
ISLANDS AND ELLIPSES IN 2D DYNAMICAL SYSTEMS

Ted Paul Szylowiec

A thesis

in

The Department

of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Science (Mathematics)

Concordia University
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Abstract

Islands and Ellipses in 2D Dynamical Systems

Ted Paul Szylowiec

Three main results are presented in this thesis. The first is a proof of the exis-

tence of absolutely continuous invariant measures (ACIMs) for two dimensional maps

supported on islands, which are small, disjoint regions of R2. The proof is computer-

assisted and uses both numerical evidence and a combinatorial method. We give

examples of weak chaos for which ACIMs exist: within islands there is chaos, but

from a distance orbits are periodic.

The second main result is a geometrical proof of the asymptotic behavior of gen-

eralized tent maps with memory which we call elliptical maps. It is proved that for

certain π-rational angles, all points in the domain except for (0, 0) fall into a polyg-

onal region whose characteristics we determine. When the angles are π-irrational we

prove that these points either fall in a unique ellipse, or accumulate on its boundary.

The third result is a proof that ACIMs exist for a certain range of parameters in

generalized β-tent maps with memory.

The thesis begins with discussions about ACIMs and why they are interesting,

followed by Tsujii’s theorem and other tools, notes on computer calculations and

graphics, and on weak chaos. At the end, we highlight some unanswered questions

and puzzling phenomena that we encountered during our research.
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Chapter 1

Absolutely Continuous Invariant

Measures

1.1 Why ACIMs?

What are absolutely continuous invariant measures, why are they important and why

are we interested in proving that they exist for dynamical systems? A dynamical

system can be studied from two complementary points of view: deterministic or

probabilistic. The probabilistic viewpoint can also be called the statistical or measure-

theoretic viewpoint. Absolutely continuous invariant measures (ACIMs) pertain to

this latter way of looking at dynamical systems.

A look at an example will provide the motivation and intuition for absolutely

continuous measures and illustrate their importance. A good example for this purpose

is the random-number generating dynamical system from the applications chapter of

Laws of Chaos by Boyarsky and Góra [2, ch.13].

Consider the interval I = [0, 1] and the family of maps τ : I → I parametrized by

n,

τ(x) = (x+ π)n (mod 1) (1)

where n is an integer. We call τ a map when it is an endomorphism on I and can be

iterated.

Figure 1 shows plots of τ for various n. For high enough values of n, the map τ

can be used as a reasonably good random number generator. A choice is made for

an initial value x0 ∈ I, and then the orbit of x0, which are the iterates of x0 under
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Figure 1: The map τ(x) = (x+ π)n (mod 1) with n = 2 (left), n = 3 (middle),
and n = 4 (right). The reader may need to zoom in to observe the rulings when
n = 4.

applications of τ , provide the pseudo-random numbers. Apparently this is how some

calculators generate random numbers.

For example, conisider the orbits of the point x0 shown in Figure 2 for n = 1 and

n = 4. Clearly n = 1 won’t do as a random number generator, but n = 4 seems like

a good candidate.

Figure 2: Orbits of the initial point x0 = 0.1 under the map τ(x) = (x + π)n

(mod 1) with n = 1 (upper) and n = 4 (lower).

Some questions come to mind. What is meant by “random numbers” here? The

numbers are generated deterministically. How can they be random? It is one of the

conceptions of dynamical systems theory, that the two viewpoints, deterministic and

probabilistic, do not necessarily exclude each other. At some point, which we will
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illustrate shortly, the study of the deterministic behavior of a dynamical system is

no longer profitable or even possible. Different tools, those of measure theory, must

be used, and a statistical or probabilistic picture of the dynamical system’s behavior

emerges. We can have something resembling randomness, and whether this is or is

not “true randomness” might not even be a sensible distinction to make.

Since τ is a map from I to I, it can be iterated, and it is natural to study the

orbit of some initial point x0 ∈ I under iterations of τ :

x0, τ(x0), τ
2(x0), τ

3(x0), · · · . (2)

This is the deterministic approach. It is easy to compute such orbits with computers,

but there is the drawback that for a typical map τ , even a small perturbation in x0

may lead to a wildly different orbit. Figure 3 shows the orbit of the point x0 = 0.1

under τ with n = 2, and then, the orbit of x0 perturbed by a tiny amount of 10−12.

Differences between the two orbits are already noticable after 15 iterations (the red

line.) After 30 iterations the two orbits bear no resemblance to each other—they

appear to be completely uncorrelated. That this happened so quickly for two initial

points so close together should make us pause to reconsider what we are looking at

when we look at long-term plots of orbits.

Figure 3: Orbits of x0 = 0.1 under τ(x) = (x + π)2 (mod 1) (upper) and in
lower plot, x0 has been perturbed by 10−12. Red vertical line is at 15 iterations.

Computations for the plots in Figure 3 were done with 100-digit multiprecision

numbers. 64-bit computer floats are limited to approximately 15 decimal digits of

3



precision, whereas we have seen that 12 digits of precision is not enough to accurately

follow the orbit beyond a few handfuls of iterations of τ . Do plots created from

long-term computer calculation of orbits with 64-bit floats really represent something

meaningful? Perturbation upon perturbation is piled up due to the limitations of 64-

bit representations of numbers. What we are looking at in long-term 64-bit orbit-plots

cannot possibly resemble in exact detail the true orbit of x0. We used multiprecision

for Figure 3, but this only postpones the inevitable. Besides this, computing with

hundreds or thousands of digits introduces another problem: it is orders of magnitude

slower than computing with 64-bit floats.

However, we can switch to the other point of view, the probabilistic and measure-

theoretic one. The long-term computed orbit is perhaps not similar to the real one

in exact detail, but it may be similar in a statistical sense. This notion can be made

more precise, and it can be asserted if we can prove the existence of an invariant

measure, in particular an absolutely continuous invariant measure.

There are different ways that we can construct a statistical picture of the dynamics

of τ . Some practical procedures are described in Lasota and Makey [17, ch.1]. One

way is to choose a single initial point x0 and then compute many terms, say N

terms, of the orbit x0, τ(x0), τ
2(x0) . . .. The interval I is cut up into n disjoint bins

0 < j < n− 1 of equal width ∆j = 1/n. Then Nj, which is the number of times the

orbit falls into bin j, is recorded.

Then the fraction of all orbit-points falling into bin j is Fj = Nj/N . This Fj is a

histogram of the distribution of points in the orbit of x0. Rather than Fj, if we take

fj = nNj/N as the bin fraction, then,

n∑
J=1

fj∆j =
n∑
j=1

nNj

N
∆j = n

(
1

n

) n∑
j=1

Nj

N
= 1.

The area under fj is 1, i.e, the histogram is normalized. This type of normalized

histogram is called a density because it plays the role of a probability density. Using

this density, we can construct a measure for subsets of I in the usual way: for S ⊂ I,

determine how much of the density lies in S. For example, if the orbit of x0 was

uniformly randomly distributed over all I, then our measure would be essentially the

same as the Lebesgue measure.

Here we have made some presuppositions concerning what our measure should

look like: that it is in some sense a “good” one. It shouldn’t matter where the orbit
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begins, it should be possible to choose any x0 in I, barring some pathological set of

Lebesgue measure zero. It should also be possible to begin at any point in an orbit,

and continue for another N iterations, and obtain a density that is similar, and with

N large enough, identical to any density computed beginning somewhere else in the

orbit, and hence the same measure.

A good measure should capture the long-term statistical behavior of a dynamical

system and ignore temporary effects. For computations of orbits in this thesis, we

typically skip the first 100,000 or 1,000,000 iterations. This is to disregard any initial,

temporary phenomena that happen before the orbit settles into the attractor. A good

measure should likewise ignore such impermanent phenomenon. We can think of this

as analogous to the property of long-term solutions of time-dependent boundary value

heat problems. There may be transient behavior along the way, but the long-term

equilibrium heat distribution, which is a sort of physical analogue of our measure,

does not describe such behavior.

A precise way to state the above requirement that our measure describes only long-

term asymptotic phenomena, is that our measure should be τ -invariant, [1, ch.6.4],

[2, ch.3]. If a subset S ∈ B(I) has measure µ(S), then we expect that τ(S) will also

have the same measure. This is better expressed in terms of the preimage τ−1(S).

Let (I,B(I), µ) be a measure space with µ(I) = 1. Then µ is a τ -invariant measure

if for any Borel set S ∈ B(I) we have

µ(τ−1(S)) = µ(S).

The preimages of all the orbit points in S will land in S upon the next iteration under

τ . Therefore if µ is a good measure constructed from the density of orbit points, the

measure of both S and τ−1(S) must be the same.

A measure that is analogous to something physically reasonable appeals to intu-

ition, but beyond that, the existence of invariant measures has important mathemat-

ical consequences. Consider two examples.

First there is the famous (and surprising) Poincare recurrence theorem. Let

(I,B(I), µ) be a measure space with µ(I) = 1 and let µ be a τ -invariant measure.

Then for any Borel set S ∈ B(I) with µ(S) > 0, all points of S return infinitely often

to S in their orbits under iterations of τ , except for points in a subset of S having

measure zero.

The existence of an invariant measure also implies Birkhoff’s ergodic theorem. Our
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measure space (I,B(I), µ) is finite because µ(I) = 1 < ∞. But Birkhoff’s theorem

is true for wider types of measure spaces (X,B(X), µ) which are σ-finite, i.e., µ(X)

need not be finite, as long as X is a countable union of sets of finite measure. Suppose

this is the case, and also that µ is a τ -invariant measure and f is some L1 function.

Birkhoff’s theorem states that the following limit exists and is an L1 function f ∗:

lim
n→∞

1

n

n−1∑
j=0

f
(
τ j(x)

)
= f ∗ a.e.

Now suppose further that, in particular, µ(X) <∞ and that τ is ergodic. By ergodic

we mean that the effect of τ is indecomposable into separate parts of the space X,

that is, if τ−1(S) = S for some S ∈ B(X) then µ(S) is either zero or full measure.

Then Birkhoff’s theorem has the corollary

f ∗ =
1

µ(X)

∫
X

f dµ a.e.

If we think of the iterations of τ as analogous to stepping in time, then j plays the role

of time. The limit expression limn→∞
1
n

∑n−1
j=0 f (τ j(x)) is the time-average of f . The

expression on the right-hand side in the corollary, 1
µ(X)

∫
X
f dµ, is the space average

of f . Therefore when µ is an invariant measure and τ is ergodic, the time-average of

an L1 function is equal to its space average [2, ch.3.3]. Notice that, up to a set of

measure zero, these ergodic averages f ∗ do not depend on the initial point x chosen

for starting the orbit. The existence of an invariant measure implies that certain

important quantities that are computed by averaging over orbits—such as Lyapunov

exponents—are well-defined [1, ch.6.5].

Aside from providing ways to compute ergodic averages, Birkhoff’s theorem and

its corollary have foundational implications for statistical physics.

The requirements that we have so far described for a good measure are not quite

sufficient. It is possible for systems to have periodic point measures which are τ -

invariant. In this case Birkhoff’s theorem doesn’t tell us much, and Poincare’s recur-

rence theorem becomes trivial. We want to rule out such measures by requiring that

a “good” measure be as good as the Lebesgue measure, in the sense that the measure

should not be supported on sets of Lebesgue measure zero. This requirement reflects

physical intuition: we don’t have flux going through surfaces of zero area, or mass in

solids of zero volume. Let µ and ν be two measures on a measure space (I,B(I)).

If for any S ∈ B(I) with µ(S) = 0 we also have ν(S) = 0, then we say that ν is
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absolutely continuous with respect to µ. We can phrase our last requirement as: a

good measure should be absolutely continuous with respect to the Lebesgue measure.

Thus, a good measure describing the long-term dynamics of the τ -map, is a τ -

invariant measure absolutely continuous with respect to the Lebesgue measure. I.e.,

an absolutely continuous invariant measure, or ACIM for short.

One of the questions raised earlier was: what are we looking at when we look

at long term computer images of orbits? Absolutely continuous invariant measures

provide an answer to this question. In [6] and [2, ch.13.2] it is argued by Góra and

Boyarsky that, while τ may have an unlimited number of invariant measures, the

one revealed by computer computations of histograms is the ACIM. When an ACIM

exists, the graphics created from computer histograms are faithful representations of

the long-term properties of the dynamical system. Histograms made from computer-

simulated orbits approach, in a sense, the true or theoretical ACIM of the τ system,

and in addition, the ACIM is the only measure that is revealed by computer-generated

histograms. This is especially relevant for us because this thesis contains plenty of

graphical images made from the histograms of computer-simulated orbits.

A different way of constructing a statistical or probabilistic picture of τ -dynamics

is discussed in Lasota and Makey [17, ch.1]. Instead of choosing an initial x0, com-

puting N terms of an orbit, then populating the bins of a normalized histogram to

approximate a density, we can instead begin with a large number N of points, (x)N

which are distributed according to some chosen initial probability density f0. Then τ

is applied to all the points (x)N and the resulting new collection of points (τ(x))N is

put into the bins of a normalized histogram, and an approximation to a new density

f1 emerges. What we have now is not a picture based on the evolution of a point as

it travels along an orbit, but a picture based on the evolution of densities.

The logistic map τ(x) = 4x(1−x) provides a very pretty example which illustrates

this evolution of densities clearly. The logistic map is one of the few maps for which

there exists an elementary expression for the invariant density f(x), discovered by

Ulam and von Neuman,

f(x) =
1

π
√
x(1− x)

.

In Figure 4, 1,000,000 initial points (x)N were randomly chosen using a uniform

random generator, and an initial density f0 was constructed from a 200-bin histogram.

This initial f0 is plotted in the upper left against the background of Ulam’s invariant
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density f(x). With each successive application of τ , the new density rapidly evolves

closer to f(x) in a remarkable way. This phenomenon suggests a completely different

way of producing a probabilistic picture of τ -dynamics: one based on functional

analysis.

Figure 4: Evolution of logistic map density by successive applications of τ to the
points in the inital distribution (x)N . Shown are density histograms constructed
from (x)N , (τ(x))N , (τ2(x))N and (τ5(x))N . The Ulam invariant density f(x)
is plotted in purple.

We can consider that the transformation from f0 to f1 is done by means of an

operator Pτ , i.e., Pτf0 = f1. We can now study a sequence of evolving densities

f0, f1, f2, . . ., rather than orbit points:

f0, Pτf0, P
2
τ f0, . . . P

k
τ f0, . . .

If this sequence has a limit then that is a candidate for an invariant measure supported

on the long-term density of the dynamical system. Fixed points of Pτ are the densities

of absolutely continuous invariant measures [17, ch.4], and indeed for the logistic τ

it can be shown that the Ulam density is a fixed point: Pτf = f . Pτ is called the

Frobenius-Perron operator. It is a linear operator on L1 and has many nice properties
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[2, ch.4]. It is one of the main tools for discovering ACIMs in one dimension and

proving their existence.

The evolution of densities for the random number generator map (1) with n = 2

is shown in Figure 5. We begin with a uniform density function f0(x) = 1 and then

determine P 2
τ f0 and P 5

τ f0 numerically by applying τ to 2,000,000 points sampled

evenly along f0 in 200 histogram bins. The plot on the right is already very close to

the fixed-point invariant density [2, ch.1].

Figure 5: Initial uniform probability density of points, f0 (left). Density after
two iterations of the Frobenius-Perron operator, P 2

τ f0 (middle). Density after
five iterations, P 5

τ f0 (right). Here τ = (π + x)2 (mod 1).

1.2 One-dimensional ACIMs

The plots in Figure 5 are suggestive, but they do not prove that ACIMs exists for

the τ in (1). We know that the logistic map τ admits an ACIM because it is a rare,

exactly solvable case. The classic paper which established the existence of ACIMs

for a wide and important class of one-dimensional maps τ was the 1973 paper by

Lasota and Yorke [16]. They used the theory of functions of bounded variation. In

the process of proving the existence of ACIMs, Lasota and Yorke derived inequalites

concerning the variation of Pτf . Once an ACIM is known to exist for τ , it is from this

type of Lasota-Yorke inequality that we can extract further interesting quantitative

results about the density of the ACIM. We shall outline an example of this for the

random generator maps (1), based on [2, ch.13.1].

Variation and total variation are generalizations of the concept of arclength. Let

I = [a, b] and f : I → R. Let P = [x0, x1, . . . , xn] be a partition of I. Then the
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variation of f with respect to P is

VP (f) =
n∑
j=1

|f(xj)− f(xj−1)| .

The total variaton of f , TV (f), is the supremum of VP (f) over all partitions P of I:

TV (f) = sup
P

Vp(f).

A function f is of bounded variation if TV (f) < ∞. Many interesting properties

about total variation and functions of bounded variation are proven in [21, ch.6.3],

[2, ch.2.3] and [20, ch.8.3].

We follow the formulation of the Lasota-Yorke theorem as presented in [2, ch.5].

Let I be an interval and let τ : I → I be a map with the following properties: (1) τ

is piecewise C1 expanding, that is, there exists a partition P such that τ restricted

to any interval of P , is both C1 and has |τ ′(x)| ≥ s, where s is some number strictly

greater than 1. (2) 1/|τ ′(x)| is a function of bounded variation. If τ satisfies conditions

(1) and (2) then the Lasota-Yorke theorem says there exists an absolutely continuous

τ -invariant measure whose associated density function is of bounded variation.

Before proceeding with the random generator example, we need a few results

about functions of bounded variation.

A function of bounded variation is bounded. Suppose f is of bounded variation

on [a, b]. Then there is an M such that TV (f) ≤ M , and thus for all partitions P

of [a, b], VP (f) ≤ M . In particular this is true for the simple partition P1 = [a, y, b],

where y is arbitrary in [a, b]. Then,

VP1(f) = |f(b)− f(y)|+ |f(y)− f(a)| ≤M.

Since |f(b) − f(y)| ≥ 0, it follows that |f(y) − f(a)| ≤ M . Adding |f(a)| to both

sides and using the triangle inequality yields |f(y)| ≤ M + |f(a)|. Now, it must be

that |f(a)| <∞ because TV (f) ≤ M and thus it must also be that VP0(f) ≤ M for

the simplest partition P0 = [a, b]. Therefore f(x) is bounded on [a, b].

If f is of bounded variation, then the bounds of f(x) can be estimated from

TV (f). Let f be an L1 function of bounded variation on [a, b]. Then there exists

some y such that |f(y)| ≤ ‖f‖1/(b− a). Because if not, then (b− a)|f(y)| > ‖f‖1 for

all x ∈ [a, b], and integrating both sides of this inequality gives ‖f‖1 > ‖f‖1 which

10



is a contradiction. Combining this with the triangle inequality and the definition of

TV (f),

|f(x)| ≤ |f(x)− f(y)|+ |f(y)| ≤ TV (f) +
‖f‖1
b− a

. (3)

Likewise there must be some y such that |f(y)| ≥ ‖f‖1/(b− a), for if not, we would

obtain another contradiction similar to the one above. Combining this with the

reverse triangle inequality,

|f(x)| ≥
∣∣ |f(y)| − |f(y)− f(x)|

∣∣ ≥ ∣∣∣∣ ‖f‖1b− a
− TV (f)

∣∣∣∣. (4)

Returning to the random generator example and following the development in [2,

13.1], let τ(x) = p(x) (mod 1) where p(x) maps I to the non-negative reals. Define

α, β to be

α = inf
I
|p′(x)|, β = sup

I

∣∣∣∣p′′(x)

p′(x)

∣∣∣∣.
When α > 2, τ admits an ACIM by the Lasota-Yorke theorem, with density f ∗. An

inequality for the variation of Pτf for any function of bounded variation f is then

derived in [2, 13.1]. From this inequality together with the fixed-point property of the

ACIM density, Pτf
∗ = f ∗, there follows bounds on the total variation of the ACIM

density f ∗:

TV (f ∗) ≤ (β + 2)/(α− 2).

For p(x) = (π + x)n, this becomes

TV (f ∗) ≤ (2π + n− 1)

(nπn − 2π)
.

When n = 2, TV (f ∗) ≤ 0.54126 and when n = 5, TV (f ∗) ≤ 0.00675. Because

f(x) ≥ 0, b− a = 1, ‖f ∗‖1 = 1, and TV (f ∗) < 1 when n ≥ 2, the inequalities (3) and

(4) combine to give

1− TV (f) ≤ f ∗(x) ≤ 1 + TV (f).

Plots of the invariant density f ∗ along with these theoretical bounds in red are

presented in Figure 6. For n = 2, the bounds are 0.45874 ≤ f ∗(x) ≤ 1.54126,

which is not a good guarantee that τ will behave well as a random number generator.

However, for n = 5, the bounds are very narrow: 0.993 ≤ f(x) ≤ 1.00675. This

guarantee of near uniformity is one property that is sought-after in a good random

number generator.
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Figure 6: Invariant densities as limits of P kτ f0, with τ = (π + x)n (mod 1) for
n = 2 (left) and n = 5 (right). Theoretical bounds are shown in red.

It is impressive how, starting from the existence of an ACIM, we can prove statis-

tical properties of long-term behavior of orbits that are geometrically unfathomably

complex. Trying to prove things about the orbits of these τ maps by geometrically

studying the motion of the iterates seems hopeless. And yet the probabilistic approach

provides provable bounds on where the particle goes in the long run.

Despite this we will see in Chapter 3 geometrical methods re-asserting their pre-

eminence in the study of a certain type of dynamical system.

1.3 Two-dimensional ACIMs

Our convention will be to use the symbol τ for one dimensional maps and G for two

dimensional maps. Two dimensional densities are the main computational objects

studied in this thesis. In this section we develop and present some concepts and

propositions that will be needed for the main theorem of Chapter 2, Theorem 2.3.2.

Most important of these is Tsujii’s theorem which tells us when a certain type of

piecewise two dimensional map G admits an ACIM.

The Lasota-Yorke theorem establishes the existence of ACIMs for a class of piece-

wise one dimensional maps. It is reasonable to assume something similar can be

proved for two dimensions and higher, but this turned out not so straightforward.

An account of the progress is given in [7].

The theorem of Tsujii [24], and simultaneously Buzzi [3], establishes the existence

of ACIMs for a class of piecewise two dimensional maps to which the maps studied
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in Chapter 2 belong. Some definitions are necessary before stating the theorem.

A function f(t) on R is real-analytic if it has a power series expansion in t on

every point in its domain. A function f(x, y) on R2 is real-analytic if it has a power

series expansion in x and y at every point in its domain. A real-analytic curve γ is

the image in R2 of a real-analytic C1 function γ(t) : [0, 1]→ R2 with ‖γ′(t)‖ 6= 0. A

real-analytic region X ⊂ R2 is an open set which is bounded by a finite number of

real-analytic curves.

G is a piecewise real-analytic map on R2 if (1) G is defined piecewise on a finite

partition of real-analytic regions and (2) G on each partition region can be extended

to the closure of the partition region.

G : X → X, X ⊂ R2, is an expanding map if

inf
x∈X

inf
‖v‖=1

‖DG(x) · v‖ > c > 1. (5)

Where DG(x) is the derivative matrix of G at point x. In other words, for all vectors

v, DG expands v in the sense that ‖DG · v‖ > ‖v‖ strictly.

If G is piecewise real-analytic then the iterates Gn are also piecewise real-analytic,

and if G is an expanding piecewise real-analytic map, then so are the iterates Gn [24].

These are among the reasons for considering piecewise real-analytic maps. The Tsujii-

Buzzi theorem states:

Theorem 1.3.1 Let G be an expanding piecewise real-analytic map in R2. Then G

admits an ACIM.

The SVD or singular value decomposition is a tool that will allow us to determine

if the maps considered in Chapter 2 are expanding. Suppose A is an m × n matrix.

Then A acts from the left on column vectors v ∈ Rn as v → Av ∈ Rm and from

the right on row vectors u> ∈ Rm as u> → u>A ∈ Rn. It is possible to construct

orthogonal bases of Rn and Rm in a natural way from A. Bases constructed this way

for Rm and Rn are known as the left singular vectors and right singular vectors of A,

respectively

Any square or rectangular m × n matrix A can be factored into the product of

two orthogonal matrices U , V > and a diagonal matrix Σ of positive elements called

singular values, which are decreasingly ordered along the diagonal:

A = U Σ V >

m× n (m×m) (m× n) (n× n).
(6)
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This is called singular value decomposition or SVD. See Strang [23] and Kalman [11]

for the justification of (6) as well as explorations of the the significance of it. In

particular, Strang sees (6) as part of a “fundamental theorem of linear algebra”. For

our purposes, the SVD provides a way to understand the essential action of a matrix

purely in terms of scaling: the othogonal matrices U and V > only change orientation.

The data that we need is in Σ.

If A is m×n then A>A is an n×n symmetric positive-definite matrix. From (6),

A>A =
(
UΣV >

)>
UΣV > = V Σ>U>UΣV > = V Σ>ΣV >.

This is the spectral decomposition of A>A. Because A>A is positive-definite, Σ>Σ

will be an n×n diagonal matrix of non-negative eigenvalues of A>A. V is the matrix

of associated orthonormal eigenvectors, which are a basis of Rn. So V is the matrix

whose columns are right-singular vectors. Likewise we can consider AA> which is an

m×m symmetric positive definite matrix. From (6),

AA> = UΣV >
(
UΣV >

)>
= UΣV >V Σ>U> = UΣΣ>U>.

This is the spectral decomposition of AA> which is an m × m symmetric positive-

definite matrix. The entries in the m × m diagonal matrix ΣΣ> will be real and

non-negative. The columns of U form an orthonormal basis of Rm, and thus the

columns of U are the left singular vectors.

Although their dimensions differ, the nonzero diagonal elements of Σ>Σ and ΣΣ>

are always the same, because A>A and AA> have the same nonzero eigenvalues.

Therefore the nonzero diagonal elements of Σ itself can be recovered by taking the

square roots of the elements of Σ>Σ, the rest of the elements making up the m × n
matrix Σ are always zero. The diagonal elements of Σ may always be arranged in

decreasing order, by also rearranging the corresponding columns of V and U .

The singular value decomposition provides more information about Rm and Rn.

If the matrix A is square, say m×m, but of rank r < m, then the first r columns of

U (left singular vectors) forms an orthonormal basis for the column space of A, and

the rest are a basis for the left nullspace. Likewise for columns of V : the first r form

a basis for the row space, and the rest are a basis for the nullspace.

Practical calculations by hand for small (2 × 2) matrices can be done with the

following method. First find the eigenvalue matrix for A>A. Then V and Σ can

be read off from the diagonalization A>A = V Σ>ΣV >. Then notice that, from (6),
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AV = UΣ. From this it is then easy to find U . The last expression, AV = UΣ,

has an interesting interpretation. Suppose A is a square matrix. If vk is the kth

column of V , and uk is the kth column of U . Then Avk = σkuk. This means that

left-multiplication with matrix A transforms the right singular vectors into the left

singular vectors, up to some some scaling factor. Indeed, it is easy to see, that because

vj, vk are orthogonal, then Avj, Avk are also orthogonal:

Avj · Avk = v>j A
>Avk = σ2

kvj · vk = 0.

Another way of understanding the significance of (6) is to expand the right-hand

side into a linear combination of rank-1 matrices. A rank-1 matrix is the product

uv> of a column vector u and a row vector v>. The product will have dimensions

(m × 1) · (1 × n) = m × n which are the same dimensions as A, but it cannot have

rank more than 1.

A = UΣV > = σ1u1v
>
1 + σ2u2v

>
2 + · · ·+ σrurv

>
r

where r is the rank of A. Further terms are all zero. Since the norms of the vk and

uk are all 1, the terms are ordered in “size” or importance by virtue of the decreasing

size of singular values. Depending on how quickly the singular values drop off, it

is possible to construct approximations to A by taking relatively few of the largest

terms of this series and ignoring the rest. An interesting exercise is to take a grayscale

image, say 500 × 500 pixels, using that as matrix A, then decomposing it into the

above series of rank-1 matrix terms. It is interesting to see that keeping only the first

50 terms is often enough to make a reasonable approximation of the original image.

A geometrical interpretation of singular values, discussed in [23] and [11], is es-

pecially clear and relevant to the case of full rank 2 × 2 matrices. A 2 × 2 full rank

matrix A transforms a unit circle into an ellipse with semi-major and semi-minor

axes σ1 and σ2. Thus if we are interested in whether a matrix is expanding, the SVD

simplifies matters: the orthogonal matrices U and V don’t contribute anything to the

expansion, only the Σ matrix does. If the smaller singular value σ2 is strictly greater

than 1 then the larger σ1 is also greater than 1, and every vector on the unit circle

gets expanded by A because the smaller semi-axis of the image ellipse is still larger

than 1. It is intuitively clear then, what the connection is between smaller singular

value σ2 and expanding matrices.

15



Proposition 1.3.2 Let A be an n×n matrix of full rank and let ‖·‖ be the Euclidean

2-norm. Then

σ1 = sup
u6=0

‖Au‖
‖u‖

= |||A|||, σn = inf
u6=0

‖Au‖
‖u‖

.

In particular, the largest singular value is the operator 2-norm of A, |||A|||.

Proof Consider the singular-value decomposition A = UΣV >. Since U and V are

orthogonal, they preserve norms: ‖Ux‖ = ‖x‖ and ‖V >x‖ = ‖x‖, Therefore,

sup
‖u‖6=0

‖Au‖
‖u‖

= sup
‖u‖6=0

‖UΣV >u‖
‖u‖

= sup
‖u‖6=0

‖ΣV >u‖
‖u‖

.

Let w = V >u. Then V w = V V >u = u. Continuing,

sup
‖u‖6=0

‖ΣV >u‖
‖u‖

= sup
‖u‖6=0

‖Σw‖
‖V w‖

= sup
‖u‖6=0

‖Σw‖
‖w‖

The expression ‖Σw‖/‖w‖, when written in full, becomes

‖Σw‖
‖w‖

=
(
∑n

k=1 σ
2
kw

2
k)

1/2

(
∑n

k=1w
2
k)

1/2

where wk are component of the vector w. The expression on the right-hand side is

the weighted mean of the σk with weights wk. Since σ1 and σn are the max and min

of the σk, this implies that

σn ≤
‖Σw‖
‖w‖

≤ σ1.

If we use a weight vector w such that w1 = 1 and wk>1 = 0, then the weighted mean

expression is σ1. The supremum of the weighted mean expression must also be σ1

since it cannot be larger, and we have sup‖u‖6=0 ‖Au‖/‖u‖ = σ1. Likewise regarding

infimum: if we choose a weight vector w where wn = 1 and wk<n = 0, the weighted

mean expression will be σn. Since this is the smallest possible value for the weighted

mean expression, we must have inf‖u‖6=0 ‖Au‖/‖u‖ = σn.

It is sometimes useful to have the following inequality concerning the smallest

singular value σn of a product of matrices.

Proposition 1.3.3 Let A and B be n× n matrices. Then σn(AB) ≥ σn(A)σn(B).
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Proof If either A or B is not full rank then this is true in a trivial sense, because

smallest singular value of such a matrix is zero. Let σn(M) be the smallest singular

value of an n × n matrix M . Using Proposition 1.3.2, σn(M) = inf‖u‖=1 ‖Mu‖, and

therefore

σn(AB) = inf
‖u‖=1

‖ABu‖ = inf
u6=0

‖ABu‖
‖u‖

= inf
u6=0

‖A(Bu)‖
‖Bu‖

‖Bu‖
‖u‖

≥ inf
v 6=0

‖Av‖
‖v‖

inf
u6=0

‖Bu‖
‖u‖

= σn(A)σn(B).

From Proposition 1.3.2, we see that the infimum of stretching of vectors by matrix

A is σ2. Thus by the definition in (5), G is expanding if σ2(DG) > 1 over all x ∈ X.

All singular values computations in Chapter 2 are done on 2×2 matrices. If we do

not need U or V but just Σ, then the following derivation of direct algebraic formulas

for σ1 and σ2 will suffice. U and V are orthogonal, therefore they preserve Frobenius

norm and we have

‖A‖2F = ‖UΣV >‖2F = ‖Σ‖2F = σ2
1 + σ2

2.

Since U and V > are orthogonal, their determinants are ±1, and we have

| detA| =
∣∣det(UΣV >)

∣∣ =
∣∣det(U) det(Σ) det(V >)

∣∣
= |(±1) det(Σ)(±1)| = | det Σ| = |σ1σ2|

= σ1σ2.

Let p = ‖A‖2F , and q = | detA|. We can solve the equations p = σ2
1 +σ2

2 and q = σ1σ2

for σ1 and σ2. Letting r =
√
p+ 2q and s =

√
p− 2q, we have the pretty solution

σ1 =
r + s

2
, σ2 =

r − s
2

. (7)

If A = ( a bc d ) then the square of the Frobenius norm is p = a2 + b2 + c2 + d2 and

the magnitude of the determinant is q = |ad− bc|, and the singular values σ1 and σ2

follow from (7).

We will need to determine if Gk is an expanding map. For this purpose we need

some way to simplify the computation of derivative matrices of iterates of G.

It is often useful to know the derivative of an iterate τ k of a one dimensional map

at a point x0. For example, to determine if a periodic orbit is attracting or repelling.

Computing the composite iterate τ k = τ ◦ τ ◦ · · · ◦ τ and then taking the derivative

is sure to be be a hopeless task for most τ . However, if x0 is an orbit point, then
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the chain rule can be exploited to simplify the calculation of (τ k)′(x0). With orbit

x0, x1 = τ(x0), x2 = τ(x1), . . ., the calculation of (τ k)′(x0) reduces to the product of

derivatives of τ at each orbit point: τ ′(xk−1) · · · τ ′(x1)τ ′(x0). This is proved in many

texts on dynamical systems, for example [1, ch.1.4].

In two dimensions, the composite map Gk = G◦G◦· · ·◦G is a multivariate function

and so rather than derivative, we are looking for its derivative matrix D(Gk). Luckily

a similar simplification works for the multivariate case: computation of the derivative

matrix of Gk reduces to matrix products of DG, the derivative matrix of G, evaluated

on the orbit points.

Lemma 1.3.4 Let X ⊂ Rn and let G be a map from X to X which is differentiable at

the points of the orbit of x0, i.e., at x0, x1, x2 . . . xk−1. Then DGk(x0), the derivative

matrix of Gk at x0, can be calculated by

DGk(x0) = DG(xk−1) ·DG(xk−2) · · · · ·DG(x1) ·DG(x0).

Proof In what follows, Dg(f(x)) means the derivative matrix of g, evaluated at f(x).

D(g ◦ f)(x) means the derivative matrix of the composite function g ◦ f , evaluated

at x.

The multivariable chain rule and its proof can be found in [22, ch.2]. Let f :

Rm → Rk be differentiable at x and let g : Rk → Rn be differentiable at f(x),

then the composition g ◦ f : Rm → Rn is differentiable at x, with D(g ◦ f)(x) =

Dg(f(x)) ◦Df(x).

Now let m = n = k which is our case. We then have

D(g ◦ f) = D(g ◦ f)(x) = Dg(f(x)) ·Df(x) (8)

because composition of matrices is just matrix multiplication.

Let X ⊂ R and let Gn : X → X be a map. The orbit of x0 ∈ X up to the xn−1

term is

x0, x1 = G(x0), x2 = G(x1), · · · xn−1 = G(xn−2) = Gn−1(x0).

Using (8), we obtain for DG2(x0),

DG2(x0) = D(G ◦G)(x0) = DG(G(x0)) ·DG(x0) = DG(x1) ·DG(x0)
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And again by (8), we have, for DG3(x0),

DG3(x0) = D(G ◦G2)(x0) = DG(G2(x0)) ·DG2(x0) = DG(x2) ·DG(x1) ·DG(x0).

The rest follows by induction.

The following lemma does not specifically pertain to maps of two dimensions or

higher, but it will be used in that context. It will be the case in Chapter 2 that

the existence of an ACIM for G cannot be proven directly, but the existence of an

ACIM for Gp can. The following lemma allows us to deduce that G admits an ACIM

whenever Gp does.

Lemma 1.3.5 Let Gp : X → X and suppose Gp admits an absolutely continuous

invariant measure supported on X. Then G also admits an ACIM supported on X.

Proof Suppose Gp admits an ACIM µ. Then an invariant measure for G can be

constructed from µ and the push-forward G∗. The push-forward is an operator on

measures. Let (X,B) be a measure space and let M(X,B) be the space of measures

on (X,B). G∗ is a mapping fromM(X,B) toM(X,B). For a measure µ ∈M(X,B),

G∗µ is a new measure defined by (G∗µ)(S) = µ(G−1(S)), for any S ∈ B. Construct

a measure ν in terms of G∗:

ν =
1

p

(
µ+G∗µ+G2

∗µ+ · · ·+Gp−1
∗ µ

)
.

Since µ is a Gp-invariant measure, then µ(G−p(S)) = µ(S) and we have

ν(G−1(S)) =
1

p

(
µ(G−1(S)) + µ(G−2(S)) + · · ·+ µ(G−p(S))

)
=

1

p

(
µ(G−1(S)) + µ(G−2(S)) + · · ·+ µ(G−p+1(S)) + µ(S))

)
=

1

p

(
µ(S) + µ(G−1(S)) + µ(G−2(S)) + · · ·µ(G−p+1(S)

)
= ν(S)

and ν is a G-invariant measure. The factor of 1/p in the construction of ν assures that

it is a probablilty measure: ν(X) = 1. When µ is absolutely continuous with respect

to the Lebesgue measure, then so is ν. Therefore G admits an ACIM supported on

X.
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Chapter 2

Islands

2.1 Weak chaos

In a 2009 article titled Birds and Frogs [5], Freeman Dyson writes about something

he calls weak chaos :

“The problem of weak chaos is still unsolved fifty years later. The problem

is to understand why chaotic motions often remain bounded... Chaotic be-

havior was never suspected in the solar system before accurate long-term

integrations were done, because the chaos is weak. Weak chaos means

that neighboring trajectories diverge exponentially but never diverge far.

The divergence begins with exponential growth but afterwards remains

bounded... I challenge you to understand the reasons why the chaos ob-

served in a great diversity of dynamical systems is generally weak.”

We will see examples of a special kind of weak chaos known as asymptotic peri-

odicity. A point moving in two dimensions under iterations of a map G can, in the

right circumstances, describe an orbit which is completely chaotic but bounded within

small disjoint islands. Within the islands there is chaos, yet the islands themselves

behave like perfectly periodic clockwork. Dyson continues, mentioning the famous

“period three” theorem of Li and Yorke [18]:

“The subject of chaos is characterized by an abundance of quantitative

data, an unending supply of beautiful pictures, and a shortage of rigorous

theorems... The theorem [period three] explains why chaos is prevalent in
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the world. It does not explain why chaos is so often weak. That remains

a task for the future. I believe that weak chaos will not be understood in

a fundamental way until we can prove rigorous theorems about it.”

In this chapter we will indeed supply some beautiful pictures, but we also hope to

address Dyson’s main point which concerns proving things about weak chaos.

Systems exhibiting both chaos and periodic behavior were studied theoretically

using functional analysis techniques by Lasota, Li and Yorke [15], Komornik, [13],

[14] and Komornik and Lasota [12].

However, it was later in 2017, [10], that asymptotic periodicity was observed

to occur naturally in the course of studies about dynamical systems with memory.

In 2021, Nakamura and Mackey [19] also reported natural examples of asymptotic

periodicity arising from similar iterated two-dimensional maps.

Observed from afar, this type of weak chaos appears periodic, and the periodic

features are mapped to other periodic features in a straightforward, regular way.

But close-up, these periodic features exhibit chaos within. In this chapter we study

particular features like these which we call islands. Islands were first described in

Góra et. al. [10] A family of two-dimensional maps with memory Gα, parameterized

by α, was shown to give rise to interesting two-dimensional densities. The authors

proved the existence of ACIMs for various ranges of α but also noticed an interesting

phenomenon. These densities become progressively thinner as α approaches 1
2
. This

progression can be seen in the leftmost and middle images of Figure 7.

Figure 7: Densities of tent map with memory G for α = 0.45, α = 0.471829 and
α = 0.48757

Surprisingly, as α continues along this progression, certain values are reached for

which the thinning density loses its connected support and fractures into small disjoint
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two-dimensional regions, i.e., islands. For example, Figure 7 (right) is a disconnected

density consisting of 100 small disjoint islands. Further increase in α usually results

in a return to a single connected support for the density, albeit thinner, until another

value of α is reached for which there are islands. Typically these special values of

α for which there are islands, lie in very narrow ranges ∆α of order 10−6 or 10−5

which seem to be island-forming intervals. The number of islands may be stable with

perturbations of α in such an interval, or there may be several types of island orbits

that are relatively stable in ∆α. This is what is seen numerically for the tent map

with memory [10], in every case that we have examined.

The leftmost image of Figure 7 provides the far-away view where everything ap-

pears to be periodic and regular. Each island behaves as if it were a point that is

mapped by G to another point-island. In fact, we can give each island a symbol

and then study the symbolic trajectory of where they go under G. This symbolic

trajectory of islands, which ignores finer details, is the regular behavior of the weak

chaos system. We will construct and use such symbolic trajectories in this chapter.

Figure 8: Islands for G with α = 0.48757.

Zooming in closer on the tiny islands in the rightmost density of Figure 7, we ob-

tain close-up images of individual islands, shown in Figure 8. Now we see remarkable

structure and also chaos.

2.2 Computations

Most of the computations for this thesis were done on a modest notebook with a

1.6 GHz Intel i5 processor. Rendering images from histograms, making illustrations,
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making diagrams of orbits or geometrical scenes with labels, proving the existence of

ACIMs, etc., all these were done on the notebook computer.

However there were some computations that required more robust machines. Com-

putations of entropy over wide ranges of α, (for example, Figures 12, 13 and 14) which

required the construction of thousands of histograms—those were done on a desktop

2 GHz Xeon E5405, which happily ran those jobs for days on end. The most com-

putationally intensive tasks involved collecting evidence for Proposition 2.3.1 and

computing histograms for definitive high-resolution images of “island-0” (Figure 17

and in [9]) using 128-bit floating point arithmetic. Some of those computations took

more than a week on a 3.5 GHz Xeon Gold 6144. All of these machines run Linux.

The hard-core number crunching components of these tasks were written in mod-

ern Fortran and compiled with GNU Fortran 10, which implements the Fortran 2008

standard along with much of the 2018 one. Some of the earliest computations per-

taining to Proposition 2.3.1 were coded in C++, but it was decided early-on to port

everything to modern Fortran. Modern Fortran and the GNU Fortran compiler are

pleasant to work with: it takes some effort to write slow, unclear or incorrect code.

Modern incarnations of Fortran offer convenient idioms by which one can express ar-

ray computations in compact ways. For example, here is a “one-liner” that computes

the entropy of a normalized histogram h:

-sum(pack(h, h > 0)*log(pack(h, h > 0)))/log(2.0_real64)

Programs written in Fortran were used to compute histograms for entropy plots,

for the images of orbit densities, to map out the dimensions of islands, compute

some of their properties, and then produce the histograms for high-resolution close-

up images. Since speed is absolutely essential for these tasks, Python or another

dynamic language would be unsuitable.

From the data computed about islands, another Fortran program attempts to

prove the existence of ACIMs. Sometimes speed is necessary here too: we shall see

there can be very many possibilities to check—too many for a program written in

Python.

An interesting feature of modern Fortran compilers is the availability of 128-bit

floating point numbers. Arithmetic with 128-bit floats is roughly 25× slower than

regular 64-bit arithmetic on 64-bit architectures, but it’s nice to have, and it was used

to verify some of the 64-bit computations.
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As an alternative to GNU make, we used the FoBiS Fortran build tool, available

from GitHub. It is easy to use and greatly simplifies the build process for small or

medium-sized Fortran projects.

Two-dimensional histograms computed by the Fortran programs are straightfor-

ward generalizations of the one-dimensional histograms of Section 1.1. Typically a

two dimensional region is cut up into 1000 × 1000 bins, and the bins are populated

with orbit point data, though for the highest resolution images this could be more

like 3000 × 3000 bins. We chose the first way of constructing densities that was de-

scribed in Section 1.1. That is, the method where one chooses a single x0 and then

applies the map repeatedly to generate a very long orbit from which the histogram

is populated. The reason for this choice is that only the current position along the

orbit need be kept in memory. The second method described in Section 1.1 was used

to create the graphics in [19]. However, it requires that the computer remember

the position of N points. If N is very large then this becomes inconvenient or even

impossible. Delicate features in certain types of islands are sometimes only visible

after billions of iterations. It is easier, memory-wise, to follow the evolution of 10

points for 109 iterations of G, than it is to follow 109 points for 10 iterations of the

Frobenius-Perron operator. Using the first method, we are limited by computer time

but not by computer memory. However, the second method of constructing densities

was used to make the images of the polygonal densities in Figure 44. To produce

these images, it was sufficient to take on the order of 106 initial points and follow

them for 1500 iterations of G or less.

Histograms can contain bright spots, i.e., bins with very high values compared to

the rest, possibly 104× higher. When such histograms are rendered into images, the

bright spots overpower other fainter details. this is what happens with the image of

island-0 in Figure 17. The regions of highest density, near the apex of the triangular

figure, are the only things visible in an image, if the image is not post-processed

with an equalizing filter. The most useful equalization filters are simple functions

applied to the values b in the bins:
√
b, 3
√
b and log(b). Island-0 was post-processed

with log(b) equalization, which greatly reduces the relative peaks between high and

low bins. The most radical form of equalization is binary: any bin with value b > 0

is set to 1 and the rest are kept at 0. This results in a two-toned image that is

useful for examining the extents and outline of an island, but all other details are
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lost. Sometimes histograms contain homogeneous distributions of values across bins,

and it is difficult to discern details because there is not enough variation that can be

translated into colors. In such cases an anti-equalization is applied, for example b2,

which increases the relative differences between bins.

Choosing a post-processing function and coloring scheme always involves trade-

offs: some image features are enhanced, others toned down. But for each job of

rendering an image from a histogram, we chose a post-processing equalization and

particular color scheme which combined to reveal as much detail and subtle structure

in islands with the best clarity we could manage.

Figure 9: Color maps: cmr.emergency (top), cmr.cosmic, cmr.sapphire and
gnuplot2 (bottom)

The equalization computations were done with numpy, Python’s numerical com-

putations library. The image creation was handled by the Python plotting package

matplotlib.pyplot, which, together with numpy, we also used to create most of the

illustrations for Chapter 3. The final product is in the form of png images, some of

which were adjusted for contrast using the Python PIL image processing library. For

inclusion in this thesis, the png images were reduced in size by converting them to

jpeg format, also using PIL.

The matplotlib plotting package comes with its own colormaps: some of these are

good for imaging islands: turbo, gnuplot2, cubehelix, for example. In particular,

turbo was the colormap used for island-0 in [9]. However, experience has shown that

the islands look best when imaged against a solid black backround, which isn’t the case

for turbo. To extend the choice of colormaps which begin with black, we added some

from the cmasher colormap library. The cmasher colormap cmr.emergency, shown

in Figure 9, gives the very best results for the widest range of island images. This is

a “diverging” colormap. That is, it is brightest at the center, and then moves off into

red and deep red as densities get higher. It has the disadvantage of representing both
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the highest and lowest densities as dark, but in practice, the cmr.emergency diverging

colormap often gives the best images, at least when it comes to islands and densities.

Sometimes other colormaps work better: cmr.sapphire was used for Figure 35 and

Figure 36 (left), while cmr.cosmic was used in Figure 36 (right). A balance has to be

reached, combining colormap with histogram equalization to produce the best image.

For verifying algebra computations, especially those of Chapter 3, we used the

freely available maxima computer algebra system.

2.3 Tent map with memory

The recursion relation f(n) = 2f(n− 1) together with initial condition f(1) = 1 has

a solution in the form of a sequence

1, 2, 4, 8, . . .

or in closed-form as f(n) = 2n−1. Note that the present value f(n) of the sequence

depends on the previous value f(n− 1). Higher-order recursions can be constructed

from more than one previous value. For example, Fibonacci numbers are generated

by the recursion f(n) = f(n)+f(n−1) with two initial conditions f(1) = 1, f(2) = 1.

The rest of the sequence follows by applying iterations of f :

1, 1, 2, 3, 5, 8, 13, 21, . . .

The first recursion is analogous to τ from Section 1.1. Since f : N → N, one can

think of f as a dynamical system map on the natural numbers, generating an orbit

which are the powers of two. This orbit is analogous to the τ -orbit in (2).

What would be the dynamical system analogy to a higher recursion like the Fi-

bonacci relationship? Beginning with two initial conditions x0, x1 in I, the next step

could be x2 = T (x0, x1). However, this T , in general, maps I×I → R, so it cannot be

a dynamical system map because the domain and range are not the same. Following

a standard trick from physics where a second-order equation is reduced to two first

order equations in two-dimensional phase space by introducting y = ẋ as the second

variable, let x = xn−1 and y = xn. Then the T -recursion can be reformulated as an

equivalent two dimensional function G : (x, y) → (y, T (x, y)). It is necessary that

T (x, y) ∈ I. This can be guaranteed if we take a convex combination of x and y, and
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feed that to a dynamical system map τ : I → I. A convex combination αy+ (1−α)x

is always in I for 0 ≤ α ≤ 1, and thus T (x, y) = τ(αy+(1−α)x) is always in I. With

this T (x, y), G becomes a map from I × I to I × I, and we have a two-dimensional

dynamical system with map G acting on I × I:

G(x, y) = (y, τ(αy + (1− α)x)) . (9)

In the papers [8, 2016] and [10, 2017], Góra et. al. introduced T : I × I → I and

G : I × I → I × I, calling them maps with memory.

A particular map τ : I → I which provides many examples in the literature of

dynamical systems is the tent map

τ(u) =

{
2u u < 1

2

2(1− u) u ≥ 1
2
.
. (10)

A plot of the tent map is shown in Figure 10. Following the construction (9) but

Figure 10: Tent map τ(x) : I → I .

using the tent map τ , we obtain G(x, y), the two dimensional tent map with memory,

G(x, y) = (y, τ(αy + (1− α)x)) =

 (y, 2u) u < 1
2

(y, 2(1− u)) u ≥ 1
2

(11)

where u = αy + (1− α)x and 0 < α < 1. The line

(1− α)x+ αy =
1

2
(12)

which we call the partition line, partitions I × I into two regions: A1 (below the

partition line) and A2 (above the partition line). Examples of partition lines for

various α are shown in Figure 11. Note that when α→ 0, the partition line becomes
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Figure 11: Partition lines for α = 0.3, α = 0.42 and α = 0.48.

the vertical line x = 1
2
, when α→ 1

2
it approaches the anti-diagonal line of I × I, and

when α→ 1 the partition line becomes the horizontal line y = 1
2
.

G is piecewise linear on the partition {A1, A2}, so from (11) we may define G1

acting on A1 and G2 acting on A2 as

G1(x, y) =

(
0 1

2(1− α) 2α

)
·

(
x

y

)
u <

1

2

G2(x, y) =

(
0 1

−2(1− α) −2α

)
·

(
x

y

)
+

(
0

2

)
u ≥ 1

2
.

(13)

where u = αy + (1− α)x. The derivative matrices of G in regions A1 and A2 can be

read off from (13):

D1 = D(G1) =

(
0 1

2(1− α) 2α

)
, D2 = D(G2) =

(
0 1

−2(1− α) −2α

)
(14)

Note that in region A1, D(G) is a constant matrix with respect to x, y and likewise

in region A2.

In [10], Góra et. al. studied the tent memory map (11). As α ranges from 0

to 1, G shows different kinds of dynamical behaviors such as chaotic attractors, a

global point attractor and periodic attractors. The existence of ACIMs and singular

invariant measures were proved for various intervals of α. There is a gradual thinning

of the support for the ACIM, and then at α → 1
2

there is a sudden catastrophe:

the dynamics changes over to a global fixed point attractor at (x, y) =
(
2
3
, 2
3

)
. This

persists for 1
2
< α < 3

4
.

Just before the catastrophe at α = 1
2
, the authors noticed that some values of

α near 1
2

produced densities that looked very different from what was regarded as
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typical. At α = 0.483 the support for a conjectured ACIM density is disconnected:

it consists of 175 tiny disjoint two-dimensional regions of I × I. These objects have

come to be known as islands. This island structure was seen to persist over a narrow

window of about 10−6. Likewise α values of 0.4883, 0.4943 and 0.4973 produced

density with supports on 106, 214 and 448 islands, respectively.

We will examine all of these α values, but first we consider the question of how

to discover these values. It isn’t so easy, because as mentioned above, they seem to

exist in very narrow windows or intervals of island-formation. The authors of [10]

conjectured that there are many more α-windows where islands exist. This turned

out to be true, and a practical tool for the discovery of more of these α-windows of

island formation is entropy.

Entropy is calculated directly from the histogram before it is rendered into an

image. We use a standard partition-entropy definition, such as in [4, ch.8]. First the

m × n histogram is normalized to produce a density, then the bins containing zero

probability density are ignored. The entropy of the density is then

−
mn∑

i=1, pi 6=0

pi log2(pi).

Fortran code to compute entropy of a normalized histogram was showcased in Sec-

tion 2.2. For entropy computations, histograms were fixed at 1000 × 1000 bins, and

one histogram was computed for each of 5000 values of 0 < α < 1. Figure 12 shows

the resulting entropy plot.

Figure 12: Entropy plot for the full range 0 < α < 1.

The qualitative changes in the entropy plot mirrors the changes in the dynamics

of G as described in [10]. As α approaches approximately 0.4, there is a gentle
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decrease in entropy from about 20 to 18. This corresponds to the shrinking of the

attractor—it starts off covering the majority of the I × I region, but slowly collects

into mostly region A2, above the partition line. At about α = 0.4 there is a much

sharper decrease in entropy, this corresponds to what is seen in images: this is the

region of α where the support for the density becomes very thin. At α = 1
2

there is

a catastrophe: everything except (0, 0) is attracted to the global fixed point at ( 2
3
, 2
3
)

in A2. The entropy drops to near-zero and stays that way for as long as the global

attractor exists.

A peculiar detail is visible in Figure 12. Just before the point of catastrophe at

α = 1
2
, the plot no longer looks smooth. For a small interval just prior to α = 1

2
, the

plot exhibits anomalous downward spikes. This critical region is roughly 0.470 < α <

0.498, and it is here that we find tiny windows of α where islands form.

Figure 13: Entropy for 0.46 < α < 0.5

Figure 13 is a zoom on 0.46 < α < 0.5. This figure is another computation

involving 5000 histograms.

Zooming in further, again with a resolution of 5000 histograms, we have Figure 14.

All the island-forming α values mentioned in [10], and many more, are found here.

It is tempting to conjecture that the sudden, sharp downward drops in entropy are

associated with the formation of islands. This turns out to be partly true, or rather,

true enough. Every case of island formation that we have looked at is associated

with a sharp drop in entropy. But not every sharp drop in entropy indicates islands.

Often it does, but it also gives false positives. Nevertheless, it is good enough. We

search through the thousands of points of entropy data for minima—values of α for

which the entropy has suddenly dropped. Then images are made with these α, and
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Figure 14: Entropy for 0.4882 < α < 0.4974.

the images reveal the presence of islands. Entropy is a good qualitative indicator of

what is going on, broadly, with the dynamics of G. Using entropy plots, we have

discovered many new values of α for which there exist islands supporting ACIMs.

In Chapter 4 we will consider another method of broadly describing the behavior

of 2D memory maps over ranges of α and how to use it to discover regions of island

formation.

The principal example of islands presented in [10] and then studied further in the

paper [9], is the system of 175 islands at α = 0.493. This value of alpha corresponds to

one of the entropy drops in the critical inteval of Figure 14. An entropy plot of a very

thin neighborhood of approximate width 10−5 around 0.493 is shown in Figure 15.

This entropy well is typical for all tent map and β-tent map island systems that we

will encounter. There is a sharp drop in entropy, followed by a rise, and again a drop,

into a kind of plateau. The same pattern is seen in other entropy wells. The width

of the entropy well in Figure 15 is approximately 6.5× 10−6. The red interval has a

with of ∆α ∼ 3.2161× 10−7 with extents

0.4929999849246231 ≤ αred ≤ 0.4930003065326633.

The green interval has a width of ∆α ∼ 2.01× 10−6 with extents

0.49300309045230 ≤ αgreen ≤ 0.4930051005025125.

From the red interval, 100 values of α were chosen and their densities all revealed 175

islands. It is the same for the green interval: density images for all 100 α samples

chosen revealed systems of 175 islands. It seems then, that 175 is a stable number of
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islands across the red and green intervals. The value α = 0.493 belongs to the red

interval.

For the α = 0.493 system, numerical studies were done using both 64-bit and 128-

bit floating point arithmetic. Islands were examined for at least 4 trillion iterations of

G. The islands maintained their shape, character and individuality. They remained

disjoint. They did not diffuse or spread. They remained in the same bounding

boxes that were intitially computed for them with less than a billion iterations of G.

Nor was it the case that islands were bright spots of a fainter connected underlying

density: we ruled this out by going to extremes with iterations. The only difference

that higher iterations made was to bring out finer details in the islands images, such

as the triangular umbra or shadow of the island in Figure 17. These tests of island

existence for α = 0.493 were the most numerically intensive computations that we

did. Some of these computer experiments took a week or more.

The process of computing images of islands and other properties such as region

index (defined shortly) involves computing bounding boxes for islands and also map-

ping one island onto another to obtain complete sets of data for all islands. This

was done many times for a large number of examples and different types of G with

different underlying τ . All of these computations support the same conclusions about

island existence as above, with added evidence that islands are coherent, i.e., all the

points of one island are mapped by G to another island, and if there are n islands

then Gn is an map from an island onto itself. Therefore we are confident in proposing

the following.

Proposition 2.3.1 Computer calculations establish the existence of islands. Islands

are small regions of support in the plane. They remain disjoint and intact, maintain-

ing the same general shape, size and character with applications of G. Islands are

coherent: G maps the entirety of one island onto another, and if there are n islands

then Gn maps an island to itself.

Once this proposition is accepted, the main result of this chapter, published in

[9], follows.

Theorem 2.3.2 When α = 0.493, the two-dimensional tent map with memory G

admits an ACIM supported on 175 islands.
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Proof If we accept Proposition 2.3.1 then the theorem follows by a combinatorial

argument. A schematic for the complete orbit with labelled islands is presented

Figure 16. The islands themselves are, for α = 0.493, too small to be seen—they are

represented by dots. At this distance from the underlying orbit details, all we see is

a periodic “trajectory” of island labels 0, 1, 2, up to 174, where G maps island 0

to island 1, and then to 2 and so on until 174 is mapped back to 0. The label 0 is

given to the island near the upper-right corner of the I × I box, at the beginning of

the long arc of islands going down to the lower-right. It will be possible to identify

the 0 island in other trajectory diagrams that will be presented for other systems.

Otherwise, the choice of island 0 location is arbitrary.

The orange line in Figure 16 is the partition line (12). Each island can be assigned

a region index depending on its position with respect to the partition line and the

regions A1, A2. An island has region index 1 if it lies completely in A1, below the

partition line. If it lies completely in A2, above the partition line, then it has region

index 2. If an island is partly in A1 and partly in A2, then it has region index 3.

Region indexes are denoted in Figure 16 by colors of the island dots. Green means

region index 1. Red means region index 2 and orange means region index 3. In

this manner, the region indexes of the islands in the trajectory of any island can be

assembled into their own symbolic trajectory. The region index trajectory of island

0 under iterations of G is

221222221223221222221223221222221223221222221223221

222221223221222221223221222221223221222221223221222

221223221222221223223222222222222222222222222222222

2222222222222222222223

. (15)

G is piecewise linear on the partition, so there are only two possible derivative

matrices, (14). Region index 1 corresponds to D1 and region index 2 corresponds

to D2. Region index 3 could be either D1 or D2. Suppose we make a choice of

D1 or D2 for each of the indexes 3 in (15). By using Lemma 1.3.4, this possible

value for D(G175) can be computed by simply taking a string of derivative matrices

corresponding to region indexes and forming the product. If the smaller singular value

σ2 is then computed over all possible such D(G175) expressions, and the minimum is

shown to be greater than 1, then by Proposition 1.3.2 we will have established that

G175 is an expanding map.

For α = 0.493 there are 12 islands with region index 3. Thus there are 212 = 4096
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Figure 15: Entropy well and island formation intervals. Sudden drop in entropy
beginning near α ∼ 0.493. Number of islands remains stable across red and
green intervals.

Figure 16: Region index and island trajectory for α = 0.493: 175 island system.
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Figure 17: Island 0. Image computed from 1.05 trillion iterations of G using
128-bit arithmetic.

Figure 18: Close-ups of islands 27, 71 and 65 in the α = 0.493 system of 175
islands.
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possible region index trajectories to check, and 4096 singular values to compute.

Using the σ2 computation method of Section 1.3, we find that the minimum σ2 over

all 4096 possible region index trajectories is 1.154116744823.

G is defined on a real-analytic partition and it is piecewise linear, which means

it is also piecewise real-analytic. The composition G175 is therefore also piecewise

real-analytic on some real-analytic neighborhood of island 0. Since the minimum

σ2 is greater than 1, G175 is piecewise expanding on this real-analytic neighborhood.

Therefore by invoking Theorem 1.3.1 (Tsujii-Buzzi), G175 admits an ACIM supported

on island 0, and likewise on every other island. Taking X in Lemma 1.3.5, to be the

union of all the islands, we have that G itself admits an ACIM supported on all the

islands.

Note that it is not necessary that G175 be expanding on all islands. Expanding

on one island is sufficient for the construction of Lemma 1.3.5 to go through.

Figure 17 is the definitive image of island 0. It was created from a 3000 × 3000

histogram and 6 billion iterations of G175—a total of 1.05 trillion iterations of G—all

with 128-bit arithmetic. The cmr.emergency colormap was used, and log-equalization

was applied to the histogram. This image contains finer details (e.g. the shadow)

which are not clearly visible in the images of Figure 18 without resorting to binary

image equalization and binary colormaps.

Now we examine two values of α in the green interval of the entropy well in

Figure 15. The island trajectory diagrams will be omitted, since they are similar to

the one in Figure 16, but it is interesting to see what the islands look like.

At α = 0.493003157454 there are 175 islands, 22 of which have region index 3.

Island 0 for this system has region index trajectory

221223221223221223221223221223221223221223221223221

223221223221223221223221223221223221223221223221223

221223221223221223223222222222222222222222222222222

2222222222222222222223

.

There are 222 = 4,194,304 possible matrix products to examine. The minimum σ2

computed over all of them is 1.136615387348. Therefore by the same arguments as

those of Theorem 2.3.2, G admits an ACIM supported on these islands.

When α = 0.493004028476 there are again 175 islands, 18 of which have region
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Figure 19: System of 175 islands in green interval. Close-ups of islands 10, 26
and 42. α = 0.493003157454.

Figure 20: Close-ups of islands 2, 21, 161 in green interval system. α =
0.493003157454.

Figure 21: Islands 32, 38 and 168 in another green interval system of 175 islands.
α = 0.493004028476.
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index 0. Island 0 has region index trajectory

221221221221221221221223221223221223221223221223221

223221223221223221223221223221223221223221223221223

221223221223221223223222222222222222222222222222222

2222222222222222222222.

.

The smaller singular value for the 218 = 262,144 possible matrix products are com-

puted, and the minimum is found to be 1.136523859914. Thus, G for this value of α

admits an ACIM supported on these islands. Images of islands the first green interval

system are shown in Figures 19 and 20. Some islands in the second green interval

example are shown in Figure 21.

What is the smallest value of α for which there are islands? It is unknown if there

is a definitive answer. However, the smallest island-producing α which we were able

to find by searching through entropy data was α = 0.48757. Figure 22 shows the

associated entropy well. This α gives rise to a system of 100 islands with 14 of them

having index 3. The island trajectory is shown in Figure 23. One hundred islands is

not that many—it results in a clearer plot of the island trajectory with less density

of details. The region index trajectory for island 0 is

221223221223221223221223221223221223221223221223221

2232212232212232232232222222222222222222222222223
.

There are 214 = 16,384 σ2 singular values to compute. The minimum of these is

1.069230611395, therefore G admits an ACIM on these islands. Images of these

islands are found in Figures 26 and 27.

The paper [10] mentions a system of 106 islands at α = 0.4883. We will examine

this presently. This value of α lies at the lower end of the critical entropy region

of Figure 14. It’s interesting that small α tend to produce densities with relatively

fewer islands. The entropy well near α = 0.4883 is shown in Figure 24 and the island

trajectory diagram in Figure 25. There are 16 islands of region index 3 and therefore

216 = 65536 possibilities to check. Doing so for island 0 results in a minimum σ2 of

0.991107643093, which is inconclusive. However, we can get what we need by looking

at island 1. The region index trajectory for island 1 is

212212212232212232212232212232212232212232212232232

232232232232232232232232222222222222222222222222222

2222

.

The minimum σ2 over all possibilities is 1.452561553082 and thus an ACIM exists.
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Figure 22: Entropy well around α ∼ 0.48757.

Figure 23: Island trajectory for α = 0.48757: system of 100 islands.
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Figure 24: Entropy well around α ∼ 0.4883.

Figure 25: Island trajectory for α = 0.4883: system of 106 islands.
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Figure 26: Islands 20, 21 and 41 in the 100 island system at α = 0.48757.

Figure 27: Islands 12, 14 and 93 in the 100 island system at α = 0.48757.

Figure 28: Close-ups of islands 20, 68 and 102 in the 106 island system at
α = 0.4883.
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One final example from the family of tent maps with memory G, taken from

the paper [10]. The claim is made that there is a system of 214 islands at α =

0.4943. Figure 29 shows the entropy well around α. There are 26 islands of region

index 3. This means 226 = 67,108,864 possibilities to examine, which is much more

computation than the previous examples. Luckily we do not have to look very far to

find a good island. The symbolic region index trajectory for island 0 is

221223221223221223221223221223221223221223221223221

223221223221223221223221223221223221223221223221223

221223221223221223221223221223221223221223223223222

222222222222222222222222222222222222222222222222222

2222222222

.

The minimum σ2 over all possibilities is 1.113417236455, and therefore G admits an

ACIM on these 214 islands. Figures 30 and 31 showcase the remarkable appearance

of these islands.

2.4 β-tent map with memory

Section 2.3 introduced the tent map with memory. In this section we propose a

generalization. The modified or skew tent map τβ is a generalization of (10). Instead

of peaking at 1
2
, τβ peaks at any 0 < β < 1:

τβ(u) =


u/β u < β

1− u
1− β

u ≥ β.

Plots of τβ for various β are shown in Figure 32.

When β = 1
2
, τβ(u) becomes the usual tent map τ(u). Using τβ, a two-dimensional

dynamical system map Gβ : I × I → I × I is constructed in the same way as in

Section 2.3:

Gβ(x, y) = (y, τβ(αy + (1− α)x)) =


(y, u/β) u < β(
y,

1− u
1− β

)
u ≥ β

where u = αy+(1−α)x and 0 < α < 1. We will call this the β-tent map with memory.

Analogously to 12, there is a partition line which cuts I × I into two regions, A1 and

A2, except that now the the partition line depends on β:

(1− α)x+ αy = β. (16)
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Figure 29: Entropy well around α ∼ 0.4943.

Figure 30: Islands 24, 26 and 27 in the 214 island system at α = 0.4943.

Figure 31: Close-ups of islands 25, 32 and 207 in the 214 island system at
α = 0.4943.
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Figure 32: β-tent map τ(x) for β = 0.3, β = 0.5 and β = 0.8.

As with the tent memory map, Gβ is piecewise linear on A1, A2. To simplify the

notation, let G refer to Gβ in this section—it being understood that G is defined for

some β and α. The general practice will be to use the symbol G to refer to the 2D

dynamical system currently being discussed. In matrix form, G1 on A1 and G2 on A2

are

G1(x, y) =

(
0 1

1−α
β

α
β

)
·

(
x

y

)
, u < β

G2(x, y) =

(
0 1
α−1
1−β

α
β−1

)
·

(
x

y

)
+

(
0
1

1−β

)
, u ≥ β.

(17)

In regions A1 and A2, G has constant determinant matrices D1 = DG1 and

D2 = DG2. These can be read from (17):

D1 =

(
0 1

1−α
β

α
β

)
, D2 =

(
0 1
α−1
1−β

α
β−1

)
.

Now we will show that for a given β, there is a range of α, 0 < α < α1 for which

G admits ACIMs. This proof is similar to that in [10, thm.4.1].

Consider the map G2 : I × I → I × I. By Lemma 1.3.4, the derivative matrix

D(G2) along the orbit is the product of two derivative matrices. But there are only

two possible derviative matrices, D1 and D2. Therefore, for any orbit point, D(G2)

is one of four matrix products: D1D2, D1D2, D2D1 or D2D2. For β = 0.3 (a typical

case), the smaller singular values of these matrix products, as functions of α, are

shown in Figure 33.

What is the value of α that guarantees all four of the σ2 possibilities are greater

than 1? Call this α1. It can be found by doing a numerical bisection to get the

solution of σ2(α) = 1 for each of the four curves in Figure 33, and then taking the
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Figure 33: For fixed β = 0.3, plots of the four possible σ2(Di ·Dj). Here α varies
along the x-axis.

minimum. Since β = 0.3 is arbitrary, the same method can be used to find α1 for any

0 < β < 1. The result is Figure 34 which is a plot of α1(β).

Figure 34: Plot of α1 as a function of β.

Theorem 2.4.1 G admits an ACIM for 0 < α < α1(β), 0 < β < 1.

Proof We first show that for each matrix product DiDj, i, j = 1, 2, the functions

σ2(α) are monotone decreasing for any fixed 0 < β < 1. Recalling from (7) that the
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product, q, of the singular values is the absolute value of the determinant, we have

the following q(α) expressions for the four matrix products,

(α− 1)2

β2
,

(α− 1)2

|β2 − β|
,

(α− 1)2

|β2 − β|
,

(α− 1)2

(β − 1)2
.

Each of these has the form (α−1)2
Q

, where Q is positive, so q(α) is a monotone de-

creasing function in all four cases. Therefore the product σ1(α)σ2(α) is monotone

decreasing. Both σ1(α) and σ2(α) are positive and σ1(α) ≥ σ2(α), therefore σ2(α)

must be monotone decreasing.

Since σ2(α) is monotone decreasing, then σ2(α) ≥ α1 for all 0 < α < α1. For

these values of α, G2 is piecewise expanding on a real-analytic neighborhood of the

attractor. G2 is also piecewise real-analytic on the same neighborhood, therefore by

Theorem 1.3.1, G2 admits an ACIM for any 0 < α < α1. Then by Lemma 1.3.5, G

itself admits an ACIM for any 0 < α < α1.

The maximum of α1(β) in Figure 34 is at β = 1
2
. This corresponds to the case

of the tent memory map of Section 2.3. Bisection search gives a maximum of α1 ≈
0.2476, which implies the result of [10, thm.4.1]. Figures 35 and 36 are some examples

of attractors which support ACIMS, as determined by Theorem 2.4.1.

The extra degree of freedom in the β-tent map with memory allows us to find

new intervals of island formation and new phenomena. Some of this new phenomena

is studied in Chapter 3. As an example of island formation, we examine a density

consisting of 203 islands found at α = 0.49, β = 0.4942. The island trajectory is

interesting and sufficiently unlike previous ones, that it has been included as Figure 37.

Island 0 has region index trajectory

221223221223221223221223221223221223221223221223221

221222221223221223221223221223221223221223222222222

222222222222222222222222222222222222222222222222222

122122122122122122122122122322122322322322322222222

22222222222222222222222222222222222222222222222223

.

There are 12 islands with region index 3, making a total of 4096 possibilities to

examine. The minimum σ2 over all these is 1.712122889006. Thus, G admits an

ACIM supported on these islands. Images of the islands are found in Figure 38
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Figure 35: Densities of attractors supporting ACIMs for β-tent map with mem-
ory. Left: α = 0.75667, β = 0.08247. Right: α = 0.122295, β = 0.143571.

Figure 36: Densites of attractors supporting ACIMS for β-tent map with mem-
ory. Left: α = 0.19503, β = 0.265776. Right: α = 0.03105, β = 0.93788.
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Figure 37: Island trajectory, α = 0.49, β = 0.4942

Figure 38: Close-ups of islands 29, 126 and 200 in the α = 0.49, β = 0.4942
system of 203 islands.
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2.5 Nakamura map

In the paper [19], Nakamura and Mackey also reported the phenomenon of islands,

but for a different kind of map. We will consider map S̃ from their paper. Here we

will call it simply S. The Nakamura map S is defined as

S(x, y) =

 (ax+ y + 1, bx) x < 0

(ax+ y + 1, −bx) x ≥ 0

The vertical line x = 0 plays the part of the partition line. There are two regions, A1

to the left of the partition line, and A2 to the right. S is piecewise linear on these

partitions. In matrix form,

S1(x, y) =

(
a 1

b 0

)
·

(
x

y

)
+

(
1

0

)
x < 0

S2(x, y) =

(
a 1

−b 0

)
·

(
x

y

)
+

(
1

0

)
x ≥ 0.

(18)

From (18), the derivative matrices D1 and D2 in regions A1 and A2 can be read off.

The domain of interest over which the histograms and images are calculated is roughly

[0, 1.3]× [0,−1.3]. We can assume that the domain can be bounded by real-analytic

arcs and that S, being linear, is piecewise real-analytic on this domain.

We will study two examples of Nakamura map islands taken from the paper. The

islands in these systems are so large that they are easily visible in density images. The

first is at a = 0.284 and b = 1.02. The density image and island trajectory diagram

are shown in Figure 39. Note the vertical orange line at x = 0, this is the Nakamura

map partition line. There are 22 islands, three of them having region index 3. This

is a mere 8 possibilities to evaluate. The region index trajectory for island 0 is:

2223222222223222322222.

Minimum σ2 over the 8 possibilities is 1.069751635741. S satisfies the conditions

necessary for applying Theorem 1.3.1 (Tsujii-Buzzi), and thus by the method of

Theorem 2.3.2, S admits an ACIM on all 22 islands. Images of the islands are shown

in Figue 40.

The second example is S with a = 0.3015 and b = 1.02. There are 31 islands. The

density image and trajectory diagram are shown in Figure 41. There are only four
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islands of region index 3. Island 0 has region index trajectory

2232223222232221222222223222222.

The minumum singular value σ2 over the 16 possibilities is 1.033290606356. Thus,

an S invariant ACIM is supported on these 31 islands. Images of some of the islands

are found in Figure 42.

Figure 39: Density (left) and trajectory (right) for the Nakamura 22 island
system, a = 0.284, b = 1.02.

Figure 40: Islands 3, 16 and 19 of the Nakamura-22 system.
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Figure 41: Density (left) and trajectory for Nakamura-31 system, a = 0.3015,
b = 1.02

Figure 42: Islands 17, 25 and 27 of the Nakamura-31 system.
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Chapter 3

Ellipses

3.1 Elliptical dynamical system

The family of β-tent memory maps Gβ was proposed and studied in Section 2.4. Gβ

depends on two parameters, α and β. In this chapter we examine what happens when

α = β, and specifically 0 < α = β < 1
2
.

Set β = α in (16) to obtain the new partition line:

(1− α)x+ αy = α. (19)

This again partitions I×I into two regions. As before, let A1 be the region below the

partition line, and A2 the region above. Then, we may piecewise define the elliptical

map with memory G by setting β = α in (17):

G1(x, y) =

(
0 1

1−α
α

1

)
·

(
x

y

)
, u < α

G2(x, y) =

(
0 1

−1 α
α−1

)
·

(
x

y

)
+

(
0
1

1−α

)
, u ≥ α.

(20)

G1 is the elliptical memory map G acting on A1, G2 is G acting on A2 and u =

(1− α)x+ αy.

Density plots of the orbits of points under G are shown in Figure 43 for α = 0.3

and α = 0.48. Approximately 400 initial points were taken outside the boundary of

the largest ellipse. Under the action of G, these initial points eventually make their

way into A2 and settle into the concentric elliptical orbits shown in the figures.
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Figure 43: Densities for α = 0.3 and α = 0.48. 400 initial points were followed
for 106 iterations.

For some values of α, the densities take on radically different appearances. With

α = 3−
√
5

2
and α = 0.272601699536533, initial points settle into periodic orbits in

region A2. A few million initial points chosen from outside the largest polygon were

iterated under G, creating the polygonal density images in Figure 44, These polygons

have 10 and 25 sides respectively.

Exactly why this happens and for what values of α does it happen, along with

other questions about the dynamics of G, are the subject of this chapter.

3.2 Geometry of Em and Πm

The geometry of the I × I region with respect to the map G is shown in Figure 45

(left). ABCD is the boundary of I × I. BR is the partition line (19). Note that

unlike previous partition lines, the partition line for the elliptical memory map always

goes through point B. The anti-partition line DS is the reflection of the partition

line BR over the diagonal AC. The anti-partition line always goes through point D.

The maximal ellipse Em is defined to be the ellipse with center O on the diagonal

AC, tangent to the boundary lines BC, CD and tangent to the partition and anti-

partition lines BR, SD. This is enough to determine Em uniquely.

By symmetry, Em must be inclined at −45◦ to the x-axis. Since the description

53



Figure 44: Polygonal densities for α = (3−
√

5)/2 = 0.3819660112501051 (left)
and α = 0.272601699536533 (right). Densties were made by following 5 × 106

and 3× 106 initial points for 1500 iterations.

of Em only depends on the slope of the partition line, α−1
α

, all geometric properties of

Em and of the scene in Figure 45 can be determined by analytic geometry in terms

of only α. We present the results of these analytic geometry computations. The

slope of the anti-partition line DS is α
α−1 . Points R and S are determined from the

intersections of BR and DS with the box ABCD,

R =

(
α

1− α
, 0

)
S =

(
0,

α

1− α

)
.

The point X, which is the intersection of the partition and anti-partition lines, is

simply (α, α). Let c = 1
2−α . The center O of the maximal ellipse Em is at (c, c). The

squares of the semi-major and semi-minor axes of Em are respectively

a2 =
(1− α)

2(2− α)
, b2 =

(α− 1)(3α− 2)

2(2− α)2
. (21)

In terms of the following level-curve function

f(x, y) =
(x− y)2

2a2
+

(x+ y − 2c)2

2b2
, (22)

the equation of Em is f(x, y) = 1.

The four tangent lines BR, BC, CD and DS upon which the construction of Em

is based, are tangent at points T0, T1, T2 and T3 respectively:

T0 =

(
α

2(1− α)
,
1

2

)
, T1 =

(
1

2
, 1

)
, T2 =

(
1,

1

2

)
, T3 =

(
1

2
,

α

2(1− α)

)
.
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Figure 45: Left: maximal ellipse Em for α = 0.3. BR is the partition line, SD
is the anti-partition line. Center is at O = (c, c). Right: images of the points in
left figure under G.

Note that the x-coordinate of T0 is always the midpoint of segment AR, while the

y-coordinate of T3 is always the midpoint of AS.

We now consider where the geometrical points of Figure 45 (left) are mapped by

G. That is, the images of these points under G. There are two fixed points of G in

I × I: A and O. Point A (in region A1) is a fixed point of G1 and O (in region A2)

is a fixed point of G2. The tangent points T1, T2 and T3 are iterated images of T0:

T1 = G(T0), T2 = G2(T1), T3 = G2(T2).

Some of the bounding box points A, B, C, D are mapped by G in the clockwise

direction: G(B) = C, G(C) = D, while D is mapped to the other end of the partition

line, and likewise R to the other end of the anti-partition line. Point S is mapped into

region A2: G(S) = 1
1−α(α, α), forming a square with points A, S and R. Finally X

is mapped vertically, G(X) = (α, 1). These images under G are shown in Figure 45

(right).

When R and S divide AD and AB in the golden mean, then G(S) coincides with

O. This special case happens when α = 3−
√
5

2
and is featured in Figure 44 (left) and

Figure 46 (right).

Proposition 3.2.1 The maximal ellipse f(x, y) = 1 is invariant under G2 and so

are the level-curve ellipses f(x, y) = k < 1 which lie inside the maximal ellipse.
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Proof Suppose (x, y) is a point on Em. Let (x′, y′) = G2(x, y) = (y, αy+(1−α)x−1
α−1 ). We

show that (x, y) and (x′, y′) are on the same level-curve. Let p = 4
(α−1)(3α−2) . Then

f(x′, y′) = p

[
(α− 2)(α− 1)y2 − α(α− 2)xy + (α− 2)y+

+(α− 2)(α− 1)x2 + (α− 2)x+ 1

]

= p

[
(x− y)2

(α− 2)

α− 1
+ (x+ y − 2c)2

(α− 2)2

(α− 1)(3α− 2)

]
=

(x− y)2

2a2
+

(x+ y − 2c)2

2b2
= f(x, y).

This is true for the maximal ellipse level-curve f(x, y) = f(x′, y′) = 1, but it is also

true for any other level curve in region A2, e.g., f(x, y) = f(x′, y′) = k < 1. Therefore

Em is invariant under G2, as well as all level-curves inside Em.

Proposition 3.2.2 G2 is conjugate to a rotation.

Proof Let Γ−1 be the transformation that brings the maximal ellipse into canonical

position, i.e., center on (0, 0) and semi-axes parallel to the x and y axes. Γ−1 is

translation from (c, c) to the origin followed by a rotation of +45◦. Γ is then a

rotation through −45◦ followed by translation from (0, 0) to (c, c).

Γ(x, y) =
1√
2

(
1 1

−1 1

)
·

(
x

y

)
+

(
c

c

)
, Γ−1(x, y) =

1√
2

(
1 −1

1 1

)
·

(
x− c
y − c

)
(23)

Define the scaling transformation matrices Λ, Λ−1:

Λ =

(
a 0

0 b

)
, Λ−1 =

(
1/a 0

0 1/b

)
where a, b are the semi-axes of Em. Define the map K to be the conjugate of G,

K = Λ−1(Γ−1 ◦G ◦ Γ)Λ.

While G leaves Em invariant, K leaves the unit circle invariant. Consider K2, which

is the map K restricted to the image of region A2, i.e., K2 = Λ−1(Γ−1 ◦G2 ◦ Γ)Λ on

A′2 = Λ−1Γ−1A2,

K2(x, y) =
1

2(α− 1)

 α
(α− 2)b

a
(2− 3α)a

b
α

 ·(x
y

)
.
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The K2 matrix is orthogonal with determinant 1. Therefore K2 is a pure rotation.

The sines and cosines of the angle of rotation can be read off from the matrix elements

of K2, but we give a derivation of the angle of rotation based on geometry.

We call the scene in Figure 45 (left), with its geometrical elements, the standard

scene. Transforming the geometrical elements of the standard scene by Λ−1Γ−1 results

in the isometric scene of Figure 46. Let primes denote isometric scene equivalents of

the points in Figure 45. Then B′ is the point B mapped into the isometric scene by

Λ−1Γ−1:

B′ = Λ−1Γ−1B =
1√
2

(
−1

a
,

α

(α− 2)b

)
.

Referring to Figure 46 (left), since K2T
′
0 = T ′1, then the rotation angle θ must be

the clockwise rotation through ∠T ′0O
′T ′1. This angle depends only on the position of

B′, since E ′m, the mapping of Em into the isometric scene, is the unit circle, which

is fixed. Since ∠O′T ′0B
′ is a right angle, cos θ

2
= 1

O′B′ . Then cos θ
2

=
√

cos θ−1
2

= 1
O′B′

and

cos θ =
2

(O′B′)2 − 1
=

2

B′x
2 +B′y

2
− 1 =

α

2(α− 1)
.

Figure 46: Isometric scene for general α (left) and periodic α (right). Maximal
polygon Πm is shown in blue.
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All points on the maximal ellipse and inside it, travel on their corresponding

level-curve ellipses. Their trajectories are either periodic or dense in their ellipses,

depending on the nature of the conjugated rotation angle θ.

The rotation angle θ(α) is an increasing function of α. As 0 < α < 1
2
, θ goes from

θ(0) = 1
4
· (2π) to θ

(
1
2

)
= 1

3
· (2π). Let 1

4
< r < 1

3
be a real number, either rational or

irrational. Let θ = r · (2π). We say that θ is π-rational if r = p
q

with gcd(p, q) = 1,

i.e., when r is rational. And we say θ is π-irrational when r is irrational. When

r = p
q
, θ is π-rational, and the orbits of points on Em or on a level curve inside Em

are periodic with period q.

Figure 46 (right) shows an example of the π-rational periodic case, in the isometric

scene. There will be q − 1 images T ′1, T
′
2, . . . T

′
q−1, of the point T ′0 under applications

of K. Together with T ′0 we will call these q points tangent points. The order in which

the tangent points appear adjacently around E ′m can be determined. Let T ′n be a

tangent point. Then the next adjacent tangent point in the clockwise direction is T ′m,

where m = n + k mod q and pk = 1 mod q. The same holds for Em and the tangent

points in the standard scene.

Tangent points are midpoints of the sides of the maximal polygon Π′m, shown

in Figure 46 (right) in the isometric scene. Π′m is constructed by drawing tangent

lines at adjacent tangent points on E ′m and computing their intersections. There

are q such intersections and they form the vertices of a regular q-sided polygon.

Since the standard and isometric scenes are related by linear transformations, these

considerations are equally true for Πm, the maximal polygon in the standard scene.

Proposition 3.2.3 Let θ be π-rational. I.e., θ = p
q
· (2π) with gcd(p, q) = 1. Then

the maximal polygon Πm is invariant under G and points inside Πm are periodic.

Proof Consider the isometric scene. The maximal polygon is entirely in region A′2.

K2 in region A′2 is a clockwise rotation with period q. Since Π′m is a regular polygon

with q sides, such a rotation leaves Π′m unchanged. The conclusion must hold for Πm

in the standard scene.

3.3 Asymptotic behavior of points outside Em

Proposition 3.3.1 For 0 < α < 1
2
, the image of S under G is always in A2.

58



Proof G1(S) = 1
1−α(α, α) and this point ranges between (α, α) = X to (1, 1) = C as

0 < α < 1/2, therefore G1(S) is on the diagonal y = x in region A2.

Proposition 3.3.2 Any point in A1 r {(0, 0)} eventually enters A2.

Proof Exclude (0, 0) because it is a fixed point. For any point (x, y) ∈ A1r {(0, 0)},
its image G1(x, y) = (y, 1−α

α
x+y) has modulus strictly larger than that of (x, y) itself

y2 +

(
1− α
α

x+ y

)2

> y2 +

(
1− α
α

x

)2

> y2 + x2

for 0 < α < 1/2. Thus, any point in A1 r {(0, 0)} eventually enters region A2.

From the level-curves function (22), the quantity f(x, y) − 1 can be used as a

signed distance of (x, y) from the maximal ellipse. Then the quantity

D(x, y) = f(x, y)− f(G(x, y)) (24)

can be considered as a “movement” function, measuring how the distance of (x, y)

from the maximal ellipse changes under the action of G. When D(x, y) > 0 then G

either moves the point (x, y) closer to the maximal ellipse, or into it.

Proposition 3.3.3 For any point in A we have D(x, y) ≥ 0. The inequality is strict

for points in A1 except for the origin and points on the partition line.

Proof For (x, y) ∈ A2, we have D(x, y) = 0 because every level curve concentric with

Em is invariant under G2.

We will show that D(x, y) ≥ 0 for points in A1, so either their distances from

Em decrease or they enter Em. Substituting the semi-axes (21) in (22), (24) and

simplifying, we have

D(x, y) =
8
((
x− y

2

)
α− x

2

)
(α− 2)((x− y + 1)α− x)

3α4 − 5α3 + 2α2
.

When 0 < α < 1
2
, the denominator is positive. The factor 8(α − 2) is negative. The

factor ((x− y+ 1)α−x) is zero on the partition line, and since it is a linear function,

it is positive for smaller y, i.e., for points in A1. The factor h(x, y) =
((
x− y

2

)
α− x

2

)
is again a linear function. Its values on the vertices of A1 are

h(0, 0) = 0, h(0, 1) = −α
2
, h

(
α

1− α
, 0

)
= −α.
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All are non-positive, so h is non-positive on region A1. Altogether this shows that

D(x, y) is non-negative on A1. This means that the distance of G1(x, y) to the max-

imal ellipse is smaller than or equal to this distance for the original point (x, y). In

addition, h is strictly negative for points in A1 r {(0, 0)} below the partition line,

thus D(x, y) > 0 for these points.

Figure 47: Left: triangle-like regions ∆0, ∆1 and ∆2. Right: quadrangle-like
region Q and its images under G.

Proposition 3.3.4 If x ∈ A2 visits A1 then x returns to A2 with the next application

of G.

Proof Let ∆0 and ∆1 be the triangle-like regions 4T0T1B rEm and 4T1T2C rEm

shown in Figure 47 (left). Let Q be the quadrangle-like region �T0T2DRrEm shown

in Figure 47 (right). Then G(∆0) = ∆1 and G2(∆1) = ∆2 = 4T1T2C r Em and

G2(∆2) ⊂ Q. Thus it is enough to study the future of the points in Q.

The triangle-like regions ∆0, ∆1 and ∆3 are shown in various colors in Figure 47

(left). The quadrangle-like region Q and its images G2(Q) and G(G2(Q)) are shaded

in various other colors in Figure 47 (right). The vertices of these regions can be read

from Figure 45 and the way these regions are mapped can be determined from the

fact that G1 and G2 map intersections to intersections and tangents to tangents:

G2(T0) = T1, G2(T2) = T3, G2(D) = S, G2(R) = B

G(G2(T0)) = T2, G(G2(T2)) = T4, G(G2(D)) = G(S), G(G2(R)) = C.
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Thus G2(Q) = �T1T3SBrEm and G(G2(Q)) is the region with vertices T2, T4, G(S),

C and bounded by the boundary BC of ABCD.

Because T3 is on Em, then by Proposition 3.2.1, G(T3) must also be on Em and

is therefore in A2. By Proposition 3.3.1, G(S) is in A2. Therefore all the vertices

of G(G2(Q)) are in A2, and this in turn shows that any point of A2 which visits A1

returns to A2 after one step.

The following lemma characterizes the periodic points of the map G.

Lemma 3.3.5 A point x ∈ I × I r {(0, 0)} can be periodic if and only if it never

visits the region A1. In particular, x is periodic if and only if it never visits A1 and

θ is π-rational.

Proof Points in A1 eventually enter A2, so it is enough consider points of A2. Let

x ∈ A2 and consider two cases. (1) There is some k such that Gk(x) ∈ A1. Then by

Proposition 3.3.3, D(Gk+1(x)) < D(Gk(x)) and the value of D further along on the

orbit never increases again, which implies that x is not periodic. (2) For all k, Gk(x)

is in A2. Then the orbit is actually Gk
2(x), so x is either periodic or non-periodic

depending on whether the rotation angle θ is π-rational or not.

Some properties of the ∆-regions of Figure 47 (left) are more easily studied in the

isometric scene. We dispense with the use of primes to denote geometrical features

transformed into the isometric scene by Λ−1Γ−1. The presence or absence of primes

will understood by context. In the isometric scene, Em will refer to the maximal

ellipse which is the unit circle.

When θ is π-rational, there are five special ∆-regions such that their vertices

touch the boundaries of ABCD. These are shown in Figure 48 (left). If we imagine

ourselves to be observers at the center of Em, then the ∆-regions can be given labels

based on the tangent lines that make up their left edges. Thus we have ∆0, ∆1, ∆2,

∆3 and ∆q−1 which always lies between ∆2 and ∆3.

Let θ be π-rational with r = p
q
, gcd(p, q) = 1. Then T = {T0, T1, . . . Tq−1} is the

set of all distinct images of T0. The lines which make up the edges of a ∆-region are

tangent lines at two points in T , such that there are exactly p− 1 other points of T

lying adjacently between them. We can say that these tangent lines are a tangent line

pair of order p− 1. We may also refer to the tangent points on which these tangent

61



Figure 48: Left: the five ∆-regions decomposed into faces Fnk . Right: zoom on
the faces of ∆3 lying below the partition line in region A1. Faces of higher order
are assigned lighter colors.

lines lie as a tangent point pair of order p−1, or simply as tangent pair of order p−1

to refer to both. In particular, tangent line pairs of order 0 intersect at the vertices

of Πm and constitute the sides of Πm.

With the notion of tangent pairs of order n we can decompose each ∆-region into

disjoint smaller regions which we will call faces. Figure 48 (left) shows a decomposition

of the five ∆-regions into disjoint colored faces.

A tangent line pair of order 0 together with the maximal ellipse Em form a face

of order 0. Points inside Em are defined to be order 0. Faces of order 0 lie in A2 and

they are in the maximal polygon Πm. Alternatively we can consider Πm itself to be

the single face of order 0.

A face of order 1 is a region bounded by a tangent line pair of order 1 and does

not contain any faces of order 0. A face of order n is bounded by tangents of order n

and does not contain any face of order less than n.

A face of order n ≥ 2 can be constructed in the following way. Begin with a

tangent pair of order n. There will be n adjacent tangent points lying on Em in

between the tangent points on which the tangent line pair of order n lie. From these

n inner tangent points, the choice of a pair of tangents points of order n−2 is unique.
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The original tangent line pair of order n along with the new tangent line pair of order

n − 2 constitute the boundaries of a face of order n. For n ≥ 2, faces of order n are

always quadrilaterals.

It is sometimes useful to have a labelling scheme for faces, especially when trying

to draw them by computer programs. One scheme is as follows. Viewed by an observer

at the center of Em, a face of order n can be given a unique label based on the left

tangent line of the tangent line pair of order n used in its construction. If this line is

tangent at point Tk ∈ T then the face can be given the label F n
k . Some labels of faces

are shown in Figure 48 (right). A point x is a point of order n if it is in some F n
k ,

with smallest n chosen if the point happens to be on the boundary between faces. An

easy way to see the order of a point is to find the minimum n such that a tangent

pair of order n encloses x against Em. For example, the points R, S, B, C, D are all

of order 4. S is in F 4
3 , D is in F 4

2 , N is in F 1
0 and R is in F 4

q−1.

Proposition 3.3.6 Let F be the face of order 1 centered on T0. Then G(F ) is in

Πm.

Proof Refer to Figure 49. Face F is the light red triangular face with base centered

on T0 and with vertex V . The image of F , G(F ), is shown in light blue, with vertex

G(V ) and base centered on T1. Region ∆3 ∩ A1 or 4SNX is shown in light gray.

Its image, G(4SNX) is the triangle 4G(S)G(N)G(X). Note that, as mentioned

earlier, in the standard scene G(S) lies on the same horizontal line as S, i.e., on the

line y = α
1−α .

The line OT0 is shown in red. Vertex V lies on this line. That is to say, V , T0

and O are collinear. This is evident in the isometric scene. In the isometric scene,

Πm is a regular polygon. The sides of Πm are on the tangent points. Thus the side

of Πm which is the base of F in the isometric scene, has midpoint T0. Vertex V is

constructed from two tangent lines erected on the two tangent points neighboring T0.

Therefore in the isometric scene, F is an isoceles triangle and V , T0, O are collinear.

Linear transformations Γ and Λ preserve collinearity, so these three points must be

collinear in the standard scene as well.

The map G1 is also a linear transformation and thus preserves collinearity. If we

extend G1 to the whole plane, then it maps the light red line V T0O to the light blue

line G1(V )T1G(O). The point G(O) lies above BC so it is not visible in Figure 49.
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Figure 49: The face of order 1 on T0 and its vertex V .

Extending this blue line downward, it meets y = α
1−α at point W , which will be

examined shortly.

Because F is a face of order 1, it is a triangular face, not a quadrilateral face. In

the isometric scene, the base of F , lying on point T0, is a side of the regular polygon

Πm. Therefore if the vertex V is moved inside Em, then the triangle made with the

base of F will lie completely within Πm. Therefore it is sufficient to prove that the

image G(V ) of the vertex V is always inside Em. However, working with V directly

may be algebraically intractable so we seek another point that is simpler.

Consider the point W in Figure 49, which is the intersection of T1G(V ) and the

horizontal line y = α
1−α going through S.

Figure 50 shows the limiting behavior of W as 0 < α < 1
2
. As α → 0, the blue

line approaches the vertical line through T1, and S approaches A, and the point W

seems to approach T3 from above, suggesting that W remains in Em. As α→ 1
2
, the

blue line approaches the line AT1, while S approaches B and W seems to approach

T1 from below, again suggesting that W remains in Em.

If it can be shown that W is always in Em then it would imply that the image of

V is also always in Em for the following reason. Since F ⊂ ∆3 ∩ A1 then G(F ) ⊂
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Figure 50: Limiting behavior of the blue line T1W . Left, α = 0.15. Right,
α = 0.48.

G(∆3∩A1) and it must be that G(V ) is inside G(∆3∩A1). But the line T1W crosses

the boundary of G(∆3 ∩ A1) (except in the degenerate case where W = G(S), but

this amounts to the same thing), therefore G(V ) must lie on the line T1G(V ) in the

segment between T1 and W . Therefore if W is inside Em, so is G(V ).

The point W is found by computing the intersection of the lines G1(OT0) and

y = α
1−α :

W = (Wx,Wy) =

(
− α3 + 2α2 − 3α + 1

2α3 − 6α2 + 6α− 2
,

α

1− α

)
.

Putting W in the level-curves function (22), we obtain

f(Wx,Wy) =
(3α3 − 8α2 + 5α− 1)(α4 − 6α3 + 13α2 − 9α + 2)

(α− 1)6(3α− 2)
. (25)

Expression (25) is plotted in Figure 51. As α → 0 and α → 1/2, the expression

approaches 1 from below, meaning that W approaches Em from the inside. The

minimum is at α ∼ 0.37405812, not far from the golden mean case of α = (3−
√

5)/2 ∼
0.381966. For all 0 < α < 1/2, W is in Em.

We return to the topic of faces and prove some propositions about them which

will be of use in proving the main theorem of this chapter, Theorem 3.3.10.

Faces have important properties. (1) K2 does not change the order n of a face

F n
k . (2) Faces are periodic with respect to the rotation K2. That is, there exists an
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Figure 51: Plot of the expression in (25) for 0 < α < 1
2 .

m such that a face F n
k1

can be brought to coincide with another face F n
k2

of the same

order by F n
k2

= Km
2 (F n

k1
). These are true for faces and G2 in the standard scene as

well.

Let t be a tangent line on one of the points of the set T . We say that a point x is

an inner point with respect to t if x and the center of Em are on the same side of t.

A point x is an outer point with respect to t if x and the center of Em lie on opposite

sides of t.

The notion of inner and outer can be applied to faces as well. Given a tangent

line t, if a face is on the same side of t as the center of Em, then it is an inner face

with respect to t. If it lies on the opposite side of t, then it is an outer face with

respect to t.

Proposition 3.3.7 Let t be a tangent line on one of the points of the set T . Suppose

F is an outer face of order n ≥ 2 having an edge along t, and F ′ is an inner face

sharing the same edge. Then the order of F ′ is n− 1.

Near the tangent point on which t lies, the outer faces along t make acute angles

with t which become larger as order increases. However, the inner faces along t near

the tangent point make obtuse angles with t and these angles become smaller as order

increases.

Proof It is sufficient to consider the example in Figure 52. Take the tangent line t

to be the orange partition line, which is on T0. The faces abed and bcfe are outer

faces along t, while ehgd and fihe are inner faces along t. Supppose the outer face

abed is order n. This face shares edge ed with inner face chgd. The edge ed is along
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Figure 52: Inner and outer faces along tangent lines at T0 and T1.

t. Therefore the order of ehgd is n− 1. This is evident if you consider that these two

faces are constucted by the tangent lines ag and bh. Likewise, outer face bcfe has

order n− 1 while the inner face sharing an edge with it, fihe, has order n− 2.

The outer faces along t make angles ∠cfT0, ∠beT0, ∠adT0, etc. The outer face of

order 1 on T0 is an equilateral triangle, so here the angle is acute. Therefore the angles

that the outer faces make with t begin as acute and grow larger as order increases.

Similarly, inner faces along t make angles ∠gdT0, ∠heT0, ∠ifT0, etc. with line t.

These angles grow smaller as order increases. The inner face closest to T0 (having T0

as one of its vertices) is an order 0 face making an obtuse angle with t. Therefore the

angles made by inner faces begin as obtuse and become smaller as order increases.

Proposition 3.3.8 G2 maps inner faces along the partition line to inner faces of the

tangent line on T1, preserving order. The vertices and edges which lie precisely on

the partition line are also mapped by G1 to the vertices and edges of the inner faces

lying along the tangent line on T1.

Proof See Figure 52 again. The inner faces along the partition tangent line at T0

are in region A2. G2 in the standard scene is conjugate to K2 in the isometric scene

which is a clockwise rotation through angle θ. Therefore G2 maps inner faces of order

n along the T0 tangent line to inner faces of order n along the T1 tangent line. For

example, face ehgd of order m is mapped to face G(e)G(h)G(g)G(d), also of order m,
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while face fihe of order m− 1 is mapped to face G(f)G(i)G(h)G(e) of order m− 1.

If (x, y) is a point on the partition line then (x, y) =
(
u, 1− 1−α

α
u
)

and

G1(x, y) =

(
(α− 1)u+ α

α
, 1

)
= G2(x, y).

Thus, under G1, the points d, e, f are mapped as G1(d) = G2(d) = G(d) and so on,

and likewise for the edges de, ef etc., they are mapped by G1 to corresponding edges

along the T1 tangent line. So, for example, if de is the edge of an inner face of order

m along the T0 tangent, then G1(de) = G(d)G(e) will be the face of an inner edge of

order m along the T1 tangent.

Now that we know what happens to the inner faces along the partition line under

the action of G2, It remains to explain what happens, under the action of G1, to the

outer faces along the partition line. We will develop this theme and then prove a

proposition in this regard.

Because of Proposition 3.3.8, the edges of these outer faces must be mapped to

corresponding edges along the T1 tangent line, but where the rest goes needs to be

determined by a different method.

The matrix of the G1 map in (20) can be factored into elementary transformations

of reflection, scaling and shear: 0 1

1−α
α

1

 =

1 0

1 1

1 0

0 1−α
α

0 1

1 0

 = ΦΘΞ = ΥΞ

First comes Ξ, which is a reflection over the diagonal line y = x. Then there is Θ, a

scaling along the y-axis, followed by Φ, a shear along the y-direction. Let us combine

the y-scaling and y-shear, ΦΘ, into one matrix Υ. Note that Υ does not affect the

x-coordinates of the points it acts on.

Figure 53 illustrates the action of the decomposition G1 = ΥΞ. Attention is

restricted to the outer faces along the partition line in the triangle 4NSX of region

∆3. The transformation Ξ reflects these outer faces over the diagonal line, resulting

in outer faces with edges along the anti-partition line in 4MRX. Then Υ scales and

shears these faces so that their edges are along the T1 tangent line. Although they

no longer faces according to the definition, the points in these images under Υ are all

inner points.
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Figure 53: Decomposition of the G1 matrix: the case where G(S) is inside Em.

By Proposition 3.3.8, Υ maps X to G(X) and M to G(N), and every edge of the

outer faces along XM is mapped to an edge along G(X)G(N) by projection in the

y-direction. The endpoints of these edges and their images under Υ are denoted by

black dots in Figure 53.

Proposition 3.3.9 Suppose x is in an outer face of order m along the partition line

in 4NXS. Then either G1 maps x into a face of order m − 1 along G(X)G(N),

or G1 maps x elsewhere to a face of order m − 1 or lower, or G1 maps x into the

maximal polygon Πm.

Proof Referring to Figure 53, the x-coordinate of R must always lie in between the

x-coordinates of X and M , i.e., Xx < Rx < Mx. This is evident because of the

way 4NSX is constructed by tangent lines: Xy < Sy < Ny. Therefore, since Υ

does not affect x-coordinates, it will map face angles ∠T3XR and ∠T3MR to acute

angles ∠T1G(X)G(S) and ∠T1G(N)G(S). The images of the outer faces along XM

under action of Υ are no longer faces, but the relationship between the angles of these

images are preserved by Υ.
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From Proposition 3.3.7, outer face angles are smaller as faces approach T3, the

same will be true for the angles made by their images under Υ with the T1 tangent

line. Then, since ∠T1G(X)G(S) and ∠T1G(N)G(S) are acute, all angles made by

the other boundary lines of the images under Υ will also be acute.

Next we establish that the angles of the inner faces along G(X)G(N) are always

obtuse. An example can be seen in Figure 53, though one must ignore the images

under Υ and look at the inner faces proper, along the BC tangent line. These angles

are evidently obtuse in the figure, but we must explain why it is always so.

The leftmost of these inner faces makes an angle ∠T1G(X)N with the tangent line

at T1. Note that points S, N , G(X) are collinear because they are all along a tangent

line. This angle is smallest when Nx approaches Sx, (Figure 54, left) which happens

as θ → π
4
, even so it is bounded by π

2
. Therefore, from Proposition 3.3.7, all inner

faces along G(X)T1 must make obtuse angles with the tangent line at T1. Now for

the inner faces to the right of T1, along T1G(N). It is clear that, along the T1 tangent

line, the smallest angle that an inner face makes with this line is the one at C, which

is π
2
. Therefore again by Proposition 3.3.7, all the inner faces along T1G(N) must

make obtuse angles with the tangent line at T1. Thus all inner faces along G(X)G(N)

make obtuse angles.

Suppose G(S) is inside Em. Refer to Figure 53 for this case. Let F be an outer

face along XM of order m, and let x ∈ F . Let F ′ = ΥF be the image of F under

Υ. From Proposition. 3.3.8 we know that the edge of F which is along XM and

its endpoints (black dots in the figure), are mapped by Υ precisely to the edge and

endpoints of an inner face along G(X)G(N). Therefore the image F ′ shares the edge

and endpoints along G(X)G(N) with an inner face of order m − 1. However, we

argued in the previous paragraphs that the inner faces along G(X)G(N) are angled

obtusely with respect to the T1 tangent line, while the image F ′ is angled acutely.

Thus there is no way for point x to reach a face of order m or greater. Therefore x

must be sent by Υ either into a face of order m − 1 or lower, or into the maximal

polygon Πm.

Finally we must rule out any possibility for the point x to escape to a face of

order ≥ m by some other way. One such way is when G(X) is outside Em, along the

diagonal y = x between X and Em (Figure 54, left). The outer face along XM with

largest order, say m, is the one having R as a vertex. But ΥR = G(S) which falls in
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a region 4T0XT3 where no face is higher order than m − 1. Furthermore, points of

faces of order lower than m cannot move into a face of order m in this region because

the images are angled acutely.

Figure 54: Left: G(S) is along diagonal y = x between X and Em. Right: G(S)
is along diagonal y = x between Em and bounding box point C.

Similar considerations are made when ΥR = G(S) falls in the region outside Em

in between Em and C (Figure 54, right). The outer face having R as a vertex is

order m, but here G(S) falls in a face of order m− 3, and since all images are angled

acutely, no point of an outer face along XM can ever reach a face of equal or higher

order than it originally had.

We have completed the study of G with π-rational rotation angle, and we have

proved the propositions we need for the main theorem. Now we turn to the π-irrational

case. We will present some numerical studies which point to the right idea behind

the behavior of orbits. Once this numerical phenomena is described and understood,

it will point us toward the main theorem proof for the π-irrational case.

Figure 55 features limit sets for two π-irrational angles. Limit sets are analogous

to Mandelbrot sets: a point x0 is chosen and iterated under G. The number of

iterations required for x0 to fall into Em is recorded, up to a specified limit, say 105.

The data is binned into a 2D histogram, from which an image is made. Colors and

brightness indicate how long it takes for points in those regions to fall into Em. Black
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Figure 55: Limit sets. Left: r = 1/
√

9.8. Right: r = 1/
√

9.5.

areas take relatively few iterations. Bright areas may require thousands. Some close

ups of details in limit sets are shown in Figure 56.

Figure 56: Zoom on limit sets. Left: r = 1/
√

9.8. Right: r = 1/
√

9.3.

The limit sets in Figures 55 and 56 were constructed from 400,000,000 random

initial points. Iterations were cut off above 105 and below 50 to 100. The histograms

had 1500 × 1500 bins. In the left image θ = r · (2π) ≈ 115◦ and on the right, a

slightly larger angle θ = r · (2π) ≈ 116.8◦. We see branching fractal patterns. These

patterns are thin and scarce when θ → 90◦, but densely fill up the space in between
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the preimages of Em (the dark ellipse-like regions) as θ → 120◦. The closer θ is to

120◦, the easier it is to find points that take a very long time to fall into Em.

This leads us to make conjectures about the high iteration points. Here is a rough

sketch. A particle (as it can be imagined) which takes a very long time to fall into Em

must spend most of its life in region A2 above the partition line. If the particle is very

close to Em, it can rotate around A2 under the action of G2 and avoid entering A1 for

a long time. When it does enter A1, it will do so near the point T0, as this is the only

“entry point” for a particle which is orbiting very close to Em. By Proposition 3.3.3,

the distance to Em will shrink and by Proposition 3.3.4 the particle returns to A2

where it circulates again for very many iterations of G2. And so on.

This will be proved in the main theorem, Theorem 3.3.10, but it is illuminating

to first examine some numerical evidence.

By sifting though the data behind the graphics in Figures 55 and 56, points which

take very many iterations to enter Em can be found. Table 1 is a summary of the

orbit of one such point. Data is only recorded when the point enters A1, we ignore

iterations in A2, although we keep track of the total number of iterations in the

right-most column. From the table, it is clear that most of the iterations are spent

in A2—the point only rarely enters A1. Between the last two appearances in A1,

the point had spent more than 240,000 iterations in A2. This is consistent with our

conjectures. Each time the point enters A1 we also record the distance to T0. It

can be seen in the table that this distance decreases with every visit to A1: again

consistent with our conjectures.

Another example is given in Table 2, This time θ is closer to 120◦. As mentioned

previously, the I × I region fills up with high-iteration points when θ → 120◦. We

expect it to be easy to find points requiring a million or more iteration. Out of more

than 2.7 million iterations, this particular point visited A1 only 13 times. Each time,

its distance to T0 became smaller, as expected. Again, this is consistent with our

conjectures about π-irrational dynamics.

Now that we have a good grasp of what seems to be going on for the π-irrational

case, we move to the main theorem of this chapter.

Theorem 3.3.10 When θ is π-rational, then every point x ∈ I × I r {(0, 0)} goes

into Πm. When θ is π-irrational, then for every point x ∈ I × I r {(0, 0)}, either

some iterate of x falls into Em or the orbit Gn(x) is accumulated on Em.
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x y Distance from T0 Iteration

0.71495708668 0.07676770558 0.51440070071 0
0.08696440497 0.78310688511 0.43907797182 4
0.41764247718 0.50582381296 0.76372288813× 10−2 661
0.41916457850 0.50403506482 0.52885282662× 10−2 805
0.41992607811 0.50314242717 0.41152153853× 10−2 877
0.42067391038 0.50225092744 0.29516021389× 10−2 949
0.42218447586 0.50047143696 0.61742335748× 10−3 1093
0.42244562726 0.50016269733 0.21304703524× 10−3 3372
0.42258458756 0.49999832526 0.21926923008× 10−5 244561

Table 1: The approach to T0 for r = 1/
√

9.8.

Proof Refer to Figures 47 and 48. Points in Qr∆2 either go into Πm or they return

to ∆2. Points in ∆2 are mapped into ∆3. Therefore it is sufficient to consider only

∆3. Faces in ∆3 ∩A2 will eventually return by rotation to overlap a face of the same

order in ∆3 ∩ A1. Therefore it is enough to consider faces in ∆3 ∩ A1, which is the

triangle 4NSX.

Suppose that x is in a face in 4NSX of higher order than the ones having edges

along NX. Then by Proposition 3.3.3, x will either move strictly closer to Em on the

next iteration, or go into Em. Therefore eventually x will either (a) go into a face of

order m which can be rotated to coincide with a face of order m along NX or (b) go

into Πm. Suppose (a). When this face is brought to coincide with a corresponding

face along NX, then by Proposition 3.3.9, x will, on the next iteration, end up in a

face of order m− 1 or less, or inside Πm. This continues until x either goes in a face

of order 1, or goes in Πm. Suppose x is now in a face of order 1. Then by rotation,

this face will eventually coincide with the unique order 1 face along NX, and in the

next step, by Proposition 3.3.6, x will go into Πm. Therefore all points go into Πm.

We now consider the case where θ is π-irrational. The movement function D, (24),

is strictly positive in A1 except at the origin and on the partition line. Since D is

continuous, this means that the orbit points Gn(x) cannot accumulate in the interior

of A1. Thus, the orbit points Gn(x) either eventually stay in A2, or they switch

between A1 and A2 infinitely often. If, starting from some iteration, they stay forever

in A2, then they have fallen in the closure of Em. If they switch infinitely many times
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x y Distance from T0 Iteration

0.13449007107667 0.42243560817160 0.35415528931041 0
0.43979753159904 0.54025659355535 0.56926528793746× 10−1 4
0.46134295108585 0.51882765202083 0.26539209923934× 10−1 7
0.47856068143989 0.50154705979212 0.21454956821362× 10−2 101
0.47888425518990 0.50121073972254 0.16787933708968× 10−2 1748
0.47909954150914 0.50098664182530 0.13680393426402× 10−2 2846
0.47931466394059 0.50076263641774 0.10574655472880× 10−2 3944
0.47952977570801 0.50053872352893 0.74696586389585× 10−3 5042
0.47974471722800 0.50031490305058 0.43665076179508× 10−3 6140
0.47995965486046 0.50009117501756 0.12640502515786× 10−3 7238
0.48004619512294 0.50000105375159 0.14607991662494× 10−5 2538784
0.48004678503418 0.50000043932247 0.60902547823245× 10−6 2638699
0.48004737494356 0.49999982489409 0.24274638491963× 10−6 2738614

Table 2: The approach to T0 for r = 1/
√

9.3.

between A1 and A2, then the iterates Gn(x) which are in A1, must accumulate at T0,

which is the only point both in Em and on the boundary of A1.

We have shown that, for the π-rational case, all points lying in faces of order

n ≥ 1 eventually visit A1. Therefore by Lemma 3.3.5, the only periodic points are

the points in faces of order 0, i.e., points on or in Πm.

3.4 Appearance and growth of islands

We have seen that densities for G with π-irrational rotation angles are concentric

ellipses supporting ACIMs on each ellipse. They are periodic in the case of π-rational

rotation angles. The elliptical map with memory G is defined by 0 < α = β < 1
2
, but

an interesting phenomenon occurs in the π-rational case when β is slightly perturbed.

If β is slightly increased, the periodic density does not remain confined to points.

The support becomes two-dimensional islands, These islands begin very small, but

grow in size as β increases.

For example, if θ = p
q
2π then α = 2 cos θ

2 cos θ−1 and we can try a perturbed β, β = α+ε,

where ε is some small number. Making images of such perturbed densities will reveal
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q islands which grow larger as ε is made larger. This phenomenon of island growth is

illustrated in Figure 57.

Figure 57: Growth of islands. Beginning with θ = 5
182π, take β > α to be

α+ 0.003, α+ 0.006, α+ 0.01.

Rather than the usual β = α for the elliptical map, we have taken β = α+ 0.003,

etc., and this has resulted in the 18 islands seen in the images.

Using the combinatorial method of [9] and as described in Section 2.3 and in

Theorem 2.3.2, it can be shown by the same method that the three island densities of

Figure 57 support absolutely continuous invariant measures. Many other (but not all)

island densities grown this way can be proved to support ACIMs by Theorem 2.3.2.

Some close-ups of islands grown from point-periodic densities by perturbing β are

shown in Figure 58. All of these islands support absolutely continuous invariant

measures.

Figure 58: Islands. Left: θ = 11
422π, β = α + 700 × 10−6. Middle: θ = 21

652π,
β = α+ 300× 10−6. Right: θ = 36

1092π, β = α+ 20× 10−6.

The Nakamura-Mackey map S of [19] and Section 2.5 also exhibits the phe-

nomenon of island growth. Figure 59 is an example.
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Figure 59: Island growth for Nakamura map. a = 0.245, b = 1.025 (left),
b = 1.03 (middle), b = 1.04 (right).

Densities for the Nakamura map S in (18) were examined for a = 0.245 and

1.0 ≤ b ≤ 1.05. For this range of b, a system of 13 islands grows from points or

possibly tiny point-like islands. Using the combinatorial methods of Theorem 2.3.2,

all of the island systems of Figure 59 can be shown to support ACIMs.

Nakamura-Mackey island growth is also associated with ellipses, but this topic is

deferred to the epilogue in Chapter 4.
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Chapter 4

Further Directions

The system of 448 islands at α = 0.4973 was one of several island systems mentioned

in [10]. As pointed out in [9], this system has 49 islands of region index 3. To prove

the existence of an ACIM, it would be necessary to evaluate 249 = 562,949,953,421,312

possible region index trajectories and the corresponding singular values σ2 of D(G448),

This is far beyond our present computing abilities. How to prove the existence of an

ACIM for this case is an open question. Perhaps some refinement can be made to

the combinatorial method of Theorem 2.3.2, possibly by grouping the islands in some

way. Images of some islands in this system are shown in Figure 60.

We saw that entropy plots were a practical tool for discovering interesting phenom-

ena in memory map dynamics. Another tool with good potential is the bifurcation

plot, which is described in [17, prob.1.3]. To make a bifurcation plot, we return to

a one dimensional picture of the memory map as described in Section 2.3. The hor-

izontal axis of a 2D histogram is associated with values αk, and a one dimensional

orbit is computed for each αk, filling the vertical bins of the histogram above αk. This

can be done by taking a 2D memory map G and recording only the y coordinates

of the orbit points in the histogram bins above αk. Figure 61 is a bifurcation map

for (11) over a narrow interval of α centered exactly on α = 0.493. The indication

of island phenomena as described in Section 2.3 near α = 0.493 is clearly visible as

a heavy dark vertical band through the center of the image. There are other bands

distributed in what appears to be regular patterns. Some bands are faint. Lying

to the right, there is another vertical band of comparable prominence to the central

one. This band lies near α = 0.49312328082020507. A study of the entropy well for
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this value of α reveals a system with 178 islands which support an ACIM. Images of

some islands for this system are shown in Figure 62. Why there is regularity in the

distribution of these bands is unknown.

Some observations on the appearances of islands. There are repetitions of themes

for systems of islands that vary widely in α and island count. Note the similarity

between the 175, 448 and 178 systems in Figures 19, 60 and 62. Then note the

common theme shared between the systems in Figures 21, 26 and 30. There are

systems for which all islands seem to be affine transformations of a single island.

Both the Nakamura 22 and 31 systems studied in Section 2.5 are like this. For

other systems, it’s hard to avoid the impression that the islands are 3D objects being

projected down into 2D, complete with shadows in some cases. For example, some

(or all) of the islands in the 203 β-tent system of Figure 38 look like 2D projections

of a single object which is being rotated in three dimensions.

Island systems also arise if we use other τ , such as the sine map τ(u) = sin πu or

the logistic map τ(u) = 4u(1−u). From these we can construct 2D memory maps G.

Typical islands for these G look totally different from anything we have seen so far.

An island from a sine map system of 7 islands is shown in Figure 63. Attempts were

made to adapt singular value methods to prove that sine and logistic islands support

ACIMs, with no success yet. It’s an open question.

The sine map with memory exhibits an extaordinary phenomenon of island fission,

i.e., one island which splits into three. An island fission sequence is shown in Figure 64.

It happens over a range of α between α1 = 0.126934 to α2 = 0.1269395 in a tiny

window centered on (0.5308, 0.2829) with width ∆x = 0.007 and height ∆y = 0.0021.

The image frames were chosen from this range. Other baffling phenomena can be

seen in this interval of α.

Figure 65 illustrates logistic map islands from systems with 5 and 6 islands re-

spectively, at α = 0.1278 and α = 0.10907. The islands in these systems are of the

affine type: each island is an affine transformation of some reference island. The sine

map system of Figure 63 is also affine. This shows that the phenomenon of affine

islands seems to be universal across many types of τ . Why this is so, and what it

means, is unknown.

The Nakamura-Mackey map (18) produces ellipses for certain values of a and b.

This is seen in Figure 66 (left), which is a density made by choosing a = 0.245 and

79



Figure 60: Islands 161, 291 and 346 in the 448 island system at α = 0.4973.

Figure 61: Bifurcation plot for tent memory map. Narrow α-interval centered
on α = 0.493.

Figure 62: Islands 20, 39 and 92 from the 178 island system lying to the right
of center in Figure 61, α = 0.49312328082020507
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Figure 63: Sine map with memory island, α = 0.1269.

Figure 64: Island fission for sine map with memory, 0.126934 < α < 0.1269395.
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Figure 65: Logistic islands. Top: α = 0.1278. Bottom: α = 0.10907.

Figure 66: Ellipse phenomenon for Nakamura map, b = 1.0, b = 1.01.
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b = 1.0 with 200 random points and allowing their orbits to settle. They settle into

concentric ellipses reminiscent of the elliptical memory maps of Chapter 3.

When b is increased slightly, the orbits quickly move into “maximal” position,

expanding into the domain up to the parition line, which is visible in Figures 39 and

41. The orbits go through some remarkable changes before becoming, at b = 1.01,

polygonal with 13 sides. These sides reveal incredibly complex and beautiful details

if imaged at very high resolution. When b is increased a little more, we have a regime

of island growth, as pictured in Figure 59. This leads to some final questions. Are

ellipses universal for certain types of piecewise linear 2D maps? Can the geometrical

analysis of Chapter 3 be extented to the Nakamura map?
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