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Abstract

Mixture-Based Clustering and Hidden Markov Models for Energy Management and Human
Activity Recognition: Novel Approaches and Explainable Applications

Hussein Ghassan Ali Al-Bazzaz, Ph.D.

Concordia University, 2023

In recent times, the rapid growth of data in various fields of life has created an immense need for
powerful tools to extract useful information from data. This has motivated researchers to explore
and devise new ideas and methods in the field of machine learning. Mixture models have gained
substantial attention due to their ability to handle high-dimensional data efficiently and effectively.
However, when adopting mixture models in such spaces, four crucial issues must be addressed,
including the selection of probability density functions, estimation of mixture parameters, automatic
determination of the number of components, identification of features that best discriminate the
different components, and taking into account the temporal information. The primary objective of
this thesis is to propose a unified model that addresses these interrelated problems. Moreover, this
thesis proposes a novel approach that incorporates explainability.

This thesis presents innovative mixture-based modelling approaches tailored for diverse applica-
tions, such as household energy consumption characterization, energy demand management, fault
detection and diagnosis and human activity recognition. The primary contributions of this thesis
encompass the following aspects:

Initially, we propose an unsupervised feature selection approach embedded within a finite bounded
asymmetric generalized Gaussian mixture model. This model is adept at handling synthetic and
real-life smart meter data, utilizing three distinct feature extraction methods. By employing the
expectation-maximization algorithm in conjunction with the minimum message length criterion,

we are able to concurrently estimate the model parameters, perform model selection, and execute
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feature selection. This unified optimization process facilitates the identification of household elec-
tricity consumption profiles along with the optimal subset of attributes defining each profile. Fur-
thermore, we investigate the impact of household characteristics on electricity usage patterns to
pinpoint households that are ideal candidates for demand reduction initiatives.

Subsequently, we introduce a semi-supervised learning approach for the mixture of mixtures of
bounded asymmetric generalized Gaussian and uniform distributions. The integration of the uni-
form distribution within the inner mixture bolsters the model’s resilience to outliers. In the unsuper-
vised learning approach, the minimum message length criterion is utilized to ascertain the optimal
number of mixture components. The proposed models are validated through a range of applications,
including chiller fault detection and diagnosis, occupancy estimation, and energy consumption char-
acterization. Additionally, we incorporate explainability into our models and establish a moderate
trade-off between prediction accuracy and interpretability.

Finally, we devise four novel models for human activity recognition (HAR): bounded asym-
metric generalized Gaussian mixture-based hidden Markov model with feature selection (BAGGM-
FSHMM), bounded asymmetric generalized Gaussian mixture-based hidden Markov model (BAGGM-
HMM), asymmetric generalized Gaussian mixture-based hidden Markov model with feature se-
lection (AGGM-FSHMM), and asymmetric generalized Gaussian mixture-based hidden Markov
model (AGGM-HMM). We develop an innovative method for simultaneous estimation of feature
saliencies and model parameters in BAGGM-FSHMM and AGGM-FSHMM while integrating the
bounded support asymmetric generalized Gaussian distribution (BAGGD), the asymmetric gener-
alized Gaussian distribution (AGGD) in the BAGGM-HMM and AGGM-HMM respectively. The
aforementioned proposed models are validated using video-based and sensor-based HAR appli-
cations, showcasing their superiority over several mixture-based hidden Markov models (HMMs)
across various performance metrics. We demonstrate that the independent incorporation of fea-
ture selection and bounded support distribution in a HAR system yields benefits; Simultaneously,

combining both concepts results in the most effective model among the proposed models.
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Chapter 1

Introduction

In the past decade, there has been a remarkable growth in the amount and dimensionality of
data due to technological advancements. It is crucial to find ways to model and analyze such mul-
tidimensional data. The process of modelling and extracting useful insights from multidimensional
data relies on the ability to identify complex patterns, regularities, and relationships within the data.
In recent years, several algorithms have been developed with the aim of automatically learning to
recognize these complex patterns and making intelligent decisions based on observed data. Machine
learning, a branch of artificial intelligence, provides a systematic approach to developing and study-
ing automatic techniques capable of learning models and their parameters from training data [2-5].
Machine learning and statistical pattern recognition have witnessed remarkable development in re-
cent years due to their extensive applications in various fields, including engineering, medicine,
computer science, psychology, neuroscience, physics, and mathematics [6, 7]. The emergence of
novel supervised [8—10] and unsupervised methods [11], as a result of recent advances in machine
learning, has attracted the attention of researchers from different domains, owing to their potential
to support the modelling and analysis of different data.

The unsupervised partitioning of data is considered in a wide range of tasks that involve group-
ing observations into clusters or parts that are similar in composition and different from each other.
The categorization of patterns and objects based on similarities is a crucial aspect of most real-life

applications and is commonly known as clustering or cluster analysis. There are various approaches



to clustering, including hierarchical, relocation, probabilistic, density-based, and grid-based meth-
ods, which can be employed according to the real-life application.

Hierarchical methods generate clusters incrementally, leveraging the connectivity matrix that
represents the similarity among data items. There are two primary hierarchical clustering strategies:
agglomerative and divisive. The agglomerative approach commences with singleton clusters, each
containing a single element, and progressively merges cluster pairs. Conversely, the divisive method
starts with a comprehensive cluster containing all objects and iteratively divides it into distinct
clusters.

Relocation algorithms, unlike hierarchical techniques, do not develop clusters step by step. In-
stead, they initiate with a random partition and iteratively reposition data items among existing
clusters to optimize them. Typically, these methods necessitate a predetermined number of clusters.
The most prevalent relocation algorithm is the K-means approach, which alternates between two
iterative steps: data assignment and centroid value updating.

Probabilistic clustering techniques are based on the assumption that the dataset represents a
sample independently drawn from multiple populations. Density-based clustering identifies clusters
as high-density regions in the feature space, separated by low-density areas. This approach excels
in detecting clusters of various shapes, as it utilizes the concepts of density and connectivity to
account for local data distribution and requires defining neighbourhood data and nearest neighbour
computations.

Grid-based clustering algorithms partition the feature space, aggregating dense neighbouring
segments. A segment is a multi-rectangular region in the feature space, resulting from the Cartesian
product of individual feature sub-ranges. Consequently, data partitioning is achieved through space
partitioning. Some grid-based techniques prune the attribute space a priori, performing subspace
clustering, which is crucial for high-dimensional data when irrelevant features may obscure the
clustering tendency. This method can be regarded as an extension of traditional clustering that aims
to identify clusters in various sub-spaces within a dataset.

In this thesis, I will primarily focus on probabilistic approaches, specifically mixture models.

Mixture models, as a machine learning technique, have garnered significant interest across various



applications. They are typically employed to model intricate datasets by postulating that each ob-
servation originates from one of several distinct groups or components [7]. Furthermore, mixture

models have demonstrated success in tasks like clustering and density estimation [12, 13].

1.1 Mixture Models: An Introduction

Mixture models consist of convex combinations of two or more probability density functions
(PDFs). By amalgamating the attributes of the individual PDFs, mixture models possess the ability
to approximate any arbitrary distribution [14]. As a result, selecting the most appropriate PDF to
accurately represent the mixture components is of paramount importance, as it directly impacts the
model’s capability to characterize the shape of the data [15, 16]. Furthermore, an ill-suited choice
of PDF may necessitate the mixture model to increase the number of components in order to fit the
data accurately, which could lead to overfitting. The mixture of Gaussians is among the most fun-
damental and widely used statistical models, frequently justified for asymptotic reasons, meaning
that the sample is assumed to be adequately large [17]. However, it has been observed that Gaussian
distributions are generally unsuitable for modelling data in intricate real-life applications [18]. For
example, natural image clutter tends to be non-Gaussian in nature.

The Gaussian mixture model is a popular choice as an isotropic probability density function
that can compactly model and represent the intrinsic grouping of the data. It comprises a set of
parameters, including a mean vector and a covariance matrix, that describe each discovered pattern’s
properties. The EM algorithm has been widely used to estimate the Gaussian mixture model’s
parameters that best fit the data in many applications [19,20]. However, the Gaussian distribution’s
limitations have been observed in various real-life applications. For instance, it has a rigid bell shape
and a short tail, which is unsuitable for most real-world problems [21]. Additionally, the Gaussian
distribution is unbounded with a support range that extends from —oo to co and is symmetric around
its mean [22,23]. The data clusters of real-life applications are usually bounded and most likely
have a non-Gaussian density, signifying a density function that is asymmetric, non-bell shaped,
or both [24-27]. The Gaussian distribution’s fixed kurtosis makes the mixture model vulnerable

to individual data cluster outliers, and the distribution is unsuitable for assigning a relatively low



probability of occurrence to the individual class outliers [28,29]. Therefore, many applications that
incorporate the Gaussian mixture model seek outlier detection and removal techniques within their
workflow, which incurs additional computational expenses [30-33].

Several studies have demonstrated that the generalized Gaussian distribution (GGD), can be an
effective alternative to Gaussian distributions due to its shape adaptability [16,34]. This flexibility
allows the modelling of a broad array of non-Gaussian signals [35-38]. The GGD encompasses
the Laplacian, Gaussian, and asymptotically uniform distributions as special cases [39]. It has been
employed in various challenging problems, demonstrating its versatility and effectiveness in diverse
contexts (e.g., [40-42]). However, the GGD is still a symmetrical distribution, rendering it unsuit-
able for modelling non-symmetrical data. In light of this limitation, we propose examining two
non-symmetrical distributions throughout the remainder of this thesis: the asymmetric generalized
Gaussian and its bounded variant. By considering these distributions, we aim to enhance the mod-
elling capabilities of mixture models, allowing for a more accurate representation of complex data
with non-symmetrical characteristics. This exploration will contribute to a deeper understanding of
mixture models’ strengths and limitations, fostering further advancements in the field.

The asymmetric Gaussian distribution (AGD) builds upon the foundation of the Gaussian distri-
bution, offering a more nuanced representation of data by addressing the asymmetry often present
in real-life datasets. While the Gaussian distribution assumes symmetric data around the mean, the
asymmetric Gaussian allows for different standard deviations on each side of the mean, capturing
the skewed nature of many empirical observations. Despite this advantage, the asymmetric Gaus-
sian distribution still maintains the fundamental bell-shaped curve of the Gaussian distribution. By
accommodating asymmetry while preserving the Gaussian structure, the asymmetric Gaussian dis-
tribution serves as a valuable tool for handling a variety of data analysis tasks that involve skewed
data patterns.

The asymmetric generalized Gaussian distribution (AGGD) [15] presents a significant improve-
ment over the generalized Gaussian distribution (GGD) and the AGD in various aspects. While the
GGD is known for its shape flexibility, it remains a symmetrical distribution, which limits its abil-

ity to accurately model non-symmetrical data. In contrast, the AGGD addresses this limitation by



incorporating asymmetry in the distribution like AGD, while allowing for a more precise represen-
tation of complex data with non-symmetrical characteristics like GGD. This enhancement enables
the AGGD to capture a broader range of distribution shapes, which proves beneficial in diverse
applications where data exhibit varying degrees of skewness. Moreover, the AGGD maintains the
advantages of the GGD, as it can generalize to the GGD when the left standard deviation is equal
to the right standard deviation. This dual capacity of modelling both symmetrical and asymmetrical
data makes the AGGD a more versatile and powerful tool in the realm of mixture models.

Bounded probability density functions offer an essential extension to the traditional probability
density functions as discussed in [43], such as the generalized Gaussian distribution (GGD) and
asymmetric generalized Gaussian distribution (AGGD). These bounded variants are particularly
useful for modelling real-world data that often exhibit constraints or limits within a specific range
as demonstrated in [21], [44], and [22,44]. By incorporating boundaries into the distribution, these
functions can more accurately represent real-world data that naturally fall within a finite interval.
Examples of such data include percentages, proportions, and measurements with known upper and
lower bounds. Bounded versions of the GGD and AGGD provide additional flexibility by captur-
ing the characteristics of both symmetrical and asymmetrical data while adhering to the imposed
constraints. Consequently, they prove to be invaluable tools in various applications, as they offer
a more precise representation of data distributions and improve the overall performance of mixture
models in capturing the underlying structure of the data.

A mixture of mixture models is a statistical modelling technique used to describe complex data
with heterogeneous sub-populations. It involves combining multiple mixture models, where each
component of a mixture model is itself a mixture model. The inner mixture models are used to
capture finer details of the sub-populations within each component, while the outer mixture models
are used to model the overall distribution of the data. The incorporation of inner mixtures within
each mixture model’s component allows for greater flexibility in modelling the data, as it enables the
identification and characterization of finer-grained sub-populations within each component. This is
particularly useful when dealing with complex data that cannot be adequately described by a single
mixture model. By incorporating inner mixtures, the mixture of mixture models can provide a

more accurate and detailed representation of the data, making it a powerful tool for a wide range of



statistical applications, such as clustering, classification, and density estimation.

In this thesis, we will explore the probabilistic aspects of mixture models in greater depth,
investigating their strengths and limitations as well as their applications across various domains. By
examining the mathematical foundations and practical implementations of these models, we aim to
provide a comprehensive understanding of their role in contemporary machine learning research.
This deeper understanding will contribute to the ongoing development and refinement of mixture

models, enabling further advancements in the field.

1.2 Parameter Learning of Mixture Models

Unsupervised learning offers the potential to discover hidden patterns and structures within
complex data without relying on labelled examples, making it a more scalable and versatile ap-
proach for various real-world applications. In contrast, supervised learning, especially when uti-
lizing neural networks [45], often suffers from high dependence on large labelled datasets and is
prone to overfitting, which limits the applicability and generalization capabilities of these models in
dynamic and less-structured environments. Mixture models are widely used to represent complex
data distributions by combining multiple probability density functions (PDFs). The unsupervised
learning of mixture models is crucial to ensure the effectiveness of the model in various applica-
tions. There are several methods to fit mixture models to training data, such as maximum likelihood
estimation [46], Bayesian variational inference [47-50], and Bayesian MCMC inference [51-54].
In this section, we discuss the key techniques employed for parameter learning in mixture mod-
els, emphasizing the maximum likelihood estimation (MLE) using the Expectation-Maximization
(EM) algorithm, the Minimum Message Length (MML) criterion, and the semi-supervised learning
approach.

The EM algorithm is a popular iterative method for MLE in mixture models. It is particularly
effective in handling incomplete or missing data and has been widely adopted for parameter esti-
mation in Gaussian mixture models and other complex distributions. The EM algorithm consists
of two main steps: the Expectation (E) step and the Maximization (M) step. In the E-step, the al-

gorithm calculates the expected values of the latent variables given the observed data and current



parameter estimates. In the M-step, it updates the parameter estimates by maximizing the expected
complete-data log-likelihood obtained in the E-step. The algorithm iterates between these two steps
until convergence, ultimately yielding the maximum likelihood estimates of the mixture model pa-
rameters.

The MML criterion is an information-theoretic model selection technique that aims to minimize
the message length needed to encode both the model and the data. By incorporating the MML
criterion within the EM algorithm, it is possible to simultaneously achieve feature saliency and de-
termine the optimal number of mixture components. In this approach, the optimization process not
only estimates the parameters of the mixture model but also identifies the actual number of compo-
nents and the optimal subset of attributes that define each component. This integrated optimization
strategy allows for more efficient and effective parameter learning in mixture models, ensuring that
the resulting model accurately represents the underlying data structure.

In many real-world applications, obtaining fully labelled data is challenging and costly, mak-
ing the use of semi-supervised learning techniques highly desirable. The semi-supervised approach
to maximum likelihood estimation for mixture models leverages both labelled and unlabeled data
to improve the accuracy and robustness of parameter estimation. By incorporating the available
labelled data, the semi-supervised MLE can guide the learning process and refine the model pa-
rameters more effectively than unsupervised approaches. This results in a better representation of
the underlying data distribution and ultimately improves the performance of the mixture model in
various applications.

Within this thesis, Chapters 2 and 3 showcase the implementation of unsupervised and semi-

supervised maximum likelihood estimation through the EM algorithm for several mixture models.

1.3 Feature Selection

In the realm of statistical modelling, and specifically finite mixtures, feature selection is a critical
aspect, as it involves identifying relevant or discriminative features that describe the data, particu-
larly in the analysis of high-dimensional data that has been extensively researched in the past. The

primary objective is not only to determine mixture components and their parameters but also to



offer the most parsimonious model that can accurately depict the data. It is important to note that
humans’ approach to clustering and recognition involves selecting a few key features (i.e., only rel-
evant information is considered while ignoring irrelevant information [55, 56]) and then clustering
the data based on these features [57]. Additionally, feature selection can accelerate learning and
enhance model accuracy and generalization. As a result, feature selection has proven to be a vital
step in various applications such as image processing, computer vision, and pattern recognition, in-
cluding object detection [58], handwriting separation [59], and image retrieval, categorization, and
recognition [60].

Nonetheless, most mixture model research presumes that all features have equal weight and
employs a pre-processing step like principal components analysis (PCA) to convert the original fea-
tures into a reduced-dimension space. This approach’s primary drawback is the loss of the original
features’ physical meaning [61]. Moreover, the quality of the features used significantly impacts
the learning of mixture parameters (i.e., both model selection and parameter estimation), as demon-
strated, for example, in [62], leading to a renewed focus on the feature selection problem, particu-
larly in unsupervised settings. Feature selection was achieved in several prior publications simulta-
neously to the parameter estimation in maximum likelihood estimation [15, 63] and even Bayesian
approaches [64, 65]. Like many other model-based feature selection approaches (e.g., [66]), this
work is based on the Gaussian assumption, assuming diagonal covariance matrices [66] for all
clusters (i.e., all features are considered independent). In this thesis, following recent approaches
(e.g., [60, 62]), we attempt to address the feature selection problem in unsupervised learning by
framing it as an estimation problem, thus avoiding any combinatorial search. We assign a relevance

weight to each feature, which measures its dependence on class labels.

1.4 Explainable Artificial Intelligence

Recent advancements in machine learning algorithms have enabled the detection of patterns in
data that were previously impossible to identify. However, the lack of transparency in the decision-
making processes of these algorithms has raised concerns about their reliability and trustworthiness.

This has led to an increasing interest in the field of explainable artificial intelligence (XAI) [67-69].



While there have been significant research efforts to enhance the interpretability of data-driven
models, most prior works have focused on post-modelling explainability, which has several limita-
tions [70]. Firstly, it does not provide any insights into the training data used to build the model.
Secondly, it heavily relies on the specific model being used.

In recent years, the term “explainability” has gained widespread attention, and there has been
an exponential increase in its usage in research publications [71,72]. Our proposed model aims
to address the limitations of prior works by providing pre-modelling explainability in the context
of model-based classification and clustering. Specifically, we develop an approach that not only
recognizes different patterns within the data and the statistical properties of each pattern, but also
defines the boundaries between the discovered patterns in terms of important data attributes [?,70].

Our proposed method integrates a mixture model with a decision tree (DT) algorithm to provide
explainable predictions that generalize well to unseen data. The DT algorithm is used to train a
small binary threshold tree, with the number of leaves equal to the number of clusters assumed
in the mixture model. The predictions of the DT algorithm are easily interpretable using simple
If-Then rules. By integrating the DT algorithm with our proposed mixture model, we can provide
insights into the model and its prediction by defining the boundaries between the detected patterns
in terms of important attributes [72].

We demonstrate the integrated explainability within our proposed framework by applying it to
chiller fault detection and diagnosis, energy consumers’ categorization, and occupancy estimation.
In the case of chiller fault detection, we aim not only to classify faults but also to provide inter-
pretability in the form of If-Then statements using the values of the data features. Similarly, in the
case of energy consumers’ categorization, we aim to provide interpretability in the form of simple
If-Then statements with specific values of high-level features to define the boundaries between en-
ergy consumers. Our proposed model can help utility companies to identify suitable households for
demand reduction initiatives such as demand response and energy efficiency, thereby reducing costs
and greenhouse gas emissions [73-77].

As will be demonstrated in Chapter 3, the integration of mixture models with explainable arti-
ficial intelligence offers a powerful combination that addresses some of the key challenges faced in

machine learning. Mixture models are generative models that excel in generalizing to unseen data



based on a sample population, while explainable Al focuses on making the inner workings of com-
plex models transparent and understandable. Decision trees, as supervised learning algorithms, are
known to be prone to overfitting. By adding explainability, we can create an interpretable model that
not only generalizes well to unseen data but also delivers comprehensible results through straight-
forward if-then statements. This fusion of approaches enables more accurate predictions, and fosters

trust and transparency in the underlying machine-learning models.

1.5 Hidden Markov Models

Over the past ten years, Hidden Markov Models (HMM) have garnered significant attention
from researchers due to their expanded capabilities beyond the originally investigated speech-related
tasks [78]. Applications of HMMs now include handwritten character recognition, music analysis,
stock market prediction, earthquake forecasting, video categorization, security monitoring, and net-
work evaluation. HMMs are probabilistic models that belong to the generative category of machine
learning algorithms. In machine learning, data modelling techniques typically fall into one of two
main categories: discriminative or generative. Generally, discriminative models are trained to de-
termine a connection between input data and class labels, while generative models first learn the
distribution of the classes before making predictions. Mathematically, discriminative models repre-
sent the probability of a class label given the input data, while generative models denote the joint
probability of both input data and class labels, which is used to calculate the appropriate proba-
bility for classification. In a way, HMMs can be viewed as an extension of mixture models that
incorporates the temporal dimension. This means they have the ability to perform spatiotemporal
modelling, taking into account both spatial and temporal features. Therefore, the HMMs are among
the most widely used statistical techniques for probabilistic modelling of sequential and time series
data [79, 80]. An HMM is a highly-regarded dual stochastic model that leverages a concise set of
features to extract underlying statistics [78]. The structure primarily consists of a Markov chain
of hidden variables, each linked to a conditional observation. A Markov chain offers one of the
simplest ways to represent sequential patterns in time series data and was first introduced by An-

drey Markov in the early 1900s. The late 1960s and early 1970s witnessed a surge in publications
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by Leonard E. Baum and other researchers that explored and addressed its statistical methods and
modelling [79]. This approach allows us to maintain generality while easing the assumption of
independent and identically distributed variables [81].

In mathematical terms, an HMM is defined by an underlying stochastic process consisting of a
number of hidden states that form a Markov chain. Each state is regulated by an initial probability,
and the transitions between states at a given time ¢ can be represented by a transition matrix. Within
each state sy, at time ¢ an observation is produced according to its distribution, which may be
either discrete or continuous. This forms the set of observable stochastic processes. Conversely, the
specific parameters of a probability distribution determine the observation emission for a continuous
observed symbol sequence. The Gaussian distribution is most frequently employed as the emission
distribution [79, 82, 83].

The mixture-based Hidden Markov Model (MM-HMM) is an advanced variation of the tradi-
tional HMM that offers increased modelling capabilities for complex data. This innovative approach
incorporates a mixture of probability distributions within each hidden state, providing a more flex-
ible and accurate representation of the underlying data-generating process. By integrating multiple
distributions, MM-HMMs can better capture intricate patterns and relationships within time series
or sequential data. As a result, mixture-based HMMs have emerged as a powerful tool for various
applications, including speech recognition, financial forecasting, bio-informatics [84], human action
recognition [85], and many others that require robust modelling of complex, dynamic phenomena.
Human action recognition, in particular, benefits from the enhanced ability of MM-HMMs to dis-
cern subtle variations in movement patterns, making them a valuable asset in areas such as video
surveillance, human-computer interaction, and sports analytics.

The Baum-Welch algorithm for Mixture-based Hidden Markov Models (MM-HMMEs) is an it-
erative optimization technique employed to estimate the model parameters. Also known as the
forward-backward algorithm, it leverages the EM framework to refine the parameters of the un-
derlying mixture distributions within each hidden state. The algorithm consists of two primary
components: the forward algorithm and the backward algorithm. These methods are executed re-
cursively, forming the complete algorithm that ensures convergence towards more compact clusters

at each iteration [86]. Starting with an initial random data clustering, the Baum-Welch algorithm
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for MM-HMMs guarantees convergence and aims to optimize the model in order to better capture
the complexities of the sequential data under analysis. The process terminates when there are no
significant changes in the log-likelihood ratios, ultimately yielding an optimized MM-HMM [86].

The Viterbi Algorithm is a dynamic programming-based method that is integral to HMMs and
other associated probabilistic models [87]. Introduced by Andrew Viterbi in 1967 [88], its primary
purpose is to identify the most probable sequence of hidden states, known as the Viterbi path,
given a sequence of observations. The algorithm efficiently computes the optimal state sequence by
utilizing a recursive process that maximizes the joint probability of both the observations and the
corresponding hidden states.

In the context of a specific HMM, the Viterbi algorithm aims to determine the most likely
progression of states that generated a given observation sequence, thereby addressing the decoding
problem. This involves selecting the most probable states at each individual time step ¢, which in
turn maximizes the expected number of correct separate states. The Viterbi Algorithm has been
widely applied across various fields, including speech recognition, natural language processing,
bio-informatics, and other areas that necessitate decoding and inference in the presence of hidden
information.

In Chapter 4, we introduce four new models for human activity recognition, namely BAGGM-
FSHMM, BAGGM-HMM, AGGM-FSHMM, and AGGM-HMM. Each of these models represents
a unique combination of techniques designed to enhance the performance of Hidden Markov Mod-
els in this application domain. BAGGM-FSHMM stands for Bounded Asymmetric Generalized
Gaussian Mixture-based Hidden Markov Model with Feature Selection. Similarly, BAGGM-HMM
represents the Bounded Asymmetric Generalized Gaussian Mixture-based Hidden Markov Model,
without feature selection. AGGM-FSHMM denotes the Asymmetric Generalized Gaussian Mixture-
based Hidden Markov Model with Feature Selection, while AGGM-HMM refers to the Asymmet-
ric Generalized Gaussian Mixture-based Hidden Markov Model without feature selection. These
models aim to improve the accuracy and efficiency of human activity recognition by incorporating

various advanced techniques and methodologies.
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1.6 Contributions

The aim of this thesis is to propose several novel models for recognizing patterns within data
with and without taking into account the temporal axis. The models proposed utilized effective

frameworks that model the different ways random variables change for a given pattern.

1= The bounded asymmetric generalized Gaussian mixture model with minimum message
length criterion: The bounded asymmetric generalized Gaussian mixture model was ex-
tended within a framework that estimates model parameters and feature saliencies simultane-
ously. The proposed model has been proven effective in modelling smart meter data within
different real and synthetic datasets. This novel framework was submitted as a journal re-
search manuscript with the title ”A mixture-based clustering approach for household energy
consumption segmentation and feature weighting” to the Journal of Sustainable Energy, grids,

and Networks.

1= In order to incorporate further robustness within mixture models. We incorporate a Uniform
distribution within an inner mixture of a mixture of mixtures that further extend the bounded
asymmetric generalized Gaussian mixture model. A semi-supervised learning setting is also
proposed for the novel mixture of mixtures to reduce the reliance on labelled data in fault de-
tection and diagnosis and occupancy estimation applications using real-world datasets. These

novel frameworks have been published as research papers as follows:

* A journal research manuscript was submitted with the title "Explainable finite mixture of
mixtures of bounded asymmetric generalized Gaussian and Uniform distributions learn-
ing for energy demand management” to the following publication ”ACM transactions

on intelligent systems and technology”.

* A research paper was submitted as a research manuscript with the title "Explainable
robust Smart Meter Data Clustering for Improved Energy Management” to the following

conference "IEEE International Conference on Systems, Man, and Cybernetics (SMC)”

1= Four mixture-based hidden Markov models were proposed for a human activity recognition

application. Using these novel models, the following attempts at publications were made:
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* A journal research paper was submitted with the title ”Advanced Models for Human
Activity Recognition using Mixture-Based Hidden Markov Models with Feature Salien-

cies” to the following publication, "Engineering Applications of Artificial Intelligence”.

* A research manuscript with the title ’Enhancing Human Action Recognition with Asym-
metric Generalized Gaussian Mixture Model-Based Hidden Markov Models and Bounded
Support” was submitted to the following conference "IEEE International Conference on

Systems, Man, and Cybernetics (SMC)”

1.7 Thesis Overview

This thesis is organized as follows:

U Chapter 1: This chapter introduces basic concepts that were used in this thesis to model
real-world data, such as mixture models, hidden Markov models and their optimization ap-

proaches.

Q Chapter 2: This study proposes a learning framework that involves the expectation-maximization
algorithm (EM) and the minimum message length (MML) criterion for a simultaneous feature
and model selection approach in the context of the bounded asymmetric generalized Gaussian
mixture model. The proposed algorithm demonstrates superior clustering efficacy compared
to several state-of-the-art clustering algorithms in the analysis of high-resolution smart meter

data.

Q Chapter 3: This study introduces a mixture of mixtures of bounded asymmetric generalized
Gaussian and uniform distributions and proposes model-based classification and clustering
algorithms. The proposed algorithm’s predictions are interpretable to the user’s perspective
through simple If-Then statements using a small binary decision tree, increasing the credi-
bility of the algorithm’s predictions. The proposed algorithm demonstrates its reliability and

superiority to several state-of-the-art machine learning algorithms in real-world applications.

Q Chapter 4: This study proposes an asymmetric generalized Gaussian mixture-based hidden
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Markov model (AGGM-HMM) and a bounded asymmetric generalized Gaussian mixture-
based hidden Markov model (BAGGM-HMM) for recognizing human actions from a se-
quence of observations. The proposed models leverage the flexible and robust asymmetric
generalized Gaussian distribution and the bounded variant to model real-life applications’
data. The proposed frameworks demonstrate superiority to several state-of-the-art human

activity recognition methods in sensor-based and video-based recognition scenarios.

Conclusion: In this chapter, we provide a summary of our contributions. Additionally, we

discuss potential avenues for future research.
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Chapter 2

Mixture-Based Clustering Approach For
Household Energy Consumption

Segmentation and Feature Weighting

In the previous chapter, we introduced several important topics in machine learning, including
mixture models in Section 1.1 and their learning criteria in Section 1.2. In this chapter, important
concepts shall be used to introduce a novel mixture model and its learning criteria as a solution for
an important real-life problem. Recently, the intervals of publicly available smart meter data have
become as small as one second compared to one month in earlier times. Understanding these vari-
ations supplies the opportunity to discover important information for several capabilities involving
metering data. As a data mining method, clustering analysis has been widely used to discover unique
energy consumption patterns and trends and the consumers that follow them. The high-resolution
smart meter data present several challenges that recent studies have failed to address, such as non-
Gaussian data shape, an unknown number of clusters, and high dimensional feature space with
variable importance. Although several studies have addressed the problems of an unknown optimal
number of clusters and optimal feature subset in modelling smart meter data independently, these
problems are interrelated and must be addressed simultaneously. Therefore, this chapter proposes a

learning framework that involves the expectation-maximization algorithm (EM) and the minimum
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message length (MML) criterion for a simultaneous feature and model selection approach in the
context of the bounded asymmetric generalized Gaussian mixture model. Our experiments attempt
to simulate an efficient analysis scenario of smart metering data with three feature extraction meth-
ods. The performance of the proposed algorithm is compared against the performance of several
state-of-the-art clustering algorithms. We validate the clustering efficacy of the proposed algorithm
with several performance measures using two synthetic and real smart meter datasets. The resulting
clusters characterize the variations in residential energy consumption to help accurately determine

the group of suitable households for utility companies’ demand reduction initiatives.

2.1 Introduction

The adaptation of Advanced Metering Infrastructure (AMI) in Europe has been a significant
contributor to the overachievement of the energy efficiency gains of the EU 20-20-20 energy policy.
Following the success in Europe, smart meters have been deployed globally in countries attempting
to modernize their electricity networks. As a result, these advancements in energy metering tech-
nologies have generated a wealth of new electrical power consumption records with an adequate and
consistent frequency within the residential sector. Several smart meter datasets were made publicly
available in [89-93] with a granularity of 1-min to 1-h. These datasets dramatically increase the
amount of electricity use information over once-per-month meter reads. The high-resolution smart
meter data analysis reveals several insights that were not previously possible. Thus, they provide a
unique opportunity to understand a household’s energy consumption pattern. The information ob-
tained from such patterns can potentially enhance the targeting and customization of metering data
capabilities such as demand response (DR), energy efficiency (EE), load forecasting and pricing
intelligence programs and the improvement of energy-saving recommendations [94-96]. DR is an
incentive program that enables the possibility for utility companies to save money on unnecessary
investments and lower emissions of greenhouse gases (GHG). DR induces households to reduce
their energy consumption levels at times of high wholesale market prices or when system reliability
is jeopardized. EE programs aim to reduce the power demand of households while maintaining their

consumption habits.

17



The classical classification of energy consumers that is based on the explicit type of activity does
not correlate well with the evolution of energy consumption [97], rendering the efforts to increase
energy efficiency ineffective. Therefore, identifying electricity customers with similar energy con-
sumption patterns is perhaps significantly more helpful [98,99]. In order to transform smart meter
records into valuable information taking part in customer groupings, traditional machine learning
exploratory analysis tools such as unsupervised learning techniques are utilized [94]. Clustering is
a statistical data analysis technique that can uncover or infer intrinsic properties and group the data
into several components according to the observations’ similarities. As a soft clustering approach,
the Gaussian mixture’s reliability and minimum impact on computational capabilities have made
it a good candidate for modelling smart meter data. However, it has the following weaknesses:
the distribution has a fixed shape; preventing it from generalizing to different classes of distribu-
tions [100], the distribution’s tails are short; making it vulnerable to outliers and therefore is not the
best choice for mixture models in real applications [101]. The Gaussian distribution does not fit data
well within a mixture model if the data has an asymmetric distribution, as demonstrated in Figure
2.1. Additionally, estimating the data’s bounded support region in mixture models has achieved
improved performance in diverse real-life applications [21,25,26,43,102, 103].

The deployment of AMI has introduced high dimensionality in modern energy consumption
datasets. As an example, in the Irish smart meter trial [89], with a reading interval of 30 minutes,
an energy consumer’s load curve consists of 25728 features in the raw format of the dataset. Pat-
terns are easily distinguished within observations that are represented with features of high entropy.
However, in practice, the best clustering performance is achieved with the best set of features that
concisely describe the load curve. Feature selection has several advantages: it is well established
to improve the performance of model-based categorization [104], and it helps develop interpretable
models that are reduced in complexity within applications across several disciplines. The search
for the optimal number of clusters and the optimal set of features is an interrelated optimization
problem. However, searching for the optimal set of features is challenging in an unsupervised set-
ting because there is no clear criterion for the optimization process since the number of clusters is
unknown. Historically, in order to find the optimal number of features, an exhaustive search is done

through the space of all feature subsets [105-107]. Additionally, non-exhaustive search techniques
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do not guarantee finding the optimal feature subset. Therefore, an efficient solution was proposed
within an unsupervised setting [62]; the optimal feature subset search is converted into an estimation
problem parallel to the learning of mixture models where a vector of feature weights is estimated
using the EM algorithm.

In this proposal, we develop a finite bounded asymmetric generalized Gaussian mixture model
with simultaneous feature selection and model selection, generalizing to an extensive range of mix-
ture models to model smart meter data in an unsupervised manner. The proposed algorithm finds
the model’s optimal subset of features, optimal count of components, and optimal parameters us-
ing the EM algorithm and the MML model selection criterion. Smart meter data classes consist of
observations of continuous random variables, which makes it ideal for modelling using the families
of continuous probability distributions. Additionally, the data is ideal to be used to demonstrate the
generalization of the proposed model due to the various feature extraction methods used in prior
works to represent this data. As the representation of the data changes, so does its distribution’s
skewness, bounds and shape. This chapter will demonstrate how our proposed FSBAGGMM gener-
alizes to a wide range of mixture models, including the bounded variants. The generalization and the
superiority of our mixture model are evident in the experimental analysis. In our experimental anal-
ysis, our proposed method outperforms the following: asymmetric generalized Gaussian mixture
model-based feature selection (FSAGGMM), Bounded Asymmetric Generalized Gaussian Mix-
ture Model (BAGGMM), and the Asymmetric Generalized Gaussian Mixture Model (AGGMM)
according to several performance evaluation metrics. Additionally, our proposed mixture model
has been implemented using Concordia University’s High-Performance Computing (HPC) Facility:

Speed [108].

2.1.1 Prior Work

Several applications were proposed to make use of energy consumption records. Additionally,
due to the utilization of smart meters, the feasibility and reliability of such applications have in-
creased. Non-Intrusive Load Monitoring (NILM), for example, has made heating, ventilation, and
air conditioning (HVAC) fault detection applications more effective and reliable. The behaviour of

the HVAC system is identified and monitored, relying on smart meter readings instead of installed
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Figure 2.1: The Gaussian distribution Symmetry Problem

sensors [109]. An example of a system that uses smart meter records as input and produces load
forecasting and recommendations for better energy efficiency is presented in [110]. A smart meter
analytics solution was proposed to present customers with a user-friendly web portal they can use to
understand their bills [111]. Energy consumption records were also used in applications to conclude
consumption predictions and recommendations [73, 110, 112].

Clustering has proven helpful to group low, and high-voltage customers [113,114]. Addition-
ally, demand management programs have successfully utilized clustering in order to select suitable
candidate energy consumers [75-77]. Thus, several approaches have been employed for the seg-
mentation of energy users, such as K-Means [112], Euclidean distance-based clustering [114], and
multi-resolution clustering in spectral-domain [115]. Similarly, several clustering methods such as
hierarchical clustering, K-means, fuzzy K-means, and Self-organizing maps (SOM) have been used
to group consumers with similar energy consumption patterns in [113]. SOM was tested for its
capability to classify consumption profiles in [116]. Clustering has also proven useful to enhance
energy consumption prediction using a two-layer feed-forward artificial neural network [96]. The
Gaussian mixture model, optimized by the EM algorithm, was utilized in [117] and [73] as a non-
distance-based consumer segmentation tool. Other finite mixture models have also been used within
the context of the same application [118, 119].

In order to model smart meter data in different representations, several limitations imposed by

the Gaussian mixture model must be overcome. Several distributions have been used as a base
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distribution of mixture models to overcome the shape rigidity of the Gaussian distribution, such
as the Student’s-t distribution [120-122] and the generalized Gaussian distribution (GGD) [38, 40,
123]. Compared to the Gaussian distribution, the Student’s t distribution has an additional parameter
(v) called the degree of freedom that allows the distribution to generalize to different probability
distributions. The Student’s t distribution is identical to the Cauchy distribution when (v = 1) and
approaches the Gaussian distribution as () approaches infinity. As for the GGD, the additional
parameter per component () is called the shape parameter; it controls the tails of the distribution,
making it far more flexible to different types of data and less vulnerable to outliers [36, 37, 124].
In more recent studies, the AGGD was used as a base distribution for mixture models [63, 125].
The AGGD can generalize to a large class of distributions such as the Impulsive, the Laplacian,
the Gaussian, and the uniform distribution, in addition to the ability to fit asymmetric data [126].
Additionally, and in order for mixture components to fit better to real-life data, the bounded support
concept was adopted in several finite mixture models [24-26].

Several feature extraction methods were utilized to process high dimensional data in electrical
load observations and turn it into a new set of reduced feature space. In [127], a scalable algorithm
for data processing has been proposed for a dataset collected from 10,000 Australian homes over
a year. Dimensionality reduction is accomplished by employing a sparse representation technique
in [128]. An encoding system has given representations for energy consumers with a pre-processed
dictionary in [74]. The discovery of prominent energy consumption time windows is crucial for
feature extraction and, therefore, modelling the typical consumer’s behaviour. Through a thorough
analysis of several smart meter trials, researchers have been able to identify four time periods where
the most extensive distribution of peak demands occurs within smart meter datasets [73]. The
energy consumption records within the specified time periods were used to calculate seven weakly
correlated features. Projection methods such as Principal Component Analysis (PCA) were also
used to concisely represent a consumer’s load curve [113].

In the context of the energy consumption segmentation application, a feature selection approach
based on genetic algorithms has been utilized effectively in [112] to reduce the high dimensionality
of smart meter data and improve the clustering performance of k-means. In general, several non-

exhaustive search methods were conducted to perform feature selection, such as sequential forward
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search, backward search, floating search, beam search, bidirectional search, and genetic search
[105-107,129]. However, and more recently, several studies have approached the problem of finding
the optimal set of features as an optimization problem within the context of mixture-based clustering
in several real-life applications [15,63]; thus, achieving feature selection with minimal computation
expense.

For the purpose of finding the true number of energy consumer groups, diverse methods were
followed to accomplish this task. Several studies have approached the solution to this issue via
the use of diverse clustering evaluation metrics. Different clustering scenarios are evaluated, and
the number of consumption profiles corresponding to the best clustering scenario is chosen to be
the optimal number of energy consumption profiles [130, 131]. Similarly, an entropy-based model
performance evaluation index was utilized for finding the optimal number of clusters in time se-
ries data [112]. On the other hand, the probabilistic model selection methods have proven to be a
solution that is invariant to the dataset variable types. In several studies, the Bayesian Information
Criterion (BIC) and the Akaike Information Criterion (AIC) have been used to select the optimal
number of energy consumer groups [73, 132]. A study has previously concluded that the perfor-
mance of the AIC and BIC criteria are affected by several factors that are relevant to the model and
the data [133]. Using a smaller and less representative training dataset, BIC tends to select an overly
simple model. Additionally, AIC penalizes complex models less. Thus, in specific cases, AIC em-
phasizes the model’s performance using the training dataset and selects more complex models. The
Minimum Message Length (MML) is another probabilistic model selection measure that is well
known to outperform the BIC and the AIC model selection criteria [134—136]. MML coupled with
the feature weighing mixture model [62] encourages irrelevant feature weights to degrade to zero,
simultaneously performing model selection and feature selection. Thus, avoiding an exhaustive
search to find the optimal set of features.

The current energy consumer segmentation approach distinguishes itself from previous works
by effectively modelling different representations of smart meter records, inferring the true number
of consumer groups and finding the optimal set of features in a single optimization process. The rest
of the chapter is organized as follows: in Section 2.3, we describe the proposed Feature Selection

model based on the Bounded Asymmetric Generalized Gaussian Mixture (FSBAGGMM). Section
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2.3 explains how the mixture model’s parameters are estimated and how the MML’s objective func-
tion is derived for our specific case. Section 2.4 exhibits the experimental results in the context of
the household energy consumption segmentation by comparing the performance of our proposed
algorithm against several state-of-the-art clustering algorithms. Finally, we conclude our research

in Section 2.5.

2.2 The unsupervised BAGGMM-based feature selection model

Mixture models are a powerful approach to modelling incomplete data. The observations in
this chapter are represented as a set of vectors X = {)51,)52,)53, .. .,X;V}, )fl- e RP, ;€
{1,2,3,...,N}. We aim to model data in X’ using a mixture model with M components where
M > 1. It is possible to state that the D-dimensional random variable )ZZ = (X1, Xs2,..., Xip)
is sampled from a M component mixture model if it’s probability density function can be written

as follows:

M
p(Xil®) = p(Xil6k)px 1)
k=1

where © represents the set of parameters of the M-component mixture model. The term py, repre-
sents the mixing proportion of the component k, by definition, py, is positive and ZkM: 1pr = 1. The

likelihood function gives the joint distribution for all the observations:

N M
p(X(0) = T[> p(Xil0k)p @)

=1 k=1

In order to define the complete data likelihood, an M dimensional vector of unobserved variables
is defined, and it is denoted by Z;. For each observation 4, the unobserved binary vector is assigned
with 0’s except at the k’th position where the cluster is primarily responsible. The complete data

likelihood is defined as such:

N M Zik
p(X, Z|©) =HH( X|9kpk) 3)

i=1k=1
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where Z = {Zl, ey Z?V}.The features in Equation 2 are considered to be of equal importance.
However, in the context of a real application, the estimation of the feature weights is an effective
approach to better model data [113, 114]. The integration of the feature selection approach within
the mixture model involves considering that the irrelevant features are modelled with a background
Gaussian distribution as in [62]. In this chapter, feature weights are estimated for all the mixture
components. Therefore the background Gaussian distribution has a single set of parameters 3 =
{7, 5 +. Where 7] represents the vector of means for all the data dimensions and 5 represents the
standard deviations vector. Thus, we are proposing to rewrite Equation 2 to adopt feature relevancy

as follows:

p(Xil®,5,9) = Z%HP (XialBha) (Xl )4 @
k=1 d=1

where 5 = {(1,01),...,(np,0p)}. The unobserved binary vector @ = (1, ...., ¢p) indicates the
relevancy of each feature. By assuming that the elements within vector J are mutually exclusive

and independent of the component label Z, thus:

M D
P(Xi®) = p(XilPp(®) = o [T (wapr(Kialia)** x (1 = wap(Xial )™ (5)
k=1 d=1

After the marginalization over ¢, the obtained mixture model is formalized as follows:
M D
p(XilOm) = > pi [ [ [wap(XialOka) + (1 — wa)p(Xial Ba)] (6)
k=1 d=1

where O, = [0, d, 5] is the complete set of parameters that define the proposed mixture model.
The vector & = (w1, ...,wp) quantifies the feature importance with a set of weights where wy =
p(pq = 1). Thus, Equation 6 represents the probability density function that is assumed to generate
the data. The foreground distribution or the mixture base distribution p(X;4|6xq) models the rele-
vant attributes of each latent class in the data. Several distributions have been proposed for feature
selection in the context of mixture models, such as the AGD [15] and the AGGD [63]. However,
these distributions are unbounded with a support region that extends across the set of real numbers.

Real-life datasets are mostly digitized and have bounded support [21]. Therefore, we propose the
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Bounded Asymmetric Generalized Gaussian Distribution (BAGGD) to model the relevant features
of each component in the mixture. The BAGGD distribution generalizes several different distri-
bution classes such as the impulsive, the Laplacian, the Gaussian, and the uniform distribution to
fit different shapes of observed bounded support, asymmetric and non-Gaussian data. In order to
define the bounded distribution proposed in this chapter, the bounded support region 714 in R for

each component is first defined for the following indicator function:

1 Xid € Tkd
H(Xq|k) = (N
0 Otherwise

The bounded asymmetric generalized Gaussian probability density function for each D-dimensional

data point is defined following [137] as follows:

D
3 ¥( zd|9kd) (Xialk)
p(Xilfr) = H Ty V(Xulfra)dX ®)

The unbounded distribution p(X;4|0q) is the Asymmetric Generalized Gaussian Distribution (AGGD).
The symmetric and asymmetric generalized Gaussian distributions are defined in Equations 9 and

10, respectively.

1/2
va Fiss X
9(Xialptkds Ords Akd) = Soral (1) 6@[— A(A d)’ } )
91(XialOka) @ < pira \ |:[‘(3/)\kd):| 12
kd | T(T/Aka)
U(XialOka) = = (o + o)/ wd)
\92(Xid’9kd) T > fikd (10)

Orkd

Akd
exp[— A(Arq) (X‘g;gkd> } Xid > Hkd

Akd
eﬂﬁp{— A(Nia) <“kdXid> } Xia < kd
x
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e 3 Okd = [[kds Olpys Orpy» Mkd) Tepresents the set of parameters that

defines the AGGD for each mixture component. 4, 07, ,, 0r,, and Arq denote the mean, the left

Akd/2
where A(Apq) = {F(?’/)"“d)}
standard deviation, the right standard deviation and the shape parameter of the AGGD, respectively.
The shape parameter controls the distribution’s tails. The larger its value, the flatter the distribu-
tion at the mean; the smaller it is, the more peaked the distribution at the mean. The right and left
variance combination allows the probability density function to be asymmetric or non-asymmetric.
Thus, The proposed mixture model would consider the different shapes, asymmetry, and bounded
support region of the smart meter data. Bounded distribution generalizes to all its special cases,
including the bounded variants [21]. Thus, our proposed FSBAGGMM generalizes to a wide range
of mixture models, including the bounded variants, as shown in Table 2.1. Additionally, We will
demonstrate in section 2.4 how the proposed FSBAGGMM can generalize feature selection model
based on the asymmetric generalized Gaussian mixture in addition to several specific mixture mod-

els in terms of modelling smart meter data.

Required Change in FSBAGGMM Parameters
Special Case

Feature Selection model based on

the Asymmetric Generalized Gaussian Mixture (FSAGGMM) [63] H(X;qlk) =1
Feature Selection model based on

the Bounded Asymmetric Gaussian Mixture (FSBAGMM) Akd = 2

Feature Selection model based on

the Asymmetric Gaussian Mixture (FSAGMM) [15] H(X;qlk) =1, q =2

Feature Selection model based on
the Bounded Generalized Gaussian Mixture (FSBGGMM)
Feature Selection model based on

9rkd = 9lkq

the Generalized Gaussian Mixture (FSGGMM) Orpd = Olpg, H(X;qlk)=1
Feature Selection model based on

the Bounded Gaussian Mixture (FSBGMM) Ord = %lgq> Akd =2

Feature Selection model based on

the Gaussian Mixture (FSGMM) Orpg = Olpgr Med = 2, H(Xqqlk) = 1
Feature Selection model based on

the Bounded Laplace Mixture (FSBLMM) Ord = “lgq> Agd =1

Feature Selection model based on

the Laplace Mixture (FSLMM) Aka = 1, H(X;qlk) =1

Orkd = lpa

Asymmetric Generalized Gaussian Mixture Model (AGGMM) [125] H(X;qlk) =1, wg =1

Bounded Asymmetric Gaussian Mixture Model (BAGMM) Akd = 2,wqg =1

Asymmetric Gaussian Mixture Model (AGMM) [138] H(X;qlk) =1, \pq =2, wq =1
Bounded Generalized Gaussian Mixture Model (BGGMM) [21] Trg = OlpgrWd = 1

Generalized Gaussian Mixture Model (GGMM) [40] Orpd = Olpg, H(X;qlk)=1>wd = 1
Bounded Gaussian Mixture Model (BGMM) [22] Orpg = Olpgr Med = 2, wg =1

Gaussian Mixture Model (GMM) Orpa = lgq Agd = 2, H(X;qlk) =1, wg =1
Bounded Laplace Mixture Model (BLMM) [44] Trpd = Olpgr Med = Liwg =1

Laplace Mixture Model (LMM) Orpg = Olpgr Med = 1, H(Xjalk) = 1,wg =1

Table 2.1: FSBAGGMM special cases
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2.3 Model Parameter Estimation and Selection

In this section, we will explain how the feature weights and the mixture model parameters are
estimated for modelling the training data in addition to the model selection criterion. We propose
an approach to reveal the valid number of intrinsic groups within a dataset using MML and estimate

the proposed model’s parameters using EM.

2.3.1 Parameter estimation using the EM algorithm

The mixture model’s parameters are optimized in parallel with the features’ weights in each
iteration using the EM algorithm. The iterations of the EM algorithm produce a sequence of models
with a non-decreasing log-likelihood. The parameters are optimized to achieve the maximum log-

likelihood, and the log-likelihood function is expressed as follows:

1
ik ik d @q=0 (11)

. <god<1og<p<xidwkd> T logwa) + (1 — a)(log p(XialBa) + log(1 wd»)

The EM algorithm has made the optimization process for mixture models feasible through an itera-
tive process using Equation 11 instead of Equation 2. The conditional expected values v(Z;;,) and

Wy are given by Equations 12 and 13.

D
Pr [ Ta—1 Gikd

p(Zi = k| Xi,00m) = ¥(Zix) = (12)
S oy T G
w Xz 0.
R Zz]il Z]]\/il WW(ZU) (13)
Wy =

N
where (g = [de(Xid|9kd) + (1 - wd)p(Xid],Bd)]. The EM algorithm consists of a loop over
two steps: the E-step and the M-step; they are performed repetitively until convergence. In the
E-step, Equation 12 is evaluated using either the initial parameters or the parameters estimated
in the M-step. In the M-Step, the parameters of the next model in the sequence are estimated.

Each estimated model in the sequence represents a better approximation of the distribution of the
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smart meter data. Due to the complicated nature of the BAGGD function, the gradient of the Log-
Likelihood function (Equation 11) with respect to each one of the parameters was non-linear, and
a closed-form solution was not obtained; therefore, for these parameters, we used the Newton-
Raphson method to approximate the update values as demonstrated in the equations below. The
partial derivatives obtained with respect to each of the parameters can be found in Appendix A.1.

Thus, the M-step is implemented using the following equations:

vy p(k|Xi, Ou)

pe=p(Z=1)= N (14)
O2L(X, 00, Z, o)\ T [ OL(X, O, Z,
Wkd = fokd — K ( QM Lp)) ( M SO))} (15)
8Mkd Olikd
82£(X7@M727S0) - 8L(X’®M’Z>30)
1
Thka = hya [( aal2kd > < doiy, >:| 1o
O2L(X, 00, Z,0)\ [ OL(X, O, Z, )
) b ) ) ) ) 17
o= |(FG00) (B w
- 2L(X,On, Z,0)\ [ OL(X,On, Z, ©)
— _ ) ) b ) ) ) 18
Akd = Akd K oL, ) < B ﬂ (18)
Zf\il |:(1—Wdc)il7’£)d(idﬁd),y(zik):| Tig )
Na = -
Zz 12]7 du(dzd\ﬂd) (Zi5)
o [“Wmv(zik)} (@1 — 10
5;[2 _ 1 Giykyd (20)

Zz 1ZM = Wd P(XidlBa) (le)

'Ljd

2.3.2 Model Selection

Model selection involves selecting the best set of parameters that model the smart meter data.
Among several candidate models, the model with the maximum log-likelihood may achieve the
best fit to the data; however, it is not guaranteed to perform well on unseen data. In other words,
model evaluation based on the log-likelihood exclusively could be misleading. In this section, we
develop a model selection criterion to infer the true number of consumption profiles within a dataset

in an unsupervised manner. The MML criterion [139, 140] is an information theory-based model
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selection method; it selects the best model among a list of candidate statistical models based on
its capability of compressing a message containing the data. According to the MML criterion, the
best model minimizes a message that consists of two parts; the first part encodes the model using
prior knowledge about the model exclusively, and the second part encodes the data using the model.
Given a list of candidate models, the following function is minimized to obtain the true number of

intrinsic groups within the data:

1
MessLens ~ —logp(©y/) + g(l + log pe) + 3 log |[1(Onr)] — log p(X|© ) (21)

In equation 21, the prior distribution is represented by p(©yy), the determinant of the Fisher infor-
mation matrix is represented by |1(© /)|, the model’s likelihood is represented by p(X'|©,r). The
constant c is the total number of parameters; in this case, it is calculated as such ¢ = M + D +
4DM + 2D, c > 1. The term p. € R represents the optimal quantization lattice constant [141];
the value of the constant is approximated with p. = % as the value of ¢ changes across the list of
candidate models [142].The independence of the different groups of parameters has been considered
in this chapter; which allows the factorization of the prior distribution and Fisher information ma-
trix in equation 21. Additionally, we approximate the determinant of the Fisher information matrix
using the complete likelihood, and we consider the uninformative Jeffrey’s prior for the distribu-

tion of each group of parameters. Hence, in our case, the MML optimization objective function is

calculated as such:

D
MessLens z%(l + log pc) + %(log N)+2M Z log wg

=1 (22)

M D
+ 2d210gpk + Elog(l —wq) — log p(X|O)
k=1 d=1

Equation 22 is minimized with respect to the several constraints [62], which are listed as follows:
0<pr. <1,0< wg <1and Zj\il p; = 1. In the context of this model selection criterion,

since we are estimating feature weights using the EM algorithm, Equation 23 and 24 are utilized
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alternatively to approximate the parameters py and W, respectively and as follows:

max<z§V:1 Zjﬂil v(Zij) — 2D, 0>
Pk = (23)
> max<zjvzl v(Zij) — 2D, 0)

wap(X;q|0
max<ZZ 1ZM WV(ZM —2M, O) 24)
Wy = T
N M
T= max(Zdep Xial34) (Zij) — 2M, 0)+max<zz (1= walp idwd)’v(&y)—LO)
i=1 j=1 CZ’Jd i=1 j=1 Cl,jd
(25

The algorithm of model selection and model parameter estimation

Algorithm 1 describes how to perform model selection and feature selection using the MML

criterion and model parameter estimation using the EM algorithm.

2.4 Experimental Results

In this section, we will validate the performance of the MML model selection criterion and the
proposed FSBAGGMM using two synthetic and real-life smart meter datasets within the application
of household energy consumption segmentation. The first real-life dataset was recorded by the
Commission for Energy Regulation (CER) and made accessible for researchers by the Irish Social
Science Data Archive (ISSDA) [89]. The dataset consists of smart meter records gathered from
more than 6000 Irish energy consumers from July 14, 2009, to December 31, 2010. The energy
consumption is recorded in kWh with an interval of half an hour. This dataset has two types of
energy consumers: residential and small to medium enterprises. As stated earlier, we are interested
in analyzing the energy consumption of residential energy consumers only. Therefore, 3639 Irish
residential energy consumers remain for analysis after data cleaning. Each residential consumer is
assigned six different tariffs (E, A, D, C, B, and W). The second real-life smart meter dataset consists

of smart meter records collected from 5567 residential homes in London. The data was collected
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Algorithm 1 Unsupervised FSBAGGMM

1: While M < M, do
2: Initialize O,

A K-Means clustering results are used to initialize the  parameters
(0o o s M WLy o s O Oy s o+ s Olngs Oty v oo s Orpgy Ay oo oy ANM)-
B For each cluster &, each element of the parameter vector A is set to the value 2.

C Initialize the background Gaussian distribution parameter set E using the following Equa-

tions for all the dimensions, where d € {1,..., D}:
L X
na = 2 Xia (26)
i=1
| X
53 = N ;(Xid — 1)’ 27

3: Implement the E-step.
(1) For each cluster k, compute the bounded support region 7, = (71,...,7p).
(2) Evaluate equation 12.
¢ if wg = 0 Then p(X;4|0kqs) = 0
* if wg = 1 Then p(X;4|84) =0

4: Implement the M-Step using Equations 15 through 20, 23 and 24.
50 ifp(X]|0)H — p(X|O)* < e then

* Calculate the message length using Equation 22.
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by the UK Power Networks that is led by the Low Carbon London project between November
2011 and February 2014. The energy consumption is recorded in kWh with an interval of half an
hour UKPN2013. After data cleaning, observations of 3891 household energy consumers within
the year 2013 are used to analyze this experiment. The residential energy consumers in this dataset
are subjected to two types of tariffs; the first type is the Dynamic Time of Use (ToU), where the
energy consumption prices vary as follows: High (67.20 pence/kWh), Low (3.99 pence/kWh) or
normal (11.76 pence/kWh), the second type is the Standard (std), where the consumers paid a flat
rate of 14.228 pence/kWh. Additionally, the energy consumers in this dataset belong to five different
geo-demographic groups.

The application used in this chapter aims to segment energy consumers given their load curve.
We use characteristic load profiles to find the optimal number of energy consumption groups with
similar consumption patterns and determine the cluster membership of every load curve given in
the training dataset. Utility companies can use accurate energy consumer-type identification to
make correct decisions regarding the investments in load-shifting campaigns to prevent over or
under-dimensioning linked to peak energy demand. Several performance evaluation metrics were
introduced in [131]. They are defined as follows:

DI [143]: Dunn’s index is a model performance evaluation metric that is calculated using the min-
imum ratio between the closest distance of two observations of different clusters and the largest
distance between two observations in the same cluster. This index is maximized for best clustering,

and it is defined as follows:

_ mingep {mingenr,pza{d(A, B)}}

DI 28
maxaca {T1(A)} (28)

$(A,B) =ming , v p{d(Xi.Y))} (29)
II(A) = maxfi,fjeA{d(Xiyij)} (30)

where d denotes the distance or the similarity function, ¢(A, B) denotes the minimum distances

between two observations that each belong to either cluster A or B, and M denotes the set of clusters.
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EoE [112]: The Entropy of Eigenvalue is an entropy-based clustering performance measure; it is
obtained from the eigenvalue analysis of the correlation matrix calculated using raw smart meter
data. The index is calculated using the correlation between representative time series of different
clusters and the correlation between different time series within each cluster. The EoE index is

calculated using the following equation:

M
kN wk

The SM similarity is a normalized average information measure; the larger it is, the greater the simi-
larity. The term S M}, represents the normalized entropy of eigenvalues obtained from the correlation
matrix between different clusters, and .S M, represents the normalized entropy of eigenvalues ob-
tained from the correlation matrix between time series in each cluster k. In an ideal clustering,
EoE is a small value consisting of high similarity between time series within each cluster and low
similarity between representative time series of different clusters.

S [144]: The Silhouette score is a model evaluation measure that is concerned with calculating a
score for each observation in the training dataset. The measure calculates the overall evaluation by
computing the average score for all the dataset observations. The metric is maximized for better
clustering and is defined in the following equation:

b(w;) — a(w;)
maz{a(x;),b(z;)}

s(z;) = (32)

where a(z;) represents the average dissimilarity of the data point x; to all the other data points
within the same cluster. b(z;) represents the minimum average dissimilarity of data point z; to data
points existing in a cluster different from the data point’s cluster.

CH [145]: The Calinski-Harabasz is a model performance evaluation index; the measure calcu-

lates the ratio between the inter-cluster variance and the intra-cluster variance. This measure is
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maximized for better clustering and is defined as follows:

:N—K'ZﬁﬂMﬂ%@)

CH
K Ny, =
K—-1 Zk:1 ZZZIH d(Xi, cx)

(33)

where IV}, is the number of observations predicted to belong to cluster k, c; denotes the centroid of
class k, ¢ denotes the global centroid of all the clusters, and d denotes the distance or the similarity
function.

DB [146]: The Davies—Bouldin index is a model performance evaluation measure; it calculates the
ratio of intra-cluster distances to inter-cluster distances for each possible pair of clusters. The max-
imum ratio calculated for each pair of clusters is considered in a summation. The summation result
is divided by the total number of clusters to obtain the metric’s value. This measure is minimized

for better clustering, and it is defined as follows:

1 O(A)+ O(B)
DB = — L) T AD) 34
’ %maxBeM,B;sA{ d(ca.cn) } (34)
1 o
O(A) = o(4) Z d(Xi, ca) (35)

XiEA
where p(A) denotes the cardinality of cluster A, k denotes the number of components enforced by
the mixture model, M denotes the set of clusters, ¢4 denotes the centroid of class A, and d denotes

the distance or the similarity function. M has k elements

GOF [147]: The Goodness of Fit statistic value measures the model’s fitting accuracy, and it is

calculated as follows:

N — —
(T(X;) — Q(X,))?
GOF — . (36)
; Q(X;)

where T (X;) and Q(X;) represent the empirical and the expected frequencies of the observation
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Xi respectively. The indices ACC, TPR, PPV, TNR, NPV, FPR, FNR, and FDR, represent average
accuracy, average true positive rate, positive predictive value, true negative rate, negative predictive

value, false-positive rate, false-negative rate, and false discovery rate, respectively. They are defined

as follows:
1 & TR,
TPR = - ; TP LN, (37
TNR = % kZZ Tl\}:i’“mf (38)
PPV = % kZZ TP,;T-I;kFPk (39)
NPV = % é TN: Jl\:kFNk (40)
FPR = % kZ]: FPkF—IliliFNk “h
FNR = % ]: TP,CFJI:I ’;Nk “42)
Mf; @
ACC = % kzji TP;, + g: Igll\j: T TN, “4)

where TP, FPy, TNy, and FN; denote the number of true positives, false positives, true negatives
and false negatives respectively for the cluster k. In order to compute the metrics explained in Equa-
tions 37 to 44, cluster k labels are considered a positive class, and all the remaining cluster labels
are considered a negative class. MCC represents the Mathiews Correlation Coefficient evaluation
metric [148].

AIC and BIC are probabilistic model selection methods [149] that attempt to select the model
with the best performance while taking into consideration its complexity (by adding a complexity-
related penalty). Unlike probabilistic model selection criteria, performance metrics select models

with disregard for their complexity. The distinct probabilistic model selection criteria used in this
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chapter originate from different fields of study. AIC is derived from the frequentist framework, while
BIC is derived from Bayesian probability and inference. Compared to BIC, AIC emphasizes the
model performance and penalizes complex models less, making it prone to select overfitted models.
In comparison to AIC, BIC attempts to penalize candidate models more for their complexity. The

AIC and BIC model selection criteria statistics for each candidate model are computed as follows:

BIC = 2log(L(0)) + rlog(N) (45)
AIC = 2 1og(L(©)) + 2+ 2 46
= 108 (©))+2=% N (46)

where L(©) is the likelihood function estimate given a set of parameters © , x represents the number
of free parameters, and [NV represents the number of observations. As N approaches infinity, the BIC
criterion is more likely to select the candidate model with the true number of intrinsic groups. The
candidate model with the lowest AIC and BIC are selected for both model selection criteria.

In the upcoming sections, The performance of the proposed model is compared to specific mix-
ture models such as the BAGGMM, the AGGMM, and the FSAGGMM. Model selection using the
proposed model is performed using the MML model selection criterion and compared against spe-
cific model selection methods such as BIC, AIC, and model selection methods using performance

measures such as the Dunn’s Index (DI), and the Entropy of Eigenvalue (EOE).

2.4.1 Synthetic Data

As a first stage, synthetic datasets are used to validate the proposed mixture model and its model
selection method. We propose using a 49-dimensional dataset, which imitates a real-life smart meter
records dataset by representing each energy consumer with a load curve. In order to generate the

synthetic datasets used in this chapter, the following steps must be followed:

(1) For each energy consumer in the real-life dataset, only the first 49 smart meter records are

considered.

(2) The Gaussian mixture model is used to cluster the data into a specific number of clusters. The

mean of each cluster is considered a consumption profile.
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(3) Each consumption profile inferred from the previous step is summed with instances generated
by a Gaussian white noise using five different sets of parameters to form the observations of

the synthetic dataset.

°
&

°
&

Amplitude

Amplitude

Time Interval

° * * Time Interval * © * ~==- Consumption Profile 1 Consumption Profile 4 —— Consumption Profile 7
---- Consumption Profile 1 =~ —— Consumption Profile 3 ---- Consumption Profile 5 —:— Consumption Profile 2 ---- Consumption Profile 5 —:— Consumption Profile 8
—:— Consumption Profile 2 Consumption Profile 4 —— Consumption Profile 3 Consumption Profile 6
(a) First synthetic dataset (b) Second synthetic dataset

Figure 2.2: Consumption profiles used to generate the synthetic datasets

In other words, the origin of each cluster of observations within the synthetic datasets used

in this chapter is an actual energy consumption profile concluded from a real dataset. The first

Profile 1 Profile 2 Profile 3 Profile 4 Profile 5
Gaussian White Noise Parameters

©=0.001; 0=0.2 378 370 379 371 382
©=0.01; 0=0.2 349 364 356 356 355
p=0.1; 0=0.2 352 360 361 359 348
©=0.05; 0=0.3 354 358 359 356 353
©=0.01; 6=0.3 365 353 357 350 355

Table 2.2: Count of observations generated for the first synthetic dataset

dataset consists of five clusters. The five real-life consumption profiles used to generate the first
dataset are demonstrated in Figure 2.2a. The count of the observations generated for each energy
consumption profile using the distinct Gaussian white noise parameters is shown in Table 2.2. As an
illustrative example of the data generation process, 378 observations of the first dataset are generated
by summing the white noise vector generated using the parameter set (;x = 0.001; 0 = 0.2) of the
multivariate Gaussian white noise with the vector of ”Consumption Profile 1.

Our model selection approach successfully infers the correct number of components within this

dataset, as demonstrated in Table 2.3. MML outperforms specific model selection methods using
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FSBAGGMM
Model Selection Method

BIC

AIC

DI

MML

EoE

Ground Truth

[C RV RV NN

Table 2.3: Identified optimal number of clusters using

the first synthetic dataset

BAGGMM + FW
Model Selection Method

BIC

AIC

DI

MML

EoE

Ground Truth

% 00 ® O O\ O

Table 2.4: Identified optimal number of clusters using

the second synthetic dataset

the clustering results obtained from each instance of our proposed model.

300000

700000

S

—— FSBAGGMM
FSAGGMM

(a) First synthetic dataset

T

Herations
BAGGMM

—— AGGMM —— FSBAGGMM

FSAGGMM

BAGGMM

Figure 2.3: Mixture model’s log-likelihood functions demonstration during
the clustering of the Synthetic Datasets

Figure 2.3a demonstrates the maximum log-likelihood achieved by clustering the data using the
proposed model in comparison with specific mixture models. The clustering results of our pro-
posed model are evaluated using several performance measures and compared against the clustering
performances of specific mixture models as shown in Tables 2.6, and 2.7. The proposed model

achieves the best fit of the training data by scoring the best performance according to all the perfor-

—— AGGMM

(b) Second synthetic dataset

mance metrics used in this experiment and by reaching the highest log-likelihood.

The second dataset consists of eight clusters. The eight real-life consumption profiles used to
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Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7 Profile 8
Gaussian White Noise Parameters

©=0.001; 0=0.2 445 448 450 444 449 447 442 455
p=0.01; 0=0.2 442 449 448 448 448 452 445 448
p=0.1; 0=0.2 442 452 455 449 447 443 447 445
©=0.05; 0=0.3 445 448 444 451 453 447 442 450
©=0.01; 0=0.3 460 459 458 468 457 455 466 457

Table 2.5: Count of observations generated for the second synthetic dataset

generate this dataset are demonstrated in Figure 2.2b. The count of the observations generated for
each energy consumption profile using the distinct Gaussian white noise parameters is shown in
Table 2.5. Our model selection approach successfully infers the correct number of components
within this dataset, as demonstrated in Table 2.4. MML chooses the proposed model’s instance
with a component count equal to the ground truth outperforming specific model selection methods
used in this comparison. The proposed model fits the data better than all the mixture models used
in the comparison by achieving the highest maximum log-likelihood as demonstrated in Figure
2.3b. According to all the performance metrics used in this experiment, the proposed model also

outperforms the mixture models selected for the comparison as shown in Tables 2.8, and 2.9.

FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index (%)

ACC 95.569 94.338 85.458 82.804
TPR/Recall 88.935 85.836 63.589 56.953
PPV/Precision 89.458 88.149 74.838 70.500
MCC 86.291 82.921 58.170 51.104
F1-Score 88.922 85.844 63.644 57.011
TNR 97.231 96.461 90.906 89.245
NPV 97.263 96.591 92.128 90.942
FPR 2.769 3.539 9.094 10.755
FNR 11.065 14.164 36.411 43.047
FDR 10.542 11.851 25.162 29.500

Table 2.6: Mixture models’ clustering performance evaluation using the first synthetic dataset

Optimal Performance Indicator FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index

GOF Minimum 3870.683 7261.083 16397.633 17765.500
CH Maximum 2081.868 2046.444 1594.215 1405.947
S Maximum 0.107 0.100 0.023 -0.016
DB Minimum 2.549 2.623 2.661 2.503
DI Maximum 0.224 0.219 0.209 0.209
Xie and Benie Index Minimum 1.871 1.881 2.446 2.698
Fowlkes Mallows Maximum 0.799 0.755 0.650 0.648
Log Loss Minimum 0.625 0.901 9.741 12.138
EOE Minimum 0.730 0.758 1.022 1.032
Jaccard Maximum 0.889 0.858 0.636 0.570
ROC AUC Maximum 0.931 0.912 0.773 0.731
V Measure Maximum 0.755 0.740 0.660 0.639
Rand Maximum 0.919 0.899 0.820 0.795
Normalized Mutual Information Maximum 0.755 0.740 0.660 0.639
Mutual Information Maximum 1.213 1.181 0.969 0.887
Homogeneity Maximum 0.754 0.734 0.602 0.551
Adjusted Rand Maximum 0.749 0.691 0.524 0.497
adjusted mutual info Maximum 0.755 0.740 0.660 0.639

Table 2.7: Mixture models’ clustering performance evaluation using the first synthetic dataset
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FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index (%)

ACC 91.856 88.746 88.481 87.769
TPR/Recall 67.459 54.969 53.862 51.021
PPV/Precision 66.482 55.753 56.402 54.291
MCC 63.813 50.402 49.908 46.726
F1-Score 67.422 54.983 53.922 51.078
TNR 95.347 93.570 93.418 93.012
NPV 95.456 93.921 93.926 93.528
FPR 4.653 6.430 6.582 6.988
FNR 32.541 45.031 46.138 48.979
FDR 33.518 44.247 43.598 45.709

Table 2.8: Mixture models’ clustering performance evaluation using the second synthetic dataset

Optimal Performance Indicator FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index

GOF Minimum 22539.820 36474.842 50310.225 48011.423
CH Maximum 2100.955 1766.797 1713.450 1674.616
S Maximum 0.054 0.001 -0.052 -0.062
DB Minimum 3.563 4.975 6.767 6.738
DI Maximum 0.210 0.213 0.208 0.194
Xie and Benie Minimum 2.883 3.619 3.683 3.784
Fowlkes Mallows Maximum 0.574 0.486 0.518 0.503
Log Loss Minimum 3.293 10.287 12.618 13.228
EOE Minimum 0.620 0.637 0.685 0.675
Jaccard Maximum 0.674 0.550 0.539 0.511
ROC AUC Maximum 0.814 0.743 0.737 0.720
V Measure Maximum 0.644 0.565 0.593 0.586
Rand Maximum 0.881 0.836 0.831 0.821
Normalized Mutual Information Maximum 0.644 0.565 0.593 0.586
Mutual Info Maximum 1.303 1.088 1.114 1.093
Homogeneity Maximum 0.627 0.523 0.536 0.526
Adjusted Rand Maximum 0.502 0.384 0.407 0.385
Adjusted Mutual Info Maximum 0.644 0.565 0.593 0.585

Table 2.9: Mixture models’ clustering performance evaluation using the second synthetic dataset

2.4.2 Real-life Smart Meter Data
The commission for energy regulation smart meter data

In this section, we investigate the performance of our proposed model using the first real-life
smart meter dataset. As mentioned earlier, the dataset we considered has smart meter records from
3639 Irish energy consumers. Each consumer has 25728 electricity usage readings that are recorded
in kilowatt-hours. In order to summarize and preserve the information within the numerous features
representing each energy consumer, PCA is used for feature extraction in this experiment. Several
datasets with a different number of features were considered within the range between 50 and 250.
Due to the low reconstruction error, the dataset with 250 features is favoured for this experiment.

We used the dataset as an input to three different instances of our proposed model. Each in-
stance had a different number of mixture components within the range M = [2,4]. The model
selection algorithm concluded that the minimum value calculated using its objective function is ob-

tained while using the model instance with three components, as shown in Figure 2.4a. Table 2.10
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demonstrates the optimal number of clusters concluded by each model selection criterion used in
comparison with MML. In addition to the fact that our derived model selection criterion has been
inferring the correct number of clusters in solid experiments using synthetic data, AIC and BIC also

agree that the true number of clusters is three in this experiment.
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Figure 2.4: The mixture Model’s performance information during the clustering
of the first real-life smart meter data

Figure 2.4b demonstrates the log-likelihood trail for each mixture model used in the compar-
ison within this experiment. As observed, the proposed model has converged to the highest log-
likelihood indicating a better fit to the training dataset. The clustering evaluation of the proposed
model for the concluded optimal number of clusters is demonstrated in Table 2.11 in comparison
with specific mixture models. As demonstrated, our proposed model achieves the best clustering

performance according to all the evaluation measures used in the comparison.

FSBAGGMM
Model Selection Method

BIC
AIC
DI
MML
EoE

WD WL

Table 2.10: Identified optimal number of clusters for the real-life smart meter dataset

As mentioned earlier, we determined the true number of clusters using MML and achieved the
best clustering result using our proposed mixture model. Since this is an implementation of a real-

life application, it is necessary to analyze the resulting clusters to understand further the energy
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Metric’s Optimal Value FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index

S Maximum 0.250 0.216 0.228 0.176
CH Maximum 7.377 5.824 6.671 5.594
DB Minimum 16.951 23.832 20.626 24.577
DI Maximum 0.253 0.238 0.249 0.224
Xie and Benie Minimum 60.821 72.969 62.157 73.319
EOE Minimum 1.460 1.764 1.613 1.822

Table 2.11: Mixture models’ clustering performance using the real-life smart meter dataset

consumption patterns of each consumption trend discovered. Figure 2.5a demonstrates the aver-
age power demand of all the energy consumers without clustering. Comparatively, we demonstrate
the average power demand of each energy consumer cluster in Figure 2.5b. For all the time in-
tervals available in the dataset, as observed, the responsibility of each energy consumption pattern
to the overall average power demand can be determined. The proposed model can determine the
consumer’s contribution to each consumption profile and which the consumer is mostly following.
Table 2.12 demonstrates the ratio of the count of energy consumers in each cluster to the total count
of energy consumers in the dataset; the table also demonstrates the consumption responsibility of
each consumer cluster to the total average energy consumption in the year 2010. Additionally, the
real-life dataset we use in this experiment provides the tariff assigned for each energy consumer. We
have discovered that the tariff types are distributed almost identically across the resulting clusters, as
shown in Figure 2.6, which indicates that the tariff type does not influence the consumer’s electrical

usage pattern.

Average Consumption (kWh) Annual Consumption Responsibility clusters’ proportion
Consumption Profile Cluster
1 6536.770 18.650% 64.600%
2 16117.190 45.980% 1.700%
3 12394.570 35.360% 33.700%

Table 2.12: Consumption profiles statistics for the year 2010

The UK power networks smart meter data

In this section, we validate the performance of our proposed model using the second real-life
smart meter data. As mentioned earlier, the dataset we considered in this experiment has smart
meter records from 3891 household energy consumers that are located in London. Each consumer
has 17520 electricity usage readings that are recorded in kilowatt-hours. In order to summarize the

information included in the load curve of each energy consumer, we have extracted nine features.
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Figure 2.6: Number of energy consumers in each cluster
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Following [73], seven features are extracted after the definition of four key time periods, and they
are denoted by ¢t € {1,2,3,4}. The Overnight time period (¢t = 1) is defined between 10:30 PM
and 6:30 AM, the Breakfast time period (f = 2) is defined between 6:30 AM and 9:00 AM, the
Daytime period (t = 3) is defined between 9:00 AM and 3:30 PM, the Evening time period (t = 4)
is defined between 3:30 PM and 10:30 PM. Based on the four previously explained prominent time
periods, seven features are extracted from smart meter records to summarize the representation of

energy consumers, and they are calculated as follows:

* RAP; denotes the Relative Average Power for time period (t) over the entire year; it is defined

as follows:

APy

RAP: = SAP

,t=1,2,3,4 47

* the Mean STD denotes the Mean Relative Standard Deviation of the average power used over

the entire year; it is defined as follows:

4

1 ¢
M TD = - —_— 48
ean S 1 AP, (48)
t=1
* The seasonal score is defined as follows:
4

APW — APS

Seasonal Score = Z [ART — AFP| (49)

pt AP,

* The Weekend vs Weekday Difference Score (WD-WE diff. Score) is calculated as follows:

4
WD-WE diff. Score = Z
=1

AP} — AP}
AP,

(50)

where APy, and o; represent the average power used by the specific consumer and its corresponding
standard deviation in the time period (¢) respectively over all the available smart meter records data.
DAP represents the average daily power used by the specific consumer throughout the available
smart meter data. APV and AP represent the average power used by the specific consumer in

the time period (t) throughout winter and summer, respectively. AP)°, and AP}'E represent the
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average power used by the specific consumer in the time period (¢) throughout the weekdays and
weekends respectively for the available data. Finally, the eighth and the ninth features represent the
consumer’s tariff and geo-demographic group, respectively.

We have determined the optimal number of clusters for our proposed model using the MML
model selection criterion similar to our previous experiments. Among five candidate FSBAGGMM
models of mixture components within the range [2,6], the model instance with four components

achieved the minimum message length.

FSBAGGMM
Model Selection Method

BIC
AIC
DI
MML
EoE

[SIF NN

Table 2.13: Identified optimal number of clusters for the second real-life smart meter dataset

Most of the model selection methods used in the comparison demonstrated in Table 2.13 agree
on the optimal number of mixture components. Therefore, the data were clustered into four clusters
using our proposed model, and the clustering performance evaluation is compared against specific
mixture models. Table 2.14 demonstrates how our proposed mixture model has been able to outper-

form the different mixture models used in the comparison using six different performance metrics.

Metric’s Optimal Value FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index

S Maximum 0.319 0.288 0.265 0.189
CH Maximum 1984.843 1078.837 545.442 243.243
DB Minimum 1.050 1.075 2.583 3.108
DI Maximum 0.027 0.023 0.019 0.012
Xie and Benie Minimum 0.550 0.719 0.939 1.283
EOE Minimum 0.315 0.434 0.442 0.453

Table 2.14: Mixture models’ clustering performance using the second real-life smart meter dataset

As shown in Figure 2.7b, the categorical feature representing the tariff for each energy consumer
has an almost identical distribution across the clusters obtained using our proposed mixture model,
having little to no influence on the energy consumption behaviour. Nevertheless, and as demon-
strated by the CH score in Table 2.14, our proposed model has achieved clusters with a relatively
small intra-cluster (within clusters) variance and a relatively large inter-cluster (between clusters)

variance. Additionally, the minimum number of members within the clusters achieved using the
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FSBAGGMM is 225 energy consumers, as demonstrated in Figure 2.7a. Additionally, Table 2.15
demonstrates the average values of several features for the inferred household energy consumer

clusters.
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(a) Percentage of energy consumers in each cluster. (b) The distribution of tariffs across the result-
ing clusters

Figure 2.7: The UK power networks smart meter data clusters information

Since the smart meter data have been modelled successfully, the proposed model is capable of
identifying energy consumer clusters that are suitable for demand reduction initiatives within several
utility programs [74]. As an example, Table 2.15 demonstrates that the first cluster has a relatively
high evening RAP with a relatively low mean STD, seasonal score, and WD-WE difference score.
The power demand of energy consumers exhibiting energy consumption patterns similar to the first
cluster could be lowered by implementing storage devices. The third and fourth cluster’s energy
consumption patterns exhibit relatively low variability in demand, as represented by the mean STD
and WD-WE difference score, while exhibiting a relatively high seasonal difference in power de-
mand, as represented by the seasonal score. Such households could be offered non-electric or more

efficient heating systems to reduce the winter demand.

Overnight RAP Breakfast RAP Daytime RAP Evening RAP Mean STD Seasonal score WD-WE diff. Score
Consumption Profile

1 0.686 0.937 1.041 1.344 0.810 0.883 0.458
2 0.664 1.050 0.956 1.411 1.127 1.025 1.557
3 0.672 0.959 1.011 1.381 0.974 2.062 0.553
4 0.860 0.981 0.916 1.249 1.169 4.445 0.591

Table 2.15: The mean values of the first seven smart meter data features
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2.5 Conclusion

In this chapter, an expectation-maximization algorithm is presented within the MML criterion to
optimize the parameters of the bounded asymmetric generalized Gaussian mixture model and to find
the optimal number of consumption profiles and the optimal subset of features simultaneously. Our
approach assumes that the data arise from a mixture of bounded asymmetric generalized Gaussian
distributions. The final results demonstrated that the load curve of an individual energy consumer
showed a probabilistic association with each class indicating which pattern of electricity use was
more or less likely to be used within a household. Therefore, it is possible to categorize households
and how they consume energy using our proposed model.

Prior works in household energy consumption segmentation unrealistically approach model se-
lection and feature selection as independent problems. Our approach successfully achieves the
discovery of the true number of energy consumption profiles and the determination of the optimal
set of data attributes to be used for modelling in our proposed mixture model in a single optimization
process and avoids running the EM algorithm many times.

Clustering synthetically generated smart meter records with ground-truth cluster size, our pro-
posed algorithm has outperformed most of the existing model selection approaches. In the same
experiment, the proposed model correctly models the first and the second synthetic smart meter
data with high accuracy of 95.569% and 91.856%, respectively. Similarly, our algorithm has also
determined the optimal number of clusters in both datasets in experiments involving real-life data,
and the proposed model outperforms all the mixture models used in the comparison, as demon-
strated by all the utilized performance metrics. Thus, the superiority of the proposed algorithm in
modelling smart meter data with different feature extraction methods over all the state-of-the-art
clustering algorithms used in the comparison is proven.

Hence, our approach to analyzing real-life smart meter data is effective in determining house-
holds that are suitable for demand reduction initiatives such as DR and EE. Thus, providing the

opportunity for utility companies to adopt environmentally friendly and cost-effective technologies.
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Chapter 3

Explainable Finite Mixture of Mixtures
of Bounded Asymmetric Generalized
Gaussian and Uniform Distributions
Learning for Energy Demand

Management

In the previous chapter, we explored the potential of incorporating the bounded asymmetric
generalized Gaussian distribution in mixture models and implemented a feature selection framework
in the context of the novel mixture model. The clustering efficacy of the proposed framework has
been proven successful in modelling smart meter data. Additionally, the proposed model has been
able to outperform several state-of-the-art clustering models in the same context. In this chapter,
and following our introduction of the principles of the mixture of mixtures, the semi-supervised
learning, and the explainability in Section 1.1, Section 1.2, and Section 1.4 respectively, the potential
of incorporating a Uniform distribution within the inner mixture of the mixture models is explored
to build a mixture model that is reliable, explainable and robust to outliers.

We introduce a mixture of mixtures of bounded asymmetric generalized Gaussian and uniform
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distributions. Based on this framework, we propose model-based classification and model-based
clustering algorithms. We develop an objective function for the minimum message length (MML)
model selection criterion to discover the optimal number of clusters for the unsupervised approach
of our proposed model. Given the crucial attention received by Explainable Al (XAI) in recent
years, we introduce a method to interpret the predictions obtained from the proposed model in both
learning settings by defining their boundaries in terms of the crucial features. Integrating explain-
ability within our proposed algorithm increases the credibility of the algorithm’s predictions since
it would be explainable to the user’s perspective through simple If-Then statements using a small
binary decision tree. In this chapter, the proposed algorithm proves its reliability and superiority to
several state-of-the-art machine learning algorithms within the following real-world applications:
fault detection and diagnosis (FDD) in chillers, occupancy estimation and categorization of residen-

tial energy consumers.

3.1 Introduction

Statistical modelling is needed in several areas, such as pattern recognition and machine learn-
ing. In statistical learning, discovering valuable data and patterns in data relies on selecting an
appropriate model to fit the data. Once the complex patterns are modelled, the trained models can
be used to make valuable decisions related to the corresponding applications. Finite mixtures offer
statistical models that can be trained in a supervised, unsupervised and semi-supervised manner.
Finite mixture models have been considered a reliable statistical approach that can fulfil the re-
quirements of diverse real-life applications. Mixture modelling enables using prior knowledge to
model the uncertainty about the data. The term “uncertainty” in the context of mixture models is
represented by the responsibility of each mixture component to the data instances.

The Gaussian distribution as an isotropic probability density function can be used effectively
within a clustering algorithm to compactly model and represent the intrinsic grouping of the data.
The representation of the Gaussian mixture model comprises a set of parameters that would not
relatively yield a computationally expensive model as the dimensions of the data grow. The set of

parameters of each mixture component describes each discovered pattern’s properties and includes a
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mean parameter vector and a covariance matrix. Given this motivation, the EM algorithm has been
used to efficiently estimate the parameters of a Gaussian mixture model that best fits the data in
several applications [19,20]. Although this compact representation may yield clustering algorithms
that require a relatively low computational cost, in some applications, it could introduce several

limitations to modelling the data, such as:

(1) It has a rigid bell shape and a tail that is too short for most real-world problems [21].

(2) The Gaussian distribution and several other choices of distributions for a given mixture model

are unbounded with a support range that extends from —oo to co [150].

(3) The distribution is symmetric around its mean.

The data clusters of real-life applications are usually bounded and most likely have a density that is
non-Gaussian [24-26]. The term *non-Gaussian’ in the context of describing a distribution signifies
a density function that is asymmetric, non-bell shaped or both. The fixed kurtosis of the Gaussian
distribution makes the mixture model vulnerable to the outliers of individual data clusters. Since the
Gaussian distribution does not have a parameter that controls the distribution’s tails to be correctly
estimated while fitting the distribution to each data cluster, the distribution is unsuitable for assign-
ing arelatively low probability of occurrence to the individual class outliers [28,29]. Such limitation
brings about applications incorporating the Gaussian mixture model to seek outlier detection and
removal techniques within their workflow, which in turn causes the incurrence of an additional
computational expense [30—33]. On the other hand, there have been several attempts to use more
flexible distributions than the Gaussian distribution to fit data from diverse applications in addition
to its ability to generalize to the Gaussian distribution. Several research papers have proposed using

the generalized Gaussian distribution (GGD) in diverse real-life applications [16,40, 147,151-153].

A2
The distribution is formalized similarly to Equation 9. where A(\) = Fgﬁg} , and X denotes

the random variable. The parameters x and o denote the mean and the standard deviation, respec-
tively. The symbol A denotes the parameter that distinguishes this distribution from the Gaussian
distribution. The A parameter obeys the condition A > 1 and controls the kurtosis of the distribu-
tion at which it determines if the probability density function is peaked or flat. As the parameter

A increases in value, the distribution becomes flattered until it degrades to its special case of the
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Uniform distribution as A — oo. As the A decreases in value, the probability density function be-
comes more peaked. As A — 0, the probability density function becomes a delta function with an
infinite value at p. Practically, the A parameter controls the tails of the distribution, and if estimated
correctly for the training data, the distribution should model the data accurately with robustness to
outliers. The distribution generalizes to the Gaussian distribution when A = 2 and to the Laplacian
distribution when A = 1. Thus, the distribution is flexible and able to fit diverse real-life application
data better in comparison to the use of each of its special cases individually in a mixture model. This
distribution is especially effective if the data features are assumed to be distributed independently.

Furthermore, to fit asymmetrically distributed data, researchers have proposed the usage of the
asymmetric generalized Gaussian distribution (AGGD) in several applications [123, 154, 155]. The
AGGD is formalized similarly to Equation 10. In comparison to the GGD, this distribution has two
parameters to describe the variance of the data instead of one parameter. The left and right standard
deviations are denoted as o; and o, respectively; they control the asymmetry of the probability
density function. The distribution is skewed left if 0; < o, skewed right if o; > o, and symmetric
if oy = o,. Thus, in addition to the flexibility provided by the GGD, the AGGD is capable of
modelling data with an asymmetrical distribution [156].

For every model-based clustering algorithm, and since the training is done in an unsupervised
manner, the number of clusters is unknown. Thus, accurately modelling the data requires the dis-
covery of the true number of classes within it. From a computational point of view, methods per-
forming this task are categorized into deterministic and stochastic methods. Markov chain Monte
Carlo (MCMC) is an example of a stochastic model selection method. It is an accurate and effective
method to fit mixture models by sampling all the possible values of the mixture parameters from the
full a posteriori distribution [157]. Consequently, this method is computationally expensive. On the
other hand, deterministic methods attempt to discover the true number of clusters by running a can-
didate model for a cluster count within the range (2, M), where M represents the maximum number
of clusters considered for the learning task. Akaike’s information criterion (AIC) [158], Bayesian
information criterion (BIC), and minimum description length (MDL) are examples of deterministic
methods. The minimum message length (MML) criterion [139] is well known to outperform the

BIC and the AIC model selection criteria [134—136]. Thus, we use it to discover the true number of
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clusters within our unsupervised learning approach of the proposed mixture model. Within the pre-
viously mentioned model selection criterion, we use the expectation-maximization (EM) to estimate

the proposed model’s parameters that maximize the data likelihood.

3.1.1 Explainable Artificial Intelligence

Providing explicit representations of the detected patterns by machine learning algorithms has
been recently a central research topic [67—-69]. There have been several research advancements in
the interpretability of data-driven models. However, most of the prior works within this field have

been done within post-modelling explainability. This approach has the following shortcomings [70]:

(1) It had provided no insights into training data.

(2) It was heavily dependent on the given model.

Within the publications of the last decade, the use of the term “explainability” grew exponen-
tially starting three years ago [71]. Our proposed model provides insight in terms of recognizing
the different patterns within the data and the statistical properties of each pattern. Moreover, the
integrated explainability within our proposed model further provides insights into the model and its
prediction by defining the boundaries between the discovered patterns in terms of the important data
attributes. Similar to the approach in [70], we develop a pre-modelling explainability in the context
of model-based classification and clustering. We use this approach to justify and demonstrate in
human language why specific observations are predicted within the same or different discovered
patterns; This is done by training a small binary threshold tree. The adopted decision tree (DT)
has a number of leaves that is equal to the number of clusters assumed within our proposed mix-
ture model. As explained before, mixture models attempt to learn the underlying distribution, and
that helps the approach to generalize well to unseen data, unlike supervised models such as DT.
As well known, the predictions of the DT algorithm are easily interpretable using simple If-Then
rules. Thus, integrating these two models helps us propose an explainable prediction model that
generalizes well to unseen data. We further utilize the integration of explainability with our pro-

posed model by training the mixture model using a low-level set of attributes and interpreting its
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predictions using a different and a high-level set of attributes that an expert of the system better un-
derstands. Prior works in explainable methods usually seek a trade-off between prediction accuracy
and interpretability by varying the values of some DT hyperparameters. However, expanding the DT
in some cases does not change the If-Then rules for some clusters since it yields no improvements
in the cost gain [72]. Additionally, adjusting the DT hyperparameters may increase its accuracy but,
at the same time, makes it less interpretable. Thus, to present the explainability of our model, we
limit the scope of the experiments done within this chapter by setting the number of integrated DT
leaves equal to the true number of clusters. In addition to the validation of our proposed mixture
model, we demonstrate the integrated explainability through tree figures of the If-Then rules of the
important features that lead to every categorization. The applications of chiller fault detection and
diagnosis, energy consumers’ categorization and occupancy estimation are used within this chap-
ter to demonstrate the integrated explainability within our proposed framework. Fault diagnosis in
chillers resembles the interpretation of fault categorization in terms of the attributes used. Five faults
were successfully identified via a rule-based statistical model for vapour compression air condition-
ers [159]. In the previously mentioned research paper, the authors have provided interpretability
of what characterizes the faults in terms of the data attributes. The fault categories were explained
through a simultaneous increasing or decreasing change to seven different attributes instead of spec-
ifying thresholds. Thus, in addition to our aim to classify faults in chiller operational data, we aim
to provide interpretability in the form of If-Then statements using the values of the data features.

Our approach to analyzing households’ energy consumption data determines households suitable
for demand reduction initiatives such as demand response (DR) and energy efficiency (EE). Thus,
providing the opportunity for utility companies to adopt environmentally friendly and cost-effective
technologies. DR is an incentive program that enables the possibility for utility companies to reduce
expenses on unnecessary investments and lower emissions of greenhouse gases (GHG). DR induces
households to reduce their energy consumption levels at times of high wholesale market prices or
when system reliability is jeopardized. EE programs aim to reduce the power demand of households
while maintaining their consumption habits. As an example, the power demand of energy consumers
exhibiting a relatively high evening demand with low variability can lower their peak load by im-

plementing storage devices. As households exhibiting relatively low variability in demand with a
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relatively high seasonal difference in power demand, they could be offered non-electric or more ef-
ficient heating systems to reduce the winter demand. Prior works to target energy consumers using
clustering algorithms [73, 74] use additional statistical analysis to select suitable candidate energy
consumers for demand management programs [75-77]. Thus, we take advantage of the integration
of the explainability within our proposed method and define the boundaries between energy con-
sumers using simple If-Then statements with specific values of high-level features so it would be
easy for an expert to find a suitable candidate for any power demand reduction program. Besides
the successful efforts in correctly detecting the patterns and their corresponding number of occu-
pants, researchers have exhibited the estimated occupancy against the true occupancy with respect
to a single dimension or a max of two dimensions [160, 161]. However, in this chapter, we aim
to present the estimated occupancy of our proposed model with respect to the values of important

features with a simple graph of If-Then rules.

In this chapter, we propose a mixture of mixtures of bounded asymmetric generalized Gaussian
and Uniform distributions (BAGGU) that can generalize to an extensive range of mixture models.
The inner mixture of the proposed framework consists of a flexible distribution that can generalize to
several distributions and a Uniform distribution that can help increase the model’s robustness to out-
liers. We propose semi-supervised and unsupervised methods of learning the proposed model. Us-
ing the unsupervised approach, we prove that our proposed model is capable of performing pattern
recognition by inferring the true number of energy consumption profiles and identifying household
groups that follow each discovered pattern using the Minimum Message Length (MML) model
selection criterion. Using several performance metrics, our mixture model outperforms several
state-of-the-art machine learning models such as the Explainable mixture of mixtures of Gaus-
sian and Uniform distribution (ExGU), and the Explainable EXKMC in modelling households’
energy consumption data. For the semi-supervised learning approach, we validate our proposed
model against two interesting real-life applications: Chiller fault detection and diagnosis and Occu-

pancy estimation.
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Chiller fault detection is an Al-driven application for identifying and diagnosing issues in large-
scale cooling systems, optimizing performance and reducing energy consumption. By utilizing ma-
chine learning and data analytics, AI models can analyze historical and real-time data from chiller
components to detect anomalies and predict potential faults. Occupancy estimation is an Al-based
application that predicts the number of people present in a given space, such as buildings or rooms,
by analyzing data from various sensors and sources [162]. Leveraging machine learning algorithms,
this approach aids in optimizing energy usage, enhancing security, and improving building manage-
ment operations.

Using several performance metrics, our mixture model outperforms the Explainable mixture
of mixtures of Gaussian and Uniform distribution (ExGU), the Explainable Adaptive Boost-
ing (ExAdaboost) algorithm with DT as its base estimator, the Explainable k-Nearest Neigh-
bour (ExKNN), and the Decision Tree within both real-life applications. Within the subsequent
sections of this chapter, the information is presented with the following arrangement: Section 3.2
describes the proposed mixture model, its semi-supervised learning approach and its unsupervised
learning approach. Section 3.3 introduces the real-life applications used to validate the proposed
model, their datasets and their experimental results. Section 3.4 presents our conclusions and future

works.

3.2 The proposed mixture model

3.2.1 The finite mixture model

Mixture models offer a powerful clustering solution for diverse applications. The basic concept
of mixture models is that they assume the data arise from a convex combination of distributions,
where each cluster g is represented by a single distribution f ()? i|€q) with parameters &, within the
mixture. A parametric M -component mixture model is defined similarly to Equation 1. where
X = [Xg,...,X4)T denotes a multivariate random vector. The term 4 represents the mixing
proportion of the component g and it fulfils the following conditions: m, > 0, Z;‘il Ty = L.
© = (m,..., a1, &1, ..., Ear) denotes the complete parameter set that defines the mixture model.

In this chapter, we are proposing a mixture of mixtures where each component of the mixture model
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is itself a mixture of two distributions. We considered the inner mixture to consist of a bounded
asymmetric generalized Gaussian ¢(X |¥4) and a Uniform distribution u(X |¢g). Consequently,

each component of the mixture is defined as follows:
F(Xilgg) = wyo(Xildg) + (1 = wy)u(Xil¢,) (51)

The bounded asymmetric generalized Gaussian distribution is defined following [22,102] in a sim-
ilar manner to Equation 8:

where W(X;4|0,4) denotes the unbounded asymmetric generalized Gaussian probability density
function.

The terms H(X;q4|g) and |, o, Y(X|04a)dX contribute to making the AGGD used in the pro-
posed inner mixture bounded. The bounded support region is denoted by 744 for each compo-
nent g and dimension d. The indicator function H(X,4|g) sets the density value of the AGGD
outside the bounded support region to zero, and it is defined similarly to Equation 7. The term
ngd U(X|0,q)dX denotes the normalization constant that restores the statistical properties of the
probability density function, the share of W(X;4|0,4) that falls within the support region 744. In
comparison to the Gaussian distribution, the additional parameters of the BAGGD allowed the pro-
posed mixture model to be flexible and able to fit data with different shapes, asymmetry and bounded
support. Additionally, the Uniform distribution within the inner mixture makes the proposed mix-

ture model more robust to outliers.

3.2.2 Semi-supervised learning of the mixture parameters

In this section, we will explain how we train the model in a semi-supervised manner. The data’s
likelihood considering N D-dimensional observations where s observations are labelled, or their

cluster memberships are assumed known is defined as follows:

p(X|©) = HH [mg f(Xilég)] ™ x H thfX €0) (52)

i=1g=1 j=s+1h=1

where Z; is of standard basis and it indicates which cluster & is mostly responsible of observation
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1. Thus, Z; is a set of all possible latent variables Z;1, ..., Z;5s for each ob