
 
 

The Application of Machine Learning-Based Prediction Models for 
Cardiometabolic Risk Among a Representative US Adult Population: A Cross-

Sectional Study of NHANES 1999-2006 
 
 
 
 
 

Jijie Xu 
 
 
 
 

A Thesis 
 

in 
 

The Department 
 

of 
 

Mathematics and Statistics 
 
 
 

Presented in Partial Fulfillment of the Requirements 
 

for the Degree of Master of Science (Mathematics and Statistics) at 
 

Concordia University 
 

Montreal, Quebec, Canada 
 
 
 
 
 
 

April 2023 
 
 

© Jijie Xu, 2023 
 

 



 
 

CONCORDIA UNIVERSITY 
School of Graduate Studies 

 
This is to certify that the thesis prepared 

 
By: Jijie Xu  

 
Entitled: The Application of Machine Learning-Based Prediction Models for     
                        Cardiometabolic Risk Among a Representative US Adult Population: A  
                        Cross-Sectional Study of NHANES 1999-2006  

 
and submitted in partial fulfillment of the requirements for the degree of 

 
  Master of Science (Mathematics and Statistics) 

 
complies with the regulations of the University and meets the accepted standards with 
respect to originality and quality. 

 
Signed by the final examining committee: 

 
Dr. Arusharka Sen Chair 

 
 

Dr. Simone Brugiapaglia Examiner 
 
 

Dr. Lisa Kakinami Thesis Supervisor(s) 
 
 
 
 
 
 
       Approved by   Dr. Yogendra P. Chaubey 

Chair of Department or Graduate Program Director 
 

 
               Dr. Pascale Sicotte 

Dean of Faculty 
 



iii 
 

ABSTRACT 
 
 

The Application of Machine Learning-Based Prediction Models for Cardiometabolic Risk 
Among a Representative US Adult Population: A Cross-Sectional Study of NHANES 1999-2006 

 
 

Jijie Xu 
 
 
Introduction: Common measures of adiposity (such as body mass index) are only proxies. In 
contrast, dual-energy X-ray absorptiometry (DXA) is more precise to measure body composition. 
Therefore, this thesis utilized an unsupervised machine learning technique to group individuals 
based on similarities in their fat and muscle mass body-composition from DXA. Associations 
between the newly developed body-composition phenotypes with cardiometabolic risks were 
compared to phenotypes using a median split.  
 
Methods: Data were collected from National Health and Nutrition Examination Survey 
(NHANES: 1999-2006 cycles, n=5,566; split into 70/30% training and test datasets), a 
representative U.S. population. The K-means cluster phenotypes based on partitioning 
observations from deciles of fat-mass and muscle-mass adjusted for age and sex were identified. 
Model fit was assessed using the silhouette and elbow method. Performance of logistic regression 
models to identify unfavorable cardiometabolic risks using either the K-means or the 50th 
percentile cut-off phenotypes was assessed with the area under the receiver operating characteristic 
(ROC-AUC). Analyses were performed separately for males and females and incorporated 
weighting and the complex sampling design.  
 
Results: Optimal models were 2-means and 4-means k-clusters. ROC-AUCs from 2-means cluster 
models to identify cardiometabolic risk factors had the lowest predictive power (0.52 to 0.63). The 
ROC-AUCs from 50th percentile cut-off phenotypes and 4-means cluster phenotypes were higher 
(0.56-0.66, 0.57-0.67, respectively).  
 
Discussion: Although the 4-means clustering was superior to the 50th percentile cut-off in 
predicting cardiometabolic risk, the ROC-AUCs were generally poor. Future work should 
investigate whether performing K-means clustering for each specific age improves their prediction.  
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1. Introduction 
 

1.1 Health Risks of Adiposity 
 
Adiposity is defined as an excess accumulation of body fat (Prentice & Jebb, 2001) and is a 
significant public health concern because it is a risk factor for a number of chronic diseases, 
including diabetes, high blood pressure, cardiovascular disease, and some types of cancer 
(Freedman et al., 2007). In Canada, like many other countries, the prevalence of adiposity has been 
increasing over the years. According to data from Statistics Canada, in 2018, 26.8% of Canadians 
aged 18 and over were reported with obesity, while an additional 36.3% were reported with 
overweight (Connor Gorber et al., 2008; Government of Canada, 2019).  
 
One of the most well-established health risks associated with adiposity is cardiovascular disease. 
Research has demonstrated that individuals with high levels of body fat are at an increased risk of 
developing cardiovascular diseases, including heart failure and coronary heart disease (Carbone et 
al., 2019; Hruby & Hu, 2015). In addition to increasing the risk of cardiovascular diseases, excess 
body fat deposits can also have an impact on other aspects of cardiovascular health, such as high 
blood pressure and inflammation (Goswami et al., 2020).  
 
Another major health risk associated with adiposity is type 2 diabetes (Hruby & Hu, 2015; Tiwari 
& Balasundaram, 2022). Adiposity has been shown to impair the body’s ability to effectively use 
insulin to regulate blood sugar levels, which can lead to the development of type 2 diabetes (Al-
Goblan et al., 2014). This metabolic disorder can have serious health consequences, including an 
increased risk of cardiovascular disease and damage to the eyes, nerves and kidneys.  
 
Adiposity has also been implicated in the development of several types of cancer, including breast, 
colon, endometrial, and kidney cancer (Friedenreich et al., 2021; Hruby & Hu, 2015; Tiwari & 
Balasundaram, 2022). Although the exact mechanisms by which adiposity increases the risk of 
these cancers are not fully understood, it is believed that hormonal imbalances and chronic 
inflammation may play a role (Ramos-Nino, 2013).  
 
In addition to its effects on cardiovascular health and metabolism, adiposity can also lead to 
musculoskeletal problems, such as joint pain and osteoarthritis (King et al., 2013). The increased 
weight load on joints in individuals with excess body fat can cause damage and lead to the 
development of these conditions. Obstructive sleep apnea, a condition characterized by interrupted 
breathing during sleep, which is also associated with adiposity (Jehan et al., 2017). Excess body 
fat can put pressure on the airway, leading to partial or complete airway obstruction during sleep. 
 
Thus, adiposity is associated with a range of health risks, including cardiovascular disease, type 2 
diabetes, various types of cancer, musculoskeletal problems, and obstructive sleep apnea disease 
(Freedman et al., 2007; Jehan et al., 2017). Due to the global increase in obesity rates, decreasing 
obesity and therefore its associated health complications is a major public health concern (Tiwari 
& Balasundaram, 2022). 
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1.2 Adiposity Measurements 
 

Accurately measuring adiposity is essential for tracking the prevalence of obesity and identifying 
individuals at risk for related health problems. This section provides an overview of the most 
commonly used methods for measuring adiposity. 
 
Body Mass Index (BMI) is one of the most widely used anthropometric field measures used to 
determine adiposity (Fedewa et al., 2019). It is calculated as an individual’s weight in kilograms 
divided by the square of their height in meters (kg/m2). BMI is inexpensive and easy to perform to 
classify adults who are underweight or have normal weight (BMI < 25), as well as with overweight 
(BMI > 25 and <30), or obesity (BMI > 30) (2018 Global Reference List of 100 Core Health 
Indicators (plus Health-Related SDGs), 2018). 
 
Waist circumference is another common assessment of adiposity. It measures the circumference 
around the waist at its most constricted point. This measurement provides information about the 
amount of abdominal fat, which has been linked to an increased risk of health problems, such as 
cardiovascular diseases and type 2 diabetes (Cooper-DeHoff et al., 2010; Postorino et al., 2009; 
Tsujimoto & Kajio, 2017).  
 
Skinfold thickness measurements are another method used to estimate adiposity. This method 
involves measuring the thickness of a fold of skin at various points on the body, typically the 
triceps, subscapular, and suprailiac regions, using a specialized tool called a caliper. The thickness 
of the skinfold is used to estimate body fat percentage based on regression equations (Ripka et al., 
2017). This method is more accurate than BMI and waist circumference but can be subject to 
variability due to differences in the skill of the practitioner.  
 
However, all of the measures previously described are proxies for assessing adiposity. In contrast, 
dual energy X-ray absorptiometry (DXA) is a highly accurate method used to measure the body 
fat and bone density. This method employs a low dose of ionizing radiation, which is absorbed 
differently by body fat, muscle, and bone. The DXA scanner captures the amount of radiation 
absorbed and utilizes this information to calculate body fat percentage and bone density (Laskey, 
1996). This method provides a detailed breakdown of body composition, including total body fat, 
fat mass in specific regions, and lean mass.  
 
1.3 Limitations of Measurements  
 

While BMI is a simple and easy method to estimate body fat, it does have some limitations. For 
instance, it does not take into account differences in muscle mass, bone density, and distribution 
of fat, which can all affect an individual’s weight status (Fedewa et al., 2019). Additionally, it is 
not suitable for individuals who have a lot of muscle mass, such as athletes as it may overestimate 
their body fat (Kraemer et al., 2005; Nevill et al., 2006). Thus, BMI presents as an inaccurate 
obesity classification method (Shah & Braverman, 2012).  
 
Waist circumference only measures the circumference around the waist; as such it does not account 
for differences in muscle mass that can affect the measurement (Flint et al., 2010). In addition, 
ideal waist circumference measurements can vary among different ethnic and gender groups, 
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making it difficult to establish a universal benchmark for all populations (Beydoun & Wang, 2009; 
Bosy-Westphal et al., 2010). Ultimately, waist circumference measures the total amount of fat in 
the abdominal area, but it cannot differentiate between subcutaneous fat (fat located beneath the 
skin) and visceral fat (fat located within the abdominal cavity), and it does not provide information 
about overall body fat or fat distribution (Bosy-Westphal et al., 2010).  
 
Moreover, DXA also has some limitations. Firstly, this method is more expensive and is not as 
widely available. Secondly, DXA methods expose the individuals to ionizing radiation, which may 
be a concern for some individuals; children are more susceptible to the harmful effects of due to 
their longer life expectancy and greater latency period for the manifestation of delayed radiation 
effects. As a result, children may experience a higher cumulative radiation exposure over their 
lifetime. (Njeh et al., 1999). Thirdly, DXA measurements are influenced by the size and shape of 
bones (Blake et al., 2013). Lastly, DXA scans can be affected by various factors such as metal 
implants, movement during the scan and equipment technical problems, which can impact the 
accuracy of the results. Thus, the DXA is not clinically useful as a proxy for routine clinical 
adiposity management (Yumuk et al., 2015). 
 
1.4 Lambda-Mu-Sigma (LMS) Methodology 
 

Lambda-Mu-Sigma (LMS) methodology (Cole, 1990) is a statistical technique used to create sex- 
and age- specific references curves for growth and development indicators such as weight, height, 
BMI and others (Tambalis et al., 2015). It involves fitting three curves (Figure 1) to the data: the 
L-curve (lambda), which represents the Box-Cox power to transform the data to normality; the M-
curve (mu), which represents the median of the transformed data; and the S-curve (sigma), which 
represents the coefficient of variation of the transformed data.  
 
The variable of interest, (in this case weight) is denoted by 𝑦 ≥ 0. Suppose that 𝑦 has median of 
𝜇𝑦 and that 𝑦𝜆 is normally distributed. Based on the family of transformations proposed by Box 
and Cox (1964), it is then defined that the transformed variable: 
 

𝑥 =

{
 

 
(𝑦/𝜇)𝜆 − 1

𝜆
,   𝜆 ≠ 0

ln (
𝑦

𝜇
) ,            𝜆 = 0

(1) 

 
This transformation maps the median 𝜇𝑦 of 𝑦 to 𝑥 = 0 and is continuous at 𝜆 = 0. Since 𝜆 is a free 
parameter, the optimal value of 𝜆 is that which minimizes the standard deviation (SD) of 𝑥.  
 
The SD of 𝑥 and the coefficient of variation of 𝑦 are denoted as 𝜎. After 𝑥 is calculated, the SD 
score (𝑧-score) of 𝑥 can be calculated through the standard normal distribution assumption. 
 

𝑧 =
𝑥

𝜎
=

{
 
 

 
 
(𝑦/𝜇)𝜆 − 1

𝜆𝜎
,   𝜆 ≠ 0

ln (
𝑦
𝜇)

𝜎
,            𝜆 = 0

(2) 
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Assume now that the distribution of 𝑦 varies with covariate 𝑡 (in this study, 𝑡 is age) and that 𝜇, 𝜆, 
and 𝜎 at 𝑡 are 𝑀(𝑡), 𝐿(𝑡), and 𝑆(𝑡), respectively. To find the centile 100𝛼 of 𝑦 at 𝑡 is given by: 
 

𝐶100𝛼(𝑡) = {𝑀
(𝑡)[1 + 𝐿(𝑡)𝑆(𝑡)𝑍𝛼]

1
𝐿(𝑡),   𝐿(𝑡) ≠ 0

𝑀(𝑡)exp[𝑆(𝑡)𝑍𝛼],                   𝐿(𝑡) = 0
(3) 

 
The curves 𝑀(𝑡), 𝐿(𝑡), and 𝑆(𝑡) are estimated by maximizing the penalized likelihood.  
 
The LMS method allows for the creation of reference curves that can be used to determine whether 
an individual’s growth is normal, delayed, or advanced compared to their peers of the same sex 
and age (Kelly et al., 2014). The LMS method is widely used in health research to create growth 
reference charts (e.g., height-for-age, or weight-for-age) and to monitor the health and 
development of children (Cole, 2021; Cole, 1990; Flegal & Cole, 2013; Cole, 2012).  
 

 
Figure 1: An example of the L, M and S curves derived from the UK girls’ weight standard of 
Tanner, Whitehouse & Takaishi (1966). (Cole, 1989) 
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1.5 Prado et al.’s Phenotypes 
 

In 2014, Prado et al. (2014) adapted the lambda-mu-sigma (LMS) methodology to develop sex- 
and age- specific references curves to classify dual energy X-ray absorptiometry (DXA) data into 
phenotypes of appendicular skeletal muscle index (ASMI; kg/m2) and fat mass index (FMI; kg/m2). 
Through the use of the LMS methodology, Prado et al. (2014) defined four distinct phenotypes 
based on whether an individual fell above (> 50th percentile) or below (< 50th percentile) 
combinations of sex- and age-specific references curves for ASMI and FMI. These phenotypes 
were labeled as: low adiposity with low muscle (LA-LM: <50th percentile FMI and <50th percentile 
ASMI), low adiposity with high muscle (LA-HM: <50th percentile FMI and >50th percentile 
ASMI), high adiposity with low muscle (HA-LM: >50th percentile FMI and <50th percentile 
ASMI), and lastly, high adiposity with high muscle (HA-HM: >50th percentile FMI and >50th 
percentile ASMI). 
 
Previously, it was demonstrated that Prado's (2014) DXA phenotypes were not better than BMI in 
predicting cardiometabolic risk (Kakinami et al., 2021). While the results showed that Prado's 
(2014) DXA phenotypes did provide additional information on body composition, it did not 
improve the detection of cardiometabolic risks compared to using BMI alone. More specifically, 
while the ROC-AUCs obtained from BMI models for correctly identifying cardiometabolic risk 
were relatively weak (varied between 0.57 and 0.68), the ROC-AUCs from DXA phenotypes were 
the same or lower (ranging from 0.53 to 0.68), suggesting weaker predictive power than the BMI 
model. 
 
As a result, this thesis aims to develop a better way to classify fat and muscle mass than using the 
Prado’s four mutually exclusive phenotypes based on the median splits. In order to be able to say 
whether the newly developed phenotypes are superior to the existing Prado’s 50th percentile cut-
off phenotypes, the performance of the models in identifying cardiometabolic risk factors in a large 
representative sample will also be assessed.  
 
The rest of this thesis will be organized in the following order: (I) method section expanding on 
Prado’s phenotypes, the statistical approach for identifying phenotypes through clustering and the 
metrics to validate and assess their performance in predicting cardiometabolic risks; (II) results 
and (III) discussion and conclusion.  
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2. Methods 
 

2.1 Data Sources 
 

The data for this study were obtained from the National Health and Nutrition Examination Survey 
(NHANES). Its primary goal is to appraise and scrutinize the health and nutritional status of both 
adults and children residing in the United States. Since 1999, NHANES has collected data from 
~10,000 people living in the United States every two years in biannual cycles. The samples were 
representative of the general population through a combination of sampling design (stratified, 
multistage probability sampling), oversampling, and weighting (Curtin et al., 2012; National 
Health and Nutrition Examination Survey (NHANES) - Health, United States, 2022; NHANES - 
About the National Health and Nutrition Examination Survey, 2022; NHANES - History, 2019). 
 
The survey collects data on a wide range of health-related topics through interview and physical 
examinations, including information on health behaviours, chronic conditions, and use of health 
care services (King et al., 2021; NHANES - About the National Health and Nutrition Examination 
Survey, 2022) The survey results provide an objective assessment of health status and help people 
learn about the health of people in the United States (NHIS - National Health Interview Survey, 
2023). Ethics approval was obtained from the National Center for Health Statistics Ethics Review 
Board. All participants provided informed consent. 
 
The sample size for the 1999-2006 cycles of NHANES was 41,474. Of this, 18,850 participants 
were excluded from analysis since they were under the age of 18 years or above the age of 85 
years. An additional 1,292 women were removed from analysis because a pregnancy test was 
positive at examination time, or they said they were pregnant and would thus be unable to have a 
DXA scan. Lastly, participants were excluded if they were missing data from other key measures 
of interest (such as BMI, cardiometabolic risk measures, sociodemographic characteristics, etc). 
The final sample size for analysis was 18,556 respondents, with DXA data in five imputed data 
sets (n=92,780). 
 

2.2 Outcomes (Cardiometabolic Risk Factors) 
 

The outcomes section of this thesis encompasses a comprehensive evaluation of several essential 
cardiometabolic risk factors. These factors play a vital role in understanding and assessing an 
individual’s cardiovascular health and metabolic status. Specifically, total cholesterol, low-density 
lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, as well as systolic and 
diastolic blood pressure are investigated. 
 

2.2.1 Total Cholesterol  
 

Total cholesterol contains both low-density lipoprotein (LDL) and high-density lipoprotein (HDL) 
cholesterol. A high level of total cholesterol (>6.2 mmol/L) in the blood could increase a person’s 
risk of developing cardiovascular disease and stroke (Grundy et al., 2019; InformedHealth.Org, 
2006). The ideal level of total cholesterol could vary depending on an individual’s age, sex and 
overall risk of heart disease. 
 



7 
 

2.2.2 Low-density Lipoprotein (LDL) Cholesterol 
 

LDL cholesterol is a measure of the cholesterol carried by low-density lipoprotein in the blood. It 
is commonly referred to as “bad” cholesterol because high levels of LDL cholesterol are associated 
with an increased risk of heart disease and other cardiovascular problems (InformedHealth.Org, 
2006). An optimal LDL cholesterol level is generally considered to be less than 2.6 mmol/L, while 
levels between 3.4 mmol/L and 4.1 mmol/L are considered borderline high. LDL cholesterol levels 
above 4.1 mmol/L are considered high (Grundy et al., 2019). 
 
2.2.3 High-density Lipoprotein (HDL) Cholesterol 
 

Higher levels of HDL cholesterol may help protect against heart disease by removing excess 
cholesterol from the blood and carrying it back to the liver for excretion (InformedHealth.Org, 
2006; Sacks & Expert Group on HDL Cholesterol, 2002). An optimal HDL cholesterol level is 
generally considered to be 1.0 mmol/L or higher for men and 1.3 mmol/L or higher for women 
(Grundy et al., 2019). 
 

2.2.4 Triglycerides 
 
Triglycerides are a type of fat found in a person’s blood. High triglycerides levels are also 
associated with an increased risk of cardiovascular disease (Miller et al., 2011). A high triglyceride 
level is generally considered to be greater than 2.3 mmol/L (Grundy et al., 2019). However, 
optimal levels may vary depending on individual’s age, sex and other risk factors for heart disease.  
 

2.2.5 Systolic and Diastolic Blood Pressure 
 
Hypertension is the sustained elevation of systemic arterial blood pressure, most commonly 
defined as systolic blood pressure (SBP) ≥ 140 mm Hg or diastolic blood pressure (DBP) ≥ 90 mm 
Hg (Grundy et al., 2019). Both systolic and diastolic blood pressure are important for assessing 
individual’s risk of developing heart diseases, stroke, and other health problem. The systolic and 
diastolic blood pressure are measured on the right arm with a sphygmomanometer after having the 
participant rest for five minutes in a seated position. After excluding the first measure, mean 
systolic and diastolic blood pressure were calculated based on three consecutive measurements 
(Muntner et al., 2019). 
 

2.3 Body Composition 
 

Body composition was determined using the whole-body dual-energy X-ray absorptiometry (DXA) 
with a Hologic QDR 4500A machine. These whole-body measurements were used to derive the 
ASMI and FMI (Heymsfield et al., 1990). The ASMI represents muscle mass, and its value 
provides information about an individual’s muscle mass relative to their body size. The ASMI was 
calculated using the DXA lean mass results from the arm and legs divided by height (meters2) 
(Hattori et al., 1997). The FMI reflects an individual’s fat mass, and its value can be used to 
understand the distribution of fat in their body. FMI is calculated by dividing the total fat mass by 
height (meters2) (Hattori et al., 1997). Both the ASMI and FMI values were classified into 
phenotypes, which allowed for a more detailed analysis of body composition as described further.  
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2.3.1 Prado et al.’s 50th Percentile Cut-off Classification 
 
Prado et al. (2014) developed sex- and age- specific references curves for ASMI and FMI for the 
NHANES 1999-2004 data cycles. Based on these ASMI and FMI references curves, Prado (2014) 
recommended classifying participants into four mutually exclusive phenotype quadrants according 
to whether they were above or below the median ASMI or FMI for their age and sex. More 
specifically, the four phenotypes are: 
  

1) low adiposity and low muscle (LA-LM; FMI deciles 0-49.99 and ASMI deciles 0-49.99) 
2) low adiposity and high muscle (LA-HM; FMI deciles 0-49.99 and ASMI deciles 50-100); 
3) high adiposity and low muscle (HA-LM; FMI deciles 50-100 and ASMI deciles 0-49.9); 
4) high adiposity and high muscle (HA-HM; FMI deciles 50-100 and ASMI deciles 50-

100). 
 

2.4 Other Clusters 
 

There are several limitations to using Prado et al. (2014) 50th percentile cut-off phenotypes. Firstly, 
using the 50th percentile cut-off to classify individuals based on ASMI or FMI for their age and 
sex may oversimplify the complexity of the data. Secondly, using the 50th percentile cut-off is a 
static approach and may not reflect changes in body composition over different ages in the life-
course. Lastly, using the 50th percentile cut-off reduces the number of groups and may decrease 
the power to detect significant associations between different phenotypes and other variables of 
interest.  
 
Thus, health based on concomitant muscle and fat mass measures may be better represented in 
phenotypes other than above/below the median. An alternative method to identifying these 
phenotypes is through clustering. It’s common to try multiple clustering methods to determine 
which method best suits the particular dataset and problem. Different clustering methods are better 
suited for different types of data. For example, K-means is well suited for data that are compact 
and well separated from each other, while hierarchical clustering is better suited for data with a 
more complex structure. A brief overview is provided. 
 

2.4.1 Hierarchical Clustering 
 
Hierarchical clustering is a bottom-up approach to clustering (Sasirekha & Baby, 2013). Initially, 
the data is separated in n clusters of one point each (each point is a cluster). Then, two of the 
current clusters are merged based on similarity at each iteration. The algorithm stops when all 
points are regrouped in a single cluster. Hierarchical clustering merges (or fuses) clusters based on 
their similarity (Johnson, 1967; Sasirekha & Baby, 2013). In practice, there are different metrics 
to assess the similarity (or dissimilarity) between two clusters (Table 1). 
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Table 1: Different metrics for hierarchical clustering. 

Name of metric Description 
Euclidean distance Euclidean distance is used to measure the dissimilarity between two clusters 
Complete linkage Complete linkage is used to measure maximal intercluster point dissimilarity 
Single linkage Single linkage is used to measure minimal intercluster point dissimilarity 
Average linkage Average linkage is used to measure mean intercluster point dissimilarity 
Centroid linkage Dissimilarity between the centroid of both clusters 
James et al., 2021 

 
For a given dissimilarity measure, the hierarchical clustering algorithm goes as follows (James et 
al., 2021): 
 
Iterate for i = n, …, 2: 

1) Compute the 𝑖 (𝑖−1)
2

 pairwise inter-cluster dissimilarities among the i remaining clusters. 
2) Identify the pair of clusters that are the least dissimilar. Merge these two clusters. 

  
The results of the process can then be visualized in a plot called a dendrogram, in order to choose 
an appropriate number of clusters. The following Figure 2 illustrates a dataset of nine points in ℝ2 
and the dendrogram (right panel) obtained by applying hierarchical clustering (complete linkage) 
to the raw data (left panel). 
 

 
Figure 2: An illustration of how to interpret a dendrogram with nine observations in two-
dimensional space. (James et al., 2021) 

 
 

At the bottom of the dendrogram, all tree leaves are separated (all distinct clusters). Then, going 
progressively up, every time two clusters are merged, their respective branches fuse in the tree. 
Clusters were merged by order: cluster {5} with cluster {7}, cluster {1} with cluster {6}, and 
cluster 8 with cluster {5,7}, and so on.  
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Unlike other clustering methods, hierarchical clustering does not require the user to specify the 
number of clusters beforehand (Frigui & Krishnapuram, 1999). Instead, the user can determine the 
number of clusters by cutting the dendrogram at a certain height. However, hierarchical clustering 
has its limitations. Hierarchical clustering is a computationally expensive algorithm, especially for 
larger datasets (Murtagh & Contreras, 2012). This is because it requires the calculation of all 
pairwise distances between objectives, which can become time-consuming. Moreover, the results 
of hierarchical clustering can be sensitive to the choice of linkage method. Different linkage 
methods, such as single linkage, complete linkage, and average linkage, can produce different 
clustering results (Sasirekha & Baby, 2013). 
 
2.4.2 K-means Clustering 
 
K-means clustering is an iterative approach that divides a dataset into K distinct, non-overlapping 
clusters. To perform K-means clustering, the desired number of cluster K must be selected at the 
beginning, then the K-means algorithm will assign each observation to exactly one of the K clusters. 
This algorithm is laid out in the following steps (James et al., 2021): 
 

1) First, simulate K random points in ℝp which will act as initial centroids, then assign the 
data points to the closest centroid, each centroid corresponds to an initial cluster. 

 
2) Iterate the following until the cluster assignments stop changing: 

 
a) For each of the K clusters, compute the cluster centroid. The kth cluster centroid 

is the vector of the p feature means for the observations in the kth cluster. 
 

b) Assign each observation to the cluster whose centroid is closest (where closest 
is defined using Euclidean distance (4)). 
 

‖𝑥𝑖 − 𝑥𝑖′‖
2 =∑(𝑥𝑖,𝑗 − 𝑥𝑖,𝑗′)

2

𝑝

𝑗=1

(4) 

 
‖𝑥𝑖 − 𝑥𝑖′‖

2 Is the Euclidean distance between p-dimensional points 𝑥𝑖 and 𝑥𝑖′ 
 
Figure 3 shows the progress of the algorithm of K-means clustering algorithm for K=2. 
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Figure 3: An example of the K-means algorithm progression. Training data points are shown as 
dots, and cluster centroids are shown as crosses. (a) Original dataset. (b) Random initial cluster 
centroids. (c-f) Illustration of running two iterations of k-means. In each iteration, we assign each 
training data points to the closest cluster centroid; then we move each cluster centroid to the mean 
of the points assigned to it. (Piech et al., 2013) 
 
The K-means algorithm is guaranteed to decrease the value of objective function (5) (James et 
al., 2021; Krishna & Narasimha Murty, 1999) at each step.  
 

𝕆(𝐶1, … , 𝐶𝑘) = {∑
1

𝑐𝑎𝑟𝑑(𝐶𝑘)
∑ ‖𝑥𝑖 − 𝑥𝑖′‖

2

𝑖,𝑖′∈𝐶𝑘

𝐾

𝑘=1

} (5) 

 
Card (𝐶𝑘)  Is the number of observations (cardinality) of the cluster 𝐶𝑘 
 
Because the K-means algorithm finds a local rather than a global optimal, the results obtained will 
depend on the initial (random) cluster assignment of each observation (Krishna & Narasimha 
Murty, 1999; Nazeer & Sebastian, 2009). For this reason, it is important to run the algorithm 
multiple times from different random initial configurations. Then one selects the best solution, i.e., 
that for which the objective function (5) is smallest. 
 

The principle behind a smaller objective function (5) indicates the data points within the same 
cluster are similar to each other, and data points in different clusters are dissimilar (Nazeer & 
Sebastian, 2009). Also, the clusters are well-separated from each other, and the boundaries 
between the clusters are clear. 
 
K-means is a straightforward algorithm that can be easily understood and implemented. K-means 
is also computationally efficient, especially for large datasets, with the ability to process millions 
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of data points in a matter of seconds (Nazeer & Sebastian, 2009). However, K-means requires the 
number of clusters to be specified beforehand, which can be difficult to tackle. In addition, the 
results of K-means can be sensitive to initial conditions, meaning that different starting points can 
produce different results (Nazeer & Sebastian, 2009).  
 
Moreover, K-means is known for producing clear and well-defined clusters, which are 
advantageous for interpreting the results of the analysis. Additionally, K-means allows for 
controlling the number of clusters, enabling the specification of the desired number of clusters for 
the analysis with ease. 
 
In comparison, hierarchical clustering is a more complex method that may not be as efficient for a 
large dataset (Murtagh & Contreras, 2012). Furthermore, hierarchical clustering can result in 
dendrogram structures that may not be as interpretable as the clear and well-studied clusters 
produced by K-means (Jain et al., 1999). 
 
The NHANES dataset is a large dataset that encompasses a wide range of information related to 
health and nutrition. Due to the magnitude of the dataset and the necessity of conducting efficient 
analyses, the application of K-means analysis is deemed a suitable approach. K-means is a widely 
adopted and well-established clustering method renowned for its computational efficiency and 
scalability, particularly for large datasets (Nazeer & Sebastian, 2009). This attribute makes it an 
ideal option for analyzing the NHANES dataset. Therefore, based on the size of the NHANES 
dataset and the requirement for efficient and interpretable results, K-means clustering is deemed a 
more suitable option than hierarchical clustering. 
 
2.5 Application of K-means to NHANES 
 
The goal of applying K-means clustering to NHANES is to find clusters such that observations 
within each cluster were similar phenotypes (deciles ASMI and FMI) to each other and dissimilar 
to observations in others. All analyses were conducted with SAS 9.4 (SAS Institute, Cary, North 
Carolina) and R software (R Core Team, 2019) version 4.1.2. 
 

2.5.1 Splitting the Sample 
 
In order to begin the data analysis process, it is necessary to randomly split the sample (n=18,556) 
into a training dataset (70%, n=12,990) and a test dataset (30%, n=5,566) using the ‘PROC 
SURVEYSELECT’ statement in the SAS software. This procedure allows for the random 
sampling of a specified percentage of the data, using the ‘SIZE’ option to maintain a sex proportion 
consistent with the full dataset across all ages. The ‘PROC SURVEYFREQ’ statement was used 
to test whether the distribution of sex was different between the training and the test datasets. Also, 
the ‘PROC SURVEYREG’ was used for testing whether the mean age was different between the 
training and the test datasets. After the model was trained using the training set, then the statistical 
analysis was performed on the test dataset. 
 
Given a set of n=12,990 training observations, each observation was grouped into a decile category 
(ranged from 0 to 9) for FMI or ASMI based on the Prado’s (2014) reference curves which 
incorporated the subjects’ sex and age. If a body-composition value was less than a decile cut-off 
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but greater than or equal to the previous one, it was labeled according to the lower cut-off. (i.e. a 
FMI>40th percentile cut-off and <50th percentile cut-off was grouped in the 40th percentile) (Prado 
et al., 2014), where each observation was a two-dimensional real vector, decile groups of ASMI 
and FMI. 
 
2.5.2 Performing K-means Clustering 
 
More specifically, the K-means clustering algorithm aims to partition a set of n=12,990 
observations of each observation with decile groups of ASMI and FMI into K (≤ n) clusters to 
minimize the objective function (5). The objective function (5) was used for measuring the total 
within-cluster variation, summed over all K clusters, was as small as possible. The within-cluster 
variation for the kth cluster is the sum of all of the pairwise squared Euclidean distances between 
the observations in the kth cluster, divided by the total number of observations in the kth cluster. 
 
2.5.3 Initial Centroids Selection 
 
The K-means algorithm starts with a set of initial centroids, which are used as the center of each 
cluster. The algorithm then assigns each data point to the cluster whose centroid is closest to it. 
Once all the data points have been assigned to a cluster, the algorithm then iteratively updates 
centroids and the cluster assignments of the data points. The final clusters are determined by the 
positions of the initial centroids and the assignment of the data points to the nearest centroids 
(Krishna & Narasimha Murty, 1999; Nazeer & Sebastian, 2009). To demonstrate this, consider a 
simple example (Table 2) of nine observations (represented as points in a 2D space) that are to be 
grouped into three clusters using the K-means algorithm.  
 

Table 2: An example of nine observations in a 2D space. 

Observation X Y 
1 2 5 
2 4 7 
3 5 4 
4 3 8 
5 1 9 
6 7 6 
7 8 9 
8 7 8 
9 2 4 

 
If observations (2,5), (3,8) and (7,8) are chosen as the initial centroids, the 3-means algorithm will 
assign the observations 1, 3 and 9 to the same cluster as each other (Table 3). 
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Table 3: 3-means cluster results with initial centroids of (2,5), (3,8) and (7,8). 

Observation X Y Cluster 
centroid 

Euclidean 
distance to 

cluster 1 centroid 

Euclidean 
distance to 

cluster 2 centroid 

Euclidean 
distance to 

cluster 3 centroid 

Final 
Cluster 

1 2 5 (3.0,4.3) 1.2 3.1 5.9 1 
2 4 7 (2.7,8.0) 2.9 1.6 3.4 2 
3 5 4 (3.0,4.3) 2.0 4.6 4.4 1 
4 3 8 (2.7,8.0) 3.7 0.3 4.3 2 
5 1 9 (2.7,8.0) 5.1 2.0 6.4 2 
6 7 6 (7.3,7.7) 4.3 4.7 1.7 3 
7 8 9 (7.3,7.7) 6.9 5.4 1.5 3 
8 7 8 (7.3,7.7) 5.4 4.3 0.4 3 
9 2 4 (3.0,4.3) 1.0 4.1 6.5 1 

 

However, if observations (8,9), (7,8) and (2,4) are chosen as initial centroids, the algorithm will 
assign the observations differently (Table 4). For example, observation 1 and 9 belong in the same 
cluster as each other, but observation 3 belong to another cluster. This demonstrates how the choice 
of initial centroids can impact where the observations belong in the final cluster. 
 
Table 4: 3-means cluster results with initial centroids of (8,9), (7,8) and (2,4). 

Observation X Y Cluster 
centroid 

Euclidean 
distance to 

cluster 1 centroid 

Euclidean 
distance to 

cluster 2 centroid 

Euclidean 
distance to 

cluster 3 centroid 

Final 
Cluster 

1 2 5 (2.4,6.6) 6.5 4.0 1.6 3 
2 4 7 (2.4,6.6) 3.8 2.8 1.6 3 
3 5 4 (6.0,5.0) 5.1 1.4 3.7 2 
4 3 8 (2.4,6.6) 4.5 4.2 1.5 3 
5 1 9 (2.4,6.6) 6.5 6.4 2.8 3 
6 7 6 (6.0,5.0) 2.6 1.4 4.6 2 
7 8 9 (7.5,8.5) 0.7 4.5 6.1 1 
8 7 8 (7.5,8.5) 0.7 3.2 4.8 1 
9 2 4 (2.4,6.6) 7.1 4.1 2.6 3 

 
If the initial centroids are chosen poorly, the algorithm may converge to a suboptimal solution 
because the initial centroids might not be representative of an actual cluster in the data. In this case, 
the algorithm may get stuck in a local minimum instead of finding the global optimal solution (Jain, 
2010; Krishna & Narasimha Murty, 1999). This can lead to clusters that are not representative of 
the underlying structure of the data. Additionally, if the initial centroid is too far from the data 
points, the algorithm may not be able to find the true clusters, resulting in poor cluster assignments 
and suboptimal clusters (Krishna & Narasimha Murty, 1999). Therefore, the initial centroids 
selection can have a significant impact on the final cluster produced by the K-means algorithm, 
and it is important to choose them carefully.  
 

2.6 Cluster Validation 
 

The clustering algorithm assigns data points to clusters without prior knowledge of the underlying 
structure. Therefore, regardless of the specific clustering approach used, it is typically necessary 
to evaluate the final partition of data in most applications (Rezaee et al., 1998). The main objective 
of cluster validation is to identify the best clustering solution that meets the requirements of the 
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problem at hand and generalizes well to new datasets. There are two main types of cluster 
validation measures:  
 

1) Internal cluster validation measures, such as the silhouette score and elbow method 
(Kodinariya & Makwana, 2013). These validation measures use the internal 
information of the clustering process to assess the validity and stability of the clusters 
without reference to any external criterion. These measures are particularly useful for 
determining the optimal number of clusters and selecting the most appropriate 
clustering algorithm without the need for external data.  
 

2) External cluster validation measures, such as the adjusted rand index (ARI) (Hubert & 
Arabie, 1985) is a technique that evaluates the quality of the clusters by comparing 
them to an externally known result, such as class labels known in advance. This 
approach is particularly useful when the true structure of the data is known or can be 
inferred, as it allows practitioners to compare the performance of different algorithms 
in order to choose the one that produces the best results in terms of similarity to the 
true clusters.  

 
Internal cluster validation measures, including the silhouette score and the elbow method 
(Kodinariya & Makwana, 2013) are favored over external cluster validation measures, such as the 
adjusted rand index (ARI) (Hubert & Arabie, 1985) for several reasons: 
 
Firstly, internal measures are derived from the intrinsic properties of the data and the clustering 
outcomes, whereas external measures require the availability of true class labels, which may not 
always be present in real-word data scenarios (Halkidi et al., 2001). This makes internal measures 
more practical and applicable. Secondly, internal measures are less susceptible to the subjective 
selection of the number of clusters, while external measures may be influenced by this choice. For 
instance, the silhouette score provides a metric of the similarity between each observation and its 
assigned cluster, enabling the assessment of the quality of the clustering solution without reference 
to the number of clusters (Rousseeuw, 1987). Finally, internal measures are more robust to noise 
and outliers in the data, and less susceptible to overfitting, making them a more dependable choice 
for evaluating the performance of a clustering algorithm.  
 
In conclusion, internal cluster validation measures, such as the silhouette score and the elbow 
method (Kodinariya & Makwana, 2013) are preferred over external measures like the ARI (Hubert 
& Arabie, 1985) due to their derivation from intrinsic characteristics of the data, reduced 
sensitivity to subjective choices, and increased robustness against overfitting and noise. Thus, 
these internal cluster validation measures were selected for this thesis. 
 

2.6.1 Silhouette Method 
 
The silhouette method finds the optimal number of clusters by studying the separation distance 
between different numbers of clusters. The silhouette method computes silhouette coefficients of 
each point that measures how much a point is similar to its own cluster compared to other clusters 
(Rousseeuw, 1987). The value of the silhouette coefficients has a range of [-1, +1]. If the silhouette 
coefficient is close to +1, it suggests that the data points are significantly dissimilar from their 
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adjacent clusters. A value of 0 indicates that the sample is on or very close to the decision boundary 
between two neighboring clusters. On the other hand, a negative value suggests that the 
observation may have been wrongly assigned to its current cluster. An example of a plot of 
silhouette coefficients from the R “Zoo” dataset can be seen in Figure 4. Silhouette coefficients 
(x-axis) from two types of animals (y-axis) demonstrate the range of coefficients given the cluster 
assignment. At the bottom of the plot, silhouette identifies dolphin and porpoise with negative 
silhouette coefficients indicating that the dolphin and porpoise have been wrongly assigned to its 
current group of mammals.  
 

 
Figure 4: An example of a plot of silhouette coefficients from the R “Zoo” dataset. Silhouette 
coefficients (x-axis) from two types of animals (y-axis) demonstrate the range of coefficients 
given the cluster assignment. (Silhouette: https://en.wikipedia.org/wiki/Silhouette_(clustering)).   
 

2.6.2 Computing the Silhouette Coefficient 
 
Here are the steps to find the silhouette coefficients of ith point:  
 

1. Compute 𝑎𝑖: The average Euclidean distance of that point with all other points in the same 
clusters. 

2. Compute 𝑏𝑖: The average Euclidean distance of that point with all the points in the closest 
cluster to its cluster. 

3. Compute silhouette coefficient 𝑆𝑖 of ith point using the below formula. 
 

𝑆𝑖 =
𝑏𝑖 − 𝑎𝑖

max{𝑎𝑖 , 𝑏𝑖}
(6) 

 

https://en.wikipedia.org/wiki/Silhouette_(clustering)
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2.6.3 Elbow Method 
 
The elbow method is an empirical method to find the optimal number of clusters for a dataset 
(Milligan & Cooper, 1985). The method is based on calculating the WCSS (within-cluster sum of 
square), which is the sum of the square distance between points in a cluster and the cluster centroid 
and represents it in a plot. The optimal number of clusters (K) can be identified based on where a 
steep fall of the WCSS is observed (Kodinariya & Makwana, 2013). 
 

2.7 Other Design Features 
 

Other design features section of this thesis elucidates the significance of multiple imputation 
techniques in handling missing data within the NHANES dataset, as well as the importance of 
weighting procedures to obtain unbiased and representative results from complex survey data. 
 

2.7.1 Multiple Imputation Method 
 
Multiple imputation (Rubin, 1987) is a statistical method used to handle incomplete data problems. 
In the context of NHANES, multiple imputation can be used to handle incomplete data on variables 
of interest. The specific method used would be dependent on the pattern of missing data and the 
variable types involved. For example, if the missing data are missing completely at random 
(MCAR), a simple imputation method such as mean imputation could be used (Enders, 2010). 
However, if the missing data are not MCAR, more sophisticated methods such as multiple 
imputation by chained equations (MICE) could be used (Buuren & Groothuis-Oudshoorn, 2011; 
Enders, 2010).  
 
The MICE method is a powerful and flexible multiple imputation method. It works by creating 
multiple imputed datasets by iteratively imputing the missing data for each variable separately 
(Buuren & Groothuis-Oudshoorn, 2011). The imputed values for each variable are based on the 
observed values for that variable and the values of other related variables. This process is repeated 
multiple times (e.g. 5-10 times) to create multiple imputed datasets. These imputed datasets are 
then analyzed using standard statistical methods, and the results are combined to produce overall 
estimates and standard errors that account for the uncertainty due to the missing data (Enders, 
2010). In NHANES, due to DXA data missingness, FMI and ASMI observations were provided 
in five multiply imputed datasets.  
 
While multiple imputation is a valuable technique for handling missing data, it does come with 
potential challenges and limitations. One such problem is misspecification due to inadequate 
auxiliary variables. In multiple imputation, auxiliary variables are additional variables that are 
included in the imputation model to help predict the missing values. These variables should be 
correlated with both the missingness mechanism and the variables with missing data. Including 
relevant auxiliary variables improves the accuracy of imputations and reduces bias. However, if 
the set of auxiliary variables is inadequate or poorly chosen, it can lead to misspecification of the 
imputation model (Sullivan et al., 2015).  
 
When the auxiliary variables are insufficient, the imputation model may not capture the underlying 
relationships between the missing data and the available variables accurately. This can result in 
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biased imputations and potentially affect subsequent analyses and inferences based on the imputed 
data. Thus, it is essential to carefully consider the choice of auxiliary variables to ensure the 
robustness of the imputation procedures and the validity of subsequent analyses. 
 
2.7.2 Weighting  
 
NHANES is a complex survey that employs a multistage probability sampling design to represent 
the noninstitutionalized civilian population of the United States (Curtin et al., 2012; NHANES - 
About the National Health and Nutrition Examination Survey, 2022), the sample is not randomly 
selected from the entire population. Instead, participants are selected through a series of stages. 
For instance, selecting primary sample units (PSUs) and then selecting households within those 
PSUs (Montaquila et al., 2010). Additionally, some people within the selected households may not 
participate in the survey, which can lead to nonresponse bias. Thus, in NHANES, weights are 
constructed to consider the complex survey design (including oversampling), non-response to the 
survey, and post-stratification adjustment to produce unbiased estimates of population parameters 
(Johnson et al., 2013; NHANES Tutorials - Weighting Module, 2023).  
 
The weighting process involves assigning a weight to each survey participant, which is based on 
their probability of selection and the characteristics of the population. The weight for each 
participant is calculated as the reciprocal of his/her probability of selection. By using these weights 
in the analysis, the sample is adjusted so it is more representative of the U.S. civilian 
noninstitutionalized population. This can be important for making valid inferences and 
generalization from the sample to population. Lastly, combining multiple survey years’ weights 
were constructed in accordance with guidelines from NHANES. 
 

2.8 Other Statistical Analysis Features 
 

In this thesis, logistic regression was used to model the relationship between the probability K-
means cluster phenotypes or 50th percentile cut-off phenotypes and having unfavorable 
cardiometabolic risks. In order to evaluate the performance of the logistic regression models, the 
area under the receiver operating characteristic (ROC-AUC) was used. 
 

2.8.1 Logistic Regression 
 
All logistic regression models were adjusted for age and sex. The general form of a logistic 
regression model can be expressed as: 
 

log (
𝜋

1 − 𝜋
) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑗𝑥𝑗 (7) 

 
𝜋 Probability of participants’ having unfavorable cardiometabolic risks 
𝑥𝑗 Explanatory variables, 𝑗 = 1, … , 𝑝 
𝛽0 The intercept 
𝛽𝑗  Regression coefficients associated with the 𝑥𝑗 explanatory variables, 𝑗 = 1,… , 𝑝  
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2.8.2 Logistic Regression Application  
 
Logistic regression is commonly used when the outcome variable is binary or categorical, as it 
allows people to estimate the probability or odds of belonging to a particular category based on 
the values of the predictor variables.  
 
In accordance with clinically relevant thresholds as previously described, logistic regression was 
performed with the cardiometabolic risk measures dichotomized as: 
 

Total Cholesterol = {
Low,≤ 6.2 mmol/L 
High, > 6.2 mmol/L

 

 

HDL Cholesterol = {
High, {

Men, ≥ 1.0 mmol/L
Women,≥ 1.3 mmol/L

 

Low, {
Men, < 1.0 mmol/L

Women,< 1.3 mmol/L

 

 

LDL Cholesterol = {
Low,≤ 4.1 mmol/L 
High,> 4.1 mmol/L

 

 

Triglycerides = {
Low,≤ 2.3 mmol/L 
High, > 2.3 mmol/L

 

 

Blood Pressure =

{
 
 

 
 Low, {

SBP < 140 mm Hg
OR

DBP < 90mm Hg

High, {
SBP ≥ 140 mm Hg

OR
DBP ≥ 90 mm Hg

 

 
 
As the phenotypes (using either the 50th percentile cut-offs, or the K-means clustering) are 
categorical, these were modeled through dummy variables:  
 

Class Value Codes 
The 50th percentile cut-off defined 
phenotypes: 

LA_HM: low adiposity with high muscle 
(Reference category) 

0 0 0 

 HA_HM: high adiposity with high muscle 1 0 0 
 HA_LM: high adiposity with low muscle 0 1 0 
 LA_LM: low adiposity with low muscle 0 0 1 

 

Thus, the LA-HM was the reference category, and the logistic regression model with the 50th 
percentile cut-off defined phenotypes was the following: 
 

log (
𝜋

1 − 𝜋
) = 𝛽0 + 𝛽1 ∗ (𝐻𝐴_𝐻𝑀) + 𝛽2 ∗ (𝐻𝐴_𝐿𝑀) + 𝛽3 ∗ (𝐿𝐴_𝐿𝑀) (8) 



20 
 

 

2.8.3 ROC Curve and AUC 
 
The ROC curve is a plot of the true positive rate (TPR) against the false positive rate (FPR) for 
different classification thresholds. The term “thresholds” refers to the specific values used to 
determine the classification of data into different categories or classes. In the context of the ROC 
curve, thresholds represent the points at which a binary classification decision is made. These 
thresholds are used to determine whether a given observation should be classified as positive or 
negative based on the output of a classifier or predictive model.  
 
By adjusting the classification threshold, it is possible to influence the trade-off between the TPR 
and FPR. A lower threshold may lead to a higher TPR, meaning more true positives are detected, 
but it can also result in a higher FPR, leading to an increased number of false positives. Conversely, 
a higher threshold may decrease the TPR but also reduce the FPR. The ROC curve illustrates the 
performance of a classification model across a range of thresholds, showcasing how the TPR and 
FPR change simultaneously. It provides a visual representation of the trade-off between correctly 
identifying positive cases and incorrectly classifying negative cases as positive, allowing for an 
evaluation of the model’s discriminatory power. 
 
The AUC represents the area under this ROC curve (Figure 5) and measures the model’s ability to 
distinguish between positive and negative classes. A higher ROC-AUC indicates better 
performance, with an ideal value of 1.0 indicating a perfect classifier (Lohr, 2012) to identify 
unfavorable levels of cardiometabolic risk based on the phenotype. The calculation of the ROC-
AUC provides a robust evaluation of the logistic regression model, as it is independent of the 
choice of threshold and provides a good indicator of the model’s overall performance.  
 

 
Figure 5: AUC (Area under the ROC Curve). AUC measures the entire two-dimensional area 
underneath the entire ROC curve from (0,0) to (1,1). (Classification: ROC Curve and AUC,  
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc) 
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2.8.4 Framework of the Study 
 
The study utilized a framework (Figure 6) that began with a total of 18,556 observations extracted 
from the NHANES dataset. The observations were subsequently divided into two distinct datasets 
based on gender (male and female). To create the male dataset, a random sampling technique was 
applied to assign observations to both a training dataset and a test dataset. Within the male training 
dataset, the value of FMI and ASMI were obtained for each observation. These measures were 
then incorporated into Prado’s (2014) sex- and age- specific references curves, resulting in the 
calculation of decile_FMI and decile_ASMI values for each observation, ranging from 0 to 9. 
 
Following this, the K-means algorithm was employed to group the observations based on their 
decile_FMI and decile_ASMI values. The algorithm was executed for various values of K, ranging 
from 1 to 10. To determine the optimal number of clusters, the silhouette method and the elbow 
method were utilized. Once the optimal number of clusters was confirmed, the decile_FMI and 
decile_ASMI values for each cluster’s centroids were calculated. These centroid values were 
instrumental in determining the phenotypes associated with each cluster. For instance, if a cluster’s 
centroid had a low decile_FMI and low decile_ASMI values, it was labeled as LA-LM, and all 
observations within that cluster exhibited the same phenotype.  
 

 
Figure 6: Summary of research methodology. 

Similar procedures were then conducted on the female dataset, which consisted of 9,171 
observations. The same steps of random sampling, calculation decile_FMI and decile_ASMI 
values, application of the K-means algorithm, determination of optimal clusters, calculation of 
cluster centroid values, and assignment of phenotypes based on the centroid values were followed.  
 
In the subsequent stage, the decile_FMI and decile_ASMI values for the observations in the test 
dataset were obtained. The Euclidean distance between each observation and the centroid values 
of the clusters was calculated. The observation was then assigned a closest phenotype based on the 
cluster with the lowest Euclidean distance. 
 
In summary, this study employed a framework that involved the division of observations by gender, 
utilization of FMI, ASMI and references curves to determine decile values, application of the K-
means algorithm for clustering, determination of phenotypes based on cluster centroids, and 
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assignment of closest phenotypes to observations in the test dataset using Euclidean distance 
calculations. The same procedures were carried out separately on the male and female datasets.  
 
2.8.5 Statistical Analysis 
 
Data from cycles 1999-2006 were performed separately for imputed male and female datasets. As 
previously described, there were many sampling designs and data features in this dataset that 
needed to be incorporated into the analysis for proper inference. Specific to the use of ROC-AUC 
curves in a dataset with a complex sampling design, SAS macros were necessary to calculate the 
standard errors of ROC-AUC using bootstrapping (n=1,000) (Izrael, 2002), alongside the 
calculation of a single, summary AUC given that the predictor was categorical and from a dataset 
with a complex sampling design with multiple imputation. The standard errors derived from the 
bootstrap samples, along with the ROC-AUCs obtained from each of the multiple imputation 
datasets, were combined with PROC MIANALYZE to perform standard statistical inferences 
through multiple imputation (Rubin & Schenker, 1986; Schomaker & Heumann, 2018). Weighted 
descriptive statistics of the sample characteristics were calculated. PROC SURVEYLOGISTIC 
was used for the regression models and ROC curves were also conducted as further described.  
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3. Results 
 

Each of the data files for 1999-2000, 2001-2002, 2003-2004, and 2005-2006 contains five sets of 
measured and imputed values. The preferred statistical approach is to analyze each of the five 
datasets separately using K-means clustering and then pooling the estimates and standard errors in 
accordance with the literature (Enders, 2010; Kakinami et al., 2022).  
 
In this study, data were separated into training sets for males and females. The ‘PROC 
SURVEYFREQ’ statement showed that the distribution of male and female participants were not 
significantly different between training and test datasets (p = 0.72). Moreover, the ‘PROC 
SURVEYREG’’ statement showed that the mean age was not significantly different between 
training and test datasets (p = 0.79). More on this is described later. As cluster validation results 
were consistent between men and women, results from the men’s datasets will be uniformly 
presented. 
 
3.1 Cluster Validation: Silhouette Method   
 
After completing the silhouette coefficient for each data point, it can be averaged out for all the 
samples to calculate the silhouette score (Table 5).  
 
Table 5: The results of silhouette scores from the men’s training dataset. 

Number of clusters Average silhouette score 
2 0.468 
3 0.402 
4 0.446 
5 0.416 
6 0.415 

 
The silhouette plots (Figure 7) shows that the number of clusters of 2, 3, 4, 5, and 6 are good 
selections for the given training data due to the clusters with above average silhouette score. 
However, the silhouette plots show that the number of clusters of 5 and 6 are suboptimal due to 
wide fluctuations in the size of the silhouette plots. Furthermore, the cluster size can be visualized 
from the thickness of the silhouette plot. The silhouette plots for 2, 3 and 4 clusters, are all more 
or less of similar thickness and hence are of similar sizes, as can be considered as best ‘K’. In 
contrast, the silhouette plots for clusters 5 and 6 are more varying in size. However, the silhouette 
analysis is less clear in selecting between 2, 3 and 4. Nevertheless, as 2 and 4 clusters have a higher 
average silhouette score (0.468 and 0.446, respectively) compared to 3 clusters (0.402), either 2 or 
4 clusters should be the ideal number and were explored further. 
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Figure 7: Silhouette analysis for each cluster in K-means clustering on the male training dataset. 
The silhouette measures how similar an object is to the other objects in its own cluster versus those 
in some other cluster. Values for Sj range from 1 to -1, with values close to 1 indicating that the 
item is well clustered (is similar to the other objects in its group) and values near -1 indicating it 
is poorly cluster. 

3.2 Cluster Validation: Elbow Method  
 
The elbow method can also be used to choose an optimal number of clusters. Consistent with the 
silhouette plots, the elbow plots (Figure 8) show a sharp fall of WCSS at k=2 and 4. It follows that 
the optimal number of clusters should be either 2 or 4. 
 

 
 

Figure 8: Elbow method to find optimal cluster number K. 
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As mentioned previously, due to the multiple imputation, analyses were conducted for each dataset 
separately. For instance, within each training set, 2-means and 4-means cluster analysis were 
conducted on each imputed dataset individually and compared the phenotype of each participant 
in our five imputed sets. In the tables below, the percentage of concordance in phenotype in all 
five datasets is provided. From these results, the results were largely consistent across all imputed 
datasets for both male and female groups. For example, in Table 6, there is 9.7% variation of 
phenotypes across all five imputed datasets; the variation is lower among females (7.5%, Table 7). 
Thus, over 90% of phenotypes were classified consistently across all five datasets. Therefore, in 
order to simplify some of the analyses, the phenotypes classification from the first imputed dataset 
were used for the rest of the thesis. 
 
Table 6: 4-means cluster analysis results for five imputed male training datasets. 

Count Frequency Percent Cumulative Frequency Cumulative Percent 
0 634 9.65 634 9.65 
5 5,936 90.35 6,570 100.00 

 
 
Table 7: 4-means cluster analysis results for five imputed female training datasets. 

Count Frequency Percent Cumulative Frequency Cumulative Percent 
0 478 7.45 478 7.45 
5 5,942 92.55 6,420 100.00 

 
For both 2-means and 4-means, once the cluster centroids for male and female in the training 
datasets were identified, they were used to calculate the Euclidean distance for each observation 
in the test dataset and to choose the closest phenotype for each observation as described previously 
(Section 2.5.3). The ‘nstart’ parameter in the R ‘kmeans’ function was used to control the number 
of times the algorithm is run with different initial centroids configurations. These configurations 
involved randomly selecting the initial centroids for each run. For both male and female training 
datasets, 25 and 50 different initial centroids configurations were tested; results showed that both 
25 and 50 initial configurations consistently produced the same smallest sum of squared distances 
as the final result. This indicated that the clustering algorithm converged to a stable solution for 
these initial configurations (Gentleman & Carey, 2008). 
 

3.3 Clustering: 2-Means 
 

There were 12,990 observations in the training dataset, with 6,570 males (51%) and 6,420 females 
(49%). As the silhouette and elbow method demonstrated that two clusters, and four clusters were 
optimal, both were explored further. The following Table 8 shows the mean value of each cluster 
for the male and female training dataset. For both the male and female training datasets, although 
the mean values suggested LA-LM (cluster 1) and HA-HM (cluster 2) phenotypes, the plot of these 
data illustrate that labeling them as such was an oversimplification (Figure 9). 
 
 
 
 



28 
 

Table 8: 2-means cluster analysis results. 
 

Characteristics Male training set Female training set 
LA-LM Means (Decile_ASMI, Decile_FMI), N (2.57, 2.42), 3,545 (2.41, 2.51), 3,291 
HA-HM Means (Decile_ASMI, Decile_FMI), N (7.01, 6.79), 3,025 (7.17, 7.09), 3,129 

 

 
 

 
 

Figure 9: 2-means cluster plot for male and female datasets with two variables decile_FMI and 
decile_ASMI. The plots show two clusters with their corresponding centroids and phenotypes. 
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3.4 Clustering: 4-Means 
 

For the 4-means cluster, the mean values of each cluster were also measured. Table 9 provides the 
results of the mean value of each cluster for the male and female training datasets. For the male 
training set, Cluster 1 contains centroids with a high decile ASMI and a low decile FMI (Figure 
10). Based on these, the data points in this cluster are tightly grouped together, indicating a low 
adiposity and high muscle (LA-HM) phenotype within the cluster. Cluster 2 contains centroids 
with a low decile ASMI and low decile FMI, indicating a low adiposity and low muscle (LA-LM) 
phenotype within the cluster. Cluster 3 contains centroids with high decile ASMI and high decile 
FMI, indicating a high adiposity and high muscle (HA-HM) phenotype within the cluster. Cluster 
4 contains centroids with low decile ASMI and high decile FMI, indicating a high adiposity and 
low muscle (HA-LM) phenotype within the cluster. For both the male and female training datasets, 
similar ASMI and FMI cut-points were detected as useful for identifying distinctive phenotypes. 
 
Table 9: 4-means cluster analysis results. 

Cluster Characteristic Male training set Female training set 
1 LA-HM Means (Decile_ASMI, Decile_FMI), N (6.48, 2.91), 1,379 (5.75, 2.84), 1,103 
2 LA-LM Means (Decile_ASMI, Decile_FMI), N (1.56, 1.39), 1,976 (1.32, 1.62), 1,821 
3 HA-HM Means (Decile_ASMI, Decile_FMI), N (7.76, 7.82), 1,819 (7.86, 7.75), 2,235 
4 HA-LM Means (Decile_ASMI, Decile_FMI), N (3.01, 5.81), 1,396 (3.22, 5.60), 1,261 
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Figure 10: 4-means cluster plot for male and female datasets with two variables decile_FMI and 
decile_ASMI. The plots show four clusters with their corresponding centroids and phenotypes. 

As the NHANES dataset is a complex heterogeneous dataset, it is likely to contain multiple 
subgroups or phenotypes (Patel et al., 2016). A 4-means clustering approach may be better suited 
for capturing this heterogeneity than a 2-means clustering approach. In particular, the use of 4-
means clustering approach allows for more clusters to be formed, which can capture more nuanced 
differences in the data. The result is a more accurate and detailed representation of the data, which 
can lead to more interpretable and meaningful results. Specifically, a 4-means clustering approach 
can identify specific phenotypes of individuals who share similar health characteristics (Nazeer & 
Sebastian, 2009). The identification of these phenotypes can inform the development of targeted 
public health interventions. In contrast, a 2-means clustering approach may oversimplify the data 
and miss important subgroups or phenotypes, which can result in less accurate and less meaningful 
results. Therefore, the use of 4-means clustering approach was deemed as preferable in this thesis, 
as it can lead to a more comprehensive and accurate understanding of the data.  
 

3.5 Sample Characteristics  
 

The general characteristics of the participants are presented in Table 10. There were 18,556 
participants included in this study. The data included 12,990 (70.0%) participants in the training 
dataset and 5,566 (30.0%) participants in the test dataset. From Table 10, the training set and test 
set significantly differed in percentage of hypertension (3.49 vs 2.68, p = 0.04). These were no 
other significant differences in the rest of characteristics between the training and test dataset. 
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Table 10: Weighted means and frequencies for demographic and health characteristics of the total 
study population, NHANES 1999 to 2006 (n = 18,556). 

Characteristica All 
Participants 
n = 18,556 

Training set 
participants 
(n = 12,990) 

Test set 
participants 
(n = 5,566) 

p valueb 

Age (y) 44.41 (0.25) 44.38 (0.26) 44.47(0.35) 0.79 
BMI 28.10 (0.10) 28.07 (0.10) 28.18 (0.13) 0.33 
FMI 9.92 (0.07) 9.90 (0.07) 9.97 (0.09) 0.32 
ASMI 7.66 (0.02) 7.65 (0.02) 7.67 (0.03) 0.58 
DXA: 4-means clusters (%) 

   HA-HM 30.71 30.43 31.36 0.51 
   HA-LM 20.89 20.80 21.11  
   LA-HM 17.33 17.61 16.69  
   LA-LM 31.06 31.16 30.84  
DXA: 50th percentile (%) 
   HA-HM 37.68 37.47 38.18 0.43 
   HA-LM 13.23 13.12 13.48  
   LA-HM 12.02 12.33 11.30  
   LA-LM 37.07 37.08 37.04  
Cardiometabolic measures 
   Total cholesterol (mmol/L) 5.18 (0.01) 5.19 (0.02) 5.18 (0.02) 0.52 
   HDL cholesterol (mmol/L) 1.35 (0.01) 1.36 (0.01) 1.35 (0.01) 0.16 
   LDL cholesterol (mmol/L) 3.08 (0.02) 3.08 (0.02) 3.08 (0.03) 0.77 
   Triglycerides (mmol/L) 1.64 (0.02) 1.65 (0.03) 1.62 (0.03) 0.39 
   SBP (mm Hg) 122.04 (0.28) 122.19 (0.31) 121.68 (0.36) 0.17 
   DBP (mm Hg) 71.57 (0.20) 71.63 (0.24) 71.42 (0.22) 0.45 
Abnormal cardiometabolic measures (%)c 
   High total cholesterol 16.18 16.19 16.15 0.96 
   Low HDL cholesterol 31.32 31.19 31.64 0.68 
   High LDL cholesterol 12.98 12.83 13.33 0.66 
   High triglycerides 16.66 16.80 16.33 0.67 
   High SBP or High DBP 3.25 3.49 2.68 0.04 

Abbreviations: DBP, diastolic blood pressure; DXA, dual-energy x-ray absorptiometry; FMI, fat mass index; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; NHANES, National Health and Nutrition Examination Survey; SBP, systolic blood 
pressure; ASMI, appendicular lean mass index. HA-HM: high adiposity, high muscle; HA-LM: high adiposity, low muscle; LA-
HM: low adiposity, high muscle; LA-LM: low adiposity, low muscle. 
aWeighted mean (SE) unless otherwise noted. 
bP comparing training set participants with test set participants. 
cTotal cholesterol>6.2 mmol/L; HDL cholesterol<1 mmol/L [men], <1.3 mmol/L [women]; LDL cholesterol>4.1 mmol/L; 
Triglycerides>2.3 mmol/L; SBP>140 mm Hg or DBP>90 mm Hg. 
 
Demographic and health characteristic comparisons between men and women are presented in 
Table 11. Mean BMI and total cholesterol levels were not significantly different between male and 
female participants, but significant differences were observed in nearly all other demographic and 
health characteristics. Approximately 52% had high adiposity using our 4-means cluster 
phenotypes. Similarly, 52% of participants were classified as having high adiposity using the 50th 
percentile cut-off phenotypes. The distribution of 4-means cluster phenotypes and 50th percentile 
cut-off phenotypes were statistically different between male and female participants (p < 0.01). 
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For male participants, 4-means clustering and 50th percentile cut-off showed a concordance rate of 
2,521 out of 2,815 individuals, indicating a strong agreement of 90%. This implies that the two 
methods consistently classified the phenotypes of male participants in a highly similar manner. 
Similarly, among female participants, 4-means clustering and 50th percentile cut-off demonstrated 
a concordance rate of 2,342 out of 2,751 individuals, resulting in a concordance percentage of 85%. 
This finding suggests a substantial level of agreement between the two methods in accurately 
defining the phenotypes of female participants. Thus, the high concordance rates for both genders 
indicate a reliable consistency between 4-means clustering and 50th percentile cut-off in 
categorizing phenotypes. 
 

Table 11: Weighted means and frequencies for demographic and health characteristics of the test 
dataset population, NHANES 1999 to 2006 (n = 5,566). 

Characteristica All Participants 
n = 5,566 

Male 
participants 
(n = 2,815) 

Female 
participants 
(n = 2,751) 

p valueb 

Age (y) 44.47 (0.35) 43.44 (0.45) 45.49 (0.42) <0.01 
BMI 28.18 (0.13) 28.12 (0.17) 28.23 (0.19)   0.66 
FMI 9.97 (0.09) 8.24 (0.10) 11.70 (0.13) <0.01 
ASMI 7.67 (0.03) 8.60 (0.04) 6.74 (0.04) <0.01 
DXA: 4-means clusters (%) 

   HA-HM 31.36 30.14 32.57 <0.01 
   HA-LM 21.11 23.78 18.46  
   LA-HM 16.69 16.76 16.62  
   LA-LM 30.84 29.32 32.35  
DXA: 50th percentile (%) 
   HA-HM 38.18 36.52 39.82 <0.01 
   HA-LM 13.48 16.84 10.14  
   LA-HM 11.30 12.80   9.82  
   LA-LM 37.04 33.84 40.22  
Cardiometabolic measures 
   Total cholesterol (mmol/L) 5.18 (0.02) 5.16 (0.03) 5.19 (0.03) 0.62 
   HDL cholesterol (mmol/L) 1.35 (0.01) 1.22 (0.01) 1.47 (0.01) <0.01 
   LDL cholesterol (mmol/L) 3.08 (0.03) 3.14 (0.04) 3.02 (0.04) 0.03 
   Triglycerides (mmol/L) 1.62 (0.03) 1.76 (0.05) 1.47 (0.03) <0.01 
   SBP (mm Hg) 121.68 (0.36) 122.37 (0.43) 120.99 (0.53) 0.03 
   DBP (mm Hg) 71.42 (0.22) 72.49 (0.31) 70.34 (0.30) <0.01 
Abnormal cardiometabolic measures (%)c 

   High total cholesterol 16.15 16.04 16.26 0.90 
   Low HDL cholesterol 31.64 25.30 37.96 <0.01 
   High LDL cholesterol 13.33 14.98 11.67 0.06 
   High triglycerides 16.33 20.15 12.33 <0.01 
   High SBP or High DBP 2.68 2.87 2.48 0.50 

Abbreviations: DBP, diastolic blood pressure; DXA, dual-energy x-ray absorptiometry; FMI, fat mass index; HDL, high-density 
lipoprotein; LDL, low-density lipoprotein; NHANES, National Health and Nutrition Examination Survey; SBP, systolic blood 
pressure; ASMI, appendicular lean mass index. HA-HM: high adiposity, high muscle; HA-LM: high adiposity, low muscle; LA-
HM: low adiposity, high muscle; LA-LM: low adiposity, low muscle. 
aWeighted mean (SE) unless otherwise noted. 
bP comparing male participants with female participants. 
cTotal cholesterol>6.2 mmol/L; HDL cholesterol<1 mmol/L [men], <1.3 mmol/L [women]; LDL cholesterol>4.1 mmol/L; 
Triglycerides>2.3 mmol/L; SBP>140 mm Hg or DBP>90 mm Hg. 
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3.6 Assessing Model Performance 
 

The ROC-AUCs from 2-means cluster models used to correctly identify cardiometabolic risk 
factors ranged from 0.52 to 0.63 (Table 12), indicating generally weak predictive power. The 
ROC-AUCs from 50th percentile cut-off phenotypes and 4-means cluster phenotypes were higher 
(0.56-0.66, 0.57-0.67, respectively). 
 
Overall comparison of model performance based on ROC-AUCs suggested that for this study 4-
means clustering was superior to 50th percentile cut-off in predicting cardiometabolic risk. For 
example, for total cholesterol, the 4-means cluster phenotype showed a higher ROC-AUCs value 
of 0.60 compared to the 50th percentile cut-off phenotype value of 0.58, indicating that the 4-means 
cluster phenotype is a better predictor. However, most of these comparisons were not statistically 
significant. 
 
Table 12: AUC from ROC curves comparing 2-means cluster, 4-means cluster and 50th percentile 
DXA phenotype, NHANES 1999 to 2006 (n = 5,566). 

 
 
 
 
Unfavorable 
cardiometabolic risk factor 

AUC (SE) from ROC curvesa 

Model 1:  
50th percentile 

Model 2:  
2-means clusters pb 

Model 3:  
4-means clusters  pc 

High total cholesterold 
   Male participants     
   (n = 2,815) 

0.562 (0.02) 0.519 (0.01) 0.02 0.572 (0.02) 0.44 

   Female participants     
   (n = 2,751) 

0.577 (0.02) 0.533 (0.01) <0.01 0.603 (0.02) 0.09 

Low HDL cholesterole 
   Male participants 0.623 (0.02) 0.611 (0.02) 0.23 0.608 (0.02) 0.08 
   Female participants 0.655 (0.01) 0.633 (0.01) <0.01 0.667 (0.01) 0.06 
High LDL cholesterolf 
   Male participants 0.583 (0.02) 0.529 (0.02) 0.03 0.596 (0.02) 0.51 
   Female participants 0.578 (0.03) 0.562 (0.03) 0.37 0.592 (0.03) 0.58 
High triglyceridesg 
   Male participants 0.598 (0.02) 0.579 (0.02) 0.12 0.595 (0.02) 0.78 
   Female participants 0.587 (0.02) 0.539 (0.02) 0.06 0.599 (0.02) 0.61 
High SBP or High DBPh 
   Male participantsi 0.617 (0.03) 0.562 (0.03) <0.01 0.606 (0.03) 0.67 
   Female participantsi 0.606 (0.05) 0.551 (0.03) 0.13 0.589 (0.04) 0.60 

Abbreviations: AUC, area under the curve; DBP, diastolic blood pressure; DXA, dual-energy x-ray absorptiometry; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; NHANES, National Health and Nutrition Examination Survey; ROC, receiver 
operating characteristic; SBP, systolic blood pressure. 
aROC-AUC in correctly identifying unfavorable cardiometabolic risk factors. ROC-AUC values ≤ 0.50, 0.51 to 0.70, 0.71 to 0.80, 
0.81 to 0.90, and 0.91 to 1.00 indicate zero, weak, acceptable, good, and exceptional predictive powers, respectively. 
bP comparing Model 1 with Model 2. 
cP comparing Model 1 with Model 3. 
dTotal cholesterol>6.2 mmol/L. 
eHDL cholesterol<1 mmol/L [men], <1.3 mmol/L [women]. 
fLDL cholesterol>4.1 mmol/L. 
gTriglycerides>2.3 mmol/L. 
hSBP>140 mm Hg or DBP>90 mm Hg. 
iMale participants (n = 2,815); female participants (n = 2,751). 
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4. Discussion and Conclusions 
 

It has been widely acknowledged that adiposity is a significant public health concern because it is 
a risk factor for a number of chronic diseases, including diabetes, high blood pressure, 
cardiovascular disease, and some types of cancer (Freedman et al., 2007). Accurately measuring 
adiposity is essential for tracking the prevalence of obesity and identifying individuals at risk of 
related health problems. For this reason, this thesis attempted to assess whether phenotypes 
identified through K-means clustering would outperform phenotypes based on being above/below 
the 50th percentile for identifying cardiometabolic risks.   
 
Overall comparison of model performance based on ROC-AUCs suggested that in this study, 4-
means clustering was superior to the 50th percentile cut-off in predicting cardiometabolic risk, and 
2-means clustering was inferior. For instance, the ROC-AUCs from 2-means cluster models used 
to correctly identify cardiometabolic risk factors in this representative sample of the general US 
population ranged from 0.52 to 0.63, indicating generally weak predictive power. As the NHANES 
dataset is a complex heterogeneous dataset, the use of 2-means clustering approach likely was 
unable to capture more nuanced differences in the data. A 2-means clustering approach may 
oversimplify the data and miss important subgroups or phenotypes, which can result in less 
accurate and less meaningful results. 
 
In contrast, the ROC-AUCs from the 50th percentile cut-off phenotypes for correctly identifying 
cardiometabolic risk were relative stronger (varied between 0.56 and 0.66). However, the ROC-
AUCs from 4-means cluster phenotypes were higher (ranging from 0.57 and 0.67), suggesting 
stronger predictive power than the 50th percentile phenotypes and 2-means cluster phenotypes. The 
statistical inferiority of 50th percentile cut-off phenotypes’ predictive power may reflect the 
limitations of the approach used to identify them. Although Prado et al.’s (2014) 50th percentile 
cut-off phenotypes adapted the well-validated lambda-mu-sigma methodology (Cole, 1990; Cole, 
2012) to develop sex- and age- specific references curves to classify DXA data into phenotypes of 
fat and muscle mass, the phenotypes were defined based on whether an individual fell above (> 
50th percentile) or below (< 50th percentile) permutations of adiposity and muscle mass. This binary 
categorization might have oversimplified the intricate interplay between adiposity and muscle.  
 
In contrast, K-means clustering is an intuitive algorithm that can be easily implemented, it is also 
computationally efficient, rendering it suitable for large datasets. Despite these advantages, a 
significant challenge in applying K-means is specifying the number of clusters beforehand, which 
can be difficult to tackle. If the number of clusters is too large, the clusters may be too fine-grained, 
making it difficult to interpret the results or leading to overfitting. There are several methods to 
determine the optimal number of clusters in K-means, one approach is to use the elbow method, 
which involves plotting the WCSS against the number of clusters and identifying the “elbow” 
point where the rate of decrease in WCSS start to level off. Another approach is the silhouette 
method, which calculates the silhouette coefficient for each observation and then averages them 
over all observations. The silhouette coefficient measures how similar an observation is to its own 
cluster compared to other clusters, and a higher average silhouette coefficient indicates better 
clustering. This thesis used both methods to identify the optimal number of clusters in a more 
robust and comprehensive way.  
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Furthermore, the outcomes of K-means may be influenced by initial conditions, leading to 
differing results depending on the selection of starting points (Nazeer & Sebastian, 2009). If the 
initial centroids are poorly chosen, the algorithm may converge to a suboptimal solution because 
the initial centroids might not be representative of an actual cluster in the data. This can lead to an 
algorithm getting “stuck” in local minimum instead of finding the global optimal solution (Jain, 
2010; Krishna & Narasimha Murty, 1999). To address this issue, this thesis followed the general 
recommendations in the literature by running K-means multiple times with different initializations 
and choosing the clustering that produced the smallest sum of squared distances (Gentleman & 
Carey, 2008). This indicated that the clustering algorithm converged to a stable solution for these 
initial configurations. As the initial selection of cluster centers can have a significant impact on 
the final clustering results, this was an important step to choose them carefully. 
 
Although the elbow method is commonly employed to determine the optimal number of clusters, 
it relies on manual identification of the elbow points on the visualization curve. However, a 
challenge with the elbow method is that analysts may struggle to distinguish the elbow point 
accurately when the plotted curve is smooth. When a clear elbow is observed in the line chart, the 
corresponding point likely represents the estimated optimal cluster number. Conversely, if no clear 
elbow is discernible, the elbow method may not provide reliable results. 
 
Shi et al. (2021) proposed a novel quantitative discriminant method for identifying the potential 
optimal cluster number in clustering algorithms. They utilized the interaction angle between 
adjacent elbow points as a criterion to determine a discriminant elbow point. The proposed method 
relies on estimating the range of the cluster number. For each estimated number of clusters, the 
entire dataset needs to be trained, resulting in increased computational costs. Thus, in order to 
successfully implement this method, a high-performance computing environment is essential and 
was not feasible for this thesis. 
 
Although 4-means cluster defined phenotypes had higher predictive power in identifying 
cardiometabolic risk compared with 50th percentile cut-off phenotypes and 2-means cluster 
phenotypes, it was not statistically significantly higher than the 50th percentile cut-offs. This is 
likely because of the high concordance between the 50th percentile cut-off phenotypes and the 4-
means cluster defined phenotypes. To better understand how the 4-means clusters can improve 
disease identification and prevention, further research on the observations that were discordant 
between the two methodologies is needed.  In addition, AUCs were all still generally poor. As this 
study evaluated the overall performance of all different phenotypes concomitantly in identifying 
cardiometabolic risk, it’s possible that the performance is being lowered because one or more 
phenotypes are not informative in predicting cardiometabolic risk. For instance, it is possible that 
perhaps only one or more specific phenotypes are most closely linked with the cardiovascular risk 
measures explored in this study, and the others are not informative. It is also possible that 
phenotypes may be better at identifying some other health event or outcome rather than lipids. In 
addition to exploring these relationships, other outcomes beyond just current cardiometabolic risks 
should be assessed in future studies.  
 
This study is not without limitations. Firstly, K-means clustering was applied to all ages in sex-
stratified samples. It may not reflect the changes in body composition over different ages in the 
life-course. This may be improved by performing K-means clustering across different ages for 
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males and females. Despite how large NHANES is, one would need an even larger dataset of all 
ages to be able to accomplish this and the results of K-means clustering can be more difficult to 
interpret. Secondly, the data for this study were from individuals who fit within the parameters of 
the DXA machine (e.g., height limited to no taller than 197 cm, and no wider than 65 cm, with 
weight limitations from 114-159 kg) (Brownbill & Ilich, 2005). Thus, the findings of this research 
are only generalizable to the general population that fits the parameters of a DXA machine. 
However, as this work might be most useful for people with severe obesity, further study on 
identifying phenotypes when DXA is contraindicated is needed. Lastly, due to the cross-sectional 
design of this study, causality cannot be inferred (Hill, 1965). For example, it is impossible to 
determine whether the exposure caused the outcome or whether the outcomes caused the exposure. 
Future research should incorporate longitudinal designs to determine whether K-means cluster 
phenotypes or 50th percentile cut-off phenotypes significantly improve prediction power of 
cardiometabolic risk and health outcomes.  
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