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Abstract for Masters 

 

Development and Application of Children's Sex- and Age-Specific Fat-Mass and Muscle-Mass 

Reference Curves using the LMS Methodology   

 

Stephanie Tanasia Saputra 

 

Body mass index cannot distinguish between fat-mass and muscle-mass, which may result in 

obesity misclassification. A dual-energy x-ray absorptiometry (DXA)-derived phenotype 

classification based on fat-mass and muscle-mass has been proposed for adults (>18 yo). We extend 

this research by developing children’s fat-mass and muscle-mass reference curves and determining 

their utility in identifying cardiometabolic risk. Children’s (≤17 yo) DXA data in NHANES, a US 

national health survey (n=6,120) were used to generate sex- and age-specific deciles of 

appendicular skeletal muscle index and fat mass index (kg/m2) with the Lambda Mu Sigma (LMS) 

method. The final curves were selected through goodness of fit (AIC, Q-tests, detrended Q-Q plot). 

Four phenotypes (high [H] or low [L], adiposity [A] and muscle mass [M]: HA-HM, HA-LM, LA-

HM, LA-LM) were identified using the literature’s guidelines above/below the median compared 

to same-sex and same-age peers. The curves and their corresponding phenotypes were applied to 

QUALITY data, a longitudinal cohort (n=630, 8-10 yo in 2005) to assess whether the phenotypes 

correctly identified cardiometabolic risk using multiple linear regression at baseline, follow-up one 

(2008-2010), or follow-up two (2015-2017). Models were adjusted for age, sex, and Tanner’s stage. 

Chained equation was used to impute missing values in QUALITY. Compared to LA-HM, LA-

LM was associated with lower glucose at baseline; HA-HM was associated with lower HDL-c and 

higher LDL-c, triglycerides, and HOMA-IR; HA-LM was associated with elevated triglycerides 

and HOMA-IR at all timepoints (all p<0.05). These phenotypes allowed for discrimination of 

cross-sectional cardiometabolic risks, but further longitudinal exploration is recommended. 
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1 Introduction 
 

Worldwide, obesity has nearly tripled since 1975. According to the World Health Organization, 

over 340 million children and adolescents aged 5-19 have overweight or obesity in 2016 [1]. 

Childhood obesity is associated with a higher chance of severe diseases in adulthood such as stroke, 

heart disease, and diabetes [2]. Although obesity is preventable and there have been a lot of research 

and public programs to reduce its increase, the prevalence of obesity and overweightness has risen 

dramatically from 4% to 18% among children aged 5-19 in the past 40 years [1]. Childhood obesity 

remains a public health concern in Canada, with an estimated 30% of children having overweight 

or obesity [2]. One of the emerging types is sarcopenic obesity, often characterized by excessive 

fat mass in the presence of reduced muscle mass [3]. There is evidence that people with sarcopenic 

obesity have higher rates of illness, disability, and mortality compared to people with either low 

muscle mass or obesity [4].  

It is pivotal to have obesity measures due to the risk that it imposes. Body mass index (BMI) is 

commonly used as a proxy for adiposity [5]. However, it does not distinguish between fat and 

muscle mass as it is calculated by dividing weight by height squared. This can lead to obesity 

misclassification due to over/underestimation of fat mass. To better assess this, more precise 

methods such as dual-energy x-ray absorptiometry (DXA) need to be used. DXA can calculate the 

fat, muscle, and bone mass in a body. Thus, recent studies have been using DXA as an adiposity 

measure since they allow distinctions between the fat and muscle mass. For instance, in 2019, a 

study was conducted to compare the ability of DXA to other anthropometric measures in predicting 

visceral fat (VF) of 9 to 13 years old girls. The authors concluded that adding DXA to their model 

improved the predictability of VF [6].  

 
Figure 1: Dual-energy x-ray absorptiometry (DXA) machine [7] 

Furthermore, DXA results can be used to calculate derivative values such as fat mass index (FMI: 

fat mass/height2) [8] and appendicular skeletal muscle index (ASMI: appendicular lean 

mass/height2) [9]. These indices are commonly used as they account for height. Baumgartner used 
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the percentiles of ASMI and FMI to create four mutually exclusive phenotypes to better explain 

body composition [10]. He created cut-offs for low (<50th percentile) or high (>50th percentile) 

adiposity and muscle mass and four mutually-exclusive phenotypes were: low adiposity with high 

muscle mass (LA-HM), high adiposity with high muscle mass (HA-HM), low adiposity with low 

muscle mass (LA-LM), and HA-LM. Using these phenotypes, HA-LM was associated with a 

drastic reduction of insulin sensitivity [11]. In 2014, Prado et al., extended this literature to derive 

sex- and age-adjusted FMI and ASMI reference curves by incorporating the Lambda Mu Sigma 

(LMS) method while also considering Baumgartner’s phenotypes in the process [10], [12], [13]. 

Reference curves are known to be a quick and reliable tool to assess a growth/development of a 

measure along with age. These are particularly crucial for assessing development in young 

populations, as they are still growing. It is used by doctors, paediatricians, and parents to quickly 

assess children’s development according to the reference population of same-age, same-sex peers 

[14]. Reference curves are presented as several centiles to see where the measure of interest falls 

between them. Figure 2 shows the Centers for Disease Control and Prevention BMI reference 

curves for girls aged 2-20 years old [15]. For instance, if a 12-year-old girl has a BMI of 20, from 

the reference curves, we see that her BMI falls between the 95th and 98th percentile of the reference 

population. Thus, nurses/paediatricians could accurately observe that her BMI is high just by 

observing where it falls in the reference curves; her BMI is greater than 95% of the reference 

population’s BMI from her same-age, same-sex peers. Then, along with other health diagnostics, 

they can prescribe a proper dietary measure for the patients.  

 
Figure 2: BMI reference curves from CDC, for girls aged 2-20 years old (2022) 
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The LMS method is commonly used to construct these reference curves [13]. The LMS method 

presents a way of obtaining normalized growth centiles after accounting for the skewness that is 

often present in the distribution of data [16]. First, the median (𝜇) of the variable of interest is 

calculated as well as the coefficient of variation, 𝜎.  Next, the Box-Cox power transformation is 

applied to the data, under the parameter 𝜆. After the transformation, z-score and centiles can be 

calculated through the standard normal distribution assumption which will then be plotted into 

reference curves.  

The LMS method was introduced by Cole in 1989 [16] and has been widely applied in practice to 

develop reference curves among children and youth. For example, the World Health Organization 

(WHO) uses this method to develop their 2007 centiles and z-scores for height, weight, and BMI 

[17]. Moreover, in 2001, Lun et al. developed a fetal reference chart and they found the LMS 

method to have a better result compared to the regular “mean and SD method” [18].  

In their study, Prado et al. [12] developed adiposity and muscle-mass reference curves and their 

corresponding phenotypes using NHANES, a nationally representative adult population (> 17 

years). Although DXA is not collected in routine clinical care, improving our understanding of the 

methodological and substantive aspects of DXA phenotypes is a necessary preliminary step in 

order to identify appropriate proxies in the future. As a result, developing and improving DXA 

phenotypes is one viable way to increase the usability of the data. However, for youth populations, 

there are currently no adiposity and muscle mass reference curves and phenotypes analogous to 

Prado’s work. In addition, empirical research applying the LMS-derived phenotypes of fat- and 

muscle-mass are lacking. 

Our study attempts to address the aforementioned limitations. Thus, the objective of this study was 

to: 

1. Develop reference curves and body composition phenotypes for children based on their 

FMI and ASMI data using the LMS method. 

2. Determine whether our DXA-derived muscle- and fat-mass phenotypes in children are 

associated with cross-sectional cardiometabolic risks. 

 



4 

 

2 Methodology 
 

2.1 Study sample 

Prado et al. utilized the 1999-2004 data from the National Health and Nutrition Examination 

Survey (NHANES) to develop the reference curves in adults [12]. NHANES is a program of studies 

intended to evaluate the health and nutritional status of adults and children in the United States. 

Cross-sectional samples were collected every two years since 1999 [19].  

Individuals were invited to participate in NHANES using a complex multistage probability 

sampling technique, which included oversampling of African Americans, Mexican Americans, 

low-income whites, and older people (≥60 years) in order to provide a representative sample of the 

general US population  [19]. All participants provided informed consent and ethics approval was 

obtained from the National Center for Health Statistics Ethics Review Board [20]. 

To develop the reference curves in youth for this study, the cross-sectional data from 1999-2006 

NHANES were used (𝑛 = 41,474). Respondents were excluded if they were younger than eight 

years of age (the minimum age required for the dual-energy x-ray absorptiometry [DXA] scans in 

NHANES; 𝑛 = 8,655), older than 18 years (𝑛 = 22,624), or if they had no DXA data due to 

height/weight restrictions (weight limit of 136 kg, height limit of 196 cm) or pregnancy (𝑛 =
4,075) [21]. The final analytical sample was 6,120 (3,708 male and 2,412 female). Missing DXA 

data were imputed using multiple-imputation methodology into five data sets [21]. This was 

incorporated into the data analysis, as described in a later section. 

 

2.2 Anthropometric and body composition 

All body measures were obtained by trained health technicians. A stadiometer was used to measure 

height, and respondents were asked to take a deep inhalation. Weight was measured by an 

electronic digital scale calibrated in kilograms.  

Whole-body DXA scans were taken with a Hologic QDR-4500A fan-beam densitometer (Hologic, 

Inc., Bedford, Massachusetts) with a software version of 8.26 [21]. The DXA scans provide bone 

and soft tissue measurements for the total body, both arms, and both legs. A high level of quality 

control was maintained throughout the DXA data collection and scan analysis, including a rigorous 

phantom scanning schedule. A detailed description of data acquisition and precision can be found 

in the documentation [22], [23].  

Appendicular skeletal mass index (ASMI, representing muscle mass) was calculated using the 

DXA lean mass for arms and legs, divided by height squared. Fat mass index (FMI, representing 

fat mass) was calculated by dividing total fat mass with height squared. These values then informed 

the development of the reference curves, as described in the subsequent section.  

 

2.3 LMS method 

It is a common practice to express child growth in the form of reference centile curves as it shows 

the distribution of a measurement as it changes accordingly to some covariate, often age [24]. In 

this study, a curve fitting procedure called the Lambda Mu Sigma (LMS) method was used to 
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generate the reference curves for children under the age of 18 years. The lmsChartMaker Pro 

version 2.54 was used for this procedure [25].  

 

2.3.1 Calculating lambda, mu, sigma 

The FMI and ASMI data are first divided into distinct age groups. Ideally there should be a one-

year gap or less between each group. In this study, the age group was from 8 years to 17 years, 

with a one-year gap. Thus, we have 10 age groups in total.  

The variable of interest, (in this case FMI and ASMI) is denoted by 𝑦 ≥ 0. Suppose that y has a 

median of  𝜇𝑦 and that 𝑦𝜆 is normally distributed. Based on the technique proposed by Box and 

Cox [26], it is then defined that 

𝑥 =

{
 

 
(𝑦/𝜇)𝜆 −  1

𝜆
 , 𝜆 ≠ 0

ln (
𝑦

𝜇
) ,                    𝜆 = 0.

         (1) 

This transformation ensures the mapping of 𝜇𝑦 to 𝑥 = 0 and is continuous at 𝜆 = 0. Since 𝜆 is a 

free parameter, the value that minimizes the standard deviation of 𝑥 is the optimal solution for it. 

A power transformation is applied to the age-stratified FMI and ASMI data to eliminate the 

skewness of the dependent variable. This is because in general, anthropometry data tends to be 

skewed to the right [13]. After 𝑥 is calculated, the 𝑧-score for which the curves will depend on can 

be calculated through the standard normal distribution assumption (mean of the transformed 

variable is assumed to be zero). The z-score for 𝑥 is defined as 

𝑧 =
𝑥

𝜎
=  

{
 
 

 
 
(𝑦/𝜇)𝜆 −  1

𝜆𝜎
 , 𝜆 ≠ 0

ln (
𝑦
𝜇)

𝜎
,                    𝜆 = 0,

   (2) 

where 𝜎 is the standard deviation of the transformed variable 𝑥 (or the CV of 𝑦).  

The method is called LMS since the parameters are: lambda (𝜆, for the Box-Cox power 

transformation), median (𝜇, the median of the variable), and coefficient of variation (𝜎). With the 

assumption that the residuals follow a normal distribution, the desired percentile can be calculated. 

L, M, and S are the estimation of 𝜆, 𝜇, and 𝜎 respectively. Cole et al. derived a step by step account 

of how to calculate L, M, and S for each of the age groups [13]: 

1) The mean and standard deviation (SD) of the natural logarithms of the measurements 

(FMI or ASMI) is calculated. Let the antilog of the mean be called the geometric mean, 

denoted by 𝑀𝑔. Calculate the coefficient of variation (CV): 𝑆𝑔 by dividing SD with 𝑀𝑔.  

2) Repeat step (1) for the original measurements; the mean is the arithmetic mean of the 

measurements, denoted by 𝑀𝑎. The arithmetic CV; 𝑆𝑎 is calculated by dividing SD with 

𝑀𝑎. 
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3) Repeat step (1) for the reciprocal measurements; the mean is the harmonic mean of the 

measurements, denoted by 𝑀ℎ. The arithmetic CV; 𝑆ℎ is calculated by multiplying SD 

with 𝑀𝑔. 

4) 𝑆𝑔, 𝑆ℎ, 𝑆𝑎 should be very similar. Let 

𝐴 = log (
𝑆𝑎
𝑆ℎ
) , 𝐵 = log (

𝑆𝑎𝑆ℎ
𝑆𝑔2

) 

 
 (3) 

 The estimate of the Box-Cox power L is then given by  

𝐿 = −
𝐴

2𝐵
 . (4) 

5) The generalized coefficient of variation S at the value of L is obtained by interpolating the 

three coefficients of variations to find the minimum value thus making sure that S is 

slightly smaller than the three. It is formulated as: 

𝑆 =  𝑆𝑔 exp (
𝐴𝐿

4
) . (5) 

6) Similarly, the generalized mean M is obtained by interpolating the three means: 

𝑀 = 𝑀𝑔 +
(𝑀𝑎 −𝑀ℎ)

2
 𝐿 +

(𝑀𝑎 − 2𝑀𝑔 +𝑀ℎ)

2
 𝐿2 . (6) 

 

For generalization, assume now that the distribution of 𝑦 varies with covariate t (in this study, t is 

age) and that 𝜇, 𝜆, and 𝜎 at t are M(t), L(t), and S(t). Then, we can rewrite Equation (2) as: 

𝑧 =

{
 
 

 
 
(𝑦/𝑀(𝑡))𝐿(𝑡) −  1

𝐿(𝑡) 𝑆(𝑡)
 , 𝐿(𝑡) ≠ 0

ln (
𝑦
𝐿(𝑡)

)

𝑆(𝑡)
,                         𝐿(𝑡) = 0.

 (7) 

With a simple rearranging, the centile 100𝛼 of 𝑦 at 𝑡 is 

𝐶100𝛼(𝑡) = {𝑀(𝑡) [1 + 𝐿(𝑡) 𝑆(𝑡) 𝑍𝛼]
1
𝐿(𝑡) , 𝐿(𝑡) ≠ 0

𝑀(t) exp[𝑆(𝑡) 𝑍𝛼] ,                          𝐿(𝑡) = 0,
(8) 

where  𝑍𝛼 is the z-score value under normal distribution with a significance level of 𝛼. After 

calculating all of the desired percentiles, the curves can be plotted. As an example, Figure 3 shows 

a centile curve of a measure where the bottom curve is the 10th percentile, then the 20th percentile, 

and so on until the top curve which represents the 90th percentile.  
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Figure 3: Centile curves of a measure where smoothness is maximized 

 

2.3.2 Fitting and smoothing the curves 

Based on the formulations in the previous section, the values of L, M, and S are obtained for each 

age group: L(t), M(t), and S(t) and plotted separately against their group mean ages. To achieve a 

set of smooth curves, the curves can be fitted by several methods, for example with a linear equation 

or even a cubic spline.  

With the same software to calculate the values for L, M, and S, this study used lmsChartMaker Pro 

[25] to fit the curve using maximum penalized likelihood. Let the observations at 𝑡𝑖  be 𝑦𝑖 where 

𝑖 = 1,2, … , 𝑛. The log-likelihood function 𝑙 can be derived from Equation 

(7):

𝑙 =  ∑ 𝐿(𝑛
𝑖=1 𝑡𝑖) log

𝑦𝑖

𝑀(𝑡𝑖)
− log 𝑆(𝑡𝑖) − 

𝑧𝑖
2

2
 , (9) 

where 𝑧𝑖 are the standard deviation scores corresponding to 𝑦𝑖 . Then, the curves are estimated by 

maximizing the penalized likelihood through the following objective function [24]: 

𝑂(𝑡) = 𝑙 − 
1

2
 𝛼𝜆∫{𝐿

′′(𝑡)}2𝑑𝑡 − 
1

2
 𝛼𝜇∫{𝑀

′′(𝑡)}2𝑑𝑡 − 
1

2
 𝛼𝜎∫{𝑆

′′(𝑡)}2𝑑𝑡 , (10) 

where 𝛼𝜆, 𝛼𝜇, and 𝛼𝜎 are smoothing parameters. Equation (10) has three integrals for each of the 

values and they serve as penalties according to the squared derivatives of L, M, and S curves. It 

can be shown that these penalties lead to natural cubic splines with knots at each distinct value of 

t. 

Since the objective is to maximize the function, there is a clear tradeoff between the likelihood and 

the smoothness. Increasing the smoothness (by the 𝛼𝜆, 𝛼𝜇, and 𝛼𝜎) yields higher values for the 

integral side of the function (Figure 3), which lowers the objective. In contrast, compared to Figure 

1, lowering the smoothness yields a higher value for the objective function but the curves might be 

under-smoothed (Figure 4).  
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Figure 4: Centile curves of a measure where the objective function is maximized 

 

The complexity of the curves is not measured directly by the smoothing parameters, but with its 

equivalent degrees of freedom (edf). For a parameter p, the edf is defined as: 

𝑒𝑑𝑓(𝑝) = 𝑡𝑟𝑎𝑐𝑒(𝑊𝑝 + 𝛼𝑝𝐾)
−1
𝑊𝑝 , (11) 

where 𝑊𝑝 is the second derivative of l with respect to p and K is an 𝑚 ×𝑚 matrix. A detailed 

explanation about the smoothing algorithms and proofs of the equations are available in Cole and 

Green’s work [24]. 

Thus, changing the edf changes the smoothness of the curves as well as its deviance. The lower the 

edf, the smoother the curves will be. For instance, Figure 3 has edf of 3,5,3, and is significantly 

smoother than Figure 4 with an edf of 10,10,10 of the same data. However, the deviance of 

10,10,10’s curves (deviance = 16,816.1) is lower than the deviance of 3,5,3 edf (deviance = 

16,839.3) by 23.2 even though the curves are jagged. One other important thing to note is over-

smoothing. Figure 3 shows an over-smoothed curve since we’re missing the underlying curve 

shape: the dip around age 15 in the curves that are visible in Figure 4 have been lost. Therefore, 

goodness-of-fit tests are needed to help optimize the tradeoff. 

 

2.3.3 Goodness of fit tests 

In order to get the best set of curves, comparisons of goodness-of-fit tests are necessary. The 

simplest ones are the deviance measures: Penalized Deviance, Schwarz Bayesian Criterion, 

Generalized Akaike Information Criterion (GAIC), Akaike Information Criterion (AIC), and 

Global Deviance (𝐷𝑔). In this study, Penalized Deviance (𝐷𝑝) and AIC were selected as they are 

commonly used in the pertinent literature [7], [8]. The penalized deviance is defined as: 

𝐷𝑝 = −2 × 𝑂(𝑡) 

and AIC is defined as: 

𝐴𝐼𝐶 =  −2 × 𝐷𝑔 + 2 × (𝑒𝑑𝑓𝜆 + 𝑒𝑑𝑓𝜇 + 𝑒𝑑𝑓𝜎). 
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For penalized deviance, the lower the value the better the fit since we would like O(t) in the function 

to be maximized. Similar to penalized deviance, the model’s AIC should be low since it penalizes 

the model that uses more parameters; the simpler the model, the lower the AIC. Therefore, 

observing both parameters will give us the parsimonious balance between less splines in the curves 

and a closer fit to the actual data.  

In addition to these quantitative measures, there are some qualitative tools available to check the 

goodness of fit. In this study, we looked at two of them: detrended Q-Q plot and Q-tests. For both 

tests, the data is converted into its z-scores. Detrended Q-Q plot is a detrended form of a Q-Q plot 

which is often used to assess whether data follow a particular distribution. First, the z-scores 

(observed) are sorted into increasing order and then each is plotted against its expected z-scores 

based on its centile assuming a normal distribution. The points appear as a worm shape where the 

extreme points are more variable than those in the center. This plot assesses the age-conditioned 

normality of the transformed data under the LMS method.  

van Buuren and Fredriks found that the LMS method generally models the age-conditional mean 

and skewness better than the age-related deviation and kurtosis [27]. The offset, slope, and 

curvature of the worm plot are directly related to the fit of the LMS parameters. Cole, van Buuren, 

and Fredriks noted that there are various possible patterns in the detrended Q-Q plot [27], [28]:  

- The slope indicates the fitted variance condition, if it’s positive then the fitted variance is 

too small; negative values indicate that the fitted variance is too big. 

- The offset is related to the fitted mean’s condition; a positive offset indicates that the fitted 

mean is too small while negative offset means that it’s too big. 

- The skewness and kurtosis of the fit can be observed by the worm plot’s curvature. U-

shape indicates skewness to the left and an inverted one indicates right skewness. A facing 

down S-shape indicates platykurtosis while a facing up S-shape indicates leptokurtosis in 

the distribution. 

These key points served as guidelines to assess how changing the edf values affected the model fit. 

Figure 5 shows an example of a worm plot where the worm is fairly central with a positive slope, 

indicating that the fitted variance is too small. The skewness can be reduced by increasing the edf 

but the kurtosis cannot be reduced in the LMS method since it only models the first three moments 

to bring them close to normality [28]. The kurtosis is not explicitly modelled by the method based 

on the assumption that its offset from normality is minor. In general, when the plot is out of the 

95% confidence interval, the model is poorly fitted.   
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Figure 5: Detrended Q-Q plot 

 

Lastly, a Q-test can be performed to see whether the Z-scores are normally distributed independent 

of age by looking at its standardized residuals. Royston and Wright conducted a study to compare 

the goodness-of-fit statistics for age-specific reference intervals, where they described the Q-test 

to be simple yet inferential, having more power compared to the other tests that they performed 

[29]. The age range is first divided into G groups with 𝑛𝑔 as the size of 𝑔th group. Let 𝑛 be the total 

sample size, 𝑧�̅� and 𝑑𝑔
2 as the group mean and variance, and 𝑢𝑔 and 𝑣𝑔 the group normal equivalent 

deviates for skewness and kurtosis. To calculate the Q-statistics for the fitted curves M, L, S, and 

also for the kurtosis, we use the following equations [28]: 

𝑄𝑀 = ∑𝑛𝑔 𝑧�̅�
2 

𝐺

𝑔=1

(12) 

𝑄𝑆 = ∑

[𝑑𝑔

2
3 − (1 −

2

9(𝑛𝑔 − 1)
)] 

[
2

9(𝑛𝑔 − 1)
]

𝐺

𝑔=1

 (13) 

𝑄𝐿 = ∑𝑢𝑔
2

𝐺

𝑔=1

(14) 

𝑄𝐾 = ∑𝑣𝑔
2

𝐺

𝑔=1

(15) 

Then, the standardized residuals of the Q statistics are plotted against the corresponding degrees of 

freedom. The standardized residual is denoted as 𝑍 and the Q-statistic as 𝑄: 
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𝑍 =  
(
𝑄
𝑣)

1
3
− (1 −

2
9𝑣)

√ 2
9𝑣

    (16)  

Similar to the worm plot, if the curve is adequately fitted, the lines should be centered around zero, 

roughly within the 95% confidence interval.  

Finally, there is still a matter of determining if the curves are undersmoothed/oversmoothed. As 

seen in Figure 3 and Figure 4, there is a dip at age 15 in the high edf setting (Figure 4) that is not 

as visible in the low edf setting (Figure 3) due to smoothing. Thus, Cole and Green established two 

ways to indicate whether the bumps/dips that appears in the curves is a genuine feature of the data 

or an overfit indication [24]. As the centile curves are derived from the L, M, and S values, they 

can be plotted separately. If the dip/bump is apparent in the median curve as well as the centile 

curves, then it is a genuine feature of the data [24]. Another way to check this is to assess the 

curves’ smoothness progression from the lowest to the highest edf setting, and to see if the 

bump/dip is visible in the low to medium edf settings. As seen in Figure 6, with the edf of 3,5,3; 

the dip at age 15 is still visible even though it’s not as extreme as the dip in the bigger edf settings, 

with a much more extreme edf setting of 10,10,10. Therefore, this dip is a genuine feature of the 

data set. 

  

 
Figure 6: Centile curves smoothness progression using different edf settings 

 

2.4 General framework 

After fitting the curves and selecting the optimal edf values based on the qualitative and 

quantitative assessments as described previously, the decile values (stratified by sex) for each age 

group were obtained based on Equation (8). Under the same cutoffs (above/below the median) that 

were used by Prado et al. that was originally proposed by Baumgartner, the ASMI and FMI were 

used to define four mutually-exclusive body-composition phenotypes: high adiposity and high 

muscle (HA-HM), high adiposity and low muscle (HA-LM), low adiposity and high muscle (LA-
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HM), and low adiposity and low muscle (LA-LM) [12] [10]. The cutoffs were defined according 

to participants’ sex and age accordingly to the following deciles in Table 1. For example, if 

participant A has an FMI less than the 50th calculated decile for their age and sex and an ASMI 

higher than the 50th calculated decile for their age and sex, participant A has a phenotype of LA-

HM. 

Phenotype FMI Deciles ASMI Deciles 

HA-HM 50-100 50-100 

HA-LM 50-100 0-49.99 

LA-HM 0-49.99 50-100 

LA-LM 0-49.99 0-49.99 

Table 1: Classification of body-composition phenotype according to Prado and Baumgartner 

[10], [12] 

 

2.4.1 Application of methodology 

Our first study objective was to create reference curves for children to complement Prado et al.’s 

work in adults as mentioned in Section 1. To do so, we first replicated Prado et al.’s work in 

developing the reference curves, and categorizing the adult participants into their phenotype 

classification according to Table 1. Similar to Prado et al.’s work, the analysis in this study pooled 

the five DXA imputations available from NHANES while also incorporating the sample weight 

for each observation [12]. After verifying that our LMS values and corresponding deciles were 

consistent with the original Prado et al.’s work in the same sample of adults, the methodology was 

extended to the NHANES children’s data.  

Finally, to demonstrate its application and fulfill our second objective, cross-sectional data from 

the Quebec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort as outlined in the 

subsequent section were used. A more detailed framework can be seen in the figure below. 

 
Figure 7: Framework of the study 
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2.5 QUALITY Cohort 

Although the nature of QUALITY is longitudinal, the primary objectives of this thesis were to 

develop the ASMI and FMI reference curves in NHANES, and to then validate it in a youth sample. 

Thus, validation analyses were focused on QUALITY’s cross-sectional data. Longitudinal analysis 

is beyond the scope of this thesis but should be conducted in future research.  

The QUALITY cohort is an ongoing longitudinal study that aims to investigate the natural history 

of obesity in children. It used a school-based sampling strategy to identify participants; eligible 

participants consisted of Caucasian children aged 8-10 years with at least one biological parent 

with obesity at baseline [30]. Informed consent to participate were provided by parents and 

participating children provided verbal assent. QUALITY has ethics approval from the Ethics 

Review Boards of the CHU Sainte-Justine and the Quebec Heart and Lung Institute; this secondary 

data analysis was approved by the Concordia ethics board (#0000840540).  

A total of 634 families participated at the baseline visit (V1) which was completed between 2005-

2008. However, four families were removed from the cohort following V1 because the child and/or 

parents did not complete most or all of the baseline data collection despite initially providing 

consent (n=630). The first follow-up (V2), when the youth were 10-12 years old was completed 

between 2008-2011 and conducted for 89% of the original cohort (564 families). Out of the original 

cohort, 377 families stayed for the second follow up (V3), which was conducted between 2012-

2015, when the youth were 15-19 years old. A fourth follow up is currently underway.  

To maintain a good sample size, we decided to include 18 and 19 years old in V3 even though our 

focus of the study is on children. As our curves are only appropriate for children aged 8-17, 

participants who were 18 and 19 years old in V3 (n=110) were categorized based on Prado et al.’s 

decile values cutoffs [12]. The compatibility between our decile values and Prado et al.’s decile 

values [12] is explored in a later section.  

 

2.6 Measures 

Data collection included interviewer-administered questionnaires for children, self-administered 

questionnaires for parents, along with the children’s biological and physiological measurements. 

Anthropometric measurements such as height and weight were taken according to standardized 

protocols [31]. In children, fat mass and bone mineral density were determined with DXA (Prodigy 

Bone Densitometer System, DFþ14664, GE Lunar Corporation, Madison, WI, USA). Children’s 

sexual stage of maturity was also measured at each visit by trained nurses according to Tanner 

stages [32], [33]. Trained nurses determined whether children were pre-pubertal or post-pubertal. 

Relevant questionnaire data for this research included children’s time spent watching TV, video, 

and/or the computer (hours/day), previous year’s annual household income, and the highest 

education obtained by either parent. A more detailed description of the study design and methods 

is available [30], [34]. 

 

2.6.1 Cardiometabolic risk factors 

During each visit, blood was drawn by venipuncture after an overnight fast. Samples were 

immediately stored on ice and then centrifuged, aliquoted, and stored at -80°C until analysis. All 

biochemistry analyses were conducted at the Department of Clinical Biochemistry of the CHU 
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Sainte-Justine, which regularly participates in provincial and international quality control programs 

and is accredited by the International Federation of Clinical Chemistry [30].  

Fasting cardiometabolic risk measures included: total cholesterol (TC), high-density lipoprotein 

cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglycerides, and glucose. 

Homoeostatic model assessment of insulin resistance (HOMA-IR) was calculated as a derivative 

variable: (fasting insulin (pmol/L))/7.175× (fasting glucose (mmol/L))/22.5 [35].  

 

2.7 Analytic considerations  

2.7.1 Multiple Imputation by Chained Equation (MICE) 

From V1 to V2, 66 families were lost to follow-up, and from V2 to V3, another 187 families were 

lost to follow-up [30]. In addition to lost participants, there were also some missing values in 

biochemical analyses data, likely due to the invasive nature of some tests and procedures (blood 

draws). To avoid biased results due to listwise deletion, this study utilized multiple imputation by 

chained equation (MICE) to handle missing/incomplete data in the QUALITY cohort.  

Multiple imputation is often preferred than single imputation due to the reduced “noise” that is 

increased when the latter method is used. Rubin developed a method to average the outcome across 

the imputation results by pooling them [36]. First, 𝑚 plausible complete versions of the data are 

created by drawing several values for each missing data while also including a random error 

component. Next, the set of m new data sets are analyzed using statistical procedures before they’re 

merged (pooled) into a comprehensive analysis where the uncertainty/variance of the missing data 

is incorporated.  

van Buuren and Groothuis-Oudshoorn developed MICE as an algorithm that preserves the relations 

in the data as well as the uncertainty about those relations [37]. First, let 𝑌𝑗 with 𝑗 = 1,… , 𝑝 be one 

of 𝑝 incomplete variables so that 𝑌 = (𝑌1, … , 𝑌𝑃). Denote the observed and missing parts of 𝑌𝑗 as 

𝑌𝑗
𝑜𝑏𝑠 and 𝑌𝑗

𝑚𝑖𝑠. Let  𝑌−𝑗 = (𝑌1, … , 𝑌𝑗−1, 𝑌𝑗+1  , … , 𝑌𝑃) be the collection of 𝑝 − 1 variables except 𝑌𝑗. 

The number of imputations is denoted by 𝑚 ≥ 1 and let the ℎ𝑡ℎimputation be 𝑌(ℎ), ℎ = 1,… ,𝑚. 
The quantity of interest (regression coefficient) is denoted by 𝑄 and often as a multivariate vector.  

The name of the method comes from how the imputed values are obtained. Assume that the 

multivariate distribution of 𝑌; a hypothetically complete data partially observed from 𝑝-variate 

distribution 𝑃(𝑌|𝜃), is completely specified by 𝜃, a vector of unknown parameters. MICE obtains 

the posterior distribution of 𝜃 by iterative sampling from the conditional distributions of the form: 

𝑃(𝑌1|𝑌−1, 𝜃1),… , 𝑃(𝑌𝑝|𝑌−𝑝, 𝜃𝑝).  

𝜃1, … , 𝜃𝑝 are specific to each conditional density and thus, with a simple draw from observed 

marginal distributions, the 𝑡-th iteration is a Gibbs sampler that successively draws 

𝜃1
∗(𝑡) ~ 𝑃(𝜃1|𝑌1

𝑜𝑏𝑠, 𝑌2
(𝑡−1)

, … , 𝑌𝑝
(𝑡−1)) 

𝑌1
∗(𝑡) ~ 𝑃(𝑌1|𝑌1

𝑜𝑏𝑠, 𝑌2
(𝑡−1)

, … , 𝑌𝑝
(𝑡−1), 𝜃1

∗(𝑡)) 

⋮ 

𝜃𝑝
∗(𝑡) ~ 𝑃(𝜃𝑝|𝑌𝑝

𝑜𝑏𝑠, 𝑌1
(𝑡)
, … , 𝑌𝑝−1

(𝑡) ) 
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𝑌𝑝
∗(𝑡) ~ 𝑃(𝑌𝑝|𝑌𝑝

𝑜𝑏𝑠, 𝑌1
(𝑡)
, … , 𝑌𝑝

(𝑡), 𝜃𝑝
∗(𝑡)) 

where 𝑌𝑗
(𝑡)
= (𝑌𝑗

𝑜𝑏𝑠, 𝑌𝑗
∗(𝑡)) is the 𝑗th imputed variable at 𝑡-th imputation. From the illustration 

above, observe that the imputations at (𝑡 − 1) only enters the imputation at (𝑡) through its relation 

with other variables and not directly. This results in a quicker convergence unlike many other 

multiple imputation methods. The name chained equations refers to the fact that MICE can be 

easily implemented as a series of univariate procedures to fill the incomplete data [37]. 

Adapting Rubin’s method by first creating 𝑚 imputed datasets, we obtained 𝑌(1), … , 𝑌(𝑚) through 

pre-determined techniques where they were identical for the non-missing data entries but differed 

in the imputed values. Then, 𝑄 was estimated for each of the imputed data to obtain 𝑄(𝑘)̂  where 

𝑘 = 1,2, … ,𝑚. Finally, for quantities 𝑄 that are approximately normally distributed, the mean over 

𝑄(𝑘)̂  can be calculated, as suggested by Rubin [36], [37]: 

𝑄 =  
1

𝑚
∑𝑄(𝑘)̂
𝑚

𝑘=1

. 

There are several univariate imputation techniques available in mice, but this study used 

predictive mean matching for numeric variables. As the name suggests, predictive mean matching 

uses regression to build a model to “match” respondents. For each missing entry, the method forms 

a small set of candidates from all complete cases that have predicted values closest to the predicted 

value for the missing entry [38]. Then, a value from the candidates is randomly selected for the 

imputation. 

After the imputation, assessment for the imputation and the distribution of the imputed values is 

needed to make sure that the values are plausible. No clear-cut method is available to determine 

whether the algorithm has converged but what is often done is to plot the imputed variables’ 

convergence, density function, and residuals. The plotting of convergence can be done using the 

plot.mids()object inside the mice package in R. 

Then, the density of both the observed and imputed values of all variables can be plotted to see 

whether the imputations are reasonable; differences in densities may suggest a problem. Another 

diagnostic tool is to observe the distribution of observed and imputed data conditional on the 

propensity score as suggested by Raghunathan and Bondarenko [39]. The propensity score is the 

average over the imputations, and the conditional distributions should be similar if the model is 

fitted well. Lastly, it is also recommended by van Buuren to display the distribution of the residuals 

in the observed and imputed data since if the amount of overlap is large, then the spread of 

imputations is appropriate [37]. 

 

2.7.2 Statistical analyses 

As previously described, for the selection of the final reference curves, we considered the penalized 

deviance, AIC, the worm plot shape, Q-statistics plot, and we observed the dip/bump in the centile 

curves closely to avoid under-/over-smoothing to identify the best fitting edf. More specifically, in 

order to choose the edf, we compared the deviances and AICs for various edf settings to optimize 

the tradeoff in the smoothness and deviance. This was conducted in lmsChartMaker Pro. After 

deciding the best edf setting for both FMI and ASMI in females and males, the L, M, S, and decile 
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cutoffs were imported into R. All statistical analyses were conducted with R version 4.2.0 (The R 

Foundation for Statistical Computing, Vienna, Austria) and performed separately for boys and 

girls.  

Statistical comparisons between boys and girls (in complete case data, before MICE) in V1, V2, 

and V3 were conducted using t-test for continuous variables and chi-square tests for categorical 

variables. Bivariate analyses (ANOVA for continuous and chi-square for categorical variables), 

were performed to check the relationship between the phenotype classifications and 

cardiometabolic risk factors (TC, HDL, LDL, triglycerides, glucose, and HOMA-IR) at all visits. 

Multiple imputation was conducted with the mice package (version 3.15.0) [37]. After MICE, the 

statistical comparison and bivariate analyses were conducted again to determine whether 

relationships differed between complete-case and MI data. To perform these bivariate analyses, we 

picked one dataset randomly out of 10 as the algorithm of MICE suggested. Statistical comparisons 

between complete-case and those lost to follow-up were also conducted.  

Lastly, multiple linear regression (MLR) was performed to observe the relationship of each of the 

cardiometabolic risk and the phenotype classification after adjusting for covariates, cross- 

sectionally at each timepoint. The modelling was done through pooling of the estimates of the 

regression coefficient. Covariates previously described (pubertal status, children’s screen time, 

household’s previous year’s annual income, and the highest education obtained by either parent) 

were entered into the model based on significant differences detected in the descriptive statistical 

tests or the literature’s recommendations [12], [16].  
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3 Results 
 

3.1 NHANES study sample 

In the NHANES dataset, we calculated the ASMI and FMI in children and found the range to be 

(3.37, 18.41) for ASMI and (1.83, 30.20) for FMI. In comparison, the range for adults aged 18 

years and up were (3.48, 17.62) and (2.06, 36.43) for ASMI and FMI, respectively. The density 

plot of ASMI and FMI for children and adults in NHANES can be seen in Figure 8. A common 

feature of both the children’s and adults’ data is the right-skewness of ASMI and FMI. From Figure 

8 Panel A, we observed that the ASMI in female adults and children looked similar. In contrast, 

although both children and adult measurements were right-skewed, the mean of the distribution of 

male ASMI and FMI seemed to be quite disparate between children and adults. However, the range 

of the distributions are similar for both ASMI and FMI.   

 

 
(A)                                                 (B) 

 
                                                    (C)                                                 (D) 

Figure 8: Comparison of ASMI and FMI in children (8-17 years) and adults (≥18 years), 

separately for females (A, C) and males (B, D) 

 

3.2 Development of reference curves 

Table 2 provides the deviance and AIC based on edf settings in female’s ASMI data. As can be 

seen, the deviance decreases as the edf increases since we’re fitting more closely to the actual data. 

The smoothest curve (edf: 3,5,3) has the largest deviance but the second smallest AIC. This is 
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because with AIC, we’re penalizing models with more splines/parameters. Thus, looking at both 

deviance and AIC will help us to find the “best” edf setting for the fit. We determined that the 

setting of 6,5,3 for female’s ASMI yields the best of both: low deviance and low AIC. This same 

process was applied to female’s FMI, as well as the male’s ASMI and FMI data.  

EDF P. DEVIANCE AIC 

3,5,3 6,703.1 6,719.8 

4,6,4 6,697.0 6,720.6 

5,7,5 6,691.8 6,720.9 

6,8,6 6,687.0 6,722.9 

7,9,7 6,682.9 6,724.6 

6,5,3 6,694.1 6,715.8 

Table 2: Penalized deviances and AICs for a selection of edf settings in female ASMI 

The detrended Q-Q plot and the Q-tests were also assessed as they show the fit of our model by 

observing the normality of the Z-scores and standardized residuals, respectively. For instance, 

Figure 9 shows the Q tests (Panel A) and detrended Q-Q plot (Panel B) for female’s FMI under the 

edf of 3,5,3. The Q-tests plot included 4 curves for L, M, S, and K (kurtosis) where all of them had 

Q-statistics (as standardized residuals) around 0 except for K. This means that the method failed to 

model the data’s kurtosis, as predicted in Section 2.3.3 since it does not model for kurtosis. The 

worm plot in Figure 9, Panel B has a facing up S-shape indicating a leptokurtosis in the fitted 

distribution, which aligns with the Q-test results. Increasing the curves’ edf did not yield any 

obvious changes to the shape of the worm plot as the LMS method does not control for kurtosis.  

The LMS method performed well for females’ FMI as shown in Figure 9, where the Q-statistics of 

L, M, and S showed normality (centered around zero) except for kurtosis. It also showed that 

females' FMI had excess kurtosis around 8, also known as leptokurtosis (heavy-tailed). 

 

(A)    (B) 

Figure 9: Q-test (A) and detrended Q-Q plot (B) for females’ FMI with edf 3,5,3 

Thus, the edf for our reference curves were chosen by looking at the smoothness of the centile 

curves and also the fluctuations of penalized deviance and AIC. This was done manually by looping 
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the algorithm in all of the possible settings for each curve, with the most extreme setting at 

10,10,10. For FMI, we found that smaller edf were better than larger and thus we had 3,5,3 for 

females and 4,6,4 for males. It is worse for males’ FMI (Figure 10) than females’ FMI since we 

observed a more prominent facing-up S-shape. The Q-statistics for male FMI are similar to female 

FMI thus showing that there is a heavy kurtosis in the fitted distribution.  

 
Figure 10: Q-test (left) and detrended Q-Q plot (right) for males’ FMI with edf 3,5,3 

The worm plot for females’ ASMI behaved more appropriately than FMI since we observed a 

weaker S-shape. The Q-statistics also indicated that the kurtosis is lower than FMI’s but it’s still 

there since the curve doesn’t revolve around zero. However, the Q-statistics for L, M, S, and K in 

females’ ASMI were very volatile. However, since the lines hovered around the interval of (−2, 2), 
we have an adequate fit because they are still roughly around zero and within the 95% confidence 

interval.  

 
Figure 11: Q-statistics (left) and detrended Q-Q plot (right) for females’ ASMI 

 

The Q-statistics for males’ ASMI showed different behavior. The S curve is around zero but M and 
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L are greater than zero, ranging around the interval of (0.5, 3.5). This means that for male ASMI, 

the Z-scores are not normally distributed independent of age and we also have a kurtosis. Changing 

the edf setting did not yield a different result since it controlled for the smoothness of the curves 

and not for the kurtosis and normality. In contrast to the FMI data, ASMI had better deviance and 

AIC with larger edf settings; we chose 6,5,3 for females and 6,6,8 for males 

 

Figure 12: Q-statistics (left) and detrended Q-Q plot (right) for males’ ASMI 

Therefore, following the considerations of the penalized deviance, AIC, detrended Q-Q plot, and 

Q-tests, we were able to choose the edf for FMI and ASMI in female and male as follows in Table 

3. 

Measures Female Male 

ASMI   

edf 6,5,3 6,6,8 

Penalized deviance 6,694.1 10,747.1 

AIC 6,715.8 10,772.3 

FMI   

edf 3,5,3 4,6,4 

Penalized deviance 11,728.6 16,832.8 

AIC 11,745.0 16,856.1 

Table 3: Final edf settings for female and male reference curves 

It’s not recommended to choose a much more extreme setting (e.g., 10,10,10) as the final edf 

because the curves will be extremely jagged. But, to further strengthen our confidence in the results, 

we tested the decile values of our chosen setting and compared it with the 10,10,10 results. To test 

this, we imported the decile values, from the 10th percentile to the 90th percentile into R, where 

we categorized the NHANES sample into the phenotypes (HA-HM, HA-LM, LA-HM, LA-LM) 

based on Table 1. Next, we calculated the classification difference between our chosen edf and the 

10,10,10. For females, the difference was 0.038% and it was even lower for male, 0.028%. This is 

a good sign since this means that our model has a high similarity with the 10,10,10 but it’s 

smoothed while still keeping its important features.      
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3.2.1 L, M, S curves 

Before we plot the centile curves, it is important to also observe the L, M, and S curves. The L 

curve will help identify the skewness of the distribution and the S curve will show the coefficient 

of variation over time. Finally, as mentioned in Section 2.3.3, the M curves are used to detect 

whether a dip/bump in the centile is a true feature or an overfit indication.  

As seen in Figure 13 and Figure 14, there are no bumps/dips noticeable in the M curves for females. 

For both measurements, the L curve shows the box-cox power used to normalize the observation. 

Overall, the (absolute) box-cox power is larger for ASMI, indicating that its distribution is more 

skewed than FMI. The S curves explains the coefficient of variation (CV) in the distribution of 

ASMI/FMI. In ASMI, we observed a small CV at pubertal age (8-11 years) while it’s the opposite 

for FMI. Then, the curve began to increase for ASMI with age 14 having the biggest variation. In 

contrast, age 14 has the lowest CV in the S curve of FMI. 

 
Figure 13: L, M, and S curves for females’ ASMI 

 
Figure 14: L, M, and S curves for females’ FMI 

For males, the M curve has no bump/dip in ASMI at all ages, as seen in Figure 13. However, there 

is a steep decline in the M curve of FMI at age 15. Similar to the female data, male’s ASMI has a 
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larger (absolute) value of box-cox power than male’s FMI. There is a different trend in the S curve 

in males compared to females which is due to the later pubertal age in males. The peak of the S 

curve for both ASMI and FMI in males appears to be in age 13-14 years old. The L, M, and S values 

as well as the deciles can be found in Appendix A. 

 
Figure 15: L, M, and S curves for males’ ASMI 

 
Figure 16: L, M, and S curves for males’ FMI 

 

3.2.2 Centile curves 

An increasing trend was observed in the ASMI curves (Figure 17 Panel A) for female aged 8-17 

years old, where the slope is steepest from age 8-13 years, and begins to flatten thereafter. The 

female FMI curves in Figure 17 Panel B also have a similar pattern but with a less steep slope 

compared to ASMI. In addition, there is a big jump from the 80th to 90th percentile, which is not as 

visible in the ASMI curves. Compared to females, Figure 17 Panel C shows that males have an 

ASMI curve with a steeper slope. A significant increase was observed from age 12 to 13 years, and 

after 13 years old the curve appears to be more stable. The FMI curves for males (Figure 17 Panel 

D) showed a large increase from age 8-12 years, followed by a decrease from age 12-15 years, 

where we observed a significant dip in the age of 15 years. This dip is a feature of the dataset since 

it also appeared in the M curve in Figure 9. After age 15, the curve began to increase slightly. This 
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differs greatly compared to the FMI curves for females seen in Figure 17 Panel B as we did not see 

any dips and the slopes were more consistent throughout the ages.  

 

(A) (B) 

 
                                       (C)                                                                (D) 

Figure 17: ASMI and FMI reference curves for female (A, B) and male (C, D) age 8-17 years 

As previously mentioned, in order to maximize our sample size at visit three, we incorporated the 

reference curves developed in adults by Prado et al [12]. Thus, similarity between our curves for 

8-17 year olds from Prado et al.’s curves for 18+ year olds must be assessed. We observed a large 

jump between our 50th percentile at 17 years old to Prado’s 50th percentile at 18 years old for FMI 

among females (=7.618 and 8.658, respectively) as seen in Figure 17 (Panel B) and Figure 18 

(Panel B) [12]. A smaller jump was also visible in females’ ASMI. In contrast for males’ ASMI, 

there was no substantial jump noticed from age 17 to age 18 and the lines looked smooth. 

Furthermore, the increase was 1.04 for females FMI, 0.72 for males FMI, and 0.293 for females 

ASMI. 
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 In other words, the median of FMI for age 18-19 years is substantially higher than the median for 

17 years old. Thus, the cutoff value for participants who turned 18 or 19 is higher. We found that 

out of 201 children aged 18-19 years at V3, 60 of them switched to a different phenotype, after 

being stable in one phenotype group throughout V1 to V2. Out of the 60 who changed phenotype, 

35 were in LA-LM at V3. The implications of this on our study results are described in the 

discussion. The complete L, M, S, and decile values of our reference curves for children aged 8-17 

years, as well as Prado’s results for age 18-19 years can be found in Appendix A. 

 

 
(A)                                                             (B) 

                                      
                                       (C)                                                                (D) 

Figure 18: ASMI and FMI reference curves for female (A, B) and male (C, D) age 8-19 years 

from Prado et al. (2014) 
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3.3 QUALITY  

The QUALITY cohort data set had missing values in all waves, the largest occurred in the third 

wave with 352 missing values. The decile cutoffs found in Appendix A was used to categorize the 

participants based on their sex, age, FMI, and ASMI. We assessed the descriptive statistics of sex-

stratified complete case observations for V1, V2, and V3, presented in Table 4. Almost all 

characteristics were different between females and males in V1 and V3, except for their 

demographics such as age, household income, and parent’s education. We observed a different 

pattern in V2, where some of the cardiometabolic risks that were significant at V1 were not 

significant at V2 such as: total cholesterol, HDL, LDL, triglycerides, and FMI. Those 

cardiometabolic risks began to differ significantly again in V3. The phenotype between male and 

female were not significantly different. Overall, the phenotype classification was distributed 

similarly in both male and female at all three timepoints. 
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Table 4: Characteristics of the complete-case observations in the QUALITY cohort study, by sex 

Characteristics Male Female 
V1 

(𝒏 = 𝟑𝟑𝟏) 

V2 

(𝒏 = 𝟏𝟕𝟗) 

V3 

(𝒏 = 𝟏𝟒𝟒) 

V1 

(𝒏 = 𝟐𝟖𝟎) 

V2 

(𝒏 = 𝟏𝟓𝟓) 

V3 

(𝒏 = 𝟏𝟑𝟒) 

Age (years), mean (SD) 9.62 (0.90) 11.59 (0.91) 16.81 (0.94) 9.56 (0.95) 11.67 (0.99) 16.80 (1.01) 

Tanner’s stage (%)1 

   Not in pubertal stage 

      

91.24 44.70 0.00 64.29 21.23 0.75 

Parent’s education (%)       

    1 or both parents with a 

   university degree 

45.02 50.84 N/A 46.79 47.74 N/A 

Household income, mean (SD) 42,946 

(18.8K) 

49,076 

(20.5K) 

56,995 

(23.3K) 

41,910 

(18.4K) 

49,833 

(22.2K) 

59,968 

(24.8K) 

Screen use (hours/week), mean (SD) 6.96 (4.33) 10.19 (4.84) 10.08 (5.04) 5.26 (4.01) 7.99 (4.20) 7.65 (3.95) 

ASMI (kg/m2), mean (SD) 5.65 (0.65) 6.09 (0.78) 8.11 (0.97) 5.31 (0.67) 5.70 (0.76) 6.33 (0.84) 

FMI (kg/m2), mean (SD) 5.02 (3.45) 5.74 (3.46) 5.76 (3.89) 6.05 (3.35) 6.21 (3.11) 8.40 (4.06) 

Cardiometabolic risks, mean (SD) 

   Total cholesterol(mmol/L) 

   HDL (mmol/L) 

   LDL (mmol/L) 

   Triglycerides (mmol/L) 

   Glucose (mmol/L) 

   HOMA-IR (mmol/L) 

      

3.86 (0.68) 3.75 (0.61) 3.50 (0.59) 4.01 (0.72) 3.73 (0.62) 3.85 (0.77) 

1.21 (0.26) 1.18 (0.26) 1.05 (0.20) 1.16 (0.24) 1.19 (0.24) 1.24 (0.25) 

2.30 (0.57) 2.25 (0.51) 2.05 (0.49) 2.45 (0.60) 2.19 (0.53) 2.24 (0.62) 

0.76 (0.37) 0.71 (0.37) 0.91 (0.45) 0.89 (0.44) 0.78 (0.44) 0.88 (0.39) 

5.00 (0.36) 5.08 (0.30) 5.19 (0.36) 4.89 (0.36) 5.00 (0.36) 4.95 (0.38) 

0.93 (0.62) 1.25 (0.77) 1.60 (1.15) 1.16 (0.81) 1.49 (0.97) 1.36 (0.77) 

Phenotype (%)       

   HA-HM 25.98 24.58 31.25 32.14 22.58 27.61 

   HA-LM 14.20 23.46 13.89 12.50 16.13 15.67 

   LA-HM 17.52 10.06 18.75 13.57 14.19 15.67 

   LA-LM 42.30 41.90 36.11 41.79 47.10 41.05 
1Chi-square test was used only for V1 and V2 since all male were in pubertal age at V3. 
2Boldface indicates the p-value comparing male with female participants was significant (<0.05) at the same timepoint. 
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From Table 5, it was observed that there was a significance relationship between phenotype with 

HDL, triglycerides, and HOMA-IR at all timepoints in the complete cases. Phenotype had a 

significant relationship with age, Tanner’s stage, and LDL only at V1. For glucose, phenotype was 

significant at V1 and V3. Furthermore, phenotype was associated with parent’s education, but not 

with household income or children’s screen time.  

Table 5: ANOVA and Chi-Square test for phenotype classifications, complete case 

Characteristics p-value 

 V1 

(𝒏 = 𝟔𝟏𝟏) 
V2 

(𝒏 = 𝟑𝟑𝟒) 
V3 

(𝒏 = 𝟐𝟕𝟖) 
Age (years) <0.01 0.016 0.436 

Sex 0.279 0.255 0.734 

Tanner’s stage <0.01 0.076 0.659 

Parent’s education 0.012 0.012 N/A1 

Household income 0.165 0.175 0.109 

Screen use (hours/week) 0.228 0.159 0.081 

Cardiometabolic risks (mmol/L) 

    Total cholesterol 0.0184 0.208 0.388 

    HDL <0.01 <0.01 <0.01 

    LDL <0.01 0.012 0.386 

    Triglycerides <0.01 <0.01 <0.01 

    Glucose <0.01 0.019 <0.01 

    HOMA-IR <0.01 <0.01 <0.01 
1There were no parents’ education information in V3 

 

Due to the loss to follow-up, statistical tests comparing characteristics between those who were 

retained, and those who were lost to follow-up were conducted (Table 6). To assess differences at 

V2, baseline characteristics were compared and similarly, at V3, V2 characteristics were compared. 

There were no significance differences in age, screen use, HDL, triglycerides, glucose, and 

HOMA-IR level in participants who were lost to follow-up by V2 compared to those who were 

retained. However, there was strong evidence that their household income differed. Participants 

who were lost to follow-up had a lower average household income (3,000 dollars lower). In 

addition, their FMI, LDL, and total cholesterol differed as well. In contrast, there were no 

statistically significant differences in V2 characteristics between those retained and those lost to 

follow-up at V3.  
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Table 6: Characteristics’ differences between participants who were retained and lost to follow up 

Characteristics Retained at V2 

 

(𝒏 = 𝟑𝟐𝟕) 

Lost to follow-

up at V2 

(𝒏 = 𝟐𝟖𝟒) 

p-value1 Retained at V3 

 

(𝒏 = 𝟐𝟏𝟕) 

Lost to follow-

up at V3 
(𝒏 = 𝟏𝟏𝟕) 

p-value 

Age (years), mean (SD) 9.57 (0.92) 9.62 (0.93) 0.46 11.68 (0.93) 11.55 (0.97) 0.23 

Sex (%)    

0.91 

   

0.85    Male 52.94 55.55 53.05 54.54 

Tanner’s stage (%)    

0.38 

   

0.15     Not in puberty 77.40 80.56 32.39 36.36 

Parent’s education    

0.28 

   

0.54     1 or both parents with   

    university degree 

52.94 55.56 51.64 48.76 

Household income, mean (SD) 43,996 (18.3K) 40,761 (19K) 0.03 50,137 (21.3K) 48,179 (21.5K) 0.42 

Screen use (hours/week), mean (SD) 5.91 (4.38) 6.50 (4.14) 0.09 9.38 (4.71) 8.82 (4.64) 0.28 

ASMI (kg/m2), mean (SD) 5.42 (0.64) 5.58 (0.73) 0.03 5.96 (0.80) 5.83 (0.79) 0.16 

FMI (kg/m2), mean (SD) 5.17 (3.19) 5.86 (3.70) 0.01 5.88 (3.31) 6.10 (3.30) 0.57 

Cardiometabolic risks, mean (SD) 

    Total cholesterol (mmol/L) 3.88 (0.62) 3.99 (0.78) 0.05 3.72 (0.62) 3.77 (0.61) 0.43 

    HDL (mmol/L) 1.20 (0.24) 1.18 (0.27) 0.28 1.18 (0.25) 1.19 (0.27) 0.87 

    LDL (mmol/L) 2.32 (0.52) 2.43 (0.65) 0.02 2.20 (0.54) 2.26 (0.48) 0.26 

    Triglycerides mmol/L) 0.80 (0.39) 0.84 (0.44) 0.18 0.75 (0.45) 0.72 (0.28) 0.49 

    Glucose (mmol/L) 4.94 (0.34) 4.96 (0.38) 0.59 5.05 (0.33) 5.03 (0.33) 0.59 

    HOMA-IR (mmol/L) 0.99 (0.64) 1.08 (0.81) 0.14 1.39 (0.95) 1.32 (0.71) 0.48 

Phenotype (%)    

 

0.74 

   

 

0.43 
    HA-HM 26.32 31.60 23.35 20.66 

    HA-LM 13.00 13.89 14.55 29.75 

    LA-HM 14.55 17.01 12.21 11.57 

    LA-LM 46.13 37.50 49.89 38.02 
1P comparing participants who stayed and dropped at V2 or V3.
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3.3.1 MICE imputation 

Due to the large number of participants lost to follow up and other missing data for specific 

variables at each visit, we performed imputation using MICE with 𝑚 = 10 for each time point. V1 

had the lowest number of missing values (611 out of 630 were complete), 331 out of 630 were 

complete in V2, and 278 out of 630 were complete in V3. After the MICE algorithm was applied, 

we checked the range of the numeric imputed values for each of the visits (Table 7). As all imputed 

values were similar with one another, and the range of the values was small, the imputation did not 

likely severely alter data distributions.  

Table 7: The range of the imputed values across all 10 imputed datasets 

Characteristics V1 V2 V3 

Observations imputed 19 299 352 

Age (years) 9.597 11.62-11.66 16.760-16.890 

Household income 42,251-42,433 48,186-49,479 54,569-57,557 

Screen use (hours/week) 6.228-6.259 9.041-9.474 8.767-9.347 

ASMI (kg/m2) 5.498-5.504 5.984-6.009 7.168-7.255 

FMI (kg/m2) 5.490-5.513 6.224-6.360 6.697-7.170 
Cardiometabolic risks 
    Total cholesterol (mmol/L) 3.926-3.932 3.745-3.771 3.681-3.741 
    HDL (mmol/L) 1.186-1.188 1.160-1.170 1.133-1.144 
    LDL (mmol/L) 2.367-2.373 2.232-2.26 2.142-2.190 
    Triglycerides (mmol/L) 0.817-0.821 0.767-0.778 0.889-0.924 

    Glucose (mmol/L) 4.941-4.949 5.034-5.056 5.039-5.107 
    HOMA-IR (mmol/L) 1.039-1.048 1.424-1.472 1.440-1.506 

 

After the imputation, it is necessary to check the density plot of each imputed variable to assess 

whether they behaved similarly with the true distribution. Figure 19 shows the density plot for all 

imputations across all timepoints; the red lines are the distribution of the imputed values and the 

blue line is the observed distribution. For V2 and V3, the imputed (red) and observed (blue) lines 

were consistent with one another, indicating that all of the imputed values are plausible and we 

achieved a close estimation from the true observed data.  

However, for V1, the density plot showed that the imputed values were different from the observed 

data and that the distributions had different shapes. This is likely due to the small number of missing 

values in V1. We have 611 out of 630 complete-case observations in V1, and all variables had less 

than 6 missing values. The density plot showed only the imputed values distribution and not the 

entirety of the whole imputed data set (𝑛 = 630). Therefore, due to the lack of incomplete 

observations, the shape of the imputed values appeared to be very extreme and thin. Nevertheless, 

the range of imputed values as shown previously in Table 7 suggest that the  complete dataset after 

imputation for  V1 behaved appropriately and cohesively with the observed data.   
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Figure 19: Density estimates for the marginal distributions of the observed data (blue) and the 

𝑚 = 10 densities per variable from the imputed data (red) at all timepoints 

Next, we compared the imputation results on the variable level. First, we compared the distributions 

of observed and imputed data based on the propensity score as mentioned in Section 2.7.1. As we 

found similar results with all other variables, only ASMI and FMI at V2 is presented. Figure 20 

shows the ASMI and FMI values at V2 plotted against its probability of missing. The blue points 

are the score for the observed and red points are the imputed. Notice that there are 11 grids in each 

plot, with the top left being the actual data without any imputations and the rest (10 plots) are the 

observed data plotted along with the imputation done with MICE. Overall, the blue and red points 

conformed well and there seemed to be no red points that behaved like an outlier. This provides 

evidence that the imputations for ASMI and FMI at V2 are reasonable.  
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Figure 20: ASMI (top) and FMI (bottom) at V2 against its propensity score (blue for the observed 

values and red for the imputed values) 

We further investigated the imputations’ quality by looking at the residual of the missing data for 

each of the variables. Figure 21 showed that the amount of overlap between the observed and 

imputed is large, indicating that the spread of imputations is appropriate, as defined by van Buuren 

and Groothuis-Oudshoorn [37]. Thus, from both the propensity and residual plot, we concluded 

that the imputation for all variables was appropriate. Based on these analyses of the imputation, 

it’s safe to move forward using our imputed values.  
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Figure 21: Distributions of the residuals of regression of ASMI at V2 

Lastly, we analyzed the bivariate relations between the imputed dataset and original dataset to see 

if any of the relationship differed. To assess these relationships, we randomly chose one dataset 

out of 10 since their imputed values from Table 7 did not indicate large variation across the imputed 

datasets. From Table 8, the phenotype classification for males and females were consistent as 

before MICE. However, we found that some of the sex-adjusted characteristics had changed 

compared to the sex comparisons among the complete cases as seen in Table 4. For instance, age 

at V2 and V3 were now significantly different between males and females, Tanner’s stage was no 

longer significantly different at V3, and FMI at V2 was now significantly different. As for the 

cardiometabolic risks, similar patterns as before were detected except for HOMA-IR which was 

now insignificant at V3 (data not shown).  

Given that the imputation did not appear to significantly alter data distributions, the rest of the 

results will focus on the imputed data sets. Figure 22 shows that after imputation, LA-LM had the 

biggest proportion in the study sample; more detailed classification proportions can be seen in 

Table 9. Throughout V1 to V3, LA-LM has the largest proportion followed by HA-HM. This means 

that participants were either (1) lacking in adiposity and muscle or (2) had excess adiposity and 

high muscle. At V1 and V3, more participants were classified as LA-HM than HA-LM. This is 

different than the results at V2, since we observed more participants in HA-LM than LA-HM.
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Table 8: Characteristics of the MICE-imputed dataset, by sex 

Characteristics Male 
(𝒏 = 𝟑𝟒𝟑) 

Female 
 (𝒏 = 𝟐𝟖𝟕) 

V1 V2 

 

V3 

 

V1 V2 

 

V3 

 

Age (years), mean (SD) 9.62 (0.89) 11.72 (0.92) 16.70 (0.94) 9.57 (0.95) 11.57 (0.97) 17.00 (1.10) 

Tanner’s stage (%) 

    Not in pubertal age 

      

90.67 45.19 2.33 63.76 17.42 3.14 

Parent’s education (%)       

    1 or both parents with    

    university degree 

54.52 48.69 N/A 54.00 51.92 N/A 

Household income, mean (SD) 42,713 

(18.8K) 

48,781 

(21.7K) 

55,416 (24.8K) 42,099 

(18.3K) 

48,122 

(22.8K) 

56,354 

(24K) 

Screen use (hours/week), mean (SD) 6.99 (4.34) 10.6 (5.23) 9.75 (4.63) 5.36 (4.17) 8.03 (4.16) 8.46 (4.64) 

ASMI (kg/m2), mean (SD) 5.66 (0.65) 6.20 (0.87) 7.95 (0.95) 5.33 (0.69) 5.78 (0.77) 6.31 (0.77) 

FMI (kg/m2), mean (SD) 5.01 (3.42) 5.94 (3.76) 5.55 (3.77) 6.10 (3.40) 6.84 (3.66) 8.57 (4.00) 

Cardiometabolic risks, mean (SD) 

    Total cholesterol (mmol/L) 

    HDL (mmol/L) 

    LDL (mmol/L) 

    Triglycerides (mmol/L) 

    Glucose (mmol/L) 

    HOMA-IR (mmol/L) 

      

3.87 (0.68) 3.76 (0.66) 3.64 (0.65) 3.99 (0.72) 3.76 (0.67) 3.84 (0.70) 

1.21 (0.26) 1.18 (0.26) 1.08 (0.22) 1.16 (0.24) 1.16 (0.24) 1.19 (0.24) 

2.31 (0.57) 2.25 (0.56) 2.14 (0.53) 2.43 (0.60) 2.23 (0.58) 2.23 (0.59) 

0.77 (0.37) 0.74 (0.42) 0.93 (0.51) 0.89 (0.44) 0.80 (0.41) 0.91 (0.39) 

4.99 (0.36) 5.09 (0.35) 5.26 (0.36) 4.89 (0.36) 5.02 (0.37) 4.91 (0.41) 

0.93 (0.61) 1.33 (0.86) 1.53 (0.99) 1.18 (0.83) 1.64 (1.17) 1.43 (0.81) 

Phenotype (%) 

    HA-HM 26.82 27.70 26.82 32.75 30.31 26.83 

    HA-LM 13.70 22.16 17.20 12.54 14.63 16.03 

    LA-HM 16.91 11.08 17.49 13.24 11.85 14.63 

    LA-LM 42.57 39.06 38.49 41.47 43.21 42.51 

Note: Boldface indicates the p-value comparing male and female participants was significant (< 0.05) at that time. 
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Figure 22: Phenotype classifications based on one randomly selected imputed dataset 

 

Table 9: Phenotype classifications based on one randomly selected imputed dataset, 𝑛 = 630 

Phenotype 

Classification (%) 

V1 V2 V3 

HA-HM 29.53 28.29 26.20 

HA-LM 13.17 18.73 14.29 

LA-HM 15.24 11.27 16.51 

LA-LM 42.06 41.41 43.01 

 

3.4 Regression results 

We performed multiple linear regression to calculate the association between each of the 

cardiometabolic risks at all time points with the phenotypes, after adjusting for age, sex, Tanner’s 

stage. LA-HM was the reference group for the phenotype classification (Table 10). These results 

did not differ when stratified by sex; thus, the full sample adjusted for sex are uniformly presented. 

Compared to the reference group of LA-HM, both HA-HM and HA-LM were significantly 

associated with worse HDL, worse triglycerides and worse HOMA-IR at V1 (p-value<0.05). 

Compared to LA-HM, LA-LM at V1 was associated with lower glucose. Compared to LA-HM, 

HA-HM was the only phenotype that was significant related to higher LDL. We saw similar 

patterns at V2 and V3, however many findings were no longer statistically significant. The only 

associations that were significant at all three timepoints were: compared to LA-HM, HA-HM was 

significantly associated with worse LDL, worse triglycerides, and worse HOMA-IR, and HA-LM 

was significantly associated with worse HOMA-IR.  

Multiple linear regression models were also conducted with the complete cases at each time visit 

(Table B1 in Appendix B). We found that the significance of the phenotypes' association with 

cardiometabolic risks remained similar, before and after MICE. Thus, we concluded that the 

imputed values were plausible as it did not temper the association of the phenotypes and 

cardiometabolic risks.  
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Table 10: Pooled MLR results based on imputed dataset (𝑚 = 10, 𝑛 = 630) 
 Phenotype 

Classification 

Total 

cholesterol1,2 

HDL1,2 LDL1,2 Triglycerides1,2 Glucose1,2 HOMA-IR1,2 

V1 

HA-HM 0.15 (0.08) -0.16 (0.03) 0.17 (0.07) 0.30 (0.05) 0.03 (0.04) 0.76 (0.08) 

HA-LM 0.11 (0.11) -0.07 (0.04) 0.13 (0.09) 0.13 (0.06) 0.03 (0.05) 0.31 (0.09) 

LA-LM -0.06 (0.08) 0.01 (0.03) -0.05 (0.07) -0.05 (0.05) -0.09 (0.04) -0.08 (0.07) 

LA-HM Reference Reference Reference Reference Reference Reference 

  

V2 

HA-HM 0.14 (0.09) -0.15 (0.03) 0.15 (0.08) 0.31 (0.06) 0.06 (0.05) 1.06 (0.12) 

HA-LM 0.10 (0.10) -0.06 (0.04) 0.10 (0.09) 0.16 (0.07) 0.03 (0.05) 0.45 (0.13) 

LA-LM -0.04 (0.09) 0.02 (0.03) -0.07 (0.08) 0.02 (0.06) -0.05 (0.05) -0.14 (0.11) 

LA-HM Reference Reference Reference Reference Reference Reference 

  

V3 

HA-HM 0.17 (0.10) -0.06 (0.04) 0.16 (0.08) 0.17 (0.06) 0.10 (0.06) 0.96 (0.14) 

HA-LM 0.09 (0.11) 0.01 (0.04) 0.05 (0.09) 0.06 (0.07) 0.08 (0.08) 0.57 (0.14) 

LA-LM 0.06 (0.10) 0.03 (0.03) 0.03 (0.07) -0.002 (0.06) -0.12 (0.06) -0.05 (0.13) 

LA-HM Reference Reference Reference Reference Reference Reference 
1Boldface indicates the phenotype had a p-value below 0.05. 
2Models adjusted for age, sex, and Tanner’s stage. 
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4 Discussion 
 

This study successfully developed ASMI and FMI age- and sex-adjusted reference curves with the 

LMS method for children aged 8-17 years old using NHANES data from 1999-2006. We extended 

Prado et al.’s work and identified best edf settings based on balancing between model fit statistics 

and retaining critical features of children’s ASMI and FMI progression. In addition, we also tested 

the reference curves’ significance with cardiometabolic risks available in the QUALITY cohort 

study. Before testing the utility of our reference curves, we discovered that there were almost 50% 

missing variables in the study due to loss to follow up at the second and third time points. Multiple 

imputation was performed using MICE and through the diagnostic tools of this algorithm, we 

confirmed that the imputed values were appropriate and plausible. After the imputation, we then 

performed pooled multiple linear regression for cross-sectional cardiometabolic risks after 

adjusting for age, sex, and Tanner’s stage. 

In building the reference curves, the identification of appropriate edf for each curve is a critical 

step. Choosing the edf to smooth a curve has been a subjective exercise or even a black art as 

mentioned by Cole [24]. In our study, we further strengthened the reasoning behind our chosen edf 

by showing that the classification between the maximized edf and ours did not alter the distribution. 

In other words, we have a small misclassification rate compared to a larger edf setting. In a large 

representative dataset, the small differences in phenotype classification is not likely to be 

substantial since the misclassification rate is calculated by dividing the number of misclassified 

participants with the sample size. Thus, this diagnostic that we performed is generalizable towards 

a larger data set. 

Our reference curves all have a positive slope, with some ages showing a steeper slope. Males have 

a steeper slope in ASMI compared to females, and males’ FMI has a significant feature that didn’t 

appear in females: a dip at age 15. For males, puberty begins later and thus it might explain the dip 

that is a feature of the data. This means that during that age, our results showed that male 

participants experienced a decrease in fat mass. In addition, they also experienced a significant 

increase in muscle mass from age 12 to 13 years. Both of these patterns were not observed in 

females' curves. 

In QUALITY, almost all characteristics except age, parents’ education, and phenotypes were 

different for males and females at V1 and V3, but were not different at V2. Similarly, some of the 

cardiometabolic risks that were significant in V1 were not significant at V2, possibly due to the 

timing of V2 occurring around the start of puberty (10-14 years). At V3 when the participants had 

surpassed their pubertal age (15-19 years), we saw that those risks began to differ significantly 

again. The phenotype classifications were indifferent to males and females where we observed the 

highest proportion in LA-LM, followed by HA-HM, then either LA-HM or HA-LM, depending on 

the time point. At V2, we observed that more participants were classified as HA-LM than LA-HM, 

whereas at V1 and V3, more were in LA-HM. This increase could be explained by the fact that the 

participants were going through puberty from V1 to V2 and thus created an increase in the HA-

LM group.  
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Due to the loss to follow-up in the study, we investigated the characteristics between participants 

who were retained and those lost to follow-up. Household income was significantly greater for 

those who were retained compared to those who exited the study at V2. We found that 39.32% of 

those who were retained were in HA and those who were lost to follow-up had a larger proportion 

at 45.49%. Thus, adiposity was higher among participants who were lost to follow-up than among 

those who stayed. However, with MICE, we were able to impute those who were lost to follow-

up, and any other missing variables. The algorithm only had 𝑘 < 6 NAs per variable in V1, which 

resulted in the density plot looking extreme since it only showed the 𝑘 imputed values. For V2 and 

V3, it looked very cohesive and similar since we had more samples to be imputed. Furthermore, 

by comparing the observed distribution’s descriptive statistics to the imputed one, we ensured that 

the imputed values were plausible and that they behaved similarly.  

Nevertheless, some of the characteristics were now significantly different between males and 

females after the imputation. For instance, age at V2 was statistically different between males and 

females (mean of 11.72 and 11.57, respectively), rather than in the pre-MICE data (mean of 11.59 

and 11.67) which was not statistically significant. However, it should be pointed out that although 

the age post-MICE is now statistically significant, the change in the mean was small; 0.13 for males 

and 0.10 for females. This translates to a mean age that has shifted by roughly +1.56 months for 

males and -1.20 for females. Although the numbers appeared to be statistically significant, it likely 

would not have a real-world significance. Most of the cardiometabolic risks boundaries for 

paediatric are often categorized based on age in years [40]. Thus, a small change of roughly 

±1 months would not likely largely impact the analysis.  

In contrast, the phenotype classification distribution was similar before and after the imputation. 

QUALITY participants were mostly classified as LA-LM, followed by HA-HM, then LA-HM, and 

HA-LM at V1 and V3. At V2, we found that HA-LM had a larger proportion than LA-HM. Again, 

the increase in HA-LM from V1 to V2 can be explained by the fact that the participants were going 

into their pubertal age and metabolic changes. This means that most of the participants were 

categorized as having low adiposity and low muscle (more than 40% at all time points).  

We found that for ASMI and FMI, the distributions were heavily right-skewed and that the 

distribution for children and adult were similar in range. Thus, our curves were based on those 

overall high values of ASMI and FMI, which yields high 50th decile values. Since the NHANES-

derived cutoffs are high for the participants, most of the QUALITY cohort participants failed to 

surpass the 50th percentile, leading them to be categorized as LA-LM.  

In addition to that, the high proportion in LA-LM can also be explained by the fact that we merged 

our decile values with Prado’s [12]. Although we managed to maximize our sample size by 

including 18-19 years old at V3 (total sample size of 𝑛 = 630, instead of 𝑛 = 429), it can be seen 

that the jump in females and males’ FMI from our decile values to Prado’s was substantial. This 

creates a slight disconnect between the median of 17-year-olds and 18-year-olds while also creating 

a higher cutoff for the participants that were 18-19 years in V3. Due to this, 35/201 participants 

were classified into LA-LM at V3 even though we observed a stable trend for their FMI and ASMI 

throughout V1 to V2. For future studies, it’s best to create a complete reference curve based on the 

full age range of the study sample to avoid such issues.  
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To date, this is the first study to develop and test children’s DXA-derived reference curves’ 

significance by looking at its association with cardiometabolic risks. We extended Prado’s research 

by (1) creating children’s reference curves using a large, representative dataset of the general US 

population (NHANES) and (2) testing the significance with QUALITY [12]. Pooled regression 

estimates at all time points showed that most of the phenotypes didn’t have a significant association 

with the cardiometabolic risks. High adiposity class regardless of the muscle level (which includes 

HA-LM which is used to characterize sarcopenic obesity) was associated with worse 

cardiometabolic risks (HOMA-IR, HDL, LDL and triglycerides at baseline), and is consistent with 

the literature [4], [11], [41].  

The overall weak association of our phenotypes might be due to the fact that the phenotypes were 

built based on a simple 50th percentile cutoff method. This method might be oversimplified and we 

should account for more conditions of classification. For example, consider two females aged 10 

years old, A (FMI = 5.60, ASMI = 5.43) and B (FMI = 5.62, ASMI = 5.50). By our decile cutoffs 

in Appendix A, person A is in the LA-HM group and B is in the LA-LM group. However, the 

values of their FMI and ASMI are not too far apart. By our phenotype classification, person B is 

likely to be at greater risk for worse outcomes than A. Further work is needed to classify phenotypes 

based on clinically meaningful thresholds connected with health outcomes. For example, we could 

create more levels inside the four phenotypes to describe the extremities of how far the 

measurements are from the cutoffs. For instance, let the measurement be 𝑥. We can create more 

specific cutoffs by making some classes of severity: 

Severity Classification =

{
 
 

 
 
Class I, 𝑑50 < 𝑥 ≤  𝑑60
Class II, 𝑑60 < 𝑥 ≤ 𝑑70
Class III, 𝑑70 < 𝑥 ≤ 𝑑80
Class IV, 𝑑80 < 𝑥 ≤ 𝑑90
 Class V,                        𝑥 > 𝑑90,

 

where d50 stands for the 50th decile, d60 stands for the 60th, and so on. Therefore, while two 

participants can be in the same group together, they will have a different class of severity based on 

where their measurements would fall in the deciles range; this creates more intricate and precise 

phenotypes.  

Moreover, we only tested the phenotypes with cardiometabolic risks such as total cholesterol, 

glucose, HDL, LDL, triglycerides, and HOMA-IR. These cardiometabolic risks were chosen since 

they are central indicators of health and also biomarkers of obesity [42]. However, since our study 

sample was coming from a young population aged 8-17 years old, these biomarkers might not be 

as apparent as they are in adults. Thus, it would be better to assess the phenotypes’ significance 

with other measures that have a more direct significance for children such as fitness assessment 

and VO2 max (maximal oxygen uptake) [43], [44].  

This study has several limitations. Other methods besides the LMS should be considered while 

creating the reference curves as our data showed a large kurtosis. For instance, since kurtosis can’t 

be modeled with the LMS method, the Box-Cox power exponential (BCPE) transformation as 

developed by Rigby and Stasinopoulos could be tested [45]. The distribution is defined as 𝑌𝑣 (it 

was 𝑌 for regular LMS) and they introduced a shifted and scaled power exponential transformation, 
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𝜏. Therefore, this method which is called LMSP has one extra parameter to control the kurtosis in 

the fitted distribution.  

MICE was performed with only 10 imputations due to limited computing power. However, since 

our data is not that large (𝑛 = 630), the literature indicates that it is unnecessary to use more than 

10 imputations since MICE doesn’t need as much iteration to converge [37]. Similarly, Rubin 

indicates that 3-10 imputations are typically sufficient for the size of our data [36]. As MICE uses 

marginal density to impute the values, including variables such as weight, or BMI can further 

improve the imputation as they are related to the measures of interest. Furthermore, multilevel 

MICE should be considered to perform longitudinal imputation since we only viewed QUALITY 

as cross-sectional data.  

In addition, other methods of imputations such as Matrix Completion [46] and Markov Chain 

Monte Carlo (MCMC) can be used for comparison of the imputed values. Matrix completion is a 

method that estimates missing data based on the low rank matrix structure of the observed [46]. To 

precisely estimate the missing entries, the approach takes advantage of the underlying matrix’s 

low-rank structure or sparsity assumption [46], [47]. However, when there are many variables that 

need to be imputed, the low-rank assumption might not hold, making it inappropriate to use 

conventional matrix completion techniques that depends on low-rank structure. As there were 

many variables in QUALITY that needed to be imputed, the matrix structure will be large. Thus, 

even though matrix completion is known to perform well, we made the analytic decision not to use 

it in this study.  

The construction of the reference curves was based on NHANES, a representative sample of the 

US population. In contrast, we tested the significance of the reference curves with QUALITY, a 

Canadian study sample where one of the inclusion criteria was that the children had to have at least 

one obese parent. Hence, our analysis results are not generalizable toward a different, healthier 

population. In addition, although they share a lot of similarities, the US and Canadian population 

are notably different in several aspects. For instance, the United States’ race/ethnicity has a 

different composition from Canada, with larger Hispanic, Black, and other visible minorities in 

comparison to Canada [42],[43]. In addition, healthcare access in the US varies depending on 

employment and insurance coverage, while in Canada it is provided primarily through a universal 

healthcare system [50]. Future work should consider adding a representative Canadian population 

while building the curves so that the results can be more widely applicable towards a Canadian 

population.  

Lastly, since we only viewed QUALITY as cross-sectional data, we did not perform any 

longitudinal analysis to test the DXA-phenotypes’ predictive power. Future research should focus 

more on the longitudinal aspect of the data in order to test the predictive power of the phenotypes. 
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5 Conclusion 
 

Currently, there are no ASMI and FMI reference curves for children, there are only BMI guidelines. 

However, BMI often leads to misclassification as it does not distinguish between fat mass and 

muscle mass. In our study, we utilized the LMS method to develop ASMI and FMI reference curves 

for children aged 8-17 years old using NHANES, a large cross-sectional study sample 

representative of the general US population. Our reference curves possess future clinical 

significance as they can potentially be used as a reliable tool to assess obesity in children, especially 

sarcopenic obesity. While testing the utility of the curves with QUALITY data, it was found that 

overall, the phenotypes had weak association with cardiometabolic risks. This may be further 

improved by testing the phenotypes with other outcomes that might have more direct significance 

for a young population, such as fitness level of the children.  

From the pooled multiple linear regression results, we found that HA-HM and HA-LM were 

significantly associated with worse HDL, LDL, triglycerides, and HOMA-IR at baseline compared 

to the reference group LA-HM. These patterns were consistent at V2 and V3, although some 

associations were no longer statistically significant.  

Although our results indicate that there are statistically significant associations between the 

phenotypes and cardiometabolic risks, the magnitude of the associations were small. Identification 

of ASMI and FMI severity would likely better represent health risks than a median split adjusted 

for age and sex. Further improvements of the reference curves and phenotype classification are 

needed.   
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Appendices 

Appendix A: L, M, S, and decile values  

Table A1: Appendicular skeletal mass index (kg/m2) decile values for females 

    Appendicular skeletal mass index (kg/m2) deciles 

Age 

(years) 

L M S 10th 20th 30th 40th 50th 60th 70th 80th 90th 

8 -1.460 4.793 0.155 4.026 4.254 4.439 4.614 4.793 4.991 5.226 5.540 6.060 

9 -0.694 5.159 0.154 4.287 4.556 4.769 4.964 5.159 5.368 5.607 5.911 6.382 

10 -0.511 5.489 0.154 4.548 4.841 5.071 5.281 5.489 5.709 5.961 6.276 6.758 

11 -0.880 5.751 0.154 4.794 5.087 5.320 5.535 5.751 5.984 6.254 6.599 7.143 

12 -1.082 5.962 0.154 4.985 5.281 5.518 5.739 5.962 6.205 6.488 6.856 7.445 

13 -1.066 6.109 0.154 5.106 5.410 5.653 5.880 6.109 6.358 6.648 7.026 7.628 

14 -0.900 6.197 0.155 5.163 5.479 5.730 5.963 6.197 6.450 6.742 7.118 7.711 

15 -0.842 6.236 0.156 5.184 5.506 5.762 5.998 6.236 6.492 6.788 7.167 7.762 

16 -1.160 6.228 0.158 5.193 5.504 5.755 5.989 6.228 6.488 6.794 7.195 7.843 

17 -1.737 6.194 0.160 5.199 5.490 5.728 5.957 6.194 6.460 6.781 7.219 7.977 

18 -0.733 6.487 0.172 5.302 5.664 5.952 6.219 6.487 6.776 7.111 7.540 8.214 

19 -0.728 6.508 0.173 5.316 5.680 5.970 6.238 6.508 6.799 7.136 7.568 8.247 

Note: Values for age 18 and 19 are obtained from Prado et al.’s (2014) results. 
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Table A2: Fat mass index (kg/m2) decile values for females 

    Fat mass index (kg/m2) deciles 

Age 

(years) 

L M S 10th 20th 30th 40th 50th 60th 70th 80th 90th 

8 -0.529 5.322 0.385 3.432 3.945 4.392 4.838 5.322 5.883 6.589 7.595 9.432 

9 -0.444 5.759 0.391 3.663 4.236 4.733 5.227 5.759 6.373 7.141 8.220 10.152 

10 -0.379 6.092 0.396 3.829 4.450 4.988 5.520 6.092 6.748 7.563 8.700 10.704 

11 -0.344 6.289 0.398 3.929 4.579 5.140 5.695 6.289 6.969 7.811 8.979 11.024 

12 -0.337 6.495 0.397 4.059 4.731 5.310 5.883 6.495 7.195 8.061 9.261 11.355 

13 -0.357 6.760 0.393 4.254 4.945 5.541 6.130 6.760 7.481 8.373 9.611 11.777 

14 -0.401 6.966 0.386 4.438 5.134 5.735 6.329 6.966 7.696 8.601 9.861 12.081 

15 -0.464 7.233 0.376 4.684 5.385 5.990 6.590 7.233 7.973 8.894 10.183 12.474 

16 -0.542 7.482 0.365 4.932 5.632 6.237 6.837 7.482 8.226 9.156 10.467 12.825 

17 -0.625 7.618 0.354 5.111 5.798 6.392 6.982 7.618 8.354 9.278 10.590 12.981 

18 -0.196 8.658 0.419 5.195 6.155 6.981 7.794 8.658 9.639 10.840 12.480 15.275 

19 -0.185 8.760 0.419 5.253 6.227 7.064 7.887 8.760 9.751 10.961 12.611 15.414 

Note: Values for age 18 and 19 are obtained from Prado et al.’s (2014) results. 
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Table A3: Appendicular skeletal mass index (kg/m2) decile values for males 

    Appendicular skeletal mass index (kg/m2) deciles 

Age 

(years) 

L M S 10th 20th 30th 40th 50th 60th 70th 80th 90th 

8 0.297 5.337 0.136 4.462 4.750 4.966 5.156 5.337 5.524 5.728 5.975 6.328 

9 -0.748 5.458 0.133 4.652 4.904 5.101 5.280 5.458 5.647 5.862 6.133 6.546 

10 -1.109 5.678 0.130 4.873 5.121 5.317 5.497 5.678 5.872 6.095 6.380 6.827 

11 -0.902 5.989 0.136 5.093 5.370 5.589 5.789 5.989 6.203 6.448 6.759 7.241 

12 -0.603 6.361 0.150 5.304 5.633 5.891 6.127 6.361 6.611 6.895 7.254 7.804 

13 -0.396 6.847 0.173 5.538 5.944 6.264 6.556 6.847 7.156 7.509 7.953 8.633 

14 -0.558 7.340 0.158 6.056 6.455 6.768 7.055 7.340 7.644 7.991 8.430 9.104 

15 -0.891 7.729 0.144 6.514 6.888 7.184 7.456 7.729 8.021 8.357 8.786 9.456 

16 -1.028 7.979 0.148 6.711 7.098 7.406 7.691 7.979 8.290 8.650 9.115 9.850 

17 -1.093 8.130 0.146 6.860 7.246 7.555 7.841 8.130 8.442 8.804 9.273 10.016 

18 0.288 8.329 0.146 6.888 7.361 7.716 8.029 8.329 8.637 8.976 9.384 9.971 

19 0.314 8.360 0.146 6.918 7.391 7.746 8.059 8.360 8.668 9.007 9.416 10.003 

Note: Values for age 18 and 19 are obtained from Prado et al.’s (2014) results. 

 

 

 

 

 

 

 

 

 

 

 



47 

 

Table A4: Fat mass index (kg/m2) decile values for males 

    Fat mass index (kg/m2) deciles 

Age 

(years) 

L M S 10th 20th 30th 40th 50th 60th 70th 80th 90th 

8 -0.789 4.539 0.382 3.001 3.408 3.769 4.135 4.539 5.020 5.645 6.576 8.426 

9 -0.682 4.748 0.400 3.058 3.506 3.902 4.305 4.748 5.275 5.956 6.964 8.930 

10 -0.598 4.978 0.419 3.126 3.616 4.050 4.492 4.978 5.555 6.299 7.394 9.506 

11 -0.556 5.097 0.434 3.139 3.654 4.113 4.581 5.097 5.709 6.501 7.668 9.917 

12 -0.558 5.066 0.444 3.090 3.608 4.070 4.543 5.066 5.691 6.502 7.705 10.049 

13 -0.597 4.961 0.447 3.032 3.534 3.984 4.446 4.961 5.578 6.385 7.594 9.996 

14 -0.643 4.786 0.445 2.943 3.421 3.850 4.292 4.786 5.381 6.164 7.349 9.747 

15 -0.667 4.679 0.444 2.889 3.352 3.769 4.198 4.679 5.259 6.026 7.191 9.571 

16 -0.669 4.760 0.442 2.944 3.414 3.837 4.273 4.760 5.348 6.125 7.303 9.707 

17 -0.657 4.815 0.439 2.984 3.459 3.886 4.325 4.815 5.404 6.179 7.349 9.713 

18 -0.0003 5.531 0.464 3.053 3.744 4.337 4.918 5.531 6.221 7.054 8.172 10.022 

19 0.008 5.646 0.457 3.137 3.839 4.441 5.028 5.646 6.339 7.174 8.292 10.133 

Note: Values for age 18 and 19 are obtained from Prado et al.’s (2014) results. 
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Appendix B 

 

Table B1: MLR results based on complete dataset without imputation  

 Phenotype 

Classification 

Total 

cholesterol1,2 

HDL1,2 LDL1,2 Triglycerides
1,2 

Glucose1,2 HOMA-IR1,2 

V1 

(𝑛 = 611) 

HA-HM 0.15 (0.09) -0.17 (0.03) 0.17 (0.07) 0.31 (0.05) 0.03 (0.04) 0.76 (0.08) 

HA-LM 0.11 (0.11) -0.07 (0.04) 0.13 (0.09) 0.13 (0.06) 0.03 (0.05) 0.32 (0.09) 

LA-LM -0.06 (0.08) 0.01 (0.03) -0.05 (0.07) -0.05 (0.05) -0.10 (0.04) -0.08 (0.07) 

LA-HM Reference Reference Reference Reference Reference Reference 

  

V2 

(𝑛 = 334) 

HA-HM 0.18 (0.11) -0.20 (0.05) 0.21 (0.10) 0.38 (0.07) 0.02 (0.06) 0.87 (0.14) 

HA-LM 0.12 (0.12) -0.08 (0.05) 0.12 (0.10) 0.17 (0.08) -0.02 (0.06) 0.32 (0.14) 

LA-LM -0.02 (0.11) 0.02 (0.04) -0.05 (0.09) 0.02 (0.07) -0.09 (0.06) -0.20 (0.13) 

LA-HM Reference Reference Reference Reference Reference Reference 

  

V3 

(𝑛 = 278) 

HA-HM 0.19 (0.12) -0.12 (0.04) 0.18 (0.10) 0.29 (0.07) 0.12 (0.07) 1.08 (0.16) 

HA-LM 0.22 (0.14) 0.01 (0.05) 0.13 (0.11) 0.16 (0.09) 0.09 (0.08) 0.66 (0.18) 

LA-LM 0.12 (0.12) 0.05 (0.04) 0.06 (0.09) 0.02 (0.07) -0.07 (0.06) -0.05 (0.15) 

LA-HM Reference Reference Reference Reference Reference Reference 
1Boldface indicates the phenotype had a p-value below 0.05. 
2Models adjusted for age, sex, and Tanner’s stage. 

 

 

 


