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Abstract
Although additive manufacturing can produce nearly any geometry, users have limited choices in the designs. Topology 
optimization can create complex shapes, but it provides only one solution for one problem, and existing design exploration 
methods are ineffective when the design space is huge and high-dimensional. Therefore, this paper develops a new generative 
design method to improve the diversity of topology-optimized designs. Based on the observation that topology optimization 
places materials along the principal directions to maximize stiffness, this paper creates a rule of principal direction and applies 
it to swarm intelligence for form-finding. The shapes got by the swarming process possess both randomness and optimality. 
After they are further optimized, the final designs have high diversity. This is the first time integrating structural stiffness 
as a swarm principle to influence the collective behavior of decentralized, self-organized systems. The experimental results 
show that this method can generate interesting designs that have not been seen in the literature. Some results are even better 
than those got by the original topology optimization method, especially when the problem is more complex. This work not 
only allows users to choose unique designs according to their preference, but also helps users find better designs for their 
application.

Keywords  Generative design · Form-finding · Swarm intelligence · Principal stress · Topology optimization · Additive 
manufacturing

1  Introduction

Additive manufacturing (AM) technologies enable the fab-
rication of complex geometries that are difficult to produce 
with traditional methods. This gives unprecedented flex-
ibility to the design of high-performance products. One 
method that uses this flexibility is topology optimization 
(TO), which optimizes the spatial-material distribution in 
a design-domain to maximize the structural performance. 
However, TO provides only one optimized solution for one 
problem, and designers have limited control in creating 
original designs. Regarding this lack of diversity, genera-
tive design (GD) has been proposed to explore innumerable 

solutions, some of which may not have been seen or thought 
of before. GD uses a set of parametric-defined rules to gen-
erate solutions and optimizes them with certain analysis 
methods, such as TO. This is illustrated in Fig. 1 using one 
degree-of-freedom (DoF) and two DoF solution spaces. Ide-
ally, the generated solutions should be scattered around dif-
ferent local optima so that the optimized results have high 
diversity. This design method has the potential not only to 
find better solutions but also to create aesthetic designs.

Finding an effective scatter may be easier when the 
search space has a lower dimension. However, GD con-
structs free-form geometry and topology, and thus many 
problems for GD have a high-dimensional search space. 
Exploring such a large design space to get meaningful 
results is challenging, and the designs generated by the 
current GD algorithms still look similar in terms of human 
perception (Oh et al. 2019). To explain this insufficient 
diversity, a design-domain of 120 × 80 unit squares (i.e., 
9, 600 DoF) is employed, see Fig. 2. If the volume fraction 
is 0.4 (or 40% ), the solid isotropic material with penaliza-
tion (SIMP) method (Andreassen et al. 2011) initializes all 
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the cells with 0.4 density and iterates to find the optimal 
structure. Here, 100 random material distributions are used 
as the inputs for the SIMP method to mimic the genera-
tive process, and they are generated by assigning materials 
randomly to the cells until the volume fraction reaches 
0.4. The three results that are the most different from the 
SIMP result and from each other are shown in Fig. 2 (see 
Fig. 12 for all results). The difference is measured by treat-
ing each material distribution as a high-dimensional point 
and calculating the distance between them. Apparently, 
different inputs lead to different optimized designs (local 
optima). However, even though these three are the most 
diverse results, their overall shapes still look quite similar. 
In fact, all 100 results are similar to each other. Although 
one may test more combinations and hope to see some 

diverse results, there are 9600C3840 = 7 × 102803 combina-
tions, so it would take a long time to test even a fraction 
of them. Therefore, there is a need to develop some intel-
ligent ways to generate meaningful solutions to better use 
the potential of GD.

The above testing reveals that randomness alone is not 
enough to have high diversity, and the generated initial 
shapes must also be at least suboptimal. As TO focuses 
on the material layout, the generation should find a set 
of random forms that are already structurally meaning-
ful. Although there are GD algorithms for form-finding 
(Youssef et  al. 2018), they have minor consideration 
for structural optimality, and thus their uses are mostly 
in architectural applications. This motivates the present 

Fig. 1   Generative design explores solutions in different design spaces

Fig. 2   Optimized results from random material distributions. c is the compliance (proportional to the amount of deformation) and d is the per-
centage pixel-wise difference from the original SIMP result
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research to include structural concerns in the generative 
process, aiming to create structurally suboptimal initial 
shapes. In studying the fundamentals in both fields of TO 
and GD, two observations are made. First, in order to max-
imize structural stiffness, materials should be placed along 
the direction of principal stresses (Wu et al. 2018; Sales 
et al. 2021). Second, among various form-finding tech-
niques, swarm intelligence is good at creating free-form 
and non-repeated geometries, when the swarm was seen 
as the motion of particles and their paths are connected to 
each other forming a structure-like system (Agirbas 2019). 
Both share some similarity in terms of directions or tra-
jectory, and this paper hypothesizes that combining them 
balances randomness and optimality in GD. Therefore, the 
objective of this paper is to apply principal stress from 
mechanics to the form-finding process in swarm intel-
ligence, with the goal of increasing the diversity of the 
topology-optimized designs. The contributions are sum-
marized as follows: 

1.	 Using the same inputs for topology optimization, a phys-
ical field is generated for swarm intelligence. A set of 
swarming parameters that can consider both randomness 
and optimality is then defined for design generation.

2.	 With the physical field, a rule of principal direction is 
created for swarm intelligence as a steering force driving 
particles to move along the principal directions.

3.	 The trajectory of particles is converted to the inputs for 
topology optimization, and a means of diversity measure 
is used to sort the optimized results for design inspira-
tion.

The main outcome of this paper is to generate diverse 
designs, but it will show that the present method can also 
find better designs than the original SIMP method. This is 
the first time fully integrating structural stiffness into swarm 
intelligence for generative design.

1.1 � Why diversity?

TO enforcing discrete 0/1 solutions is inherently a non-con-
vex problem (Abdelhamid and Czekanski 2022), which may 
have multiple feasible regions and multiple locally optimal 
solutions within each region. The global optimum can only 
be known after finding all the local optima, but it usually 
cannot be found in a reasonable amount of computing time, 
and thus we are contented with sufficiently good solutions. 
The diversity of topology-optimized designs thus refers to 
how the locally optimal designs differ from each other, and 
there are many reasons to increase this diversity, just to name 
a few: First, human has both needs and wants. For example, 
human only need water but want all kinds of drinks; mass-
produced goods are effective, but many want one-of-a-kind 

products. Similarly, we may only need one design to work, 
but we also want the freedom to choose from the qualified 
options. It does not have to be the best design to satisfy 
all the requirements, and there could be multiple (locally) 
optimized designs that have similar performance. Increas-
ing the diversity helps provide these options as many and 
as distinct as possible. Second, TO and GD have different 
purposes – the present work is a GD method. While they 
may have the same goal – to provide the optimal design for 
a set of requirements, TO is used in later phases of design 
where an initial design is already set, but GD is used in the 
early phase of design to give initial design possibilities for 
automated ideation. In other words, GD uses TO, but not 
the other way around, and GD builds on the foundation of 
TO to arrive at smarter and more innovative solutions. It is 
well known that diversity is the key to innovation. Third, 
seeking globally optimal solutions for non-convex problems 
can take exponential time with the number of variables, and 
many global optimization methods (e.g., branch and bound) 
use random or statistical sampling to improve performance. 
Diversity sampling is one of the effective ways to speed up 
the searching process.

The rest of the paper is organized as follows. Section 2 
reviews the related works. Section 3 presents the methodol-
ogy and implementation details. The experimental results 
are presented in Sect. 4. Finally, Sect. 5 concludes the paper 
and discusses the future works.

2 � Literature review

This paper is mainly related to generative design and topol-
ogy optimization. Their closely related works are reviewed.

2.1 � Generative design (GD)

The five classic GD techniques are swarm intelligence 
(Agirbas 2019), cellular automata (Feijs and Toeters 2018), 
genetic algorithms (Vaissier et al. 2019), shape grammars 
(Wang et  al. 2020), and L-system (Zhang et  al. 2020). 
They are mostly rule-based methods that create new gen-
erations based on some rules to determine the new state of 
each parameter according to its current states as well as the 
neighbors’. One the one hand, if a solution is represented as 
a point in a n-dimensional space, where n is the number of 
parameters, the generative process can be used to search for 
solutions. For example, Felkner et al. (2013) encoded the 
shape, topology, and sizing variables in a particle and gener-
ated architectural designs of truss structures. This class of 
works is mainly used to find the best solution, such as parti-
cle swarm optimization (Li et al. 2014). On the other hand, if 
the generations are done in the Euclidean space, they can be 
used to create emergent geometries as a form-finding process 
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(Chen 2015). Agirbas (2019) further created non-Euclidean 
geometries by substituting the particles using metaballs or 
Voronoi cells. These methods are mainly used in architec-
ture, like façade designs considering the level of daylight 
(Pantazis and Gerber 2018), but not so much for engineer-
ing performance. Although Tsiliakos et al. (2012) took the 
stress into account during the material growth, he only put 
more materials in the high-stress area, and the results were 
not optimized.

With the growth of machine learning, it is also applied to 
GD constructing a generator that learns the probability dis-
tribution of data and generates new data based on the learned 
probability distribution. For example, Yoo et al. (2021) 
integrated deep learning in the conceptual design phase to 
generate wheel designs and evaluate their engineering per-
formance. The learning-based methods can find the hidden 
representations (latent variables) from the high-dimensional 
data, and sampling in the latent space is one way to gener-
ate different but reasonable results. This has been employed 
in the generation of product profiles (Dogan et al. 2019); 
(Gunpinar et al. 2019), lattice structures (Gupta et al. 2019), 
and human body models (Huang et al. 2019). Other related 
works include exploring design spaces for manufacturing 
considerations (Mirzendehdel et al. 2019) and generating 
free-form grid shells (Wang et al. 2019).

2.2 � Topology optimization (TO)

TO answers the fundamental engineering question (Sigmund 
and Maute 2013): “how to place material within a prescribed 
design domain to obtain the best structural performance?” 
Bendsøe (1989) stated it as “optimizing the spatial material 
distribution in a design domain for given loads and boundary 
conditions.” There are various TO methods, such as ground 
structure (Zhang et al. 2017), homogenization (Bendsøe and 
Kikuchi 1988), SIMP (Zhou and Rozvany 1991; Bendsøe 
and Sigmund 1999), and level set (Sethian and Wiegmann 
2000; Wang et al. 2003; Allaire et al. 2004). The popular 
TO methods are often gradient-based optimization methods, 
which start with an initial material distribution and update 
it repeatedly according to the finite element analysis (FEA) 
result until the convergence is reached. Anisotropic material 
properties can also be considered in TO using non-homoge-
neous failure criteria (Mirzendehdel et al. 2018). To speed 
up the process, Kwok et al. (2016) converted the optimiza-
tion problem to a design problem by drawing lines along the 
direction of principal stress. While FEA only has low-order 
continuity (C0), research has applied isogeometric analysis 
(IGA) to TO problems, getting more effective results (Gao 
et al. 2019).

When the problems are more complex, metaheuristic 
algorithms can often find a sufficiently good solution with 

less computational effort (Bianchi et al. 2009). For exam-
ple, research used genetic algorithm (Wang and Tai 2005), 
ant colony optimization (Kaveh et al. 2008), differential 
evolution (Wu and Tseng 2010), harmony search (Lee and 
Han 2017), bat algorithm (Jaafer et al. 2020) to search for a 
design with higher structural performance. Recently, there 
are many uses of machine learning for TO problems too, 
e.g., generative adversarial network (GAN). A GAN model 
involves a generator and a discriminator, and they are trained 
together in a zero-sum game until the discriminator is fooled 
about half the time, meaning the generator is generating 
good designs. To take advantage of GAN in TO applica-
tions, Oh et al. (2019) generated a set of results by running 
TO under different parameters and used the results to train 
the generator. When the discriminator cannot identify the 
TO results and the generated ones, the generator is able to 
create near-optimal topological design in one-shot without 
any iteration (Yu et al. 2019; Cang et al. 2019). The meth-
ods were further extended to generate optimal results even 
when the boundary conditions are different. Nie et al. (2021) 
developed TopologyGAN that takes an additional input of 
physical field to the generator of a conditional generative 
adversarial network (cGAN) to predict the result under 
unseen boundary conditions. Similarly, Hertlein et al. (2021) 
used a cGAN trained on randomized boundary conditions, 
which can also consider build orientations and overhangs in 
additive manufacturing. These methods applied generative 
methods to create designs, but they focused on finding the 
best structure rather than generating diverse solutions.

2.3 � Diversity in TO

When there is a well-defined measure of diversity, the opti-
mization can include a constraint based on the diversity met-
ric. For example, Wang et al. (2018) used cross-correlation 
(CC) and sum of squared differences (SSD) to make sure the 
newly generated design has a minimum difference from an 
existing design. Li et al. (2021) developed a diversity metric 
based on Gaussian process model to maximize the number of 
independent designs among a population. However, the new 
design depends on previous designs, and thus these methods 
cannot run fully in parallel. In addition, it is sometimes dif-
ficult to define a metric for perceptual diversity. Instead of 
adding an extra constraint, Deng and To (2021) presented 
a parametric level set method using deep learning for TO 
and generated different designs by changing the parameters. 
Similarly, Watson et al. (2021) generated different topology-
optimized designs by changing the TO settings (e.g., volume 
fraction), but the results were not comparable (e.g., different 
volumes), and the number of permutations was small. He 
et al. (2020) integrated genetic algorithms (GA) into TO, 
altering the initial and the intermediate structures during 
optimization. While GA generates new offspring from the 
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existing population, the present work uses swarm intelli-
gence to create new designs directly from the underlying 
physical field. Sun and Ma (2020) applied reinforcement 
learning to alter the search direction in the TO problem, and 
their method can generate various acceptable design options, 
but the diversity is not high, as shown in the result section.

In summary, although GD techniques can synthesize vari-
ous geometries directly, previous works mostly employed 
them for optimization, treating each design as a point in 
the solution space, like using bit-array representations. This 
creates difficulties in generating diverse designs even when 
the optimization has considered the diversity.

3 � Methodology

With the goal of creating diverse designs, this study applies 
form-finding using swarm intelligence to the generation of 
various initial geometries for TO. The forms need to be both 
random and suboptimal to capture as many local optima as 
possible. These two distinct objectives are achieved using 
a physical field to influence the swarm behavior. Figure 3 
shows an overview of the method. To start with, it uses the 
same loading and boundary conditions in the TO problem 
to generate the physical field through a stress analysis. The 
direction of this field is defined by the principal directions 
where the normal stress vector is maximized. Then, it inputs 
the physical field along with other parameters to the swarm-
ing process, and it converts the motion paths of the swarm 
into a material distribution, satisfying the prescribed volume 
fraction. Next, it randomly generates various parameters 
within certain ranges, and each set of parameters results 
in different material distributions. Last, these material dis-
tributions serve as the inputs for TO, and it evaluates the 

optimized results for design inspiration (the least similar 
ones) or design optimization (the least compliant ones).

The key component is the form-finding with the help of 
the physical field. It will be presented first, followed by the 
generative parameters and the rasterization process.

3.1 � Form‑Finding

Inspired by nature like ant colonies and bird flocking, 
swarm intelligence is the global collective behavior where 
the agents interact with each other and their environment 
locally without a centralized control. Each agent can be seen 
as a vehicle moving within the design-domain, and they have 
their own velocity ( � ) at every time instant. The agents navi-
gate by some basic rules, which are mathematically repre-
sented in steering forces. The net steering force is the sum 
of all forces, i.e.,

where wk are the weights to balance the importance of 
forces. The net force is applied to an agent (i) producing 
a proportional acceleration ( � ), which changes the agent’s 
velocity:

The mass (m) of an agent in this context is considered non-
essential and set to 1. Each agent has its own trajectory, and 
the aggregation shows a global intelligent pattern, which will 
be converted to a material distribution.

In the literature, the rules come from the natural prin-
ciples. For example, the agents would like to move in a 
similar direction (alignment) and remain close to each other 
(cohesion) but avoid collisions (separation). This paper also 

(1)� =
∑
k

wk��,

(2)i.� ← i.� + �, with � = m�.

Fig. 3   Overview of the present method. The same conditions for 
topology optimization are used to generate a physical field, which 
alongside with other swarming parameters is inputted to swarm intel-
ligence for form-finding. The generated forms are converted to mate-

rial distributions, which are then optimized for the results. Depending 
on the metrics evaluating the results, design inspiration and design 
optimization can be done
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introduces a principal direction rule, which is defined on top 
of a physical field. According to the current positions ( � ) 
and velocities ( � ) of the agents, each rule applies a force to 
change their motion path, as shown in Fig. 4. The following 
lists the mathematical formulations of the forces, which are 
tailored with the consideration of structural stiffness.

Alignment:

w i t h  Na(i) = { n ∣ ‖n.� − i.�‖ ≤ da
Na(i) = { n ∣ ‖n.� − i.�‖ ≤ da and ‖i.�‖ ⋅ ‖n.�‖ > 𝜖}

Cohesion:

with Nc(i) = { n ∣ ‖n.� − i.�‖ ≤ dc and ‖i.�‖ ⋅ ‖n.�‖ > 𝜖}

Separation:

(3)�� =

(
1

∣ Na(i) ∣

∑
n∈Na(i)

n.�

)
− i.�

(4)�� =

(
1

∣ Nc(i) ∣

∑
n∈Nc(i)

n.�

)
− i.� − i.�

with Ns(i) = { n ∣ ‖n.� − i.�‖ ≤ ds}

Principal direction:

The major difference from the literature is the definition 
of neighborhood. This paper also considers their instanta-
neous motion, besides they need to be close to each other 
( ‖n.� − i.�‖ ≤ da∕c∕s ). Continuum mechanics shows that 
changes in a normal stress do not affect the other orthogonal 
ones. Therefore, when applying the rules of alignment and 
cohesion, it does not consider the agents that are moving in 
the orthogonal or opposite direction as neighbors, i.e., the 
dot product of their velocity vectors ( ‖i.�‖ ⋅ ‖n.�‖ ) needs 
to be greater than a threshold, e.g., � = 0.2 . For the separa-
tion rule, it moves an agent away from its immediate nearby 
neighbors, so the neighborhood distance of separation ( ds ) 
should be smaller than that of alignment and cohesion 
( da, dc ). In addition, the principal direction rule urges the 

(5)�� =

(
1

∣ Ns(i) ∣

∑
n∈Ns(i)

(i.� − n.�)

)
− i.�

(6)�� =
ps(i.�)

psmax
pd(i.�, i.�) − i.�

Fig. 4   Four rules of local 
behavior: a alignment, b 
cohesion, c separation, and d 
principal direction
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agents to follow the physical field, i.e., the principal direc-
tions (pd). The magnitude of force depends on the value 
of the principal stresses (ps) at the agent’s location. psmax 
is the maximum value of principal stresses throughout the 
domain. The following presents the method of computing 
the principal stresses and directions in real-time.

3.1.1 � Field of principal direction

Without loss of generality, this work assumes the design-
domain to be a two-dimensional (2D) quadrilateral finite 
mesh, and the loads and supports apply to the nodes of the 
mesh in a form of nodal forces and nodal boundary condi-
tions. It can then perform a stress analysis by solving the 
linear equation system: � = �� , where � is the global nodal 
force vector, � is the global stiffness matrix based on the 
Hooke’s law, and � is the output – the global nodal dis-
placement vector. To compute the principal directions for 
an agent, it is basically the stress recovery process for the 
element (e) where the agent is located. Given the global dis-
placement vector, it can get the element displacement vec-
tor ( �e ⊂ � ). As a quadrilateral has four vertices and each 
has two degrees-of-freedom (DoF), �e is a 8 × 1 vector. The 
Hooke’s law for a plane stress problem is as follows:

where �1 and �1 are the normal stresses, � is the shear stress, 
E is the Young’s modulus, � is the Poisson’s ratio, and �e is 
the strain-displacement matrix, i.e., [𝜀1 𝜀2 𝛾]⊤ = �e(x, y)�e . 
Mapping the element to a unit square with the bottom-left 
corner at the origin, �e is a 3 × 8 matrix as follows:

where (x, y) is the coordinate of any location inside the unit 
square, i.e., 0 ≤ x, y ≤ 1 . Then, it can get the stresses at the 
agent’s location via Eq. 7 by mapping i.� to the local coordi-
nate (x, y) of the element where the agent is located.

The principal direction is the orientation at which the 
shear stress is zero by rotating the stress tensor through an 
angle ( �p ). The only stresses at this orientation are the nor-
mal stresses, which are known as the principal stresses. The 
angle (anti-clockwise) can be found based on the original 
stresses:

(7)
⎡⎢⎢⎣

�
1

�
2

�

⎤
⎥⎥⎦
=

E

1 − �2

⎡
⎢⎢⎣

1 � 0

� 1 0

0 0
1−�

2

⎤
⎥⎥⎦
�
e
(x, y)�

e

�
e
(x, y) =

⎡
⎢⎢⎣

y − 1 0 1 − y 0 y 0 − y 0

0 x − 1 0 − x 0 x 0 1 − x

x − 1 y − 1 − x 1 − y x y 1 − x − y

⎤⎥⎥⎦

�
p
=

1

2
tan

−1
(

2�

�
1
− �

2

)
.

Thus, one of the two principal directions is at the angle �p 
and the other one is at the angle �p +

�

2
 , i.e.,

Correspondingly, the two principal stresses are computed 
via the transformation equations:

The only exception is when �1 − �2 = 0 , there are no prin-
cipal directions, and the stresses in all directions are the 
same. Here, the principal direction rule does not result in 
any steering force, i.e., Fp = 0 . Otherwise, pd() returns the 
principal direction that is the closest to the agent’s moving 
direction and ps() returns the corresponding principal stress:

Let it be noted that ����⃗𝜃p1 , ����⃗𝜃p2 , �p1 , and �p2 are calculated based 
on i.� . This is done in real-time, and the only required input 
is the global displacement vector �.

3.1.2 � Generative parameters

GD creates and explores solutions based on a set of input 
parameters, so it is important to set up these parameters 
properly. From the above, the variables in the form-find-
ing process include the weights among the steering forces 
(alignment: wa , cohesion: wc , separation: ws , principal 
direction: wp ), the distances defining an agent’s neighbor-
hood ( da, dc, ds ), the number of agents (m), and their initial 
position and velocity ( {�}, {�} ). In addition, there are two 
maximum bounding values: one on the speed and one on 
the steering force. The maximum speed controls how far 
an agent can move in one step. To balance the piecewise 
linearity of the trajectory and the computation time, it has 
the size of a quadrilateral (q), i.e., smax = q , and q = 1.0 in 
this paper. This is applied to Eq. 2: whenever ∣ � ∣> smax , � 
is scaled by smax∕ ∣ � ∣ . The maximum steering force limits 
the acceleration of an agent and thus prevents sudden turns 
or potential oscillations. To have a smooth trajectory, a steer-
ing force can change the direction of an agent at most about 
0.2 rad (weak constraint). If the average speed of an agent 
is 0.6, it can calculate the maximum force via the arc length 
formula, i.e., fmax = 0.6 × 0.2 ≈ 0.1 . This applies to the total 

����⃗𝜃p1 = [cos 𝜃p, sin 𝜃p],
����⃗𝜃p2 = [− sin 𝜃p, cos 𝜃p].

�p1 = �1 cos
2
�p + �2 sin

2
�p + 2� cos �p sin �p

�p2 = �1 sin
2
�p + �2 cos

2
�p − 2� cos �p sin �p

pd(i.�, i.�) ={
sgn(i.� ⋅ ����⃗𝜃p1)

����⃗𝜃p1 , if ∣ i.� ⋅ ����⃗𝜃p1 ∣≥∣ i.� ⋅
����⃗𝜃p2 ∣

sgn(i.� ⋅ ����⃗𝜃p2)
����⃗𝜃p2 , else.

ps(i.�) ={
∣ 𝜎p1 ∣ , if ∣ i.� ⋅ ����⃗𝜃p1 ∣≥∣ i.� ⋅

����⃗𝜃p2 ∣

∣ 𝜎p2 ∣ , else.
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force in Eq. 1 and each of the forces in Eq. 3–6. Whenever 
the magnitude of a force is greater than fmax , the limit scales 
it down to fmax.

Some variables are fully random, like the initial loca-
tion  (� ) and velocity  (� ). The agents are spread freely 
throughout the design-domain and take an arbitrary direc-
tion to start with in each generation. The relative weights of 
the steering forces ( wa,wc,ws,wp ) are random too, as long 
as none of them overwhelm the others and they sum to unity. 
Therefore, they are given a value between 0.5 and 1.0, and 
their sum is normalized to 1.0. Generally speaking, high 
alignment weight ( wa ) gives more parallel struts; high cohe-
sion weight ( wc ) leads to more main struts; high separation 
weight ( ws ) introduces more branches; and high physical 
weight ( wp ) results in principal stress lines. The neighbor-
hood distances ( da, dc, ds ) should be related to the domain 
size such that the collective behavior can be observed. If 
the distances are too small, the agents are independent of 
each other – creating many branches in the design; but if 
the distances are too large, all agents are interrelated and 
there will be only one global behavior – resulting in a few 
main struts in the design. In addition, the separation dis-
tance should be smaller than the other two, as mentioned 
before. They have a value less than 10% of the size (L) of the 
design-domain, i.e., the distances of alignment and cohesion 
( da, dc ) have a floating-point value between 0.06L to 0.1L, 
and the separation distance ( ds ) has a value between 0.02L to 
0.06L. To account for irregular shapes of the design-domain, 
the size L is the square root of the domain’s area, e.g., for 
a 120 × 80 rectangular domain, L =

√
120 × 80 ≈ 100 . The 

number of agents (m) controls the topological complexity of 
the initial shape, i.e., the more agents, the more branches. 
Although increasing the complexity can explore more inter-
esting results, too many agents will lead to a high volume. 
It should relate to the size of the design-domain and the 
volume fraction (vf), but since the length of each agent’s 
trajectory is unpredictable, it prefers a large enough range 
that can produce different volumes. This paper sets m to be 
between (vf)L and L. Table 1 summarizes the values/ranges 
for each variable, and Fig. 5 shows the operation flow chart 
of the algorithm for a set of generative parameters.

The termination condition for the motion of the agents 
is when they reach the boundary of the design-domain, and 
then they become inactive. After all agents are no longer 
active, the present method collects and converts their trajec-
tories to the initial shapes for optimization, which is detailed 
in the following.

3.2 � Rasterization and volume control

The TO tool used in this paper is the SIMP method 
(Andreassen et al. 2011), which computes the optimal 
material density for each quadrilateral element. There-
fore, the trajectories of agents need to be converted to 
the material density in the elements (see Fig. 3). In 2D 
cases, it is like the rasterization process that turns curves 
into pixels, where the trajectories are the curves and the 
quadrilateral mesh is an image. By checking which ele-
ments the agents have passed by, it assigns these elements 
with solid materials, while the rest empty. This material 
distribution has an arbitrary volume, and it is most likely 
not the same as the desired volume fraction. Although the 
volume difference is not a problem for the TO method, as 
the process can add or remove materials automatically, the 
difference cannot be large. Especially, if the initial volume 
was much lower than the desired volume, the optimization 
would evenly put materials in the whole domain, which 
would lessen the influence of the initial shape to the result 
and thus lower the diversity. Here, this method applies a 
dilation operation repeatedly to the rasterized image until 

Table 1   List of variables and generative parameters

Variable Value/Range Note

L, q, vf ∼ 100 , 1.0, 0.4 Problem defined
smax q Speed limit
fmax 0.1q Force limit
wa,wc,ws,wp [0.5 1] Weights, 

∑
k wk = 1

da, dc [0.06 0.1]L Neighbor distances
ds [0.02 0.06]L Neighbor distance
m [vf 1]L Number of agents

Fig. 5   An operation flow chart of generating one material distribution 
by swarming
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the volume is equal to or larger than the required volume. 
When the input volume is higher than desired, the method 
proportionally scales the density of all elements down to 
reduce it.

3.3 � Design inspiration and optimization

As mentioned above, GD is used in the early phase of 
design to give initial design possibilities for automated 
ideation, and thus its major goal is to generate multiple 
design suggestions, allowing the designers and engineers 
to try out quickly different designs and make changes. This 
is design inspiration, and the present framework lists out 
the most diverse designs for the purpose. To measure the 
diversity of the generated results, it quantifies the similar-
ity between two structures ( �, � ) in terms of a distance 
measure that is defined on a high-dimensional feature 
space, i.e., each quadrilateral element is a dimension, 
using the Frobenius norm:

where � and � are in a form of density vector. Diversity is a 
measure of how an individual design differs from the others. 
Therefore, while sorting the designs by diversity, each suc-
cessor needs to compare with all its predecessors. Searching 
for the next most diverse design is to find the one that has 
the maximum cumulative distance from all the designs in 
the sorted list (A), i.e.,

The concept is like from a set of 3D points, finding the 
largest triangle for an edge, then the largest tetrahedron 
for the triangle, and so forth. The sorting gives the order-
ing of diversity according to the quantitative point of view, 
and users can choose the inspiring ones from the top of the 
sorted list. The first design on the list is the result generated 
by the original SIMP method.

The magnitude of this distance measure ( � ) is different 
per problem. It depends on the dimension of the design-
domain and the volume fraction (vf). To make it comparable 
among different problems, this paper normalizes the value 
and reports it as a percentage via dividing by the possible 
maximum difference. For example, two material distribu-
tions on a 120 × 80 design-domain with vf = 0.4 are the most 
different from each other when none of their materials share 
an element, meaning that there are 120 × 80 × 0.8 distinct 
elements between them. Using the Frobenius norm, the pos-
sible maximum difference is the square root of the number 
of distinct elements (each has a difference of 1), and the 
normalized value is

(8)�(�, �) = ‖� − �‖F =

��
e

∣ �e − �e ∣
2

argmax
�
∶ �(�) =

∑
�∈A �(�, �)

where A is the area of the design-domain. Although this 
measurement may not be the same as the perceptual dif-
ference and their relationship is probably neither linear nor 
proportional, the larger the value, the more likely to be per-
ceptually different.

GD can also find the best option based on certain metrics 
for design optimization. For example, it can use the same 
goal as in TO to find the stiffest structure. Recall that the 
objective of a common TO problem is to minimize the com-
pliance of the structure, and its mathematical formulation 
reads as:

where V is the desired volume, and E(�e) returns the value of 
Young’s modulus based on the density of the element, e.g., 
E(�e) = (�e)

pE0 , with E0 being the Young’s modulus of the 
material and p being a penalization power to favor binary 
outputs. Each generated design has a compliance value c(�) , 
and sorting them in an ascending order, the first one is the 
best design for the problem.

4 � Results

The common practice of GD uses the power of cloud com-
puting to generate many shapes at once, i.e., one set of gen-
erative parameters corresponds to one design, and there is 
no interrelationship between the designs. The generator can 
create distinct sets of parameters and pass them to independ-
ent processors to compute the designs in parallel. Therefore, 
generating multiple designs is essentially taking the same 
time as generating one design plus some overheads.

The present method is implemented in Python, and the 
Python version of SIMP method (Andreassen et al. 2011) 
for TO is used. It is tested on a PC running 64-bit Windows 
10 equipped with Intel Core i5-6500 CPU@3.20GHz, and 
8GB RAM. The swarming step takes only 3 seconds on a 
120 × 80 design-domain, and TO takes 128 seconds on aver-
age, which is the bottleneck. The contribution of this paper 
is introducing physical meaning into the swarming process 
but not developing new TO methods, and this work only uses 
publicly available codes for the TO. If a more efficient TO 
solver (Gao et al. 2021) is used, it can speed up the entire 
process.

As a proof-of-concept, this paper focuses on studying the 
diversity of the optimized designs and does not implement 

(9)d(�, �) =
�(�, �)√
A ⋅ vf

× 100%

(10)

argmin
𝜌
c(𝜌) = �⊤�� =

∑
e E(𝜌e)�

⊤

e
�e�e

s.t. � = ��,

0 ≤ 𝜌e ≤ 1,∑
e 𝜌e = V .
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cloud computing or 3D examples, but it is not hard to esti-
mate the performance in those situations. With the over-
head time, using cloud or parallel computing would take 
about 140 seconds to generate all designs. For 3D cases, 
the swarming time increases proportionally with the size 
of domain because the agents need to travel longer, but the 
computational complexity is the same. The bottleneck is still 
the TO step, e.g., a high-performance solver (Wu et al. 2016) 
takes 146 seconds on a 200 × 100 × 100 design domain.

The following will first validate the use of principal direc-
tion and then evaluate the performance of the present gen-
erative method in improving diversity. It will also study a 
couple of test examples to show the capability of the frame-
work, and all are on macroscale. Unless otherwise stated, all 
experiments use the volume fraction 0.4, the penalization 
power 3.0, and the density filtering with the filter radius 
1.5 (by the element size), which controls the minimum size 
of the features in the optimized design to make sure it is 
printable by additive manufacturing. The Young’s modulus 
of the material uses E = 1 Pa, and each applied force has a 
magnitude of 1 N. This paper only generates 100 designs for 
each example, but the present method can generate far more 
designs than that. One can always generate more and more 
designs to improve diversity, but using a relatively small 
number here can show the effectiveness of the present gen-
erative method in creating diverse results.

4.1 � Validation of principal direction

Part of the hypothesis in this paper is that using principal 
direction as a steering force considers optimality and helps 
get close to different local optima. To check its validity, the 
present method first applies only the steering force of the 
principal direction rule without randomness. This experi-
ment is on the symmetric cantilever beam problem as shown 
in Fig. 6a. The design-domain is a 120 × 80 rectangle, with 

the top-left and bottom-left corners fixed and a downward 
force at the middle of the right edge. This problem has an 
analytic optimum, which is shown in Fig. 6b. Without ran-
domness, the agents need to be initialized meaningfully in 
this experiment. The analytic optimum shows that all the 
curves of the structure connect to one of the fixed supports. 
Therefore, this experiment also places the agents at the 
location of the fixed supports and assigns their directions 
at every �∕36 rad. Since the support points are at the cor-
ners (right angle), there are in total 34 valid agents. All of 
them come out from the supports and end at the domain 
boundary. The trajectories of the agents are shown in Fig. 6c. 
From the result, here makes two observations. First, given 
the symmetric nature of the problem and initialization, the 
trajectories are also symmetric. This reveals that the method 
is reliable and repeatable, and using the rule of principal 
direction is a valid add-on to the swarming process. Second, 
the trajectories have a similar shape to the analytic optimum. 
In fact, the curves in the analytic optimum are a subset of the 
curves in the trajectories. Although they are not the same, 
this can already disclose that the principal directions indeed 
relate to optimality, and including this rule is a rational cho
ice.

4.2 � Effectiveness of inspiration

As the main purpose of this paper is to improve the diver-
sity of designs generated, this section looks more closely 
into the generative process to evaluate its effectiveness. 
This paper studies the diversity by two trends of data plot-
ted against each generation as shown in Fig. 7, which com-
pares the performance between (a) random material dis-
tribution and (b) the present generative method. The data 
come from the asymmetric cantilever beam problem used 
in Fig. 2. The first trend (dotted curve) shows the maxi-
mum difference between all generated designs, including 

Fig. 6   Applying only the 
steering force of the principal 
direction rule. a The problem 
definition and the agents are 
initialized at the location of 
fixed supports. b The analytic 
optimum for the cantilever 
beam problem. c The trajecto-
ries of the agents following only 
the principal direction
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the latest one, e.g., the generation #40 considers all the 
designs from 1 to 40 and the SIMP one. Its mathematical 
formulation is

Whenever there is a rise in this trend, it means that the newly 
generated design has increased the overall diversity because 
of the extended range of difference. The second trend (solid 
curve) represents the minimum difference between the latest 
design and all the previous designs, i.e.,

It measures how much difference comparing the new one 
with its fellow designs. If the value of a design is zero, it is 
the same as one of the previously generated designs. The 
larger the value for each design, the more varieties there are 
in the results. By analogy with finding a triangle from a set 
of points, the maximum and minimum differences ( f1, f2 ) are 
like the longest and the shortest lengths of the triangle. If 
both lengths are large, the size of the triangle is large.

(11)f1(xi) = max
j,k

d(xj, xk), s.t. j, k ≤ i.

(12)f2(xi) = min
j

d(xi, xj), s.t. j < i.

Overall, the differences of the designs generated by the 
present method are much higher than that of the random dis-
tribution, and in fact the maximum difference of the random 
distribution is only at a similar level to the present meth-
od’s minimum difference. For the random distribution, the 
first generation has a 47% difference from the SIMP result. 
The maximum difference has increased to 50% at the gen-
eration #9 and reaches a plateau (52%) at the generation 
#26. Although the maximum difference settles in the early 
generations, the minimum difference maintains a level of 
30–40% throughout all the generations. This reveals that ran-
dom inputs can indeed generate various designs, but there 
is not much further inspiration after the generation #26. In 
the present method, the first generation already has a 62% 
difference comparing with the SIMP result, which is even 
greater than the highest from the random distribution. Its 
maximum difference keeps increasing the whole time and 
achieves 72% at the generation #98. This is a 40% improve-
ment in diversity compared with the random distribution. 
The minimum difference is also higher and around 40–55% 
in the majority. Figure 8 shows the four most diverse designs 
sorted by the method detailed in Sec. 3.3. They are obviously 

Fig. 7   Line plots of differences against generations created by a random material distribution and b the present method

Fig. 8   Top four inspiring designs generated by the present method for the asymmetric cantilever problem shown in Fig. 2. c is the compliance 
and d is the percentage difference from the original SIMP result
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different from the results generated by the random distribu-
tion as shown in Fig. 2. As a result, the present generative 
method can indeed explore more diverse designs efficiently 
and effectively by swarming.

Here also makes a comparison with another genera-
tive algorithm developed by Sun and Ma (2020). They 
applied exploration algorithms of reinforcement learning 
(RL) to TO problems. One method is to use the upper 
confidence bound to change the sensitivity analysis of the 
SIMP method for obtaining different results. The opti-
mized result got by the original SIMP method has four 
thick struts on the perimeter and four thin struts between 
the thick ones (see Fig. 9). Although it does not have the 
same complexity as the analytic optimum in Fig. 6, it is the 
optimal solution under the domain resolution and settings, 
and it has a compliance of 58.62. Both methods can also 
generate a variety of designs, and Fig. 9 shows six of them. 
While the designs generated by the RL-based method (Sun 
and Ma 2020) still look like the original SIMP result in 
terms of the overall shape and complexity, the present 
method has created plenty of interesting features, many 
of which have never been seen in the literature. Although 
the designs may look unusual, they are indeed the final 
optimized designs, and they have similar compliance to 
those generated by the RL-based method. The compli-
ance values are mostly between 60 and 65, and with this 
around 10% increase only, users can select their prefer-
ence from a bunch of inspiring designs. The maximum 
difference ( f1 ) among all 100 generated designs is 68%. 
One may also notice that the results from the RL-based 
method are always symmetric. This is because that the 
sensitivity only changes the way of updating the solution, 
but a symmetric problem will always result in a symmetric 
design. In contrast, the present method inputs different 
material distributions, and thus it has more control of the 
results. If symmetry is necessary, one can apply symmetry 
boundary conditions to half of the design-domain or make 
a mirror copy of the inputs, and then the outputs will be 

symmetry. A shows another comparison between the gen-
erative methods on the asymmetric cantilever problem.

4.3 � Design optimization

In the previous examples, the compliance value is always 
higher when the generated designs differ from the result 
produced by the original SIMP method. This is because 
the previous cases are relatively simple, e.g., the design-
domain is just a rectangle, and thus a uniform material 
distribution is a good initial guess to reach the global opti-
mum. To show the capability of the present method in 
finding better solutions, this section tests a slightly more 
complex situation – a concave design-domain shaped like 
the letter ‘L’. The concavity comes from assigning 60 × 60 
passive elements in the top-right of a 100 × 100 domain, as 
shown in Fig. 10. It fixes the two corners at the top of ‘L’ 
and applies a downward force at the middle of the bottom-
right end. Under this configuration, the result produced 
by the original SIMP method has a compliance value of 
c = 263.75 according to Eq. 10.

The compliance values of 100 designs generated by the 
present method are plotted as a line chart in Fig. 10 too. 
By drawing a horizontal line at the value of 263.75, it finds 
three designs having a lower compliance value than the 
original SIMP result. The lowest one is 257.60 at the gen-
eration #34, which is visualized in Fig. 10 alongside with 
other two from the generations #26 and #64. Although 
it is not a vast improvement, this shows that the original 
SIMP method does not always get the optimal result, and 
the present method can find better solutions. In terms of 
diversity, the three results are only about 50% different 
from the original SIMP result, which is not high, meaning 
that they share some common features in supporting the 
loads effectively. The maximum difference ( f1 ) among all 
generated designs is 72%.

Fig. 9   Comparison of generated designs by (top) reinforcement learning (Sun and Ma 2020) and (bottom) the present method . c is the compli-
ance and d is the percentage difference from the original SIMP result (leftmost)
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4.4 � Other examples and statistics

This section tests the present method on other examples, 
including the symmetric cantilever beam, a bridge, a bicycle, 
a chair, and a skateboard truck. Figure 11 shows the problem 
definitions, the original SIMP results, and the top twelve 
diverse designs generated by the present method. It is worthy 
to remind that the TO settings (e.g., penalization and filter 
radius) are the same for all results and the only difference is 
the input material distribution, which is generated by vari-
ous swarming conditions. Each generated design is a final 
optimized design instead of an intermediate one during the 
optimization iterations. This means that even though they 
may not be the global optimum, they are indeed the local 
optima. Table 2 lists the statistics, and it uses two metrics 
to measure the diversity. One is the maximum difference 
f1 from Eq. 11 including all designs (i.e., i = 100 ), and the 
other one is the minimum difference f2 from Eq. 12, but 
since f2 has one value for each design, it reports the mean 
value f2 . The table also lists the best compliance (cbest ) got 
in each example.

L-shape Besides the optimized designs shown in Fig. 10, 
there are also inspiring designs as shown in Fig. 11a. This 
is a challenging problem because of the eccentric load and 
the passive region impeding direct connections between the 
load and the fixed points, and the original SIMP result has a 
compliance value of c = 263.8 . Even though the passive ele-
ments largely reduce the DOF and the domain is essentially 
a long rectangle with a small width, the present method can 
still generate diverse designs visually and quantitatively. The 
maximum difference ( f1 ) among all 100 generated designs 
is 72% and the mean of minimum differences ( f2 ) is 48%. 
However, any designs that do not share similar features with 
those in Fig. 10 are having a much higher compliance value 
(up to a 60% increase) in this challenging problem.

Bridge This problem has a 100 × 50 rectangular design-
domain with the bottom-left and bottom-right corners fixed 
and a force being applied at the middle of the bottom edge 
(see Fig. 11b). The original SIMP result has a thick arc con-
necting the two fixed points, and there are four struts linking 
the load to the middle of the arc. It has a compliance value of 
c = 11.99 . The results generated by the present method have 

Fig. 10   Design optimization on a L-shape domain. c is the compliance and d is the percentage difference from the original SIMP result (top-
right)
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Fig. 11   Design inspiration on various examples. c is the compliance and d is the percentage difference from the original SIMP result (leftmost)
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different topology and shapes: some of them have two arcs, 
and some look like a spider net. In this example, f1 = 76% , 
f2 = 40% , and the lowest compliance found among all gener-
ated designs is cbest = 11.98 – a bit better than the original 
SIMP result.

Bicycle To mimic the situation where a person sitting on 
a bicycle frame and holding the front handles, this exam-
ple uses a 160 × 80 design-domain with two loads applied: 
one at the top-middle pointing down and one at the top-left 
with both x and y directions (see Fig. 11c). It also fixes the 
domain at two points on the bottom to simulate the centers 
of the wheels. The original SIMP result is basically a set of 
straight struts connecting the four load/fixed points. This is 
neat and rigid ( c = 188.0 ) but does not have much sense of 
aesthetic. In contrast, the generated designs have different 
styles and interesting shapes. For example, the 3rd design has 
a smile like that on a comedy drama mask, and the 7th one 
looks like the supertree from Singapore. The maximum and 
minimum differences are f1 = 72% and f2 = 49%.

Chair The design-domain of this test case is a 100 × 100 
square (see Fig. 11d), with a 50 × 50 passive region defined 
in the top-left for the sitting space. There are two loads simu-
lating a person sitting and leaning back in the chair: a down-
ward load of 2 N in total distributed uniformly in the seat, 
and a load applied at the top-middle to the right. The original 
SIMP result has an organic shape in this example, combining 
tree branches under the seat and fan shapes in the back, and 
it has a compliance value of c = 137.4 . The present method 
can further improve both diversity and stiffness. The gener-
ated chairs have round, triangular, and various polygonal 
shapes. The differences are f1 = 69% and f2 = 46% . The 
lowest compliance got is cbest = 135.9.

Skateboard truck A skateboard truck is used to attach 
the wheels to the skateboard deck, and it is fastened to the 
underside of the board (see Fig. 11e). The skateboard truck 
must be durable to withstand high impact landings, yet light-
weight to perform ollies and flip tricks in mid-air. Therefore, 

the skateboard truck should be both optimal and stylish. This 
example uses a 120 × 60 design-domain, with two 40 × 30 
passive regions specified in the top-left and top-right cor-
ners. Two downward loads apply at the position of fasteners 
serving as the weight of skaters, and two fixed points are at 
the wheel positions. The original SIMP result has a ladder 
structure in the top and a trapezoid with two triangles in the 
bottom. It has a compliance value of c = 123.3 . To avoid 
uneven balancing of weight, the present method enforces a 
y-axis symmetry at the middle by mirror copying the input 
material distributions before TO. All the outputs are sym-
metric, expect the 10th design has a small strut in the middle, 
causing a slight asymmetry. The results can be regular, like 
the 4th and 6th designs, and they can be animated, e.g., the 
3rd design looks like cat ears, and the 12th resembles a bat. 
The differences are f1 = 77% and f2 = 37% , and the lowest 
compliance is cbest = 122.9.

5 � Conclusion

This paper presents a new generative method to improve 
the diversity of topology-optimized designs by capturing as 
many local optima as possible in the topology optimization 
(TO) problem. The method is developed based on two obser-
vations: (1) topology optimization places materials along the 
principal directions to maximize the overall stiffness, and (2) 
swarm intelligence generates forms using the trajectory of 
agents. This paper applies the rule of principal direction to 
the swarm intelligence, so that the form-finding process can 
also consider the structural stiffness and balance randomness 
and optimality. It varies the swarming parameters to get dif-
ferent input material distributions, which are then optimized 
to get the final designs. The experiments have used various 
examples of both convex and concave domains, including 
the benchmarking cantilever, L-shape, and bridge problems, 
as well as a bicycle, a chair, and a skateboard truck. The 
results show that the present method can generate diverse 
designs that have not been seen in the literature. A means of 
measuring diversity by calculating their difference is also 
used to sort the designs, so that users can view the designs 
that are the most different from each other and select their 
preference among them. In terms of optimality, the present 
method can also find a few designs that have lower compli-
ance than the results generated by the original solid isotropic 
material with penalization (SIMP) method.

Despite the promising results, the present method has 
a few limitations. To begin with, the current generator is 
completely random, and it could produce some similar input 
material distributions, which should be filtered or avoided 
to have more diverse results. Certain design exploration 

Table 2   Statistics for various examples

f
1
 is the maximum difference among all designs, and f

2
 is the mean 

of minimum differences from each design. c
best

 is the lowest compli-
ance obtained, and the values with an asterisk * meaning that they are 
better than the original SIMP result

Example Size f
1 f

2
c
best

Sym. Cantilever 120 × 80 68% 46% 58.62
Asym. Cantilever 120 × 80 72% 46% 65.87
L-shape 100 × 100 - 60 × 60 72% 48% 257.6*
Bridge 100 × 50 76% 40% 11.98*
Bicycle 160 × 80 72% 49% 188.01
Chair 100 × 100 - 50 × 50 69% 46% 135.93*
Skateboard truck 120 × 60 - 2(40 × 30) 77% 37% 121.4*
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methods, like a data-driven approach (Kang et al. 2021), 
will make the present method more effective. Next, the cur-
rent measure of diversity is using a pixel-wise comparison, 
which may not be the same as the perceptual difference. A 
future work is to develop a more accurate aesthetic measure, 
e.g., based on user survey. It can then create a recommenda-
tion system to predict the user preference. In addition, the 
current swarming can take structural stiffness into account 
with the rule of principal direction, but it has not yet con-
sidered other structural performance, like strength, stability, 
and failure mode, and manufacturing criteria. Future work 
should explore other rules for the swarm intelligence to con-
sider various structural performance and free-of-supports 
for additive manufacturing. Finally, this paper only shows 
that the present method can work with the SIMP method, 

but the trajectories need not to be converted to pixels only. 
Extending it to other TO methods will be another future 
work.

Appendix A 100 results

This section lists all the 100 results generated by three 
different methods on the asymmetric cantilever problems. 
The results from random material distributions are shown 
in Fig. 12, by the reinforcement learning (Sun and Ma 
2020) is shown in Fig. 13, and by the present method 
(swarm intelligence) is shown in Fig. 14. It can be seen 
that the present method has much more diverse designs.  

Fig. 12   100 results from random material distributions. 10 of the inputs are shown in the top
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Fig. 13   100 results generated by the reinforcement learning method (SIMP_UCB) (Sun and Ma 2020)
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