model.  
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(1.1) 

 In case of models that performed both NILM regression and classification task, Saraswat 
et al. [19] proposed a deep neural network which predicts the operational states and power 
consumption made by appliances of eight residential buildings. A model comprised of LSTM and 
CNN architectures for doing both NILM regression and classification task was proposed by 
Naderian in [20]. The model was trained and evaluated using five household appliances in REFIT 
dataset. Another model comprised of CNN and Bidirectional GRU architectures was developed to 
perform same NILM tasks in [18]. Three appliances of the UK-Dale dataset were used to train and 
test the model whose regression and classification performances were evaluated using MAE and 
F1-score, respectively. Faustine et al. [21] proposed a one-dimensional CNN architecture-based 
NILM model which predicted both the state and power consumption of five household appliances 
from the aggregate power load in UK-Dale dataset. 

 

 

Figure 1.3: A general framework of Non-Intrusive Load Monitoring Technology 

 

1.3    Problem Formulation 
 
Consider a residential or commercial unit with total of 𝐴  appliances. For time 𝑡  period, each 
appliance 𝑎 consume power 𝑝! , and is in the operational state 𝑠!  that denotes On/Off (i.e. 𝑠!  is 
either 0 or 1). Then the aggregate power 𝑷! is represented by 
 

𝑷! =	)𝑆!
(#)𝑝!

(#)
%

#&'

+	𝜖! 

     
  where, 𝜖! is the noise term. The purpose of the proposed NILM technique in this thesis is 
to breakdown the aggregate power 𝑷!  into power 𝑝!

(#)  consumed and operational state 𝑠!
(#)  for 

each appliance 𝑎 simultaneously at time timestep 𝑡. Obtaining the power consumed is termed as 
NILM regression task and obtaining the appliance operating states is termed as NILM classification 
task. 

 

Step 1
•Data acquisition from single point of measurement & Preprocessing

Step 2
•Aggregated total load data obtained

Step 3
•Feature extraction in appliance basis

Step 4
•Appliance Detection

Step 5
•Disaggregation algorithm for appliance state classification (ON/OFF) and/or 

appliance load estimation
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 The state S of an appliance a at time t are assumed to either be:  
 

𝑆!
(#) =	 -

	0	(𝑂𝐹𝐹	𝑆𝑡𝑎𝑡𝑒)
1	(𝑂𝑁	𝑆𝑡𝑎𝑡𝑒)      (1.2) 

 
 In order to solve supervised NILM problems, the dataset D contains all labeled data. But 

for semi-supervised NILM problems, the dataset D will consist of both labeled dataset DLabel  and 
unlabeled dataset DUnLabel. Therefore, the training dataset can be represented as: 

 
𝐷 = 𝐷(#)*+ 	∪ 	𝐷,-(#)*+ 			(1.3) 

 
 The labeled dataset is comprised of feature vector of aggregate power signals Pi and 

appliance state Si as corresponding label vector so that 
 

𝐷(#)*+ = {	(𝑃.	, 𝑆.) ∶ 	 𝑃.	 ∈ ℝ, 	𝑆. ∈ {0,1}%, 𝑖 = 1,2, … , 𝐿𝑎𝑏𝑒𝑙	}   (1.4) 
 
 where A is the number of appliances and states of the label data are either 0 (Off state) or 

1 (On state). The unlabeled dataset, similar to the labeled dataset, is also comprised of feature vector 
of aggregate power signals Pj but the appliance state Sj being the corresponding label vector is 
assigned value -1 which indicates that the state of the ath appliance is unlabeled. Therefore, 
unlabeled dataset can be represented as 
	
𝐷!"#$%&' = #	%𝑃(	, 𝑆() ∶ 	𝑃(	 ∈ ℝ, 	𝑆( ∈ {−1}*, 𝑗 = 𝐿𝑎𝑏𝑒𝑙 + 1, 𝐿𝑎𝑏𝑒𝑙 + 2,… , 𝐿𝑎𝑏𝑒𝑙 + 𝑈𝑛𝑙𝑎𝑏𝑒𝑙	<			(1.5)	
 
 The dataset D is then used to train and evaluate multilabel classifiers for NILM model that 

predict the states of multiple appliances at the same time. 

 
1.4    Contributions 
 
 The contribution of this thesis are as follows: 
 

1. Evaluation of Regression Models and Bayes-Ensemble Regressor Technique for Non-
Intrusive Load Monitoring: 
  
Most of the regression centric NILM research uses only the aggregate load information 
that includes power, voltage, and frequency to predict the consumption of each appliance 
without considering the impact of certain demographic parameters. These parameters 
include but are not limited to hours of the day, weekends, days of the week, months, week 
of the year, seasons, quarters of the year and a few others towards consumption of each 
device. Researchers also tend to find one suitable technique that shows minimum error in 
estimating each appliance consumption without considering that appliance usage is not 
constant over time during the training of their machine learning models. It is inevitable to 
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understand that appliance usage varies according to demographic factors. For instance, the 
usage of the Heating appliance is more from the end of the Fall season to the beginning of 
Spring. Moreover, Cooling appliance tends to be used more during the summer season. 
Considering these demographic factors during the training of the machine learning models 
might not only contribute toward the accuracy of estimating appliance consumption but 
will also aid in predicting future consumption. In this contribution, we are trying to cover 
these research gaps by analyzing different suitable regression approaches for estimating 
power consumption for different appliances over various periods. Moreover, a novel 
Bayesian Optimized Ensemble regression model has also been proposed which results 
compare favorably with the performance of existing approaches. Here we have performed 
detailed analysis of six conventional machine learning algorithms which are applied to the 
novel Grenoble NILM dataset to find individual load decomposition of six appliances. For 
various demographic factors (such as seasons, working hours, weekends, etc.), we have 
shown that different regression algorithms tend to portray their dominance in estimating 
the individual consumption of the six different appliances of the Grenoble NILM dataset. 
We derived the ideal number of demographic factors considered during the training of 
those machine learning models and performance of the regression algorithms under the 
influence of the demographic parameters is presented through 8 different training and 
testing scenarios. Lastly, we proposed a new multi-output Bayesian Optimized Ensemble 
regression model for Non-Intrusive Load Monitoring which estimates the individual 
appliance energy consumption. 

 
 

2. Semi-Supervised TCN – LSTM Based Deep Learning Technique with Middle-Point 
Thresholding Method for Non-Intrusive Load Monitoring: 
   
NILM research often requires large number of labeled datasets to generate models that 
estimate power consumption or operational states of individual appliances. Obtaining such 
large volume of labeled datasets can be expensive and compromise the privacy of the 
residents or users of the building of interest. Moreover, each instance of NILM datasets 
typically contains consumption value of individual appliances and the aggregated load. For 
NILM classification problem, we have to know the operational states of each appliance. 
Most NILM research uses empirical approaches for identifying threshold values based on 
which the appliances are labeled as either ON or OFF state. The empirical approach often 
uses an average value above which the appliance starts to operate without thoroughly 
analyzing the consumption information of the dataset. This empirical approach may 
generate incorrect threshold values that may lead to the development of NILM models 
which predict impractical operational states or consumption patterns of appliances. Two 
appliance thresholding methods, namely Middle-point thresholding (MPT) and Variance-
Sensitive thresholding (VST), are elaborately explained and discussed in [15]. These 
thresholding techniques help assign appliance status labels based on consumption made by 
individual appliances within the dataset, reducing overall error in the prediction of 
appliance status generated by the NILM classification model. 
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  In order to address the issues mentioned above, this thesis suggests using a semi-
supervised multilabel deep learning framework based on Long Short-Term Memory 
(LSTM) and Temporal Convolutional Network (TCN) for multilabel classification in 
NILM. LSTM is a type of recurrent neural network (RNN) that can process and use 
information with long-term dependencies. LSTMs can remember important information 
from the past and use it to make decisions in the present. This is particularly useful when 
dealing with time series data [16]. Temporal Convolutional Network (TCN) is a type of 
architecture well-suited for modelling sequential data. It employs dilated causal 
convolutions and residual connections, which make it efficient at stacking deep layers [17]. 
The proposed TCN-LSTM semi-supervised learning (SSL TCN-LSTM) is able to learn 
and recognize the unique energy consumption patterns of individual appliances and 
monitor multiple appliances at the same time. Moreover, instead of using any empirical 
approach, MPT and VST were used separately to deduce the thresholds of appliances for 
labeling their operational states in the dataset. The effectiveness of the proposed SSL TCN-
LSTM model is demonstrated through case studies using three real-open access read world 
datasets (UK-DALE, REDD and REFIT) for NILM.    
 
 

3. Deep Learning Based Solution for Appliance Operational State Detection and Power 
Estimation in Non-Intrusive Load Monitoring 

 Due to the success of Deep learning techniques, researchers are now exploring the use of 
deep learning methods in combination with NILM technology. Various deep learning-
based NILM techniques were proposed which either predict the operational states or the 
energy consumed by individual appliances with only a handful of research that explores 
NILM deep learning techniques which performs regression and classification NILM task 
at the same time. However, majority of these approaches used different stacked Deep 
Neural Network layers [18-21] which requires sufficient computational memory and often 
faces vanishing gradient problem. In order to mitigate these challenges, we proposed a 
novel NILM deep learning technique based on Temporal Convolutional Network (TCN) 
architecture that simultaneously performs both NILM regression and classification tasks. 
The main idea of this proposed model is to disaggregate the total load into fine-grained and 
accurate consumption values and the operational states (either ON or OFF) of individual 
appliances.  
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1.5    Thesis Overview 
 

• Chapter 1 introduces the motivation, background and related works of our research 
work and contributions. 
 

• Chapter 2 explores performance of traditional machine learning algorithms for 
NILM regression tasks under the influence of various time-based parameters. A 
novel Bayesian optimized regressor model is proposed which is trained and 
evaluated using a novel NILM dataset. 
 

• Chapter 3 introduces a new semi-supervised NILM technique to estimate appliance 
operational states. With limited labeled data and a large portion of unlabeled data, 
the model can predict the operational states of various appliances. Three real world 
dataset is used for the training and evaluation of the proposed model. 
 

• Chapter 4 presents a framework which performs both regression and classification 
NILM tasks using deep learning techniques based on TCN architecture. 
 

• Chapter 5 concludes the thesis and discusses future works. 
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Chapter 2 

Evaluation of Regression Models and 
Bayes-Ensemble Regressor Technique 
for Non-Intrusive Load Monitoring 

In this chapter, different suitable regression approaches for estimating power consumption for 
different appliances over various periods are explored. Detailed analysis of six conventional 
machine learning algorithms is applied on the novel Grenoble NILM dataset to find individual load 
decomposition of six appliances. Performance of the regression algorithms under the influence of 
the demographic parameters are presented through 8 different training and testing scenarios. 
Additionally, a novel Bayesian Optimized Ensemble regression model is proposed which results 
compare favorably with the performance of existing approaches. 
 
2.1    Dataset Used 
  
 The dataset used in this literature is a novel dataset obtained from an interactive platform developed 
by Grenoble INP Ense3 and by G2E Lab at Institut Polytechnique de Grenoble, in Grenoble, 
France. This dataset records the individual consumption of six different appliances along with the 
aggregate power load from January 2017 to December 2021 [71]. 

 
2.1.1    GreEn-ER Building 
  
GreEn-ER is a 22000 m² building in Grenoble hosting Ense3 engineering school and research with 
G2Elab, with about 1,500 students and hundreds of professors, researchers, and staff. Because it is 
a large building, its power consumption is also significant. On a typical day, the active power can 
be more than 300 kW. There are more than 1,500 meters, including more than 300 electricity 
consumption ones. The electric meters measure not only the consumption of the various 
switchboards, regarding the aggregated consumption of different zones in the building, but also 
some individual loads, such as the lighting and the power outlets of certain switchboards, the air 
handling units (AHUs), chillers, pumps, etc. The other meters concern internal and external 
conditions, thermic energy data, etc. The measured data are used to control the internal conditions, 
regarding the comfort of the occupants and to monitor the consumption. The tertiary sector is a 
very heterogeneous one, including activities such as office, education, malls, lodging, warehouse, 
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public assembly, retail, health and food. In the USA, total energy expenditures in 2018 counted for 
$141 billion, $23,900 per building, $1.46 per square foot [67]. Table 2.2 represents the maximum, 
mean and minimum consumption values all six appliances of the Grenoble dataset. As described in 
Figure 2.2(a), the different consumption usages are space heating, cooling, ventilation, water 
heating, lighting, cooking, refrigeration, office equipment, computing, and other. 
 

.  

Figure 2.1: GreEn-ER: a building for energy learning and research. 

 
 Figure 2.2(b) shows the energy consumption by usage in GreEn-ER building during 5 years 
from 2017 to 2021. Note that the decomposition by use is like the average use in the United States 
shown above. Space heating and cooling are important in the consumption and are mostly 
dependent on external conditions like outdoor temperature. As it can be seen in Figure 2.3, there is 
a correlation between outdoor temperature and energy consumption. Learning technics like 
forecasting or desegregation can take advantage of such physical behavior [68]. 

Figure 2.2 (a) U.S.A energy consumption in buildings by end use of 2018. (b) GreEn-ER consumption by end use from 
2017 to 2021. 
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2.1.2    Available Datasets 
   
The progress of research related to the use of machine learning in the energy consumption field 
depends directly on the availability of datasets, either for training, in the case of supervised 
approaches, or for performance testing, in the case of both supervised and unsupervised approaches. 
Even though datasets containing synthetic data have had their importance, datasets containing real 
data of electricity consumption provide, especially in the buildings field, further advances, despite 
increasing the difficulty in developing and applying algorithms. 
 

 
Figure 2.3: The first graph presents the correlation between energy consumption and outdoor temperature. The second 
graph shows energy consumption during four different seasons of France. 

  
 Therefore, it is clear the need to use real data of electricity consumption measurements for 
researchers to advance in the field of machine and deep learning in buildings. There are several 
datasets publicly available, with both aggregated and disaggregated consumption. Some of them 
are mentioned in [69], but most are dedicated to the residential sector (16 datasets over 20). In 
Table 2.1, three datasets dedicated to tertiary sectors are highlighted. It is obvious that it is 
necessary to develop datasets dedicated to buildings of the tertiary sector for which this dataset has 
been proposed. Among the existing datasets for tertiary sectors, there is Mendeley dataset [70], and 
the other one is accessible online in real time [71].  
Table 2.1: Available datasets of energy consumption in tertiary buildings. 

Dataset Description Country Reference 

Tracebase 
It is available energy consumption data of equipment 

used in residential and tertiary buildings that were 
measured with a commercial sensor. 

Germany [83] 

BERDS 

Contains power measurements (active, reactive, and 
apparent) of a university campus, of several equipment, 
such as lighting, hydraulic pumps and air conditioning 

system. 

USA [84] 

COMBED There is data from 200 meters installed in a university 
campus in India. India [85] 
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  The ease with which data sharing is carried out nowadays helps popularize scientific 
knowledge, allowing researchers from many places to develop theories from data originally 
obtained from other parts of the world. In addition, sharing scientific knowledge makes research 
more efficient, more visible, and less redundant [72]. The unrestricted dissemination of research 
publication and data can be called open science.  
 
Table 2.2: Maximum, Mean and Minimum consumption values in kWh of all appliances and aggregate power load for 
the entire dataset and individual years. 

 

 Total Ventilation 
Sockets 

plug 
Lighting 

Other 
electricity 

Cooling Heating  

Maximum 
Value 2037 793 980 132 971 1641 1120 

Entire 
Dataset Mean Value 269.09 32.43 18.40 14.30 87.8 47.08 68.99 

Minimum 
Value 

3.13 0 0 0 0 0 0 

Maximum 
Value 1427 479 49.80 80 765 622 763 

2017 Mean Value 298.14 36.52 18.84 16.68 89.13 53.82 83.14 

Minimum 
Value 

25.35 0 4.22 0 0 5.84 0.25 

Maximum 
Value 

1913.4 608 103 132 879 1641 1120 

2018 Mean Value 246.46 26.58 17.99 15.59 58.38 60.70 67.19 

Minimum 
Value 

20.49 0 3.91 0 0 0.18 0 

Maximum 
Value 

2037 793 547 71.50 971 1599 850 

2019 Mean Value 294.41 30.77 18.23 15.45 116.20 53.77 59.97 

Minimum 
Value 

17.92 0 0.56 0 0 0 0 

Maximum 
Value 1167.40 322 622 65.90 537 543 724 

2020 Mean Value 240.30 29.02 16.70 10.47 97.99 33.56 52.54 

Minimum 
Value 34.09 0.87 0 0.62 0 0 0 

Maximum 
Value 

1180.70 569 980 68.10 215 558 691 

2021 Mean Value 266.48 39.44 20.33 13.44 77.51 33.88 81.85 

Minimum 
Value 

3.13 0 0 0 0 0 0 

 
2.2 Pre-processing Data and Selecting Ideal 
Demographic Input Parameters 
  
 As mentioned in the previous section, the novel Grenoble NILM dataset does not have missing 
(‘NAN’ and/or ‘NULL’) values. Therefore, no techniques were applied for missing data. Since the 
data were recorded through smart meters, we assume that there were no outliers. Outliers reading 
in this scenario would represent faulty appliances which are vital to keep for models training. 
Moreover, this dataset does not have any demographic parameters which we aim to use in this 
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research. The parameters such as day of the week, week of the year, month, quarter can be obtained 
from the time parameter that is already there within the dataset. Using Pandas [73], a Python 
programming language library, these demographic parameters were obtained. Table 2.3 shows the 
list of parameters with their description. 
  
 Machine learning methods typically makes decision according to how the data is provided 
to them and often the algorithms make better inferences out of the data by calculating the distance 
between the data points. Therefore, if the data points of the features are closer to each other, then 
the machine learning models can be trained more efficiently and quickly else if the feature values 
have high differences between them, then the models will require more time to train, and accuracy 
of the output might be lower. Table 2.2 shows that some appliances might consume electricity as 
high as 1000 kWh and others might consume 75 kWh of electricity. Such high differences between 
the values of the features might cause the models and the proposed technique to generate inaccurate 
output. Thus, the input features were scaled using Standard Scaler in the Sklearn Library [74]. 
 
Table 2.3: Various demographic parameters with proper description.   
 

Name of the attribute Attribute Description 

Hour The hour value corresponding to the timestamp of the data 

Day Date of the recorded instance 

Month Month of the recorded instance 

Year Year of the recorded instance 

Day_of_week Value representing what day of the week corresponding to the timestamp of the data 

Week_of_year 
Value representing what week number of the year corresponding to the timestamp of 
the data 

Quarter_of_year Value representing which quarter number of the year when the instance is recorded 

 
2.3   Evaluation Metrics 
 
2.3.1    R2 Score 
  
For evaluating and comparing the performance of the machine learning models, R2 Score is used. 
R2 score is a statistical measure which shows the proportion of the variance for a dependent variable 
which is explained by an independent variable in a regression model. This evaluation metric 
explains to what extent the variance of one variable is explaining the variance of another variable: 
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(2.1) RA	=	
∑ (pB-o)AC
BDE

∑ (oB-o)AC
BDE

 

 
where, 
     𝑜. is the observed value 
     𝑝. is the predicted value 
     𝑜  mean of the observed concentration 
     𝑛 number of observations 

 
 First the data points, both dependent and independent variables are used to train a 
regression model. After the regression model has been generated, we can obtain the predicted value 
from the model. Final R2 score is obtained when variance explained by the model is divided by the 
total variance. The output of the score lies between 0 and 1. R2 score of 0 represents a model which 
does not explain any variation in response variable around its mean. Score of 1 represents model 
which is capable of explaining all variations in response variable around its mean. 
 
Table 2.4: Clusters of data created from the Grenoble dataset which is used towards the training of regression 
algorithms. 
 

Various Clusters Generated from 
Grenoble NILM dataset 

Description 

Spring Data from 1st of March to 31st of May  

Summer Data from 1st of June to 31st of August 

Fall Data from 1st of September to 30th of November 

Winter Data from 1st of December to end of February 

Working hours Data from 0900 hrs to 1700hrs except for Saturday and Sunday 

Non-working hours 
Data from 1700hrs to 0900 hrs the next day except for Saturday 
and Sunday 

Weekends 
All data recorded starting from 0000hrs on Saturday to 2359 hrs 
on Sunday 

 
2.3.2   Mean Absolute Error (MAE) Score 
  
 Alongside R2 Score, the performance of the proposed Bayes Ensemble NILM Regressor 
model is evaluated using MAE score. Mean Absolute Error (MAE) is defined by the average 
absolute error that occurs between actual and predicted values. In statistics, MAE represents the 
result of measuring the differences between continuous variables. MAE is not sensitive towards 
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(2.2) 

outliers and is useful if the distribution of the data is multimodal. This evaluation metric is known 
to be a scale-dependent accuracy measure and so cannot be applied towards the comparison 
between series that use different scales. Since the data used in this work is a time series data, MAE 
is ideal choice. Equation (2.2) represents the formula for MAE. The absolute sign is used to discard 
the formation of any negative score since the predicted outcome of the machine learning model can 
be larger than the true value. MAE score typically ranges from 0 to ∞ and this score is negatively 
oriented, which means the closer the value of MAE is to 0, the more accurate the prediction of the 
learning model is. 

 
MAE = 	

∑ (|𝑦F −	𝑦G|H
FDI )

𝑛
 

 
where, 
     𝑦. is the actual value 
     𝑦0 is the predicted value 
    𝑛 number of observations 
 

 
2.4   Evaluation of Regression Models for NILM using 
demographic parameter 
 
Table 2.5: Input features provided to the model and output consumption values of the appliances 

   
Input Features Expected Outputs 

  
Total Consumption  

Hour Ventilation 
Day Socket Plugs 

Month Lighting 
Year Other Electricity 

Day of the week Cooling 
Week of the year Heating 

Quarter of the year  
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 The first part of this evaluation focuses on investigating six traditional regression algorithms. All 
these algorithms can perform multi-output regression. Therefore, after every computation, each 
algorithm will have six outputs for six respective appliances. The input and output variables are 
presented in Table 2.5. The regression algorithms are used to train models based on 8 different 
scenarios. For each scenario, suitable algorithms are noted according to their performance for the 
individual appliances, rather than simply seeking an ideal regression technique which can generate 
an average satisfactory result for all the appliances. The parameters for the regression techniques 
are tuned manually in order to find the best outcome. Table 2.6 shows the train-test scenarios which 
were adopted for this research. Based on the training and testing data size, each algorithm required 
different computational time. 
Table 2.6: Description of the test-train scenarios 

 

 
2.5   Machine Learning Techniques 
 
2.5.1    Decision Tree Regressor 
 
 Decision Tree (DT) regressor usually performs partition on both the feature space as well as the 
output value on the partition unit that has been constructed by recursive segmentation. Then the 
feature with the highest information gain value is split first. Usually training phase of DT comprises 
of feature selection, tree generation and pruning. Decision Tree algorithm breaks down the dataset 
into smaller subsets and simultaneously, the tree continues to grow until a stopping criterion such 
as max depth is reached. A fully developed DT regressor model contains decision nodes and leaf 

Scenarios Description Number of Instances 

Scenario 1 
Training: entire data of the year 2017 and 2018 17459 
Testing: entire data of the year 2019 8760 

Scenario 2 
Training: data of summer season of the year 2017 and 2018   4416 
Testing:  data of summer season of the year 2019 2208 

Scenario 3 
Training: data of spring season of the year 2017 and 2018   4414 
Testing:  data of spring season of the year 2019 2207 

Scenario 4 
Training: data of fall season of the year 2017 and 2018   4370 
Testing:  data of fall season of the year 2019 2185 

Scenario 5 
Training: data of winter season of the year 2017 and 2018   4259 
Testing:  data of winter season of the year 2019 2160 

Scenario 6 
Training: data of working hours of the year 2017 and 2018   5716 
Testing:  data of working hours of the year 2019 2871 

Scenario 7 
Training: data of non-working hours of the year 2017 and 2018   6751 
Testing:  data of non-working hours of the year 2019 3393 

Scenario 8 
Training: data of weekends of the year 2017 and 2018   4992 
Testing:  data of weekends of the year 2019 2496 
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nodes. The topmost decision node is termed as root node and this node is considered as the best 
predictor. DT regressor model comes with an advantage of reduced storage requirement which is 
controlled by tuning parameters such as minimum number of leaf nodes and maximum depth of 
the tree. Decision trees tend to overfit. 
 
2.5.2    Random Forest Regressor 
 
 Random Forest (RF) Regressor is one of the most popular machine learning techniques which was 
first proposed by in [75]. This technique does not require any preliminary knowledge on 
distribution of data in the training set and is usually trained by bagging method. Because of 
randomness, this approach has a better generalization performance and so any model generated by 
RF has lower variance. Often Random Forest is robust to various condition with minimum effort. 
The only parameter of RF which can be tuned is the number of trees. The major benefit of RF over 
DT is its ability to tackle overfitting. The bagging method of RF resolves the issue of inaccurate 
outcomes. 

 
2.5.3    K-Nearest Neighbor Regressor 
 
KNN regressor is also another non-parametric machine learning method which keeps the training 
realizations to generate numerical predictions of target output based on similarity measures such 
as Euclidean distance or Manhattan Distance. A simple kNN regression implementation comprises 
of computing the average of the target value of ‘k’ nearest neighbors in the training set. The 
performance of kNN algorithm is often affected when a variation in dimension occurs due to the 
usage of multi-dimension distance in a highly dimensional feature space. Another limitation of this 
technique is that it can capture information only when the information is one-dimensional. 
 

2.5.4    Gradient Boosting Regressor 
 
Boosting is an efficient approach for combining various base classifiers to produce a form of a 
group whose performance in general is better than any base classifier [76]. Gradient boosting 
technique constructs a machine learning model in a stage-wises fashion and uses gradient descent 
method to overcome any minimization problem that may arise while building the model. Gradient 
Boosting Regressor (GBR) is considered as a generalization of gradient boosting that has three 
elements namely a loss function that is to be optimized, a weak learner to make predictions and an 
additive model to add weak learners to minimize loss function [77]. The choice of loss function 
depends on the researcher. GBR can handle data of mixed type naturally and is robust to outliers. 
Other advantage of GBR can be high predictive power and supporting different loss functions. Due 
to the sequential nature of boosting, GBR can be difficult to parallelize and thus, has a disadvantage 
with respect to scalability. 
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2.5.5    Light Gradient Boosting Machine (LGBM) 
 
 LGBM is a gradient boosting library implemented by Microsoft in 2017 [78] with an aim of making 
gradient boosting on decision tree faster by using two concepts: Gradient Boosting Decision Tree 
and Gradient-based one-sized sampling. The LGBM algorithm is faster than other tree-based 
algorithms because it progresses vertically in contrast to other algorithms which typically 
progresses horizontally or level-wise. The root and leaf of this technique can either grow vertically 
or horizontally. A major advantage of this machine learning technique is that it provides results 
with high accuracy despite being lightweight and requiring low memory for performing 
computation over large datasets [79]. LGBM is ideal for large datasets and might overfit if the 
dataset is small [80]. 
 
2.5.6    Random Sample Consensus (RanSac) 
 
 Random sample consensus (RanSac) regressor is an iterative ML technique that is designed to 
perform parameter estimation even if the input data is comprised of large proportion of outliers 
[81]. The first step of this regressor technique involves the creation of model hypothesis by 
repeatedly choosing random subsets of observations [82]. In the second step, these hypotheses are 
ranked based on their consensus with all the observations. The top ranked hypothesis is then 
returned as the final estimate by the regressor model. 
 

2.6   Performance Evaluation 
 
 Eight train-test scenarios, as seen in Table 2.6, are used to train the six regression models and the 
input and output features of those models are also illustrated in Table 2.5. Each of the regression 
algorithms has parameters that can be tuned to increase the accuracy of those models. Here, grid 
search technique is used to find appropriate parameters for the algorithms. Empirical study of the 
algorithms aided to find the suitable parameters which were tuned to increase the accuracy of 
consumption prediction made by the regression algorithms. 

Table 2.7: Parameters tuned using Grid Search for the Six regression machine learning algorithms 

Algorithms Parameters tune by Grid Search 

Random Forest Regressor max_depth , n_estimator 
Gradient Boosting Regressor min_sample_leaf, n_estimator 
K Nearest Neighbor (kNN) Regressor leaf_size, n_neighbors 
RanSac max_trial 
LGBM boosting_type = ‘gbdt’, num_leaves, n_estimator 
Decision Tree Regressor max_depth, min_sample_leaf 
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  These parameters are shown in Table 2.7. Even though, some of the algorithms have similar 
parameters, grid search is executed on the parameters of individual algorithms separately. So, 
selecting an ideal parameter value of one algorithm will not influence the output performance of 
another algorithm. Table 2.8 shows the R2 score for the regression models for estimating the output 
consumption made by individual appliances. 
 
2.6.1    Scenario 1 
 
 In scenario 1, the model is trained using all the data of years 2017 and 2018. All six regression 
algorithms were trained with the mentioned data and the input and output features stated in Table 
2.5 were used towards training the models. There is a total of 17459 instances used to train the 
model along with grid search approach to identify suitable hyperparameters. 8760 instances were 
used to test the models’ performance. On testing the model with the entire data of 2019 and 
obtaining the R2 score, model trained by RanSac regressor produced good score of 0.33 for 
Ventilation, 0.25 for Socket Plugs and 0.77 for Cooling. Decision Tree Regressor model is ideal 
for lightning and other appliances with a score of 0.62 and 0.12 respectively. For heating appliance, 
K-NN regressor model performed well with a score of 0.61. Table 2.7 shows the hyperparameters 
for the regression techniques and Table 2.8 shows the hyperparameters values which were needed 
to generate the best performing model for Scenario 1. 
 
2.6.2    Scenario 2 
 
 Here, the training data is now associated with summers 2017 and 2018, having a total training 
instance of 4416. The testing set consists of 2208 instances of summer 2019. For this scenario, 
RanSac regressor model had the best score for Socket plugs (0.07), other electricity appliances 
(0.23) and cooling (0.80). Random Forest provided the best score of 0.14 among other techniques 
for the Heating appliance. Gradient Boosting Regressor scored the maximum of 0.46 for ventilation 
and for Lighting, LGBM regressor model had better performance for estimating consumption with 
a R2 score of 0.72. The heating appliance had the lowest score in contrast to the other electricity 
appliances. This is mainly because during summer, heating appliance is less likely to be used and 
had made little consumption. Figure 2.4(f) illustrates the minimum usage of heater during the 
summer season. 
 
2.6.3    Scenario 3 
 
 For scenario 3 data of spring 2017 and 2018, comprised of 4414 instances, is used for training the 
models. The models are then tested against 2207 instances of spring 2019. After the models were 
trained, based on the scores, Random Forest regressor generated models that output good 
consumption estimates for the ventilation, socket plugs and lighting appliances with a score of 0.54, 
0.48 and 0.75, respectively. Models trained by RanSac had good output performance for other 
electricity appliances having score of 0.33 and cooling appliance with a score of 0.12. For heating 
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appliance, Gradient boosting regressor model dominates with a score of 0.60. For this scenario, 
cooling appliance had the lowest score in contrast to the other appliances. Unlike scenario 2 which 
dealt with summer data, scenario 3 trained models using spring data. Cooling appliance is less 
likely to be used during spring and so had made little consumption. Figure 2.4(e) demonstrates the 
minimal usage through lower consumption of electricity made by the cooling appliance during 
spring season. 
 
2.6.4    Scenario 4 
 
 Here models are trained using 4370 instances of the entire data of falls 2017 and 2018 and 2185 
instances of fall 2019, is used for testing. For this scenario better estimate of ventilation 
consumption is made by Decision tree model with a score of 0.53. For Socket plug and lighting 
Gradient boosting regressor had a score of 0.51 and 0.56, respectively. For other electricity (0.78) 
and cooling (0.33) appliances, it is the model trained by RanSac regressor and for heating appliance 
the score was 0.58 which is achieved by Gradient boosting regressor model. 
 
2.6.5    Scenario 5 
 
 This scenario trains the model using all the winter data of 2017 and 2018 and test them with the 
winter data of 2019. Training set has 4259 instances and testing set contains 2160 instances. For 
this scenario, only two regressor models generate good estimates for all the appliances. RanSac 
regressor model provided satisfactory output for Ventilation (0.16), other electricity (0.18) and 
heating (0.19) appliances, whereas for the remaining appliance namely Socket plugs (0.43), 
lighting (0.47) and cooling (0.33), Gradient boosting regressor model performed well in contrast 
to the other regressor models. 
 
2.6.6    Scenario 6 
 
 Unlike previous four scenarios, this scenario does not train models using seasonal data. Instead, 
this train-test approach will help to understand which regression models are more suitable towards 
finding accurate appliance consumption during office hours. Table 2.4 mentions the typical 
working hours in France, where for this scenario every working day for years 2017 and 2018, from 
0900 to 1700 is considered for training. For testing the models, data of year 2019 are considered 
with the exact same condition for days and working hours. There were 5716 instances for training 
the regressors and 2871 instances for testing the models’ performance. Once the regression models 
are trained with the data of this scenario, Gradient boosting regressor model is able to generate 
satisfactory estimates for ventilation, socket plugs and lighting having R2 score of 0.12, 0.29 and 
0.64, respectively. RanSac regressor model had good outputs for the other electricity appliances 
with score of 0.59 and heating appliance with score of 0.60. Cooling consumption is accurately 
estimated by Random Forest regressor having a score of 0.76. 
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Figure 2.4: Graph showing different trends of consumption of each appliance during four seasons of France.  

(c) 

(d) 

(e) 

(f) 
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2.6.7    Scenario 7 
 
 Like scenario 6, scenario 7 trains regressors with non-working hours data of years 2017 and 2018, 
and test regressors with non-working hours data of year 2019. The training data, like scenario 6, is 
from Monday to Friday, but the time now lies in between 1700 hr to 0900 hr. The training set 
contains 6751 instances and testing set has 3393 instances. Once tested, Gradient boosting regressor 
had comparatively accurate consumption output for Socket plug and lighting with R2 scores of 0.10 
and 0.84, respectively. RanSac regressor model is suitable for other electricity appliances with 
score of 0.53 and heating with score of 0.40. K Nearest Neighbor regressor is ideal for ventilation 
having accuracy score of 0.12 and for cooling appliance LGBM had the best score of 0.80. 
 
2.6.8    Scenario 8 
 
 The final scenario uses weekend-based data. Table 2.4 shows that every data point that lies on 
Saturday and Sunday is considered as weekend data. Models were trained using weekend data of 
2017 and 2018 and trained using data of 2019. There is a total of 4992 training instances and 2496 
testing instances. Based on R2 score, RanSac regressor is able to perform a good consumption 
estimate of ventilation with score 0.03, socket plugs having a score of 0.02, other electricity 
appliance scoring 0.70 and heating with score of 0.22. LGBM model is able to achieve satisfactory 
score of 0.70 for cooling and 0.14 for lighting appliance. 
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Figure 2.5: Bar plots showing the R2 Score of the best machine learning techniques to estimate different appliance 
consumptions of all eight scenarios. 

  The results of training six different regression algorithms using 8 train-test scenarios show 
that it is difficult to consider a single machine learning technique for estimating the consumption 
made by different appliances of NILM dataset. Moreover, the performance of each technique varies 
under different demographic conditions which means that a set of regression models might be 
efficient in estimating appliance consumption during summer season, but the same regression 
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models might not be suitable to estimate the consumption made by the same appliances during 
winter season. Therefore, this section asserts the idea that instead of one machine learning 
algorithm, different techniques might be suitable in estimating different appliances consumptions. 
Additionally, it is also crucial to understand that under the influence of different demographic 
scenarios such as seasons, working hours, weekdays, there is a variation in performance of different 
regression models in estimating the power consumption of different appliances. Lastly, it is 
observed that using Grid Search technique to optimize the parameters of the regression models 
were computationally expensive in terms of overall training time and usage of memory. 

 
 

Table 2.8: Output of 8 train-test scenarios 
 

Scenarios Techniques Ventilation Socket Plug Lighting Other 
Electricity Cooling Heating 

Scenario 
1 

Random 
Forest 0.30 

[6, 82] 0.11 
[5,24] 0.35 

[5,19] 0.05 
[2,1] 0.70 

[10,3] 0.36 
[3,50] 

Gradient 
Boosting 0.29 

[5,15] 0.14 
[46,14] 0.36 

[5,1] 0.05 
[2,11] 0.76 

[40,6] 0.39 
[3,8] 

K Nearest 
Neighbor 0.13 

[141] 0.05 
[122] 0.28 

[116] 0.55 
[168] 0 

[160] 0.61 
[181] 

RanSac 0.33 
[108,36] 0.25 

[125,21] 0.60 
[54,18] 0.02 

[1,1] 0.77 
[2,145] 0.51 

[75,16] 
LGBM 0.30 

[236,48] 0.21 
[56,12] 0.51 

[171,35] 0.06 
[86,18] 0.71 

[71,15] 0.28 
[281,49] 

Decision Tree 0.02 
[1,1] 0.21 

[2,1] 0.62 
[6,3] 0.12 

[15,14] 0.74 
[4,8] 0.26 

[93,99] 

Scenario 
2 

Random 
Forest 

0.41 
[3,5] 

0.05 
[3,5] 

0.65 
[74,16] 

0.21 
[6,8] 

0.78 
[36,5] 

0.14 
[6,3] 

Gradient 
Boosting 

0.46 
[30,19] 

0.02 
[16,16] 

0.70 
[31,46] 

0.17 
[48,49] 

0.77 
[2,49] 

0.04 
[6,8] 

K Nearest 
Neighbor 

0.27 
[36,18] 

0.02 
[18,4] 

0.70 
[69,15] 

0.15 
[41,19] 

0.76 
[35,2] 

0.05 
[36,18] 

RanSac 
0.27 
[291] 

0.07 
[121] 

0.37 
[170] 

0.23 
[229] 

0.80 
[103] 

0.03 
[156] 

LGBM 
0.32 
[6,1] 

0 
[0,1] 

0.72 
[2,3] 

0.17 
[7,2] 

0.77 
[1,8] 

0.01 
[0,1] 

Decision Tree 
0.36 
[3,1] 

0.05 
[3,1] 

0.50 
[10,5] 

0.15 
[8,4] 

0.76 
[7,2] 

0.11 
[8,9] 

Scenario 
3 

Random 
Forest 

0.54 
[5,9] 

0.48 
[40,4] 

0.75 
[6,4] 

0.10 
[6,2] 

0.0 
[1,0] 

0.50 
[8,9] 

Gradient 
Boosting 

0.34 
[78,9] 

0.43 
[99,9] 

0.70 
[1,9] 

0.15 
[11,7] 

0.0 
[0,1] 

0.60 
[74,9] 

K Nearest 
Neighbor 

0.40 
[120,29] 

0.46 
[120,29] 

0.70 
[120,29] 

0.0 
[1,1] 

0.0 
[1,0] 

0.58 
[120,29] 

RanSac 
0.51 
[68] 

0.40 
[27] 

0.60 
[21] 

0.33 
[39] 

0.12 
[37] 

0.48 
[16] 

LGBM 
0.25 
[9,1] 

0.48 
[4,1] 

0.73 
[1,2] 

0.07 
[2,9] 

0.0 
[1,0] 

0.53 
[1,1] 

Decision Tree 
0.53 
[5,1] 

0.46 
[7,3] 

0.73 
[6,3] 

0.09 
[1,1] 

0 
[1,1] 

0.44 
[8,1] 
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Scenarios Techniques Ventilation Socket Plug Lighting 
Other 

Electricity 
Cooling Heating 

Scenario 
4 

Random 
Forest 0.45 

[5,4] 0.47 
[14,6] 0.48 

[33,1] 0.01 
[6,1] 0.22 

[98,1] 0.52 
[1,5] 

Gradient 
Boosting 0.45 

[97,29] 0.51 
[68,19] 0.56 

[50,27] 0.01 
[0,1] 0.28 

[81,17] 0.58 
[4,9] 

K Nearest 
Neighbor 0.48 

[91,19] 0.46 
[56,12] 0.48 

[91,19] 0.0 
[1,0] 0.45 

[26,6] 0.20 
[91,19] 

RanSac 0.28 
[74] 0.29 

[35] 0.31 
[74] 0.78 

[45] 0.33 
[67] 0.57 

[52] 
LGBM 0.10 

[3,1] 0.28 
[2,1] 0.45 

[2,7] 0 
[1.0] 0.20 

[17,9] 0.35 
[19,6] 

Decision Tree 0.53 
[10,61] 0.37 

[10,8] 0.52 
[7,61] 0 

[1,0] 0.19 
[7,62] 0.50 

[8,1] 

Scenario 
5 

Random 
Forest 

0.12 
[6,2] 

0.33 
[52,5] 

0.35 
[136,6] 

0.05 
[2,1] 

0.32 
[71,2] 

0.1 
[0,0] 

Gradient 
Boosting 

0.09 
[5,19] 

0.43 
[1,19] 

0.47 
[7,19] 

0.01 
[0,1] 

0.33 
[2,19] 

0.13 
[41,5] 

K Nearest 
Neighbor 

0.15 
[75,49] 

0.40 
[36,8] 

0.40 
[41,9] 

0.0 
[0,1] 

0.0 
[26,6] 

0.0 
[91,19] 

RanSac 
0.16 
[81] 

0.30 
[93] 

0.37 
[34] 

0.18 
[88] 

0.03 
[78] 

0.19 
[88] 

LGBM 
0.13 
[9,5] 

0.38 
[1,1] 

0.32 
[1,1] 

0.02 
[9,8] 

0 
[0,1] 

0 
[0,1] 

Decision Tree 
0.14 

[6,10] 
0.24 

[7,19] 
0.33 

[7,18] 
0.05 

[2,60] 
0 

[0,1] 
0 

[1,0] 

Scenario 
6 

Random 
Forest 

0.02 
[1,48] 

0.20 
[14,49] 

0.37 
[17,46] 

0.10 
[2,48] 

0.76 
[11,41] 

0.35 
[67,44] 

Gradient 
Boosting 

0.12 
[58,9] 

0.29 
[22,66] 

0.64 
[32,64] 

0 
[1,0] 

0.73 
[1,64] 

0.54 
[8,68] 

K Nearest 
Neighbor 

0.07 
[91,58] 

0.27 
[51,21] 

0.56 
[51,21] 

0.09 
[51,21] 

0.74 
[51,21] 

0.47 
[91,29] 

RanSac 
0 

[1] 
0.06 
[93] 

0.29 
[77] 

0.59 
[91] 

0 
[21] 

0.60 
[48] 

LGBM 
0 

[0,1] 
0.28 

[6,11] 
0.58 

[5,12] 
0.13 

[2,11] 
0.70 

[1,14] 
0.43 

[5,20] 

Decision Tree 
0.02 
[1,1] 

0.11 
[13,9] 

0.24 
[16,9] 

0.10 
[2,1] 

0.72 
[11,2] 

0.33 
[3,2] 

Scenario 
7 

Random 
Forest 

0.01 
[6,68] 

0 
[0,0] 

0.45 
[18,61] 

0.05 
[1,61] 

0.61 
[57,60] 

0.18 
[3,62] 

Gradient 
Boosting 

0.11 
[72,60] 

0.10 
[52,68] 

0.84 
[46,69] 

0 
[0,0] 

0.76 
[1,67] 

0.03 
[4,62] 

K Nearest 
Neighbor 

0.12 
[96,59] 

0 
[0,1] 

0.68 
[51,50] 

0 
[1,1] 

0.48 
[51,50] 

0.26 
[96,59] 

RanSac 
0.11 

[144,0] 
0.04 

[123,0] 
0.51 

[122,0] 
0.53 

[148,0] 
0.01 

[115,0] 
0.40 

[102,0] 

LGBM 
0 

[0,0] 
0 

[1,1] 
0.84 

[2,12] 
0.05 

[1,13] 
0.79 

[5,20] 
0.08 

[4,20] 

Decision Tree 
0.01 
[5,1] 

0 
[1,1] 

0.27 
[7,9] 

0.06 
[4,3] 

0.60 
[12,7] 

0.15 
[3,1] 
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Scenarios Techniques Ventilation Socket Plug Lighting 
Other 

Electricity 
Cooling Heating 

Scenario 
8 

Random 
Forest 0.01 

[1,65] 0 
[1,0] 0 

[0,0] 0.1 
[2,66] 0.34 

[79,63] 0 
[0,0] 

Gradient 
Boosting 0 

[0,0] 0.01 
[45,60] 0 

[0,1] 0.07 
[88,69] 0.07 

[21,69] 0 
[0,1] 

K Nearest 
Neighbor 0 

[0,0] 0.01 
[81,56] 0 

[0,0] 0.01 
[51,50] 0.36 

[51,50] 0 
[0,1] 

RanSac 0.03 
[12,0] 0.02 

[63,0] 0 
[1,0] 0.70 

[15,0] 0.01 
[47,0] 0.22 

[20,0] 
LGBM 0 

[0,1] 0 
[1,0] 0.14 

[1,0] 0.06 
[4,12] 0.70 

[2,11] 0 
[1,0] 

Decision Tree 0.01 
[6,1] 0 

[1,0] 0 
[0,0] 0.11 

[2,1] 0.20 
[6,8] 0 

[1,1] 
 
2.7   Bayes-Ensemble Regressor Model for NILM 
  
 In the previous section, six traditional ML algorithms, evaluated by different train-test scenarios, 
estimated consumption made by appliances of Grenoble NILM dataset. The models trained by the 
six traditional ML algorithms showed satisfactory performance in estimating the outputs of 
different appliances under different scenarios. It cannot be said that among six techniques, one of 
them is dominant in providing consumption of all appliances, rather, different models were efficient 
in estimating consumption of different appliances under any given train-test scenario. In this 
section, a novel Bayesian Optimized Ensemble regressor NILM technique has been proposed to 
estimate the power consumption of the appliances individually. The primary motivation behind 
using Ensemble Learning is to combine the efficiency of multiple regression algorithms together 
to estimate appliance consumptions. In order to reduce the overall computational time, different 
parameters of the regression techniques implemented within the Ensemble model are optimized 
using Bayesian Optimization, instead of Grid Search used in the previous findings. The proposed 
approach is trained and tested by the similar data cluster which is used for Scenario 1. The 
performance of the proposed technique is compared to the two other benchmarking techniques. 
Additionally, the performance of the proposed method is evaluated using R2 Score and Mean 
Absolute Error (MAE). 
 
2.7.1    Bayesian Optimization 
 
Function optimization deals with finding the minimum or maximum of an objective function. 
Objective function takes a sample and returns a cost. Even though easy to understand, this objective 
function can be computationally difficult to calculate or may end up miscalculating the cost over 
time. Therefore, often objective function is termed as black box function. Function optimization is 
considered as an ML problem as most related algorithms have certain optimization of parameters 
(such as weight, coefficient, kernel size, etc.) in response to training data. Optimization often refers 
to finding the best hyperparameters that configure the training of the ML algorithm to generate 
model which can produce accurate results. 
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  Bayesian optimization uses Bayes Theorem to find the maximum or minimum of an 
objective function that are naturally complex, noisy, and expensive to evaluate. This technique 
finds the suitable hyperparameters that are needed to train an efficient ML model. Therefore, it is 
inevitable to use Bayesian optimization in tuning of the hyperparameter for the generation of an 
efficient Ensemble Regressor NILM model. 
 
Table 2.9: The best performing regression algorithm for individual appliances for each scenario. 

 
2.7.2    Ensemble Model 
 
 Ensemble model is an umbrella term typically used in supervised ML for methods that combine 
multiple base models to make decision. By combining the base models, the ensemble model can 
draw predictions from unlabelled examples. The ensemble base model can be any type of ML 
technique (such as Decision Tree, k-NN, Neural Network, Linear Regression, etc.). The main 
motivation behind ensemble model is that when multiple models are combined, the errors caused 
by the output of one model is compensated by the efficient output of another ML model within the 
ensemble model. This result in the performance of an ensemble model to be superior to any single 
ML model. Moreover, when the computational cost of selected based models is low then ensemble 
models tend to be efficient.  
 
  Reasons why ensemble approach has improved predictive performance are: 

• Ensemble models have a better fit to the data space because when different models are 
combined within the ensemble model, the research space is also extended. 
 

 Ventilation Socket Plug Lighting Other Electricity Cooling Heating 

Scenario 1 RanSac RanSac Decision Tree Decision Tree RanSac K-NN 

Scenario 2 
Gradient 
Boosting 

Regressor 
RanSac LGBM RanSac RanSac Random Forest 

Scenario 3 Random Forest Random Forest Random Forest RanSac RanSac 
Gradient 
Boosting 

Regressor 

Scenario 4 Decision Tree 
Gradient Boosting 

Regressor 
Gradient Boosting 

Regressor 
RanSac RanSac 

Gradient 
Boosting 

Regressor 

Scenario 5 RanSac 
Gradient Boosting 

Regressor 
Gradient Boosting 

Regressor 
RanSac 

Gradient Boosting 
Regressor 

RanSac 

Scenario 6 
Gradient 
Boosting 

Regressor 

Gradient Boosting 
Regressor 

Gradient Boosting 
Regressor 

RanSac Random Forest RanSac 

Scenario 7 K-NN 
Gradient Boosting 

Regressor 
Gradient Boosting 

Regressor 
RanSac LGBM RanSac 

Scenario 8 RanSac RanSac LGBM RanSac LGBM RanSac 



31 

• Often single machine learning models can get stuck in local optima so the combination of 
several models within the ensemble model allows to reduce the risk of overall model from 
getting stuck local minimum. 
 

• When the data size is small, different ML algorithms will reach different hypothesis. 
During training, the individual models might fit the training data perfectly but will make 
poor predictions once unseen data are provided. In case of ensemble model, making a mean 
of different hypothesis of individual models will reduce the overall risk of poor hypothesis, 
resulting in an improvement of performance in prediction when unseen data are provided 
to the model.  
 

• Ensemble models can mitigate class imbalance issue when ML models often develop a 
preference to one major class and ignore small classes. 

 
2.7.3    Proposed Model 
 
 

Figure 2.6: Block diagram of the Bayes-Ensemble Regression NILM model. The Ensemble model has six base models, 
and their averaged output will be the consumption of the appliance. There will be six ensemble models for six NILM 
dataset. 
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In this section of the thesis, a novel Bayesian Ensemble Regressor Model for Non-Intrusive load 
monitoring is proposed. The base techniques of the ensemble model are the six regression 
algorithms discussed and evaluated in section 2.5. The Bayes-Ensemble Regressor model is trained 
with the entire Grenoble data of the year 2017 and 2018 and the trained model is then tested using 
the data of year 2019. Figure 2.6. demonstrates the simple overview of the proposed Bayes-
Ensemble Regressor Model. After the data is preprocessed and a separate training and testing set 
has been created, the training set is passed to the proposed model which in turn send the data to 
each of the six base regressor techniques within the ensemble model. When the regressor models 
are being trained, Bayesian optimization technique is constantly tuning the hyperparameters of 
those models and the tuning is parallelly performed for all six regressors in the ensemble model.  
 
Table 2.10: Parameters of the regressor algorithms within the Bayes-Ensemble Model that are turned by the Bayesian 
Optimization technique. 

 
Algorithms in Ensemble Model Parameters tuned by Bayesian 

Optimization 
Random Forest Regressor n_estimators 

max_depth 
min_samples_leaf 
max_leaf_nodes 

Gradient Boosting Regressor learning_rate 
min_samples_leaf 
n_estimators 
subsample 
max_depth 
max_leaf_nodes 

K Nearest Neighbor (kNN)  n_neighbors 
leaf_size 
p 

RanSac min_samples 
max_trials 
stop_probability 

LGBM num_leaves 
max_depth 
n_estimators 
min_split_gain 
min_child_samples 
max_leaf_nodes 

Decision Tree Regressor max_depth 
min_samples_split 
min_weight_fraction_leaf 
min_impurity_decrease 

 
   Table 2.10 shows the parameters that are tuned by the Bayesian Optimization technique of 
the proposed model. Certain regressors within the ensemble model have similar parameters as can 
been seen in Table 2.10, for example, “max_leaf_node” is a common parameter of gradient 
boosting regressor, random forest regressor and LGBM. Therefore, tuning of this parameter for one 
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algorithm will not influence the tuning of the same parameter for another algorithm. The parameters 
for which the overall ensemble model has highest R2 scores are considered as the ideal parameters 
for the proposed Bayes-Ensemble NILM Regressor. Therefore, the objective of the proposed model 
is in two folds. First, the Bayesian optimization technique is used to find the ideal parameters for 
each model within the ensemble learning technique. Second, the ensemble learning allows to 
combine the output of each model to generate the best overall consumption estimation for each 
appliance of the Grenoble dataset as well as compensate probable poor performance made by any 
regressor technique within the ensemble model. 
 
   Bayes-Ensemble Regressor model is trained in an environment supported by AMD Ryzen 
5 5600H processor, which has a clock speed of 3.30 GHz. The system also has 16 Gigabyte of Ram 
and backed up by 500 Gigabyte of internal storage. The system is running Windows 11 Home 
operating system software. The model is implemented in Jupyter Notebook ran by Python 
environment. 
 

2.7.4    Benchmarking Methods 
 
 Two state-of-the-art regression approaches proposed for NILM are considered as benchmark 
methods for accessing and evaluating the performance of the proposed framework. Bayesian 
Optimization technique was used on Bi-directional LSTM to estimate appliance load consumption 
which was proposed in [26] by Kaselimi et al. and is used as the first benchmarking approach. In 
Kaselimi’s work, each node of the Bi-directional LSTM model is comprised of forget gate, input 
gate and output gate. This Bayes Bi-LSTM method was trained and tested using the AMPds dataset, 
consisting of four appliances namely dryer, dishwasher, heat pump and oven. SVM with edge 
analysis for estimation of unknown appliance loads was used by [41]. Rao’s work [34] studied the 
performance of the Naïve Bayes, Artificial Neural Networks, decision trees and SVM where the 
researchers concluded that among all the considered techniques of the study, SVM provided the 
most accurate result in estimating the appliance consumption. In [41] the performance of edge-
SVM is outlined in detail using a novel low frequency dataset collected by a hardware module 
developed by the author which comprised of three appliances, namely a heater, an electric fan, and 
a light bulb. 
 
2.7.5    Results and Performance comparison with Benchmarks 
Approach 
 
 Performance of the Bayes Ensemble model is evaluated using R2 score and MAE. When predicted 
values of the model are compared to the true values, the difference between them were minimal. 
To understand the performance of the proposed model, the output of the model is compared to that 
of Bayes Bi-LSTM approach in [26] and edge-SVM approach [41]. Both benchmarking approaches 
trained and tested with the same clusters of Grenoble NILM dataset which is used to train and test 
the proposed model. Additionally, regressors trained by Scenario 1 which is discussed back in 
section 2.7, had same sets of data used for training the proposed Bayes-ensemble regressor model. 
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Therefore, the best results of the six regression algorithms of Scenario 1 (as seen in Table 2.8) can 
also be compared to the results of the proposed model. 
 
      Based on the R2 score, the proposed model showed superiority in terms of estimating the 
consumption made by almost all six appliances. The model had better R2 score in terms of the 
appliances namely ventilation, socket plugs, lighting, other electricity, and cooling. Even though 
K-NN regressor trained by Scenario 1 had better score than the proposed technique in terms of 
estimating power of heating appliance, but the margin between the scores is significantly low. 
 
Table 2.11: Performance comparison using R2 score between proposed Bayesian-ensemble model against approach 
used in Scenario 1, Bayes Bi-LSTM and edge-SVM. 

 
Technique Ventilation Socket Plugs Lighting 

Other 
Electricity 

Cooling Heating 

Bayes-Ensemble NILM 
Regressor 

0.38 0.32 0.64 0.43 0.78 0.58 

Best scores of Scenario 1 0.33 0.25 0.62 0.12 0.77 0.61 

Bayes Bi-LSTM 0.30 0.05 0.20 0.42 0.26 0.07 

Edge-SVM 0.28 0.22 0.46 0.39 0.67 0.42 

 
  When compared to both approaches in [26] and [41], the proposed Bayes-ensemble 
regression model had far better power estimation performance for all the appliances. The 
performance of the proposed approach shows improvement over the approaches in [26] and [41] 
ranging from 2% to up to 66%. For ventilation the proposed model had a slight improvement over 
Bayes Bi-LSTM approach, edge-SVM approach and Scenario 1 models. For socket plugs major 
improvement is noticed when compared to the performance made by Bayes Bi-LSTM and slightly 
significant improvement from edge-SVM and scenario 1 models. Similar is the case for heating but 
here the scenario 1 models performed slightly better (by 5%) than proposed approach. For socket 
plugs and lighting and cooling the proposed approach had much higher R2 score than the method 
in [26] and slightly better than edge-SVM proposed by Hernandez et al. [41]. In case of other 
electricity, appliances, the proposed model has much higher R2 score than the Scenario 1 model 
and both of the benchmarking approaches. Table 2.11 outlines the comparison of R2 scores between 
the benchmarking techniques, Scenario 1 and the proposed Bayes Ensemble Regressor Model.  
  
  Likewise, the MAE score of the proposed model is also significantly better than the two 
benchmarking techniques as well as Scenario 1. From Table 2.12, it can be seen that MAE score 
for energy consumption estimation of all six appliances by the proposed model is lower than both 
the benchmarking techniques and scenario 1. Score of ventilation by the proposed model is 0.42, 
socket plug is 0.35, lighting is 0.73, other electricity is 0.64, cooling is 0.40 and heating is 0.49. On 
comparing with the best scores of the three models, MAE scores generated by the proposed 
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approach for ventilation, socket plugs, lighting and heating are 40%, 45%, 21% and 48%, 
respectively, higher against the score of scenario 1. For other electricity and cooling the MAE 
scores of the proposed model when compared to the best scores of the other three approaches are 
21% and 46%, respectively, higher than Bayes Bi-LSTM approach.  Therefore, the proposed 
approach shows promising result to estimate power consumptions of the six appliances in contrast 
to scenario 1 and two benchmark approaches. 

 
Table 2.12: Performance comparison using MAE score between proposed Bayesian-ensemble model against approach 
used in Scenario 1, Bayes Bi-LSTM and edge-SVM. 

 
Technique Ventilation Socket Plugs Lighting 

Other 
Electricity 

Cooling Heating 

Bayes-Ensemble NILM 
Regressor 

0.42 0.35 0.73 0.64 0.40 0.49 

Best scores of Scenario 1 0.73 0.65 0.92 0.87 1.21 0.97 

Bayes Bi-LSTM 1.24 2.51 1.10 0.82 0.76 3.01 

Edge-SVM 3.45 4.21 3.67 1.92 4.61 3.31 

 
2.8   Discussion 
  
 The first part of this chapter explored various regression algorithms based on multiple training-
testing strategies. Six regression algorithms were trained with eight different approaches. For every 
scenario, different ML algorithms generated satisfactory consumption estimates for various 
appliances. After training models with several unique methodologies, considering different 
demographic parameters and analysing the results thoroughly, it can be said that even though when 
NILM models are trained with entire year of data in general, the model still might not be efficient 
for estimating appliance level power consumption. This is mainly because consumption pattern of 
certain household appliances depends on handful of demographic parameters such as season, 
working hours, weekends which is important for NILM research, and all the reviewed literature 
mentioned in this chapter did not take those factors into account when constructing state-of-the-art 
ML models for predicting appliance level consumption. Therefore, considering those parameters 
are important for suitable and efficient device level consumption and it should be considered that 
for consumption detection for each appliance, one algorithm alone might not be suitable instead 
different algorithms might be ideal for different appliances. The later part of this chapter proposed 
a novel Bayesian Optimization Ensemble regressor model technique for performing non-intrusive 
load monitoring. The base models used in the novel Bayes-ensemble approach are those regression 
models that have been trained and tested by 8 different scenarios. Based on the R2 and MAE score, 
the proposed model performed well on the Grenoble NILM dataset in predicting appliance level 
consumption since the input features were demographic parameters and hyperparameters of the 
base regressor models of the ensemble model were optimized by Bayesian optimization technique.  
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Figure 2.7: Test versus Prediction Graph of the proposed Bayes-Ensemble NILM Regressor Model. 
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(3.1) 

Chapter 3 

Semi-Supervised TCN – LSTM Based 
Deep Learning Technique with Middle-
Point Thresholding Method for Non-
Intrusive Load Monitoring 

This chapter proposes a semi-supervised multilabel deep learning framework based on the Mean 
Teacher Model comprising Temporal Convolutional Network (TCN) and Long Short-term 
Memory (LSTM) architectures to estimate the operational states of the appliance from houses of 
Redd and UK-Dale and Refit datasets. The proposed model can learn the unique consumption 
pattern of various appliances from small number of labeled and large number of unlabeled 
instances. Operational state labels of the appliances from the three datasets are assigned using two 
thresholding techniques and impacts on the performance of the proposed model by the thresholding 
techniques are also explored thoroughly in this chapter. 

 
3.1    Thresholding Techniques 
  
NILM datasets are comprised of aggregate power load along with the consumption made by 
individual appliances and do not contain any explicit label for appliances’ operational state. 
Classification NILM involves predicting the appliance state based on the aggregate signal and it is 
not feasible to determine whether a particular appliance is turned On or Off by simply looking at 
its power consumption. Thus, a prerequisite in deriving operational status for individual appliances 
for correct NILM classification approach is to establish a threshold 	λ(1) for each appliance a and 
define 

𝑆!
(#) = 𝐻(𝑃!

(#) −	𝜆(#)) 
where if, 

𝐻(𝑥) ≥ 0	;	𝑆!
(#) = 1	(𝑂𝑛	𝑆𝑡𝑎𝑡𝑒) 

or 
𝐻(𝑥) < 0	;	𝑆!

(#) = 0	(𝑂𝑓𝑓	𝑆𝑡𝑎𝑡𝑒) 
 
 Ideally the threshold 	𝜆(#) for appliance a is determined by series of power consumption 
data 𝑃!

(#)	made by appliance a. This section discusses two thresholding approaches which are 
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(3.2) 

(3.3) 

(3.4) 

explored in this chapter for setting individual threshold for each appliance to determine whether 
the appliance is On or Off from its input power signal.  
 

3.1.1  Middle Point Thresholding (MPT) 
 
In this thresholding approach, all the power values of appliance a in the training set are considered 
and a clustering algorithm, in this case K-Means [86], is applied to split the training set of appliance 
a into two clusters. Two centroids denoted by 𝑚2

(#)  representing the Off state and 𝑚'
(#) 

representing the On state of appliance a are then derived from the two clusters. In MPT, the 
threshold 	𝜆(#) for appliance lies fixed between the two centroid values. 

 
 

𝜆(")=	$+
(-)%$/

(-)

&
 

 
 
3.1.2    Variance-Sensitive Thresholding (VST) 
 
VST was proposed in [87] and similar to MPT, this thresholding approach also uses K-Means 
clustering to find two centroids for each class from the power values of appliance a. Instead of just 
using mean of two centroids, the standard deviation 𝜎3

(#) for the points in each cluster is also used 
for determining the threshold of appliance a according to the following equation 
 
 

𝑣𝑎𝑙 = 	 4!
(#)

4!
(#)54%

(#)   

 
𝜆(") = (1 − 𝑣𝑎𝑙)	𝑚0

(𝑎) + (𝑣𝑎𝑙)	𝑚1
(𝑎)	 

 
 

 𝜎2
(#) and 𝜎'

(#) denote the standard deviation of points which belong to the clusters that 

represent the OFF and ON state of appliance a respectively. If 𝜎'
(#) is greater than the 𝜎2

(#) then 

threshold moves towards 	𝑚2
(#) which prevents misclassifying the power values that are away from 

the centroid 	𝑚'
(#) of ON state [15]. Therefore, the threshold set by VST is lower than the MPT. 
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(3.5) 

3.2   Proposed Teacher-Student Semi-supervised Method 
based on TCN and LSTM 
  
The proposed method is inspired by the recent development of NILM models using deep learning 
techniques. Deep learning NILM techniques are often not capable enough to deal with the 
classification of multiple appliance states (multilabel classification) using a small portion of labeled 
and a large portion of unlabeled data at the same time. The proposed semi-supervised Mean 
Teacher-Student method based on TCN, and LSTM can address this challenge. 

  
3.2.1    Temporal Convolutional Network (TCN) 
 
The temporal convolutional network (TCN) is a time series data processing algorithm introduced 
in [55]. To address the challenge of extracting long-term time series information, TCN introduces 
two key structures, namely dilated convolution, and residual block. A detailed explanation of these 
two structures are as follows. 

 
1) Dilated Convolutions  

 
The dilated causal convolution is considered as the primary structural component of the TCN. If 
input 𝑋 = (𝑥2, 𝑥', 𝑥6, … , 𝑥! , … , 𝑥7) is a one-dimensional time series and a filter 𝑓: {0,1,2,3, … , 𝑛 −
1}, then the dilated convolution operation 𝐿(∙) of the sequence element T can be defined as:  
 

𝐿(𝑇) = (𝑋 ∗3 𝑓)(𝑇) = P𝑓
"45

678

(𝑖) ⋅ 𝑥94:∙6 		 

   
   where n denotes the filter size, d is the dilation factor and T-d·i represents the direction of 
the past. When filter size n and dilated factor d is increased, the TCN can effectively expand the 
receptive field, which enables an output at the top layer to receive a wider range of input 
information. The computational efficiency of the whole model can also be improved by parallelly 
processing the same filter in each layer. Moreover, the output information of the network is only 
impacted by past input information, avoiding the “leakage” from future to past [45]. Figure 3.1 
shows dilated casual convolution having dilation factors = 1,2,4,8. 
 

2) Residual Blocks  
 

Besides adjusting the filter size n and dilation factor d, another procedure to expand the receptive 
field size of TCN is by increasing the number of hidden layers. However, increasing hidden layers 
in deep networks will affect the stability of model training and cause vanishing gradients. To deal 
with this issue, the TCN adopts the residual block [64]. The details of the residual block for the 
proposed model are shown in Figure 3.2. 
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(3.6) 

 

Figure 3.1: A dilated causal convolution with dilation factors = 1,2,4,8 and filter size, k=2 

 
 A residual block consists of two main branches. One branch of the residual block performs 
a transformation operation on the input, that is 𝑋(89') . Another branch (often known as skip 
connection) performs a simple 1×1 Conv transformation which helps to maintain a consistent 
number of feature maps in parallel with the existing branch and improve gradient flow. The output 
of the residual block can be expressed as: 
 

𝑋(') = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛.𝐹.𝑋('())0 + 𝑋('())0	 
   

 where F(.) is a series of transformation operations having a structure comprised of dilated 
causal convolution layer, the Batch Normalization, GELU as the activation layer, followed by 
Spatial dropout. The dilated causal convolution layer extracts the hidden features from the given 
input. Batch Normalization [88] is used to improve the training speed and is utilized to the 
convolutional filters. In this chapter, a nonlinear activation function called Gaussian Error Linear 
Unit (GELU) is used instead of the traditional ReLU activation function. When compared to ReLU 
activation function, GELU retains some of the negative information and so is better at retaining the 
load feature information [39]. Finally, spatial dropout is used for regularization which prevents the 
over-fitting issue of the deep network. The output of the network is sum of the output of two 
branches in the residual block. 
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Figure 3.2: TCN Residual Block for the proposed 

 
3.2.2    Long-short term memory (LSTM) 
 
The recurrent neural network (RNN) has high efficiency in the prediction of time series and gets 
better at predicting the data based on the passage of time. However, RNN faces difficulty to recall 
input information that is too far apart, therefore, the long-term dependency problem is drawback of 
traditional RNN [89]. 
 

Figure 3.3: LSTM structure diagram 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

 LSTM is a variant of RNN that mainly deals with gradient disappearance, allowing the 
neural network to remember the content for a prolonged period and increase network reliability 
[90,91]. LSTM architecture has a structure which makes it capable of reducing or increasing 
information to the cell state. There are three gates in LSTM namely input gate, forget gate, and 
output gate [92], performing the functions of read, write, and reset respectively. Figure 3.3 displays 
the structure diagram of a LSTM. 
  

 Initially, LSTM receives current input (𝑋!), output of previous module (𝐻!9') and cell state 
of previous module (𝐶!9'). These received values are used by the LSTM to generate new memory 
whose information includes new output (𝐶!) and cell state (𝐻!). The forgetting gate acts like a valve. 
When the input gate is opened, a lot of information floods into the memory. During this process, a 
forgetting mechanism is required to remove the information which is already in the memory. This 
is done by the forgetting gate. It looks at 𝐻!9'	(previous output) and 𝑋! (current input) and outputs 
a number among 0 with 1 for every digit in the cell state 𝐶!9'  (previous state); 1 represents 
completely saved, and 0 represents fully deleted. The calculation formula is: 

 
 

𝐹* = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊+[𝐻*(), 𝑥*] + 𝑏+) 
 
 𝑊:	is the weight matrix, 𝑏: is the bias term, and F is the output through this network whose 
values are in range (0, 1). The output indicates the probability of the previous cell state being 
forgotten. Output 1 is "Completely reserved" and 0 is "completely discarded". 
 
 After current input circulates the "forgets" part of the neural network, it also enters the 
input gate in LSTM. The input gate always requires the newest memory. This gate is comprised of 
two parts. First part of the gate is a sigmoid layer named as the "input threshold layer" that decides 
which values are needed to be renewed. The second part of the input gate is a tanh layer that 
establishes a vector 𝐶[! of values between -1 and 1. The formula is as follows: 
 

𝐼* = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊, ∙ [𝐻*(), 𝑋*] + 𝑏,) 
 

𝐶@* = 𝑡𝑎𝑛ℎ(𝑊$ ∙ [𝐻*(), 𝑋*] + 𝑏$) 
 

𝐶* = 𝐹* ∗ 	𝐶*() +	𝐼* ∗ 	𝐶@*	 
 

 Here, 𝑊-	is the weight matrix, 𝑏- is the bias item, 𝑊; and 𝑏; is the weight matrix and 
bias item, respectively, that needed for updating the state of the unit [93]. 𝐶! represents the state of 
the updated memory unit. In equation (3.10), first and second part of the input gate (𝐼! and 𝐶[!, 
respectively) are multiplied element-wise to decide whether to update the state of time-step memory 
unit. Dot product function is also performed by forgetting gate 𝐹! with 𝐶!9' to decide whether the 
original state of the time-step memory unit should be retained or not. 
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(3.11) 

(3.12) 

(3.13) 

(3.14) 

 The output gate allows the LSTM to select output relevant information while suppressing 
irrelevant information. This gate controls the flow of information out of the memory cell by 
enabling the LSTM to remember important long-term dependencies in the input sequence while 
filtering out irrelevant noise and information. Calculation formula for the output gate is as follows: 
 

𝑂* = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊-[𝐻*(), 𝑋*] + 𝑏-) 
 

𝐻* = 𝑂* ∗ tanh	(𝐶*) 
 

 First the sigmoid activation function which takes the previous hidden state (𝐻!9') and 
current input (𝑋!) to generate 𝑂!, whose value lie in the interval [0,1]. Then the memory cell state 
𝐶!  in the tanh activation function is multiplied with 𝑂!  to generate output of 𝐻! . 𝐻!  is not only 
related to the input 𝑋! under the time step t and the activation value 𝐻!9' of the hidden layer in the 
previous time step. It is related to the memory unit state 𝐶! under the current time step.  

 
 Bidirectional LSTM (BiLSTM) [94] is an extension of the described LSTM architecture, 
where two LSTMs are applied to the input data. Firstly, an LSTM is applied on the input sequence 
(i.e., forward layer). Then, LSTM is applied to a reverse form of the input sequence (i.e., backward 
layer). Typically, in power system, at a certain instance, the power load data are not only influenced 
by factors such as holidays and social environment, but also affected by the past input features, as 
well as the future input features to some extent can also reflect the present load features [95]. 
BiLSTM network is capable of capturing and extracting the characteristics and features of the 
information before and after [96]. Thus, such capability of the BiLSTM architecture makes it an 
ideal solution for NILM problems and also act as the main motivation behind using it in this chapter. 
 
3.2.3    Mean Teacher Model 
 
The semi-supervised objective for NILM is achieved through the Mean Teacher-Student model. 
The Mean Teacher model utilizes both labeled and unlabeled data to improve the performance of 
a model. It maintains two copies of the model, a "student" model, and a "teacher" model [97]. The 
student model is trained on the labeled data, while the teacher model weight 𝝓′ is updated as an 
exponential moving average (EMA) of the student model's weights 𝝓 which is expressed as  

ϕ'.=	αϕ'.-)	+	(1-α)ϕ. 
 

 where t is the training steps and 𝛼 is the smoothing hyperparameter. The final output of the 
model is determined by the student network. The student model is updated during training with the 
supervised loss, here is termed as multilabel classification loss.  
 

ℒ<+#==.:.<#!.>-(𝑦, 𝑦a) =
1
𝐴
) 𝑦. loge𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦a.)h + (1 − 𝑦.)log	(1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦a.))

.
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(3.16) 

 where y is the actual state of appliance, 𝑦a is the output of student network and A is the 
number of appliances. The teacher model is updated with the unsupervised loss, termed as 
multilabel consistency loss: 
 

ℒ01,232*4,05(𝑦O, 𝑦P) =
)
6
∑ (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦O) − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦P))&3   

 
  where	𝑦i is the output of the teacher network. Since the appliance states are in binary form, 
the multilabel classification loss is calculated using average binary cross entropy. The multilabel 
consistency loss is calculated by comparing the student model's predictions on the unlabeled data 
with the teacher model's predictions. Then the classification and consistency loss are combined to 
generate the semi-supervised loss: 
 

ℒ=*;.9=?0*@A.=*B =	ℒ<+#==.:.<#!.>- +𝜔 ∗ ℒ<>-=.=!*-<C 
 
 where, 𝜔 is the weight ramp-up function. Usually, the value of 𝜔 is set to a minimum 
(typically 0) and is increased to maximum value which is 1 over the training epochs. Back 
propagation is used to minimize the overall composite loss through Adam optimization algorithm 
[98]. Using the teacher model as a reference, the student model can learn from labeled and 
unlabeled data, resulting in improved performance. 

 
3.2.4    Model Implementation Details 
 
The input layer of the neural networks of both student and teacher framework consists of a Gaussian 
noise layer which is usually activated during the time of training the semi-supervised model. The 
Gaussian input layer injects Gaussian noise into the input data that enters the neural networks which 
improves the generalization of the entire network and make the training procedure of the model 
more robust [99]. The receptive field of TCN network should be large for the output of the 
respective network to receive a wider range of input information. A large receptive field of TCN is 
commonly achieved by increasing the number of hidden layers but this will increase the overall 
computational complexity, resulting in more consumption of resources such as memory. This 
research aims to avoid such consequences from occurring so the alternate approach of choosing 
right filter size and dilation factor is performed here to increase the size of the TCN receptive field. 
For the proposed approach, the filter size is set to 2 and dilation factor is set to 1,2,4 and 8. The 
TCN network of the proposed model comprised of Six TCN residual blocks with each block having 
128 filters for hidden layers. The spatial dropout rate is set to 0.2. 
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  Alongside TCN layers, both teacher and student frameworks also have two LSTM layers. 
The first LSTM layer consists of 64 filters with kernel size of 1*5 and the second LSTM layer is 
comprised of 120 filers with similar kernel size as the first LSTM layer. A fully connected layer is 
attached at the end of the final layer of both teacher and student networks. The smoothing 
hyperparameter of the EMA is set to 0.99. The classification loss is calculated through ignoring 
instances labeled by -1 and consistency loss is calculated through the comparison of predictions 
made by the teacher and student framework. The semi-supervised loss is then calculated using the 
classification and consistency losses. The semi-supervised loss is then used to update the student 
network with Adam optimizer. The value of the learning rate with Adam optimizer is set to 0.001. 
The teacher network is then updated using EMA. A total of 200 epochs was used during training 
with option for early stopping to avoid overfitting. Once the training is over, final results are 
obtained from the student network.  

 
Figure 3.4: Architecture of the proposed semi-supervised TCN-LSTM technique for appliance states classification in 
NILM 

 

3.3    Datasets Description and Preparation 
  
Three real-world publicly accessible NILM datasets were used in finding the suitable threshold 
technique and then training and evaluating the proposed semi-supervised technique. These datasets 
are comprised of consumption readings made by multiple appliances over different ranges of time. 
The time of the dataset is in Unix time stamp and the power consumption values are in watts. This 
section describes the three NILM datasets and steps regarding their preparation to train and evaluate 
the proposed model. 
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3.3.1    Dataset Description 
 

1) REDD Dataset 
 
The Reference Energy Disaggregation Data Set (REDD) [23] is a publicly available dataset 
specifically designed for energy disaggregation. It is one of the popular datasets for 
evaluating energy disaggregation algorithms. It comprises both aggregate and sub-metered 
power data from six distinct homes in Massachusetts, USA. The data were collected from 
approximately forty homes in Boston and San Francisco over a range of two weeks to one 
month from a total of 48 circuit breakers. The researchers monitored the entire home 
voltage and current at high frequencies (16 kHz) to capture the true AC waveforms of the 
total electrical energy signatures in the houses. Circuits are labeled with clear descriptions 
along with the major loads presented on the recorded circuits. 
 
 

2) Uk-Dale Dataset 
 
The UK Domestic Appliance-Level Electricity dataset [100] contains information on 
power consumption gathered from five residential buildings in the UK ranging from the 
year 2013 to 2015. The dataset includes data on over 10 different types of household 
appliances. The frequency of aggregate consumption varies across households, with some 
having a low frequency of 1 Hz and others having a high frequency of 16 kHz. All the 
appliances of this dataset are sub-metered at 1/6 Hz. 
 
 

3) REFIT Dataset 
 
The REFIT dataset [101] contains records of both aggregate and appliance-level power 
usage gathered from 20 homes in United Kingdom from October 2013 to June 2015 by 
researchers from the University of Southampton. Each instance of the dataset is recorded 
every 8 seconds. Unlike the REDD dataset, REFIT provides fine-grained information about 
different areas within a house, such as the power usage of a "Computer site," which 
includes multiple appliances such as desktop computers, laptops, charging stations, and 
printers. Moreover, the dataset also comprises additional metadata about each recorded 
home, such as the number of occupants, the year the building was constructed, the size of 
the home, and the total number of appliances. 

 
3.3.2    Preparation 
 
The proposed semi-supervised NILM method predicts and classifies the states of four appliances 
commonly used in each selected house of three datasets. These appliances are microwave (MW), 
washing machine (WM), dishwasher (DW). From REDD dataset, Houses 1 and 3 are selected, from 
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UK-Dale Houses 1 and 2, and for Refit Dataset Houses 2,3 are selected. These selected data of 
houses also had other appliances, but the four appliances of interest were common between all the 
selected houses of the three datasets. At each instance, the total consumption for each dataset is 
equivalent to the sum of consumption made by the four selected appliances. For the accurate 
analysis of the proposed model training and evaluation, Unix time is converted to datetime, and the 
original series of data are resampled to a larger sampling interval of 60 seconds. For instance, in 
UK-dale dataset for houses 1 and 2, aggregate and individual power consumptions are measured 
by the smart meter at a constant rate of 6 seconds and for this research these series of power readings 
are resampled at intervals of 60 seconds. The missing values were handled using linear 
interpolation. Two sets of threshold values of the four appliances for each house of three datasets 
are then obtained using MPT and VST methods. 
  
Table 3.1: Threshold Values for determining operation status for four appliances of different houses in REDD, UK-
Dale and REFIT dataset. 
 

Thresholding 
Technique Dataset House 

Number MW WM DW FD 

Middle Point 
Thresholding 

(MPT) 

REDD 
House 1 442 925 772 504 

House 3 418 931 751 510 

UK-Dale 
House 1 498 887 692 541 

House 2 452 962 704 575 

REFIT 
House 2 519 1022 788 584 

House 3 522 1007 772 576 

Variance-
Sensitive 

Thresholding 
(VST) 

REDD 
House 1 57 195 104 62 

House 3 62 207 142 71 

UK-Dale 
House 1 54 182 98 59 

House 2 49 103 85 62 

REFIT 
House 2 71 218 171 88 

House 3 68 109 92 82 

 
 

 In case of MPT, for any particular appliance, two clusters are formed based on consumption 
values using the K-Means clustering algorithm. Next, the centroid values of the two clusters are 
derived. The lower centroid value indicates consumption values for the OFF state, and consumption 
values of the ON state surround the larger centroid value. Then, a mean value of the two centroids 
is calculated. This mean value is the threshold value of the appliance of interest. Now, the threshold 
value is subtracted from each consumption value of the appliance. If the value after subtraction is 
greater than or equal to 0, then the appliance is in an ON state for that specific consumption value. 
Otherwise, if the subtracted value is less than 0, the appliance for that consumption value is in the 
OFF state. These steps are repeated for each appliance of the dataset. 
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(3.17) 

 
 In the case of the VST method, instead of the mean, the standard deviation of the centroids 

of two clusters is derived for the consumption value of an appliance. Now, the standard deviation 
value of the ON cluster is divided by the sum of the ON and OFF clusters' standard deviation values. 
For simplicity in explanation, the newly derived value can be termed "val". The threshold value 
then is the product of the centroid value for the OFF cluster and val subtracted from 1, added to the 
product of val with centroid value for the ON cluster. Such calculations in obtaining thresholds 
help to prevent miss classification of consumption values that indicates ON but are furthest from 
the ON cluster. This results in consumption values of the OFF cluster having less variance, and 
thus for the exact same appliance in the same dataset, the threshold value by the VST method is 
lower than the MPT method (see Table 3.1). Then deriving operational states for each consumption 
value of an appliance is similar to that of the MPT method where based on the outcome of threshold 
value subtracted from the power, it is determined whether an appliance is ON or OFF. 

  
 The appliance operation status can be deduced from the threshold values of Table 3.1. 

Since the semi-supervised learning technique is being studied here, a separate set of instances of 
each house from each dataset were selected randomly where operation status of individual 
appliances is set to -1, indicating that the operation status of the appliance is not labeled. The final 
form of dataset will comprise aggregate power load along with operation status of individual 
appliances (-1,0 and 1) over time. The proposed semi-supervised model is then trained, and the 
performance of the model is evaluated a total of six times separately for two thresholding methods 
based on three datasets. For REDD dataset, House 1 is used for training and House 3 for testing. 
When UK-Dale dataset is considered, House 1 is used for training and House 2 is used for testing. 
Finally for REFIT, House 2 is used towards training and House 3 for testing. 

 
3.4    Evaluation Metrices and Benchmarks 
  

3.4.1   Evaluation Metrices 
 
The performance of the proposed SSL TCN-LSTM model is evaluated based on three traditional 
evaluation metrics. The first one is F1 score which is ideal for multilabel classification [102].  
 

𝐹1 = 	 &∗89
&∗89%:9%:;

  
 

 where, TP is termed as true positive, FP is false positive, and FN is false negative. F1 score 
ranges between 0 and 1. The more the F1 score is closer to 1 the better the model is. F1 micro is 
the second evaluation metric that is derived from F1 score and is used to assess the quality of 
multilabel binary classification problems that deals with imbalanced data [103]. NILM datasets are 
mostly imbalanced, meaning there are inequal distributions of ON (value 1) and OFF (value 0) 
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(3.18) 

(3.19) 

states within the dataset which makes F1 micro a good choice for accessing the overall performance 
of the proposed SSL TCN-LSTM method. The F1 micro score is as follows: 
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 where, A is the total number of appliances in the dataset. Like F1 score, the value of F1 

micro score also ranges from 0 to 1. The final evaluation metric is the Hamming loss (HL). This 
metric represents the fraction of labels which have been incorrectly predicted by the model [33] 
and is given by 
 

𝐻𝐿 =	
1
𝑁
)

1
𝐴

D

.&'

|𝑓(𝑥.)Δ𝑦.|	 

 
  where N is the total number of test instances and f(.) is the multilabel classifier. 𝑦. is the 
actual label set for the input sample 𝑥.  and Δ indicates the symmetrical difference between the 
actual label set (𝑦.), A is the number of labels and the label set generated when input sample is 
provided to the classifier (𝑓(𝑥.)). Hamming loss score also ranges between 0 and 1 but this is a 
negatively oriented score, meaning that the model that generates HL score closer to 0 is better 
compared to the one that generates a score closer to value 1. 
 
3.4.2   Benchmarking Approaches 
 
The performance of the proposed SSL TCN-LSTM technique based on MPT and VST thresholding 
approach is compared to two other state-of-the-art semi-supervised methods for NILM. A semi-
supervised TCN (SSL TCN) approach was proposed in [56], where TCN within similar mean 
teacher-student architecture was developed. ReLU was used as the activation function within all 
the residual blocks of TCN of the model in [56]. The filter size was kept at 3 and the dilation factor 
was 2. Instead of using any thresholding technique, the SSL TCN model was trained based on the 
theory that for each appliance, if the consumption value is more than 50% of its highest recorded 
consumption value within the dataset then the operational state of that appliance is determined to 
be ON.  
 
  A BiLSTM NILM technique for appliance operational status classification was proposed 
in [64] based on supervised multilabel classification loss. The model in [64] has four LSTM layers, 
each having 64 hidden units. This BiLSTM model was implemented as a semi-supervised BiLSTM 
(SSL BILSTM) by Yang et al. using the same loss function and architecture as their proposed SSL 
TCN. For the fair performance comparison of the proposed SSL method presented in this chapter 
with both benchmarking approaches, SSL BILSTM and SSL TCN, were implemented using the 
same network structures, loss functions, parameters, and appliance thresholding mentioned in [56]. 
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3.5    Result Discussion 
  
The proposed SSL TCN LSTM model is trained by three datasets. Appliance threshold from each 
of the three datasets is obtained separately by using MPT and VST thresholding techniques. 
Therefore, for each datasets the proposed model is trained and evaluated twice based on the 
thresholding approaches. Overall model performance is analyzed by the F1-micro scores. For 
models’ individual appliance state prediction capability, Hamming Loss and F1 score are used.  
The best score in each category is highlighted in italic-bold style. For the Redd dataset, house 1 is 
used for training and house 3 for testing (redH1→ redH3). For the UK-Dale dataset, House 1 is 
used for training and House 2 for testing (daleH1→ daleH2) and in the case of the Refit dataset, 
house 2 is for training and house 3 is for testing (refH2→ refH3). 
 
  Table 3.2 shows the average overall F1-micro score of the proposed model and the 
benchmarking approaches based on all three datasets. In Table 3.2, the proposed model using MPT 
approach outperformed the other three methods. The proposed model using VST technique also 
had a satisfactory overall F1 micro scores when compared to the two benchmarking methods. While 
SSL TCN had a balanced score, the BILSTM based benchmarking method performed poorly 
compared to the benchmarking TCN and the other two proposed methods. Overall, the proposed 
SSL TCN LSTM technique using MPT had a 6% higher F1 micro score compared to the SSL TCN 
which is the best performing benchmarking approach based on REDD dataset. For Uk-Dale dataset, 
MPT-based approach achieved 0.970 F1 micro score which is 3% higher than the second-best score 
obtained by SSL TCN benchmarking technique. Similarly, for the Refit dataset, the same model 
also achieved a higher F1 micro score of 0.985, followed by the proposed approach using VST, 
having F1 micro score of 0.966. Therefore, when considering the overall performance, the proposed 
SSL TCN LSTM model based on MPT approach, according to F1 micro score, outperformed the 
other proposed model using VST and the two benchmarking models in estimating appliance states. 
This is reflected from the high F1 micro scores of the MPT based proposed method for all three 
datasets as seen in Table 3.2. 

 
Table 3.2: Overall F1micro score comparison between the proposed and benchmarking models using all three datasets 

 

Methods REDD  
(redH1→ redH3) 

UK-DALE  
(daleH1 → daleH2) 

REFIT  
(refH2 → refH3) 

SSL TCN LSTM using MPT 0.986 0.970 0.985 

SSL TCN LSTM using VST 0.961 0.931 0.966 

SSL TCN 0.922 0.952 0.927 

SSL BILSTM 0.896 0.878 0.885 
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 The performance of the proposed method in classifying the states of four appliances namely 
– microwave (MW), washing machine (WM), dishwasher (DW) and Fridge (FD), is accessed and 
compared to the benchmarking methods through the Hamming Loss and the F1 scores. Tables 3.3 
to 5 represent the Hamming loss scores based on the operational states of four appliances for the 
Redd, Uk-Dale and Refit dataset, respectively. From Table 3.3, proposed SSL TCN LSTM model 
using the MPT approach achieved good hamming loss scores in predicting appliance states for 
MW, DW and FD appliances of REDD dataset. Hamming loss score for MW of the proposed 
method using MPT is 0.064 which represents 35% improvement over model proposed using VST 
approach. For DW and FD appliances, the hamming loss scores of proposed MTP based model are 
0.122 and 0.059 respectively, which are significantly better than the remaining three methods. Only 
for WM appliance, the hamming loss score from the proposed model using VST approach is 0.081 
which is lower than the MPT based model and the other two benchmarking approaches. Washing 
machine is an appliance which is occasionally (usually twice or thrice each week) used at homes. 
The VST method causes the OFF clusters to have less variance which reduces the overall threshold 
value. Therefore, there are more ON instances available by the VST method than the MPT, making 
washing consumption data more balanced by the VST method for the REDD dataset. Table 3.4 
highlights the hamming loss score of the four appliances derived from the two proposed models 
and the benchmarking approaches for UK-dale dataset. Here, for all the four appliances, the MPT 
based proposed model showed superiority in predicting the states. MW appliance obtained a 
hamming loss score of 0.145 which is about 9% improvement over the score of next best 
performing model. For WM appliance the score is 0.116 which represents an improvement of 11%, 
score of DW appliance is 0.131 indicating improvement of 12% and score of FD is 0.174 with an 
improvement of 4% over the score of the second best performing model. The hamming loss scores 
of the appliances obtained from the proposed and benchmarking models are shown in Table 3.5. 
Here, MW appliance obtained a score of 0.077, WM and FD appliance obtained 0.068 and 0.122 
scores, respectively, by the proposed SSL TCN LSTM model developed using MPT approach. For 
these three appliances – MW, WM and FD, the improvement over the second best performing 
model, that is, proposed model trained using VST approach, is by 62%, 64% and 9%, respectively. 
For the remaining DW appliance, score by the VST based proposed method is 0.084 which 
outperforms the MPT based method by 8%. Overall, the hamming loss scores obtained for the 
REDD and Refit datasets are better than the scores for the UK-Dale dataset. It can also be concluded 
that on comparing hamming loss scores for each dataset, proposed MPT based SSL TCN LSTM 
model performs significantly better than the remaining proposed method and the two benchmarking 
techniques. 
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Table 3.3: Hamming Loss Score comparison of the classification performance between the proposed and benchmarking 
models for four appliances using REDD Dataset 
 

REDD 
Methods MW WM DW FD 

SSL TCN LSTM using MPT 0.064 0.110 0.122 0.059 
SSL TCN LSTM using VST 0.087 0.081 0.149 0.062 

SSL TCN 0.102 0.098 0.137 0.076 
SSL BILSTM 0.136 0.113 0.151 0.082 

 
Table 3.4: Hamming Loss Score comparison of the classification performance between the proposed and benchmarking 
models for four appliances using Uk-Dale Dataset 

 
UK-DALE 

Methods MW WM DW FD 
SSL TCN LSTM using MPT 0.145 0.116 0.131 0.174 
SSL TCN LSTM using VST 0.158 0.129 0.147 0.181 

SSL TCN 0.174 0.184 0.158 0.200 
SSL BILSTM 0.163 0.202 0.155 0.194 

 
Table 3.5: Hamming Loss Score comparison of the classification performance between the proposed and benchmarking 
models for four appliances using Refit Dataset 

 
REFIT 

Methods MW WM DW FD 
SSL TCN LSTM using MPT 0.077 0.068 0.091 0.122 
SSL TCN LSTM using VST 0.125 0.112 0.084 0.134 

SSL TCN 0.136 0.159 0.117 0.165 
SSL BILSTM 0.144 0.170 0.126 0.188 

 
 For further evaluation of the proposed models, F1 scores for all four appliances are also 

obtained for all three datasets as can be seen from Table 3.6 to Table 3.8. When the proposed model 
is trained with the REDD dataset (Table 3.6), model using the MPT approach showed efficiency 
through the highest F1 score among the proposed model with VST approach and the two 
benchmarking approaches for all four appliances. The F1 score of MW is 0.638, for WM is 0.857, 
DW is 0.941 and FD is 0.958. The improvement of F1 scores of MPT-based proposed approach by 
all four appliances range between 2% to 31% over the other three methods. The proposed SSL TCN 
LSTM using VST approach had slight superiority in terms of F1 scores generated by the semi-
supervised TCN as well as LSTM benchmarking approach where the latter benchmarking approach 
performed poorly among the three other methods. Table 3.7 represents performance of the proposed 
and benchmarking approaches based on the UK-Dale dataset. The benchmarking TCN approach 
shows slightly better performance for classifying states of all four appliances when compared to 
the proposed method that used VST for finding the appliance threshold. For all four appliances, the 
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benchmarking TCN approach, however, could not outperform the proposed SSL TCN LSTM 
model which used the MPT technique. Here, in case of MW, WM, DW and FD appliances, the 
proposed MPT-based method produced F1 scores of 0.918, 0.587, 0.988 and 0.879, respectively. 
In case of models trained with Refit dataset, for WM and FD appliances the benchmarking TCN 
generated higher F1 scores, and the proposed model based on the VST technique provided better 
operational state classification for MW and DW appliances. But, the proposed SSL TCN LSTM 
using MPT thresholding technique had higher F1 scores and the benchmarking BILSTM approach 
had lower F1 scores for all four appliances when compared to the other two remaining methods. 
The F1 score of the MW appliance for the proposed MPT based model is 0.883, WM is 0.906, DW 
is 0.852 and FD is 0.978. Therefore, for all four appliances the SSL TCN LSTM model using MPT 
outperformed other methods in terms of the F1 score for all three datasets. 
 
Table 3.6: F1 score comparison of the classification performance between the proposed and benchmarking models for 
four appliances using REDD Dataset 

 
REDD 

Methods MW WM DW FD 
SSL TCN LSTM using MPT 0.638 0.857 0.941 0.958 
SSL TCN LSTM using VST 0.485 0.821 0.907 0.933 

SSL TCN 0.422 0.732 0.922 0.896 
SSL BILSTM 0.380 0.694 0.885 0.772 

 
 

Table 3.7: F1 score comparison of the classification performance between the proposed and benchmarking models for 
four appliances using UK-Dale Dataset 

 
UK-DALE 

Methods MW WM DW FD 
SSL TCN LSTM using MPT 0.918  0.587 0.988 0.879 
SSL TCN LSTM using VST 0.879 0.516 0.951 0.842 

SSL TCN 0.884 0.562 0.973 0.865 
SSL BILSTM 0.835 0.389 0.914 0.803 

 
Table 3.8: F1 score comparison of the classification performance between the proposed and benchmarking models for 
four appliances using REFIT Dataset 
 

REFIT 
Methods MW WM DW FD 

SSL TCN LSTM using MPT 0.883 0.906 0.852 0.978 
SSL TCN LSTM using VST 0.829 0.881 0.823 0.952 

SSL TCN 0.800 0.896 0.819 0.961 
SSL BILSTM 0.764 0.812 0.768 0.915 
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 The primary reason behind which benchmarking BILSTM performed poorly is due to the 
number of BILSTM layers used in the model since complexity in deep learning training increases 
with a large number of layers. Furthermore, the VST thresholding technique generates threshold 
values which are lower than MPT, resulting in formation of a more imbalanced NILM dataset 
comprised of appliance operational status. Therefore, the performance of the proposed model 
trained with datasets that used VST techniques is less than the model trained with datasets which 
used the MPT technique. From the above case studies, it is well understood that semi-supervised 
deep neural network architecture comprised of TCN, and LSTM layers is ideal for multilabel 
classification of appliance operational states. The satisfactory performance of the proposed SSL 
TCN LSTM model is backed by i) Mean Teacher-student model which is used as the semi-
supervised learning technique and ii) training the model using dataset which prepares appliance 
operational status using Middle Point Thresholding instead of choosing threshold values arbitrarily.  
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Chapter 4 

Deep Learning Based Solution for 
Appliance Operational State Detection 
and Power Estimation in Non-Intrusive 
Load Monitoring 

This chapter introduces a novel NILM algorithm that utilizes deep learning Temporal 
Convolutional Networks (TCN) for the regression and classification NILM tasks. The deep TCN 
layers in the proposed architecture extract complex patterns in the data and estimate the power 
consumption and the operational state of individual appliances. The proposed model is evaluated 
using real-world household power usage data. The results show the effectiveness of the proposed 
method in detecting the appliance states and estimating individual appliance loads when compared 
to a benchmarking approach. 
 
4.1    Dataset Preparation 
 
For training and evaluating the proposed novel TCN based NILM regression and classification 
technique, a publicly accessible NILM dataset called REFIT [101] is used. The REFIT dataset was 
created as part of the REFIT (Real-world Experiments for Future Internet of Things) project and is 
intended for use by researchers and practitioners in the field of NILM. The REFIT dataset includes 
power measurements taken over a period of several months from 20 households. The dataset 
contains both aggregate power measurements as well as ground truth power consumption data for 
a range of appliances, including lighting, heating, cooling, and household appliances. 
 
 Five appliances are selected to perform the NILM regression and classification task using 
the proposed technique. These appliances are Fridge-Freezer (F), Washing machine (WM), 
Dishwasher (DW), Microwave (MW) and Kettle (K). Among the twenty household consumption 
records, two houses – house 3 and house 11 were selected. These five appliances were common 
between the selected two houses. The aggregated and the individual appliance consumption of the 
two houses were recorded either between 6 or 8 second intervals. The consumption record of these 
two houses were down sampled to 60 seconds. The missing values were filled up using linear 
interpolation. Once the consumption records were down sampled, house 3 had a total of 885095 
instances and house 11 had 564697 instances. Consumption data of each house is used to separately 



57 

train and evaluate the proposed model, i.e., the proposed model is trained and tested twice. 80% of 
the data from house 3 is split for training and remaining 20% for testing. Similar train-test split is 
done for house 11.  
 
Table 4.2: Training and Testing instances of house 3 and house 11. 
 

House 
Number 

Training 
Instances 

Testing Instances Total Instances 

House 3 708076 177019 885095 
House 11 451757 112939 564697 

 
Table 4.2: Threshold values of the five different appliances of house 3 and 11. If the consumption value of an appliance 
is equal or greater than their respective threshold value, then that appliance is considered as ON otherwise it is OFF. 

 
House 
Number 

F WM DW MW K 

House 3 50 892 1042 554 801 
House 11 41 1000 1098 436 782 

   
 
 Naturally, the REFIT dataset contains only the consumption information of the five 
appliances. The operational states of the appliances are derived from the consumption values of 
appliance by using the Middle Point Thresholding technique (MPT) [18]. Once the threshold values 
for each appliance is obtained, for each instance if the consumption of an appliance for a house is 
equal or greater than the respective threshold value then that appliance is set to ON state (value 1 
is assigned), otherwise the appliance is set to OFF state (value 0 is assigned). Table 4.2 presents 
the threshold values of five appliances from house 3 and 11.  
 

 
 

(a) 
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(d) 
 

 
 

(e) 



59 

 

 
 

(f) 

Figure 4.1: Aggregated power load along with consumption value of five appliances for 48 hours of House 3 data. (a) 
represents the aggregate power load, (b) shows consumption value of fridge-freezer, (c) is for dishwasher, (d) is for 
washing machine, (e) for microwave and (f) for kettle. 

 

4.2    Experimental Setup 
 
 The Receptive field of TCN network should be large for the output of the respective network to 
receive wider range of input information. Large receptive field of TCN is commonly achieved by 
increasing the number of hidden layers but this will increase the overall computational complexity, 
resulting in more consumption of resources such as memory. This research aims to avoid such 
consequences from occurring so the alternate approach of choosing right filter size and dilation 
factor is performed here to increase the size of the TCN receptive field. For the proposed approach, 
the filter size is set to 3 and dilation factor for each residual block is set to 2. where i is the residual 
block number. The TCN network of the proposed model comprised Seven TCN residual blocks 
with each block having 128 filters for hidden layers. The final layer is a fully connected layer from 
which the final appliance states and power consumption are obtained. The spatial dropout rate is 
set to 0.2. The experiment is performed in Mac Mini M1 device having a Ram capacity of 8 GB 
and a storage of 512 GB. The device is composed of 8 core CPU and 8 core GPU. 
 

4.3    Result Discussion 
 
 After the proposed model is trained and evaluated twice by data of house 3 and 11 separately, the 
regression task of the model is evaluated using MAE score and the classification task is evaluated 
using F1-score. The performance of the proposed model is also compared to the performance of 
the method proposed in [18] where a model comprised of CNN and LSTM architecture is used to 
obtain the appliance state and power consumption from the aggregated load signal. The 
benchmarking model is trained with the same set of data (house 3 and 11 of Refit dataset) which is 
used towards the training of the proposed model.  
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(a) (b) 
 

 

Figure 4.2: (a) Residual Block of the proposed TCN NILM model. (b) The architecture of the proposed TCN NILM 
model. 
 
 
  From Table 4.3 it is observed that the MAE scores based on the regression task of proposed 
TCN model for estimating power consumed by all five appliances of house 3 dataset is significantly 
better than the benchmarking LSTM-CNN model. The model scored an average MAE score of 
14.35 for all the five appliances with overall MAE score of 15.36. The washing machine had the 
lowest MAE score of 8.67. The benchmarking method had an average MAE score of 18.17, with 
overall score of 25.67 for house 3. In terms of model trained and tested by house 11, similar 
observation is made where again the proposed TCN model outperformed the benchmarking 
approach in terms of MAE score for all the five appliances. The average MAE score of all the 
appliances for proposed model is 15.44 while the benchmarking method had MAE score of 18.86. 
Overall, the MAE score of the proposed model is 16.42 which is better than the benchmarking 
MAE score of 27.28. 
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Table 4.3: MAE score comparison between the proposed TCN model and the LSTM-CNN model 
 

 Model F WM DW MW K Overall 
Score Average Score 

MAE score for 
House 3 

TCN [proposed] 10.95 8.76 15.97 14.43 21.68 15.36 14.35 
LSTM-CNN 17.66 11.90 17.42 18.56 25.35 25.67 18.17 

MAE score for 
House 11 

TCN [proposed] 8.41 10.38 18.52 12.93 26.78 16.42 15.44 
LSTM-CNN 9.88 11.67 22.60 15.32 31.46 27.28 18.86 

 
 
Table 4.4: F1-score comparison between the proposed TCN model and the LSTM-CNN model 
 

 Model F WM DW MW K Overall 
Score Average Score 

F1-score for 
House 3 

TCN [proposed] 0.92 0.95 0.95 0.97 0.98 0.97 0.96 
LSTM-CNN 0.83 0.91 0.94 0.88 0.92 0.91 0.89 

F1-score for 
House 11 

TCN [proposed] 0.94 0.97 0.98 0.98 0.96 0.97 0.97 
LSTM-CNN 0.88 0.92 0.89 0.93 0.95 0.90 0.92 

 
   
  When considering the classification NILM task, the proposed model again outperformed 
the benchmarking method in F1-score for classifying appliance operational state. For house 3, the 
average F1-score of the proposed model for all five appliance is 0.96 which is significantly higher 
than the average score of the benchmark LSTM-CNN model which is 0.89. Kettle had the highest 
F1-score of 0.98. Likewise for house 11 data, similar performance of the proposed model is 
observed where the TCN model outperformed the LSTM-CNN benchmark model for classifying 
appliance states. The proposed model had an overall score of 0.97 with an average 0.97 F1-score 
for all five appliances. Meanwhile the benchmark method overall scored 0.90 with average F1-
score of 0.92 for all five appliances. The main reason of superiority of TCN model over LSTM-
CNN model is for the option of having large receptive field which allows output to receive more 
input information, which makes the proposed model significantly better for the NILM regression 
and classification task. 
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Chapter 5 

Conclusion 

 This thesis elaborates three different machine and deep learning models for Non-intrusive 
load monitoring tasks. The three proposed models fall under the category of supervised and semi-
supervised learning in predicting power and estimating operational states of various appliances of 
various datasets. The models were evaluated using different evaluation metrics. 
 
 In chapter 2, a set of demographic parameters are extracted from a novel NILM data set 
from Grenoble INP in France. Instead of just active power reading, these demographic parameters 
are used for model training for NILM. The initial part of the research used six traditional regression 
algorithms to train model for estimating appliance power consumption. Eight train-test scenarios 
were used to observe how the selected ML algorithms estimated power consumption under different 
situations. The parameters of the models were tuned by grid search technique. The result of the 
evaluation of the different ML models constructed by the eight train-test scenarios aided in 
understanding instead of one algorithm generating favourable outcomes for multiple appliance 
consumption estimation, different algorithms are more suitable for different appliances at the same 
time. Then, a novel Bayesian Optimized Ensemble regressor model for non-intrusive load 
monitoring is proposed for estimating appliance level power consumption using active power and 
demographic parameters as input features. Based on R2 and MAE score the proposed model 
outperformed the two benchmark approaches as well as the model generated by scenario 1 of the 
former part of this research. The proposed model showed dominance in estimating accurate device 
level consumption for Grenoble NILM dataset in contrast to the other benchmarking models. The 
idea of using demographic parameters for estimating appliance power consumption, understanding 
that instead of one algorithm, different algorithms might be suitable for different appliances, 
adopting various train-testing scenarios to understand appliance usage and finally using the 
proposed novel Bayes-ensemble regressor model for non-intrusive load monitoring will help 
towards the implementation of more efficient load monitoring systems. 
 
 Chapter 3 introduces a novel framework that utilizes deep learning and semi-supervised 
multi-label method for Non-Intrusive Load Monitoring. Temporal Convolution Neural Networks 
and Long-Short Term Memory are used as deep learning techniques. Mean Teacher model is used 
as the semi-supervised architecture. NILM datasets come with the individual appliance 
consumption record and for classification NILM tasks, the individual power load records are 
changed to operational status empirically without properly analyzing the data. Therefore, the effects 
of two appliance thresholding techniques namely – Middle Point thresholding and Variance 
Sensitive thresholding on the proposed model is thoroughly examined. The proposed methods were 
tested with three public NILM datasets. Multiple case studies and performance comparison helped 
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to conclude that proposed semi-supervised TCN LSTM model trained with dataset having 
operational status derived from Middle Point thresholding technique, performed better than the two 
state-of-the-art benchmarking approaches. Moreover, the proposed framework allows for the use 
of both labeled and unlabeled data to improve power consumption disaggregation and mitigate the 
challenges in availability of labeled NILM datasets. 
 
 Chapter 4 presented a novel NILM approach which combined classification and regression 
to predict power consumption along with on/off state of five different appliances of two houses in 
Refit dataset. The proposed model used TCN architecture to perform the NILM regression and 
classification task. The proposed approach is shown to have high accuracy when tested against the 
performance of the benchmarking technique which was comprised of LSTM-CNN architectures. 
Even on a generic computer with limited ram capacity, the approach is trained and evaluated 
smoothly. 
 
 Potential future works could be devoted to developing dedicated semi-supervised NILM 
methods for detecting appliances which have more than two operational states. Novel NILM 
techniques could be introduced to deal with high frequency load data. Finally, researchers can also 
focus on improving the accuracy of NILM algorithms using the integration of audio and vibration 
data: In addition to power data, appliances also emit audio and vibration signals that can provide 
additional information about their operation. Researchers could explore how these signals could be 
used in combination with power data to improve the accuracy of NILM algorithms. For example, 
audio signals could be used to identify specific sounds associated with different appliances, while 
vibration data could be used to detect changes in appliance operation. 
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