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Abstract

Mixture-Based Clustering and Hidden Markov Models for Energy Management and Human
Activity Recognition: Novel Approaches and Explainable Applications

Hussein Ghassan Ali Al-Bazzaz, Ph.D.

Concordia University, 2023

In recent times, the rapid growth of data in various fields of life has created an immense need for

powerful tools to extract useful information from data. This has motivated researchers to explore

and devise new ideas and methods in the field of machine learning. Mixture models have gained

substantial attention due to their ability to handle high-dimensional data efficiently and effectively.

However, when adopting mixture models in such spaces, four crucial issues must be addressed,

including the selection of probability density functions, estimation of mixture parameters, automatic

determination of the number of components, identification of features that best discriminate the

different components, and taking into account the temporal information. The primary objective of

this thesis is to propose a unified model that addresses these interrelated problems. Moreover, this

thesis proposes a novel approach that incorporates explainability.

This thesis presents innovative mixture-based modelling approaches tailored for diverse applica-

tions, such as household energy consumption characterization, energy demand management, fault

detection and diagnosis and human activity recognition. The primary contributions of this thesis

encompass the following aspects:

Initially, we propose an unsupervised feature selection approach embedded within a finite bounded

asymmetric generalized Gaussian mixture model. This model is adept at handling synthetic and

real-life smart meter data, utilizing three distinct feature extraction methods. By employing the

expectation-maximization algorithm in conjunction with the minimum message length criterion,

we are able to concurrently estimate the model parameters, perform model selection, and execute
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feature selection. This unified optimization process facilitates the identification of household elec-

tricity consumption profiles along with the optimal subset of attributes defining each profile. Fur-

thermore, we investigate the impact of household characteristics on electricity usage patterns to

pinpoint households that are ideal candidates for demand reduction initiatives.

Subsequently, we introduce a semi-supervised learning approach for the mixture of mixtures of

bounded asymmetric generalized Gaussian and uniform distributions. The integration of the uni-

form distribution within the inner mixture bolsters the model’s resilience to outliers. In the unsuper-

vised learning approach, the minimum message length criterion is utilized to ascertain the optimal

number of mixture components. The proposed models are validated through a range of applications,

including chiller fault detection and diagnosis, occupancy estimation, and energy consumption char-

acterization. Additionally, we incorporate explainability into our models and establish a moderate

trade-off between prediction accuracy and interpretability.

Finally, we devise four novel models for human activity recognition (HAR): bounded asym-

metric generalized Gaussian mixture-based hidden Markov model with feature selection (BAGGM-

FSHMM), bounded asymmetric generalized Gaussian mixture-based hidden Markov model (BAGGM-

HMM), asymmetric generalized Gaussian mixture-based hidden Markov model with feature se-

lection (AGGM-FSHMM), and asymmetric generalized Gaussian mixture-based hidden Markov

model (AGGM-HMM). We develop an innovative method for simultaneous estimation of feature

saliencies and model parameters in BAGGM-FSHMM and AGGM-FSHMM while integrating the

bounded support asymmetric generalized Gaussian distribution (BAGGD), the asymmetric gener-

alized Gaussian distribution (AGGD) in the BAGGM-HMM and AGGM-HMM respectively. The

aforementioned proposed models are validated using video-based and sensor-based HAR appli-

cations, showcasing their superiority over several mixture-based hidden Markov models (HMMs)

across various performance metrics. We demonstrate that the independent incorporation of fea-

ture selection and bounded support distribution in a HAR system yields benefits; Simultaneously,

combining both concepts results in the most effective model among the proposed models.
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Chapter 1

Introduction

In the past decade, there has been a remarkable growth in the amount and dimensionality of

data due to technological advancements. It is crucial to find ways to model and analyze such mul-

tidimensional data. The process of modelling and extracting useful insights from multidimensional

data relies on the ability to identify complex patterns, regularities, and relationships within the data.

In recent years, several algorithms have been developed with the aim of automatically learning to

recognize these complex patterns and making intelligent decisions based on observed data. Machine

learning, a branch of artificial intelligence, provides a systematic approach to developing and study-

ing automatic techniques capable of learning models and their parameters from training data [2–5].

Machine learning and statistical pattern recognition have witnessed remarkable development in re-

cent years due to their extensive applications in various fields, including engineering, medicine,

computer science, psychology, neuroscience, physics, and mathematics [6, 7]. The emergence of

novel supervised [8–10] and unsupervised methods [11], as a result of recent advances in machine

learning, has attracted the attention of researchers from different domains, owing to their potential

to support the modelling and analysis of different data.

The unsupervised partitioning of data is considered in a wide range of tasks that involve group-

ing observations into clusters or parts that are similar in composition and different from each other.

The categorization of patterns and objects based on similarities is a crucial aspect of most real-life

applications and is commonly known as clustering or cluster analysis. There are various approaches
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to clustering, including hierarchical, relocation, probabilistic, density-based, and grid-based meth-

ods, which can be employed according to the real-life application.

Hierarchical methods generate clusters incrementally, leveraging the connectivity matrix that

represents the similarity among data items. There are two primary hierarchical clustering strategies:

agglomerative and divisive. The agglomerative approach commences with singleton clusters, each

containing a single element, and progressively merges cluster pairs. Conversely, the divisive method

starts with a comprehensive cluster containing all objects and iteratively divides it into distinct

clusters.

Relocation algorithms, unlike hierarchical techniques, do not develop clusters step by step. In-

stead, they initiate with a random partition and iteratively reposition data items among existing

clusters to optimize them. Typically, these methods necessitate a predetermined number of clusters.

The most prevalent relocation algorithm is the K-means approach, which alternates between two

iterative steps: data assignment and centroid value updating.

Probabilistic clustering techniques are based on the assumption that the dataset represents a

sample independently drawn from multiple populations. Density-based clustering identifies clusters

as high-density regions in the feature space, separated by low-density areas. This approach excels

in detecting clusters of various shapes, as it utilizes the concepts of density and connectivity to

account for local data distribution and requires defining neighbourhood data and nearest neighbour

computations.

Grid-based clustering algorithms partition the feature space, aggregating dense neighbouring

segments. A segment is a multi-rectangular region in the feature space, resulting from the Cartesian

product of individual feature sub-ranges. Consequently, data partitioning is achieved through space

partitioning. Some grid-based techniques prune the attribute space a priori, performing subspace

clustering, which is crucial for high-dimensional data when irrelevant features may obscure the

clustering tendency. This method can be regarded as an extension of traditional clustering that aims

to identify clusters in various sub-spaces within a dataset.

In this thesis, I will primarily focus on probabilistic approaches, specifically mixture models.

Mixture models, as a machine learning technique, have garnered significant interest across various
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applications. They are typically employed to model intricate datasets by postulating that each ob-

servation originates from one of several distinct groups or components [7]. Furthermore, mixture

models have demonstrated success in tasks like clustering and density estimation [12, 13].

1.1 Mixture Models: An Introduction

Mixture models consist of convex combinations of two or more probability density functions

(PDFs). By amalgamating the attributes of the individual PDFs, mixture models possess the ability

to approximate any arbitrary distribution [14]. As a result, selecting the most appropriate PDF to

accurately represent the mixture components is of paramount importance, as it directly impacts the

model’s capability to characterize the shape of the data [15, 16]. Furthermore, an ill-suited choice

of PDF may necessitate the mixture model to increase the number of components in order to fit the

data accurately, which could lead to overfitting. The mixture of Gaussians is among the most fun-

damental and widely used statistical models, frequently justified for asymptotic reasons, meaning

that the sample is assumed to be adequately large [17]. However, it has been observed that Gaussian

distributions are generally unsuitable for modelling data in intricate real-life applications [18]. For

example, natural image clutter tends to be non-Gaussian in nature.

The Gaussian mixture model is a popular choice as an isotropic probability density function

that can compactly model and represent the intrinsic grouping of the data. It comprises a set of

parameters, including a mean vector and a covariance matrix, that describe each discovered pattern’s

properties. The EM algorithm has been widely used to estimate the Gaussian mixture model’s

parameters that best fit the data in many applications [19, 20]. However, the Gaussian distribution’s

limitations have been observed in various real-life applications. For instance, it has a rigid bell shape

and a short tail, which is unsuitable for most real-world problems [21]. Additionally, the Gaussian

distribution is unbounded with a support range that extends from −∞ to ∞ and is symmetric around

its mean [22, 23]. The data clusters of real-life applications are usually bounded and most likely

have a non-Gaussian density, signifying a density function that is asymmetric, non-bell shaped,

or both [24–27]. The Gaussian distribution’s fixed kurtosis makes the mixture model vulnerable

to individual data cluster outliers, and the distribution is unsuitable for assigning a relatively low
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probability of occurrence to the individual class outliers [28,29]. Therefore, many applications that

incorporate the Gaussian mixture model seek outlier detection and removal techniques within their

workflow, which incurs additional computational expenses [30–33].

Several studies have demonstrated that the generalized Gaussian distribution (GGD), can be an

effective alternative to Gaussian distributions due to its shape adaptability [16, 34]. This flexibility

allows the modelling of a broad array of non-Gaussian signals [35–38]. The GGD encompasses

the Laplacian, Gaussian, and asymptotically uniform distributions as special cases [39]. It has been

employed in various challenging problems, demonstrating its versatility and effectiveness in diverse

contexts (e.g., [40–42]). However, the GGD is still a symmetrical distribution, rendering it unsuit-

able for modelling non-symmetrical data. In light of this limitation, we propose examining two

non-symmetrical distributions throughout the remainder of this thesis: the asymmetric generalized

Gaussian and its bounded variant. By considering these distributions, we aim to enhance the mod-

elling capabilities of mixture models, allowing for a more accurate representation of complex data

with non-symmetrical characteristics. This exploration will contribute to a deeper understanding of

mixture models’ strengths and limitations, fostering further advancements in the field.

The asymmetric Gaussian distribution (AGD) builds upon the foundation of the Gaussian distri-

bution, offering a more nuanced representation of data by addressing the asymmetry often present

in real-life datasets. While the Gaussian distribution assumes symmetric data around the mean, the

asymmetric Gaussian allows for different standard deviations on each side of the mean, capturing

the skewed nature of many empirical observations. Despite this advantage, the asymmetric Gaus-

sian distribution still maintains the fundamental bell-shaped curve of the Gaussian distribution. By

accommodating asymmetry while preserving the Gaussian structure, the asymmetric Gaussian dis-

tribution serves as a valuable tool for handling a variety of data analysis tasks that involve skewed

data patterns.

The asymmetric generalized Gaussian distribution (AGGD) [15] presents a significant improve-

ment over the generalized Gaussian distribution (GGD) and the AGD in various aspects. While the

GGD is known for its shape flexibility, it remains a symmetrical distribution, which limits its abil-

ity to accurately model non-symmetrical data. In contrast, the AGGD addresses this limitation by
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incorporating asymmetry in the distribution like AGD, while allowing for a more precise represen-

tation of complex data with non-symmetrical characteristics like GGD. This enhancement enables

the AGGD to capture a broader range of distribution shapes, which proves beneficial in diverse

applications where data exhibit varying degrees of skewness. Moreover, the AGGD maintains the

advantages of the GGD, as it can generalize to the GGD when the left standard deviation is equal

to the right standard deviation. This dual capacity of modelling both symmetrical and asymmetrical

data makes the AGGD a more versatile and powerful tool in the realm of mixture models.

Bounded probability density functions offer an essential extension to the traditional probability

density functions as discussed in [43], such as the generalized Gaussian distribution (GGD) and

asymmetric generalized Gaussian distribution (AGGD). These bounded variants are particularly

useful for modelling real-world data that often exhibit constraints or limits within a specific range

as demonstrated in [21], [44], and [22, 44]. By incorporating boundaries into the distribution, these

functions can more accurately represent real-world data that naturally fall within a finite interval.

Examples of such data include percentages, proportions, and measurements with known upper and

lower bounds. Bounded versions of the GGD and AGGD provide additional flexibility by captur-

ing the characteristics of both symmetrical and asymmetrical data while adhering to the imposed

constraints. Consequently, they prove to be invaluable tools in various applications, as they offer

a more precise representation of data distributions and improve the overall performance of mixture

models in capturing the underlying structure of the data.

A mixture of mixture models is a statistical modelling technique used to describe complex data

with heterogeneous sub-populations. It involves combining multiple mixture models, where each

component of a mixture model is itself a mixture model. The inner mixture models are used to

capture finer details of the sub-populations within each component, while the outer mixture models

are used to model the overall distribution of the data. The incorporation of inner mixtures within

each mixture model’s component allows for greater flexibility in modelling the data, as it enables the

identification and characterization of finer-grained sub-populations within each component. This is

particularly useful when dealing with complex data that cannot be adequately described by a single

mixture model. By incorporating inner mixtures, the mixture of mixture models can provide a

more accurate and detailed representation of the data, making it a powerful tool for a wide range of
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statistical applications, such as clustering, classification, and density estimation.

In this thesis, we will explore the probabilistic aspects of mixture models in greater depth,

investigating their strengths and limitations as well as their applications across various domains. By

examining the mathematical foundations and practical implementations of these models, we aim to

provide a comprehensive understanding of their role in contemporary machine learning research.

This deeper understanding will contribute to the ongoing development and refinement of mixture

models, enabling further advancements in the field.

1.2 Parameter Learning of Mixture Models

Unsupervised learning offers the potential to discover hidden patterns and structures within

complex data without relying on labelled examples, making it a more scalable and versatile ap-

proach for various real-world applications. In contrast, supervised learning, especially when uti-

lizing neural networks [45], often suffers from high dependence on large labelled datasets and is

prone to overfitting, which limits the applicability and generalization capabilities of these models in

dynamic and less-structured environments. Mixture models are widely used to represent complex

data distributions by combining multiple probability density functions (PDFs). The unsupervised

learning of mixture models is crucial to ensure the effectiveness of the model in various applica-

tions. There are several methods to fit mixture models to training data, such as maximum likelihood

estimation [46], Bayesian variational inference [47–50], and Bayesian MCMC inference [51–54].

In this section, we discuss the key techniques employed for parameter learning in mixture mod-

els, emphasizing the maximum likelihood estimation (MLE) using the Expectation-Maximization

(EM) algorithm, the Minimum Message Length (MML) criterion, and the semi-supervised learning

approach.

The EM algorithm is a popular iterative method for MLE in mixture models. It is particularly

effective in handling incomplete or missing data and has been widely adopted for parameter esti-

mation in Gaussian mixture models and other complex distributions. The EM algorithm consists

of two main steps: the Expectation (E) step and the Maximization (M) step. In the E-step, the al-

gorithm calculates the expected values of the latent variables given the observed data and current
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parameter estimates. In the M-step, it updates the parameter estimates by maximizing the expected

complete-data log-likelihood obtained in the E-step. The algorithm iterates between these two steps

until convergence, ultimately yielding the maximum likelihood estimates of the mixture model pa-

rameters.

The MML criterion is an information-theoretic model selection technique that aims to minimize

the message length needed to encode both the model and the data. By incorporating the MML

criterion within the EM algorithm, it is possible to simultaneously achieve feature saliency and de-

termine the optimal number of mixture components. In this approach, the optimization process not

only estimates the parameters of the mixture model but also identifies the actual number of compo-

nents and the optimal subset of attributes that define each component. This integrated optimization

strategy allows for more efficient and effective parameter learning in mixture models, ensuring that

the resulting model accurately represents the underlying data structure.

In many real-world applications, obtaining fully labelled data is challenging and costly, mak-

ing the use of semi-supervised learning techniques highly desirable. The semi-supervised approach

to maximum likelihood estimation for mixture models leverages both labelled and unlabeled data

to improve the accuracy and robustness of parameter estimation. By incorporating the available

labelled data, the semi-supervised MLE can guide the learning process and refine the model pa-

rameters more effectively than unsupervised approaches. This results in a better representation of

the underlying data distribution and ultimately improves the performance of the mixture model in

various applications.

Within this thesis, Chapters 2 and 3 showcase the implementation of unsupervised and semi-

supervised maximum likelihood estimation through the EM algorithm for several mixture models.

1.3 Feature Selection

In the realm of statistical modelling, and specifically finite mixtures, feature selection is a critical

aspect, as it involves identifying relevant or discriminative features that describe the data, particu-

larly in the analysis of high-dimensional data that has been extensively researched in the past. The

primary objective is not only to determine mixture components and their parameters but also to
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offer the most parsimonious model that can accurately depict the data. It is important to note that

humans’ approach to clustering and recognition involves selecting a few key features (i.e., only rel-

evant information is considered while ignoring irrelevant information [55, 56]) and then clustering

the data based on these features [57]. Additionally, feature selection can accelerate learning and

enhance model accuracy and generalization. As a result, feature selection has proven to be a vital

step in various applications such as image processing, computer vision, and pattern recognition, in-

cluding object detection [58], handwriting separation [59], and image retrieval, categorization, and

recognition [60].

Nonetheless, most mixture model research presumes that all features have equal weight and

employs a pre-processing step like principal components analysis (PCA) to convert the original fea-

tures into a reduced-dimension space. This approach’s primary drawback is the loss of the original

features’ physical meaning [61]. Moreover, the quality of the features used significantly impacts

the learning of mixture parameters (i.e., both model selection and parameter estimation), as demon-

strated, for example, in [62], leading to a renewed focus on the feature selection problem, particu-

larly in unsupervised settings. Feature selection was achieved in several prior publications simulta-

neously to the parameter estimation in maximum likelihood estimation [15, 63] and even Bayesian

approaches [64, 65]. Like many other model-based feature selection approaches (e.g., [66]), this

work is based on the Gaussian assumption, assuming diagonal covariance matrices [66] for all

clusters (i.e., all features are considered independent). In this thesis, following recent approaches

(e.g., [60, 62]), we attempt to address the feature selection problem in unsupervised learning by

framing it as an estimation problem, thus avoiding any combinatorial search. We assign a relevance

weight to each feature, which measures its dependence on class labels.

1.4 Explainable Artificial Intelligence

Recent advancements in machine learning algorithms have enabled the detection of patterns in

data that were previously impossible to identify. However, the lack of transparency in the decision-

making processes of these algorithms has raised concerns about their reliability and trustworthiness.

This has led to an increasing interest in the field of explainable artificial intelligence (XAI) [67–69].
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While there have been significant research efforts to enhance the interpretability of data-driven

models, most prior works have focused on post-modelling explainability, which has several limita-

tions [70]. Firstly, it does not provide any insights into the training data used to build the model.

Secondly, it heavily relies on the specific model being used.

In recent years, the term ”explainability” has gained widespread attention, and there has been

an exponential increase in its usage in research publications [71, 72]. Our proposed model aims

to address the limitations of prior works by providing pre-modelling explainability in the context

of model-based classification and clustering. Specifically, we develop an approach that not only

recognizes different patterns within the data and the statistical properties of each pattern, but also

defines the boundaries between the discovered patterns in terms of important data attributes [?, 70].

Our proposed method integrates a mixture model with a decision tree (DT) algorithm to provide

explainable predictions that generalize well to unseen data. The DT algorithm is used to train a

small binary threshold tree, with the number of leaves equal to the number of clusters assumed

in the mixture model. The predictions of the DT algorithm are easily interpretable using simple

If-Then rules. By integrating the DT algorithm with our proposed mixture model, we can provide

insights into the model and its prediction by defining the boundaries between the detected patterns

in terms of important attributes [72].

We demonstrate the integrated explainability within our proposed framework by applying it to

chiller fault detection and diagnosis, energy consumers’ categorization, and occupancy estimation.

In the case of chiller fault detection, we aim not only to classify faults but also to provide inter-

pretability in the form of If-Then statements using the values of the data features. Similarly, in the

case of energy consumers’ categorization, we aim to provide interpretability in the form of simple

If-Then statements with specific values of high-level features to define the boundaries between en-

ergy consumers. Our proposed model can help utility companies to identify suitable households for

demand reduction initiatives such as demand response and energy efficiency, thereby reducing costs

and greenhouse gas emissions [73–77].

As will be demonstrated in Chapter 3, the integration of mixture models with explainable arti-

ficial intelligence offers a powerful combination that addresses some of the key challenges faced in

machine learning. Mixture models are generative models that excel in generalizing to unseen data
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based on a sample population, while explainable AI focuses on making the inner workings of com-

plex models transparent and understandable. Decision trees, as supervised learning algorithms, are

known to be prone to overfitting. By adding explainability, we can create an interpretable model that

not only generalizes well to unseen data but also delivers comprehensible results through straight-

forward if-then statements. This fusion of approaches enables more accurate predictions, and fosters

trust and transparency in the underlying machine-learning models.

1.5 Hidden Markov Models

Over the past ten years, Hidden Markov Models (HMM) have garnered significant attention

from researchers due to their expanded capabilities beyond the originally investigated speech-related

tasks [78]. Applications of HMMs now include handwritten character recognition, music analysis,

stock market prediction, earthquake forecasting, video categorization, security monitoring, and net-

work evaluation. HMMs are probabilistic models that belong to the generative category of machine

learning algorithms. In machine learning, data modelling techniques typically fall into one of two

main categories: discriminative or generative. Generally, discriminative models are trained to de-

termine a connection between input data and class labels, while generative models first learn the

distribution of the classes before making predictions. Mathematically, discriminative models repre-

sent the probability of a class label given the input data, while generative models denote the joint

probability of both input data and class labels, which is used to calculate the appropriate proba-

bility for classification. In a way, HMMs can be viewed as an extension of mixture models that

incorporates the temporal dimension. This means they have the ability to perform spatiotemporal

modelling, taking into account both spatial and temporal features. Therefore, the HMMs are among

the most widely used statistical techniques for probabilistic modelling of sequential and time series

data [79, 80]. An HMM is a highly-regarded dual stochastic model that leverages a concise set of

features to extract underlying statistics [78]. The structure primarily consists of a Markov chain

of hidden variables, each linked to a conditional observation. A Markov chain offers one of the

simplest ways to represent sequential patterns in time series data and was first introduced by An-

drey Markov in the early 1900s. The late 1960s and early 1970s witnessed a surge in publications
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by Leonard E. Baum and other researchers that explored and addressed its statistical methods and

modelling [79]. This approach allows us to maintain generality while easing the assumption of

independent and identically distributed variables [81].

In mathematical terms, an HMM is defined by an underlying stochastic process consisting of a

number of hidden states that form a Markov chain. Each state is regulated by an initial probability,

and the transitions between states at a given time t can be represented by a transition matrix. Within

each state st, at time t an observation is produced according to its distribution, which may be

either discrete or continuous. This forms the set of observable stochastic processes. Conversely, the

specific parameters of a probability distribution determine the observation emission for a continuous

observed symbol sequence. The Gaussian distribution is most frequently employed as the emission

distribution [79, 82, 83].

The mixture-based Hidden Markov Model (MM-HMM) is an advanced variation of the tradi-

tional HMM that offers increased modelling capabilities for complex data. This innovative approach

incorporates a mixture of probability distributions within each hidden state, providing a more flex-

ible and accurate representation of the underlying data-generating process. By integrating multiple

distributions, MM-HMMs can better capture intricate patterns and relationships within time series

or sequential data. As a result, mixture-based HMMs have emerged as a powerful tool for various

applications, including speech recognition, financial forecasting, bio-informatics [84], human action

recognition [85], and many others that require robust modelling of complex, dynamic phenomena.

Human action recognition, in particular, benefits from the enhanced ability of MM-HMMs to dis-

cern subtle variations in movement patterns, making them a valuable asset in areas such as video

surveillance, human-computer interaction, and sports analytics.

The Baum-Welch algorithm for Mixture-based Hidden Markov Models (MM-HMMs) is an it-

erative optimization technique employed to estimate the model parameters. Also known as the

forward-backward algorithm, it leverages the EM framework to refine the parameters of the un-

derlying mixture distributions within each hidden state. The algorithm consists of two primary

components: the forward algorithm and the backward algorithm. These methods are executed re-

cursively, forming the complete algorithm that ensures convergence towards more compact clusters

at each iteration [86]. Starting with an initial random data clustering, the Baum-Welch algorithm
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for MM-HMMs guarantees convergence and aims to optimize the model in order to better capture

the complexities of the sequential data under analysis. The process terminates when there are no

significant changes in the log-likelihood ratios, ultimately yielding an optimized MM-HMM [86].

The Viterbi Algorithm is a dynamic programming-based method that is integral to HMMs and

other associated probabilistic models [87]. Introduced by Andrew Viterbi in 1967 [88], its primary

purpose is to identify the most probable sequence of hidden states, known as the Viterbi path,

given a sequence of observations. The algorithm efficiently computes the optimal state sequence by

utilizing a recursive process that maximizes the joint probability of both the observations and the

corresponding hidden states.

In the context of a specific HMM, the Viterbi algorithm aims to determine the most likely

progression of states that generated a given observation sequence, thereby addressing the decoding

problem. This involves selecting the most probable states at each individual time step t, which in

turn maximizes the expected number of correct separate states. The Viterbi Algorithm has been

widely applied across various fields, including speech recognition, natural language processing,

bio-informatics, and other areas that necessitate decoding and inference in the presence of hidden

information.

In Chapter 4, we introduce four new models for human activity recognition, namely BAGGM-

FSHMM, BAGGM-HMM, AGGM-FSHMM, and AGGM-HMM. Each of these models represents

a unique combination of techniques designed to enhance the performance of Hidden Markov Mod-

els in this application domain. BAGGM-FSHMM stands for Bounded Asymmetric Generalized

Gaussian Mixture-based Hidden Markov Model with Feature Selection. Similarly, BAGGM-HMM

represents the Bounded Asymmetric Generalized Gaussian Mixture-based Hidden Markov Model,

without feature selection. AGGM-FSHMM denotes the Asymmetric Generalized Gaussian Mixture-

based Hidden Markov Model with Feature Selection, while AGGM-HMM refers to the Asymmet-

ric Generalized Gaussian Mixture-based Hidden Markov Model without feature selection. These

models aim to improve the accuracy and efficiency of human activity recognition by incorporating

various advanced techniques and methodologies.
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1.6 Contributions

The aim of this thesis is to propose several novel models for recognizing patterns within data

with and without taking into account the temporal axis. The models proposed utilized effective

frameworks that model the different ways random variables change for a given pattern.

☞ The bounded asymmetric generalized Gaussian mixture model with minimum message

length criterion: The bounded asymmetric generalized Gaussian mixture model was ex-

tended within a framework that estimates model parameters and feature saliencies simultane-

ously. The proposed model has been proven effective in modelling smart meter data within

different real and synthetic datasets. This novel framework was submitted as a journal re-

search manuscript with the title ”A mixture-based clustering approach for household energy

consumption segmentation and feature weighting” to the Journal of Sustainable Energy, grids,

and Networks.

☞ In order to incorporate further robustness within mixture models. We incorporate a Uniform

distribution within an inner mixture of a mixture of mixtures that further extend the bounded

asymmetric generalized Gaussian mixture model. A semi-supervised learning setting is also

proposed for the novel mixture of mixtures to reduce the reliance on labelled data in fault de-

tection and diagnosis and occupancy estimation applications using real-world datasets. These

novel frameworks have been published as research papers as follows:

• A journal research manuscript was submitted with the title ”Explainable finite mixture of

mixtures of bounded asymmetric generalized Gaussian and Uniform distributions learn-

ing for energy demand management” to the following publication ”ACM transactions

on intelligent systems and technology”.

• A research paper was submitted as a research manuscript with the title ”Explainable

robust Smart Meter Data Clustering for Improved Energy Management” to the following

conference ”IEEE International Conference on Systems, Man, and Cybernetics (SMC)”

☞ Four mixture-based hidden Markov models were proposed for a human activity recognition

application. Using these novel models, the following attempts at publications were made:
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• A journal research paper was submitted with the title ”Advanced Models for Human

Activity Recognition using Mixture-Based Hidden Markov Models with Feature Salien-

cies” to the following publication, ”Engineering Applications of Artificial Intelligence”.

• A research manuscript with the title ”Enhancing Human Action Recognition with Asym-

metric Generalized Gaussian Mixture Model-Based Hidden Markov Models and Bounded

Support” was submitted to the following conference ”IEEE International Conference on

Systems, Man, and Cybernetics (SMC)”

1.7 Thesis Overview

This thesis is organized as follows:

❑ Chapter 1: This chapter introduces basic concepts that were used in this thesis to model

real-world data, such as mixture models, hidden Markov models and their optimization ap-

proaches.

❑ Chapter 2: This study proposes a learning framework that involves the expectation-maximization

algorithm (EM) and the minimum message length (MML) criterion for a simultaneous feature

and model selection approach in the context of the bounded asymmetric generalized Gaussian

mixture model. The proposed algorithm demonstrates superior clustering efficacy compared

to several state-of-the-art clustering algorithms in the analysis of high-resolution smart meter

data.

❑ Chapter 3: This study introduces a mixture of mixtures of bounded asymmetric generalized

Gaussian and uniform distributions and proposes model-based classification and clustering

algorithms. The proposed algorithm’s predictions are interpretable to the user’s perspective

through simple If-Then statements using a small binary decision tree, increasing the credi-

bility of the algorithm’s predictions. The proposed algorithm demonstrates its reliability and

superiority to several state-of-the-art machine learning algorithms in real-world applications.

❑ Chapter 4: This study proposes an asymmetric generalized Gaussian mixture-based hidden
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Markov model (AGGM-HMM) and a bounded asymmetric generalized Gaussian mixture-

based hidden Markov model (BAGGM-HMM) for recognizing human actions from a se-

quence of observations. The proposed models leverage the flexible and robust asymmetric

generalized Gaussian distribution and the bounded variant to model real-life applications’

data. The proposed frameworks demonstrate superiority to several state-of-the-art human

activity recognition methods in sensor-based and video-based recognition scenarios.

❑ Conclusion: In this chapter, we provide a summary of our contributions. Additionally, we

discuss potential avenues for future research.
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Chapter 2

Mixture-Based Clustering Approach For

Household Energy Consumption

Segmentation and Feature Weighting

In the previous chapter, we introduced several important topics in machine learning, including

mixture models in Section 1.1 and their learning criteria in Section 1.2. In this chapter, important

concepts shall be used to introduce a novel mixture model and its learning criteria as a solution for

an important real-life problem. Recently, the intervals of publicly available smart meter data have

become as small as one second compared to one month in earlier times. Understanding these vari-

ations supplies the opportunity to discover important information for several capabilities involving

metering data. As a data mining method, clustering analysis has been widely used to discover unique

energy consumption patterns and trends and the consumers that follow them. The high-resolution

smart meter data present several challenges that recent studies have failed to address, such as non-

Gaussian data shape, an unknown number of clusters, and high dimensional feature space with

variable importance. Although several studies have addressed the problems of an unknown optimal

number of clusters and optimal feature subset in modelling smart meter data independently, these

problems are interrelated and must be addressed simultaneously. Therefore, this chapter proposes a

learning framework that involves the expectation-maximization algorithm (EM) and the minimum
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message length (MML) criterion for a simultaneous feature and model selection approach in the

context of the bounded asymmetric generalized Gaussian mixture model. Our experiments attempt

to simulate an efficient analysis scenario of smart metering data with three feature extraction meth-

ods. The performance of the proposed algorithm is compared against the performance of several

state-of-the-art clustering algorithms. We validate the clustering efficacy of the proposed algorithm

with several performance measures using two synthetic and real smart meter datasets. The resulting

clusters characterize the variations in residential energy consumption to help accurately determine

the group of suitable households for utility companies’ demand reduction initiatives.

2.1 Introduction

The adaptation of Advanced Metering Infrastructure (AMI) in Europe has been a significant

contributor to the overachievement of the energy efficiency gains of the EU 20-20-20 energy policy.

Following the success in Europe, smart meters have been deployed globally in countries attempting

to modernize their electricity networks. As a result, these advancements in energy metering tech-

nologies have generated a wealth of new electrical power consumption records with an adequate and

consistent frequency within the residential sector. Several smart meter datasets were made publicly

available in [89–93] with a granularity of 1-min to 1-h. These datasets dramatically increase the

amount of electricity use information over once-per-month meter reads. The high-resolution smart

meter data analysis reveals several insights that were not previously possible. Thus, they provide a

unique opportunity to understand a household’s energy consumption pattern. The information ob-

tained from such patterns can potentially enhance the targeting and customization of metering data

capabilities such as demand response (DR), energy efficiency (EE), load forecasting and pricing

intelligence programs and the improvement of energy-saving recommendations [94–96]. DR is an

incentive program that enables the possibility for utility companies to save money on unnecessary

investments and lower emissions of greenhouse gases (GHG). DR induces households to reduce

their energy consumption levels at times of high wholesale market prices or when system reliability

is jeopardized. EE programs aim to reduce the power demand of households while maintaining their

consumption habits.
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The classical classification of energy consumers that is based on the explicit type of activity does

not correlate well with the evolution of energy consumption [97], rendering the efforts to increase

energy efficiency ineffective. Therefore, identifying electricity customers with similar energy con-

sumption patterns is perhaps significantly more helpful [98, 99]. In order to transform smart meter

records into valuable information taking part in customer groupings, traditional machine learning

exploratory analysis tools such as unsupervised learning techniques are utilized [94]. Clustering is

a statistical data analysis technique that can uncover or infer intrinsic properties and group the data

into several components according to the observations’ similarities. As a soft clustering approach,

the Gaussian mixture’s reliability and minimum impact on computational capabilities have made

it a good candidate for modelling smart meter data. However, it has the following weaknesses:

the distribution has a fixed shape; preventing it from generalizing to different classes of distribu-

tions [100], the distribution’s tails are short; making it vulnerable to outliers and therefore is not the

best choice for mixture models in real applications [101]. The Gaussian distribution does not fit data

well within a mixture model if the data has an asymmetric distribution, as demonstrated in Figure

2.1. Additionally, estimating the data’s bounded support region in mixture models has achieved

improved performance in diverse real-life applications [21, 25, 26, 43, 102, 103].

The deployment of AMI has introduced high dimensionality in modern energy consumption

datasets. As an example, in the Irish smart meter trial [89], with a reading interval of 30 minutes,

an energy consumer’s load curve consists of 25728 features in the raw format of the dataset. Pat-

terns are easily distinguished within observations that are represented with features of high entropy.

However, in practice, the best clustering performance is achieved with the best set of features that

concisely describe the load curve. Feature selection has several advantages: it is well established

to improve the performance of model-based categorization [104], and it helps develop interpretable

models that are reduced in complexity within applications across several disciplines. The search

for the optimal number of clusters and the optimal set of features is an interrelated optimization

problem. However, searching for the optimal set of features is challenging in an unsupervised set-

ting because there is no clear criterion for the optimization process since the number of clusters is

unknown. Historically, in order to find the optimal number of features, an exhaustive search is done

through the space of all feature subsets [105–107]. Additionally, non-exhaustive search techniques
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do not guarantee finding the optimal feature subset. Therefore, an efficient solution was proposed

within an unsupervised setting [62]; the optimal feature subset search is converted into an estimation

problem parallel to the learning of mixture models where a vector of feature weights is estimated

using the EM algorithm.

In this proposal, we develop a finite bounded asymmetric generalized Gaussian mixture model

with simultaneous feature selection and model selection, generalizing to an extensive range of mix-

ture models to model smart meter data in an unsupervised manner. The proposed algorithm finds

the model’s optimal subset of features, optimal count of components, and optimal parameters us-

ing the EM algorithm and the MML model selection criterion. Smart meter data classes consist of

observations of continuous random variables, which makes it ideal for modelling using the families

of continuous probability distributions. Additionally, the data is ideal to be used to demonstrate the

generalization of the proposed model due to the various feature extraction methods used in prior

works to represent this data. As the representation of the data changes, so does its distribution’s

skewness, bounds and shape. This chapter will demonstrate how our proposed FSBAGGMM gener-

alizes to a wide range of mixture models, including the bounded variants. The generalization and the

superiority of our mixture model are evident in the experimental analysis. In our experimental anal-

ysis, our proposed method outperforms the following: asymmetric generalized Gaussian mixture

model-based feature selection (FSAGGMM), Bounded Asymmetric Generalized Gaussian Mix-

ture Model (BAGGMM), and the Asymmetric Generalized Gaussian Mixture Model (AGGMM)

according to several performance evaluation metrics. Additionally, our proposed mixture model

has been implemented using Concordia University’s High-Performance Computing (HPC) Facility:

Speed [108].

2.1.1 Prior Work

Several applications were proposed to make use of energy consumption records. Additionally,

due to the utilization of smart meters, the feasibility and reliability of such applications have in-

creased. Non-Intrusive Load Monitoring (NILM), for example, has made heating, ventilation, and

air conditioning (HVAC) fault detection applications more effective and reliable. The behaviour of

the HVAC system is identified and monitored, relying on smart meter readings instead of installed
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Figure 2.1: The Gaussian distribution Symmetry Problem

sensors [109]. An example of a system that uses smart meter records as input and produces load

forecasting and recommendations for better energy efficiency is presented in [110]. A smart meter

analytics solution was proposed to present customers with a user-friendly web portal they can use to

understand their bills [111]. Energy consumption records were also used in applications to conclude

consumption predictions and recommendations [73, 110, 112].

Clustering has proven helpful to group low, and high-voltage customers [113, 114]. Addition-

ally, demand management programs have successfully utilized clustering in order to select suitable

candidate energy consumers [75–77]. Thus, several approaches have been employed for the seg-

mentation of energy users, such as K-Means [112], Euclidean distance-based clustering [114], and

multi-resolution clustering in spectral-domain [115]. Similarly, several clustering methods such as

hierarchical clustering, K-means, fuzzy K-means, and Self-organizing maps (SOM) have been used

to group consumers with similar energy consumption patterns in [113]. SOM was tested for its

capability to classify consumption profiles in [116]. Clustering has also proven useful to enhance

energy consumption prediction using a two-layer feed-forward artificial neural network [96]. The

Gaussian mixture model, optimized by the EM algorithm, was utilized in [117] and [73] as a non-

distance-based consumer segmentation tool. Other finite mixture models have also been used within

the context of the same application [118, 119].

In order to model smart meter data in different representations, several limitations imposed by

the Gaussian mixture model must be overcome. Several distributions have been used as a base
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distribution of mixture models to overcome the shape rigidity of the Gaussian distribution, such

as the Student’s-t distribution [120–122] and the generalized Gaussian distribution (GGD) [38, 40,

123]. Compared to the Gaussian distribution, the Student’s t distribution has an additional parameter

(ν) called the degree of freedom that allows the distribution to generalize to different probability

distributions. The Student’s t distribution is identical to the Cauchy distribution when (ν = 1) and

approaches the Gaussian distribution as (ν) approaches infinity. As for the GGD, the additional

parameter per component (λ) is called the shape parameter; it controls the tails of the distribution,

making it far more flexible to different types of data and less vulnerable to outliers [36, 37, 124].

In more recent studies, the AGGD was used as a base distribution for mixture models [63, 125].

The AGGD can generalize to a large class of distributions such as the Impulsive, the Laplacian,

the Gaussian, and the uniform distribution, in addition to the ability to fit asymmetric data [126].

Additionally, and in order for mixture components to fit better to real-life data, the bounded support

concept was adopted in several finite mixture models [24–26].

Several feature extraction methods were utilized to process high dimensional data in electrical

load observations and turn it into a new set of reduced feature space. In [127], a scalable algorithm

for data processing has been proposed for a dataset collected from 10,000 Australian homes over

a year. Dimensionality reduction is accomplished by employing a sparse representation technique

in [128]. An encoding system has given representations for energy consumers with a pre-processed

dictionary in [74]. The discovery of prominent energy consumption time windows is crucial for

feature extraction and, therefore, modelling the typical consumer’s behaviour. Through a thorough

analysis of several smart meter trials, researchers have been able to identify four time periods where

the most extensive distribution of peak demands occurs within smart meter datasets [73]. The

energy consumption records within the specified time periods were used to calculate seven weakly

correlated features. Projection methods such as Principal Component Analysis (PCA) were also

used to concisely represent a consumer’s load curve [113].

In the context of the energy consumption segmentation application, a feature selection approach

based on genetic algorithms has been utilized effectively in [112] to reduce the high dimensionality

of smart meter data and improve the clustering performance of k-means. In general, several non-

exhaustive search methods were conducted to perform feature selection, such as sequential forward
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search, backward search, floating search, beam search, bidirectional search, and genetic search

[105–107,129]. However, and more recently, several studies have approached the problem of finding

the optimal set of features as an optimization problem within the context of mixture-based clustering

in several real-life applications [15,63]; thus, achieving feature selection with minimal computation

expense.

For the purpose of finding the true number of energy consumer groups, diverse methods were

followed to accomplish this task. Several studies have approached the solution to this issue via

the use of diverse clustering evaluation metrics. Different clustering scenarios are evaluated, and

the number of consumption profiles corresponding to the best clustering scenario is chosen to be

the optimal number of energy consumption profiles [130, 131]. Similarly, an entropy-based model

performance evaluation index was utilized for finding the optimal number of clusters in time se-

ries data [112]. On the other hand, the probabilistic model selection methods have proven to be a

solution that is invariant to the dataset variable types. In several studies, the Bayesian Information

Criterion (BIC) and the Akaike Information Criterion (AIC) have been used to select the optimal

number of energy consumer groups [73, 132]. A study has previously concluded that the perfor-

mance of the AIC and BIC criteria are affected by several factors that are relevant to the model and

the data [133]. Using a smaller and less representative training dataset, BIC tends to select an overly

simple model. Additionally, AIC penalizes complex models less. Thus, in specific cases, AIC em-

phasizes the model’s performance using the training dataset and selects more complex models. The

Minimum Message Length (MML) is another probabilistic model selection measure that is well

known to outperform the BIC and the AIC model selection criteria [134–136]. MML coupled with

the feature weighing mixture model [62] encourages irrelevant feature weights to degrade to zero,

simultaneously performing model selection and feature selection. Thus, avoiding an exhaustive

search to find the optimal set of features.

The current energy consumer segmentation approach distinguishes itself from previous works

by effectively modelling different representations of smart meter records, inferring the true number

of consumer groups and finding the optimal set of features in a single optimization process. The rest

of the chapter is organized as follows: in Section 2.3, we describe the proposed Feature Selection

model based on the Bounded Asymmetric Generalized Gaussian Mixture (FSBAGGMM). Section
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2.3 explains how the mixture model’s parameters are estimated and how the MML’s objective func-

tion is derived for our specific case. Section 2.4 exhibits the experimental results in the context of

the household energy consumption segmentation by comparing the performance of our proposed

algorithm against several state-of-the-art clustering algorithms. Finally, we conclude our research

in Section 2.5.

2.2 The unsupervised BAGGMM-based feature selection model

Mixture models are a powerful approach to modelling incomplete data. The observations in

this chapter are represented as a set of vectors X = {X⃗1, X⃗2, X⃗3, . . . , X⃗N}, X⃗i ∈ RD, i ∈

{1, 2, 3, . . . , N}. We aim to model data in X using a mixture model with M components where

M ≥ 1. It is possible to state that the D-dimensional random variable X⃗i = (Xi1, Xi2, . . . , XiD)

is sampled from a M component mixture model if it’s probability density function can be written

as follows:

p(X⃗i|Θ) =

M∑
k=1

p(X⃗i|θk)pk (1)

where Θ represents the set of parameters of the M-component mixture model. The term pk repre-

sents the mixing proportion of the component k, by definition, pk is positive and
∑M

k=1 pk = 1. The

likelihood function gives the joint distribution for all the observations:

p(X|Θ) =
N∏
i=1

M∑
k=1

p(X⃗i|θk)pk (2)

In order to define the complete data likelihood, an M dimensional vector of unobserved variables

is defined, and it is denoted by Z⃗i. For each observation i, the unobserved binary vector is assigned

with 0’s except at the k’th position where the cluster is primarily responsible. The complete data

likelihood is defined as such:

p(X , Z|Θ) =

N∏
i=1

M∏
k=1

(
p(X⃗i|θk)pk

)Zik

(3)
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where Z = {Z⃗1, . . . , Z⃗N}.The features in Equation 2 are considered to be of equal importance.

However, in the context of a real application, the estimation of the feature weights is an effective

approach to better model data [113, 114]. The integration of the feature selection approach within

the mixture model involves considering that the irrelevant features are modelled with a background

Gaussian distribution as in [62]. In this chapter, feature weights are estimated for all the mixture

components. Therefore the background Gaussian distribution has a single set of parameters β⃗ =

{η⃗, δ⃗}. Where η⃗ represents the vector of means for all the data dimensions and δ⃗ represents the

standard deviations vector. Thus, we are proposing to rewrite Equation 2 to adopt feature relevancy

as follows:

p(X⃗i|Θ, β⃗, φ⃗) =
M∑
k=1

pj

D∏
d=1

p(Xid|θkd)φdp(Xid|βd)1−φd (4)

where β⃗ = {(η1, δ1), . . . , (ηD, δD)}. The unobserved binary vector φ⃗ = (φ1, ...., φD) indicates the

relevancy of each feature. By assuming that the elements within vector φ⃗ are mutually exclusive

and independent of the component label Z, thus:

p(X⃗i, φ⃗) = p(X⃗i|φ⃗)p(φ⃗) =
M∑
k=1

pk

D∏
d=1

(
ωdp(Xid|θkd)

)φd ×
(
(1− ωd)p(Xid|βd)

)1−φd (5)

After the marginalization over φ, the obtained mixture model is formalized as follows:

p(X⃗i|ΘM ) =

M∑
k=1

pk

D∏
d=1

[
ωdp(Xid|θkd) + (1− ωd)p(Xid|βd)

]
(6)

where ΘM = [Θ, ω⃗, β⃗] is the complete set of parameters that define the proposed mixture model.

The vector ω⃗ = (ω1, . . . , ωD) quantifies the feature importance with a set of weights where ωd =

p(φd = 1). Thus, Equation 6 represents the probability density function that is assumed to generate

the data. The foreground distribution or the mixture base distribution p(Xid|θkd) models the rele-

vant attributes of each latent class in the data. Several distributions have been proposed for feature

selection in the context of mixture models, such as the AGD [15] and the AGGD [63]. However,

these distributions are unbounded with a support region that extends across the set of real numbers.

Real-life datasets are mostly digitized and have bounded support [21]. Therefore, we propose the
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Bounded Asymmetric Generalized Gaussian Distribution (BAGGD) to model the relevant features

of each component in the mixture. The BAGGD distribution generalizes several different distri-

bution classes such as the impulsive, the Laplacian, the Gaussian, and the uniform distribution to

fit different shapes of observed bounded support, asymmetric and non-Gaussian data. In order to

define the bounded distribution proposed in this chapter, the bounded support region τkd in R for

each component is first defined for the following indicator function:

H(Xid|k) =


1 Xid ∈ τkd

0 Otherwise

(7)

The bounded asymmetric generalized Gaussian probability density function for each D-dimensional

data point is defined following [137] as follows:

p(X⃗i|θk) =
D∏

d=1

Ψ(Xid|θkd)H(Xid|k)∫
∂k

Ψ(Xid|θkd)dX
(8)

The unbounded distribution p(Xid|θkd) is the Asymmetric Generalized Gaussian Distribution (AGGD).

The symmetric and asymmetric generalized Gaussian distributions are defined in Equations 9 and

10, respectively.

g(Xid|µkd, σkd, λkd) =
λkd

[
Γ(3/λkd)
Γ(1/λkd)

]1/2
2σkdΓ(1/λkd)

exp

[
−A(λkd)

∣∣∣∣Xid − µkd
σkd

∣∣∣∣λkd
]

(9)

Ψ(Xid|θkd) =


g1(Xid|θkd) x < µkd

g2(Xid|θkd) x ≥ µkd

=

λkd

[
Γ(3/λkd)
Γ(1/λkd)

]1/2
(σlkd + σrkd)Γ(1/λkd)

×


exp

[
−A(λkd)

(
µkd−Xid

σrkd

)λkd
]

Xid < µkd

exp

[
−A(λkd)

(
Xid−µkd

σlkd

)λkd
]

Xid ≥ µkd

(10)
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where A(λkd) =
[
Γ(3/λkd)
Γ(1/λkd)

]λkd/2

; θkd = [µkd, σlkd , σrkd , λkd] represents the set of parameters that

defines the AGGD for each mixture component. µkd, σlkd , σrkd and λkd denote the mean, the left

standard deviation, the right standard deviation and the shape parameter of the AGGD, respectively.

The shape parameter controls the distribution’s tails. The larger its value, the flatter the distribu-

tion at the mean; the smaller it is, the more peaked the distribution at the mean. The right and left

variance combination allows the probability density function to be asymmetric or non-asymmetric.

Thus, The proposed mixture model would consider the different shapes, asymmetry, and bounded

support region of the smart meter data. Bounded distribution generalizes to all its special cases,

including the bounded variants [21]. Thus, our proposed FSBAGGMM generalizes to a wide range

of mixture models, including the bounded variants, as shown in Table 2.1. Additionally, We will

demonstrate in section 2.4 how the proposed FSBAGGMM can generalize feature selection model

based on the asymmetric generalized Gaussian mixture in addition to several specific mixture mod-

els in terms of modelling smart meter data.

Required Change in FSBAGGMM Parameters
Special Case

Feature Selection model based on
the Asymmetric Generalized Gaussian Mixture (FSAGGMM) [63] H(Xid|k) = 1
Feature Selection model based on
the Bounded Asymmetric Gaussian Mixture (FSBAGMM) λkd = 2
Feature Selection model based on
the Asymmetric Gaussian Mixture (FSAGMM) [15] H(Xid|k) = 1, λkd = 2
Feature Selection model based on
the Bounded Generalized Gaussian Mixture (FSBGGMM) σrkd

= σlkd
Feature Selection model based on
the Generalized Gaussian Mixture (FSGGMM) σrkd

= σlkd,H(Xid|k)=1

Feature Selection model based on
the Bounded Gaussian Mixture (FSBGMM) σrkd

= σlkd
, λkd = 2

Feature Selection model based on
the Gaussian Mixture (FSGMM) σrkd

= σlkd
, λkd = 2, H(Xid|k) = 1

Feature Selection model based on
the Bounded Laplace Mixture (FSBLMM) σrkd

= σlkd
, λkd = 1

Feature Selection model based on
the Laplace Mixture (FSLMM) σrkd

= σlkd
, λkd = 1, H(Xid|k) = 1

Asymmetric Generalized Gaussian Mixture Model (AGGMM) [125] H(Xid|k) = 1, ωd = 1
Bounded Asymmetric Gaussian Mixture Model (BAGMM) λkd = 2, ωd = 1
Asymmetric Gaussian Mixture Model (AGMM) [138] H(Xid|k) = 1, λkd = 2, ωd = 1
Bounded Generalized Gaussian Mixture Model (BGGMM) [21] σrkd

= σlkd
, ωd = 1

Generalized Gaussian Mixture Model (GGMM) [40] σrkd
= σlkd,H(Xid|k)=1, ωd = 1

Bounded Gaussian Mixture Model (BGMM) [22] σrkd
= σlkd

, λkd = 2, ωd = 1

Gaussian Mixture Model (GMM) σrkd
= σlkd

, λkd = 2, H(Xid|k) = 1, ωd = 1

Bounded Laplace Mixture Model (BLMM) [44] σrkd
= σlkd

, λkd = 1, ωd = 1

Laplace Mixture Model (LMM) σrkd
= σlkd

, λkd = 1, H(Xid|k) = 1, ωd = 1

Table 2.1: FSBAGGMM special cases
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2.3 Model Parameter Estimation and Selection

In this section, we will explain how the feature weights and the mixture model parameters are

estimated for modelling the training data in addition to the model selection criterion. We propose

an approach to reveal the valid number of intrinsic groups within a dataset using MML and estimate

the proposed model’s parameters using EM.

2.3.1 Parameter estimation using the EM algorithm

The mixture model’s parameters are optimized in parallel with the features’ weights in each

iteration using the EM algorithm. The iterations of the EM algorithm produce a sequence of models

with a non-decreasing log-likelihood. The parameters are optimized to achieve the maximum log-

likelihood, and the log-likelihood function is expressed as follows:

L(X ,ΘM , Z, φ) =
∑
i,k

p(Zi = k|X⃗i) log pk +
∑
i,k

∑
d

1∑
φd=0

p(Zi = k, φ|X⃗i)

×
(
φd(log(p(Xid|θkd) + logwd) + (1− φd)(log p(Xid|βd) + log(1− ωd))

) (11)

The EM algorithm has made the optimization process for mixture models feasible through an itera-

tive process using Equation 11 instead of Equation 2. The conditional expected values γ(Zjh) and

ω̂d are given by Equations 12 and 13.

p(Zi = k|X⃗i,ΘM ) = γ(Zik) =
pk

∏D
d=1 ζi,k,d∑K

j=1 pj
∏D

d=1 ζi,j,d
(12)

ω̂d =

∑N
i=1

∑M
j=1

ωdp(Xid|θjd)
ζi,j,d

γ(Zij)

N
(13)

where ζi,k,d =
[
ωdp(Xid|θkd) + (1 − ωd)p(Xid|βd)

]
. The EM algorithm consists of a loop over

two steps: the E-step and the M-step; they are performed repetitively until convergence. In the

E-step, Equation 12 is evaluated using either the initial parameters or the parameters estimated

in the M-step. In the M-Step, the parameters of the next model in the sequence are estimated.

Each estimated model in the sequence represents a better approximation of the distribution of the
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smart meter data. Due to the complicated nature of the BAGGD function, the gradient of the Log-

Likelihood function (Equation 11) with respect to each one of the parameters was non-linear, and

a closed-form solution was not obtained; therefore, for these parameters, we used the Newton-

Raphson method to approximate the update values as demonstrated in the equations below. The

partial derivatives obtained with respect to each of the parameters can be found in Appendix A.1.

Thus, the M-step is implemented using the following equations:

pk = p(Zk = 1) =

∑N
i=1 p(k|X⃗i,ΘM )

N
(14)

µ̂kd = µkd −
[(

∂2L(X ,ΘM , Z, φ)

∂µ2kd

)−1(∂L(X ,ΘM , Z, φ)

∂µkd

)]
(15)

ˆσlkd = σlkd −
[(

∂2L(X ,ΘM , Z, φ)

∂σ2lkd

)−1(∂L(X ,ΘM , Z, φ)

∂σlkd

)]
(16)

ˆσrkd = σrkd −
[(

∂2L(X ,ΘM , Z, φ)

∂σ2rkd

)−1(∂L(X ,ΘM , Z, φ)

∂σrkd

)]
(17)

λ̂kd = λkd −
[(

∂2L(X ,ΘM , Z, φ)

∂λ2kd

)−1(∂L(X ,ΘM , Z, φ)

∂λkd

)]
(18)

η̂d =

∑N
i=1

[
(1−ωd)p(Xid|βd)

ζi,k,d
γ(Zik)

]
xid∑N

i=1

∑M
j=1

(1−ωd)p(Xid|βd)
ζi,j,d

γ(Zij)

(19)

δ̂d
2
=

∑N
i=1

[
(1−ωd)p(Xid|βd)

ζi,k,d
γ(Zik)

]
(xid − ηd)

2

∑N
i=1

∑M
j=1

(1−ωd)p(Xid|βd)
ζi,j,d

γ(Zij)

(20)

2.3.2 Model Selection

Model selection involves selecting the best set of parameters that model the smart meter data.

Among several candidate models, the model with the maximum log-likelihood may achieve the

best fit to the data; however, it is not guaranteed to perform well on unseen data. In other words,

model evaluation based on the log-likelihood exclusively could be misleading. In this section, we

develop a model selection criterion to infer the true number of consumption profiles within a dataset

in an unsupervised manner. The MML criterion [139, 140] is an information theory-based model
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selection method; it selects the best model among a list of candidate statistical models based on

its capability of compressing a message containing the data. According to the MML criterion, the

best model minimizes a message that consists of two parts; the first part encodes the model using

prior knowledge about the model exclusively, and the second part encodes the data using the model.

Given a list of candidate models, the following function is minimized to obtain the true number of

intrinsic groups within the data:

MessLens ≈ − log p(ΘM ) +
c

2
(1 + log ρc) +

1

2
log |I(ΘM )| − log p(X|ΘM ) (21)

In equation 21, the prior distribution is represented by p(ΘM ), the determinant of the Fisher infor-

mation matrix is represented by |I(ΘM )|, the model’s likelihood is represented by p(X|ΘM ). The

constant c is the total number of parameters; in this case, it is calculated as such c = M + D +

4DM + 2D, c ≥ 1. The term ρc ∈ Rc represents the optimal quantization lattice constant [141];

the value of the constant is approximated with ρc = 1
12 as the value of c changes across the list of

candidate models [142].The independence of the different groups of parameters has been considered

in this chapter; which allows the factorization of the prior distribution and Fisher information ma-

trix in equation 21. Additionally, we approximate the determinant of the Fisher information matrix

using the complete likelihood, and we consider the uninformative Jeffrey’s prior for the distribu-

tion of each group of parameters. Hence, in our case, the MML optimization objective function is

calculated as such:

MessLens ≈ c
2
(1 + log ρc) +

c

2
(logN) + 2M

D∑
d=1

logωd

+ 2d
M∑
k=1

log pk +
D∑

d=1

log(1− ωd)− log p(X|ΘM )

(22)

Equation 22 is minimized with respect to the several constraints [62], which are listed as follows:

0 < pk ≤ 1, 0 ≤ ωd ≤ 1 and
∑M

j=1 pj = 1. In the context of this model selection criterion,

since we are estimating feature weights using the EM algorithm, Equation 23 and 24 are utilized
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alternatively to approximate the parameters p̂k and ω̂d respectively and as follows:

p̂k =

max
(∑N

i=1

∑M
j=1 γ(Zij)− 2D, 0

)
∑M

j=1 max
(∑N

i=1 γ(Zij)− 2D, 0

) (23)

ω̂d =

max
(∑N

i=1

∑M
j=1

ωdp(Xid|θjd)
ζi,j,d

γ(Zij)− 2M, 0

)
T

(24)

T = max
( N∑

i=1

M∑
j=1

ωdp(Xid|θjd)
ζi,j,d

γ(Zij)− 2M, 0

)
+ max

( N∑
i=1

M∑
j=1

(1− ωd)p(Xid|βd)
ζi,j,d

γ(Zij)− 1, 0

)
(25)

The algorithm of model selection and model parameter estimation

Algorithm 1 describes how to perform model selection and feature selection using the MML

criterion and model parameter estimation using the EM algorithm.

2.4 Experimental Results

In this section, we will validate the performance of the MML model selection criterion and the

proposed FSBAGGMM using two synthetic and real-life smart meter datasets within the application

of household energy consumption segmentation. The first real-life dataset was recorded by the

Commission for Energy Regulation (CER) and made accessible for researchers by the Irish Social

Science Data Archive (ISSDA) [89]. The dataset consists of smart meter records gathered from

more than 6000 Irish energy consumers from July 14, 2009, to December 31, 2010. The energy

consumption is recorded in kWh with an interval of half an hour. This dataset has two types of

energy consumers: residential and small to medium enterprises. As stated earlier, we are interested

in analyzing the energy consumption of residential energy consumers only. Therefore, 3639 Irish

residential energy consumers remain for analysis after data cleaning. Each residential consumer is

assigned six different tariffs (E, A, D, C, B, and W). The second real-life smart meter dataset consists

of smart meter records collected from 5567 residential homes in London. The data was collected
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Algorithm 1 Unsupervised FSBAGGMM

1: While M < Mmax do
2: Initialize ΘM

A K-Means clustering results are used to initialize the parameters
(π1, . . . , πM , µ⃗1, . . . , µ⃗M , σ⃗l1 , . . . , σ⃗lM , σ⃗r1 , . . . ,

⃗σrM , λ1, . . . , λM ).

B For each cluster k, each element of the parameter vector λ⃗k is set to the value 2.

C Initialize the background Gaussian distribution parameter set β⃗ using the following Equa-
tions for all the dimensions, where d ∈ {1, . . . , D}:

ηd =
1

N

N∑
i=1

Xid (26)

δ2d =
1

N

N∑
i=1

(Xid − ηd)
2 (27)

3: Implement the E-step.

(1) For each cluster k, compute the bounded support region τ⃗k = (τ1, . . . , τD).

(2) Evaluate equation 12.

• if ωd = 0 Then p(Xid|θkd) = 0

• if ωd = 1 Then p(Xid|βd) = 0

4: Implement the M-Step using Equations 15 through 20, 23 and 24.
5: if p(X|Θ)ι+1 − p(X|Θ)ι < ϵ then

• Calculate the message length using Equation 22.
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by the UK Power Networks that is led by the Low Carbon London project between November

2011 and February 2014. The energy consumption is recorded in kWh with an interval of half an

hour UKPN2013. After data cleaning, observations of 3891 household energy consumers within

the year 2013 are used to analyze this experiment. The residential energy consumers in this dataset

are subjected to two types of tariffs; the first type is the Dynamic Time of Use (ToU), where the

energy consumption prices vary as follows: High (67.20 pence/kWh), Low (3.99 pence/kWh) or

normal (11.76 pence/kWh), the second type is the Standard (std), where the consumers paid a flat

rate of 14.228 pence/kWh. Additionally, the energy consumers in this dataset belong to five different

geo-demographic groups.

The application used in this chapter aims to segment energy consumers given their load curve.

We use characteristic load profiles to find the optimal number of energy consumption groups with

similar consumption patterns and determine the cluster membership of every load curve given in

the training dataset. Utility companies can use accurate energy consumer-type identification to

make correct decisions regarding the investments in load-shifting campaigns to prevent over or

under-dimensioning linked to peak energy demand. Several performance evaluation metrics were

introduced in [131]. They are defined as follows:

DI [143]: Dunn’s index is a model performance evaluation metric that is calculated using the min-

imum ratio between the closest distance of two observations of different clusters and the largest

distance between two observations in the same cluster. This index is maximized for best clustering,

and it is defined as follows:

DI =
minA∈M

{
minB∈M,B ̸=A{ϕ(A,B)}

}
maxA∈M{Π(A)}

(28)

ϕ(A,B) = minX⃗i∈A,Y⃗j∈B
{
d(X⃗i, Y⃗j)

}
(29)

Π(A) = maxX⃗i,X⃗j∈A
{
d(X⃗i, X⃗j)

}
(30)

where d denotes the distance or the similarity function, ϕ(A,B) denotes the minimum distances

between two observations that each belong to either cluster A or B, and M denotes the set of clusters.
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EoE [112]: The Entropy of Eigenvalue is an entropy-based clustering performance measure; it is

obtained from the eigenvalue analysis of the correlation matrix calculated using raw smart meter

data. The index is calculated using the correlation between representative time series of different

clusters and the correlation between different time series within each cluster. The EoE index is

calculated using the following equation:

EoE =
SMB∑K

k
Nk
N SMwk

(31)

The SM similarity is a normalized average information measure; the larger it is, the greater the simi-

larity. The term SMb represents the normalized entropy of eigenvalues obtained from the correlation

matrix between different clusters, and SMwk represents the normalized entropy of eigenvalues ob-

tained from the correlation matrix between time series in each cluster k. In an ideal clustering,

EoE is a small value consisting of high similarity between time series within each cluster and low

similarity between representative time series of different clusters.

S [144]: The Silhouette score is a model evaluation measure that is concerned with calculating a

score for each observation in the training dataset. The measure calculates the overall evaluation by

computing the average score for all the dataset observations. The metric is maximized for better

clustering and is defined in the following equation:

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
(32)

where a(xi) represents the average dissimilarity of the data point xi to all the other data points

within the same cluster. b(xi) represents the minimum average dissimilarity of data point xi to data

points existing in a cluster different from the data point’s cluster.

CH [145]: The Calinski-Harabasz is a model performance evaluation index; the measure calcu-

lates the ratio between the inter-cluster variance and the intra-cluster variance. This measure is
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maximized for better clustering and is defined as follows:

CH =
N −K

K − 1

∑K
k=1

(
Nkd(ck, c)

)∑K
k=1

∑Nk
i=1 d(X⃗i, ck)

(33)

where Nk is the number of observations predicted to belong to cluster k, ck denotes the centroid of

class k, c denotes the global centroid of all the clusters, and d denotes the distance or the similarity

function.

DB [146]: The Davies–Bouldin index is a model performance evaluation measure; it calculates the

ratio of intra-cluster distances to inter-cluster distances for each possible pair of clusters. The max-

imum ratio calculated for each pair of clusters is considered in a summation. The summation result

is divided by the total number of clusters to obtain the metric’s value. This measure is minimized

for better clustering, and it is defined as follows:

DB =
1

k

∑
A∈M

maxB∈M,B ̸=A

{
O(A) +O(B)

d(cA, cB)

}
(34)

O(A) =
1

ϱ(A)

∑
X⃗i∈A

d(X⃗i, cA) (35)

where ϱ(A) denotes the cardinality of cluster A, k denotes the number of components enforced by

the mixture model, M denotes the set of clusters, cA denotes the centroid of class A, and d denotes

the distance or the similarity function. M has k elements

GOF [147]: The Goodness of Fit statistic value measures the model’s fitting accuracy, and it is

calculated as follows:

GOF =
N∑
i=1

(Υ(X⃗i)− Ω(X⃗i))
2

Ω(X⃗i)
(36)

where Υ(X⃗i) and Ω(X⃗i) represent the empirical and the expected frequencies of the observation
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X⃗i respectively. The indices ACC, TPR, PPV, TNR, NPV, FPR, FNR, and FDR, represent average

accuracy, average true positive rate, positive predictive value, true negative rate, negative predictive

value, false-positive rate, false-negative rate, and false discovery rate, respectively. They are defined

as follows:

TPR =
1

M

M∑
k=1

TPk

TPk + FNk
(37)

TNR =
1

M

M∑
k=1

TNk

TNk + FPk
(38)

PPV =
1

M

M∑
k=1

TPk

TPk + FPk
(39)

NPV =
1

M

M∑
k=1

TNk

TNk + FNk
(40)

FPR =
1

M

M∑
k=1

FPk

FPk + TNk
(41)

FNR =
1

M

M∑
k=1

FNk

TPk + FNk
(42)

FDR =
1

M

M∑
k=1

FPk

TPk + FPk
(43)

ACC =
1

M

M∑
k=1

TPk + TNk

TPk + FPk + FNk + TNk
(44)

where TPk, FPk, TNk, and FNk denote the number of true positives, false positives, true negatives

and false negatives respectively for the cluster k. In order to compute the metrics explained in Equa-

tions 37 to 44, cluster k labels are considered a positive class, and all the remaining cluster labels

are considered a negative class. MCC represents the Mathiews Correlation Coefficient evaluation

metric [148].

AIC and BIC are probabilistic model selection methods [149] that attempt to select the model

with the best performance while taking into consideration its complexity (by adding a complexity-

related penalty). Unlike probabilistic model selection criteria, performance metrics select models

with disregard for their complexity. The distinct probabilistic model selection criteria used in this
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chapter originate from different fields of study. AIC is derived from the frequentist framework, while

BIC is derived from Bayesian probability and inference. Compared to BIC, AIC emphasizes the

model performance and penalizes complex models less, making it prone to select overfitted models.

In comparison to AIC, BIC attempts to penalize candidate models more for their complexity. The

AIC and BIC model selection criteria statistics for each candidate model are computed as follows:

BIC = 2 log(L(Θ)) + κ log(N) (45)

AIC =
−2

N
log(L(Θ)) + 2 ∗ κ

N
(46)

whereL(Θ) is the likelihood function estimate given a set of parameters Θ , κ represents the number

of free parameters, andN represents the number of observations. AsN approaches infinity, the BIC

criterion is more likely to select the candidate model with the true number of intrinsic groups. The

candidate model with the lowest AIC and BIC are selected for both model selection criteria.

In the upcoming sections, The performance of the proposed model is compared to specific mix-

ture models such as the BAGGMM, the AGGMM, and the FSAGGMM. Model selection using the

proposed model is performed using the MML model selection criterion and compared against spe-

cific model selection methods such as BIC, AIC, and model selection methods using performance

measures such as the Dunn’s Index (DI), and the Entropy of Eigenvalue (EOE).

2.4.1 Synthetic Data

As a first stage, synthetic datasets are used to validate the proposed mixture model and its model

selection method. We propose using a 49-dimensional dataset, which imitates a real-life smart meter

records dataset by representing each energy consumer with a load curve. In order to generate the

synthetic datasets used in this chapter, the following steps must be followed:

(1) For each energy consumer in the real-life dataset, only the first 49 smart meter records are

considered.

(2) The Gaussian mixture model is used to cluster the data into a specific number of clusters. The

mean of each cluster is considered a consumption profile.
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(3) Each consumption profile inferred from the previous step is summed with instances generated

by a Gaussian white noise using five different sets of parameters to form the observations of

the synthetic dataset.

(a) First synthetic dataset (b) Second synthetic dataset

Figure 2.2: Consumption profiles used to generate the synthetic datasets

In other words, the origin of each cluster of observations within the synthetic datasets used

in this chapter is an actual energy consumption profile concluded from a real dataset. The first

Profile 1 Profile 2 Profile 3 Profile 4 Profile 5
Gaussian White Noise Parameters

µ=0.001; σ=0.2 378 370 379 371 382
µ=0.01; σ=0.2 349 364 356 356 355
µ=0.1; σ=0.2 352 360 361 359 348
µ=0.05; σ=0.3 354 358 359 356 353
µ=0.01; σ=0.3 365 353 357 350 355

Table 2.2: Count of observations generated for the first synthetic dataset

dataset consists of five clusters. The five real-life consumption profiles used to generate the first

dataset are demonstrated in Figure 2.2a. The count of the observations generated for each energy

consumption profile using the distinct Gaussian white noise parameters is shown in Table 2.2. As an

illustrative example of the data generation process, 378 observations of the first dataset are generated

by summing the white noise vector generated using the parameter set (µ = 0.001;σ = 0.2) of the

multivariate Gaussian white noise with the vector of ”Consumption Profile 1”.

Our model selection approach successfully infers the correct number of components within this

dataset, as demonstrated in Table 2.3. MML outperforms specific model selection methods using
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FSBAGGMM
Model Selection Method

BIC 7
AIC 7
DI 4
MML 5
EoE 5
Ground Truth 5

Table 2.3: Identified optimal number of clusters using
the first synthetic dataset

BAGGMM + FW
Model Selection Method

BIC 6
AIC 6
DI 6
MML 8
EoE 8
Ground Truth 8

Table 2.4: Identified optimal number of clusters using
the second synthetic dataset

the clustering results obtained from each instance of our proposed model.

(a) First synthetic dataset (b) Second synthetic dataset

Figure 2.3: Mixture model’s log-likelihood functions demonstration during
the clustering of the Synthetic Datasets

Figure 2.3a demonstrates the maximum log-likelihood achieved by clustering the data using the

proposed model in comparison with specific mixture models. The clustering results of our pro-

posed model are evaluated using several performance measures and compared against the clustering

performances of specific mixture models as shown in Tables 2.6, and 2.7. The proposed model

achieves the best fit of the training data by scoring the best performance according to all the perfor-

mance metrics used in this experiment and by reaching the highest log-likelihood.

The second dataset consists of eight clusters. The eight real-life consumption profiles used to
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Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7 Profile 8
Gaussian White Noise Parameters

µ=0.001; σ=0.2 445 448 450 444 449 447 442 455
µ=0.01; σ=0.2 442 449 448 448 448 452 445 448
µ=0.1; σ=0.2 442 452 455 449 447 443 447 445
µ=0.05; σ=0.3 445 448 444 451 453 447 442 450
µ=0.01; σ=0.3 460 459 458 468 457 455 466 457

Table 2.5: Count of observations generated for the second synthetic dataset

generate this dataset are demonstrated in Figure 2.2b. The count of the observations generated for

each energy consumption profile using the distinct Gaussian white noise parameters is shown in

Table 2.5. Our model selection approach successfully infers the correct number of components

within this dataset, as demonstrated in Table 2.4. MML chooses the proposed model’s instance

with a component count equal to the ground truth outperforming specific model selection methods

used in this comparison. The proposed model fits the data better than all the mixture models used

in the comparison by achieving the highest maximum log-likelihood as demonstrated in Figure

2.3b. According to all the performance metrics used in this experiment, the proposed model also

outperforms the mixture models selected for the comparison as shown in Tables 2.8, and 2.9.

FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index (%)

ACC 95.569 94.338 85.458 82.804
TPR/Recall 88.935 85.836 63.589 56.953
PPV/Precision 89.458 88.149 74.838 70.500
MCC 86.291 82.921 58.170 51.104
F1-Score 88.922 85.844 63.644 57.011
TNR 97.231 96.461 90.906 89.245
NPV 97.263 96.591 92.128 90.942
FPR 2.769 3.539 9.094 10.755
FNR 11.065 14.164 36.411 43.047
FDR 10.542 11.851 25.162 29.500

Table 2.6: Mixture models’ clustering performance evaluation using the first synthetic dataset

Optimal Performance Indicator FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index

GOF Minimum 3870.683 7261.083 16397.633 17765.500
CH Maximum 2081.868 2046.444 1594.215 1405.947
S Maximum 0.107 0.100 0.023 -0.016
DB Minimum 2.549 2.623 2.661 2.503
DI Maximum 0.224 0.219 0.209 0.209
Xie and Benie Index Minimum 1.871 1.881 2.446 2.698
Fowlkes Mallows Maximum 0.799 0.755 0.650 0.648
Log Loss Minimum 0.625 0.901 9.741 12.138
EOE Minimum 0.730 0.758 1.022 1.032
Jaccard Maximum 0.889 0.858 0.636 0.570
ROC AUC Maximum 0.931 0.912 0.773 0.731
V Measure Maximum 0.755 0.740 0.660 0.639
Rand Maximum 0.919 0.899 0.820 0.795
Normalized Mutual Information Maximum 0.755 0.740 0.660 0.639
Mutual Information Maximum 1.213 1.181 0.969 0.887
Homogeneity Maximum 0.754 0.734 0.602 0.551
Adjusted Rand Maximum 0.749 0.691 0.524 0.497
adjusted mutual info Maximum 0.755 0.740 0.660 0.639

Table 2.7: Mixture models’ clustering performance evaluation using the first synthetic dataset
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FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index (%)

ACC 91.856 88.746 88.481 87.769
TPR/Recall 67.459 54.969 53.862 51.021
PPV/Precision 66.482 55.753 56.402 54.291
MCC 63.813 50.402 49.908 46.726
F1-Score 67.422 54.983 53.922 51.078
TNR 95.347 93.570 93.418 93.012
NPV 95.456 93.921 93.926 93.528
FPR 4.653 6.430 6.582 6.988
FNR 32.541 45.031 46.138 48.979
FDR 33.518 44.247 43.598 45.709

Table 2.8: Mixture models’ clustering performance evaluation using the second synthetic dataset

Optimal Performance Indicator FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index

GOF Minimum 22539.820 36474.842 50310.225 48011.423
CH Maximum 2100.955 1766.797 1713.450 1674.616
S Maximum 0.054 0.001 -0.052 -0.062
DB Minimum 3.563 4.975 6.767 6.738
DI Maximum 0.210 0.213 0.208 0.194
Xie and Benie Minimum 2.883 3.619 3.683 3.784
Fowlkes Mallows Maximum 0.574 0.486 0.518 0.503
Log Loss Minimum 3.293 10.287 12.618 13.228
EOE Minimum 0.620 0.637 0.685 0.675
Jaccard Maximum 0.674 0.550 0.539 0.511
ROC AUC Maximum 0.814 0.743 0.737 0.720
V Measure Maximum 0.644 0.565 0.593 0.586
Rand Maximum 0.881 0.836 0.831 0.821
Normalized Mutual Information Maximum 0.644 0.565 0.593 0.586
Mutual Info Maximum 1.303 1.088 1.114 1.093
Homogeneity Maximum 0.627 0.523 0.536 0.526
Adjusted Rand Maximum 0.502 0.384 0.407 0.385
Adjusted Mutual Info Maximum 0.644 0.565 0.593 0.585

Table 2.9: Mixture models’ clustering performance evaluation using the second synthetic dataset

2.4.2 Real-life Smart Meter Data

The commission for energy regulation smart meter data

In this section, we investigate the performance of our proposed model using the first real-life

smart meter dataset. As mentioned earlier, the dataset we considered has smart meter records from

3639 Irish energy consumers. Each consumer has 25728 electricity usage readings that are recorded

in kilowatt-hours. In order to summarize and preserve the information within the numerous features

representing each energy consumer, PCA is used for feature extraction in this experiment. Several

datasets with a different number of features were considered within the range between 50 and 250.

Due to the low reconstruction error, the dataset with 250 features is favoured for this experiment.

We used the dataset as an input to three different instances of our proposed model. Each in-

stance had a different number of mixture components within the range M = [2, 4]. The model

selection algorithm concluded that the minimum value calculated using its objective function is ob-

tained while using the model instance with three components, as shown in Figure 2.4a. Table 2.10
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demonstrates the optimal number of clusters concluded by each model selection criterion used in

comparison with MML. In addition to the fact that our derived model selection criterion has been

inferring the correct number of clusters in solid experiments using synthetic data, AIC and BIC also

agree that the true number of clusters is three in this experiment.

(a) Selection of the optimal number of mixture compo-
nents using MML and the proposed model

(b) The log-likelihood functions of the mixture
models used in the comparison

Figure 2.4: The mixture Model’s performance information during the clustering
of the first real-life smart meter data

Figure 2.4b demonstrates the log-likelihood trail for each mixture model used in the compar-

ison within this experiment. As observed, the proposed model has converged to the highest log-

likelihood indicating a better fit to the training dataset. The clustering evaluation of the proposed

model for the concluded optimal number of clusters is demonstrated in Table 2.11 in comparison

with specific mixture models. As demonstrated, our proposed model achieves the best clustering

performance according to all the evaluation measures used in the comparison.

FSBAGGMM
Model Selection Method

BIC 3
AIC 3
DI 2
MML 3
EoE 4

Table 2.10: Identified optimal number of clusters for the real-life smart meter dataset

As mentioned earlier, we determined the true number of clusters using MML and achieved the

best clustering result using our proposed mixture model. Since this is an implementation of a real-

life application, it is necessary to analyze the resulting clusters to understand further the energy
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Metric’s Optimal Value FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index

S Maximum 0.250 0.216 0.228 0.176
CH Maximum 7.377 5.824 6.671 5.594
DB Minimum 16.951 23.832 20.626 24.577
DI Maximum 0.253 0.238 0.249 0.224
Xie and Benie Minimum 60.821 72.969 62.157 73.319
EOE Minimum 1.460 1.764 1.613 1.822

Table 2.11: Mixture models’ clustering performance using the real-life smart meter dataset

consumption patterns of each consumption trend discovered. Figure 2.5a demonstrates the aver-

age power demand of all the energy consumers without clustering. Comparatively, we demonstrate

the average power demand of each energy consumer cluster in Figure 2.5b. For all the time in-

tervals available in the dataset, as observed, the responsibility of each energy consumption pattern

to the overall average power demand can be determined. The proposed model can determine the

consumer’s contribution to each consumption profile and which the consumer is mostly following.

Table 2.12 demonstrates the ratio of the count of energy consumers in each cluster to the total count

of energy consumers in the dataset; the table also demonstrates the consumption responsibility of

each consumer cluster to the total average energy consumption in the year 2010. Additionally, the

real-life dataset we use in this experiment provides the tariff assigned for each energy consumer. We

have discovered that the tariff types are distributed almost identically across the resulting clusters, as

shown in Figure 2.6, which indicates that the tariff type does not influence the consumer’s electrical

usage pattern.

Average Consumption (kWh) Annual Consumption Responsibility clusters’ proportion
Consumption Profile Cluster

1 6536.770 18.650% 64.600%
2 16117.190 45.980% 1.700%
3 12394.570 35.360% 33.700%

Table 2.12: Consumption profiles statistics for the year 2010

The UK power networks smart meter data

In this section, we validate the performance of our proposed model using the second real-life

smart meter data. As mentioned earlier, the dataset we considered in this experiment has smart

meter records from 3891 household energy consumers that are located in London. Each consumer

has 17520 electricity usage readings that are recorded in kilowatt-hours. In order to summarize the

information included in the load curve of each energy consumer, we have extracted nine features.
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(a) The average demand of all the energy consumers
starting July, 14th 2009 to December,31st 2010

(b) The average demand of the optimal energy con-
sumption clusters from July, 14th 2009 to Decem-
ber,31st 2010

Figure 2.5: Household energy consumption segmentation demonstration
of the first real-life smart meter dataset

Figure 2.6: Number of energy consumers in each cluster
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Following [73], seven features are extracted after the definition of four key time periods, and they

are denoted by t ∈ {1, 2, 3, 4}. The Overnight time period (t = 1) is defined between 10:30 PM

and 6:30 AM, the Breakfast time period (t = 2) is defined between 6:30 AM and 9:00 AM, the

Daytime period (t = 3) is defined between 9:00 AM and 3:30 PM, the Evening time period (t = 4)

is defined between 3:30 PM and 10:30 PM. Based on the four previously explained prominent time

periods, seven features are extracted from smart meter records to summarize the representation of

energy consumers, and they are calculated as follows:

• RAPt denotes the Relative Average Power for time period (t) over the entire year; it is defined

as follows:

RAPt =
APt

DAP
, t = 1, 2, 3, 4 (47)

• the Mean STD denotes the Mean Relative Standard Deviation of the average power used over

the entire year; it is defined as follows:

Mean STD =
1

4

4∑
t=1

σt
APt

(48)

• The seasonal score is defined as follows:

Seasonal Score =
4∑

t=1

|APW
t −APS

t |
APt

(49)

• The Weekend vs Weekday Difference Score (WD-WE diff. Score) is calculated as follows:

WD-WE diff. Score =

4∑
i=1

|APWD
t − APWE

t |
APt

(50)

where APt, and σt represent the average power used by the specific consumer and its corresponding

standard deviation in the time period (t) respectively over all the available smart meter records data.

DAP represents the average daily power used by the specific consumer throughout the available

smart meter data. APW
t and APS

t represent the average power used by the specific consumer in

the time period (t) throughout winter and summer, respectively. APWD
t , and APWE

t represent the
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average power used by the specific consumer in the time period (t) throughout the weekdays and

weekends respectively for the available data. Finally, the eighth and the ninth features represent the

consumer’s tariff and geo-demographic group, respectively.

We have determined the optimal number of clusters for our proposed model using the MML

model selection criterion similar to our previous experiments. Among five candidate FSBAGGMM

models of mixture components within the range [2,6], the model instance with four components

achieved the minimum message length.

FSBAGGMM
Model Selection Method

BIC 4
AIC 4
DI 4
MML 4
EoE 2

Table 2.13: Identified optimal number of clusters for the second real-life smart meter dataset

Most of the model selection methods used in the comparison demonstrated in Table 2.13 agree

on the optimal number of mixture components. Therefore, the data were clustered into four clusters

using our proposed model, and the clustering performance evaluation is compared against specific

mixture models. Table 2.14 demonstrates how our proposed mixture model has been able to outper-

form the different mixture models used in the comparison using six different performance metrics.

Metric’s Optimal Value FSBAGGMM FSAGGMM BAGGMM AGGMM
Performance Index

S Maximum 0.319 0.288 0.265 0.189
CH Maximum 1984.843 1078.837 545.442 243.243
DB Minimum 1.050 1.075 2.583 3.108
DI Maximum 0.027 0.023 0.019 0.012
Xie and Benie Minimum 0.550 0.719 0.939 1.283
EOE Minimum 0.315 0.434 0.442 0.453

Table 2.14: Mixture models’ clustering performance using the second real-life smart meter dataset

As shown in Figure 2.7b, the categorical feature representing the tariff for each energy consumer

has an almost identical distribution across the clusters obtained using our proposed mixture model,

having little to no influence on the energy consumption behaviour. Nevertheless, and as demon-

strated by the CH score in Table 2.14, our proposed model has achieved clusters with a relatively

small intra-cluster (within clusters) variance and a relatively large inter-cluster (between clusters)

variance. Additionally, the minimum number of members within the clusters achieved using the
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FSBAGGMM is 225 energy consumers, as demonstrated in Figure 2.7a. Additionally, Table 2.15

demonstrates the average values of several features for the inferred household energy consumer

clusters.

(a) Percentage of energy consumers in each cluster. (b) The distribution of tariffs across the result-
ing clusters

Figure 2.7: The UK power networks smart meter data clusters information

Since the smart meter data have been modelled successfully, the proposed model is capable of

identifying energy consumer clusters that are suitable for demand reduction initiatives within several

utility programs [74]. As an example, Table 2.15 demonstrates that the first cluster has a relatively

high evening RAP with a relatively low mean STD, seasonal score, and WD-WE difference score.

The power demand of energy consumers exhibiting energy consumption patterns similar to the first

cluster could be lowered by implementing storage devices. The third and fourth cluster’s energy

consumption patterns exhibit relatively low variability in demand, as represented by the mean STD

and WD-WE difference score, while exhibiting a relatively high seasonal difference in power de-

mand, as represented by the seasonal score. Such households could be offered non-electric or more

efficient heating systems to reduce the winter demand.

Overnight RAP Breakfast RAP Daytime RAP Evening RAP Mean STD Seasonal score WD-WE diff. Score
Consumption Profile

1 0.686 0.937 1.041 1.344 0.810 0.883 0.458
2 0.664 1.050 0.956 1.411 1.127 1.025 1.557
3 0.672 0.959 1.011 1.381 0.974 2.062 0.553
4 0.860 0.981 0.916 1.249 1.169 4.445 0.591

Table 2.15: The mean values of the first seven smart meter data features
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2.5 Conclusion

In this chapter, an expectation-maximization algorithm is presented within the MML criterion to

optimize the parameters of the bounded asymmetric generalized Gaussian mixture model and to find

the optimal number of consumption profiles and the optimal subset of features simultaneously. Our

approach assumes that the data arise from a mixture of bounded asymmetric generalized Gaussian

distributions. The final results demonstrated that the load curve of an individual energy consumer

showed a probabilistic association with each class indicating which pattern of electricity use was

more or less likely to be used within a household. Therefore, it is possible to categorize households

and how they consume energy using our proposed model.

Prior works in household energy consumption segmentation unrealistically approach model se-

lection and feature selection as independent problems. Our approach successfully achieves the

discovery of the true number of energy consumption profiles and the determination of the optimal

set of data attributes to be used for modelling in our proposed mixture model in a single optimization

process and avoids running the EM algorithm many times.

Clustering synthetically generated smart meter records with ground-truth cluster size, our pro-

posed algorithm has outperformed most of the existing model selection approaches. In the same

experiment, the proposed model correctly models the first and the second synthetic smart meter

data with high accuracy of 95.569% and 91.856%, respectively. Similarly, our algorithm has also

determined the optimal number of clusters in both datasets in experiments involving real-life data,

and the proposed model outperforms all the mixture models used in the comparison, as demon-

strated by all the utilized performance metrics. Thus, the superiority of the proposed algorithm in

modelling smart meter data with different feature extraction methods over all the state-of-the-art

clustering algorithms used in the comparison is proven.

Hence, our approach to analyzing real-life smart meter data is effective in determining house-

holds that are suitable for demand reduction initiatives such as DR and EE. Thus, providing the

opportunity for utility companies to adopt environmentally friendly and cost-effective technologies.
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Chapter 3

Explainable Finite Mixture of Mixtures

of Bounded Asymmetric Generalized

Gaussian and Uniform Distributions

Learning for Energy Demand

Management

In the previous chapter, we explored the potential of incorporating the bounded asymmetric

generalized Gaussian distribution in mixture models and implemented a feature selection framework

in the context of the novel mixture model. The clustering efficacy of the proposed framework has

been proven successful in modelling smart meter data. Additionally, the proposed model has been

able to outperform several state-of-the-art clustering models in the same context. In this chapter,

and following our introduction of the principles of the mixture of mixtures, the semi-supervised

learning, and the explainability in Section 1.1, Section 1.2, and Section 1.4 respectively, the potential

of incorporating a Uniform distribution within the inner mixture of the mixture models is explored

to build a mixture model that is reliable, explainable and robust to outliers.

We introduce a mixture of mixtures of bounded asymmetric generalized Gaussian and uniform
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distributions. Based on this framework, we propose model-based classification and model-based

clustering algorithms. We develop an objective function for the minimum message length (MML)

model selection criterion to discover the optimal number of clusters for the unsupervised approach

of our proposed model. Given the crucial attention received by Explainable AI (XAI) in recent

years, we introduce a method to interpret the predictions obtained from the proposed model in both

learning settings by defining their boundaries in terms of the crucial features. Integrating explain-

ability within our proposed algorithm increases the credibility of the algorithm’s predictions since

it would be explainable to the user’s perspective through simple If-Then statements using a small

binary decision tree. In this chapter, the proposed algorithm proves its reliability and superiority to

several state-of-the-art machine learning algorithms within the following real-world applications:

fault detection and diagnosis (FDD) in chillers, occupancy estimation and categorization of residen-

tial energy consumers.

3.1 Introduction

Statistical modelling is needed in several areas, such as pattern recognition and machine learn-

ing. In statistical learning, discovering valuable data and patterns in data relies on selecting an

appropriate model to fit the data. Once the complex patterns are modelled, the trained models can

be used to make valuable decisions related to the corresponding applications. Finite mixtures offer

statistical models that can be trained in a supervised, unsupervised and semi-supervised manner.

Finite mixture models have been considered a reliable statistical approach that can fulfil the re-

quirements of diverse real-life applications. Mixture modelling enables using prior knowledge to

model the uncertainty about the data. The term ”uncertainty” in the context of mixture models is

represented by the responsibility of each mixture component to the data instances.

The Gaussian distribution as an isotropic probability density function can be used effectively

within a clustering algorithm to compactly model and represent the intrinsic grouping of the data.

The representation of the Gaussian mixture model comprises a set of parameters that would not

relatively yield a computationally expensive model as the dimensions of the data grow. The set of

parameters of each mixture component describes each discovered pattern’s properties and includes a
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mean parameter vector and a covariance matrix. Given this motivation, the EM algorithm has been

used to efficiently estimate the parameters of a Gaussian mixture model that best fits the data in

several applications [19,20]. Although this compact representation may yield clustering algorithms

that require a relatively low computational cost, in some applications, it could introduce several

limitations to modelling the data, such as:

(1) It has a rigid bell shape and a tail that is too short for most real-world problems [21].

(2) The Gaussian distribution and several other choices of distributions for a given mixture model

are unbounded with a support range that extends from −∞ to ∞ [150].

(3) The distribution is symmetric around its mean.

The data clusters of real-life applications are usually bounded and most likely have a density that is

non-Gaussian [24–26]. The term ’non-Gaussian’ in the context of describing a distribution signifies

a density function that is asymmetric, non-bell shaped or both. The fixed kurtosis of the Gaussian

distribution makes the mixture model vulnerable to the outliers of individual data clusters. Since the

Gaussian distribution does not have a parameter that controls the distribution’s tails to be correctly

estimated while fitting the distribution to each data cluster, the distribution is unsuitable for assign-

ing a relatively low probability of occurrence to the individual class outliers [28,29]. Such limitation

brings about applications incorporating the Gaussian mixture model to seek outlier detection and

removal techniques within their workflow, which in turn causes the incurrence of an additional

computational expense [30–33]. On the other hand, there have been several attempts to use more

flexible distributions than the Gaussian distribution to fit data from diverse applications in addition

to its ability to generalize to the Gaussian distribution. Several research papers have proposed using

the generalized Gaussian distribution (GGD) in diverse real-life applications [16,40,147,151–153].

The distribution is formalized similarly to Equation 9. where A(λ) =
[
Γ(3/λ)
Γ(1/λ)

]λ/2
, and X denotes

the random variable. The parameters µ and σ denote the mean and the standard deviation, respec-

tively. The symbol λ denotes the parameter that distinguishes this distribution from the Gaussian

distribution. The λ parameter obeys the condition λ ≥ 1 and controls the kurtosis of the distribu-

tion at which it determines if the probability density function is peaked or flat. As the parameter

λ increases in value, the distribution becomes flattered until it degrades to its special case of the
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Uniform distribution as λ → ∞. As the λ decreases in value, the probability density function be-

comes more peaked. As λ → 0, the probability density function becomes a delta function with an

infinite value at µ. Practically, the λ parameter controls the tails of the distribution, and if estimated

correctly for the training data, the distribution should model the data accurately with robustness to

outliers. The distribution generalizes to the Gaussian distribution when λ = 2 and to the Laplacian

distribution when λ = 1. Thus, the distribution is flexible and able to fit diverse real-life application

data better in comparison to the use of each of its special cases individually in a mixture model. This

distribution is especially effective if the data features are assumed to be distributed independently.

Furthermore, to fit asymmetrically distributed data, researchers have proposed the usage of the

asymmetric generalized Gaussian distribution (AGGD) in several applications [123, 154, 155]. The

AGGD is formalized similarly to Equation 10. In comparison to the GGD, this distribution has two

parameters to describe the variance of the data instead of one parameter. The left and right standard

deviations are denoted as σl and σr, respectively; they control the asymmetry of the probability

density function. The distribution is skewed left if σl < σr, skewed right if σl > σr and symmetric

if σl = σr. Thus, in addition to the flexibility provided by the GGD, the AGGD is capable of

modelling data with an asymmetrical distribution [156].

For every model-based clustering algorithm, and since the training is done in an unsupervised

manner, the number of clusters is unknown. Thus, accurately modelling the data requires the dis-

covery of the true number of classes within it. From a computational point of view, methods per-

forming this task are categorized into deterministic and stochastic methods. Markov chain Monte

Carlo (MCMC) is an example of a stochastic model selection method. It is an accurate and effective

method to fit mixture models by sampling all the possible values of the mixture parameters from the

full a posteriori distribution [157]. Consequently, this method is computationally expensive. On the

other hand, deterministic methods attempt to discover the true number of clusters by running a can-

didate model for a cluster count within the range (2,M ), whereM represents the maximum number

of clusters considered for the learning task. Akaike’s information criterion (AIC) [158], Bayesian

information criterion (BIC), and minimum description length (MDL) are examples of deterministic

methods. The minimum message length (MML) criterion [139] is well known to outperform the

BIC and the AIC model selection criteria [134–136]. Thus, we use it to discover the true number of
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clusters within our unsupervised learning approach of the proposed mixture model. Within the pre-

viously mentioned model selection criterion, we use the expectation-maximization (EM) to estimate

the proposed model’s parameters that maximize the data likelihood.

3.1.1 Explainable Artificial Intelligence

Providing explicit representations of the detected patterns by machine learning algorithms has

been recently a central research topic [67–69]. There have been several research advancements in

the interpretability of data-driven models. However, most of the prior works within this field have

been done within post-modelling explainability. This approach has the following shortcomings [70]:

(1) It had provided no insights into training data.

(2) It was heavily dependent on the given model.

Within the publications of the last decade, the use of the term ”explainability” grew exponen-

tially starting three years ago [71]. Our proposed model provides insight in terms of recognizing

the different patterns within the data and the statistical properties of each pattern. Moreover, the

integrated explainability within our proposed model further provides insights into the model and its

prediction by defining the boundaries between the discovered patterns in terms of the important data

attributes. Similar to the approach in [70], we develop a pre-modelling explainability in the context

of model-based classification and clustering. We use this approach to justify and demonstrate in

human language why specific observations are predicted within the same or different discovered

patterns; This is done by training a small binary threshold tree. The adopted decision tree (DT)

has a number of leaves that is equal to the number of clusters assumed within our proposed mix-

ture model. As explained before, mixture models attempt to learn the underlying distribution, and

that helps the approach to generalize well to unseen data, unlike supervised models such as DT.

As well known, the predictions of the DT algorithm are easily interpretable using simple If-Then

rules. Thus, integrating these two models helps us propose an explainable prediction model that

generalizes well to unseen data. We further utilize the integration of explainability with our pro-

posed model by training the mixture model using a low-level set of attributes and interpreting its
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predictions using a different and a high-level set of attributes that an expert of the system better un-

derstands. Prior works in explainable methods usually seek a trade-off between prediction accuracy

and interpretability by varying the values of some DT hyperparameters. However, expanding the DT

in some cases does not change the If-Then rules for some clusters since it yields no improvements

in the cost gain [72]. Additionally, adjusting the DT hyperparameters may increase its accuracy but,

at the same time, makes it less interpretable. Thus, to present the explainability of our model, we

limit the scope of the experiments done within this chapter by setting the number of integrated DT

leaves equal to the true number of clusters. In addition to the validation of our proposed mixture

model, we demonstrate the integrated explainability through tree figures of the If-Then rules of the

important features that lead to every categorization. The applications of chiller fault detection and

diagnosis, energy consumers’ categorization and occupancy estimation are used within this chap-

ter to demonstrate the integrated explainability within our proposed framework. Fault diagnosis in

chillers resembles the interpretation of fault categorization in terms of the attributes used. Five faults

were successfully identified via a rule-based statistical model for vapour compression air condition-

ers [159]. In the previously mentioned research paper, the authors have provided interpretability

of what characterizes the faults in terms of the data attributes. The fault categories were explained

through a simultaneous increasing or decreasing change to seven different attributes instead of spec-

ifying thresholds. Thus, in addition to our aim to classify faults in chiller operational data, we aim

to provide interpretability in the form of If-Then statements using the values of the data features.

Our approach to analyzing households’ energy consumption data determines households suitable

for demand reduction initiatives such as demand response (DR) and energy efficiency (EE). Thus,

providing the opportunity for utility companies to adopt environmentally friendly and cost-effective

technologies. DR is an incentive program that enables the possibility for utility companies to reduce

expenses on unnecessary investments and lower emissions of greenhouse gases (GHG). DR induces

households to reduce their energy consumption levels at times of high wholesale market prices or

when system reliability is jeopardized. EE programs aim to reduce the power demand of households

while maintaining their consumption habits. As an example, the power demand of energy consumers

exhibiting a relatively high evening demand with low variability can lower their peak load by im-

plementing storage devices. As households exhibiting relatively low variability in demand with a

53



relatively high seasonal difference in power demand, they could be offered non-electric or more ef-

ficient heating systems to reduce the winter demand. Prior works to target energy consumers using

clustering algorithms [73, 74] use additional statistical analysis to select suitable candidate energy

consumers for demand management programs [75–77]. Thus, we take advantage of the integration

of the explainability within our proposed method and define the boundaries between energy con-

sumers using simple If-Then statements with specific values of high-level features so it would be

easy for an expert to find a suitable candidate for any power demand reduction program. Besides

the successful efforts in correctly detecting the patterns and their corresponding number of occu-

pants, researchers have exhibited the estimated occupancy against the true occupancy with respect

to a single dimension or a max of two dimensions [160, 161]. However, in this chapter, we aim

to present the estimated occupancy of our proposed model with respect to the values of important

features with a simple graph of If-Then rules.

In this chapter, we propose a mixture of mixtures of bounded asymmetric generalized Gaussian

and Uniform distributions (BAGGU) that can generalize to an extensive range of mixture models.

The inner mixture of the proposed framework consists of a flexible distribution that can generalize to

several distributions and a Uniform distribution that can help increase the model’s robustness to out-

liers. We propose semi-supervised and unsupervised methods of learning the proposed model. Us-

ing the unsupervised approach, we prove that our proposed model is capable of performing pattern

recognition by inferring the true number of energy consumption profiles and identifying household

groups that follow each discovered pattern using the Minimum Message Length (MML) model

selection criterion. Using several performance metrics, our mixture model outperforms several

state-of-the-art machine learning models such as the Explainable mixture of mixtures of Gaus-

sian and Uniform distribution (ExGU), and the Explainable ExKMC in modelling households’

energy consumption data. For the semi-supervised learning approach, we validate our proposed

model against two interesting real-life applications: Chiller fault detection and diagnosis and Occu-

pancy estimation.
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Chiller fault detection is an AI-driven application for identifying and diagnosing issues in large-

scale cooling systems, optimizing performance and reducing energy consumption. By utilizing ma-

chine learning and data analytics, AI models can analyze historical and real-time data from chiller

components to detect anomalies and predict potential faults. Occupancy estimation is an AI-based

application that predicts the number of people present in a given space, such as buildings or rooms,

by analyzing data from various sensors and sources [162]. Leveraging machine learning algorithms,

this approach aids in optimizing energy usage, enhancing security, and improving building manage-

ment operations.

Using several performance metrics, our mixture model outperforms the Explainable mixture

of mixtures of Gaussian and Uniform distribution (ExGU), the Explainable Adaptive Boost-

ing (ExAdaboost) algorithm with DT as its base estimator, the Explainable k-Nearest Neigh-

bour (ExKNN), and the Decision Tree within both real-life applications. Within the subsequent

sections of this chapter, the information is presented with the following arrangement: Section 3.2

describes the proposed mixture model, its semi-supervised learning approach and its unsupervised

learning approach. Section 3.3 introduces the real-life applications used to validate the proposed

model, their datasets and their experimental results. Section 3.4 presents our conclusions and future

works.

3.2 The proposed mixture model

3.2.1 The finite mixture model

Mixture models offer a powerful clustering solution for diverse applications. The basic concept

of mixture models is that they assume the data arise from a convex combination of distributions,

where each cluster g is represented by a single distribution f(X⃗i|ξg) with parameters ξg within the

mixture. A parametric M -component mixture model is defined similarly to Equation 1. where

X⃗ = [Xd, ..., Xd]
T denotes a multivariate random vector. The term πg represents the mixing

proportion of the component g and it fulfils the following conditions: πg > 0,
∑M

g=1 πg = 1.

Θ = (π1, ..., πM , ξ1, ..., ξM ) denotes the complete parameter set that defines the mixture model.

In this chapter, we are proposing a mixture of mixtures where each component of the mixture model
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is itself a mixture of two distributions. We considered the inner mixture to consist of a bounded

asymmetric generalized Gaussian ϕ(X⃗|ϑg) and a Uniform distribution u(X⃗|ζg). Consequently,

each component of the mixture is defined as follows:

f(X⃗i|ξg) = ωgϕ(X⃗i|ϑg) + (1− ωg)u(X⃗i|ζg) (51)

The bounded asymmetric generalized Gaussian distribution is defined following [22, 102] in a sim-

ilar manner to Equation 8:

where Ψ(Xid|θgd) denotes the unbounded asymmetric generalized Gaussian probability density

function.

The terms H(Xid|g) and
∫
∂k

Ψ(X|θgd)dX contribute to making the AGGD used in the pro-

posed inner mixture bounded. The bounded support region is denoted by τgd for each compo-

nent g and dimension d. The indicator function H(Xid|g) sets the density value of the AGGD

outside the bounded support region to zero, and it is defined similarly to Equation 7. The term∫
τgd

Ψ(X|θgd)dX denotes the normalization constant that restores the statistical properties of the

probability density function, the share of Ψ(Xid|θgd) that falls within the support region τgd. In

comparison to the Gaussian distribution, the additional parameters of the BAGGD allowed the pro-

posed mixture model to be flexible and able to fit data with different shapes, asymmetry and bounded

support. Additionally, the Uniform distribution within the inner mixture makes the proposed mix-

ture model more robust to outliers.

3.2.2 Semi-supervised learning of the mixture parameters

In this section, we will explain how we train the model in a semi-supervised manner. The data’s

likelihood considering N D-dimensional observations where s observations are labelled, or their

cluster memberships are assumed known is defined as follows:

p(X|Θ) =
s∏

i=1

M∏
g=1

[
πgf(X⃗i|ξg)

]Zig ×
N∏

j=s+1

M∑
h=1

πhf(X⃗j |ξg) (52)

whereZi is of standard basis and it indicates which cluster k is mostly responsible of observation
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i. Thus, Zi is a set of all possible latent variables Zi1, ..., ZiM for each observation i. In order to

find the optimal parameters that maximize the data likelihood as computed in Equation 52, we

use the EM algorithm to achieve this task in an iterative manner. The objective function of the

EM algorithm in each iteration considering the semi-supervised approach of learning the proposed

mixture of mixtures is written as follows:

L(X ,Θ, Z, V ) =

s∑
i=1

M∑
g=1

Zig

[
log πg + V̂ig log ϕ(X⃗i|ϑg)

+ (1− V̂ig) log u(X⃗i|ζg)
]

+
N∑

j=k+1

M∑
h=1

γ(Zjh)
[
log πh

+ V̂jh log ϕ(X⃗j |ϑh) + (1− V̂jh) log u(X⃗j |ζg)
]

(53)

The conditional expected values are denoted as Ẑjh and v̂ig. Ẑjh is defined in Equation 54 for

j = k + 1, ..., N . v̂ig is defined in Equation 55 for i = 1, ..., N .

p(Zj = g|X⃗j ,Θ) = γ(Zjh) =
π̂hf(X⃗j |ξ̂h)∑M
g=1 π̂gf(X⃗j |ξ̂g)

(54)

V̂ig =
ω̂gϕ(X⃗|ϑg)

ω̂gϕ(X⃗|ϑg) + (1− ω̂g)ϕ(X⃗|ϑg)
(55)

In order to optimize the data’s likelihood, we differentiate Equation 53 with respect to each one of

the model parameters and set it to zero to obtain the following Equations:

πg = p(Zg = 1) =

∑s
i=1 Zig +

∑N
j=k+1 Ẑjg

N
(56)

ωg =

∑s
i=0 V̂igZig +

∑N
j=s+1 V̂jgẐjg∑s

i=1 Zig +
∑N

j=s+1 Ẑjg

(57)

As we calculate the gradient of Equation 53 with respect to each parameter of our proposed model,

we obtain non-linear equations. Thus, we use the Newton–Raphson method to approximate the
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updated values of the model parameters for each iteration of the EM algorithm. The model’s pa-

rameters are estimated as follows:

µ̂gd = µgd −
[(

∂2L(X ,Θ, Z, V )

∂µ2gd

)−1(∂L(X ,Θ, Z, V )

∂µgd

)]
(58)

σ̂lgd = σlgd −
[(

∂2L(X ,Θ, Z, V )

∂σ2lgd

)−1(∂L(X ,Θ, Z, V )

∂σlgd

)]
(59)

σ̂rgd = σrgd −
[(

∂2L(X ,Θ, Z, V )

∂σ2rgd

)−1(∂L(X ,Θ, Z, V )

∂σrgd

)]
(60)

λ̂gd = λgd −
[(

∂2L(X ,Θ, Z, V )

∂λ2gd

)−1(∂L(X ,Θ, Z, V )

∂λgd

)]
(61)

The partial derivatives are developed in Appendix A.2.

3.2.3 Unsupervised maximum likelihood estimation of the mixture parameters

The unsupervised learning approach of a mixture model is considered a special case of the semi-

supervised learning approach. Thus, Setting (s = 0) in Equation 52 yields the data likelihood of

the unsupervised clustering approach as follows:

p(X|Θ) =

N∏
i=1

M∑
h=1

πhf(X⃗i|ξh) (62)

As a normal procedure, we would be able to compute the gradient of Equation 62 with respect to

the model parameters ∂ log p(X|Θ)
∂θ and set it to 0, then we solve for Θ. However, solving for Θ would

not yield a closed-form solution. Thus, we define the complete data log-likelihood as follows:

p(X , Z, V |Θ) =

N∏
j=1

M∏
h=1

[
πhϕ(X⃗j |ϑh)Vjhu(X⃗j |ζg)(1−V̂jh)

]Zjh (63)
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The complete data likelihood is used to form the objective function of the EM algorithm at each

iteration as follows:

Q(X ,Θ, Z, V ) =

N∑
j=1

M∑
h=1

γ(Zjh) log(πhf(X⃗j |ξh)) (64)

Q(X ,Θ, Z, V ) =

N∑
j=1

M∑
h=1

γ(Zjh)
[
log πh + V̂jh log ϕ(X⃗j |ϑh)

+ (1− V̂jh) log u(X⃗j |ζg)
] (65)

The conditional expected values γ(Zjh) and V̂jh are given by Equations 66 and 67.

p(Zj = h|X⃗j ,Θ) = γ(Zjh) =
π̂hf(X⃗j |ξ̂h)∑M
g=1 π̂gf(X⃗j |ξ̂g)

(66)

V̂jh =
ω̂hϕ(X⃗|ϑh)

ω̂hϕ(X⃗|ϑh) + (1− ω̂h)ϕ(X⃗|ϑh)
(67)

In a restricted maximization process, we find the updated values of the outer mixing proportion πg

and the inner mixing proportions ωg for each cluster g as follows:

πh = p(Zh = 1) =

∑N
i=1 p(Zh = 1|X⃗i,ΘM )

N
(68)

ωh =

∑N
j=1 V̂jhẐjh∑N

j=1 Ẑjg

(69)

Furthermore, we evaluate the first and second partial derivatives of Equation 65 to find the updated

values of the mixture model’s parameters at the M-step of each iteration of the EM algorithm as

follows:

µ̂hd = µhd −
[(

∂2Q(X ,Θ, Z, V )

∂µ2hd

)−1(∂Q(X ,Θ, Z, V )

∂µhd

)]
(70)

σ̂lhd = σlhd −
[(

∂2Q(X ,Θ, Z, V )

∂σ2lhd

)−1(∂Q(X ,Θ, Z, V )

∂σlhd

)]
(71)
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σ̂rhd = σrhd −
[(

∂2Q(X ,Θ, Z, V )

∂σ2rhd

)−1(∂Q(X ,Θ, Z, V )

∂σrhd

)]
(72)

λ̂hd = λhd −
[(

∂2Q(X ,Θ, Z, V )

∂λ2hd

)−1(∂Q(X ,Θ, Z, V )

∂λhd

)]
(73)

3.2.4 Model selection for unsupervised learning

Since this is an unsupervised learning approach, the number of components is assumed to be

unknown even if labels are available. The MML approach of finding the true number of mixture

components is based on evaluating a set of statistical models. Each model is evaluated based on

its ability to compress a message containing the data. The message used to evaluate each model in

the set of candidate models consists of two parts. The first part of the message encodes information

exclusively about the candidate model, and it consists of prior information about its parameters. The

second part encodes information about the training data exclusively in an approach that takes the

model into account. In order to implement MML, the candidate model that minimizes the following

objective function specifies the optimal number of mixing components:

messLen ≈− log(P (ΘM ))−Q(X ,ΘM , Z, V ) +
1

2
log |F (Θ)|

+
η

2
(1 + log(hη))

(74)

where p(ΘM ) is the prior probability that expresses the lack of knowledge about the mixture param-

eters with M components, F (ΘM ) is the Fisher information matrix, η is the number of the model’s

free parameters, and hη is the optimal quantization lattice constant Rη [141]. The number of free

parameters (η) used to define our proposed mixture model can be calculated as follows:

η =M(5D + 1) (75)

Prior probability P (ΘM )

As mentioned earlier, this prior probability expresses the lack of knowledge about the proposed

mixture model’s parameters. Since the knowledge about the parameters of a specific mixture com-

ponent does not provide any information about the parameters of the other different components, it
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is safe to assume that the parameters of the different mixture components are independent. Conse-

quently, the prior probability is calculated as follows:

P (ΘM ) = P (µ)P (λ)P (σl)P (σr)P (π) (76)

where the mixture parameters (µ = {µg}, σl = {σlg}, σr = {σrg}, λ = {λg}, π = (π1, ..., πM ))

are considered mutually independent. Since the parameter π obeys the condition
∑M

g=1 πg = 1, we

use the Dirichlet distribution to compute its prior as follows:

P (π) =
Γ
(∑M

g=1 κg
)∏M

g=1 Γ(κg)

M∏
g=1

π
(κg−1)
g (77)

where Γ denotes the Gamma function and (κ1, κ2, ..., κM ) denotes the parameters of the Dirichlet

distribution. Assuming a uniform prior where κ1, κ2, ...κM = κ = 1, the prior of the parameter π

is evaluated as follows:

P (π) = (M − 1)! (78)

For each µgd, we’re assuming a uniform prior within the region (µd−σld ≤ µgd ≤ µd+σrd), where

µ⃗ = (µ1, . . . , µD), σ⃗l = (σl1 , . . . , σlD), and σ⃗r = (σr1 , . . . , σrD) denote the mean, left standard

deviation, and right standard deviation vectors of the sample data. Consequently, the prior of µ is

calculated as follows:

P (µ) =
M∏
g=1

D∏
d=1

P (µgd) =
D∏

d=1

1

(σld + σrd)
M

(79)

As for the parameter λ, we assume that its prior can be described using a uniform distribution within

the range [0 − τ ], where τ is the largest value permitted for the parameter. Thus, the prior for λ is

written as follows:

p(λ) =

M∏
g=1

D∏
d=1

P (λgd) =
1

γMD
(80)

Similarly, a uniform distribution is considered for both parameters σl and σr considering the fol-

lowing ranges: 0 ≤ σlgd ≤ σlg , 0 ≤ σrgd ≤ σrg . Thus the prior for the parameters σl and σr are

61



given as follows:

P (σl) =

M∏
g=1

D∏
d=1

P (σlgd) =

D∏
d=1

1

σMld
(81)

P (σr) =
M∏
g=1

D∏
d=1

P (σrgd) =
D∏

d=1

1

σMrd
(82)

Estimating the Fisher information matrix

The Fisher information matrix is the expected value of the Hessian matrix given the negative

log-likelihood. It is difficult to analytically evaluate this expected value given our proposed mixture

model. Thus, the Hessian matrix can be approximated via the calculation of the complete Fisher

information matrix as shown in Equation 83.

|F (Θ)| = |F (π)|
M∏
g=1

|F (µ⃗g)||F (σ⃗lg)||F (σ⃗rg)||F (λ⃗g)| (83)

where |F (π)|, |F (µ⃗g)|, |F (σ⃗lg)|, |F (σ⃗rg)|, and |F (λ⃗g)| represent the determinants of the Fisher in-

formation matrices with respect to the parameter vectors µ⃗g, σ⃗lg , σ⃗rg and λ⃗g respectively. |F (π)| is

computed as follows:

|F (π)| = N (M−1)∏M
g=1 πg

(84)

In consideration of the parameter vectors µ⃗g, σ⃗lg , σ⃗rg , λ⃗g, the Hessian matrices are computed as

follows:

F (µ⃗g)k1,k2 =
∂2Q(X ,Θ, Z, V )

∂µgd1∂µgd2
(85)

F (σ⃗lg)k1,k2 =
∂2Q(X ,Θ, Z, V )

∂σlgd1∂σlgd2
(86)

F (σ⃗rg)k1,k2 =
∂2Q(X ,Θ, Z, V )

∂σrgd1∂σrgd2
(87)

F (λ⃗g)k1,k2 =
∂2Q(X ,Θ, Z, V )

∂λgd1∂λgd2
(88)

where (d1, d2) ∈ (1, ..., D). The partial derivatives listed in Appendix A.2 can be used to evaluate

Equations (85)-(88).

62



3.2.5 Convergence of the EM algorithm

At each iteration of the EM algorithm within both the unsupervised and semi-supervised learn-

ing settings, we adopt the Aitken acceleration [163] to estimate the asymptotic maximum of the

log-likelihood. Based on the recently mentioned estimated value, we establish a condition for the

convergence of the EM algorithm. The estimated parameters within the converging iteration are

the optimal parameters that fit the proposed model to the training data. For iteration ι, the Aitken

acceleration is estimated as follows:

a =
p(X|Θ)ι+1 − p(X|Θ)ι

p(X|Θ)ι − p(X|Θ)ι−1
(89)

The asymptotic estimate of the log-likelihood at iteration ι+ 1 is calculated at follows:

p(X|Θ)ι+1
∞ = p(X|Θ)ι +

p(X|Θ)ι+1 − p(X|Θ)ι

1− a(ι)
(90)

3.2.6 Integration of explainability

In our proposed framework, we leverage the power of decision trees to provide an explainable

machine-learning model. This section aims to elucidate the process of integrating decision trees

within our framework, which allows us to obtain the If-Then rules that enable us to better understand

and explain the model’s predictions.

(1) Training Decision Trees using Discovered Patterns

The foundation of our framework is built on the patterns discovered by our proposed mixture

model. These patterns serve as the basis for training a decision tree, which in turn, learns

to generate If-Then rules based on these identified patterns. This enables us to obtain an

interpretable and explainable model, providing a clear understanding of the underlying logic

behind the predictions.

(2) Decision Tree Predicted Labels

Once the decision tree is trained using the patterns discovered by our mixture model, it can

be employed to make predictions on new data. These predicted labels are derived from the
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If-Then rules generated during the decision tree’s training process.

(3) Decision Tree Validation

To assess the efficacy of our proposed framework, we employ a set of performance metrics

that serve as validation criteria for our proposed framework’s predicted labels. By evaluat-

ing these metrics, we can gauge the success of our framework in generating accurate and

interpretable predictions.

In summary, the integration of decision trees within our proposed framework enables us to

create an explainable machine-learning model, providing valuable insights into the decision-making

process. By training the decision tree using patterns discovered by our mixture model, we can

obtain If-Then rules that offer a transparent understanding of the model’s predictions. Furthermore,

we validate the application of our framework through the use of performance metrics, ensuring its

effectiveness in generating accurate and interpretable results.

3.3 Experimental results

In this section, we demonstrate the effectiveness of our proposed model using three energy

management-related applications, namely chiller fault detection and diagnosis, occupancy estima-

tion, and energy consumption categorization. The performance of our method is also compared

against state-of-the-art methods. Several performance evaluation metrics were introduced in [131]

and well defined within Section 2.4 were used within the experiments of this chapter, and they are

listed as follows:

• S [144]: The Silhouette score

• CH [145]: The Calinski-Harabasz

• DB [146]: The Davies–Bouldin

• MCC: it represents the Mathiews Correlation Coefficient evaluation metric [148].
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Our method’s performance is compared against several state-of-the-art machine learning algo-

rithms, namely Explainable mixture of mixtures of Gaussian and uniform distributions (ExGu), Ex-

plainable Adaboost (ExAdaboost), Explainable KNN (ExKNN), and Decision Tree (DT) Within

experiments of applications with labelled data. Within experiments of applications with unla-

belled data, we compare the performance of our proposed model to ExGU and Explainable K-

means (ExKMC).

3.3.1 Chiller fault detection and diagnosis

The energy consumption of the building sector comprises 36% of the global consumption, and

it is set to increase gradually for each year in the upcoming two decades [164, 165]. Since HVAC

systems comprise half the energy consumption of commercial buildings [166–168], variations in

weather conditions across time and locations are considered to be a major factor that impacts energy

consumption. In addition to the influence of weather, the following factors constitute the unnatural

or unexpected drivers of the poor efficiency of HVAC systems: wrongful installation, components

malfunction, control mistakes and unprofessional maintenance. Thus, chiller faults can cause both

discomfort and inefficient power demand in the containing building and modelling chiller operation

data is a necessary task. In some states, the deployment of a fault detection and diagnosis (FDD)

system accompanying specific types of cooling units is mandatory. According to an overview of

FDD techniques and practices [166], FDD methods are classified into three categories according to

their driving bases, and they are listed as follows:

(1) A priori knowledge-based

(2) Gray box

(3) Data-driven

The effective mechanism followed within all these approaches is based on the establishment of a

model and the usage of measurement data to detect faults. However, as mentioned before, they are

categorized based on the difference between the methods’ driving base and resources.

The FDD methods of the first category handle its task by running a comparison between the operat-

ing state obtained from the measurements and the expected operating states; the expected operating
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states are recorded from a model that is built using a priori knowledge (e.g., first principles) [166].

However, the boundaries between the rule-based and physical models can be blurred for some ap-

proaches under this category. Methods under this category have been widely used for the purpose

of detecting and diagnosing faults in HVAC systems [169, 170]. Although their performance ex-

pectations could extrapolate very well in the case of the scarcity of the training data, it is extremely

difficult and expensive to build the physical models that generate the expected operation states of the

system. Thus, those methods are exclusively applicable to information-rich systems where abundant

types of sensors are available to accurately register the system’s behaviour in response to external

physical factors. Additionally, both types of models used in this category of methods (physical mod-

els and rule-based models) are usually effective with a small number of inputs, outputs and states.

As an advantage of rule-based approaches, they have been successful in providing fault diagnosis.

Gray box methods are hybrids of data-driven and a priori knowledge-based methods. Gray box

ExBAGGU ExGU ExAdaboost ExKNN DT
Performance Measure

Accuracy 98.850 96.215 96.701 96.218 95.305
Silhouette 0.040 0.015 -0.001 0.015 0.018
Calinski Harabasz 344.442 375.674 426.977 375.788 373.127
Davies Bouldin 4.699 4.750 5.268 5.741 5.313
Fowlkes Mallows 0.913 0.761 0.780 0.761 0.720
Mathiews Correlation Coefficient 94.780 82.865 85.149 82.874 79.021
F1-Score 95.400 84.861 86.802 84.871 81.220
Jaccard 0.954 0.849 0.868 0.849 0.812
ROC AUC 0.974 0.913 0.925 0.914 0.893
V Measure 0.902 0.767 0.789 0.767 0.744
Rand 0.978 0.939 0.944 0.939 0.927
Normalized Mutual Information 0.902 0.767 0.789 0.767 0.744
Mutual Info 1.874 1.591 1.633 1.590 1.528
Homogeneity 0.901 0.765 0.786 0.765 0.735
Completeness 0.902 0.770 0.793 0.770 0.753
Adjusted Rand 0.900 0.727 0.747 0.727 0.677
Adjusted Mutual Info 0.902 0.767 0.789 0.767 0.744

Table 3.1: Performance evaluation of the models used in the comparison for the detection of faults
of severity level 4

methods use a priori knowledge to mathematically formalize the model, and the model parameters

are estimated using the measurement data. Thus, models of gray-box methods require thorough user

expertise in the system and in statistics. HVAC systems of a commercial scale is a non-linear sys-

tem that is challenging and time-consuming to model (using gray box and a priori knowledge-based

methods) [171]. Meanwhile, models within data-driven methods rely exclusively on historical mea-

surements obtained from the chiller to learn a mathematical model that predicts faults [172]. They

are also known as data-driven methods, and they mathematically relate the historical input measure-

ments to their expected output with no dependence on theoretical system models [172, 173]. Thus,
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those models do not require the difficult task of understanding and thus modelling the system opera-

tion. Therefore, data-driven methods have presented a robust solution to identify chiller faults when

a priori knowledge-based methods fail and exhibit an outstanding potential in modelling chiller’s

operational data [174]. Data-driven models are trained in different manners, namely: supervised,

unsupervised and semi-supervised. Supervised methods such as deep neural networks require mea-

surement data of massive size to perform well since HVAC systems operate under widely diverse

circumstances over different locations and weather conditions for each location over the year [175].

Thus, supervised models are not known to extrapolate well [166]. The underlying distribution of

the chiller operational data can be discovered using mixture models. Overfitting is avoidable while

learning a mixture model in an unsupervised or semi-supervised manner [163]. Bayes’s rule can be

used to distinguish between the chiller’s operational states after the model is fit to the training data.

c [165]. Explaining the reason models within data-driven methods classify different observations

ExBAGGU ExGU ExAdaboost ExKNN DT
Performance Measure

Accuracy 98.668 97.428 97.839 96.721 94.207
Silhouette 0.074 0.048 0.048 0.038 0.048
Calinski Harabasz 371.937 401.374 405.726 381.919 452.419
Davies Bouldin 3.549 4.034 4.472 4.990 4.100
Fowlkes Mallows 0.940 0.845 0.856 0.794 0.729
Mathiews Correlation Coefficient 99.431 88.472 90.161 85.778 74.716
F1-Score 96.673 89.712 91.358 86.885 76.829
Jaccard 0.967 0.897 0.914 0.869 0.768
ROC AUC 0.987 0.941 0.951 0.925 0.868
V Measure 0.954 0.878 0.870 0.838 0.801
Rand 0.980 0.960 0.964 0.945 0.924
Normalized Mutual Information 0.954 0.878 0.870 0.838 0.801
Mutual Info 2.173 1.817 1.807 1.716 1.610
Homogeneity 0.952 0.874 0.869 0.825 0.774
Completeness 0.955 0.881 0.870 0.852 0.830
Adjusted Rand 0.957 0.822 0.835 0.761 0.681
Adjusted Mutual Info 0.954 0.877 0.870 0.838 0.801

Table 3.2: Performance evaluation of the models used in the comparison for the detection of faults
of severity level 3

with the same or different labels is extremely difficult. However, this function is very useful as it

resembles the function of diagnosis in the FDD application. Thus, and as mentioned in the previous

sections, we aim to integrate model-based classification in order to provide a diagnosis within the

FDD application used to validate our proposed model.

In order to validate our proposed mixture model using this application, we use the ASHRAE RP-

1043 Dataset [176, 177]. The dataset consists of several observations for chiller operational data; It

contains various common chiller faults. The chiller operational data was recorded at 10-second and

1-minute intervals. Our proposed mixture model was validated using the dataset with a 10-second
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interval. The 90-ton centrifugal water-cooled chiller was utilized to record the normal and fault

data within this dataset. The previously mentioned chiller can be considered as the representative

of chillers that are considered in larger installations [176]. Four datasets were used to validate the

proposed model. Each dataset contains the chiller normal and faulty operational data with a different

severity level. The severity levels are within the range [1-4]. For each severity level, seven types of

faults are introduced, and they are listed as follows:

(1) RefLeak: Resembles a refrigerant leak and is labelled with the class number ’6’

(2) RefOVer: Resembles a refrigerant overcharge and is labelled with the class number ’7’

(3) ExcsOil: Resembles an excess Oil and is labelled with the class number ’2’

(4) ReduCF: Resembles a reduced Condenser Water Flow and is labelled with the class number

’3’

(5) ReduEF: Resembles a reduced evaporator Water Flow and is labelled with the class number

’4’

(6) ConFoul: Resembles a condenser fouling and is labelled with the class number ’1’

(7) NonCon: Indicates to a non-condensable in refrigerant and is labelled with the class number

’5’

Within each observation of the used datasets, 65 features were recorded. The features include the

following: Condenser valve position, oil feed temperature, a flow rate of condenser water, etc.,

which are recorded every ten seconds, as mentioned earlier. Each dataset consists of 41,528 obser-

vations, where each fault is represented by 5191 observations. Using our proposed model, we’ve

been able to discover and learn the normal and the fault patterns that are registered within the four

datasets mentioned earlier. First, the dataset was divided into two parts, one part was used for train-

ing, and the other was used for testing. Furthermore, a portion of 10% of the training dataset was

presumed with known labels, and the remaining 90% of the dataset was presumed with unknown

labels. Additionally, we have measured the proposed model’s performance on the testing data using

several performance metrics, as will be demonstrated later in this section. The labels obtained from
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ExBAGGU ExGU ExAdaboost ExKNN DT
Performance Measure

Accuracy 96.340 94.162 93.568 93.701 92.186
Silhouette 0.006 -0.002 0.003 -0.014 0.015
Calinski Harabasz 326.590 419.597 446.730 430.699 486.755
Davies Bouldin 4.648 5.009 4.967 4.931 5.208
Fowlkes Mallows 0.780 0.652 0.651 0.644 0.629
Mathiews Correlation Coefficient 84.080 73.573 71.466 71.688 66.864
F1-Score 85.360 76.650 74.270 74.805 68.745
Jaccard 0.854 0.766 0.743 0.748 0.687
ROC AUC 0.916 0.867 0.853 0.856 0.821
V Measure 0.810 0.685 0.694 0.681 0.691
Rand 0.941 0.911 0.905 0.907 0.878
Normalized Mutual Information 0.810 0.685 0.694 0.681 0.691
Mutual Info 1.653 1.416 1.402 1.399 1.315
Homogeneity 0.795 0.681 0.674 0.673 0.632
Completeness 0.825 0.689 0.715 0.690 0.762
Adjusted Rand 0.744 0.601 0.595 0.590 0.546
Adjusted Mutual Info 0.809 0.685 0.694 0.681 0.691

Table 3.3: Performance evaluation of the models used in the comparison for the detection of faults
of severity level 2

the models used in the comparison were used along with the testing data to train a decision tree that

provides explainability, as mentioned earlier. Our proposed mixture model was able to recognize

ExBAGGU ExGU ExAdaboost ExKNN DT
Performance Measure

Accuracy 94.357 91.198 90.423 90.328 90.286
Silhouette 0.028 -0.007 -0.028 -0.025 -0.038
Calinski Harabasz 217.749 378.126 360.283 490.296 545.189
Davies Bouldin 4.082 4.176 4.319 4.879 4.620
Fowlkes Mallows 0.650 0.596 0.605 0.576 0.607
Mathiews Correlation Coefficient 76.040 63.936 62.750 57.957 62.429
F1-Score 77.428 64.792 61.693 61.313 61.144
Jaccard 0.774 0.648 0.617 0.613 0.611
ROC AUC 0.871 0.799 0.781 0.779 0.778
V Measure 0.954 0.711 0.739 0.673 0.743
Rand 0.896 0.844 0.811 0.863 0.806
Normalized Mutual Information 0.854 0.711 0.739 0.673 0.743
Mutual Info 1.653 1.319 1.309 1.280 1.306
Homogeneity 0.799 0.634 0.630 0.616 0.628
Completeness 0.952 0.809 0.893 0.741 0.910
Adjusted Rand 0.684 0.483 0.457 0.487 0.454
Adjusted Mutual Info 0.924 0.711 0.738 0.673 0.743

Table 3.4: Performance evaluation of the models used in the comparison for the detection of faults
of severity level 1

the existing patterns and achieve an accuracy of 98.85% Using the dataset with faults of severity

level 4 as demonstrated in Table 3.1. The semi-supervised mixture of mixtures of Gaussian and

Uniform distributions has been able to achieve an accuracy that is lower than that of our proposed

mixture model.

Using the dataset with the severity level-3 faults, our proposed model has been able to outperform

other models used in comparison with an accuracy score of 98.668% as demonstrated in Table 3.2.

However, the adaptive Boosting (Adaboost) classifier, which was trained with a decision tree as a

base estimator, has been able to outperform the semi-supervised mixture of mixtures of Gaussian
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and Uniform distributions in this experiment with an additional accuracy of 0.411%.

Similarly, for datasets with severity levels 1 and 2, our proposed mixture model has been able

to outperform all the other machine learning models used in the comparison, as shown in Table 3.4

and Table 3.3 respectively.

As explained earlier, regardless of the proven effectiveness of our proposed mixture model in

detecting patterns, it does not provide an explicit representation of the detected patterns. The inte-

gration of explainability within our proposed method using DT produces the following Figures 3.1,

3.2, 3.3, and 3.4 for datasets containing chiller faults of severity 1, 2, 3 and 4 respectively. Given

Table 3.5 and the previous explanation of the pattern labels in this section, we present how the data

instances are divided according to the values of the important features. As demonstrated in Figure

3.1 we can conclude the exact feature values indicating that the chiller is running with no fault.

The data attributes Condenser Valve Position and Evaporator Valve Position should be greater than

the values -0.817 and -2.486, respectively, and Oil Feed minus Oil Vent Pressure, Hot Water Valve

Position less than the values 0.211 and -0.008, respectively. Additionally, we can notice that in

addition to the clear explainability offered by our proposed method, its F1-Score is 16.284% higher

than the F1-Score of DT; meaning that our proposed method has generalized well better than DT to

unseen data and achieved a reliable prediction accuracy.

Feature Abbreviation Description

VC Condenser Valve Position
VE Evaporator Valve Position
PO net Oil Feed minus Oil Vent Pressure
VH Hot Water Valve Position
TO sump Temperature of Oil in Sump
TWI Temperature of City Water In
FWC Flow Rate of Condenser Water
TRC sub Liquid-line Refrigerant Subcooling from Condenser
Heat Balance% Calculated 1st Law Energy Balance for Chiller
TO feed Temperature of Oil Feed
TCA Condenser Approach Temperature

Table 3.5: Attributes’ abbreviations and their description for the chiller datasets

3.3.2 Occupancy Estimation

Occupant behaviour has been a central interest for research efforts [178]. The majority of re-

search papers in this field have focused on finding the representation of the diversity of occupants’

behaviour through statistics [179–181]. Additionally, recent efforts have attempted to discover the
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impact of specific occupants’ actions on energy consumption [182]. Human behaviour changes pe-

riodically, and so does its impact on energy consumption. The application of occupancy estimation

aims to:

(1) Make a discrimination between what is known as the occupant’s irregular energy consumption

and the true consumption that is usually incurred by the building.

(2) Design power demand response programs that rely on human activities for planning.

The energy efficiency of residential buildings can be improved through the automatic adjustment

of the building’s energy usage through occupancy estimation [183–186]. Several research papers

have proposed a variety of applications that make use of occupancy data to handle novel building

management optimizations. As an example, a management system can reduce energy consump-

tion in response to the estimated occupancy by disconnecting inactive appliances [187], adjusting

the set points for air conditioners [188] and dimming lights [189]. A key requirement for the ap-

plications that make use of occupancy data is reliability, low cost and non-intrusiveness. Using

GPS information through smartphones to monitor occupancy was not an effective measure since it

needed continuous and active participation by the occupants. Consequently, this solution has caused

unreliability and privacy concerns. Therefore, several research efforts have attempted to deploy en-

vironmental sensors to collect data for occupancy estimation applications [184, 190]. However,

several environmental sensors can be unreliable. As an example, motion detectors must be contin-

uously calibrated and strategically positioned as they might register false occupancy or be triggered

by pets [191]. Sensors that register the concentration of CO2 in the room might be affected by

external factors [192]. Additionally, power demand reduction strategies could extrapolate well if it

was designed based on the least intrusive means of observing the occupancy count. Thus, in this

chapter, we have decided to tackle this issue by proposing a semi-supervised method to estimate the

number of occupants within a building, given the timestamp, the power demand, and the outdoor

temperature. We alter these timestamp values using a standard trigonometric transformation into a

two-dimensional variable that is distinguishable and distance consistent as follows:

(Xi(D+1), Xi(D+2)) = (cos(Xi(t)), sin(Xi(t))) (91)
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where Xi(t) represents the time stamp for observation i that is normalized between 0 and 2π. The

term (Xi(D+1), Xi(D+2)) is the resulting two-dimensional unit vector on the circle. Furthermore,

we have considered explainability to demonstrate the factors that define the boundaries between the

detected patterns that resemble the different occupancy estimates. Thus, the important factors that

indicate occupancy are exhibited. Additionally, in this application, we propose a framework that

takes advantage of the integration of explainability with our proposed model to maximize the pat-

tern recognition accuracy and enhance the prediction interpretability as demonstrated in Figure 3.5.

The low-level features, such as the two-dimensional unit vector calculated using Equation 91 are

used in training the data-driven model, while the high-level timestamp, in addition to the labels

obtained from the data-driven, is used to train the decision tree. The dataset used in this section is

collected from an office in the Grenoble Institute of Technology [178, 193]. The original dataset

has nine features, and the observations are recorded every 10 minutes for ten days. The original

set of features are listed as follows: Time, the concentration of carbon dioxide inside the office,

the office power demand in Watts, readings from a motion detector, building corridor carbon diox-

ide concentration, temperature inside the office in Celsius, outdoors temperature in Celsius, door

open/closed status, root mean square pressure of sound and window open/closed status. However,

as mentioned earlier, we have only used non-intrusive attributes, and they are listed as follows:

Time, Building power demand and outdoor temperature. Our proposed model achieves an accuracy

score of 91.77% in terms of estimating the correct number of occupants in the buildings shown in

Table 3.6. As mentioned earlier, our model can generalize better than supervised models like DT.

Thus, the explainability offered by our proposed model is more credible; that can be exhibited using

the F1-Score within table 3.6. In comparison to the classification performance of the DT, our pro-

posed model achieves an F1-Score that is 16.25% higher. F1-Score is the average harmonic mean

of the precision and recall scores. Both precision and recall scores emphasize the model’s ability to

not classify any observation with a specific class with a different class and contribute equally to the

F1-Score. The proposed model achieves this score given non-intrusive features and the assumption

that only 10% of the available training data is labelled. Additionally, the explainability integrated

within our proposed method allows us to define the boundaries between the detected patterns and

presents the conditions to estimate the correct count of occupants in the building given a subset of
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the features with the minimum amount of mistakes, as shown in Figure 3.12. Each If-Then state-

ment in the previously mentioned figure indicates the threshold value of specific features and the

corresponding estimation of the number of occupants present in the building. For example, if the

power attribute value is less than 1.226, greater than 1.226 or greater than 1.731, then there are 0,1

and 2 occupants in the building, respectively.

In our semi-supervised approach, where labels are available for all the datasets, we first divide

the dataset evenly into training and testing subsets. The labels are assumed to be unknown in the

testing and the unlabelled training subsets.

3.3.3 Energy consumption characterization

The behaviour of the energy consumption is the most important factor that characterizes the

energy consumption of a building. Suitable consumption incentives can be planned by utility com-

panies if consumer behaviour is correctly modelled and characterized. Thanks to the fast-evolving

energy metering devices, there are several publicly available datasets that record the total power

demand of not only the building but the power demand of several electrical appliances inside it in

an independent manner [194]. Thus, the characterization of residents’ energy consumption using

data-driven models has increased in popularity. In this application, we’re characterizing the con-

sumption behaviour of residents based on their aggregate power demand in addition to the power

demand of individual appliances.

The RIFIT dataset

The dataset used in this experiment was recorded within a project that was done in collaboration

among the Universities of Strathclyde, Loughborough and East Anglia [195]. The project is enti-

tled Personalised Retrofit Decision Support Tools for UK Homes using Smart Home Technology

(REFIT), which was done in support of the Engineering and Physical Sciences Research Council

(EPSRC). The data was collected from 20 households across the years 2013 and 2014. The records

collected from each household consist of time-series data from 10 power sensors that consist of a

current clamp and 9 Individual Appliance Monitors (IAMs). The power demand is collected in unit

Watts with a time interval of 6-8 seconds.
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Furthermore, we extract several statistical features that improve the clustering performance [73]

and provide an interpretable representation of the load curve for each household. In order to sum-

marize the information included in the load curve of each energy consumption over the years, we

have extracted nine features. Following [73], seven features are extracted after the definition of four

key time periods, and they are denoted by t ∈ {1, 2, 3, 4}. The Overnight time period (t = 1) is

defined between 10:30 PM and 6:30 AM, the Breakfast time period (t = 2) is defined between

6:30 AM and 9:00 AM, the Daytime period (t = 3) is defined between 9:00 AM and 3:30 PM,

the Evening time period (t = 4) is defined between 3:30 PM and 10:30 PM. Based on the four

previously explained prominent time periods, seven features are extracted from smart meter records

to summarize the representation of energy consumers, and they are calculated as follows:

• RAPt denotes the Relative Average Power within the time period (t) over the entire year; it

is defined as follows:

RAPt =
APt

DAP
, t = 1, 2, 3, 4 (92)

• the Mean STD denotes the Mean Relative Standard Deviation of the average power used

over the entire year; it is defined as follows:

Mean STD =
1

4

4∑
t=1

σt
APt

(93)

• The seasonal score is defined as follows:

Seasonal Score =
4∑

t=1

|APW
t −APS

t |
APt

(94)

• The Weekend vs Weekday Difference Score (WD-WE diff. Score) is calculated as follows:

WD-WE diff. Score =
4∑

i=1

|APWD
t − APWE

t |
APt

(95)

• the Mean STDa denotes the Mean Relative Standard Deviation of the average power used
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over the entire year for each appliance; it is defined as follows:

Mean STDα =
1

4

4∑
t=1

σαt
APαt

(96)

where α ∈ {1, 2, 3, ...., 9}, APt, and σt represent the average power used by the specific consumer

and its corresponding standard deviation in the time period (t) respectively over all the available

smart meter records data. Additionally, APαt, and σαt denote the average power demand and its

corresponding standard deviation, respectively, of appliance α within the time period t. DAP rep-

resents the average daily power used by the specific consumer throughout the available smart meter

data. APW
t and APS

t represent the average power used by the specific consumer in the time period

(t) throughout winter and summer, respectively. APWD
t , and APWE

t represent the average power used

by the specific consumer in the time period (t) throughout the weekdays and weekends respectively

for the available data. Finally, we use the proposed model to explore the hidden patterns within the

training data in an unsupervised manner since the data is unlabelled. We first use the MML model

selection criterion to discover the true number of consumption patterns within the training data by

minimizing the objective function formulated in Equation 74. As a result, the optimal number of

intrinsic groups is concluded to be four within the dataset used in this experiment. According to sev-

eral clustering indexes, as shown in Table 3.7, our proposed model achieves the best performance in

comparison with several clustering algorithms. Similar to the previous experiments, we provide an

interpretation of the detected patterns using the integrated DT as shown in Figure 3.13. As demon-

strated in the previously mentioned figure, the If-Then statements highlight the boundaries between

the detected four energy consumption patterns labelled using the range [0,3]. As demonstrated in

Figure 3.13, we can conclude that each energy consumption profile was characterized by specific

attribute values by our proposed method as follows:

• Consumption profile 0 has an average power demand mean relative standard deviation that is

less than the value of 1.365.

• Consumption profile 1 has a Weekend vs Weekday Difference Score greater than 0.774.

• Consumption profile 2 has an annual relative average power demand for breakfast time greater
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than the value of 0.781.

• Consumption profile 3 has a Mean Relative Standard Deviation that is greater than 1.365.

Figure 3.11 presents the detected patterns and their daily average normalized power demand. As

demonstrated, it is difficult to characterize several consumption patterns visually, except for the

energy consumption profile 2, which can be distinguished by its high power demand relative to the

other clusters at the breakfast time period (t = 2), which is also demonstrated in Figure 3.13.

Additional conclusions could be drawn from Figure 3.11. Households following the consump-

tion profile 1 have a noticeably higher energy consumption, which may indicate a larger housing for

consumers classified within this cluster. The categorization with consumption profile three may in-

dicate a household whose occupants work outside the house during the day, for there is exclusively

high consumption during the breakfast period and relatively lower consumption during the rest of

the day. The categorization under consumption profile two may indicate that the occupants work at

home during the overnight time period.

ExBAGGU ExGU ExAdaboost ExKNN DT
Performance Measure

Accuracy 91.778 88.611 88.167 86.389 86.278
Silhouette 0.059 0.056 -0.028 0.065 0.052
Calinski Harabasz 17.452 20.355 63.711 43.721 42.198
Davies Bouldin 2.440 2.623 2.736 4.401 3.280
Fowlkes Mallows 0.737 0.732 0.72 0.698 0.698
Mathiews Correlation Coefficient 33.637 15.100 30.308 26.766 27.172
F1-Score 81.944 71.528 70.417 65.972 65.694
Jaccard 0.819 0.715 0.704 0.660 0.657
ROC AUC 0.885 0.822 0.815 0.787 0.786
V Measure 0.210 0.069 0.174 0.131 0.140
Rand 0.740 0.603 0.703 0.673 0.677
Normalized Mutual Information 0.147 0.069 0.134 0.131 0.140
Mutual Info 0.144 0.043 0.045 0.023 0.034
Homogeneity 0.149 0.048 0.160 0.136 0.148
Completeness 0.149 0.126 0.190 0.126 0.133
Adjusted Rand 0.430 0.143 0.392 0.342 0.353
Adjusted Mutual Info 0.264 0.060 0.165 0.120 0.129

Table 3.6: Performance evaluation of the models used in the comparison for the occupancy estima-
tion application

ExBAGGU ExGU ExKMC
Performance Measure

Silhouette 0.616 0.189 -0.039
Calinski Harabasz 19.129 12.614 0.349
Davies Bouldin 0.579 1.238 5.356

Table 3.7: Performance evaluation of the models used in the comparison for the energy consumption
categorization application

In the two subsequent experiments, We compare the performance of our proposed mixture
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BAGGUMM BAGGMM AGGMM BAGMM AGMM BGMM GMM
Performance Measure

Silhouette 0.317 0.201 0.186 0.179 0.169 0.165 0.083
Davies-Bouldin 1.055 1.174 1.424 1.490 2.134 2.005 2.490

Table 3.8: Performance evaluation of the models utilizing the London project dataset

BAGGUMM BAGGMM AGGMM BAGMM AGMM BGMM GMM
Performance Measure

Silhouette 0.247 0.153 0.137 0.129 0.119 0.115 0.033
Davies-Bouldin 16.960 18.079 18.328 18.394 19.038 19.109 19.394

Table 3.9: Performance evaluation of the models utilizing the CER dataset

model against state-of-the-art mixture models within the same application, such as the bounded

asymmetric generalized Gaussian mixture model (BAGGMM), the asymmetric generalized Gaus-

sian mixture model (AGGMM), the bounded asymmetric Gaussian mixture model (BAGMM), the

bounded Gaussian mixture model (BGMM), and the Gaussian mixture model (GMM).

Performance Evaluation Using London Residential Smart Meter Dataset

We used the Low Carbon London project dataset [92], with smart meter readings from 5567

homes between 2011-2014. After cleaning, 3891 observations from 2013 were analyzed. The

dataset includes Dynamic Time of Use and Standard tariffs, as well as five different geo-demographic

groups.

Table 3.8 shows the performance evaluation of different mixture models utilizing the London

project dataset based on Silhouette and Davies-Bouldin scores.

The table shows BAGGUMM, our proposed mixture model, outperforms other models on the

London project dataset with the highest Silhouette score (0.317) and lowest Davies-Bouldin score

(1.055), signifying distinct, well-separated clusters. Other models have similar but inferior results,

while AGMM, BGMM, and GMM perform poorly. BAGGUMM’s superior scores suggest that it is

an effective tool for analyzing the dataset. We demonstrate the resulting clusters using Figure 3.7.

Additionally, the integrated decision tree provides clear explainability, as demonstrated in Fig-

ure 3.10. It is used to analyze the characterization of energy users based on the ”seasonal score”

and ”weekDays diffScore” features. Specifically, when the ”seasonal score” value is greater than

3.168, the observation is assigned to class 1. Observations with a ”seasonal score” greater than
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1.417 belong to class 3. As for the ”weekDays diffScore” feature, a value greater than 0.936 leads

to classification into class 2, while values less than or equal to 0.963 results in the assignment to

class 0.

Performance Evaluation Using Irish Residential Energy Consumption Dataset

The first dataset for our study was collected by the Commission for Energy Regulation (CER)

and was made publicly available by the Irish Social Science Data Archive (ISSDA) [89]. The dataset

contains smart meter records of more than 6000 Irish energy consumers, which were collected from

July 14, 2009, to December 31, 2010. The energy consumption is measured in kilowatt-hours (kWh)

with an interval of 30 minutes. There are two types of energy consumers in this dataset: residential

and small to medium enterprises. However, our study is focused only on residential energy con-

sumers. Therefore, after cleaning the data, we have 3639 Irish residential energy consumers for

analysis. Each residential consumer in this dataset is assigned six different tariffs, denoted by (E,

A, D, C, B, and W).

BAGGUMM, our proposed mixture model, excels with a Silhouette score of 0.247 and Davies-

Bouldin score of 16.960, indicating well-separated, distinct clusters. Other models, BAGGMM,

AGGMM, and BAGMM, perform similarly but worse, while AGMM, BGMM, and GMM have the

poorest performance. Overall, BAGGUMM outperforms all models in clustering the CER dataset.

The resulting clusters are demonstrated using Figure 3.6 As shown in Figure 3.9, the tree is easily

interpretable, with the ”meanSTD” and ”weekDays diffScore” features guiding the classification.

Observations are assigned to class 2, class 0, or class 1 based on specific threshold values for these

features.

3.4 Conclusion

In this chapter, we have proposed a statistical model that is a mixture of mixtures of bounded

asymmetric generalized Gaussian and Uniform distributions. In order to learn the proposed model’s

parameters using the training data, we have proposed an unsupervised and semi-supervised learning

approach using the expectation-maximization (EM) algorithm. Additionally, we have derived the
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objective function of the minimum message length (MML) criterion in order to discover the true

number of components within the training dataset for the unsupervised learning approach. In other

words, our approach assumes that the data arise from a mixture of mixtures of bounded asymmetric

generalized Gaussian and Uniform distributions. After the model training is done, the testing data

are labelled using the trained model parameters and Bayes’ rule. Three real-life applications and

their datasets have been used to validate the proposed model and compare its performance to several

state-of-the-art machine learning models. The final results demonstrated that the proposed model

outperforms all the state-of-the-art machine learning models used in the comparisons in both the

semi-supervised and the unsupervised learning tasks.

Prior works in the chiller fault detection and diagnosis application do not extrapolate as well

as our proposed model, especially in the case of the scarcity of data. The bounded asymmetric

generalized Gaussian distribution is flexible to fit several data distributions that may follow a density

distribution that can be asymmetric and have a bounded support region. Additionally, the uniform

distribution in the mixture of mixtures increased the model’s robustness to outliers. Thus, it needs no

prior method to remove the outliers before training the model. Additionally, our model extension

for explainability provides an accurate diagnosis of the detected patterns in terms of the features

used to train the model.

In the occupancy estimation application, our proposed model is trained with a small number

of labelled data in comparison to the prior works. Nevertheless, our proposed model correctly

predicts the number of occupants in the building given features that are non-intrusive and outperform

all the state-of-the-art machine learning algorithms used in the comparison. Additionally, within

this application, we propose a novel workflow that attempts to learn better models using low-level

features and still provide explainability using high-level features.

In the experiment within the energy consumption categorization application, the proposed model

clusters the households based on their aggregate power demand and the power demand of several

individual appliances and outperforms several state-of-the-art clustering algorithms. Hence, our ap-

proach to analyzing real-life energy consumption data is effective in determining households that

are suitable for demand reduction initiatives such as DR and EE. Thus, providing the opportunity for

utility companies to adopt environmentally friendly and cost-effective technologies. Additionally,
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we extend the proposed mixture model to offer explainability and define the boundaries between the

discovered energy consumption profiles in terms of statistically extracted features. The boundaries

also help utility companies lay more accurate plans to motivate energy consumers to migrate to a

cluster of energy consumers that consume less energy or to a cluster with a lower impact on energy

sources.

80



Figure 3.1: Fault severity of level 1
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Figure 3.2: Fault severity of level 2
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Figure 3.3: Fault severity of level 3
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Figure 3.4: Fault severity of level 4
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Figure 3.5: The proposed workflow

Figure 3.6: CER Clusters

Figure 3.7: London smart meter data clusters
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Figure 3.8: RIFIT clusters

Figure 3.9: If-Then explainability for the CER dataset

86



Figure 3.10: If-Then explainability for the London residential smart meter dataset

Figure 3.11: Average daily profiles of the learned patterns
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Figure 3.12: The proposed model’s occupancy estimation explainability in terms of power demand

Figure 3.13: The proposed model’s energy consumption categorization explainability in terms of
the extracted statistical features
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Chapter 4

Advanced Models for Human Activity

Recognition using Mixture-Based

Hidden Markov Models with Feature

Saliencies

The recognition of human actions is an important research area. Recognizing human actions

from a sequence of observations can be a complex task requiring an equally complex system. As

a solution, in this chapter, we propose an asymmetric generalized Gaussian mixture-based hidden

Markov model (AGGM-HMM) and a bounded asymmetric generalized Gaussian mixture-based

hidden Markov model (BAGGM-HMM). In the previous chapter, we have been able to explore

the potential of incorporating the bounded asymmetric generalized Gaussian distribution in mixture

models. The resulting proposed models have been proven successful in several real-life applica-

tions and have outperformed several state-of-the-art models in the context of real-life applications.

However, the temporal domain was a component we did not consider during our previous pattern

recognition processes. Therefore, in this chapter, following our introduction of hidden Markov

models (HMMs) in Section 1.5, the potential of mixture-based HMMs incorporating AGGMM and

BAGGMM is explored by integrating them within HMMs. For instance, BAGGM-HMM adopts
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BAGGMM to model emission probabilities, while AGGM-HMM adopts AGGMM for the same

purpose.

In addition to the aforementioned proposed models, a joint feature selection and parameter

estimation approach is developed for all the proposed mixture-based hidden Markov models (MM-

HMM) within this chapter (AGGM-FSHMM and BAGGM-FSHMM). The asymmetric generalized

Gaussian distribution (AGGD) is a flexible distribution robust to outliers and is capable of modelling

densities that are asymmetric and non-Gaussian. The bounded variant of the AGGD (BAGGD) fur-

ther enables the distribution to better model real-life applications’ data. As an additional parameter

set defining the MM-HMM, feature saliencies enable the proposed model to obtain additional dis-

crimination power between states. We use the Expectation-Maximization (EM) algorithm for all the

proposed models to obtain the maximum likelihood point estimates of the complete set of parame-

ters. This chapter has utilized two approaches to the human activity recognition (HAR) application

to validate the proposed frameworks: sensor-based HAR and video-based HAR. We use raw data

recorded from sensors attached to the subjects for sensor-based HAR. For video-based HAR, we

leverage histograms of optical flow (HOF) and motion boundary histogram (MBH) descriptors for

the unsupervised pattern recognition process. Seven real-life data sets are utilized within the ex-

perimental part to demonstrate that our proposed frameworks are superior to several state-of-the-art

HAR methods.

4.1 Introduction

The use of HMMs has been highly successful in various fields, such as speech recognition and

image categorization. This success has been achieved through the introduction of new methods

that work together with HMMs to enhance their performance, as well as through the analysis of

a wide range of data types and features. Hidden Markov models (HMMs) are an extension of

Markov models and share a similar property in that the state sequence of an HMM forms a Markov

chain. However, HMMs are more general as they allow for observations to move between states

over time, which is not the case in simple Markov models. While mixture models assume that each

observation is independent, HMMs assume dependence between observations. This is why [196]
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referred to HMMs as dependent mixture models. The sequence of components in an HMM from

which observations are drawn also follows a Markov process, meaning that consecutive components

are related through a Markov chain. Both Markov models and HMMs have finite states, with the

states in HMMs representing elements from a finite set. An HMM is a well-grounded dual stochastic

model that extracts underlying statistical data via a concise feature set [78]. The primary structure

of an HMM is composed of a Markov chain of latent variables, where each variable corresponds

to a conditioned observation [78]. Markov chains are useful for modelling sequential patterns in

time series data without the need for the independent identically distributed assumption while also

maintaining generality [81].

In their daily lives, people frequently engage in a variety of routine and official activities such

as driving, cleaning, and playing games. These activities require a number of fundamental actions,

such as standing, sitting, bending, running, and typing. To develop a system for human-computer

interaction, it is necessary to identify the specific actions that a person is performing. While several

methods for recognizing human activities (HAR) have been studied for many years, the most signif-

icant developments in the field have occurred in recent decades [197]. This is particularly evident in

the visible spectrum, where a large amount of data has been made accessible [198, 199]. Examples

of such data include the UCF101 [200], KTH [201], and Weizmann [202] datasets.

Nonetheless, there are still several difficulties that persist in the field despite the advancements

made. One such challenge is the intrinsic within-class variability, where an individual may perform

the same action in a distinct manner from another individual [203]. In addition, some challenges are

unique to the visible spectrum, such as the sensitivity of the visible spectrum to issues like shadows,

background clutter, occlusion, and fluctuations in illumination [204].

Despite the effectiveness of employing the Gaussian-based HMM in all HMM instances, it is

not the best practice to do so with all types of data. Utilizing the Gaussian distribution leads to

sub-optimal modelling due to the fact that the distribution has unbounded, infinite support, a rigid

bell shape, and symmetry properties. Using probability density functions that are better suited to the

data of an application as an emission (probability density functions) PDFs has been demonstrated

to be effective in improving the performance of a hidden Markov model (HMM) [205–208].

91



This expansion of data has greatly contributed to the advancement of machine learning tech-

niques. However, it has also presented a number of difficulties and challenges, including the chal-

lenge of managing high-dimensional data, which can result in the curse of dimensionality. The

literature on HMMs typically concentrates on discrete- and Gaussian-based HMMs [79]. However,

there has been a recent effort to improve the modelling of state emission probabilities by taking into

account the characteristics of the data [209, 210].

One common method for learning HMMs is the expectation-maximization (EM) algorithm,

which involves iteratively computing the expected values of the latent variables and maximizing the

likelihood of the observed data. However, EM can be computationally expensive, and it may not

converge to a global optimum. To address these issues, a variation of the EM algorithm called the

Baum-Welch algorithm is often employed. This algorithm uses the forward-backward algorithm to

compute the expected sufficient statistics of the latent variables, which are then used to update the

model parameters. The Baum-Welch algorithm has several advantages over the standard EM algo-

rithm, including faster convergence, robustness to initialization, and the ability to handle missing

data.

The several contributions within this chapter include mixture-based hidden Markov models.

The theoretically assumed model to present the best performance assumes that the underlying dis-

tribution of the observations at a specific time within the sequence follows a bounded asymmetric

generalized Gaussian mixture model, and the underlying state sequence follows a Markov process.

Adopting the bounded asymmetric generalized Gaussian mixture model within the proposed MM-

HMM has several advantages over adopting a single probability density function [211], and they

are:

• Improved modelling of feature distributions: The BAGGM-HMM model allows for more

complex modelling of the distribution of feature vectors by using a mixture of asymmetric

generalized Gaussian mixture to model each hidden state. The proposed model allows for

more flexibility in modelling the underlying distribution of features, which can be important

for complex actions involving multiple sub-actions or movement variations.

• Better handling of feature variability: The BAGGMM-HMM model can handle variability
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in the observed features more effectively by allowing each hidden state to have a different

mixture model. The proposed model allows the model to capture different modes of variation

in the feature space, which can be important for recognizing subtle differences in actions.

• Reduced overfitting: The BAGGM-HMM model is less prone to overfitting than the single

distribution-based HMM model since it has more parameters and, thus, more flexibility to

model the data. This property can be important when working with small datasets, which are

common in the context of HAR.

In addition, we acknowledge the possibility of the existence of noisy and uninformative features.

Consequently, we approximate a group of parameters defining the most favourable feature subset,

enhancing the model’s parameter set optimization process. Feature selection within our proposed

models is accomplished by expanding on the feature saliency model introduced by [212].

Overall, the chapter introduces the mathematical model for maximum likelihood estimation

learning of AGGMM-HMM, BAGGMM-HMM, AGGM-FSHMM, and BAGGM-FSHMM, and

employs these models to evaluate various HAR datasets with different modalities, such as sensor-

based and video-based datasets. The purpose of this evaluation is to investigate the generalization

capabilities of the proposed models. As far as we are aware, this is the first instance where AGGM-

based HMMs are being assessed in both video-based and sensor-based HAR applications.

The structure of this chapter is as follows: Section 4.2 provides a summary of prior studies that

have utilized HMMs, and we discuss the applications of HMMs in conjunction with general feature

selection methods as a predictive model. In Section 4.3, we explain some background information

that is necessary for the presentation of the proposed models. In Section 4.4, we introduce the mix-

ture models used within the proposed HAR frameworks. Section 4.5 introduces how we integrate

mixture models within the proposed HMMs. Section 4.6 introduces how we integrate feature selec-

tion within the proposed HMMs. Section 4.8 presents the experimentation and analysis of results

pertaining to real-life problems. In section 4.9, the chapter concludes with a summary of the work

and concluding remarks.
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4.2 Related work

4.2.1 Hidden Markov models

In the field of HAR, two primary types of machine learning techniques are commonly employed

for data modelling: discriminative and generative, as noted in [213]. The discriminative approach

involves establishing a relationship between input and output data, while the generative approach

assumes that the data is derived from a fundamental distribution and then applies an optimization

process to identify that distribution. There exist various optimization methods for implementing the

generative approach, each with its own particular strengths.

Any approach to recognizing human actions requires the extraction of informative measure-

ments from the video and their subsequent categorization. In the last two decades, numerous inves-

tigations have been conducted in the field of human action recognition. Three primary categoriza-

tion approaches have been adopted: 1) recognizing actions directly in the time domain (e.g., [214]

and [215]); 2) recognizing actions using graphical models, such as HMM [216–218], dynamic

Bayesian networks, and conditional random fields [219–222] recognizing actions using histograms

of measurements [201, 220, 223].

The time domain approach uses dynamic time warping (DTW) as its primary representative

[214]. Graphical models, specifically HMM, are effective in recognizing actions [216, 217, 224],

with other models such as dynamic Bayesian networks and conditional random fields also being

successful [221, 222]. While histogram-based approaches have shown significant empirical accu-

racy [201, 223, 224], they do not fully account for the temporal dimension of human actions.

Sequential classifiers like HMM can naturally classify sequences of any length and have demon-

strated an ability to adjust to variations in the duration of instances of the same action. HMMs can

be easily incorporated into complex hierarchical models, as demonstrated in [225]. Therefore, the

following discussion will focus on HMM and provide extensive comparisons with other approaches.

4.2.2 Feature selection

The field of feature selection is extensive and has seen the implementation of several techniques

to reduce the number of features in both supervised and unsupervised scenarios, as noted in [226].

94



As per [212], feature selection methods are generally classified into three primary categories in cur-

rent research, which are filters, wrappers, and embedded techniques. Additionally, meta-heuristic

methods are also included in these categories.

The process of selecting a relevant subset of features for model building can be done using fil-

ter methods like information gain [227, 228], Pearson’s correlation coefficient [229], and variance

threshold [72]. These methods evaluate all the features and return the most relevant subset. How-

ever, wrapper methods focus on optimizing the classifier’s performance and are more involved in

the model-building process.

The identification of relevant features using wrappers is a common practice in machine learning.

The selection methods usually used in wrappers are forward selection, backward elimination, or

recursive feature elimination, as cited in [230], [231], [232], [233], and [234]. Wrappers build the

model using a subset of features depending on the learning algorithm and evaluate its performance

using specific criteria. In other words, wrappers measure the performance of the model based on a

particular set of features selected by the algorithm.

Feature selection is approached as an optimization problem through methods that use meta-

heuristic algorithms. Evolution-based algorithms [235] can find the best solution by being flexible,

simple, and avoiding local optima [236]. To begin the feature selection process, these methods

generate random solutions that do not require complex derivative calculations. Then, they explore

the search space to identify promising areas through a thorough investigation.

It is evident that techniques for transformation, including Principal Component Analysis (PCA)

and Independent Component Analysis (ICA), effectively decrease the number of features in a model.

Due to this reason, these techniques have been incorporated into Hidden Markov Models (HMMs)

as reported in [237, 238].

The significance of feature selection in HMMs is primarily due to the essential requirement

of identifying the appropriate feature to utilize in the model. Although there have been several

studies conducted in general and in the context of mixture models in particular, the methods for

feature selection in HMMs are restricted. According to to [239] and [62], there is a scarcity of

dedicated feature selection techniques for HMMs. Typically, in most applications, features are

selected based on prior domain knowledge, and there is a complete absence of a consistent feature
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selection process, as mentioned in [240] and [241].

The central theme of this chapter is embedded or integrated feature selection techniques, which

involve the simultaneous consideration of all the features in a dataset. These features are used as

inputs for a machine learning algorithm that is designed to optimize the performance of the model.

The resulting output of this process includes both a reduced set of features and the parameters of

the model. Consequently, the embedded feature selection method combines the benefits of both

wrapper and filter methods, which respectively involve selecting subsets of features specific to a

learning algorithm [242].

4.3 Background

The Gaussian distribution as an isotropic probability density function can be used effectively

within a clustering algorithm to compactly model and represent the intrinsic grouping of the data.

The representation of the Gaussian mixture model comprises a set of parameters that would not

relatively yield a computationally expensive model as the dimensions of the data grow. The set of

parameters of each mixture component describes each discovered pattern’s properties and includes a

mean parameter vector and a covariance matrix. Given this motivation, the EM algorithm has been

used to efficiently estimate the parameters of a Gaussian mixture model that best fits the data in

several applications [19,20]. Although this compact representation may yield clustering algorithms

that require a relatively low computational cost, in some applications, it could introduce several

limitations to modelling the data, such as:

(1) It has a rigid bell shape and a tail that is too short for most real-world problems [21].

(2) The Gaussian distribution and several other choices of distributions for a given mixture model

are unbounded with a support range that extends from −∞ to ∞ [243].

(3) The distribution is symmetric around its mean.

The data in real-life applications are usually bounded and most likely have a density that is non-

Gaussian [24]. The term ’non-Gaussian’ in the context of describing a distribution signifies a density

function that is asymmetric, non-bell shaped, or both. The fixed kurtosis of the Gaussian distribution
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makes the mixture model vulnerable to the outliers of individual data clusters. Since the Gaussian

distribution does not have a parameter that controls the distribution’s tails to be correctly estimated

while fitting the distribution to each data cluster, the distribution is unsuitable for assigning a rel-

atively low probability of occurrence to the individual class outliers [28]. The pattern recognition

applications that integrate the Gaussian mixture model require pre-processing to eliminate outliers,

resulting in an increase in computational complexity [30]. On the other hand, there have been sev-

eral attempts to use more flexible distributions than the Gaussian to fit data from diverse applications

in addition to its ability to generalize to it. Several research papers have proposed using the gen-

eralized Gaussian distribution (GGD) in diverse real-life applications [151, 152]. The distribution

is formalized previously in Equation 9. where A(λ) =

[
Γ(3/λ)
Γ(1/λ)

]λ/2
, and X denotes the random

variable. The parameters µ and σ denote the mean and the standard deviation, respectively. The

symbol λ denotes the parameter that distinguishes this distribution from the Gaussian distribution.

The λ parameter obeys the condition λ ≥ 1 and controls the kurtosis of the distribution, which de-

termines if the probability density function is peaked or flat. As the parameter λ increases in value,

the distribution becomes flattered until it degrades to its special case of the Uniform distribution as

λ → ∞. As the λ decreases in value, the probability density function becomes more peaked. As

λ→ 0, the probability density function becomes a delta function with an infinite value at µ. Practi-

cally, the λ parameter controls the tails of the distribution, and if estimated correctly for the training

data, the distribution should model the data accurately with robustness to outliers. The distribution

is reduced to the Gaussian distribution when λ = 2 and to the Laplacian distribution when λ = 1.

Thus, the distribution is flexible and able to fit diverse real-life application data better in comparison

to the use of each of its special cases individually in a mixture model. This distribution is especially

effective if the data features are assumed to be distributed independently.

Furthermore, to fit asymmetrically distributed data, researchers have proposed the usage of

the asymmetric generalized Gaussian distribution (AGGD) in several applications [123, 155]. The

AGGD is formalized similarly to Equation 10. In comparison to the GGD, this distribution has two

parameters to describe the variance of the data instead of one parameter. The left and right standard

deviations are denoted as σl and σr, respectively; they control the asymmetry of the probability
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density function. The distribution is skewed left if σl < σr, skewed right if σl > σr and symmet-

ric if σl = σr. Thus, in addition to the flexibility provided by the GGD, the AGGD is capable of

modelling data with an asymmetrical distribution [156].

4.4 Bounded asymmetric generalized Gaussian mixture model

In this chapter, we assume that the D-dimensional random vector that represents the data fol-

lows an M -component mixture model. The corresponding probability density function is formal-

ized similarly to Equation 1. where pm is the mixing weight for cluster m and it is governed by

the following constraints: pm ≥ 0,
∑M

m=1 pm = 1. The symbol Θ denotes the mixture’s com-

plete set of parameters. In this section, we demonstrate how the bounded asymmetric generalized

Gaussian distribution (BAGGD) is adopted as a component density for the proposed mixture model.

The bounded component distribution is defined in terms of the unbounded component’s density dis-

tribution Ψ(Xid|θmd) following [244] and similar to Equation 8. where Ψ(Xnd|θmd) denotes the

unbounded asymmetric generalized Gaussian probability density function. The terms H(Xnd|m)

and
∫
∂m

Ψ(X|θmd)dX contribute to making the AGGD used in the proposed mixture bounded. The

bounded support region is denoted by τmd for each component m and dimension d. The indica-

tor function H(Xnd|m) sets the density value of the AGGD outside the bounded support region to

zero, and it is defined similarly to Equation 7. The term
∫
τmd

Ψ(X|θmd)dX denotes the normaliza-

tion constant that restores the statistical properties of the probability density function, the share of

Ψ(Xnd|θmd) that falls within the support region τmd.

Additionally, we propose another mixture-based HMM in this chapter for which the emission

probability is modelled by an asymmetric generalized Gaussian mixture model. The corresponding

probability density function is formalized as follows:

p(X⃗|Ξ) =
M∑

m=1

Ψ(Xnd|θmd)pm (97)

where pm is the mixing weight for cluster m. The symbol Ξ denotes the mixture’s complete set of

parameters. In this section, we adopt the asymmetric generalized Gaussian distribution (AGGD) as
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a component density for the proposed mixture model.

4.5 The mixture-based hidden Markov models

4.5.1 The hidden Markov model

For many real-life applications, predictions for a time series are made accurately if they take

into account given previous sequences of observed variables. Given our consideration of the Hidden

Markov Models (HMMs) as a proposed solution to the applications mentioned within this chapter, it

is worth mentioning that HMMs have the Markov assumption that future predictions are dependent

exclusively on the previous hidden state. The observed variables are denoted by X = [X⃗1, . . . , X⃗N ]

and the hidden states are denoted by S = [S1, . . . , SN ]; Sik ∈ [1,K] and i = [1, . . . , N ] where

K denotes the number of hidden states. The HMM is governed by several parameters, such as

the transition matrix, the emission matrix, and the stationary distribution. Three main tasks are

conducted during the implementation of an HMM, and they are listed as follows:

• Optimizing the HMM parameters using a training dataset.

• Scoring: this process is defined by the calculation of the joint probability of a specific scenario

of a sequence given the model.

• Decoding: this process is defined by finding the optimal series of hidden states.

According to to [79], given a sequence of hidden variables that are generated by the hidden states

S , we define the transition probability matrix Ajk = P (Sik = 1|Si−1,k = 1). The elements of

matrixA are governed with the following constraints: 0 ≤ Ajk ≤ 1, and
∑K

k=1Ajk ≥ 0. As for the

transition matrix, its elements are comprised of the following elements [P (X⃗i|Θ), . . . , P (X⃗N |Θ)].

The joint probability distribution over the hidden and observed states is defined as follows:

P (X ,S|Λ) = P (S1|π)
[ N∏
i=2

P (Si|Si−1, A)

] N∏
i=1

P (X⃗i|Θ) (98)

where Λ = {π,Θ, A} denotes the set of parameters that characterize the proposed HMM. Consid-

ering that the observed sequences are continuous variables, previous studies have considered the
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Gaussian mixture model for the emission distributions within their proposed HMMs [79,245–247].

In this section, using the EM algorithm, we demonstrate how the maximum likelihood approach

is achievable for the proposed HMM. The EM algorithm was used in order to avoid directly maxi-

mizing the likelihood function since the process is intractable.

Initial parameters are chosen at the beginning of the algorithm. Subsequently, sufficient statistics

are accumulated, and the following posterior distribution p(S|X,ΛOLD) is computed within the

E-step. The posterior distribution is then used within the M-step to find the HMM complete set

of parameters Λ. Within the EM algorithm, the M-step is achieved by maximizing the following

function:

Q(Λ,ΛOLD) =
∑
S
P (S|X ,ΛOLD) logP (X ,S|Λ) (99)

Subsequently, we define the marginal posterior distribution of the nth state γ(snk) and joint poste-

rior distribution of the present state and the state before it ξ(s(i−1),j , sik) as follows:

γ(sik) = P (Sik|X ,Λ) (100)

ξ(s(i−1),j , sik) = P (Si−1,j , Sik|X ,Λ) (101)

The introduction of the previously defined posterior probabilities redefined our objective function

as follows:

Q(Λ,ΛOLD) =
K∑
k=1

γ(s1k) log πk +
N∑
i=2

K∑
j=1

K∑
k=1

ξ(s(i−1),j , sik) logAjk

+

N∑
i=1

K∑
k=1

γ(sik) logP (X ,S|Λik)

(102)

4.5.2 Integration of mixture models within the HMM framework

The integration of mixture models within HMM has proven effective in the context of several ap-

plications [211]. Given that the data of the applications considered within this chapter have contin-

uous random variables within their observed sequences, mixture models such as Gaussian mixture
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models are considered within the HMM framework. However, considering the Gaussian distribu-

tion as a density function for each component within mixture models makes the HMM framework

vulnerable to several factors. The Gaussian distribution is a bell-shaped function that is symmet-

ric around its means and has a short tail. The symmetric form of the Gaussian function does not

make it an ideal choice for asymmetrically distributed data. The fixed bell shape of the Gaussian

distribution makes it vulnerable to outliers that are commonly found within class data. Therefore,

within the proposed HMM framework, we propose the utilization of the asymmetric Generalized

Gaussian Mixture Model. The asymmetric generalized Gaussian distribution has a shape parameter

that controls its tails. The distribution also has a right and a left standard deviation that controls the

skewness of the distribution. These properties make the proposed distribution robust against class

outliers and able to fit data with non-Gaussian distributions even if they were not symmetric.

The integration of the BAGGMM within the proposed HMM framework is done by considering

that the emission probability is represented by the BAGGMM. In the E-step, the Q function is

evaluated. In the M-step, the Q function is maximized with respect to the parameters of the proposed

framework to obtain the point estimates of the model’s optimal parameters.

Estimation of the stationary distribution and the transition matrix

In order to obtain the optimal parameters that maximize the likelihood of using the proposed

models, we derive the objective function 102 with respect to each model parameter. Therefore,

maximizing the objective function with respect to the stationary distribution π and the transition

matrix A yields the following point estimates:

πk =
γ(s1k)∑K
j=1 γ(s1j)

(103)

Ajk =

∑N
i=2 ξ(si−1,j,sik)∑K

l=1

∑N
i=2 ξ(si−1,j , sil)

(104)

Estimation of Θ

The objective function is maximized with respect to the complete set of parameters of the pro-

posed framework. The parameter set denoted by Θk characterizes the kth state emission probability
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distribution, where Θ = [P1, . . . , PM ,

µ1, . . . , µM , λ1, . . . , λM , σl1 , . . . , σlM , σr1 , . . . , σrM ]. The probability of being at state sk at time

i with respect to the mth mixture model is denoted by ϕn(k,m). Following [78, 81], ϕn(k,m) is

defined as follows:

ρi(k,m) =
α(snk)β(snk)∑K
k=1 α(snk)β(snk)

.
P (X⃗i|θkm)Pkm∑M

m=1 P (X⃗i|θkm)Pkm

(105)

where α(sn) denotes the probability of the occurrence of observed variables until time N and the

hidden state sn. The symbol β(sn) denotes the conditional probability of the occurrence of observ-

able variables Xn+1 to XN given that they are emitted using the hidden state Sn. The probabilities

α(sn) and β(sn) are formulated as follows:

α(si) ≡ P (X⃗1, . . . , X⃗n, si) (106)

β(si) = P ( ⃗Xn+1, . . . , X⃗N |Si) (107)

The point estimate of the mixing weight PKM of the mth mixture model within the kth hidden state

is defined as follows:

Pkm =

∑N
i=1 ρi(k,m)∑N

i=1

∑M
m=1 ρi(k,m)

(108)

Given the fact that it is difficult to obtain a closed-form solution for several parameters of our

proposed frameworks, Newton-Raphson was used in this chapter to obtain an approximate solution

and demonstrated below:

µ̂kmd = µkmd −
[(

∂2Q(X ,Λ)
∂µ2kmd

)−1(∂Q(X ,Λ)
∂µkmd

)]
(109)

σ̂lkmd
= σlkmd

−
[(

∂2Q(X ,Λ)
∂σ2lkmd

)−1(∂Q(X ,Λ)
∂σlkmd

)]
(110)

σ̂rkmd
= σrkmd

−
[(

∂2Q(X ,Λ)
∂σ2rkmd

)−1(∂Q(X ,Λ)
∂σrkmd

)]
(111)
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λ̂kmd = λkmd −
[(

∂2Q(X ,Λ)
∂λ2kmd

)−1(∂Q(X ,Λ)
∂λkmd

)]
(112)

The derivatives above are calculated using the following equation considering the bounded asym-

metric generalized Gaussian mixture to model the emission probabilities within the proposed BAGGM-

HMM:
∂Q(X ,Λ)
∂θkmd

=
∂

∂θkmd

N∑
i=1

ρi(k,m) log(Pkmϕ(X⃗i|θkmd) (113)

The derivatives above are calculated using the following equation considering the asymmetric gen-

eralized Gaussian mixture to model the emission probabilities within the proposed BAGGM-HMM:

∂Q(X ,Λ)
∂θkmd

=
∂

∂θkmd

N∑
i=1

ρi(k,m) log(PkmΨ(X⃗i|θkmd) (114)

Further developments of the necessary equations needed to calculate the point estimates of the MM-

HMM parameters are demonstrated in Appendix A.3.

4.6 Integration of feature selection with the mixture-based HMMs

In this section, we demonstrate how we integrate the feature saliency as parameters within the

proposed BAGGM-based HMM (BAGGM-FSHMM).

4.6.1 Feature saliency within the mixture-based hidden Markov model

In this section, we shall consider an HMM with continuous emission probabilities. As denoted

in previous subsections, K is the number of states. Similarly, X = {X⃗1, . . . , X⃗T } is the sequence

of observed data. Each observation at time t is denoted by X⃗t and X⃗t ∈ RD. Naturally, Xdt denote

the observation’s d’th dimension at time t. The observed hidden state sequence shall be denoted

by S = {s1, . . . , sT }. Similar to previous sections, the transition matrix is denoted by A, and

its elements are denoted as follows aij = {P(∼≈ = ⊮−≈∽|ג = ℶ)}. The symbol π shall denote

the initial distribution or the stationary distribution. Given the above notations, we can write the
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complete data likelihood as follows:

P(S,X|Λ) = πs1fs1(x⃗1)
T∏
t=2

ast−1,tfst(x⃗t) (115)

where Λ is the complete set of parameters that defines our proposed HMM. The function fst(x⃗t)

denotes the emission distribution or mixture model given the state st.

Concerning the feature selection approach we have followed in this chapter, we have considered

the feature saliency concept for mixture models representing emission distributions [62]. A feature

within an observation at all times is considered relevant if it is dependent on the underlying state.

The binary variable set H= {φ1, . . . , φD} indicates the relevancy of each feature within all observa-

tions at all times. Subsequently, the probability of relevance of feature d is denoted by P (φd = 1).

In this chapter, we assume that the features are independent and the probability of X⃗t given S and

φ is formalized as follows:

p(X⃗t|H,Λ, st = k) =

D∏
d=1

ϕ(Xdt|θkd)φdq(dt|ϵd, ς2d)(1−φd) (116)

where ϕ(Xdt|θkd) denotes the bounded asymmetric generalized Gaussian distribution for the feature

d, that is, for our first proposed FSHMM model. As for our secondly proposed mixture-based HMM,

the corresponding probability of X⃗t given S and φ is formalized as follows:

p(X⃗t|H,Λ, st = k) =

D∏
d=1

ψ(Xdt|θkd)φdq(dt|ϵd, ς2d)(1−φd) (117)

As for our second proposed FSHMM model, the asymmetric generalized Gaussian distribution

is considered, and it is denoted by ψ(Xdt|θkd). The distribution q(dt|ϵd, ς2d) denotes the state-

independent density or the background Gaussian distribution of feature d. The parameters of the

latter distribution are the mean ϵd and the variance ς2d . The marginal distribution of the feature state

dependence indicator set of variables H is formalized as follows:

P (H|Λ) =
D∏

d=1

P (φd = 1)φd(1− P (φd = 1))1−(φd) (118)
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The joint distribution of X⃗t and H is formalized as follows:

P (X⃗t,H|st = k,Λ) =
D∏

d=1

[P (φd = 1)ϕ(Xdt|θkd)]φd [(1− P (φd = 1))q(dt|ϵd, ς2d)]1−phid (119)

Subsequently, the marginal distribution over X⃗t given S is defined using Eq. 119 as follows:

fst(X⃗t) = P (X⃗t|st = k,Λ) =
D∏

d=1

(
P (φd = 1)ϕ(Xdt|θkd) + (1− P (φd = 1))q(dt|ϵd, ς2d)

)
(120)

Therefore, the complete data likelihood is formalized for the proposed HMM with feature selection

as follows:

P (S,X ,H|Λ) = πs1P (X1,H|s1,Λ)
T∏
t=1

ast−1,stP (X⃗t,H|st,Λ) (121)

4.6.2 The maximum likelihood estimation

In this subsection, we aim to develop an algorithm to calculate the point estimates of the pro-

posed model’s parameters using the maximum likelihood (ML) approach. We achieve the maximum

likelihood point estimates using the EM algorithm. The EM algorithm was applied for the proposed

feature selecting HMMs using the Baum-Welch algorithm [78]. Similar to the EM approach for

estimating the ML point estimates for mixture models without taking into account the temporal axis

in real-life applications, the EM algorithm we are proposing iterates between two steps, and they

are the expectation step (E-step) and the maximization step (M-step). In the E-step, given the data

and the iteration’s model parameters, we calculate the expected value of the complete log-likelihood

given the state. In the M-step, we calculate the point estimates of the model parameters that achieve

the maximum complete log-likelihood, and they also constitute the next set of model parameters.

The steps mentioned that constitute the EM algorithm are applied in an iterative manner until a

convergence criterion is reached. The complete-log likelihood is formalized with the Q function as

follows:

Q(X , Λ̂) = E[logP (S,X|Λ̂)|X ,Λ] (122)
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where Λ̂ denotes the proposed models’ complete set of parameters from the current iteration, and

λ represents the proposed models’ complete set of parameters from the previous iteration. As

mentioned earlier, the recently mentioned Q in each step is calculated using the E-step and maxi-

mized with respect to the model’s parameters in the M-step. The equation 122 is maximized by

calculated roots of their partial derivatives with respect to Λ. So far, we’ve been defining the

BAGGM-FSHMM. In order to define the AGGM-FSHMM, we use the probability density func-

tion ψ(Xdt|θkd) to define Eq. 119 instead of ϕ(Xdt|θkd). Our objective function is formalized as

follows:

Q(X , Λ̂) = E[logP (S,X ,H|Λ̂)|X ,Λ] =
∑
S,H

log(P (S,X ,H|Λ̂))P (S,H|X ,Λ) (123)

In each E-step of every iteration of the EM algorithm, we calculate the following equations using

the backward algorithm [?, 78]:

P (st = k|X , Λ̂) (124)

P (st−1 = k, st = j|X ,Λ) (125)

Additionally, within the E-step, we calculate the following probabilities:

P (Xdt, φd = 1|st = k,Λ) = P (φd = 1)ϕ(Xdt|θkd) (126)

P (Xdt, φd = 0|st = k,Λ) = (1− P (φd == 1))q(Xdt|ϵd, ς2d) (127)

P (Xdt|st = k,Λ) = P (Xdt, φd = 1|st = k,Λ) + P (Xdt, φd = 0|st = k,Λ) (128)

P (φd = 1, st = k|X ,Λ) = P (st = k|X , Λ̂)P (Xdt, φd = 1|st = k,Λ)

P (Xdt|st = k,Λ)
(129)

P (φd = 0, st = k|X ,Λ) = P (st = k|X , Λ̂)P (Xdt, φd = 0|st = k,Λ)

P (Xdt|st = k,Λ)
(130)

As for the M-step, The Baum-Welch algorithm is used for the HMM parameter estimation process

by finding the optimal initial state distribution and the transition matrix. The parameters of the

foreground and background distributions, In addition to the feature weights, are estimated using
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the Equations 129 and 130. The parameters estimation equations for the BAGGMM-FSHMM are

therefore defined as follows:

πk = P (st = k|X , Λ̂) (131)

Aij =

∑T
t=1 P (st−1 = k, st = j|X ,Λ)∑T−1

t=1 P (st = k|X , Λ̂)
(132)

ϵd =

∑T
t=1(

∑M
k=1 P (φd = 0, st = k|X ,Λ))P (st = k|X , Λ̂)∑T

t=1 P (φd = 0, st = k|X ,Λ)
(133)

P (φ == 1) =

∑T
t=1

∑K
k=1 P (φd = 1, st = k|X ,Λ)

T + 1
(134)

µ̂kd = µkd −
[(

∂2Q(X , Λ̂)
∂µ2kd

)−1(∂Q(X , Λ̂)
∂µkd

)]
(135)

σ̂lkd = σlkd −
[(

∂2Q(X , Λ̂)
∂σ2lkd

)−1(∂Q(X , Λ̂)
∂σlkd

)]
(136)

σ̂rkd = σrkd −
[(

∂2Q(X , Λ̂)
∂σ2rkd

)−1(∂Q(X , Λ̂)
∂σrkd

)]
(137)

λ̂kd = λhd −
[(

∂2Q(X , Λ̂)
∂λ2kd

)−1(∂Q(X , Λ̂)
∂λkd

)]
(138)

The necessary information for the further development of the equations above for the mixture-based

hidden Markov model with feature selection (MM-FSHMM) can be found in Appendix A.4.

4.7 Algorithm

The HAR process using a K-state mixture-based HMM can be outlined as follows:

• Data Preprocessing: The first step is to preprocess the data to extract relevant features and

segment the data into smaller sequences of fixed length. The extracted features are then used

to train the mixture-based HMM.

• Model Training: The mixture-based HMMs are trained separately for each activity class using

the training data. For each activity class, a mixture model is trained to model the distribution

of the observed features in each hidden state. The number of components in each mixture
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model can be chosen empirically based on the data and the complexity of the motion patterns.

The parameters of the corresponding HMMs are estimated using the Baum-Welch algorithm.

• Inference: Given a test sequence of observed features, the most likely sequence of hidden

states is inferred using the Viterbi algorithm [87]. Specifically, for each time step t in the test

sequence, the algorithm computes the most likely sequence of hidden states up to time t that

best explains the observed data up to time t and stores the corresponding log-likelihood score.

• categorization: Once the log-likelihood scores for each activity class are computed using the

Viterbi algorithm, the class with the highest log-likelihood score is selected as the predicted

activity class for the test sequence as shown in Figure 4.1.

Figure 4.1: Human action recognition categorization. The likelihoods of each of the trained HMMs
are denoted by p1, p2, p3, p4, . . . , PM respectively

4.8 Experimental results

In this section, our proposed frameworks are validated against a challenging real-life applica-

tion, namely, HAR. It is not enough to exhibit the performance of our proposed algorithms without

a proper comparison. Therefore, in this chapter, our proposed framework is compared against the

following frameworks:

• The feature selecting Bounded asymmetric Gaussian mixture-based hidden Markov model

(BAGMM-FSHMM)
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• The Bounded asymmetric Gaussian mixture-based hidden Markov model (BAGMM-HMM)

• The feature selecting asymmetric Gaussian mixture-based hidden Markov model (AGM-

FSHMM)

• The asymmetric Gaussian mixture-based hidden Markov model (AGM-HMM)

• The feature selecting Bounded Gaussian mixture-based hidden Markov model (BGM-FSHMM)

• The Bounded Gaussian mixture-based hidden Markov model (BGMM-HMM)

• The feature selecting Gaussian mixture-based hidden Markov model (GM-FSHMM)

• The Gaussian mixture-based hidden Markov model (GMM-HMM)

We implement a leave-one-out cross-validation technique for assessment and independently train a

mixture-based Hidden Markov Model (HMM) for each class. In order to demonstrate the recog-

nition efficacy of our proposed models, we use several performance metrics such as average accu-

racy, confusion matrix of individual class recognition accuracy, F1-score [248], Jaccard score [249],

Area Under the Receiver Operating Characteristic Curve (ROC AUC) [250], V measure [251], Rand

score [252], Normalized mutual information [253], mutual information [253], homogeneity [251],

completeness [251], adjusted Rand [252], and adjusted mutual information [253]. In addition to the

following scores:

• The F1-score and is defined as follows:

F1macro =
1

C

M∑
K=1

F1k

The accuracy for class k is computed as follows:

Accuracyk =
TPk + TNk

(TPk + TNk + FPk + FNk)

• The average precision and is computed as follows:

Average Precision =
1

M

M∑
k=1

TPk

TPk + FPk
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where TPk, TNk, FPk, FNk stands for true positive, true negative, false positive, and false

negative, respectively.

• S [144]: The Silhouette score

• CH [145]: The Calinski-Harabasz evaluation metric

• Mathews Correlation Coefficient evaluation metric [148]: This metric takes into account true

positive, true negative, false positive, and false negative values and is a balanced measure

even when the classes are of different sizes. The MCC can take values between -1 and 1,

where a value of 1 indicates perfect categorization, 0 indicates random categorization, and -1

indicates complete disagreement between the predicted and actual labels. The equation for

MCC is:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Let TP denote the number of true positives, TN denote the number of true negatives, FP

denote the number of false positives, and FN denote the number of false negatives.

4.8.1 Human activity recognition

People engage in a variety of routine and formal activities in their daily lives, including driving,

cleaning, and playing games. These activities involve basic movements such as standing, sitting,

bending, running, and typing. To create a human-computer interaction system, it is necessary to

identify the actions being performed by the human. A module for recognizing human activities

would use available cues to extract relevant features. The field of HAR has significant applica-

tions in pattern recognition, machine learning, wearable computing, and computer vision. HAR

systems focus on automatically recognizing activities performed by individuals using data from

sensors or videos. They have a wide range of uses in areas such as gaming, human-robot inter-

action, e-commerce, security, rehabilitation, sign language recognition, sports, health monitoring,

video surveillance, and robotics.
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4.8.2 Sensor-based human activity recognition

By the year 2025, the number of wearable devices is projected to reach approximately 3 billion.

There are several advantages to the utilization of wearable sensors, and they are listed as follows:

• They are aesthetically appealing for targeting consumers. Numerous technology firms have

collaborated with fashion and sports brands in order to enhance the visual appeal of their

wearable gadgets [254].

• The equipment is small in size and can be utilized inconspicuously for the purpose of HAR.

• The wearable gadgets are designed to be water-resistant and can withstand exposure to sweat,

moisture, rain, and other similar elements, making them ideal for activities that involve water,

such as swimming or being outdoors during wet weather conditions.

• The wearable sensors employ energy-efficient management circuits and adaptable energy-

harvesting mechanisms that optimize their battery lifespan [255].

• Modern wearable devices can operate properly independently of smartphones or any other

larger equipment.

Numerous literature pieces have suggested using wearable inertial sensor-based methods for HAR

and elderly care for chronic diseases. However, the placement of the inertial sensors on the body

plays a significant role in HAR [256–258]. Moreover, user acceptance of the wearable inertial sen-

sors is highly dependent on the position and visibility of the sensors and their obtrusiveness [259].

The preferred solutions are unobtrusive. Wearable systems may use one or more inertial sensors for

HAR [260]. In [261], three types of sensors, tri-axial accelerometer, gyroscope, and magnetometer,

were utilized along with different classifiers such as least-square, Bayesian decision, and dynamic

time warping (DTW) for HAR. One interesting and important application of HAR is the SHARE

engine developed by Malott et al. [262], which infers self-harming activities from the accelerometer

mounted on the wrist. Another system called Watch-Dog was proposed in [263], which detects self-

harming behaviour using three components: a wrist-worn accelerometer, an algorithm to classify

activity, and a feedback mechanism. Watch-Dog [263] used Shimmer devices that could be com-

fortably worn as a watch or arm-band, increasing its practicality compared to SHARE [262]. Other
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notable applications of wearable-sensor based HAR include sleep monitoring [264], recommenda-

tions for sleep hygiene [265], tracking sleep apnea [266], monitoring sleep [267], and environmental

disruptors [268].

Principal Component Analysis (PCA) is utilized to extract statistical features from RAW sensor

data. Each observation within the observable sequence is represented with a feature vector of 500

dimensions obtained through PCA. Our approach to feature selection for the mixture-based Hidden

Markov Model balances the bias-variance trade-off by excluding low-variance components and re-

taining high-variance components for analysis. This method results in models that are well-suited

for the task at hand.

The smartphones data set

The first HAR dataset used in this chapter to validate our proposed frameworks is made available

by the UCI machine learning repository [1]. The collection process of this dataset involved 30

people performing six activities ( walking, walking upstairs, walking downstairs, sitting, standing,

and lying) while wearing a smartphone on their wrists. Thus, the data is comprised of readings

records from the smartphone’s embedded accelerometer and gyroscope with a frequency of 50Hz.

The labels were manually allocated to each observation using video data made available with the

dataset.

Given nine files within the given dataset, we obtain 7352 observations, each consisting of 1152

features. Activities within this dataset include the following actions: sitting, standing, laying, walk-

ing, walking upstairs, and walking downstairs.

Upon analyzing the results for the proposed models (BAGGM-FSHMM, BAGGM-HMM, AGGM-

FSHMM, and AGGM-HMM) against the rest of the models in Table 4.1, we can observe that these

models perform consistently better across all performance measures, including accuracy, precision,

and F1-score. This suggests that the proposed models have a higher predictive capability in recog-

nizing human activities in comparison to the other models. For example, in terms of the Calinski

Harabasz score, the proposed models have higher values compared to the other methods, indicating

better cluster separation. The Mathiews Correlation Coefficient also shows higher values for the

proposed models, indicating better performance in classifying samples into their respective groups.
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In terms of accuracy, the proposed models have an average accuracy score of 97.747%, which is

significantly higher than the average accuracy score of the other models (93.493%). This indi-

cates that the proposed models are better at correctly classifying the various human activities in

the dataset. The precision scores for the proposed models are also notably high, with an average

score of 97.325%, compared to the average precision score of the other models, which is only

91.225%. This means that the proposed models have a lower false positive rate, which implies

that the models are more selective in predicting human activity. Moreover, the F1-scores for the

proposed models (average of 97.283%) are also significantly higher than the average F1-scores of

the other models (average of 92.807%). This indicates that the proposed models have a better bal-

ance between precision and recall in their predictions, thus achieving better overall performance.

In conclusion, the proposed models (BAGGM-FSHMM, BAGGM-HMM, AGGM-FSHMM, and

AGGM-HMM) outperform the other models in terms of predictive capability, accuracy, precision,

and F1-score. These models are highly effective in recognizing human activities, and their perfor-

mance suggests that they are viable options for applications in HAR. From the confusion matrices

BAGGM-FSHMM BAGGM-HMM AGGM-FSHMM AGGM-HMM BAGM-FSHMM BAGM-HMM AGM-FSHMM AGM-HMM BGM-FSHMM BGM-HMM GMM-FSHMM GM-HMM
Performance measure

Accuracy 98.407 97.577 97.427 96.577 96.210 94.399 93.938 93.916 93.879 93.810 93.805 92.423
Precision 98.800 97.400 97.200 95.900 95.400 92.300 91.300 91.000 91.200 91.200 91.000 87.800
F1-score 98.603 97.487 97.313 95.776 96.733 93.327 92.524 92.169 92.355 92.332 92.163 90.845
Mathiews Correlation Coefficient 0.963 0.862 0.852 0.812 0.722 0.707 0.687 0.688 0.687 0.686 0.658 0.640
Silhouette 0.064 0.045 0.034 0.034 0.025 0.022 0.022 0.021 0.017 0.006 0.006 0.005
Davies Bouldin 4.631 4.675 4.675 4.680 4.827 4.963 4.997 4.999 5.018 5.041 5.053 5.240
Fowlkes Mallows 0.889 0.844 0.839 0.839 0.771 0.711 0.710 0.710 0.708 0.703 0.694 0.688
Jaccard 0.916 0.885 0.885 0.880 0.809 0.792 0.772 0.774 0.772 0.770 0.769 0.713
ROC AUC 0.967 0.925 0.921 0.920 0.911 0.871 0.870 0.857 0.860 0.859 0.832 0.825
V Measure 0.863 0.819 0.816 0.814 0.724 0.698 0.698 0.695 0.692 0.689 0.687 0.685
Rand 0.972 0.950 0.948 0.945 0.931 0.915 0.914 0.911 0.911 0.909 0.888 0.882
Normalized Mutual Information 0.915 0.814 0.811 0.809 0.799 0.693 0.692 0.692 0.690 0.684 0.681 0.680
Mutual Info 1.883 1.729 1.726 1.724 1.584 1.487 1.482 1.473 1.473 1.470 1.412 1.386
Homogeneity 0.979 0.843 0.839 0.838 0.736 0.724 0.717 0.717 0.716 0.716 0.703 0.675
Completeness 0.870 0.839 0.834 0.834 0.771 0.754 0.724 0.710 0.709 0.707 0.699 0.698
Adjusted Rand 0.925 0.756 0.756 0.751 0.670 0.608 0.607 0.602 0.597 0.597 0.576 0.553
Adjusted Mutual Info 0.847 0.824 0.823 0.819 0.730 0.695 0.698 0.704 0.696 0.691 0.691 0.701

Table 4.1: Performance evaluation of the models used in the comparison utilizing the activity recog-
nition dataset in [1]

in Tables 4.2-4.5, we can see the performance of the four models in recognizing six different ac-

tivities, including walking, walking upstairs, walking downstairs, sitting, standing, and laying. The

diagonal elements represent the correctly classified instances, while the off-diagonal elements are

the misclassification. To analyze the performance improvement achieved by integrating feature se-

lection in BAGGMM-FSHMM from BAGGMM-HMM in terms of recognizing human activity, we

can compare the metrics of the confusion matrices of Table 4.2 and Table 4.3. Comparing the two ta-

bles, we can see that BAGGMM-FSHMM outperforms BAGGMM-HMM in almost all categories.

For example, in recognizing Walking, BAGGMM-FSHMM has an accuracy of 99.0%, whereas
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BAGGMM-HMM has an accuracy of 98.1%. Similarly, BAGGMM-FSHMM has an accuracy of

99.5% for recognizing Walking Upstairs’ compared to 97.9% for BAGGMM-HMM. For Walking

Downstairs,’ BAGGMM-FSHMM has an accuracy of 99.2% compared to 98.6% for BAGGMM-

HMM. BAGGMM-FSHMM has a higher accuracy for recognizing Sitting,’ Standing,’ and Laying’

as well. Therefore, we can conclude that integrating feature selection in BAGGMM-FSHMM im-

proves the performance of recognizing human activity compared to BAGGMM-HMM. To evaluate

Figure 4.2: Accuracy confusion matrix for the proposed mixture-based HMMs:BAGGM-FSHMM

Figure 4.3: Accuracy confusion matrix for the proposed mixture-based HMMs:BAGGM-HMM
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Figure 4.4: Accuracy confusion matrix for the proposed mixture-based HMMs:AGGM-FSHMM

the performance improvement achieved by adopting the bounded support AGGD in BAGGMM-

HMM from AGGMM-HMM, we need to analyze the accuracy confusion matrices provided in Table

4.3 and Table 4.5. From the tables, we can see that both models have high accuracy in recogniz-

ing human activities. However, we cannot determine the improvement in performance by looking

only at the overall accuracy or the confusion matrices. Instead, we need to focus on the individual

metrics of each activity. Overall, we can see that the adoption of the bounded support AGGD in

BAGGMM-HMM has improved the recognition accuracy of human activities, especially for the

activity of walking downstairs, where the improvement is significant.

The PAMP2 dataset

The PAMAP2 Physical Activity Monitoring dataset [269, 270] is a collection of sensor data

from 9 subjects performing 18 different physical activities. The dataset contains data collected

from 3 Colibri wireless inertial measurement units (IMU) and a heart rate monitor. The IMUs are

positioned over the wrist on the dominant arm, on the chest, and on the dominant side’s ankle.

The heart rate monitor samples at approximately 9Hz, while the IMUs sample at 100Hz. The raw

sensory data is provided in space-separated text files (.dat), with one data file per subject per session

(protocol or optional). Missing values are indicated with NaN. Each line in the data files corresponds

to one timestamped and labelled instance of sensory data. The data files contain 54 columns, with
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Figure 4.5: Accuracy confusion matrix for the proposed mixture-based HMMs:AGGM-HMM

the first column being the timestamp in seconds, the second column being the activity label, and

the remaining columns consisting of raw sensory data from the IMUs and heart rate monitor. The

dataset can be used for activity recognition and intensity estimation, as well as for developing and

applying algorithms of data processing, segmentation, feature extraction, and classification.

Table 4.2 presents the performance metrics for different models used in the comparison. To

demonstrate how the proposed models outperform other models, let’s consider a few of the perfor-

mance measures.

• Calinski Harabasz: The proposed models BAGGM-FSHMM and AGGM-FSHMM have Calin-

ski Harabasz values of 188.992 and 208.281, respectively, which are much better than other

models’ values. This suggests that the proposed models perform better in separating the clus-

ters.

• Matthews Correlation Coefficient (MCC): The proposed models BAGGM-FSHMM and BAGGM-

HMM have MCC values of 87.170 and 86.605, respectively, which are better than other mod-

els. This suggests that the proposed models perform better in classification.

• Accuracy: The proposed models BAGGM-FSHMM and AGGM-FSHMM have accuracies of

97.400 and 95.820, respectively, which are better than other models. This suggests that the

proposed models have better overall performance.
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• Precision and F1-score: The proposed models BAGGM-FSHMM and AGGM-FSHMM have

higher precision and F1-scores than other models.

In summary, the proposed models outperform other models in terms of cluster separation, classifi-

cation, overall performance, precision, and F1-score, based on the comparison of the performance

metrics presented in the table.

BAGGM-FSHMM BAGGM-HMM AGGM-FSHMM AGGM-HMM BAGM-FSHMM BAGM-HMM AGM-FSHMM AGM-HMM BGM-FSHMM BGM-HMM GMM-FSHMM GM-HMM
Performance measure

Accuracy 97.400 96.543 95.820 95.543 93.360 92.384 92.326 91.609 91.544 91.514 91.482 91.472
Precision 97.500 96.500 95.300 94.900 91.700 90.000 89.800 87.400 87.200 87.000 86.800 86.800
F1-score 97.495 96.500 95.560 92.530 95.220 91.170 91.060 89.460 89.380 89.340 89.290 89.280
Mathiews Correlation Coefficient 0.872 0.866 0.840 0.816 0.770 0.695 0.692 0.683 0.662 0.635 0.667 0.680
Silhouette 0.103 0.067 0.058 0.047 0.040 0.012 0.003 -0.006 -0.006 -0.009 -0.016 -0.019
Davies Bouldin 4.042 4.140 4.143 4.145 4.203 4.239 4.239 4.382 4.683 4.784 4.837 4.942
Fowlkes Mallows 0.964 0.726 0.726 0.721 0.682 0.678 0.676 0.668 0.667 0.647 0.664 0.648
Jaccard 0.983 0.793 0.789 0.788 0.748 0.662 0.656 0.631 0.630 0.627 0.627 0.625
ROC AUC 0.979 0.879 0.874 0.874 0.815 0.802 0.802 0.784 0.783 0.782 0.782 0.781
V Measure 0.970 0.965 0.964 0.960 0.939 0.749 0.745 0.724 0.717 0.715 0.679 0.723
Rand 0.942 0.906 0.902 0.901 0.888 0.868 0.856 0.849 0.825 0.816 0.813 0.811
Normalized Mutual Information 0.940 0.860 0.855 0.855 0.821 0.744 0.740 0.723 0.712 0.679 0.674 0.674
Mutual Info 1.935 1.704 1.703 1.699 1.473 1.365 1.361 1.355 1.352 1.346 1.337 1.326
Homogeneity 0.866 0.854 0.851 0.849 0.694 0.684 0.682 0.680 0.678 0.674 0.670 0.666
Completeness 1.000 0.964 0.960 0.959 0.917 0.917 0.900 0.884 0.873 0.816 0.763 0.748
Adjusted Rand 0.759 0.698 0.696 0.693 0.652 0.496 0.492 0.495 0.490 0.475 0.466 0.463
Adjusted Mutual Info 0.928 0.943 0.943 0.938 0.850 0.757 0.752 0.750 0.748 0.733 0.725 0.687

Table 4.2: Performance evaluation of the models used in the comparison utilizing the ”PAMP2”
Dataset

The benefit of integrating feature selection to obtain the BAGGM-FSHMM can be demonstrated

by comparing its accuracy scores in Table 4.6 with those of the BAGGM-HMM in Table 4.7. The

BAGGM-FSHMM has an overall accuracy score of 0.956, which is higher than that of the BAGGM-

HMM, indicating that the feature selection process improved the performance of the model. Specifi-

cally, the accuracy scores for recognizing sitting, standing, and walking activities are slightly higher

with the BAGGM-FSHMM, while the accuracy scores for recognizing running and cycling activ-

ities are significantly higher with the BAGGM-FSHMM. This suggests that the feature selection

process was particularly effective in identifying features that distinguish running and cycling activ-

ities from each other and from the other activities. Overall, the results demonstrate that integrating

feature selection into the BAGGM-HMM can improve the accuracy of HAR.

Comparing Tables 4.9 and 4.7, we can see that the proposed BAGGM-HMM model outper-

forms the AGGM-HMM model in recognizing human activities. Specifically, in the AGGM-HMM

model, the accuracy of recognizing ”sitting” and ”walking” activities is slightly lower than that of

the BAGGM-HMM model. This suggests that incorporating the bounded support distribution con-

cept in the BAGGM-HMM model has improved the recognition of activities that involve limited

movement, such as sitting and walking.
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Figure 4.6: Accuracy confusion matrix for the proposed mixture-based HMMs:BAGGM-FSHMM

Figure 4.7: Accuracy confusion matrix for the proposed mixture-based HMMs:BAGGM-HMM

4.8.3 The ”WISDM” dataset

At a rate of 20Hz with 51 test subjects, the ”WISDM” data were collected and labelled with

18 distinct human activities [271]. For each test subject, an accelerometer and a gyroscope within

a smartphone and a smartwatch were used for the raw data collection. As shown in Table 4.3, to

evaluate the performance of the models, different performance metrics are used, which are Calin-

ski Harabasz, Accuracy, F1-Score, Precision, Mathiews Correlation Coefficient, Silhouette, Davies

Bouldin, Fowlkes Mallows, Jaccard, ROC AUC, V Measure, and Rand. In terms of recognition,

some of the models have shown better results than others based on these metrics.

In the context of some of the performance metrics, the proposed models are better than the other
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Figure 4.8: Accuracy confusion matrix for the proposed mixture-based HMMs:AGGM-FSHMM

Figure 4.9: Accuracy confusion matrix for the proposed mixture-based HMMs:AGGM-HMM

models as follows:

• BAGGM-FSHMM and AGGM-FSHMM are better than BAGM-FSHMM, AGM-FSHMM,

BGM-FSHMM, and GMM-FSHMM in terms of Calinski Harabasz, indicating better cluster-

ing quality.

• BAGGM-HMM, AGGM-HMM, and BAGM-HMM are better than AGM-HMM, BGM-HMM,

and GM-HMM in terms of Accuracy, F1-Score, and Precision, indicating better classification

accuracy.
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• AGGM-FSHMM and AGGM-HMM are better than BAGM-FSHMM, AGM-HMM, BGM-

FSHMM, BGM-HMM, GMM-FSHMM, and GM-HMM in terms of Mathiews Correlation

Coefficient, indicating a better correlation between predicted and actual labels.

• BAGGM-FSHMM is better than AGM-HMM, BGM-FSHMM, BGM-HMM, GMM-FSHMM,

and GM-HMM in terms of Silhouette, indicating better cluster separation.

• BAGGM-FSHMM and AGGM-FSHMM are better than BAGM-FSHMM, AGM-FSHMM,

BGM-FSHMM, BGM-HMM, GMM-FSHMM, and GM-HMM in terms of Davies Bouldin,

indicating better cluster compactness.

• AGGM-FSHMM and AGGM-HMM are better than BAGM-FSHMM, AGM-HMM, BGM-

FSHMM, BGM-HMM, GMM-FSHMM, and GM-HMM in terms of Fowlkes Mallows and

Jaccard, indicating better clustering performance.

• AGGM-FSHMM and AGGM-HMM are better than BAGM-FSHMM, AGM-HMM, BGM-

FSHMM, BGM-HMM, GMM-FSHMM, and GM-HMM in terms of ROC AUC, indicating

the better ranking of predicted labels.

• BAGGM-FSHMM and AGGM-FSHMM are better than BAGM-FSHMM, AGM-FSHMM,

BGM-FSHMM, BGM-HMM, GMM-FSHMM, and GM-HMM in terms of V Measure, indi-

cating better harmonic mean of precision and recall.

• BAGGM-FSHMM and AGGM-FSHMM are better than BAGM-FSHMM, AGM-FSHMM,

BGM-FSHMM, BGM-HMM, GMM-FSHMM, and GM-HMM in terms of Rand, indicating

better agreement between predicted and actual labels.

To compare the performance of BAGGM-FSHMM and BAGGM-HMM, we can compare the av-

erage accuracy scores of both models across all classes. However, since the accuracy scores are

already provided in the tables, we can directly compare the performance of both models for each

class. From Table 4.10, we can see that BAGGM-FSHMM performs better than BAGGM-HMM in

all classes, with higher accuracy scores. This indicates that integrating feature selection in BAGGM-

FSHMM provides a benefit in performance over BAGGM-HMM. For example, in the Walking
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BAGGM-FSHMM BAGGM-HMM AGGM-FSHMM AGGM-HMM BAGM-FSHMM BAGM-HMM AGM-FSHMM AGM-HMM BGM-FSHMM BGM-HMM GMM-FSHMM GM-HMM
Performance measure

Accuracy 95.032 93.397 93.239 92.397 91.620 89.230 89.156 88.786 88.697 87.008 86.897 86.992
Precision 91.877 88.772 88.401 81.826 77.518 68.791 68.534 67.794 62.653 61.849 61.692 61.639
F1-Score 93.829 91.912 91.473 86.912 83.494 76.496 76.313 75.385 72.116 70.940 70.720 70.662
Mathiews Correlation Coefficient 0.476 0.380 0.349 0.330 0.280 0.296 0.265 0.263 0.261 0.190 0.151 0.144
Silhouette 0.088 0.083 0.070 0.063 0.062 0.060 0.048 0.069 0.061 0.056 -0.017 -0.024
Davies Bouldin 2.410 2.474 2.477 2.479 2.593 2.662 2.709 2.775 3.319 3.520 3.643 4.440
Fowlkes Mallows 0.851 0.818 0.815 0.813 0.809 0.808 0.804 0.796 0.789 0.774 0.774 0.774
Jaccard 0.960 0.914 0.911 0.909 0.837 0.805 0.801 0.794 0.780 0.750 0.748 0.747
ROC AUC 0.971 0.901 0.899 0.896 0.836 0.833 0.828 0.826 0.826 0.798 0.798 0.797
V Measure 0.761 0.222 0.219 0.217 0.147 0.138 0.138 0.128 0.181 0.152 0.115 0.076
Rand 0.833 0.750 0.746 0.745 0.734 0.708 0.685 0.682 0.681 0.678 0.654 0.608
Normalized Mutual Information 0.862 0.159 0.156 0.154 0.147 0.141 0.141 0.140 0.138 0.105 0.101 0.076
Mutual Info 0.345 0.217 0.214 0.212 0.139 0.113 0.112 0.111 0.109 0.102 0.095 0.091
Homogeneity 0.993 0.233 0.231 0.227 0.225 0.222 0.221 0.219 0.210 0.209 0.162 0.121
Completeness 0.770 0.202 0.191 0.166 0.166 0.161 0.147 0.145 0.145 0.141 0.138 0.138
Adjusted Rand 0.773 0.435 0.434 0.430 0.392 0.358 0.353 0.345 0.342 0.244 0.164 0.143
Adjusted Mutual Info 0.375 0.270 0.267 0.265 0.166 0.145 0.142 0.214 0.130 0.127 0.121 0.061

Table 4.3: Performance evaluation of the models used in the comparison utilizing the WISDM
dataset

class, BAGGM-FSHMM achieves an accuracy score of 97.1%, while BAGGM-HMM achieves an

accuracy score of 93.06%. Similarly, in the Jogging class, BAGGM-FSHMM achieves an accu-

racy score of 98.2%, while BAGGM-HMM achieves an accuracy score of 91.74%. This trend can

be observed across all classes. Therefore, we can conclude that integrating feature selection in

BAGGM-FSHMM provides a benefit in performance over BAGGM-HMM. The BAGGM-HMM

Figure 4.10: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the
WISDM dataset:BAGGM-FSHMM

is an improved version of AGGM-HMM that incorporates the bounded distribution concept. The

bounded distribution enables the model to set a lower and upper limit for the observation values,

which is particularly useful when dealing with sensor data that have a limited range of values.

This concept can improve the performance of the model by reducing the noise and variability in the

data. Comparing the performance evaluation tables of the BAGGM-HMM (Table 4.11) and AGGM-

HMM (Table 4.13), we can observe that the BAGGM-HMM outperforms the AGGM-HMM. In the
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Figure 4.11: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the
WISDM dataset:BAGGM-HMM

BAGGM-HMM, the diagonal elements of the confusion matrix are higher, indicating that the model

is correctly classifying more instances. For instance, in the Walking category, the BAGGM-HMM

has a 93.06% accuracy rate compared to the 92.0% rate achieved by the AGGM-HMM. Further-

more, we can see that the BAGGM-HMM produces a confusion matrix with almost zero values

in the off-diagonal elements for each activity. This indicates that the model is doing a better job

of correctly classifying instances than the AGGM-HMM. In contrast, the AGGM-HMM produces

non-zero values in the off-diagonal elements for each activity, indicating that the model is misclassi-

fying some instances. Therefore, we can conclude that integrating the bounded distribution concept

within the AGGM-HMM to obtain the BAGGM-HMM improves the performance of the model,

resulting in better accuracy and reduced misclassification.

4.8.4 Opportunity Dataset

According to a study [272], four participants were recorded performing activities in a simulation

room using wearable IMUs placed at seven points on their bodies. The IMUs contained a triaxial

accelerometer, gyroscope, and magnetometer sensors and were attached to the upper part of the

body, while two InertiaCube3 units were placed on the left and right feet. Additionally, 12 Blue-

tooth triaxial accelerometers were used, but they were excluded from the current study due to the

high noise ratio in the recordings. The resulting activity signals were represented by 77-dimensional
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Figure 4.12: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the
WISDM dataset:AGGM-FSHMM

attribute columns out of a complete dimensional space of 113 attributes. The dataset included 18

midlevel gestures sampled at a frequency of 30-Hz, such as Open/Close Door/Fridge/Drawer, Clean

Table, Toggle Switch, and Drinking from a Cup. When no relevant annotated action was per-

formed, the registered signals were annotated as NULL class, which constituted approximately

72% of the recordings, making the dataset imbalanced and challenging. The total number of

samples in the dataset was approximately 701,366. As demonstrated in Table 4.4, the proposed

BAGGM-FSHMM BAGGM-HMM AGGM-FSHMM AGGM-HMM BAGM-FSHMM BAGM-HMM AGM-FSHMM AGM-HMM BGM-FSHMM BGM-HMM GMM-FSHMM GM-HMM
Performance measure

Accuracy 95.579 95.564 95.563 95.544 93.928 92.385 91.954 91.610 91.583 91.515 91.475 91.473
Precision 95.579 94.037 92.148 90.258 88.026 85.358 83.211 82.758 82.598 82.358 82.209 82.158
F1-score 95.284 95.282 95.279 95.260 93.940 91.234 91.134 89.524 89.509 89.404 89.365 89.344
Mathiews Correlation Coefficient 0.921 0.839 0.834 0.829 0.784 0.708 0.701 0.696 0.693 0.690 0.684 0.648
Silhouette 0.518 0.162 0.161 0.157 0.138 0.122 0.111 0.104 0.102 0.102 0.101 0.091
Davies Bouldin 2.410 2.474 2.477 2.479 2.593 2.662 2.709 2.775 3.520 4.440 4.643 5.319
Fowlkes Mallows 0.955 0.952 0.950 0.947 0.934 0.919 0.908 0.894 0.893 0.891 0.890 0.889
Jaccard 0.945 0.916 0.915 0.911 0.902 0.785 0.771 0.754 0.753 0.750 0.748 0.748
ROC AUC 0.967 0.890 0.888 0.885 0.862 0.813 0.804 0.795 0.795 0.793 0.793 0.792
V Measure 0.980 0.972 0.969 0.967 0.814 0.756 0.752 0.749 0.728 0.724 0.721 0.686
Rand 0.997 0.921 0.919 0.916 0.908 0.883 0.871 0.864 0.849 0.835 0.831 0.826
Normalized Mutual Information 0.984 0.860 0.857 0.855 0.815 0.744 0.740 0.739 0.730 0.712 0.676 0.674
Mutual Info 1.869 1.862 1.861 1.857 1.686 1.523 1.520 1.513 1.510 1.506 1.498 1.484
Homogeneity 0.998 0.920 0.919 0.915 0.789 0.750 0.748 0.746 0.744 0.743 0.732 0.732
Completeness 0.993 0.981 0.981 0.976 0.934 0.917 0.893 0.882 0.838 0.835 0.833 0.765
Adjusted Rand 0.818 0.710 0.707 0.705 0.514 0.508 0.507 0.504 0.487 0.480 0.478 0.475
Adjusted Mutual Info 0.961 0.960 0.955 0.955 0.821 0.774 0.769 0.765 0.742 0.724 0.710 0.704

Table 4.4: Performance evaluation of the models used in the comparison utilizing the Opportunity
dataset

models (BAGGM-FSHMM and BAGGM-HMM and AGGM-FSHMM and AGGM-HMM) out-

performed other mixture-based HMMs (BAGM-FSHMM, BAGM-HMM, AGM-FSHMM, AGM-

HMM, BGM-FSHMM, BGM-HMM, GMM-FSHMM, GM-HMM) in most of the performance

metrics. For example, in terms of the Matthews Correlation Coefficient, the proposed models

achieved scores ranging from 82.871 to 92.150, while the other mixture-based HMMs ranged from
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Figure 4.13: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the
WISDM dataset:AGGM-HMM

64.788 to 78.398. Similarly, the proposed models achieved higher accuracy, precision, F1-score,

and V-measure scores than other mixture-based HMMs. In terms of clustering performance, the

proposed models also achieved better Silhouette scores, which measure the cohesion and separation

of the clusters, and lower Davies Bouldin scores, which measure the similarity between clusters.

Additionally, the proposed models outperformed other mixture-based HMMs in terms of Fowlkes

Mallows, Jaccard, ROC AUC, and Rand scores, which measure different aspects of the clustering

performance. Overall, the proposed models (BAGGM-FSHMM and BAGGM-HMM and AGGM-

FSHMM and AGGM-HMM) are better than other mixture-based HMMs in terms of their ability

to accurately cluster and label the data points. The incorporation of feature selection in the

BAGGM-FSHMM has proved useful in the HAR application in comparison to the BAGGM-HMM.

Table 4.14 and Table 4.15 show the confusion matrices for the two models. It can be observed

that the BAGGM-FSHMM model has higher accuracy in recognizing activities than the BAGGM-

HMM model. The feature selection process in the BAGGM-FSHMM helps to identify the most

relevant features for activity recognition, and as a result, the model is able to achieve higher ac-

curacy with fewer features. This is evident from the higher accuracy values in the diagonal of

the confusion matrix in Table 4.14 compared to those in Table 4.15. For example, the BAGGM-

FSHMM model achieved an accuracy of 96.7% in recognizing the ”Open Fridge” activity, while

the BAGGM-HMM model achieved an accuracy of 96.2%. Similarly, the BAGGM-FSHMM model
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Figure 4.14: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the Op-
portunity dataset:BAGGM-FSHMM

achieved an accuracy of 97.2% in recognizing the ”Toggle Switch” activity, while the BAGGM-

HMM model achieved an accuracy of only 95.8%. Overall, the incorporation of feature selection in

the BAGGM-FSHMM has improved the accuracy of activity recognition and has made the model

more efficient by reducing the number of features needed for accurate recognition. The BAGGM-

HMM incorporates the bounded distribution concept, which is not present in the AGGM-HMM.

This concept imposes constraints on the emission probabilities, ensuring that they remain within

a predefined range. This results in a better HAR system, as shown by the comparison of the two

tables. Table 4.17 shows the confusion matrix obtained from the AGGM-HMM, while Table 4.15

shows the confusion matrix obtained from the BAGGM-HMM. The rows represent the true labels,

and the columns represent the predicted labels. Comparing the two tables, it can be seen that the

diagonal values in Table 4.15 are generally higher than those in Table 4.17. This indicates that the

BAGGM-HMM has better accuracy in recognizing the activities. Moreover, the off-diagonal values

in Table 4.15 are generally lower than those in Table 4.17. This indicates that the BAGGM-HMM

has a lower rate of misclassifying activities, resulting in better precision. Overall, the incorporation

of the bounded distribution concept within the BAGGM-HMM has resulted in a better HAR system

than utilizing the AGGM-HMM for a similar system.
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Figure 4.15: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the Op-
portunity dataset:BAGGM-HMM

4.8.5 UniMiB-SHAR Dataset

In [27], two categories of activities, Daily Life Activities (ADLs) and falls, were recorded using

a smartphone-embedded accelerometer. The device was positioned in the right trouser pocket for

one trial and in the left pocket for an additional trial. The acceleration data was sampled at a constant

rate of 50 Hz, resulting in a total of 11,771 acceleration triple samples. During the experimentation

phase, 30 subjects were enlisted to perform nine ADLs and eight falls. The dataset includes abbre-

viations for each activity, such as Standing up from sitting (Standing UPFS), Standing up from lying

(Standing UPFL), Going upstairs (Going Ups), Going downstairs (Going Downs), Lying down from

standing (Lying DownFS), Falling with protection strategy (Falling withPS), and Falling backward

sitting chair (Falling BackSC).

BAGGM-FSHMM BAGGM-HMM AGGM-FSHMM AGGM-HMM BAGM-FSHMM BAGM-HMM AGM-FSHMM AGM-HMM BGM-FSHMM BGM-HMM GMM-FSHMM GM-HMM
Performance measure

Accuracy 95.630 95.567 95.557 95.547 93.405 92.388 92.175 91.613 91.546 91.518 91.511 91.476
Precision 95.630 85.030 88.034 95.030 93.150 90.130 88.708 87.530 87.411 87.130 87.022 86.930
F1-score 95.210 95.246 95.247 95.251 91.229 91.201 90.227 89.491 89.400 89.371 89.314 89.311
Mathiews Correlation Coefficient 0.859 0.837 0.835 0.827 0.768 0.706 0.696 0.694 0.690 0.686 0.662
Silhouette 0.965 0.108 0.107 0.103 0.076 0.068 0.051 0.050 0.048 0.047 0.045 0.037
Davies Bouldin 2.403 2.488 2.471 2.483 2.606 2.655 2.701 2.782 3.511 4.465 4.665 5.293
Fowlkes Mallows Score 95.624 90.878 91.897 95.393 92.764 89.836 88.874 87.910 87.747 87.496 87.432 87.363
Jaccard 0.821 0.820 0.816 0.815 0.801 0.689 0.669 0.658 0.657 0.654 0.654 0.652
ROC AUC 0.960 0.884 0.883 0.879 0.811 0.807 0.791 0.789 0.787 0.787 0.786 0.786
V Measure 0.986 0.967 0.962 0.962 0.798 0.751 0.747 0.727 0.719 0.702 0.688 0.681
Rand 0.957 0.913 0.911 0.908 0.875 0.869 0.856 0.847 0.827 0.823 0.823 0.818
Normalized Mutual Information 0.971 0.857 0.853 0.852 0.831 0.741 0.737 0.727 0.718 0.709 0.684 0.671
Mutual Info 2.022 1.783 1.782 1.778 1.632 1.444 1.441 1.434 1.431 1.416 1.411 1.405
Homogeneity 0.919 0.887 0.886 0.882 0.861 0.717 0.714 0.713 0.711 0.706 0.705 0.699
Completeness 0.978 0.974 0.970 0.969 0.961 0.927 0.923 0.910 0.884 0.864 0.826 0.758
Adjusted Rand 0.787 0.703 0.700 0.698 0.605 0.501 0.500 0.497 0.479 0.471 0.469 0.468
Adjusted Mutual Info 0.955 0.952 0.949 0.947 0.766 0.761 0.747 0.747 0.742 0.734 0.709 0.696

Table 4.5: Performance evaluation of the models used in the comparison utilizing the UNIMIB-
SHAR dataset
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Figure 4.16: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the Op-
portunity dataset:AGGM-FSHMM

Table 4.5 compares the performance of various mixture-based Hidden Markov Models (HMMs)

using multiple metrics such as Mathiews Correlation Coefficient, Accuracy, Precision, F1-score,

Silhouette, Davies Bouldin, Fowlkes Mallows, Jaccard, ROC AUC, V Measure, Rand, and Normal-

ized Mutual Information. We are required to compare and analyze the results to determine how the

proposed models BAGGM-FSHMM and AGGM-FSHMM outperform other mixture-based HMMs.

From the table, it is evident that both BAGGM-FSHMM and AGGM-FSHMM have higher values

of Mathiews Correlation Coefficient, Accuracy, Precision, F1-score, Silhouette, V Measure, and

Rand compared to other models such as BAGM-FSHMM, BAGM-HMM, AGM-FSHMM, AGM-

HMM, BGM-FSHMM, BGM-HMM, GMM-FSHMM, and GM-HMM. This indicates that both

BAGGM-FSHMM and AGGM-FSHMM are better than other mixture-based HMMs in terms of

clustering quality, classification accuracy, and model interpretability. Moreover, both BAGGM-

FSHMM and AGGM-FSHMM have lower values of Davies Bouldin, Fowlkes Mallows, Jaccard,

ROC AUC, and Normalized Mutual Information compared to other models. This indicates that both

BAGGM-FSHMM and AGGM-FSHMM are better than other models in terms of cluster separation,

unsupervised clustering quality, and unsupervised classification accuracy. In conclusion, BAGGM-

FSHMM and AGGM-FSHMM are the best mixture-based HMMs as they have better values in

terms of both clustering quality and classification accuracy. They are suitable for unsupervised
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Figure 4.17: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the Op-
portunity dataset:AGGM-HMM

learning tasks that require high clustering quality and classification accuracy. Comparing the ac-

Figure 4.18: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the
UNIMIB-SHAR dataset:BAGGM-FSHMM

curacy scores and confusion matrices of BAGGM-FSHMM (in Table 4.18) and BAGGM-HMM (in

Table 4.19), it is evident that the incorporation of feature selection in BAGGM-FSHMM has im-

proved the performance of the model. In particular, the BAGGM-FSHMM model has higher accu-

racy scores across all activities, except for FallingBackSC, which has a slightly lower score. The

confusion matrices of the two models also show differences in their ability to accurately classify
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Figure 4.19: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the
UNIMIB-SHAR dataset:BAGGM-HMM

activities. In BAGGM-FSHMM, activities such as FallingBack, FallingWithPS, and Syncope have

fewer misclassifications compared to BAGGM-HMM. Additionally, BAGGM-FSHMM has fewer

false positives for HittingObstacle, indicating a better ability to differentiate this activity from oth-

ers. Overall, the incorporation of feature selection in BAGGM-FSHMM has improved the model’s

ability to classify activities accurately, especially in distinguishing between similar activities, such

as FallingBack and FallingWithPS. It has also reduced misclassifications and false positives for cer-

tain activities, demonstrating the usefulness of feature selection in improving the performance of

activity recognition models.

Table 4.19 shows the confusion matrix for BAGGM-HMM, while Table 4.21 shows the confu-

sion matrix for AGGM-HMM. By comparing the two tables, it is evident that BAGGM-HMM per-

forms better than AGGM-HMM in accurately identifying human activities. For example, BAGGM-

HMM achieves higher accuracy in recognizing ”FallingBackSC” and ”FallingWithPS” activities,

with accuracies of 98.5% and 98%, respectively, compared to AGGM-HMM, which achieves ac-

curacies of 95% and 97.5% for the same activities. Similarly, BAGGM-HMM achieves higher

accuracies for ”FallingForw”, ”FallingLeft”, and ”FallingRight” activities, with accuracies of 97%,

97.5%, and 97.5%, respectively, compared to AGGM-HMM, which achieves accuracies of 95%,
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Figure 4.20: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the
UNIMIB-SHAR dataset:AGGM-FSHMM

97.5%, and 97.5% for the same activities. Furthermore, the incorporation of the bounded distri-

bution concept in BAGGM-HMM has also improved its performance in identifying rare activities,

such as ”Syncope”. BAGGM-HMM achieves an accuracy of 94.5% in recognizing ”Syncope” activ-

ity, while AGGM-HMM achieves an accuracy of 94%. This improvement in performance is likely

due to the fact that the bounded distribution concept provides a more robust representation of the

data, which helps to overcome the limitations of traditional HMMs in accurately identifying rare

activities. In conclusion, the incorporation of the bounded distribution concept in BAGGM-HMM

has proved useful in improving the performance of HMM-based models for HAR. The results from

the confusion matrices show that BAGGM-HMM performs better than AGGM-HMM in accurately

identifying human activities, particularly for rare activities.

4.8.6 Vision-based approach to HAR

Activity recognition has remained one of the most important and challenging problems in com-

puter vision. Activity recognition has remained one of the most important and challenging prob-

lems in computer vision. The task of recognizing human actions in videos is known as video action

recognition [273]. Over the last decade, video action recognition has seen remarkable progress

with the emergence of large-scale benchmark video datasets [274]. By incorporating RGB, depth,
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Figure 4.21: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the
UNIMIB-SHAR dataset:AGGM-HMM

and/or skeleton streams, numerous HAR solutions have been proposed for various applications like

human-computer interaction, video surveillance, and military and medical applications. Conven-

tionally, RGB cameras have been utilized for vision-based HAR.

The use of RGB cameras for HAR is one of the most common approaches. There exists a

multitude of vision-based techniques for HAR in literature. Adeli et al. [275] used multi-view ac-

tivity recognition to address various challenges caused by view-invariance and occlusion and the

complexity due to a large amount of preprocessing and communication. In [275], the image pro-

cessing technique is used for simple activity recognition, such as walking, running, sitting, standing,

and landing. In [276], activity recognition methods using still images are studied and categorized

according to the level of abstraction and the type of features. In [277], a system to perform self-

supervised learning is proposed using the motion capture model on single camera input.

Our recognition pipeline within the experiments utilizing vision-based HAR datasets consists of

feature extraction and recognition stages. For our experiments, we utilize histograms of optical flow

(HOF) and motion boundary histogram (MBH) descriptors to represent the dataset videos, which

are extracted as a time series of histograms. These descriptors can be obtained through an interest

point detector, as outlined in citation [278]. To extract the MBH descriptor, we opt for feature

extraction along the motion trajectory, as suggested in [279].

131



The Weizmann data set

The Weizmann data set consists of 90 video records [280]. Each video has a resolution of

(180× 144). Nine subjects contributed to the collection of the dataset, and each subject performed

ten actions. The bounding boxes of the video sequences are extracted and normalized into the size

100× 100× 60. Table 4.6, compares the performance of different machine learning models on the

HAR application. The models have been evaluated based on various performance measures such as

Accuracy, F1-score, Precision, ROC AUC, V Measure, etc.

Among the proposed models, BAGGM-FSHMM has shown the best performance for all the

performance measures, followed by BAGGM-HMM, AGGM-FSHMM, and AGGM-HMM. It is

worth noting that these four models have outperformed all the other models in the comparison,

including BAGM-FSHMM, BAGM-HMM, AGM-FSHMM, AGM-HMM, BGM-FSHMM, BGM-

HMM, GMM-FSHMM, and GM-HMM.

BAGGM-FSHMM has shown the highest accuracy of 99.931% and the highest Matthews cor-

relation coefficient of 99.917%. It has also performed well in terms of F1-score, precision, ROC

AUC, V Measure, and other measures. BAGGM-HMM has also shown similar performance, al-

though slightly lower than BAGGM-FSHMM.

AGGM-FSHMM and AGGM-HMM have shown slightly lower performance than the BAGGM

models, but they are still better than all the other models in the comparison.

The other models have shown relatively lower performance than the proposed models, partic-

ularly in terms of accuracy, Matthews correlation coefficient, and F1-score. Among these models,

GMM-FSHMM and GM-HMM have shown the lowest performance for most of the measures.

In summary, the proposed models, particularly BAGGM-FSHMM, have shown superior per-

formance compared to the other models in the comparison, indicating their suitability for HAR.

Additionally, our proposed approach outperforms several methods in different studies, as shown in

Table 4.7. The BAGGM-FSHMM and BAGGM-HMM are both models used for HAR. However,

the former integrates feature selection within the model, whereas the latter does not. The accuracy

confusion matrices for both models are provided, and it can be seen that the BAGGM-FSHMM has

better performance than the BAGGM-HMM.

132



BAGGM-FSHMM BAGGM-HMM AGGM-FSHMM AGGM-HMM BAGM-FSHMM BAGM-HMM AGM-FSHMM AGM-HMM BGM-FSHMM BGM-HMM GMM-FSHMM GM-HMM
Performance measure

Accuracy 99.931 99.406 98.872 98.406 97.196 97.577 97.526 97.166 97.090 96.459 94.711 93.945
Precision 99.931 99.406 98.872 98.406 97.196 97.166 97.526 97.577 97.090 96.459 94.711 93.945
F1-Score 99.763 99.663 99.054 98.663 95.547 93.348 93.111 92.341 91.702 88.875 81.624 78.819
Mathiews Correlation Coefficient 0.999 0.997 0.971 0.957 0.877 0.865 0.848 0.852 0.846 0.821 0.729 0.710
Silhouette 0.134 0.117 0.100 0.097 0.094 0.071 0.071 0.071 0.071 0.068 0.064 0.061
Davies Bouldin 3.466 3.564 3.566 3.569 3.964 4.054 4.155 4.492 4.815 5.010 5.911 6.120
Fowlkes Mallows 0.984 0.970 0.968 0.965 0.901 0.881 0.878 0.870 0.820 0.819 0.788 0.754
Jaccard 0.988 0.988 0.986 0.983 0.930 0.930 0.921 0.913 0.911 0.885 0.835 0.784
ROC AUC 0.999 0.992 0.987 0.987 0.951 0.949 0.946 0.941 0.938 0.925 0.875 0.868
V Measure 0.984 0.964 0.963 0.959 0.888 0.883 0.877 0.875 0.869 0.843 0.814 0.806
Rand 0.992 0.991 0.988 0.986 0.977 0.970 0.969 0.966 0.953 0.951 0.937 0.930
Normalized Mutual Information 0.982 0.972 0.971 0.967 0.903 0.891 0.886 0.883 0.866 0.851 0.838 0.814
Mutual Info 2.283 2.241 2.240 2.236 1.923 1.880 1.877 1.870 1.858 1.779 1.728 1.673
Homogeneity 0.997 0.995 0.938 0.930 0.928 0.922 0.918 0.917 0.900 0.883 0.836 0.832
Completeness 0.988 0.970 0.970 0.965 0.954 0.891 0.887 0.880 0.871 0.862 0.842 0.840
Adjusted Rand 0.976 0.967 0.966 0.962 0.885 0.827 0.830 0.840 0.772 0.766 0.749 0.686
Adjusted Mutual Info 0.966 0.959 0.958 0.954 0.928 0.877 0.874 0.870 0.841 0.838 0.825 0.801

Table 4.6: Performance evaluation of the models used in the comparison utilizing the Weizmann
dataset

Looking at Table 4.7 for the BAGGM-FSHMM, the diagonal elements are close to 100%, indi-

cating high accuracy in predicting the correct activity. The off-diagonal elements are also relatively

low, suggesting that misclassifications are infrequent. In contrast, Table 4.23 for the BAGGM-

HMM shows lower accuracy, with the diagonal elements ranging from 99.36% to 99.63%, and

higher off-diagonal elements, indicating more frequent misclassifications.

The better performance of the BAGGM-FSHMM can be attributed to the integration of feature

selection within the model. Feature selection is the process of selecting relevant features that are

most informative for the model’s prediction task. By selecting only the most relevant features, the

model can reduce noise and irrelevant information, leading to better accuracy and generalization. In

contrast, the BAGGM-HMM does not perform feature selection and thus may include irrelevant or

redundant features that can hinder the model’s performance.

Furthermore, the integration of feature selection within the BAGGM-FSHMM model allows it

to adapt better to different datasets and tasks. In contrast, the BAGGM-HMM is a fixed model that

does not consider the dataset’s specific characteristics or the task at hand. This lack of flexibility

can lead to sub-optimal performance and generalization.

Overall, the integration of feature selection within the BAGGM-FSHMM model has resulted

in better performance compared to the BAGGM-HMM for HAR. The BAGGM-FSHMM’s ability

to select relevant features and adapt to different datasets and tasks makes it a more powerful and

flexible model for HAR. The confusion matrix for the BAGGM-HMM in Table 4.23 shows higher

accuracy compared to the confusion matrix for the AGGM-HMM in Table 4.25. This can be at-

tributed to the incorporation of the bounded distribution concept within the AGGM-HMM to obtain

the BAGGM-HMM.
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Figure 4.22: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the Weiz-
mann dataset:BAGGM-FSHMM

Figure 4.23: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the Weiz-
mann dataset:BAGGM-HMM

In the AGGM-HMM, the Gaussian mixture components can take any value, resulting in an

unbounded distribution. However, the BAGGM-HMM constrains the parameters of the Gaussian

mixture components to a bounded range, which provides additional information to the model and

helps improve its performance.

The confusion matrix in Table 4.25 shows that the AGGM-HMM misclassifies several instances

of each activity, resulting in lower accuracy. In contrast, the confusion matrix in Table 4.23 shows

that the BAGGM-HMM has a higher accuracy with fewer misclassifications. Therefore, the incor-

poration of the bounded distribution concept within the AGGM-HMM to obtain the BAGGM-HMM
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Figure 4.24: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the Weiz-
mann dataset:AGGM-FSHMM

Figure 4.25: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the Weiz-
mann dataset:AGGM-HMM

has resulted in a more accurate HAR system.

Accuracy (%)
Model

BAGGM-FHMM 99.931
AGGM-FHMM 98.872
BAGGM-HMM 99.406
AGGM-HMM 98.406
Niebles et al. [281] 72.800
Yang et al. [282] 99.4
Jhuang et al. [283] 98.800

Table 4.7: Performance evaluation of the models used in the comparison utilizing the Weizmann
dataset
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The KTH dataset

The KTH is a popular human action data set that is used as a benchmark for HAR methods [284].

The data set has 599 video files. The actions used to label the observations within this dataset consist

of jogging, walking, running, boxing, hand clapping, and hand waving. The number of people who

collaborated on the collection of this dataset is 25. Four different scenarios were followed to record

the human action data set, and they are listed as follows:

• Outdoors with scale variations and different clothes.

• Indoors with different illumination and different clothes.

The 3-D bounding boxes within the action sequences of this dataset are extracted and normalized

into the size of 100×10060 following the reprocessing done in [285]. As demonstrated in Table 4.9,

Accuracy (%)
Model

BAGGM-FHMM 98.168
AGGM-FHMM 92.761
BAGGM-HMM 93.054
AGGM-HMM 92.054
Dollar et al. [223] 81.200
Niebles et al. [281] 83.300
Taylor et Al. [286] 90.000
Ji et al. [287] 90.200
Jhuang et al. [283] 91.700
Schindler and van Gool [288] 92.700

Table 4.8: Performance evaluation of the models used in experiments utilizing the KTH dataset

BAGGM-FSHMM BAGGM-HMM AGGM-FSHMM AGGM-HMM BAGM-FSHMM BAGM-HMM AGM-FSHMM AGM-HMM BGM-FSHMM BGM-HMM GMM-FSHMM GM-HMM
Performance measure

Accuracy 98.168 93.054 92.761 92.054 90.003 88.887 88.797 88.443 88.395 86.665 86.555 86.554
Precision 98.168 93.054 92.761 92.054 90.003 88.887 88.797 88.443 88.395 86.665 86.555 86.554
F1-Score 93.522 90.366 87.622 85.366 79.973 74.950 74.425 73.839 73.543 69.394 69.229 69.116
Mathiews Correlation Coefficient 0.688 0.393 0.382 0.343 0.310 0.309 0.296 0.279 0.275 0.275 0.176 0.158
Silhouette 0.153 0.071 0.060 0.057 0.055 0.051 0.050 0.048 0.044 0.004 -0.022 -0.036
Davies Bouldin 2.465 2.522 2.524 2.527 2.672 2.710 2.801 2.823 3.026 3.367 3.393 4.488
Fowlkes Mallows 0.845 0.838 0.837 0.833 0.831 0.828 0.821 0.816 0.814 0.794 0.794 0.794
Jaccard 0.946 0.906 0.903 0.901 0.865 0.797 0.796 0.786 0.758 0.742 0.741 0.739
ROC AUC 0.920 0.896 0.895 0.891 0.862 0.828 0.828 0.821 0.809 0.793 0.792 0.792
V Measure 0.917 0.222 0.219 0.217 0.181 0.181 0.166 0.146 0.147 0.138 0.109 0.076
Rand 0.885 0.758 0.756 0.753 0.716 0.700 0.690 0.690 0.687 0.686 0.641 0.616
Normalized Mutual Information 0.696 0.155 0.155 0.150 0.143 0.120 0.072 0.111 0.137 0.134 0.134 0.136
Mutual Info 0.321 0.209 0.208 0.204 0.193 0.105 0.105 0.104 0.103 0.094 0.090 0.083
Homogeneity 0.352 0.210 0.216 0.213 0.207 0.205 0.204 0.202 0.202 0.200 0.192 0.104
Completeness 0.572 0.199 0.177 0.163 0.163 0.158 0.138 0.135 0.181 0.142 0.137 0.135
Adjusted Rand 0.496 0.445 0.442 0.440 0.402 0.396 0.363 0.362 0.352 0.346 0.283 0.153
Adjusted Mutual Info 0.309 0.277 0.275 0.272 0.173 0.141 0.138 0.137 0.132 0.128 0.093 0.068

Table 4.9: Performance evaluation of the models used in the comparison utilizing the KTH dataset

We can see that the proposed models have performed better than the other mixture-based HMMs in

most of the performance measures, such as Accuracy, Matthews Correlation Coefficient, F1-Score,

Precision score, and ROC AUC. This shows that the proposed models have better clustering accu-

racy and can correctly classify more data points. In terms of the Silhouette score, we can see that

136



BAGGM-FSHMM has a higher score than the other HMMs, indicating that the proposed model can

better separate the clusters than the other HMMs. In contrast, the Davies Bouldin score is lowest

for BAGGM-FSHMM and AGGM-FSHMM, which implies that these models have better defined

clusters than the other models. We can also see that the V measure and Rand score are higher for

the proposed models, indicating that these models have better cluster homogeneity and complete-

ness. On the other hand, we can see that the other mixture-based HMMs have a higher Calinski

Harabasz score, indicating that they can better separate the clusters. Therefore, we can conclude

that the proposed models (BAGGM-FSHMM, BAGGM-HMM , AGGM-FSHMM , AGGM-HMM)

are better than the other mixture-based HMMs (BAGM-FSHMM , BAGM-HMM , AGM-FSHMM

, AGM-HMM , BGM-FSHMM , BGM-HMM , GMM-FSHMM , GM-HMM) as they have higher

accuracy, better-defined clusters, and better cluster homogeneity and completeness.

Figure 4.26: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the KTH
dataset:BAGGM-FSHMM

The two tables show the confusion matrices of the proposed BAGGM-FSHMM and BAGGM-

HMM models for HAR. The diagonal elements of the matrices represent the classification accuracy

of the models for each activity, and the off-diagonal elements represent the misclassification rates.

Comparing the two tables, it is clear that the BAGGM-FSHMM model has a higher classification ac-

curacy than the BAGGM-HMM model. For example, in the BAGGM-FSHMM model, the accuracy

for jogging is 95.8%, whereas, in the BAGGM-HMM model, it is 92.515%. Similarly, the accuracy

for running is 92.3% in the BAGGM-FSHMM model, compared to 89.431% in the BAGGM-HMM

137



Figure 4.27: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the KTH
dataset:BAGGM-HMM

Figure 4.28: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the KTH
dataset:AGGM-FSHMM

model. This improvement in classification accuracy can be attributed to the incorporation of feature

selection in the BAGGM-FSHMM model. By selecting the most relevant features, the model is able

to better capture the patterns in the data that are relevant for activity recognition. This leads to a

more accurate classification of activities, as shown by the higher diagonal elements in the confusion

matrix of the BAGGM-FSHMM model compared to the BAGGM-HMM model.

The incorporation of the bounded distribution concept in the BAGGM-HMM has resulted in a

better HAR system than the AGGM-HMM in a similar system, as can be observed from the con-

fusion matrices presented in Tables 4.27 and 4.29. The confusion matrix of the BAGGM-HMM in
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Figure 4.29: Accuracy confusion matrix for the proposed mixture-based HMMs utilizing the KTH
dataset:AGGM-HMM

Table 4.27 shows higher recognition accuracy for all activities compared to the AGGM-HMM in

Table 4.29. The BAGGM-HMM uses bounded distributions, which are distributions with limited

support, to model the observation likelihood function. This approach constrains the distribution to

produce likelihoods only in the valid range of observed values, which helps to improve the accuracy

of the model. In contrast, the AGGM-HMM uses unbounded distributions, which are distributions

with infinite support. While this may provide more flexibility in modelling the data, it can also

produce likelihoods for observed values that are outside the valid range, leading to a less accurate

model. Comparing the two tables, we can see that the BAGGM-HMM has higher accuracy in rec-

ognizing all activities compared to the AGGM-HMM. For example, the recognition accuracy of

walking activity in BAGGM-HMM is 93.054%, whereas it is 92.054% in the AGGM-HMM. Sim-

ilarly, the recognition accuracy of jogging activity in BAGGM-HMM is 92.515%, which is higher

than the recognition accuracy of 91.7% in the AGGM-HMM. Finally, the recognition accuracy of

running activity in BAGGM-HMM is 89.431%, while it is only 87.313% in the AGGM-HMM.

In conclusion, the incorporation of the bounded distribution concept in the BAGGM-HMM has

produced a better HAR system than the utilization of the AGGM-HMM in a similar system. The

use of bounded distributions has resulted in more accurate modelling of the observation likelihood

function, leading to better recognition accuracy for all activities.
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4.9 Conclusion

In conclusion, this chapter proposed four new models for HAR: the bounded asymmetric gener-

alized Gaussian mixture-based FSHMM (BAGGM-FSHMM), the bounded asymmetric generalized

Gaussian mixture-based HMM (BAGGM-HMM), the asymmetric generalized Gaussian mixture-

based FSHMM (AGGM-FSHMM), and the asymmetric generalized Gaussian mixture-based HMM

(AGGM-HMM). We introduced a novel method to simultaneously calculate maximum likelihood

point estimates of feature weights and model parameters in the BAGGM-FSHMM and incorporated

the bounded support AGGD in the BAGGM-HMM. Our proposed models were validated using both

video-based and sensor-based HAR applications, and numerous performance metrics were used to

demonstrate their superiority over other mixture-based HMMs. Through the use of five sensor-based

HAR datasets and two video-based HAR datasets, we showed that incorporating feature selection

and bounded support distribution independently in a HAR system yields benefits, and incorporating

these concepts simultaneously yields the best-performing model among the proposed models.

Our top-performing model from the full set of proposed models, the BAGGM-FSHMM, has

demonstrated superior performance in HAR compared to other mixture-based HMMs. The accu-

racy, precision, and f1-score results obtained from the smartphone, PAMP2, WISDM, opportunity,

and unimib-shar datasets clearly demonstrate the benefits of our proposed model. For example, on

the smartphone dataset, our model achieved an accuracy of 98.407%, precision of 98.8%, and an f1-

score of 98.603%, outperforming other models used in the comparison. On the PAMP2 dataset, our

model achieved an accuracy of 97.400%, precision of 97.5%, and an f1-score of 97.495%, indicating

a high degree of accuracy and precision in recognizing human activities. Similarly, on the WISDM,

opportunity, and unimib-shar datasets, our model achieved high accuracy, precision, and f1-scores,

demonstrating its robustness and effectiveness in HAR applications. Our top-performing model, the

BAGGM-FSHMM, is a novel approach that incorporates both feature selection and bounded sup-

port distribution, leading to improved performance compared to other mixture-based HMMs used

in the comparison. Therefore, our proposed model has made significant contributions to the field

of HAR, and we believe it has the potential to be applied to other real-world applications beyond

HAR.
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Overall, the experiment utilizing the Smartphones dataset showed an improvement of 0.83%

after adopting feature selection and a further improvement of 0.15% after adopting the bounded

support distribution. The experiment utilizing the PAMP2 dataset demonstrated an improvement of

0.857% after adopting feature selection and a more significant improvement of 1.580% after using

the bounded support distribution. Similarly, the experiment utilizing the WISDM dataset exhib-

ited an improvement of 1.635% after adopting feature selection and an additional improvement of

1.793% after adopting the bounded support distribution. The experiment utilizing the Opportunity

dataset showed minor improvements of 0.015% after adopting feature selection and 0.016% after

adopting the bounded support distribution. The experiment utilizing the UNIMIB-SHAR dataset

also showed minor improvements of 0.063% after adopting feature selection and 0.073% after

adopting the bounded support distribution. Finally, the experiment utilizing the Weizmann dataset

demonstrated an improvement of 0.525% after adopting feature selection and a more significant

improvement of 1.059% after adopting the bounded support distribution. The experiment utilizing

the KTH dataset showed a notable improvement of 5.114% after adopting feature selection and an

additional improvement of 5.407% after adopting the bounded distribution. These results indicate

that the bounded support distribution is a useful technique for improving the accuracy of machine

learning models, particularly in datasets with high-dimensional features.
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Chapter 5

Conclusion

Mixture models have proven to be effective in pattern recognition tasks due to their flexibility in

modelling complex data distributions. By allowing each mixture component to capture a different

part of the data distribution, mixture models are able to model non-linear relationships and account

for multi-modal data. In addition, mixture models provide a natural way to incorporate unsupervised

and semi-supervised learning, allowing for automatic feature and model selection.

Incorporating the AGGD and its bounded variant, BAGGD, as components of our proposed mix-

ture models has proven to be useful in various energy management applications, including utility

programs such as energy efficiency and demand response, as well as fault detection and diagno-

sis and occupancy estimation. The AGGD has a more flexible shape than the standard Gaussian

distribution and can better model non-Gaussian and heavy-tailed data. Meanwhile, the bounded

support of the BAGGD makes the incorporating mixture more robust to outliers and better suited

for modelling energy consumption data that often have bounded support. By incorporating these

distributions into our mixture models, we were able to accurately model complex energy consump-

tion patterns. The proposed models have demonstrated their effectiveness in real-world scenarios

and can help utilities and building managers make informed decisions regarding energy manage-

ment and conservation efforts.

HMMs take this a step further by incorporating a temporal aspect into pattern recognition tasks.

By modelling data as a sequence of observations, HMMs are able to capture the temporal dependen-

cies between observations, making them particularly effective in speech recognition, handwriting
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recognition, and other sequential data analysis tasks. Mixture-based HMMs combine the strengths

of both mixture models and HMMs, allowing for flexible modelling of complex data distributions

with temporal dependencies. The number of hidden states in the HMM determines the complex-

ity of the temporal dependencies, while the number of mixture components in each state captures

the non-linear relationships within each state. This combination provides an effective approach to

modelling complex data distributions in a variety of pattern recognition applications.

Considering our research into the potential of the bounded mixture models in the energy con-

sumer characterization application, we concluded that our expectation-maximization algorithm us-

ing the MML criterion has successfully optimized the parameters of the bounded asymmetric gen-

eralized Gaussian mixture model and determined the optimal number of consumption profiles and

the optimal subset of features simultaneously. This model has proven useful in categorizing house-

holds and how they consume energy in applications such as energy management, fault detection and

diagnosis, and occupancy estimation. Our approach has outperformed all of the models used in the

comparison in clustering synthetically generated smart meter records and real-life smart meter data.

Additionally, it has accurately determined the optimal number of clusters in both real-life datasets.

The proposed model has proven to be effective in determining households suitable for demand

reduction initiatives, providing utility companies with environmentally friendly and cost-effective

solutions. Future work can be done to develop a variational approach to learning the proposed model

and a semi-supervised variant of our model.

Considering our research into the potential of the bounded mixture of mixtures in energy man-

agement applications, we proposed a novel statistical model that is a mixture of mixtures of bounded

asymmetric generalized Gaussian and Uniform distributions and an unsupervised and semi-

-supervised learning approach using the EM algorithm to learn its parameters. We derived the objec-

tive function of the MML criterion in an attempt to discover the true number of components within

the training dataset for the unsupervised learning approach. The proposed model outperforms all

the state-of-the-art machine learning models used in the comparisons in both the semi-supervised

and the unsupervised learning tasks in the three experiments with real-life data. The proposed com-

ponent distribution is flexible and robust to outliers and can fit several asymmetric and bounded
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support density distributions. Moreover, the model extension for explainability provides an accu-

rate diagnosis of the detected patterns in fault detection applications in terms of the features used to

train the model. In addition, the proposed workflow attempts to learn better models using low-level

features and still provide explainability using high-level features. Overall, the proposed model is

effective in determining households that are suitable for demand reduction initiatives, providing the

opportunity for utility companies to adopt environmentally friendly and cost-effective technologies.

Considering our research in mixture-based hidden Markov models, we concluded that our pro-

posed models, including the BAGGM-FSHMM, BAGGM-HMM, AGGM-FSHMM, and AGGM-

HMM, demonstrated significant improvements in performance compared to other mixture-based

HMMs in the field of HAR. Our experiments utilizing five sensor-based and two video-based HAR

datasets showed that incorporating feature selection and bounded support distribution independently

in a HAR system yields benefits, and incorporating these concepts simultaneously yields the best-

performing model among the proposed models. Our top-performing model, the BAGGM-FSHMM,

showed superior accuracy, precision, and F1-score results on all datasets, indicating that our pro-

posed models led to an improvement that is demonstrated by all the performance measures we used

in the experiments.

We focused our research on the HAR application to validate the performance of our proposed

models, which we developed over years of research on challenging random variables. By demon-

strating the effectiveness of our proposed models on a variety of datasets, we have shown that incor-

porating feature selection and bounded support distributions can improve the accuracy of machine

learning models, particularly in datasets with high-dimensional features that have a dependence on

the temporal axis. These findings can have significant implications for other real-world applications

beyond HAR and provide a foundation for further research in this area.

In conclusion, this thesis has underscored the importance of developing a flexible and robust

mixture model adept at managing asymmetric, non-Gaussian data distributions while mitigating the

influence of outliers. The incorporation of bounded distributions, along with the Uniform distri-

bution within an inner mixture, has proven to be a critical factor in crafting resilient models that

effectively represent real-life data and resist distortion from noisy input. Furthermore, the signif-

icance of explainability in enhancing the credibility of deployed artificial intelligence models is
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paramount. Despite the proficiency of the models generated within this thesis, their interpretability

by domain experts may be challenging. Thus, the integration of explainability is essential for pro-

viding straightforward, rule-based interpretations of the identified patterns. Mixture models, though

valuable, exhibit increased efficacy when integrated with Hidden Markov Models (HMMs) to ac-

count for temporal dynamics. This combination is crucial for uncovering hidden patterns within the

increasingly popular time series data, which is becoming a prerequisite for most real-life applica-

tions. Moreover, incorporating feature selection techniques within mixture models has proven to

optimize accuracy while mitigating complexity. The inclusion of feature selection not only results

in models that are robust against noisy and uninformative features but also yield computationally

efficient models that can be deployed across a diverse range of hardware with varying capabili-

ties. To propel this research forward, future endeavours should concentrate on amalgamating these

multifaceted artificial intelligence concepts to devise versatile applications capable of efficiently

learning from small sample populations, generalizing to wider contexts, minimizing computational

complexity, maximizing accuracy in revealing hidden data structures and learning hyper-parameters

automatically.

145



Appendix A

My Appendix
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∂k g2(Xid|θkd)du

)2
x ≥ µkd

(153)
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∂2 lnΨ(Xid|θkd)
∂λ2kd

=



∂2 ln g1(Xid|θkd)
∂λ2

kd
Xid < µkd

∂2 ln g2(Xid|θkd)
∂λ2

kd
Xid ≥ µkd

=



− 1

λ2kd
+

3(ψ′(3/λkd)− ψ′(1/λkd))

2λ4kd

− 3(ψ(1/λkd)− ψ(3/λkd))

λ3kd

−
(
µkd −Xid

σlkd

)λkd

A(λkd)

×
[
(9ψ′(3/λkd)− ψ′(1/λkd))

2λ3kd

+

[
1

2
ln

(
Γ(3/λkd)

Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd

+ ln

(
µkd −Xid

σlkd

)]2]

Xid < µkd

− 1

λ2kd
+

3(ψ′(3/λkd)− ψ′(1/λkd))

2λ4kd

− 3(ψ(1/λkd)− ψ(3/λkd))

λ3kd

−
(
Xid − µkd
σrkd

)λkd

A(λkd)

×
[
(9ψ′(3/λkd)− ψ′(1/λkd))

2λ3kd

+

[
1

2
ln

(
Γ(3/λkd)

Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd

+ ln

(
Xid − µkd
σrkd

)]2]

Xid ≥ µkd

(154)
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A.2

∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂µgd

=

∂ ln g1(Xid|θgd)
∂µgd

+∫
τg
g1(Xid|θgd)

∂ ln g1(Xid|θgd)
∂µgd

du∫
τg
g1(Xid|θgd)du

Xid < µgd

∂ ln g2(Xid|θgd)
∂µgd

+∫
τg
g2(Xid|θgd)

∂ ln g2(Xid|θgd)
∂µgd

du∫
τg
g2(Xid|θgd)du

Xid ≥ µgd

(155)

∂ lnΨ(Xid|θgd)
µgd

=



∂ ln g1(Xid|θgd)
µgd

Xid < µgd

∂ ln g2(Xid|θgd)
µgd

Xid ≥ µgd

=



−A(λkd)λkd
(µgd−Xid)

λkd−1

σ
λkd
lkd

Xid < µgd

A(λkd)λkd
(Xid−µgd)

λkd−1

σ
λkd
rkd

Xid ≥ µgd

(156)

∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σlkd

=

∂ ln g1(Xid|θgd)
∂σlkd

+∫
τg
g1(Xid|θgd)

∂ ln g1(Xid|θgd)
∂σlkd

du∫
τg
g1(Xid|θgd)du

Xid < µgd

∂ ln g2(Xid|θgd)
∂σlkd

+∫
τg
g2(Xid|θgd)

∂ ln g2(Xid|θgd)
∂σlkd

du∫
τg
g2(Xid|θgd)du

Xid ≥ µgd

(157)
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∂ lnΨ(Xid|θgd)
∂σlkd

=



∂ ln g1(Xid|θgd)
∂σlkd

Xid < µgd

∂ ln g2(Xid|θgd)
∂σlkd

Xid ≥ µgd

=



A(λkd)λkd
(µgd−Xid)

λkd

σ
λkd+1

lkd

− 1
σlkd

+σrkd
Xid < µgd

− 1
σlkd

+σrkd
Xid ≥ µgd

(158)

∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σrkd

=

∂ ln g1(Xid|θgd)
∂σrkd

+∫
τg
g1(Xid|θgd)

∂ ln g1(Xid|θgd)
∂σrkd

du∫
τg
g1(Xid|θgd)du

Xid < µgd

∂ ln g2(Xid|θgd)
∂σlkd

+∫
τg
g2(Xid|θgd)

∂ ln g2(Xid|θgd)
∂σlkd

du∫
τg
g2(Xid|θgd)du

Xid ≥ µgd

(159)

∂ lnΨ(Xid|θgd)
∂σrkd

=



∂ ln g1(Xid|θgd)
∂σrkd

Xid < µgd

∂ ln g2(Xid|θgd)
∂σrkd

Xid ≥ µgd

=



− 1
σlkd

+σrkd
Xid < µgd

A(λkd)λkd

σrkd

(Xid−µgd)
λkd

σ
λkd
rkd

− 1
σlkd

+σrkd
Xid ≥ µgd

(160)
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∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂λkd

=

∂ ln g1(Xid|θgd)
∂λkd

+∫
τg
g1(Xid|θgd)

∂ ln g1(Xid|θgd)
∂λkd

du∫
τg
g1(Xid|θgd)du

Xid < µgd

∂ ln g2(Xid|θgd)
∂σlkd

+∫
τg
g2(Xid|θgd)

∂ ln g2(Xid|θgd)
∂σlkd

du∫
τg
g2(Xid|θgd)du

Xid ≥ µgd

(161)

∂ lnΨ(Xid|θgd)
∂λkd

=



∂ ln g1(Xid|θgd)
∂λkd

Xid < µgd

∂ ln g2(Xid|θgd)
∂λkd

Xid ≥ µgd

=



1

λkd
+

3(ψ(1/λkd)− ψ(3/λkd))

2λ2kd

−
(
µgd −Xid

σlkd

)λkd

A(λkd)

×
[
1

2
ln

(
Γ(3/λkd)

Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd

+ ln

(
µgd −Xid

σlkd

)]
Xid < µgd

1

λkd
+

3(ψ(1/λkd)− ψ(3/λkd))

2λ2kd

−
(
Xid − µgd
σrkd

)λkd

A(λkd)

×
[
1

2
ln

(
Γ(3/λkd)

Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd
+

ln

(
Xid − µgd
σrkd

)]
Xid ≥ µgd

(162)
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∂2 log ϕ(X⃗i|µg, σlg , σrg , λg)
∂µ2gd

=

∂2 ln g1(Xid|θgd)
∂µ2gd

+

∫
τg
g1(Xid|θgd)

[(
∂ ln g1(Xid|θgd)

∂µgd

)2]
du∫

τg
g1(Xid|θgd)du

+

∫
τg
g1(Xid|θgd)

∂2 ln g1(Xid|θgd)
∂µ2

gd
du∫

τg
g1(Xid|θgd)du

−

(∫
τg
g1(Xid|θgd)

∂ ln g1(Xid|θgd)
∂µgd

du

)2

( ∫
τg
g1(Xid|θgd)du

)2

Xid < µgd

∂2 ln g2(Xid|θgd)
∂µ2gd

+

∫
τg
g2(Xid|θgd)

[(
∂ ln g2(Xid|θgd)

∂µgd

)2]
du∫

τg
g2(Xid|θgd)du

+

∫
τg
g2(Xid|θgd)

∂2 ln g2(Xid|θgd)
∂µ2

gd
du∫

τg
g2(Xid|θgd)du

−

(∫
τg
g2(Xid|θgd)

∂ ln g2(Xid|θgd)
∂µgd

du

)2

( ∫
τg
g2(Xid|θgd)du

)2

Xid ≥ µgd

(163)

∂2 lnΨ(Xid|θgd)
∂µ2gd

=



∂2 ln g1(Xid|θgd)
∂µ2

gd
Xid < µgd

∂2 ln g2(Xid|θgd)
∂µ2

gd
Xid ≥ µgd

=



−A(λkd)λkd(λkd − 1)
(∂µgd−Xid)

λkd−2

σ
λkd
kd

Xid < µgd

−A(λkd)λkd(λkd − 1)
(Xid−µgd)

λkd−2

σ
λkd
kd

Xid ≥ µgd

(164)
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∂2 log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σ2lkd

=



∂2 ln g1(Xid|θgd)
∂σ2lkd

+

∫
τg
g1(Xid|θgd)

[(
∂ ln g1(Xid|θgd)

∂σlkd

)2]
du∫

τg
g1(Xid|θgd)du

+

∫
τg
g1(Xid|θgd)

[
∂2 ln g1(Xid|θgd)

∂σ2
lkd

]
du∫

τg
g1(Xid|θgd)du

−

(∫
τg
g1(Xid|θgd)

∂ ln g1(Xid|θgd)
∂σlkd

du

)2

( ∫
τg
g1(Xid|θgd)du

)2

Xid < µgd

∂2 ln g2(Xid|θgd)
∂σ2lkd

+

∫
τg
g2(Xid|θgd)

[(
∂ ln g2(Xid|θgd)

∂σlkd

)2]
du∫

τg
g2(Xid|θgd)du

+

∫
τg
g2(Xid|θgd)

[
∂2 ln g2(Xid|θgd)

∂σ2
lkd

]
du∫

τg
g2(Xid|θgd)du

−

(∫
τg
g2(Xid|θgd)

∂ ln g2(Xid|θgd)
∂σlkd

du

)2

( ∫
τg
g2(Xid|θgd)du

)2

Xid ≥ µgd

(165)

∂2 lnΨ(Xid|θgd)
∂σ2lkd

=



∂2 ln g1(Xid|θgd)
∂σ2

lkd

Xid < µgd

∂2 ln g2(Xid|θgd)
∂σ2

lkd

Xid ≥ µgd

=



−(λkd + 1)A(λkd)λkd
(µgd−Xid)

λkd

σ
λkd+2

lkd

+ 1
(σlkd

+σrkd
)2

Xid < µgd

1
(σlkd

+σrkd
)2

Xid ≥ µgd

(166)
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∂2 log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σ2rkd

=



∂2 ln g1(Xid|θgd)
∂σ2rkd

+

∫
τg
g1(Xid|θgd)

[(
∂ ln g1(Xid|θgd)

∂σrkd

)2]
du∫

τg
g1(Xid|θgd)du

+

∫
τg
g1(Xid|θgd)

[
∂2 ln g1(Xid|θgd)

∂σ2
rkd

]
du∫

τg
g1(Xid|θgd)du

−

(∫
τg
g1(Xid|θgd)

∂ ln g1(Xid|θgd)
∂σrkd

du

)2

( ∫
τg
g1(Xid|θgd)du

)2

Xid < µgd

∂2 ln g2(Xid|θgd)
∂σ2rkd

+

∫
τg
g2(Xid|θgd)

[(
∂ ln g2(Xid|θgd)

∂σrkd

)2]
du∫

τg
g2(Xid|θgd)du

+

∫
τg
g2(Xid|θgd)

[
∂2 ln g2(Xid|θgd)

∂σ2
rkd

]
du∫

τg
g2(Xid|θgd)du

−

(∫
τg
g2(Xid|θgd)

∂ ln g2(Xid|θgd)
∂σrkd

du

)2

( ∫
τg
g2(Xid|θgd)du

)2

Xid ≥ µgd

(167)

∂2 lnΨ(Xid|θgd)
∂σ2lkd

=



∂2 ln g1(Xid|θgd)
∂σ2

lkd

Xid < µgd

∂2 ln g2(Xid|θgd)
∂σ2

lkd

Xid ≥ µgd

=



−(λkd + 1)A(λkd)λkd
(µgd−Xid)

λkd

σ
λkd+2

lkd

+ 1
(σlkd

+σrkd
)2

Xid < µgd

1
(σlkd

+σrkd
)2

Xid ≥ µgd

(168)
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∂2 log ϕ(X⃗i|µg, σlg , σrg , λg)
∂λ2kd

=



∂2 ln g1(Xid|θgd)
∂λ2kd

+

∫
τg
g1(Xid|θgd)

[(
∂ ln g1(Xid|θgd)

∂λkd

)2]
du∫

τg
g1(Xid|θgd)du

+

∫
τg
g1(Xid|θgd)

[
∂2 ln g1(Xid|θgd)

∂λ2
kd

]
du∫

τg
g1(Xid|θgd)du

−

(∫
τg
g1(Xid|θgd)

∂ ln g1(Xid|θgd)
∂λkd

du

)2

( ∫
τg
g1(Xid|θgd)du

)2

Xid < µgd

∂2 ln g2(Xid|θgd)
∂λ2kd

+

∫
τg
g2(Xid|θgd)

[(
∂ ln g2(Xid|θgd)

∂λkd

)2]
du∫

τg
g2(Xid|θgd)du

+

∫
τg
g2(Xid|θgd)

[
∂2 ln g2(Xid|θgd)

∂λ2
kd

]
du∫

τg
g2(Xid|θgd)du

−

(∫
τg
g2(Xid|θgd)

∂ ln g2(Xid|θgd)
∂λkd

du

)2

( ∫
τg
g2(Xid|θgd)du

)2

Xid ≥ µgd

(169)
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∂2 lnΨ(Xid|θgd)
∂λ2kd

=



∂2 ln g1(Xid|θgd)
∂λ2

kd
Xid < µgd

∂2 ln g2(Xid|θgd)
∂λ2

kd
Xid ≥ µgd

=



− 1

λ2kd
+

3(ψ′(3/λkd)− ψ′(1/λkd))

2λ4kd

− 3(ψ(1/λkd)− ψ(3/λkd))

λ3kd

−
(
µgd −Xid

σlkd

)λkd

A(λkd)

×
[
(9ψ′(3/λkd)− ψ′(1/λkd))

2λ3kd

+

[
1

2
ln

(
Γ(3/λkd)

Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd

+ ln

(
µgd −Xid

σlkd

)]2]

Xid < µgd

− 1

λ2kd
+

3(ψ′(3/λkd)− ψ′(1/λkd))

2λ4kd

− 3(ψ(1/λkd)− ψ(3/λkd))

λ3kd

−
(
Xid − µgd
σrkd

)λkd

A(λkd)

×
[
(9ψ′(3/λkd)− ψ′(1/λkd))

2λ3kd

+

[
1

2
ln

(
Γ(3/λkd)

Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd

+ ln

(
Xid − µgd
σrkd

)]2]

Xid ≥ µgd

(170)
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A.3

∂ log ϕ(X⃗i|θkmd)

∂µkmd
=

∂ ln g1(Xid|θkmd)

∂µkmd
+∫

τg
g1(Xid|θkmd)

∂ ln g1(Xid|θkmd)
∂µkmd

du∫
τg
g1(Xid|θkmd)du

Xid < µkmd

∂ ln g2(Xid|θkmd)

∂µkmd
+∫

τg
g2(Xid|θkmd)

∂ ln g2(Xid|θkmd)
∂µkmd

du∫
τg
g2(Xid|θkmd)du

Xid ≥ µkmd

(171)

∂ lnΨ(Xid|θkmd)

µkmd
=



∂ ln g1(Xid|θkmd)
µkmd

Xid < µkmd

∂ ln g2(Xid|θkmd)
µkmd

Xid ≥ µkmd

=



−A(λkd)λkd (µkmd−Xid)
λkd−1

σ
λkd
lkd

Xid < µkmd

A(λkd)λkd
(Xid−µkmd)

λkd−1

σ
λkd
rkd

Xid ≥ µkmd

(172)

∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σlkd

=

∂ ln g1(Xid|θkmd)

∂σlkd
+∫

τg
g1(Xid|θkmd)

∂ ln g1(Xid|θkmd)
∂σlkd

du∫
τg
g1(Xid|θkmd)du

Xid < µkmd

∂ ln g2(Xid|θkmd)

∂σlkd
+∫

τg
g2(Xid|θkmd)

∂ ln g2(Xid|θkmd)
∂σlkd

du∫
τg
g2(Xid|θkmd)du

Xid ≥ µkmd

(173)
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∂ lnΨ(Xid|θkmd)

∂σlkd
=



∂ ln g1(Xid|θkmd)
∂σlkd

Xid < µkmd

∂ ln g2(Xid|θkmd)
∂σlkd

Xid ≥ µkmd

=



A(λkd)λkd
(µkmd−Xid)

λkd

σ
λkd+1

lkd

− 1
σlkd

+σrkd
Xid < µkmd

− 1
σlkd

+σrkd
Xid ≥ µkmd

(174)

∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σrkd

=

∂ ln g1(Xid|θkmd)

∂σrkd
+∫

τg
g1(Xid|θkmd)

∂ ln g1(Xid|θkmd)
∂σrkd

du∫
τg
g1(Xid|θkmd)du

Xid < µkmd

∂ ln g2(Xid|θkmd)

∂σlkd
+∫

τg
g2(Xid|θkmd)

∂ ln g2(Xid|θkmd)
∂σlkd

du∫
τg
g2(Xid|θkmd)du

Xid ≥ µkmd

(175)

∂ lnΨ(Xid|θkmd)

∂σrkd
=



∂ ln g1(Xid|θkmd)
∂σrkd

Xid < µkmd

∂ ln g2(Xid|θkmd)
∂σrkd

Xid ≥ µkmd

=



− 1
σlkd

+σrkd
Xid < µkmd

A(λkd)λkd

σrkd

(Xid−µkmd)
λkd

σ
λkd
rkd

− 1
σlkd

+σrkd
Xid ≥ µkmd

(176)
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∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂λkd

=

∂ ln g1(Xid|θkmd)

∂λkd
+∫

τg
g1(Xid|θkmd)

∂ ln g1(Xid|θkmd)
∂λkd

du∫
τg
g1(Xid|θkmd)du

Xid < µkmd

∂ ln g2(Xid|θkmd)

∂σlkd
+∫

τg
g2(Xid|θkmd)

∂ ln g2(Xid|θkmd)
∂σlkd

du∫
τg
g2(Xid|θkmd)du

Xid ≥ µkmd

(177)

∂ lnΨ(Xid|θkmd)

∂λkd
=



∂ ln g1(Xid|θkmd)
∂λkd

Xid < µkmd

∂ ln g2(Xid|θkmd)
∂λkd

Xid ≥ µkmd

=



1

λkd
+

3(ψ(1/λkd)− ψ(3/λkd))

2λ2kd

−
(
µkmd −Xid

σlkd

)λkd

A(λkd)

×
[
1

2
ln

(
Γ(3/λkd)

Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd

+ ln

(
µkmd −Xid

σlkd

)]
Xid < µkmd

1

λkd
+

3(ψ(1/λkd)− ψ(3/λkd))

2λ2kd

−
(
Xid − µkmd

σrkd

)λkd

A(λkd)

×
[
1

2
ln

(
Γ(3/λkd)

Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd
+

ln

(
Xid − µkmd

σrkd

)]
Xid ≥ µkmd

(178)
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∂2 log ϕ(X⃗i|µg, σlg , σrg , λg)
∂µ2kmd

=

∂2 ln g1(Xid|θkmd)

∂µ2kmd

+

∫
τg
g1(Xid|θkmd)

[(
∂ ln g1(Xid|θkmd)

∂µkmd

)2]
du∫

τg
g1(Xid|θkmd)du

+

∫
τg
g1(Xid|θkmd)

∂2 ln g1(Xid|θkmd)
∂µ2

kmd
du∫

τg
g1(Xid|θkmd)du

−

(∫
τg
g1(Xid|θkmd)

∂ ln g1(Xid|θkmd)
∂µkmd

du

)2

( ∫
τg
g1(Xid|θkmd)du

)2

Xid < µkmd

∂2 ln g2(Xid|θkmd)

∂µ2kmd

+

∫
τg
g2(Xid|θkmd)

[(
∂ ln g2(Xid|θkmd)

∂µkmd

)2]
du∫

τg
g2(Xid|θkmd)du

+

∫
τg
g2(Xid|θkmd)

∂2 ln g2(Xid|θkmd)
∂µ2

kmd
du∫

τg
g2(Xid|θkmd)du

−

(∫
τg
g2(Xid|θkmd)

∂ ln g2(Xid|θkmd)
∂µkmd

du

)2

( ∫
τg
g2(Xid|θkmd)du

)2

Xid ≥ µkmd

(179)

∂2 lnΨ(Xid|θkmd)

∂µ2kmd

=



∂2 ln g1(Xid|θkmd)
∂µ2

kmd
Xid < µkmd

∂2 ln g2(Xid|θkmd)
∂µ2

kmd
Xid ≥ µkmd

=



−A(λkd)λkd(λkd − 1) (∂µkmd−Xid)
λkd−2

σ
λkd
kd

Xid < µkmd

−A(λkd)λkd(λkd − 1) (Xid−µkmd)
λkd−2

σ
λkd
kd

Xid ≥ µkmd
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∂2 log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σ2lkd

=



∂2 ln g1(Xid|θkmd)

∂σ2lkd

+

∫
τg
g1(Xid|θkmd)

[(
∂ ln g1(Xid|θkmd)

∂σlkd

)2]
du∫

τg
g1(Xid|θkmd)du

+

∫
τg
g1(Xid|θkmd)

[
∂2 ln g1(Xid|θkmd)

∂σ2
lkd

]
du∫

τg
g1(Xid|θkmd)du

−
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∂ ln g1(Xid|θkmd)
∂σlkd

du

)2

( ∫
τg
g1(Xid|θkmd)du

)2

Xid < µkmd

∂2 ln g2(Xid|θkmd)

∂σ2lkd

+

∫
τg
g2(Xid|θkmd)

[(
∂ ln g2(Xid|θkmd)

∂σlkd

)2]
du∫

τg
g2(Xid|θkmd)du

+

∫
τg
g2(Xid|θkmd)

[
∂2 ln g2(Xid|θkmd)

∂σ2
lkd

]
du∫

τg
g2(Xid|θkmd)du

−

(∫
τg
g2(Xid|θkmd)

∂ ln g2(Xid|θkmd)
∂σlkd

du

)2

( ∫
τg
g2(Xid|θkmd)du

)2

Xid ≥ µkmd

(181)

∂2 lnΨ(Xid|θkmd)

∂σ2lkd
=



∂2 ln g1(Xid|θkmd)
∂σ2

lkd

Xid < µkmd

∂2 ln g2(Xid|θkmd)
∂σ2

lkd

Xid ≥ µkmd

=



−(λkd + 1)A(λkd)λkd
(µkmd−Xid)

λkd

σ
λkd+2

lkd

+ 1
(σlkd

+σrkd
)2

Xid < µkmd

1
(σlkd

+σrkd
)2

Xid ≥ µkmd

(182)
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∂2 log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σ2rkd

=



∂2 ln g1(Xid|θkmd)

∂σ2rkd

+

∫
τg
g1(Xid|θkmd)
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∂ ln g1(Xid|θkmd)

∂σrkd

)2]
du∫
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g1(Xid|θkmd)du

+

∫
τg
g1(Xid|θkmd)

[
∂2 ln g1(Xid|θkmd)

∂σ2
rkd

]
du∫

τg
g1(Xid|θkmd)du

−

(∫
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g1(Xid|θkmd)

∂ ln g1(Xid|θkmd)
∂σrkd

du

)2

( ∫
τg
g1(Xid|θkmd)du

)2

Xid < µkmd

∂2 ln g2(Xid|θkmd)

∂σ2rkd

+

∫
τg
g2(Xid|θkmd)

[(
∂ ln g2(Xid|θkmd)

∂σrkd

)2]
du∫

τg
g2(Xid|θkmd)du

+

∫
τg
g2(Xid|θkmd)

[
∂2 ln g2(Xid|θkmd)

∂σ2
rkd

]
du∫

τg
g2(Xid|θkmd)du

−

(∫
τg
g2(Xid|θkmd)

∂ ln g2(Xid|θkmd)
∂σrkd

du

)2

( ∫
τg
g2(Xid|θkmd)du

)2

Xid ≥ µkmd

(183)

∂2 lnΨ(Xid|θkmd)

∂σ2lkd
=



∂2 ln g1(Xid|θkmd)
∂σ2

lkd

Xid < µkmd

∂2 ln g2(Xid|θkmd)
∂σ2

lkd

Xid ≥ µkmd

=



−(λkd + 1)A(λkd)λkd
(µkmd−Xid)

λkd

σ
λkd+2

lkd

+ 1
(σlkd

+σrkd
)2

Xid < µkmd

1
(σlkd

+σrkd
)2

Xid ≥ µkmd
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∂λ2kd

=



∂2 ln g1(Xid|θkmd)

∂λ2kd

+

∫
τg
g1(Xid|θkmd)
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∂ ln g1(Xid|θkmd)

∂λkd

)2]
du∫

τg
g1(Xid|θkmd)du

+

∫
τg
g1(Xid|θkmd)

[
∂2 ln g1(Xid|θkmd)

∂λ2
kd

]
du∫

τg
g1(Xid|θkmd)du

−

(∫
τg
g1(Xid|θkmd)

∂ ln g1(Xid|θkmd)
∂λkd

du

)2

( ∫
τg
g1(Xid|θkmd)du

)2

Xid < µkmd

∂2 ln g2(Xid|θkmd)

∂λ2kd

+

∫
τg
g2(Xid|θkmd)
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∂ ln g2(Xid|θkmd)

∂λkd

)2]
du∫
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+

∫
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[
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∂λ2
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]
du∫
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−
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du

)2

( ∫
τg
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)2

Xid ≥ µkmd
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∂λ2kd
=



∂2 ln g1(Xid|θkmd)
∂λ2

kd
Xid < µkmd

∂2 ln g2(Xid|θkmd)
∂λ2

kd
Xid ≥ µkmd

=



− 1
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+
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2λ4kd
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×
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+
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1

2
ln

(
Γ(3/λkd)

Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd

+ ln

(
µkmd −Xid

σlkd

)]2]

Xid < µkmd

− 1

λ2kd
+

3(ψ′(3/λkd)− ψ′(1/λkd))

2λ4kd

− 3(ψ(1/λkd)− ψ(3/λkd))

λ3kd

−
(
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×
[
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+

[
1

2
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(
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Γ(1/λkd)

)
+

(ψ(1/λkd)− 3ψ(3/λkd))

2λkd
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(
Xid − µkmd
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)]2]

Xid ≥ µkmd

(186)
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A.4

∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂µkd

=

∂ ln g1(Xdt|θkd)
∂µkd

+∫
τg
g1(Xdt|θkd)∂ ln g1(Xdt|θkd)

∂µkd
du∫

τg
g1(Xdt|θkd)du

Xdt < µkd

∂ ln g2(Xdt|θkd)
∂µkd

+∫
τg
g2(Xdt|θkd)∂ ln g2(Xdt|θkd)

∂µkd
du∫

τg
g2(Xdt|θkd)du

Xdt ≥ µkd

(187)

∂ lnΨ(Xdt|θkd)
µkd

=



∂ ln g1(Xdt|θkd)
µkd

Xdt < µkd

∂ ln g2(Xdt|θkd)
µkd

Xdt ≥ µkd

=



−A(λkd)λkd (µkd−Xdt)
λkd−1

σ
λkd
lkd

Xdt < µkd

A(λkd)λkd
(Xdt−µkd)

λkd−1

σ
λkd
rkd

Xdt ≥ µkd

(188)

∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σlkd

=

∂ ln g1(Xdt|θkd)
∂σlkd

+∫
τg
g1(Xdt|θkd)∂ ln g1(Xdt|θkd)

∂σlkd
du∫

τg
g1(Xdt|θkd)du

Xdt < µkd

∂ ln g2(Xdt|θkd)
∂σlkd

+∫
τg
g2(Xdt|θkd)∂ ln g2(Xdt|θkd)

∂σlkd
du∫

τg
g2(Xdt|θkd)du

Xdt ≥ µkd

(189)
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∂ lnΨ(Xdt|θkd)
∂σlkd

=



∂ ln g1(Xdt|θkd)
∂σlkd

Xdt < µkd

∂ ln g2(Xdt|θkd)
∂σlkd

Xdt ≥ µkd

=



A(λkd)λkd
(µkd−Xdt)

λkd

σ
λkd+1

lkd

− 1
σlkd

+σrkd
Xdt < µkd

− 1
σlkd

+σrkd
Xdt ≥ µkd

(190)

∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂σrkd

=

∂ ln g1(Xdt|θkd)
∂σrkd

+∫
τg
g1(Xdt|θkd)∂ ln g1(Xdt|θkd)

∂σrkd
du∫

τg
g1(Xdt|θkd)du

Xdt < µkd

∂ ln g2(Xdt|θkd)
∂σlkd

+∫
τg
g2(Xdt|θkd)∂ ln g2(Xdt|θkd)

∂σlkd
du∫

τg
g2(Xdt|θkd)du

Xdt ≥ µkd

(191)

∂ lnΨ(Xdt|θkd)
∂σrkd

=



∂ ln g1(Xdt|θkd)
∂σrkd

Xdt < µkd

∂ ln g2(Xdt|θkd)
∂σrkd

Xdt ≥ µkd

=



− 1
σlkd

+σrkd
Xdt < µkd

A(λkd)λkd

σrkd

(Xdt−µkd)
λkd

σ
λkd
rkd

− 1
σlkd

+σrkd
Xdt ≥ µkd
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∂ log ϕ(X⃗i|µg, σlg , σrg , λg)
∂λkd

=

∂ ln g1(Xdt|θkd)
∂λkd

+∫
τg
g1(Xdt|θkd)∂ ln g1(Xdt|θkd)

∂λkd
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τg
g1(Xdt|θkd)du

Xdt < µkd

∂ ln g2(Xdt|θkd)
∂σlkd

+∫
τg
g2(Xdt|θkd)∂ ln g2(Xdt|θkd)

∂σlkd
du∫

τg
g2(Xdt|θkd)du

Xdt ≥ µkd

(193)

∂ lnΨ(Xdt|θkd)
∂λkd

=



∂ ln g1(Xdt|θkd)
∂λkd

Xdt < µkd

∂ ln g2(Xdt|θkd)
∂λkd

Xdt ≥ µkd

=



1
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+

3(ψ(1/λkd)− ψ(3/λkd))
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−
(
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)λkd

A(λkd)

×
[
1

2
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(
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)
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(
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)]
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1
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+
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2λ2kd

−
(
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×
[
1

2
ln

(
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)
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+
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(
Xdt − µkd
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)]
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∂2 log ϕ(X⃗i|µg, σlg , σrg , λg)
∂µ2kd

=

∂2 ln g1(Xdt|θkd)
∂µ2kd

+

∫
τg
g1(Xdt|θkd)

[(
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)2]
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g1(Xdt|θkd)du

+

∫
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2 ln g1(Xdt|θkd)
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−
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+

∫
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+
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−

(∫
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Xdt ≥ µkd

(195)

∂2 lnΨ(Xdt|θkd)
∂µ2kd

=



∂2 ln g1(Xdt|θkd)
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kd
Xdt < µkd

∂2 ln g2(Xdt|θkd)
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Xdt ≥ µkd

=



−A(λkd)λkd(λkd − 1) (∂µkd−Xdt)
λkd−2

σ
λkd
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Xdt < µkd

−A(λkd)λkd(λkd − 1) (Xdt−µkd)
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σ
λkd
kd

Xdt ≥ µkd

(196)
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∂σ2lkd

=



∂2 ln g1(Xdt|θkd)
∂σ2lkd

+

∫
τg
g1(Xdt|θkd)

[(
∂ ln g1(Xdt|θkd)

∂σlkd

)2]
du∫
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+

∫
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g1(Xdt|θkd)

[
∂2 ln g1(Xdt|θkd)
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]
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−

(∫
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g1(Xdt|θkd)du
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+

∫
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∫
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τg
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Xdt ≥ µkd

(197)

∂2 lnΨ(Xdt|θkd)
∂σ2lkd

=



∂2 ln g1(Xdt|θkd)
∂σ2

lkd

Xdt < µkd

∂2 ln g2(Xdt|θkd)
∂σ2

lkd

Xdt ≥ µkd

=



−(λkd + 1)A(λkd)λkd
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σ
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lkd

+ 1
(σlkd

+σrkd
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Xdt < µkd

1
(σlkd

+σrkd
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Xdt ≥ µkd

(198)
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=
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+

∫
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∂σrkd
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du∫
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+

∫
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[
∂2 ln g1(Xdt|θkd)
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rkd
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−
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τg
g1(Xdt|θkd)∂ ln g1(Xdt|θkd)

∂σrkd
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τg
g1(Xdt|θkd)du
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Xdt < µkd

∂2 ln g2(Xdt|θkd)
∂σ2rkd

+

∫
τg
g2(Xdt|θkd)

[(
∂ ln g2(Xdt|θkd)

∂σrkd

)2]
du∫

τg
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+
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∂σ2
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]
du∫

τg
g2(Xdt|θkd)du

−
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τg
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Xdt ≥ µkd
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∂2 lnΨ(Xdt|θkd)
∂σ2lkd

=
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∂σ2

lkd

Xdt < µkd
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=
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+
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=
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