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ABSTRACT
 

Engineering metabolic time-sharing in a clonal E. coli population 
 

Fotini Papazotos 
 

The “division of labour” strategy is common among microbial communities, as dividing 

burdensome tasks between members of a community alleviates the strain placed on individual cells. 

Exploiting this phenomenon in heterogeneous microbial co-cultures for industrial synthesis of 

valuable compounds is limited by inefficiencies in nutrient exchange and conflicting growth 

requirements. Here, we demonstrate a synthetic gene circuit which enables cells of an isogenic 

Escherichia coli population to carry out “metabolic time-sharing” by shifting between alternate 

metabolic states via temporal changes in gene expression. Further, we review techniques for 

monitoring such dynamic processes at the single-cell level, and discuss their current applications 

in bacterial studies. To validate that our circuit may be used to induce cooperative behaviours in 

microbial populations, we adapted this circuit to engineer cells that oscillate between distinct amino 

acid auxotrophy phenotypes, driven by the periodic silencing of key biosynthetic genes. Culturing 

a clonal time-sharing population with unsynchronized oscillators permits reciprocal amino acid 

cross-feeding, ultimately ensuring population viability. Through comparative growth experiments, 

we found that the fitness of our time-sharing population was comparable to that of a heterogeneous 

co-culture composed of E. coli auxotrophs similarly capable of cross-feeding amino acids. 

Although future studies would be needed to confirm this, our preliminary results suggest that 

metabolic time-sharing may be a viable alternative to synthetic heterogeneous co-cultures. As it 

may enable an entire complex biosynthetic pathway to be engineered into a single host with 

reduced metabolic burden, the metabolic time-sharing strategy demonstrated here could potentially 

be implemented for microbial bioproduction, among other widespread applications. 
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CHAPTER 1  
 
INTRODUCTION 
 

1.1 Interactions in microbial communities 
 

Microbes, which cumulatively make up approximately 13% of the biomass on Earth1, 

generally exist in diverse and heterogeneous communities. Interactions between microbes in a 

mixed environment may be neutral, or they may impact the fitness of their participants in a positive 

or negative manner2–5. For example, microbial species within complex communities may behave 

antagonistically and impede the survival of competitors either directly, via release of antibiotics or 

other toxins into the environment6–9, or indirectly by outcompeting others in acquiring limited 

nutrients8,10,11 (Fig 1.1). Conversely, communities may exhibit beneficial interactions which incur 

positive fitness consequences for those involved. Commensalism represents one type of uni-

directional beneficial interaction, in which one member receives a fitness benefit from their partner, 

whose own fitness remains unaffected12 (Fig 1.1). Consuming excreted metabolic by-products is 

one example of commensalism, as the fitness of the producing species remains unaltered, while 

proximal interactors reap the benefits of consuming these readily available nutrients12.  

 

Beneficial interactions can also be bi-directional, such that all participants in the interaction 

behave cooperatively and receive a fitness benefit. This type of behaviour is exemplified in “cross-

feeding” interactions, wherein individuals with distinct but complementary metabolic capabilities 

reciprocally share nutrients that their interacting partner lacks the capacity to produce4,13–16 (Fig 

1.1). Cross-feeding enables “division of labour” (DOL)17–21 between members of microbial 

consortia, as metabolic specialization facilitates the efficient allocation of tasks to specialized 

individuals. However, these interactions have the potential to be exploited by non-cooperating or 

“cheating” individuals, which have access (and therefore opportunity) to consume these shared 

nutrients without the burden of providing any in return18,22,23 (Fig 1.1). Gaining a deep 

understanding of these natural, complex community dynamics can enable the engineering of 

synthetic systems exhibiting similar behaviours.  
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1.2 Division of labour in microbial consortia 
 

DOL refers to the delegation of tasks between cooperating individuals to reach a shared 

goal21, and has been widely utilized by a variety of biological systems. This strategy is exemplified 

in the colony organization of social insects such as ants or honeybees, as division of worker and 

queen castes determines an individual’s specialized role in the community24,25. In multicellular 

organisms, DOL is exerted through differentiation of specialized cell types which each carry out 

Figure 1.1 Types of community interactions. Members of a microbial community 
may exhibit antagonistic behaviour through competition for limited resources or 
siphoning of nutrients produced by individuals engaged in beneficial reciprocal 
relationships (“cheating”). Such interactions threaten to destabilize the community, 
as they solely promote the survival of the individuals engaging in antagonistic 
behaviour. Conversely, communities may engage in mutually beneficial interactions 
that maintain community stability. These may be uni-directional, providing a fitness 
advantage to one partner while having no effect on the fitness of the other, as is the 
case for commensalism. In the case of bi-directional beneficial interactions such as 
reciprocal cross-feeding, all members involved receive a fitness benefit from the 
interaction, thereby reinforcing community stability.  
x\ 
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distinct functional roles to ensure survival of the organism26,27. DOL enables specialization by 

splitting the burden of carrying out essential tasks between distinct, cooperating individuals. 

 

In natural microbial communities, DOL has been employed as a strategy to carry out 

complex metabolic pathways. The nitrification pathway represents one such example, as the 

oxidation of ammonia into nitrite and subsequent oxidation of nitrite into nitrate are each carried 

out by distinct groups of bacteria28,29. Ultimate production of biologically available nitrate therefore 

relies on both groups carrying out these complementary metabolic processes28. Similarly, the 

synergistic conversion of syringic acid to acetate has been observed in a co-culture of 

Acetobacterium woodii and Pelobacter acidigallici, with neither species exhibiting the capacity to 

carry out this conversion in isolation30.  

 

The utilitization of DOL in natural communities has prompted the engineering of synthetic 

microbial consortia for coordinated and synergistic completion of tasks with widespread 

applications15,23,31. As interest in renewable energy sources has been growing in recent years, so 

has the development of microbial co-cultures for processing complex precursors such as 

lignocellulosic biomass into biofuels32–35. The synthesis of ethanol and diesel from carbohydrates 

has been demonstrated in engineered hosts such as Escherichia coli36,37 and Saccharomyces 

cerevisiae38. However, attempts at consolidating all necessary steps into a single strain through co-

expression of multiple heterologous enzymes have thus far limited product titers39. To address this 

constraint, dividing the tasks of lignocellulose hydrolysis and biofuel synthesis into separate 

species has enabled successful, albeit inefficient, biofuel production40,41.   

 

Alternatively, DOL has been implemented into synthetic microbial consortia as a means of 

improving community fitness. This was demonstrated in co-cultures wherein each member is 

auxotrophic for one amino acid, but simultaneously overproduces another to complement its 

partner’s auxotrophy15,31,42. Reciprocal cross-feeding of these desired amino acids relieves each 

individual of the metabolic burden of producing one amino acid, which it is instead able to obtain 

from interacting partners. Interestingly, one study investigating different amino acid cross-feeding 

pairs found that the overall fitness of these co-cultures were elevated by up to 20% compared to a 

prototrophic monoculture15. DOL can thus be incorporated in the design of cooperative microbial 
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consortia as a means of increasing productivity and fitness, with applications in the biotechnology 

industry for efficient biosynthesis of valuable products. 

 
 
1.3 Employment of microbial hosts in the biotechnology industry 
 

In recent years, microbial hosts have been increasingly employed for the production of 

valuable products and biologics as an alternative to chemical synthesis43,44. As well-characterized 

organisms for which numerous genetic engineering tools have been developed, E. coli, S. 

cerevisiae, and Pichia pastoris have been widely used as microbial bioproduction hosts (Fig 1.2A). 

However, despite its utility and versatility, several factors limit the efficiency and ultimate product 

yield that may be obtained using microbial hosts for industrial fermentation.  

 

The expression of complex heterologous pathways and redirection of metabolic flux toward 

product synthesis can create strain on limited pools of cellular resources19. This burden may result 

in slower host growth rates19,45 and bioproduction rates below the theoretical maximum yield46,47. 

Therefore, DOL strategies have been applied to microbial bioproduction as a means of distributing 

this burden between multiple hosts.  

 
1.3.1 Application of DOL strategies for enhanced microbial bioproduction 

 
Efforts to maximize the efficiency of microbial fermentation processes have implemented 

DOL strategies through the use of microbial co-cultures44,47–51. To reduce metabolic burden, a 

biosynthetic pathway responsible for product synthesis is divided into distinct stages, or 

“modules”, with each member of a multi-strain or multi-species consortia being tasked with the 

expression of one module44,47–49,51–53 (Fig 1.2B). In a co-culture environment, an intermediate 

molecule produced via the activity of one module may then be shared with other members of the 

consortia to drive flux through subsequent pathway modules. This cross-feeding of pathway 

intermediates could enable the coordinated synthesis of the desired compound by the microbial 

consortia, while reducing the metabolic strain placed on each individual.  
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The co-culture strategy has been used for the successful production of a variety of 

compounds, including biofuels40, dyes51, and precursor molecules for the synthesis of 

pharmaceuticals49 and polyurethanes47,48. Current methods for chemically synthesizing these 

compounds may be costly, resource-intensive, and unsustainable, indicating a need for microbial 

fermentation methods lacking these drawbacks. For example, traditional methods of synthesizing 

the polyurethane precursor, adipic acid, relies on nonrenewable petroleum feedstocks and releases 

the greenhouse gas nitrous oxide during the process54. Alternatively, adipic acid can be synthesized 

by hydrogenating its precursor, muconic acid54. Sustainable muconic acid biosynthesis has been 

demonstrated by E. coli consortia fed on renewable carbon sources such as glycerol, with each 

member of the two-strain co-culture engineered to efficiently express one pathway module47. 

Ultimate product synthesis was facilitated by cross-feeding of the intermediate molecule 3-

dehydroshikimic acid (DHS) between individuals expressing different modules. Adopting a DOL 

strategy vastly improved production, as the cooperative E. coli co-culture was able to produce 1016 

mg/L muconic acid, while a single host strain engineered to express the entire synthesis pathway 

produced only 56 mg/L47. This dramatic increase in product synthesis highlights the benefits of 

implementing DOL into microbial bioproduction strategies.  

 

Although the use of microbial co-cultures for compound synthesis appears promising, there 

are disadvantages that may limit overall product yield. Primarily, culturing multiple hosts together 

within the same bioreactor environment can yield unstable community dynamics23,47,48. 

Competition for shared nutrients, or differences in growth rates and nutrient requirements between 

hosts may result in one strain dominating the community. An imbalance in host abundances can 

hinder progression through the shared pathway, thus decreasing product yield. Additionally, the 

loss of intermediate molecules through incomplete transfer between hosts prevents a co-culture 

from reaching the theoretical maximum yield of the desired product23. These limitations, which are 

inherent to heterogeneous microbial consortia, illustrate the demand for a single-strain microbial 

fermentation system capable of exhibiting DOL.  
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1.4 Dynamic cellular processes 
 

A number of natural microbial populations have been shown to alter the dynamics of their 

cellular processes to coordinate DOL. A notable example of this is the ability of natural Bacillus 

subtilis populations to use an innovative “molecular time-sharing” strategy to address competition 

between alternative sigma factors for limited RNA polymerase binding opportunities55. Rather than 

assuming the burden associated with increasing RNA polymerase expression, each cell alternates 

between RNA polymerase binding to different sigma factors over time55. The dynamic changes in 

gene expression profiles that result from transcription of distinct gene sets by different alternative 

sigma factors may function to ensure overall population survival in the face of different 

environmental stressors. 

 

Another example of temporal DOL also occurs within natural B. subtilis populations. 

Acetate is produced as a by-product of cellular metabolism, and its resultant accumulation creates 

toxic conditions for B. subtilis by lowering intracellular pH56. To combat this, a fraction of the 

isogenic population stochastically switches into a distinct metabolic state which instead produces 

the pH-neutral molecule acetoin56. Uptake of excreted acetoin maintains population viability by 

neutralizing the acidic pH created as a result of acetate accumulation. Although the production of 

acetoin imposes an increased metabolic burden on this subpopulation, such division of metabolic 

labour was hypothesized to improve overall population fitness. The stochastic switching between 

distinct states may act as a means for isogenic populations to carry out necessary but opposing 

metabolic tasks. 

 

Similarly, cyanobacteria have been shown to coordinate dynamic changes in gene 

expression in order to carry out essential, but incompatible metabolic functions. Cyanobacteria 

carry out both photosynthesis and nitrogen fixation, despite the incompatibility of these processes 

due to the irreversible inactivation of the nitrogenase enzyme by oxygen21,22,57. Some non-

heterocystous groups including the Oscillatoria species have adopted a method for temporally 

dividing these tasks. These species of cyanobacteria oscillate between distinct metabolic states in 

which they perform photosynthesis during the day, and subsequently fix nitrogen at night, 

according to the dynamics of their circadian rhythm58–60. Incorporating temporal, rather than 

spatial, DOL ensures that all necessary metabolic processes may be executed within the same cell, 
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thus eliminating the requirement for nutrient transport between cells. While these represent natural 

examples of dynamic switching between metabolic states, similar behaviour may be implemented 

into engineered microbial consortia using synthetic gene circuits. 

 
1.4.1 Metabolic time-sharing as a potential solution to decrease host burden 

 
Stochastic fluctuations in gene expression between genetically identical cells can create 

heterogeneity within a population, resulting in distinct subpopulations exhibiting different 

phenotypes and behaviours61–64. We hypothesize that cells can exhibit “metabolic time-sharing” by 

alternating between distinct cellular states over time via changes in gene expression55 (Fig 1.2C). 

We further hypothesize that this phenomenon may be applied to microbial bioproduction through 

the engineering of clonal strains that encode an entire biosynthetic pathway, but alter their gene 

expression dynamics to only express one module at any given time. Shifting between pathway 

modules serves the purpose of reducing metabolic burden compared to strains expressing all steps 

simultaneously. Similar to the co-culture approach discussed in Section 1.2.1, metabolic time-

sharing enables a population as a whole to use DOL to progress through an entire pathway, but is 

not subject to the disadvantages associated with heterogeneous co-cultures. Therefore, introducing 

DOL into a genetically identical population is a promising avenue for enhancing microbial 

bioproduction, requiring precise control over gene expression dynamics. 
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1.5 Synthetic gene circuits for manipulation of gene expression dynamics 
 

Synthetic gene circuits are networks of genes and regulatory elements designed to dictate 

host cell behaviour, and may be used to engineer cellular processes with specified dynamics. 

Parameters including transcription, translation, and depletion rates of regulatory factors such as 

Figure 1.2 Strategies for microbial bioproduction. (A) Expressing an entire 
biosynthetic pathway into an isogenic population, such that each individual has the 
capacity to produce the desired product. (B) Engineering a microbial co-culture, 
consisting of multiple strains or species that each express one pathway module. 
Intermediate molecules are shared between members of a heterogeneous community, 
and overall pathway completion and product synthesis relies on cooperation between 
cells expressing different modules. (C) Implementing metabolic time-sharing in a 
clonal population enables each member of the population to progress through alternate 
pathway modules or metabolic states over time. Although the population may appear 
heterogeneous when metabolic states are unsynchronized between individuals, each 
cell in the population is genetically identical and capable of independent product 
synthesis by alternating between distinct states in a specified order. 
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repressor proteins, determine the circuit dynamics and may be tuned to achieve the desired 

temporal behaviour with high precision65. The toggle switch represents one classic example of a 

synthetic circuit that has been used to induce bistable state-switching in cells66. This circuit encodes 

two repressor genes, which each repress the expression of the other to create a bistable system. 

However, this circuit is limited to two distinct cellular states, and state-switching is not dictated by 

the circuit itself, but instead must be triggered through inducer molecule addition. 

 

To the contrary, this thesis focuses on the construction and validation of a circuit that 

enables sustained switching between three distinct cellular states in single E. coli cells with 

specified dynamics, in the absence of inducer molecules. This is achieved by integrating the 

redesigned repressilator circuit67, which has been demonstrated to generate precise oscillations in 

gene expression, with CRISPR interference (CRISPRi)68, a tool for targeted, transient gene 

silencing. This hybrid circuit extends the capabilities of the repressilator to enable oscillation of 

any sets of plasmid- or chromosome-derived genes, and can therefore be used to switch between 

distinct metabolic states over time through periodic silencing of key metabolic genes. Alternating 

between complementary metabolic states can facilitate temporal DOL within an isogenic 

population.  

 
1.5.1 The repressilator 
 

The repressilator is a landmark genetic circuit consisting of three repressor proteins - LacI, 

TetR and cI - which each repress the expression of the subsequent repressor in the circuit67,69. 

This creates sustained out-of-phase relaxation oscillations due to delayed negative feedback (Fig 

1.3A). Each oscillation begins with a build-up phase characterized by the rapid production of one 

protein, whose cognate repressor is low in abundance, and ends when production is halted due to 

the cognate repressor reaching levels sufficient for gene repression (i.e. the “repression threshold”). 

Cessation of protein production marks the beginning of the decay phase, during which the protein 

is depleted from the system, enabling de-repression of the subsequent gene in the circuit (Fig 1.3B).  

 

While the original repressilator69 circuit exhibited noisy behaviour, recent modifications 

drastically improved its precision67. The repressilator circuit used in this thesis lacks degradation 

tags on the repressor proteins, thereby maintaining high numbers of molecules in the system to 
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reduce noise caused by stochastic degradation. This ensures that repressor elimination from the 

system is purely due to dilution, such that the exponential decay phase is intrinsically coupled with 

cell division. In addition, the repressilator may be used to control the expression of external genes. 

Placing reporter genes under control of each of the promoters encoded in the circuit (plac, ptet, and 

pR) yields out-of-phase oscillations in reporter gene expression following the same dynamics as the 

repressilator. However, this circuit is limited to controlling the expression dynamics of external 

genes placed under the control of plac, ptet, or pR, and further development would be required to 

extend its capabilities to regulate genes controlled by their native promoters. 

 

 

 

                
 
 
1.5.2 CRISPR interference 
 

CRISPR interference is a versatile tool for specific and transient silencing of target gene 

expression68. Gene silencing requires co-expression of the catalytically dead Cas12 (dCas12) 

enzyme and a CRISPR array, which encodes alternating “direct repeat” (DR) sequences and 

“spacers” that are each complementary to a target gene70,71. dCas12 facilitates the processing of 

Figure 1.3 Schematic of the repressilator circuit. (A) The plasmid-derived 
repressilator encodes three repressor proteins that each repress the following 
repressor in the circuit, generating oscillations in repressor gene expression. The 
“triple-reporter repressilator” variant depicted here additionally encodes three 
fluorescence genes, each under control of a promoter acted on by the circuit. (B) Out-
of-phase oscillations generated by the repressilator can be observed by monitoring 
expression of the three fluorescence genes over time. Schematic representation 
inspired from Potvin-Trottier et al. (2016).  
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CRISPR arrays into mature CRISPR RNA (crRNA) molecules via the trimming of 6-7 base pairs 

from the 3’ end of each spacer, yielding multiple crRNAs encoding single repeat-spacer units70–72. 

Mature crRNA molecules may form complexes with dCas12 enzymes, and guide them to their 

target genes, thus enabling temporary silencing71 (Fig 1.4A). CRISPR arrays may encode several 

crRNAs, which enables flexible, combinatorial gene repression. 

 

Distinct domains of Cas12 exhibit RNase activity for crRNA processing, and DNase 

activity for target gene cleavage in traditional CRISPR gene editing71. However, for transient 

CRISPRi-mediated gene silencing, a D917A mutation in the DNase domain effectively eliminates 

DNA cleavage ability73. Therefore, when the resultant dCas12 enzyme is guided to its target by a 

crRNA molecule, it effectively silences transcription of that gene through steric hindrance of RNA 

polymerase. Although several species have been found to naturally express Cas12, the Cas12 native 

to Francisella novicida has been the most widely used in bacterial genetic engineering 

applications72, and the D917A mutant of this homolog is further used throughout this thesis.  

 

While the Streptococcus pyogenes-derived dCas9 enzyme has been more widely used in 

studies implementing CRISPRi74–78, the more recently discovered dCas12 has proven to be a more 

versatile alternative. Unlike dCas979,80, dCas12 expression has not been reported to cause toxicity 

in E. coli hosts72, which broadens its potential applications. Additionally, dCas9 does not exhibit 

crRNA processing capabilities, but instead requires co-expression of an RNase III enzyme to cleave 

base pairs from the 5’ ends of spacers, as well as a trans-activating crRNA (tracrRNA) molecule 

to facilitate crRNA binding to dCas981 (Fig 1.4B). The simplicity of dCas12, which inherently 

performs the functions of both the RNase III and tracrRNA71, is advantageous when assembling 

complex synthetic circuits that additionally require the expression of many different components. 
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1.6 Thesis objectives 
 

In this thesis, we demonstrate a versatile platform for dynamic control over gene expression 

that can be used to introduce DOL into isogenic bacterial populations. By extending the capabilities 

of an existing genetic oscillator, we engineer clonal populations that exhibit metabolic time-sharing 

by alternating between cellular states with predictable dynamics.  

 

Chapter 2 discusses the benefits of monitoring dynamic behaviour at the single-cell level, 

with emphasis on the “mother machine” microfluidic device, and highlights impactful studies 

which have employed mother machine-like devices to study dynamic processes in bacteria. In 

Chapter 3, we present a synthetic gene circuit that dictates oscillations in gene expression and adapt 

it to construct obligate cross-feeding interactions within clonal E. coli populations. To the best of 

Figure 1.4 Schematic of CRISPR interference. (A) In dCas12-mediated CRISPR interference, a CRISPR 
array is cleaved and processed into discrete crRNAs by dCas12. Each crRNA forms a complex with 
dCas12, and guides it to a target. Here, the crRNA spacer sequence binds to its complementary target on 
the noncoding strand, and the associated dCas12 temporarily blocks gene expression by hindering the 
activity of RNA polymerase. (B) As dCas9 does not exhibit crRNA processing ability, RNase III is 
responsible for CRISPR array cleavage into crRNAs, and a tracrRNA molecule mediates binding of a 
crRNA molecule to dCas9. The resultant dCas9-crRNA-tracrRNA complex binds to its target on the 
coding strand and similarly silences gene expression through steric hindrance of RNA polymerase. 
 



 

 13 

our knowledge, this is the first instance of exploiting the behaviour of an oscillatory gene circuit to 

induce cooperative interactions within an isogenic population, and was carried out through two 

specific aims: 

 

1. Design and construction of a synthetic circuit for dynamic control over gene expression. Here, 

we integrate the repressilator with CRISPRi to demonstrate a hybrid circuit that oscillates between 

the expression of alternate CRISPR arrays. We employ a Golden Gate-based method for efficient, 

modular cloning of CRISPR arrays which dictate cellular states through the targeted, combinatorial 

repression of metabolic genes.  

 

2. Application of the metabolic time-sharing circuit for the creation of obligate cross-feeding 

interactions within a clonal E. coli population. In this thesis, we adapt the circuit described in 

Aim 1 to create an E. coli population that alternates between distinct amino acid auxotrophies, 

thereby enabling reciprocal cross-feeding between proximal cells occupying different states. This 

proof-of-principle provides evidence that metabolic time-sharing may be used to induce dynamic 

switching between metabolic states, with potential applications in the biotechnology industry for 

synthesis of value-added products via successive expression of biosynthetic modules.   
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CHAPTER 2 
 

MONITORING DYNAMIC PROCESSES 
 
2.1 Introduction 
 

Natural microbial populations have been demonstrated to achieve DOL over time through 

temporal segregation of complex metabolic processes55,56,58–60. The metabolic time-sharing circuit 

presented here similarly coordinates dynamic switching between cooperative cellular states as a 

means of increasing the overall fitness of a collaborative population. However, monitoring dynamic 

cellular processes, whether natural or controlled by engineered synthetic circuits, poses challenges. 

While kinetic measurements of bulk population behaviour, such as time-lapse growth curves, 

capture valuable information that is obscured in static “snapshots”, these traditional methods that 

rely on averages may conceal underlying cell-to-cell variability. Techniques capable of tracking 

single-cells in parallel, including the mother machine microfluidic platform82, circumvent this 

limitation and enable the profiling of dynamic phenotypes in heterogeneous populations. 

Combining population-level and single-cell techniques therefore provides a comprehensive view 

of population dynamics. In this chapter, we review current single-cell microfluidic technologies 

and survey their applications in investigating dynamic processes in prokaryotes.  

 
 
2.2 Abstract 
 

Cells are inherently dynamic, whether they are responding to environmental conditions or 

simply at equilibrium, with biomolecules constantly being made and destroyed. Due to their small 

volumes, the chemical reactions inside cells are stochastic, such that genetically identical cells 

display heterogeneous behaviors and gene expression profiles. Studying these dynamic processes 

is challenging, but the development of microfluidic methods enabling the tracking of individual 

prokaryotic cells with microscopy over long time periods under controlled growth conditions has 

led to many discoveries. This review focuses on the recent developments of one such microfluidic 

device nicknamed the mother machine. We overview the original device design, experimental 

setup, and challenges associated with this platform. We then describe recent methods for analyzing 

experiments using automated image segmentation and tracking. We further discuss modifications 
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to the experimental setup that allow for time-varying environmental control, replicating batch 

culture conditions, cell screening based on their dynamic behaviors, and to accommodate a variety 

of microbial species. Finally, this review highlights the discoveries enabled by this technology in 

diverse fields, such as cell-size control, genetic mutations, cellular aging, and synthetic biology. 

 
 
2.3 Background 
 

Genetically identical cells can display strikingly different phenotypes within a fixed 

environment. In multicellular organisms, this is evident through cell differentiation and 

specialization. Unicellular organisms can also perform specialized behaviors within a group, such 

as distinct metabolic states56 or discrete roles in biofilm formation83,84. In addition, some species 

prepare for changing environmental conditions on a population level by keeping a small fraction 

of the population ready for such changes, a phenomenon referred to as “bet-hedging”85,86. Because 

biochemical reactions depend on physical interactions between low-abundance molecules, these 

reactions are inherently stochastic, which results in heterogeneous gene expression between 

genetically identical cells exposed to the same environment61–63. For these reasons, techniques that 

can measure single-cell properties rather than population averages have revealed important 

information about many cellular processes, from cell-size control to differentiation. For example, 

the ability to measure the mRNA profile of single-cells through techniques such as single-cell 

RNA-seq (scRNAseq) has advanced many fields, as evidenced by the breadth and the number of 

publications in recent years87–89. While such techniques have proven to be very useful, they are 

typically limited to static snapshots and cannot follow gene expression in individual cells over time. 

Instead, this is typically achieved using single-cell time-lapse fluorescence microscopy, which for 

microbes has traditionally involved tracking the growth of single bacteria into microcolonies on 

agar pads. While technically simple and very useful, agar pads only support growth for a short 

period of time before cells start competing for nutrients, limiting observation to a few cell 

divisions90,91. Due to limitations in using wide-field fluorescence microscopy (i.e., the point spread 

function has a long tail), cellular crowding can impact the fluorescence imaging measurements, 

meaning that the presence of many cells can bias the measured fluorescence of a cell far away92. 

Finally, it can be difficult to change the environmental conditions in this setup, which is important 

for studying processes such as stress responses. These limitations motivated the development of 
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microfluidic platforms for single-cell analysis that enables single-cell tracking over many 

generations under precisely controlled conditions. 

 

The first iterations of microfluidic devices for imaging bacteria utilized closed linear 

trenches93 or mono-layer chambers94 to trap cells. The mono-layer chamber devices94,95 enable the 

growth of microcolonies while flushing extra cells and continuously providing growth media, and 

have been particularly useful for studying group behaviors, such as quorum sensing96–100. 

Continuous culture devices were then developed to enable long-term imaging of bacterial cells 

undergoing steady-state growth while facilitating the tracking of single cells without crowding 

limitations, making them ideal for measuring single-cell gene expression82,91. A configuration 

nicknamed the “mother machine” (MM) traps bacteria at the end of single-cell-width dead-end 

trenches82. Newborn cells are flushed out of the device by the constant flow of growth media, 

thereby allowing single-cell lineages to be followed for hundreds of generations (Fig 2.1). The 

name “mother machine” refers to the fact that the cells trapped at the end of the trenches are tracked 

growing and dividing throughout an experiment, and are thus referenced as “mother” cells. A 

similar layout named the chemostat91 has trenches open on both sides, thus providing better feeding 

through convective flow. This device enables long-term time-lapse microscopy while keeping cells 

that renew both poles and has been used to quantify the maturation time of fluorescent proteins101. 

 

In this review, we focus on the technical developments of the MM and its applications in 

the study of bacteria. We start by describing the original design and the constraints that motivated 

further technical developments. We then overview recent image analysis tools that enable 

segmentation and tracking of cells in the device using phase contrast images, and modifications to 

the device that enables the precise control of environmental conditions, screening and isolation of 

cells, and cultivation of a variety of microbial species. Finally, we highlight how the MM enabled 

discoveries in a wide range of fields in microbiology, such as cell-size control, genetic mutations, 

cellular aging, stress responses, cell-fate determination, antibiotic tolerance/ persistence, and 

synthetic biology. For more details, we refer the interested reader to previous reviews that have 

comprehensively described device fabrication and setup102–104, discussed challenges associated 

with single-cell analysis92,105, and reviewed different microfluidic devices102,106–110. 
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2.4 Technical developments of the mother machine 
 
2.4.1 Original design and challenges 
 

Performing experiments with the MM requires the following: designing and fabricating a 

mold for the device, building a microfluidic chip, performing the time-lapse microscopy, and 

analyzing the images to create time traces. Here, we start with an overview of the original MM 

design and the challenges that motivated recent technical developments. 

 
2.4.2 Device design and fabrication 
 

The original MM design was developed to study Escherichia coli cells82. Narrow trenches 

trap bacterial cells perpendicular to a larger feeding channel that allows media to deliver nutrients 

to the cells and wash away progeny emerging from the trenches (Figs 2.1A,B). Several constraints 

must be considered in the design: the width, height, and length of cell trenches, spacing between 

cell trenches, and dimensions of the feeding channel. The width and height of the trenches are 

approximately the dimensions of the particular strain of bacteria being cultivated (e.g., 1.2 μm 

height, 1.3 μm width, and 20 μm length for E. coli MG1655). Proper trench dimensions ensure that 

the cells are in focus, restrict growth to single file within each trench, and ensure sufficient diffusion 

of nutrients to all cells in a trench. Too large of dimensions results in cells overlapping each other 

in the z direction–making segmentation and tracking hard to impossible. Too small of dimensions 

leads to difficulties loading the cells into the trenches and results in poor nutrient diffusion to cells 

deep in the trenches, including the mother cells. The chosen length of a cell trench is a trade-off 

between cell retention over time, as short trenches lose cells more rapidly (e.g., through stochastic 

filamentation that pulls them out in the feeding channel), and feeding of the mother cell. It is thus 

important to ensure that the growth rate of the mother cell is the same inside the device and in batch 

culture for each strain and device combination111. Spacing between cell trenches is a trade-off 

between the throughput (i.e., number of lineages followed per image) and accuracy of fluorescence 

measurements. Trenches too close to one another can result in biased fluorescence measurements, 

particularly if neighboring trenches have very different signal intensities92,112. Finally, the width 

and height of the feeding channel are chosen to minimize hydraulic resistance to facilitate the flow 

of growth medium, e.g., with syringe pumps. A single centimetre-sized chip can typically fit 
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multiple channels, each with their own inlet and outlet, to enable simultaneous experiments with 

multiple strains (Fig 2.1A). 

 
 

 

 
 
 

After the design is finalized, a mask can be drawn using CAD software and ordered through 

different companies (e.g., Toppan Photomasks, United States). The mold is then built on a silicon 

wafer in a cleanroom environment using photolithography techniques, where the mask is used to 

expose photo-sensitive resin to light to define the features102,104. The mold is a negative of the 

features of the chips (i.e., what is solid on the mold becomes air in the device). The ~1 μm-sized 

features are on the lower end of the resolution of these techniques, and smaller features (e.g., 

Section 2.4.7) require other fabrication techniques (e.g., electron beam lithography). As such, 

fabrication protocols typically require fine-tuning to obtain the critical feature size (cell trench 

width and height) within a ~0.1 μm range, which can affect the experiments as described above. 

However, once built these molds can be re-used indefinitely to build microfluidic chips. 

Alternatively, the mold can be ordered custom-built from companies such as: ConScience 

Figure 2.1 Schematic of the experimental setup for the mother machine microfluidic device and data 
analysis. (A) Schematic representation of the platform which traps single bacterial cells in trenches that are 
perpendicular to a larger feeding channel. Daughter cells are flushed out of the trenches with flowing media, 
while mothers remain trapped at the end of the cell trench. (B) A micrograph of the mother machine, with 
YFP fluorescence showing the cells superimposed on a brightfield image of the device. Media is pumped 
through the inlet into the main feeding channel by a syringe pump, and then exits through the outlet into a 
waste beaker. (C) The lineages of growing cells in the trenches can then be followed under precisely 
controlled environmental conditions using time-lapse microscopy. (D) An example kymograph of a growing 
cell imaged in fluorescence, illustrating the segmentation and tracking of the lineage.  
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(Sweden), Cornell NanoScale Science and Technology Facility (United States), Innopsys (France), 

Kavli Nanolab Delft (Netherlands), Micro Resist Technology (Germany), Sigatec (Switzerland), 

and TTP (UK). Molds can also be duplicated in epoxy, which can be an inexpensive option for 

sharing molds between groups113. 

 
2.4.3 Experiment setup 
 

The MM microfluidic chip is made by pouring and curing polydimethylsiloxane (PDMS) 

on top of the mold, imprinting the features of the mold onto the chip. Individual chips are then cut 

out of the PDMS slab, and holes are punched (e.g., with biopsy punchers) at the inlets and outlets 

to allow the connection of tubing which provides growth medium to the device. The chips are then 

covalently bonded to a coverglass using plasma treatment. Cells can then be loaded into trenches 

via centrifugation with a custom adapter, or by simple diffusion by loading a very dense culture. 

Tubing is connected to the inlets and outlets (e.g., using syringe needles) for flow of fresh growth 

media into the chip, as well as removal of used media which has passed through the chip (Fig 2.1B). 

The media is typically pushed through the device using syringe pumps, initially at a high flow to 

clear biofilm that may be growing in dead spaces (i.e., regions of low flow) in the inlets and outlets. 

The formation of biofilms can be limited by pre-coating the chip with bovine serum albumin (BSA) 

and/or supplementing the growth media with BSA or Pluronic95,114. The chip is then mounted on 

an inverted fluorescence microscope for automated time-lapse microscopy of the lineages growing 

in the trenches. A cage incubator and hardware autofocus are typically required to ensure stability 

of the focus over multiple days. Detailed protocols for setting up MM experiments have been 

published114. After the experiment, the multi-dimensional images (position, fluorescence channels, 

time) can be processed to track the properties of single lineages growing in the device (Fig 2.1C; 

Section 2.4.5). 

 
2.4.4 Challenges 
 

The original design of the device enabled time-lapse microscopy of single E. coli cells 

under controlled growth conditions, leading to many biological discoveries. There are however 

some challenges associated with the experimental setup, which have led to new technical 

developments discussed below. For example, automated image processing traditionally required 
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constitutive expression of a fluorescent protein (FP) at intermediate levels specifically for that 

purpose. This limited the number of simultaneous reporters that could be used in an experiment, 

while also preventing the study of bacteria not expressing exogenous FPs. Section 2.2 describes 

the recent tools developed for segmentation and tracking of cells using phase contrast images. In 

addition, the original setup of the MM makes switching conditions within an experiment 

challenging. With this design, growth media can be changed using a Y-junction close to the chip, 

although this creates a short (and imprecise) delay in the switch as the medium between the Y-

junction and the chip is being replaced. Creating complex environmental conditions within the 

chip, i.e., by flowing a growing culture, can be challenging due to the introduction of air bubbles 

into the feeding channel. Such challenges have inspired the development of more sophisticated 

fluidic and environmental control strategies, which are detailed in Section 2.4.6. Another limitation 

of the original design is the inability to genotype or isolate cells within the device, which can be 

useful when imaging libraries of cells. While phenotyping pooled genetic libraries is possible in 

the device, isolating single cells of interest from the conventional MM platform has been 

impractical due to the inevitable formation of biofilms in the inlets and outlets, which additionally 

limit the total duration of an experiment. While cells could potentially be genotyped on-chip 

through fluorescence in situ hybridization (FISH) techniques, diffusion of probes through the cell 

trenches makes this process inefficient. These limitations have led to the development of techniques 

for single-cell screening detailed in Section 2.4.7. Finally, the original device was limited to 

culturing E. coli or other similarly sized microbes. Modifications to trench dimensions and the 

addition of other features have now allowed the growth and imaging of a variety of other microbes. 

The cultivation of some species requires additional modifications, which are further described in 

Section 2.4.8. 

 
2.4.5 Segmentation and tracking algorithms 
 

While the experimental techniques for using the MM have become increasingly accessible, 

the image analysis pipeline to convert time-lapse images into single-cell traces through 

segmentation and tracking has lagged. For many years, laboratories using the MM have developed 

their own customized data analysis pipelines. While tools have been developed for tracking the 

growth of microbes on agar pads using phase contrast115, the large features of the MM PDMS chip 

can confound such image analysis tools. Recently, multiple open-source software packages have 
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been published specifically for MM experiments with the capability of performing the 

segmentation and tracking on phase contrast images (listed in Table 2.1). 

 

Most of these image analysis methods share a common overall workflow: pre-processing 

of the images, segmentation of the cells, and tracking the lineages. In the pre-processing step, the 

image time series are first registered to correct for drift and jitters of the stage, for example, using 

cross-correlation between successive images. The images are rotated to align the microchannels 

vertically, which simplifies further analyses. The microchannels are then identified and segmented. 

Accurately segmenting individual cells is typically the most challenging task, as the cells are small 

and in contact with each other, and strategies vary between implementations. Tracking is then 

performed to create time traces of individual cells, where cells from each time point are connected 

to the cells in the next one, and cell divisions are identified (Fig 2.1C). Properties such as cell size 

and fluorescence intensity are extracted along these single-cell time traces. Finally, a manual 

curation pipeline is typically available, as even rare segmentation and tracking errors can have large 

effects on sensitive measurements such as the variance. 
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Software Language Deep 

learning 
based 

Phase 
contrast 

segmentation 

Brightfield 
segmentation 

Fluorescence 
segmentation 

Molyso (Sachs et al., 
2016) 

Python  ✓   

MoMA (Kaiser et al., 
2018) 

Java  ✓  ✓ 

MMHelper (Smith et al., 
2019) 

Python  ✓ ✓  

BACMANN (Ollion et 
al., 2019) 

Java  ✓  ✓ 

DeLTA (Lugagne et al., 
2020; O’Connor et al., 
2022) 

Python ✓ ✓   

DistNET (Ollion and 
Ollion, 2020) 

Python ✓ ✓   

 
 

In Molyso116, the cell segmentation is done in one dimension with cells identified by 

bounding rectangles instead of cell contour. The tracking is done by solving an optimization 

problem, where a cost is imputed for cell displacement between time points and cell division 

events. MoMA generalized the optimization problem for both the segmentation and tracking, 

overpredicting possible cell segmentation and performing the tracking simultaneously112. This 1D 

segmentation works well when the cells are perfectly aligned with the channels. However, it can 

result in errors when the cell width is smaller than the channel width, resulting in tilted cells, or if 

the cells are not perfectly rodshaped (e.g., mutants or other bacteria with different morphologies). 

BACMANN enables 2D segmentation (i.e., cell contour) through watershed-based image 

processing techniques, while the tracking is based on the position with respect to the top of the 

trench117. BACMANN also incorporates a spot-tracking algorithm in its pipeline. MMHelper was 

developed using similar segmentation approaches to also segment using bright-field instead of 

phase contrast118. DeLTA119 utilizes 3 U-net convolution neural networks120 to perform channel 

identification, cell segmentation, and tracking. DistNET incorporates a self-attention layer into the 

Table 2.1 Overview of open-source software packages developed for mother machine segmentation and 
lineage tracking. The applicability to specific imaging modalities indicates which ones have been 
demonstrated. All programs are available on Github or Gitlab. 
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U-net architecture to provide information about the whole channel to the neural network, and 

performs segmentation and tracking through one deep neural network121. Comparison of 

BACMANN, DeLTA, and DistNET on the same dataset showed that they could achieve <1% 

combined segmentation and tracking error rates121. While BACMANN’s tracking performed better 

than DeLTA, DeLTA’s segmentation performed better. DistNET’s self-attention layer mainly 

improved the tracking performance of DeLTA. Benchmarking the techniques against data from 

different experimental conditions showed good performance but an increased error rate, suggesting 

a need for more training data or for changing the analysis parameters121. 

 

When choosing a program, we encourage users to consider the following criteria: accuracy 

of segmentation and tracking, need for manual curation, speed of analysis, quality of 

documentation, readability of code, ease of use, flexibility to specific experimental needs, and an 

actively maintained codebase. Deep-learning methods can be fast and very accurate while requiring 

training on a relatively small set of manually analyzed data. However, they often lose accuracy 

when the experimental conditions are different from the training set (i.e., cell size, trench width, 

etc.). Conventional methods typically require changing analysis parameters to accommodate these 

kinds of changes, but that can be less tedious than manual segmentation of many images required 

to re-train a deep-learning algorithm. Generating synthetic data to train the neural networks would 

greatly alleviate their main shortcomings. 

 
2.4.6 Fluidic control and environmental conditions 
 

One key strength of the MM is the precise control over the growth conditions. However, 

switching between conditions within an experiment and flowing mixed media are challenging 

using the original design. A rapid and precise switch between growth media can be obtained by 

modifying the device design to include two inlets for each feeding channel. To flow a mixture of 

media, it is necessary to introduce a serpentine channel between the inlet and the feeding channel 

to overcome the mixing limitation of the low Reynolds number environment. The dual input mother 

machine (DIMM, Fig 2.2A) utilized this strategy to study the induction of the lac operon while 

switching from glucose to lactose112. The authors could track the lag in growth of single cells 

exposed to this transition and found that the distribution of the growth lag was multi-modal. By 

quantifying the number of LacY/Z (“sensor”) molecules in single cells in the device, this 
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multimodality was subsequently attributed to a fraction of the population expressing zero LacY/Z 

molecules, relying instead on stochastic leaky expression for induction of the operon122. However, 

any number of expressed lacY/Z molecules was sufficient for fast induction of the operon, making 

it a single-molecule trigger. 

 
 

 

     
 
 

An experimental setup was developed to mimic the conditions of batch culture (Fig 2.2B), 

where a growing culture is flowed directly into the microfluidic device, enabling the study of cells 

transitioning between different growth phases123. This was achieved using peristaltic pumps to flow 

a culture growing in a separate shaker-incubator into the device, and bubble traps to prevent air 

bubbles from entering the device. By alternating between flowing fresh media and batch culture 

into the MM, the authors monitored cells after multiple rounds entering and exiting the stationary 

phase and found that the cell-size regulation strategy changed throughout phases of the growth 

curve (discussed in Section 2.5.1). 

Figure 2.2 Adaptations to the mother machine architecture for improved fluidic and environmental 
control. (A) The dual input mother machine (DIMM) has two media inlets followed by a serpentine 
channel that fluid passes through prior to reaching cell trenches to facilitate mixing and/or rapid 
switching between different environmental conditions. Schematic representation inspired from 
Kaiser et al. (2019). (B) The growth curve platform allows batch culture to be fed into the device 
to recapitulate batch culture conditions. This allows for observation of cells entering and exiting 
the stationary phase by switching between nutrient depleted culture and fresh media. Schematic 
representation inspired from Bakshi et al. (2021).  
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2.4.7 Screening and isolation based on time-lapse microscopy 
 

Genetic screens have been instrumental in biology for assigning function to molecular 

components and generally linking genotypes to phenotypes. Many powerful screening platforms 

have been developed, but they have been mostly limited to distinguishing static phenotypes in the 

population. Recent technical developments have transformed the MM into a powerful platform that 

combines dynamic phenotype screening with genotyping or isolation capabilities. This enables 

screening based on dynamic and/or spatially resolved phenotypes, such as oscillations in gene 

expression, cell-size control mechanisms, response to changes in environmental conditions, and 

intracellular localization of proteins. Notably, even static phenotypes could be isolated more 

precisely because cells can be quantified over many generations, and thus genetic and nongenetic 

heterogeneity could be distinguished. 

 

Two techniques have been developed to date for screening cells in the MM. The first 

technique, named “dynamic μ-fluidic microscopy-based phenotyping of a library before in situ 

genotyping” (DuMPLING)124, enables dynamic phenotyping of pooled libraries. After 

characterization of the library in the MM, the cells of the barcoded library are fixed and identified 

via fluorescence in situ hybridization (FISH), connecting genotypes to dynamic phenotypes (Fig 

2.3A). A 300 nm gap at the dead-end of the trench is connected to a back-end channel, which 

generates convective flow that facilitates efficient movement of probes and  media over the cells. 

This convective flow also facilitates feeding of the mother cell therefore reducing the diffusion 

limitations related to the dimensions of the cell trenches discussed in Section 2.1.1. The 

DuMPLING platform was used to identify the effects of a CRISPR interference-mediated gene 

knockdown library on the coordination of replication and division by tracking chromosome 

replication forks throughout cell division125. 

 

The second technique, named single-cell isolation following time-lapse microscopy 

(SIFT)126, uses a modified microfluidic chip containing an additional media channel used for cell 

isolation (Fig 2.3B). The device has a system of pressurized valves that separates the cell trenches 

from the collection channels, temporarily closes the inlets and outlets for sterilization, and closes 

the media channel to stop the liquid flow. This enables an optical tweezer to move cells of interest 
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from their growth trench to a collection trap where they are isolated, cultured, and sequenced. SIFT 

was used to screen two libraries of synthetic genetic oscillators based on the periodicity and 

precision of oscillations, showcasing its strength in isolating dynamic phenotypes. 

 
 

 

       
 
 

Figure 2.3 Modifications to the mother machine to enable cell screening. (A) Dynamic u-fluidic 
microscopy-based phenotyping of a library before in situ genotyping (DuMPLING) has a 300 nm 
gap at the end of the cell trench, allowing media to flow through the cell channels. Rounds of 
barcoding through FISH enable genotyping of the pooled library. Schematic representation 
inspired from Lawson et al. (2017). (B) Single-cell isolation following time-lapse microscopy 
(SIFT) uses a modified microfluidic chip containing an additional lane for cell isolation below 
the cell trenches, separated by a pressurized valve system (collection valve). A second set of 
valves (inlet and outlet) allows for the lane to be sealed for inlet cleaning and restricting media 
flow after cell loading. An optical tweezer moves cells of interest from their trench to a collection 
trap, where they are isolated and removed from the device to be cultured and sequenced. 
Schematic representation inspired from Luro et al. (2020).  
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Both of these screening techniques have advantages and disadvantages. While DuMPLING 

enables the in situ genotyping of entire libraries and allows genotype-phenotype mapping across a 

large number of cells, it requires a barcoded library and cell fixation prior to hybridization, thereby 

eliminating any possible downstream growth and analysis124. Conversely, SIFT does not require 

barcode labeling, enabling the screening of unmodified libraries and natural populations, the 

isolation of live cells, and downstream analysis of isolates126. However, only isolated cells can be 

genotyped, limiting the scale of phenotype-to-genotype mapping throughput. Additionally, the 

optical trapping mechanism in this technique requires an extensive platform. These extended 

capabilities for screening and isolating cells within MM-like devices have the potential to enable 

discoveries in diverse fields of microbiology. 

 
2.4.8 Extension to other microbes 
 

Adaptations to the MM have enabled single-cell studies of a variety of microbes. In 

principle, adaptation of the MM design to other symmetrically dividing organisms should only be 

a matter of adapting the trench size, although other minor modifications may be necessary to 

maintain species-specific optimal growth conditions. Such devices have been fabricated for 

cultivation of Corynebacterium glutamicum116 and Bacillus subtilis114,127. As B. subtilis 

stochastically forms long multicellular chains which would be pulled out of the trenches, an 

adaptation of the classic MM device incorporated an increased trench length of 75 μm127. This two-

layer device included shallower feeding channels surrounding the cell trenches to ensure sufficient 

feeding of cells at the end of these long trenches (Fig 2.4A). 
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The classic MM architecture has been used to study archaea and symmetrically-dividing 

yeast organisms such as Halobacterium salinarum128 and Schizosaccharomyces pombe129, 

respectively, by scaling up device dimensions. The ability of the budding yeast Saccharomyces 

cerevisiae to switch budding orientation over the course of its lifespan necessitated the trapping 

and retention of mother cells in trenches open on both ends to flowing media130. This 

accommodates the removal of daughter cells produced by budding in either orientation (Fig 2.4B). 

Alternatively, the “yeast jail” design forgoes trenches altogether and instead employs a 

microfluidic device with an array of jail units131. Each jail is composed of three PDMS posts 

(among other designs) that behave as “jail bars” to retain a single mother cell, while daughter cells 

produced by budding are washed away with the flow of media. Similarly, A Long-term Culturing 

And TRApping System (ALCATRAS)132, High-throughput Yeast Aging Analysis chip 

(HYAA)133, and slipstreaming MM134 devices comprise an array of PDMS trapping units, many of 

which may fit into a single field of view during imaging, to enable tracking of individual mother 

cells over their lifespan. In the latter, S. cerevisiae cells are loaded through the outlet of the device 

such that media flow reversal enables the trapping of mother cells in a low-pressure zone behind 

Figure 2.4 Adaptations to the mother machine architecture to optimize growth of other 
organisms. (A) The mother machine design adapted for B. subtilis growth includes elongated 
trenches 75 𝜇m in length to accommodate its multicellular, chained state, as well as side 
channels that enable uniform nutrient availability throughout the trenches. Schematic 
representation inspired from Norman et al. (2013). (B) Maintaining an opening at either end 
of each cell trench in a modified mother machine device enables removal of S. cerevisiae 
daughter cells produced from budding in either orientation into perpendicular media 
channels. Schematic representation inspired from Li et al. (2017).  
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PDMS pillars. This method is ideal for studying cell replicative life span as it does not place cells 

under mechanical pressure during trapping, and the effect of such stress on aging is not yet known. 

An alternative method utilizes channels or PDMS structures of optimal heights for trapping mother 

cells underneath them, while permitting smaller daughter cells to be flushed away135–137. 

 
 
2.5 Applications to study bacteria 
 

Several features of the MM have facilitated important discoveries about a variety of cellular 

processes. The tracking of single cells under controlled and tunable growth conditions with high 

throughput has shed light on how cellular processes are affected by stochastic gene expression, and 

how such heterogeneity can affect the cell’s phenotype. The ability to track the same cells for many 

generations has facilitated studies in cellular aging, and an inherent lack of competition between 

cells in the device has proven useful in studying genetic mutations. Here we will highlight 

discoveries about cell-size control mechanisms, genetic mutations, cellular aging, stochastic 

pulsing of gene expression, phenotypic states in B. subtilis, antibiotic resistance and persistence, 

and synthetic biology that have been enabled by the MM platform. Instead of a detailed description 

of each study, we highlight how the device has enabled such discoveries. 

 
2.5.1 Cell-size control 
 

Most prokaryotes divide via binary fission, yielding two daughter cells of nearly identical 

size and volume138. If left unchecked, small fluctuations in cell size at cell division can result in 

significant size divergence between cells of a population over successive generations. Cell-size 

homeostasis could in principle be achieved through different control mechanisms139. Several 

studies have shown that E. coli, B. subtilis and Caulobacter crescentus maintain cell-size 

homeostasis by behaving primarily as “adders”, adding on average a constant length between birth 

and division, rather than as “sizers” or “timers”, for which cell division is triggered upon cells 

growing to a threshold size or for a fixed time, respectively140–143. As time-lapse microscopy on 

agar pads is limited to a few cell divisions where the growth conditions can change, microfluidic 

approaches have been important in studying cell-size regulation. The ability to image hundreds of 

single cells under constant growth conditions while precisely measuring their size throughout the 
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cell cycle (e.g., size at birth and added during the cell cycle) has made the MM a particularly useful 

platform in elucidating the specific mechanisms underlying cell-size regulation144–148. 

 

Several models have been suggested to explain the mechanism underlying adder 

behavior146–150. While a detailed description of the different models is outside the scope of this 

review, a recent analysis by Le Treut et al. has found the authors’ model, the independent double 

adder, to be the most consistent with current data151. This model proposes that the processes of cell 

division and initiation of DNA replication are controlled by distinct (independent) adders146. It 

further suggests that the mechanism underlying this type of cell-size control relies on accumulation 

of specific initiator proteins for independent regulation of cell division and DNA replication to a 

certain threshold and that they are produced at a rate proportional to cell growth without being 

actively degraded. This hypothesis was supported by experiments that used the MM to measure the 

cell size added between cell divisions, and the cell size added between DNA replication initiation 

events (tracked with DnaN-YPet)146, which were both found to be independent of initial cell size 

(i.e., adders). Perturbing the production of each initiator protein (FtsZ and DnaA respectively) only 

dysregulated cell-size control for its respective process. 

 

Some studies carried out in the MM have shown deviations from the adder principle under 

slow growth conditions143,146,148. Si et al. (2019) suggest that the adder principle can be broken if 

the underlying mechanisms (threshold and constant production) are affected. They suggest that 

active degradation of the division initiatior (FtsZ) could play that role, and elimination of 

degradation through clpX repression restored the adder phenotype under that growth condition146. 

A recent study used a variation of the MM setup which flows batch culture into the device as a 

means of replicating conditions within that culture on-chip to monitor E. coli and B. subtilis growth, 

and revealed that cells alter their size regulation strategy as they progress through different growth 

phases123. Cells switched to mixed “adder-timers” while they entered the stationary phase and 

behaved as “sizers” while exiting the stationary phase, suggesting that different strategies might be 

used to respond to changes in environmental conditions. These results also highlight the importance 

of using the MM for studying this process, as other single cell imaging techniques such as agar 

pads do not offer precise control over environmental conditions. Developments in the control of 

growth conditions as well as screening capabilities will thus facilitate the development of more 
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complete models that can capture cell-size control strategies under varying environmental 

conditions. 

 
2.5.2 Genetic mutations 
 

Mutations and other DNA damage events such as double-stranded breaks (DSBs) have the 

potential to drastically affect cell survival and fitness if left unrepaired152. To counter such 

mutations, E. coli employs effective DNA repair pathways to recognize and repair genetic 

perturbations before they are propagated to future generations. The ability to track thousands of 

lineages in parallel (without growth competition between individuals) makes the MM an ideal 

platform to study rare events such as the emergence of DNA mutations. Its capacity to capture 

heterogeneity in number and types of mutations emerging between isogenic cells of a population 

further highlights the utility of such single-cell, time-lapse studies. To this end, the MM has been 

used to visualize copy number variations153, DNA mismatch error154,155, DSBs156, and alkylation 

damage157–159. 

 

The timing of mutations as well as their impact on the fitness of the cells are important 

variables in the process of evolution. The rate of chromosomal gene copy number mutations in E. 

coli was estimated at ~3 x 10-3 per cell per generation in the MM153. This was achieved by 

expressing several copies of a chromosomally integrated fluorescent reporter and measuring 

changes in fluorescence over time as an indicator for gene copy number (because gene expression 

is roughly proportional to gene copy number). Robert et al. leveraged the lack of competition in 

the MM to visualize the appearance of DNA replication errors and their fitness impact154,155. To 

measure the fitness effect of the mutations, they measured the decrease in growth rate (i.e., fitness) 

of the individual lineages through the accumulation of mutations154. Instantaneous single-cell 

growth rate can be calculated in the MM using the relative change in cell size between successive 

time points (i.e., doubling rate). Although the entire distribution of fitness effects (DFE, which has 

proven challenging to measure in the field of evolution modeling) was still not directly estimated, 

the authors were successfully able to infer all the moments of DFE (i.e. average, variance, 

skewness, etc.) - thanks to the ample statistics enabled by the MM. The analysis indicated the 

underlying distribution to be long-tailed, with most mutations having little-to-no cost on cell 

fitness: mean fitness cost was only ~0.3 %, which was apparently overestimated by the previous 
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studies. In contrast, 1% of the mutations were found to be lethal, directly measured by observing 

cell death in the MM. Mutations were detected by tracking the appearance of YFP-MutL foci, and 

occurred at a constant rate over time during steady state exponential growth, as expected from a 

memoryless Poisson process. However, another MM study showed that a subset of cells within a 

population exhibited a period of elevated mutation rates in response to DNA alkylation damage, 

due to delayed activation of the Ada DNA damage response regulon158,159. These periods of high 

mutation rate lasted several generations, since many cells had no sensor-activator Ada molecules 

present, and had to wait for stochastic expression to induce the response157. Finally, the response 

to DSB has also been characterized using an adapted MM with multiple inlet ports connected to 

the feeding channel via a short junction, enabling rapid switching between different media156. 

Switching between a growth medium and an induction medium enabled short induction of Cas9, 

which created a targeted DSB in the chromosome. The chromosomes could be tracked using 

fluorescently-tagged proteins (ParB and MalI) with DNA-binding sites localized close to the DSB, 

with the foci disappearing during the DSB. Repairs were rapid (~15 min), homogeneous, robust 

(~95% of cells repaired the damage), and had low impact on the fitness of the cells. This is 

impressive given that the DSB needs to find/colocalize with its repair template on the sister 

chromosome. The RecA-single stranded DNA complex was observed to extend in a long filament 

spanning the length of the cell. This could facilitate the homology search for the repair template by 

eliminating the need to search along the length of the cell in the z direction, thereby reducing it 

from a 3D problem to a 2D one and making the search process 100 times faster. 

 
2.5.3 Aging 
 

The phenomenon of aging in unicellular organisms is broadly described in terms of 

senescence, or the progressive loss of fitness over time160. This loss of fitness can be due to a 

decrease in growth rate and/or an increase in death rate. Defining the ‘age’ of a unicellular organism 

that lacks replicative asymmetry can be challenging, but generally takes into account the 

asymmetric segregation of damage factors during cell division, which creates effectively ‘older’ 

and ‘younger’ progeny cells. For example, in budding yeast asymmetric division creates a finite 

replicative lifespan by partitioning detrimental cellular factors such as misfolded protein aggregates 

to older ‘mother’ cells, while preserving the daughter lineage161. The mother exhibits senescence 

over successive generations and eventual cell death. While E. coli divides symmetrically, there is 
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still an intrinsic asymmetry in the process: one pole is created during division (the ‘new’ pole), and 

one is left intact (the ‘old’ pole)162. Asymmetries in partitioning of cellular contents have also been 

observed in E. coli. For example, the main efflux pump (AcrAB-TolC) was shown to be partitioned 

with a bias for the old pole cell, leading to elevated efflux activity in ‘older’ cells163. Non-random 

segregation of sister chromatids has also been observed, with the ancestral strand being partitioned 

preferentially in the old pole cell164. The MM is uniquely suited to study aging in symmetrically 

dividing bacteria as it retains an old pole cell at the end of each trench over an entire experiment, 

thus facilitating monitoring of the old pole lineage for many generations. Here, we present findings 

from several studies monitoring the aging process in E. coli in the MM, where the age of a cell is 

defined as the age of the old pole.  

 

Both decreased growth rate and increased death rates have been associated with aging in E. 

coli82,165–167. The first report of the MM studied the aging of the mother cell over consecutive 

generations82. They found that the growth rate of the mother cell was stable for more than a hundred 

generations, but observed that the filamentation rate increased until 50 generations82. Note that in 

50 generations of exponential growth, 1 cell would divide into ~1015 cells, making such studies 

intractable without the use of devices like the MM. Subsequent studies tracked the growth rate of 

both the mother cell and its immediate progeny, the ‘daughter’ cell. This showed that these cells 

reached different equilibrium growth rates, with the mother cell stabilizing at a growth rate slightly 

slower than the daughter cell162,166. This suggests that damaged molecules divided asymmetrically, 

with a preference to the old pole cell. The nature of this damage and the mechanisms underlying 

asymmetrical partitioning of cellular components are under investigation. Misfolded proteins are a 

prime suspect, as a chaperone fusion (IbpA-YFP) was shown to preferentially localize to the old 

pole as a foci165,166, while protein stress such as phototoxic stress affected the asymmetry166. 

However, FP fusions such as YFP have been shown to create artifactual foci due to their oligomeric 

properties168. Therefore, the use of FP fusions that do not cause aberrant foci (e.g., ClpB-msfGFP) 

will be informative in tracking protein aggregates169. In contrast, another study has shown no 

asymmetries in misfolded protein aggregates using brightfield imaging for inclusion bodies and 

ThT dyes to visualize protein aggregates167. Asymmetric retention of protein aggregates at the old 

pole has also been observed in the symmetrically dividing fission yeast S. pombe in a MM-like 

device129. These aggregates were not associated with increased division times and were eventually 
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transferred to a new daughter, thereby rejuvenating the old lineage. While it is clear that even cells 

dividing “almost symmetrically” like E. coli exhibit aging, the elucidation of the molecular 

mechanisms and the agents causing this phenomenon will shed light on the universal properties of 

cellular senescence, and the MM provides an ideal platform with which to study it. 

 
2.5.4 Stochastic pulsing 
 

Stochastic fluctuations in gene expression can drive phenotypic heterogeneity among clonal 

bacterial populations, such that genetically identical cells display distinct behaviors. The use of FP 

reporters for gene expression have been invaluable in quantifying this heterogeneity. In principle, 

this heterogeneity can be generated on different timescales. For example, cells can stochastically 

express genes at different levels for long periods of time (e.g., stable epigenetic state), or they can 

fluctuate rapidly between these different expression levels (e.g., rapid pulses). Long-term timelapse 

microscopy using microfluidic devices such as the MM enables tracking the expression dynamics 

in thousands of individual cells under controlled growth conditions and can elucidate the timescales 

of such fluctuations. Employing this strategy, it was shown that the promoters controlling flagellar 

biosynthesis genes in E. coli activate in stochastic pulses even if expression of their master 

regulator was constant170. Measuring expression of a gene (bolA) dependent on the E. coli general 

stress response factor, RpoS, revealed heterogeneous expression in liquid culture, in the MM, and 

in another microfluidic device171. The promoter activity (production rate of the reporter) can be 

calculated using the derivative of the fluorescence intensity while accounting for dilution of the FP 

present172. The promoter activity revealed stochastic pulses of expression which coincided with 

periods of slower growth in the device171. The ability to rapidly change environmental conditions 

andmeasure single-cell properties prior to and after the change enabled them to test whether these 

periods of slow growth led to increased resistance to stress. They observed that cells with higher 

RpoS activity and slower growth immediately prior to the stress were more likely to survive a 

hydrogen peroxide treatment. Another study measured the expression of multiple stress response 

genes in the MM and found additional RpoS-dependent promoters exhibiting stochastic pulses that 

negatively correlated with growth rate64. Genes from the SOS regulon also displayed pulsatile 

activity, but these were not correlated with the growth rate. Cells undergoing pulses of genes from 

both these groups prior to a short treatment of the antibiotic ciprofloxacin in the MM had increased 
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likelihood of survival64. Pulses in the SOS regulon have also been observed in another study using 

the MM, and have been attributed to variability in the degradation of its regulator, LexA173. 

 

In B. subtilis, several sigma factors have been reported to exhibit stochastic, pulsatile bursts 

of expression55,172,174, which can be similarly tracked in the MM. Sigma factors in B. subtilis 

promote the production of their own operons, which also encodes their anti-sigma factors, creating 

positive and negative feedback that can cause pulses of gene expression. Molecular “time-sharing” 

was proposed as a mechanism in which alternative sigma factors competing for RNA polymerase 

binding opportunities are able to share such core resources over time55. Stochastic bursts of sigma 

factor activity also seem to play a role in stress response in B. subtilis: heterogeneous response to 

lysozyme stress was observed between individual cells grown in the MM175. Pulsatile expression 

of the sigV operon preceding exposure to lysozyme stress led to increased survival probability. 

 
2.5.5 Phenotypic states in B. subtilis 
 

Early work with B. subtilis in the MM revealed the existence of a cell fate switch controlling 

whether B. subtilis exists in a free-living, motile state or as a sessile member of a multicellular 

chain associated with biofilm formation127. A modified device was used, with side-channels to 

ensure even nutrient availability in the long channels that accommodate the chain phenotype. By 

tracking the fates using fluorescent reporters over hundreds of cell generations, it was found that 

the transition from the motile to the sessile state happened at a constant rate over time (i.e., is a 

memoryless process), but the cells spent a precise amount of time in the sessile state. A simple 

network of three proteins could recapitulate all the properties and the modularity of the switch and 

the commitment to the chained state. Remarkably, the circuit was reconstituted in evolutionarily 

distant E. coli, showing that this simple network is sufficient to drive cell-fate decision making176. 

The stochastic entry into another cell fate–sporulation–was also studied using the MM, and was 

shown to occur at a constant rate over time after adaptation to the sporulation-inducing 

conditions177. 

 

In another study, a clonal B. subtilis population diverged into subpopulations of distinct 

metabolic specialists, each characterized by differential expression of metabolic genes56. Cells with 

stochastically upregulated sucC expression in mid to late exponential phase were associated with 



 

 36 

the production of acetate, while a subpopulation expressing alsS in early stationary phase was 

linked to production of acetoin. Cells could be observed stochastically switching in and out of such 

states with fluorescent reporters in the MM. As acetoin can neutralize low pH conditions caused 

by acetate accumulation, the slow-growing alsS-expressing subpopulation enabled growth and 

expansion of an alsS- subpopulation which benefited from the neutralization of acetate in an agar 

pad microenvironment. This showcases how stochastic gene expression can help populations of 

genetically identical cells achieve cooperative behaviors. Therefore, bacteria have shown the 

ability to harness molecular fluctuations through simple circuits of a handful of proteins to establish 

heterogeneous phenotypic states that can be advantageous to the bulk isogenic population. 

 
2.5.6 Antibiotic resistance and persistence  
 

The rise of antibiotic resistance combined with the lack of new antibiotics is an alarming 

threat to public health178. Persister cells can survive antibiotic treatment by remaining in a 

temporary state of dormancy throughout antibiotic exposure, without being genetically resistant179. 

The switch to this state can happen spontaneously or be induced by stress such as starvation. 

Microfluidic devices are particularly well-suited for the study of this non-genetic heterogeneity 

since growth conditions can be precisely controlled and single lineages tracked over time. One of 

the first applications of a MM-like device was to establish the persister state as a phenotypic 

switch93. Persisters can be identified in such microfluidic devices as cells that are not growing prior 

to antibiotic exposure, but resume growth at some later time point following removal of the 

antibiotic. With an increase in throughput of the MM and microscopy (e.g., more trenches per chip 

and faster microscope imaging with larger field of view), it was possible to observe hundreds of E. 

coli persisters without mutations that increase their typically low frequency of approximately 1 in 

1000 cells123. The molecular mechanisms underlying this phenotypic switch are still under 

investigation180,181. Studies using the MM enabled the characterization of these persisters and have 

shown that they have smaller size123, lower ATP levels181, and are more likely to contain protein 

aggregates182. Recent developments in microscopy throughput, simulating batch culture 

conditions, and screening in the MM will likely help us to understand the molecular mechanisms 

behind bacterial persisters. 
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The MM has also been used to study more broadly the response of bacteria to antibiotics. 

The device with back-channels (Fig 2.3A) was used to rapidly load cells into the device for fast 

antibiotic susceptibility testing (~30 min) of clinical samples183, by directly visualizing growth or 

death of the bacteria during antibiotic exposure through microscopy. A study looked at the 

accumulation of the antibiotic ofloxacin inside E. coli in the MM and has shown that stationary 

phase cells appeared to absorb the antibiotic more slowly than exponentially growing cells184. 

 
2.5.7 Synthetic biology 
 

It has become increasingly clear that cellular circuits must contend with stochastic gene 

expression and that this noise can have an important impact. Therefore, it is valuable to have the 

ability to quantify such variability for the engineering of cells for synthetic biology applications. 

Indeed, microfluidic devices have been instrumental in the development of synthetic gene circuits 

with dynamic properties94,96,98,185,186. The use of the MM and insights from theory of stochastic 

gene expression enabled the re-engineering of the repressilator - the iconic synthetic oscillator that 

helped kick-start the field of synthetic biology—to achieve a precision that approaches natural 

oscillators67,126. The MM was instrumental in enabling the precise characterization of the 

oscillators, identifying factors that disrupted oscillations, characterizing redesigned iterations of 

the circuit, and subsequent screening of pooled libraries. While a handful of studies have used the 

MM to evaluate187,188 or control189 synthetic gene circuits, the broader use of the MM throughout 

the design process could lead to a new generation of precise and robust synthetic circuits. 

 
 
2.6 Discussion 
 

Single-cell microfluidic platforms have facilitated important discoveries in a variety of 

fields in biology by enabling the quantification of dynamic and heterogenous processes. Recent 

technical developments of the MM, including the ability to phenotype or screen pooled libraries 

based on their dynamics, achieve better control over the growth conditions, and to culture 

additional organisms should continue to expand the applications of these devices to new fields. 

Further developments could facilitate the study of species-species interactions, as has been done in 

a few studies98,190. The majority of studies using the MM have focused on E. coli and B. subtilis, 
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and applications of the device to other organisms (e.g., microbes important in the clinic or in the 

gut microbiota) would broaden its scope. Outside the microbial realm, two studies so far have used 

the device with non-adherent mammalian cells191,192. More studies could shed light on dynamic 

and heterogeneous processes, such as phenotypic resistance to cancer treatment and the 

differentiation of hematopoietic stem cells193–195. Adaptation of the phenotyping and screening 

platforms to mammalian cells could provide an alternative to the single-cell screening techniques 

that have been developed196,197. 

 

Future studies using the MM will likely continue to advance studies of the heterogeneous 

processes discussed above. By showcasing discoveries in diverse fields, we hope to inspire the 

readers to implement such devices to explore questions in new fields and expand their possible 

applications. For example, the timing of other epigenetic processes in bacteria, such as prions198,199, 

could be elucidated. While many studies have quantified the heterogeneity in protein production, 

few studies have examined how the degradation of proteins can create heterogeneity173,200. 

Although most bacteria in nature are in stationary phase201, the majority of studies have focused on 

exponentially-growing bacteria. The technical developments of the MM enabling the observation 

of cells in different growth phases could fill this gap in the literature and generate insights into the 

stationary phase. Adopting the MM setup has become increasingly accessible, with molds available 

through different companies, detailed protocols published, and open-source data analysis software 

now available. Ultimately, because these microfluidic devices provide a new quantitative way to 

look at cells, they have the potential to continue to contribute to discoveries in diverse areas in 

biology. 
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CHAPTER 3 
 

METABOLIC TIME-SHARING IN CLONAL MICROBIAL 
POPULATIONS 
 
3.1 Introduction 
 

Tracking single cells over time is a powerful method of characterizing dynamic cellular 

phenotypes, including circuit-dictated changes in gene expression. However, exploring cooperative 

population-level behaviour or survival strategies requires further investigation using bulk 

population measurements. As discussed in Sections 1.3 and 2.5.5, one example of a collaborative 

behaviour occurs in B. subtilis populations which split into distinct but cooperative subpopulations 

to prevent the buildup of toxic metabolic by-products56. In this case, single-cell studies alone were 

insufficient for investigating DOL, and the observation of entire microbial populations was 

necessary  to capture these complex behaviours.  

 

In this chapter, we show a circuit that similarly induces dynamic switching between 

cooperative metabolic states in an isogenic E. coli strain. This circuit integrates the repressilator 

with CRISPRi to carry out metabolic time-sharing by oscillating between distinct amino acid 

production states. When circuit behaviour is not synchronized between cells, the population is 

divided between different auxotrophy states and is able to cross-feed the required amino acids to 

sustain population survival (Fig 3.1). Although oscillations in gene expression occur within each 

individual cell, cooperative cross-feeding behaviours can only be observed at the population level. 

In this chapter, we begin by demonstrating the construction and characterization of a modular 

circuit that may be adapted for widespread DOL applications. We further combine single-cell and 

bulk population measurements to provide preliminary results suggesting that this circuit can give 

rise to obligate cross-feeding interactions within an E. coli population. Finally, we investigate the 

fitness of isogenic time-sharing populations capable of cross-feeding essential amino acids and 

draw comparisons to that of heterogeneous co-cultures.  
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3.2 Validating the function of CRISPRi circuit components 
  

To assemble our synthetic circuit, we first validated that we could achieve strong, sustained 

target gene repression using CRISPRi. Investigating static gene repression phenotypes enabled the 

characterization of individual circuit components prior to the introduction of dynamics into the 

system. 

 
3.2.1 Tuning dCas12 expression levels impacts gene silencing efficiency 
  

Although dCas12-related toxicity has not yet been reported in E. coli72, we sought to 

confirm this by investigating the consequences of varying dCas12 expression levels on both gene 

repression efficiency, and on host cell fitness. Placing dCas12 under the control of the arabinose-

inducible promoter, ParaBAD, enabled the tuning of its expression level. This was done by 

supplementing the culture medium with either increasing arabinose concentrations to 

proportionally increase dCas12 expression, or with 2% glucose to actively repress ParaBAD via 

catabolite repression202. Gene repression efficiency was investigated by co-expressing the tunable 

dCas12 cassette with a previously validated crRNA203 for silencing the mVenus fluorescence gene, 

such that repression efficiency was determined by measuring the loss of fluorescence in single 

cells. However, leaky dCas12 expression was observed in both the presence and absence of glucose 

(Fig 3.2A). Additionally, noisy and incomplete mVenus repression was observed upon the addition 

Figure 3.1 Coupling the repressilator with CRISPRi for metabolic time-sharing. (A) When co-expressed 
with the repressilator circuit, CRISPR arrays placed under control of repressilator-encoded promoters will 
oscillate according to the behaviour of the repressilator. The resultant crRNAs may then form a complex 
with dCas12 and facilitate dynamic changes in gene expression. (B) Each cell alternates between three 
distinct metabolic states with different amino acid production capabilities. (C) If the repressilator is 
unsynchronized between members of an isogenic population, approximately one third of the cells occupies 
each state at any given time, enabling amino acid cross-feeding between cells with different auxotrophies.  
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of increasing arabinose concentrations to the culture media, with no correlation between arabinose 

concentration and mVenus expression level. 

 

To achieve consistent and efficient mVenus repression, we instead placed dCas12 under 

the control of a synthetic constitutive promoter204. In contrast to the inducible dCas12, constitutive 

expression yielded strong and homogenous mVenus repression (Fig 3.2B). This constitutive 

dCas12 expression cassette was therefore used for all subsequent experiments. 

 

As the motivation for implementing metabolic time-sharing is reducing the metabolic 

burden placed on host cells, the circuit components were further evaluated for their effect on host 

growth rate. The growth of strains expressing different circuit components were monitored in 

minimal media over 48 hours. Comparison of calculated doubling times revealed no significant 

differences between that of the wildtype host and strains expressing either the constitutive dCas12 

cassette alone or alongside the repressilator (Fig 3.2C). These results suggest that expression of our 

metabolic time-sharing circuit does not significantly impact host cell growth rate, and indicate its 

potential viability as a means of controlling gene expression dynamics.  
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3.2.2 Gene silencing is robust to changes in crRNA sequence and regulatory 
elements 
 

Strong target gene repression can be achieved through design and selection of optimal 

crRNA sequences. Here, crRNAs were selected using the methods described in Section 5.2 for 

their proximity to the transcription start site, as well as their lack of sequence self-complementarity 

and off-target matches within the genome. To demonstrate that these selection criteria can yield 

several different crRNA sequences, each capable of repressing target gene expression with similar 

efficiency, we targeted the mVenus fluorescent reporter as proof-of-principle. Two different 

crRNAs were selected that bind to different regions within the first third of the mVenus coding 

Figure 3.2 dCas12 expression affects the efficiency of mVenus silencing. Ratio of mVenus expression 
in single cells with varying dCas12 induction levels compared to a fluorescence control that 
constitutively expresses mVenus. All single-cell fluorescence values were normalized to eliminate 
wildtype autofluorescence prior to comparison. (A) Tuning arabinose-inducible dCas12 expression 
levels by adding increasing concentrations of arabinose or glucose to the culture medium was imprecise, 
and all induction conditions yielded incomplete gene silencing. (Fluo control: n=190; Wildtype: n=223; 
2% glucose: n=262; LB: n=202; 0.02% arabinose: n=250; 0.2% arabinose: n=269; 2% arabinose: 
n=325). All repression conditions exhibited significant differences from both the wildtype and 
fluorescent controls (one-way ANOVA, LSD post hoc test p<0.05). (B) Robust silencing of mVenus 
using a constitutive dCas12. (Fluo control: n=37; Wildtype: n=187; Constitutive dCas12: n=111). The 
repression condition exhibited a significant difference from the fluorescent control (one-way ANOVA, 
LSD post hoc test p<0.05), but not from the wildtype. (C) The doubling times of cultures constitutively 
expressing dCas12, either alone or alongside the repressilator, compared to the wildtype host background 
strain. No significant differences were detected between any sample doubling times (two-sample t-test, 
p>0.05). 
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sequence, and their ability to repress mVenus expression was compared to that of a previously 

validated guide203. Single-cell fluorescence measurements (described in Section 5.4) revealed that 

robust mVenus repression was achieved with each of the three crRNA sequences tested, and that 

no significant difference in crRNA efficacy was observed between the three evaluated sequences 

(Fig 3.3A). These results are consistent with previous observations that targeting regions early in 

the coding sequence yield strong gene repression.  

 

To integrate CRISPRi with the repressilator, CRISPR arrays can be placed under control of 

different repressilator-encoded promoters, such that CRISPR array expression (and subsequent 

target gene repression) will oscillate according to the dynamics of the repressilator circuit. To 

verify that the repressilator-encoded Plac and Ptet promoters drive sufficient crRNA expression, we 

expressed mVenus crRNAs under control of each repressible promoter. The drastic reduction in 

single-cell fluorescence intensities to undetectable levels confirmed that these promoters yielded 

sufficient crRNA expression to achieve tight repression of a target gene (Fig 3.3B). 
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3.2.3 Workflow for modular assembly of CRISPR arrays 
 
While expression of a single crRNA is sufficient for robust repression of a single target 

gene, CRISPR arrays can encode several spacers for multiplexed gene repression71. This is ideal 

for the creation of complex phenotypes, as genes in different metabolic pathways can be 

simultaneously perturbed. Here, we aim to engineer cells that cycle between distinct states, each 

characterized by the simultaneous inability to produce one amino acid and while overexpressing 

others. This is achieved through oscillating expression of different CRISPR arrays, which each 

encode two spacers: one for silencing a key amino acid biosynthetic gene, and a second for 

simultaneous targeting of a gene demonstrated to cause an amino acid overproduction phenotype15. 

 

Figure 3.3 Robust mVenus silencing using different crRNA sequences and regulatory 
elements. Ratio of mVenus expression in single cells compared to a fluorescence control 
that constitutively expresses mVenus. All single-cell fluorescence values were normalized 
to eliminate wildtype autofluorescence prior to comparison. (A) Strong repression of 
mVenus using multiple crRNAs binding to different sequences within the mVenus coding 
sequence. (Fluo control: n=38; Wildtype: n=221; mVenus crRNA 1: n=185; mVenus 
crRNA 2: n=178; mVenus crRNA 3: n=106). (B) Expressing crRNAs under control of 
repressilator-encoded promoters yields strong target gene repression. (Fluo control: n=42; 
Wildtype: n=190; plac-crRNA: n=87; ptet-crRNA: n=45). All samples exhibited significant 
differences from the fluorescent control (one-way ANOVA, LSD post hoc test p<0.05), but 
no significant differences were observed between the wildtype and repression conditions. 
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However, the abundance of repetitive sequences inherent in the CRISPR array structure 

poses a challenge for array construction. To circumvent this, we adapted a previously described 

Golden Gate-based method for the modular assembly of spacer-repeat subunits into CRISPR 

arrays70. This method places Golden Gate-compatible cut sites within the 6-7 base pairs that are 

removed from the 3’ end of each spacer during crRNA processing, and are therefore not necessary 

for targeting70. Designing compatible overhang sequences in the 3’ end of each spacer enables the 

seamless assembly of multiple spacer-repeat subunits into a CRISPR array (Fig 3.4A). 

 

To efficiently screen for successful insertion of two CRISPR arrays into a destination 

vector, we employed a fluorescent dropout system. We designed gBlock sequences (IDT) for 

assembly of a destination vector expressing two Green Fluorescence Proteins (GFPs), each under 

control of a different repressilator-encoded promoter. In parallel, we designed and amplified 

individual repeat-spacer subunits to comprise the CRISPR arrays, each flanked by complementary 

Golden Gate-compatible restriction sites. During successful assembly, each fluorescence gene was 

excised from the vector and replaced with assembled CRISPR arrays under the control of 

repressilator-encoded promoters (Fig 3.4B). This enabled rapid identification of successfully 

assembled plasmids by looking for a loss of fluorescence. Employing this method, we were able to 

efficiently construct several plasmids expressing CRISPR arrays with distinct spacer combinations. 

 
        

 

Figure 3.4 Schematic of CRISPR array cloning strategy. (A) Repeat-spacer subunits with compatible 
Type IIS restriction sites are assembled into CRISPR arrays using Golden Gate assembly. Compatible 
restriction sites that flank fluorescence genes in the destination plasmid facilitate the insertion of 
CRISPR arrays into the plasmid via Golden Gate assembly. (B) Successful assemblies will encode 
two CRISPR arrays in the place of the fluorescence genes, and can therefore be identified by screening 
for loss of fluorescence.  
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3.3 Introducing amino acid auxotrophy phenotypes through silencing of 
biosynthetic genes 
 

Previous studies have demonstrated successful engineering of cross-feeding interactions 

within synthetic microbial consortia in S. cerevisiae31 and E. coli15,42, among other prokaryotes205. 

The stability of these interactions can be maintained when essential nutrients (such as amino acids) 

are being traded, as the survival of each member of the consortia relies on its ability to receive the 

desired nutrients from interacting partners. In particular, two-strain consortia consisting of histidine 

and arginine auxotrophs have been shown to efficiently exchange these amino acids, in some cases 

drastically improving the fitness of the co-culture compared to a wildtype monoculture15.  

 

Here, we emulate similar obligate cross-feeding interactions within a clonal E. coli 

population by oscillating between distinct amino acid auxotrophy states over time at the single-cell 

level. Cells occupying different states at any given time may therefore engage in reciprocal transfer 

of amino acids. As proof-of-principle, we engineered cells that alternate between histidine and 

arginine auxotrophies, motivated by a previous study demonstrating the robustness of histidine-

arginine cross-feeding pairs15. These auxotrophic phenotypes were generated via CRISPRi-

mediated silencing of key biosynthetic genes for each amino acid.  

 

To verify whether these crRNAs were capable of creating the desired auxotrophic 

phenotypes, we first constructed strains expressing only the CRISPRi circuit components to induce 

sustained auxotrophy for a single amino acid. Two different crRNAs targeting the hisD or argH 

genes were evaluated for their abilities to induce histidine or arginine auxotrophy, respectively, 

when co-expressed with dCas12 in host cells. The growth of these strains, which lacked the 

repressilator for dynamic state-switching, was monitored in minimal media over a 45-hour growth 

period, recording population optical density (OD) at 5-minute intervals throughout (Fig 3.5A). 

When the culture medium lacked amino acids, auxotrophs were expected to exhibit no growth for 

the duration of the experiment. Conversely, providing the required amino acid by supplementing 

the culture medium with 100 𝜇M of arginine or histidine was expected to restore the growth of 

these auxotrophs.  
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As expected, three of the four auxotrophs supplemented with their respective required 

amino acid displayed statistically similar doubling times to that of the control strain (Fig 3.5B), 

with only a slightly lengthened lag phase before entry into exponential growth. Interestingly, one 

auxotroph exhibited a significantly reduced doubling time compared to the prototrophic control 

when supplemented with arginine (Fig 3.5B). This may be explained by exceptionally robust 

silencing of the argH gene by this crRNA variant, causing a complete reduction in the burden 

associated with arginine synthesis.  

 

In contrast, each auxotroph not supplemented with their required amino acid exhibited 

significantly longer lag times before entering exponential growth, ranging from 12.5 to 25 hours 

for different strains (Fig 3.5A). This apparent prolonged inability to grow under minimal nutrient 

conditions could suggest that these strains are in fact auxotrophic for their respective amino acids. 

However, the eventual transition into exponential growth puts this into question, prompting further 

investigation into this phenomenon.   
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Figure 3.5 Induction of amino acid auxotrophies by silencing biosynthetic genes. 
(A) Growth of cells targeting histidine or arginine biosynthetic genes with two 
different crRNAs compared to the wildtype background strain in minimal media 
in the presence (+AA) or absence (-AA) of the required amino acid. OD 
measurements were taken 5 minutes apart throughout a 45-hour experiment. 
Shaded areas represent the standard deviation of three replicates. (B) Doubling 
times of the wildtype and auxotrophs supplemented with either arginine or 
histidine (+AA) to relieve the auxotrophic phenotype. An asterisk indicates a 
significant difference between samples (two-sample t-test, p<0.05). Error bars 
denote the standard deviation between three replicates. (C) Sanger sequencing of 
escape mutants identified at the end of the 45-hour growth experiment depicted in 
(A).  
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3.3.1 Growth of “auxotrophic” strains is likely due to the presence of escape 
mutants 
 

To investigate the unexpected observation that auxotrophic strains were able to grow in the 

absence of amino acids after prolonged lag times, we harvested these auxotrophic cultures at the 

end of a 45-hour growth experiment. Sequencing of extracted plasmids revealed extensive 

mutations in two of the four tested crRNA sequences (Fig 3.5C). These mutations, which reduce 

complementarity between the crRNA and its target, impede target gene repression, therefore 

eliminating the auxotrophy phenotype. The uniformity in lag time between three biological 

replicates of each strain suggests that these “escape mutants” were present in the parent population, 

rather than having been individually acquired throughout the 45-hour growth experiment. As these 

mutants were not identified during initial Sanger sequencing of the parent population, they were 

likely present at very low frequencies but, as prototrophs, were selected for under the amino acid-

deficient experimental conditions.  

 

The two remaining crRNA sequences were unaffected, and sequencing additionally 

revealed no mutations in the dCas12 gene in any of the four tested strains. We hypothesize that 

these remaining two strains were likely also mutants that have acquired undetected mutations in 

either the target gene or another complementary region of the genome, eliminating the auxotrophic 

phenotype to enable growth in the absence of amino acids. 

 

In the context of cross-feeding experiments, wherein individuals exhibiting different amino 

acid auxotrophies cross-feed these required amino acids among one another, rare escape mutants 

incur the added burden of synthesizing an additional amino acid, and should no longer be selected 

for. We hypothesized that the frequency of such mutants may be further reduced by co-expressing 

two crRNAs targeting amino acid biosynthetic genes, as the probability of acquiring mutations in 

both crRNA sequences is greatly reduced. To verify this, we constructed a strain expressing two 

CRISPR arrays (each encoding a crRNA for either arginine or histidine auxotrophy, as well as a 

crRNA for amino acid overproduction) in both the presence and absence of the repressilator. After 

pre-culturing these strains in minimal media supplemented with 100 M of arginine and histidine, 

we diluted each culture to an OD of 0.005 in minimal media lacking amino acids. Upon overnight 
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culturing, no visible growth was observed in our “double auxotrophic” strain expressing both 

CRISPR arrays in the absence of the repressilator, validating that co-expression of two crRNAs 

can induce a sustained auxotrophic phenotype (Table 3.1). Conversely, we observed growth in our 

control, as well as our “time-sharing” strain expressing both CRISPR arrays and the repressilator 

plasmid (Table 3.1). These preliminary data also suggest that the repressilator can induce dynamic 

switching between alternate auxotrophic states at the single-cell level, thereby fostering reciprocal 

cross-feeding between cells of a population.  

 

 

Table 3.1 Growth of auxotrophs in the presence and absence of the repressilator 

Strain Growth OD after 16 h growth at 37°C 

Control (expressing dCas12 only) + 1.904 

Double auxotroph –  0.006 

Time-sharing + 0.65 

 

 
 

3.4 Visualizing dynamic state-switching 
 

Efficient cross-feeding between members of a time-sharing population relies on single-cell 

oscillations in gene expression. Oscillations may be verified in individual cells using the “triple-

reporter repressilator,” which encodes three different fluorescence reporters (each under the control 

of a different repressilator-encoded promoter) alongside the classic circuit206. Oscillations may 

therefore be visualized as out-of-phase expression of these mVenus, CFP and mCherry reporter 

genes. To confirm that our time-sharing strains exhibit single-cell oscillations, we co-expressed 

our CRISPRi circuit that induces alternate amino acid production states with the triple-reporter 

repressilator and analyzed single-cell fluorescence. Cells were observed on agarose pads, and static 

mCherry, mVenus, and CFP intensity measurements were obtained for each cell and plotted on a 

3D scatterplot (Fig 3.6). Here, we observed the trend that single-cell fluorescence fell along one of 

the three axes, although variability in fluorescence intensity was observed. This suggests that one 

fluorophore primarily dominates the system within each cell at any given time, which is consistent 

with out-of-phase oscillations. As the dynamics of CRISPR array expression in our system are also 
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dictated by the repressilator, cells expressing different fluorescent proteins are indicative of cells 

occupying distinct metabolic states. 

 
 

 

                
 
 
3.5 Implications of metabolic time-sharing on population fitness 
 

While single-cell measurements are ideal for monitoring dynamic processes in individual 

cells over time, alternative methods are necessary to evaluate cooperative population-level 

behaviours such as reciprocal cross-feeding. In an exponentially-growing isogenic population 

expressing our time-sharing circuit, the repressilator is unsynchronized between individuals, thus 

creating distinct subpopulations of cells exhibiting different amino acid auxotrophy and 

overproduction phenotypes. Culturing in minimal media lacking amino acids therefore necessitates 

amino acid cross-feeding between subpopulations. Similarly, cross-feeding can be achieved in 

heterogeneous E. coli consortia composed of distinct strains of metabolic specialists. Here, we 

created heterogeneous co-cultures by inoculating minimal media with two distinct auxotrophic 

Figure 3.6 Using the triple reporter repressilator to observe state switching. Single-
cell mCherry, mVenus, and CFP intensities in fluorescence units (f.u.). The buffer 
preventing fluorescence intensity from reaching zero along any axis represents 
baseline autofluorescence in that channel. Each dot represents a single cell (n=222).  
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strains (each expressing CRISPRi machinery for sustained silencing of either an arginine or 

histidine biosynthetic gene) at identical initial densities. Segregating different amino acid 

auxotrophies into separate strains has been demonstrated to foster reciprocal cross-feeding15,42,205, 

but such heterogeneous consortia are susceptible to instability and competition between strains. To 

evaluate the utility of metabolic time-sharing, we compared the fitness of a time-sharing strain with 

that of a heterogeneous co-culture, each capable of cross-feeding essential amino acids in an 

environment devoid of the required nutrients (Fig 3.7). The fitness of these cross-feeding cultures 

were additionally compared with that of a “double auxotroph” unable to synthesize arginine or 

histidine, as well as a prototrophic control strain expressing only dCas12.  
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Figure 3.7 Fitness and growth of monocultures and co-cultures cross-feeding amino 
acids. (A) Schematic of the Viable Plate Count method used here to determine the 
fitnesses of cross-feeding co-cultures and time-sharing monocultures. (B) Fitness of 
cultures relative to a control strain expressing only dCas12 during 16 hours in 
minimal media lacking amino acids (n=3 experimental replicates; horizontal lines 
indicate the mean). The letter a indicates significant difference from a relative fitness 
of 1 (one-sample t-test, p< 0.05). (C) Growth of a prototrophic control, arginine and 
histidine double auxotroph, time-sharing strain, and cross-feeding co-culture in 
minimal media lacking amino acids. OD measurements were taken 5 minutes apart 
throughout a 24-hour experiment. Shaded areas represent the standard deviation of 
three replicates. (D) Doubling times of cultures in minimal media devoid of amino 
acids, derived from the growth rates observed in (B). Error bars denote the standard 
deviation between three replicates. An asterisk indicates a significant difference 
between two samples (two-sample t-test, p<0.05). 
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Firstly, the growth of each auxotrophic or cross-feeding culture was investigated using the 

Viable Plate Count (VPC) method, and the fitness of each was determined relative to the 

prototrophic control. Aliquots of cultures diluted to an initial OD of 0.005 were spread onto agar 

plates at the beginning and end of a 16-hour growth period, and the observed change in Colony 

Forming Units (CFU) per mL was used to estimate population growth rates (Figure 3.7A). The 

fitness of each culture relative to a prototrophic control strain was thus determined using the ratio 

of growth rates. Growth experiments revealed that the fitness’s of both the double auxotroph and 

the heterogeneous co-culture were significantly lower than that of the control strain. Although both 

cross-feeding cultures reached a lower maximum OD than that of the control, no statistical 

difference was found between the fitness’s of our time-sharing strain and the control. This 

observation provides preliminary evidence that metabolic time-sharing may be used to generate 

robust cross-feeding interactions capable of sustaining population growth (Fig 3.7B). Interestingly, 

the fitness of our time-sharing strain was found to be significantly higher than that of the 

heterogeneous co-culture, indicating that time-sharing may be a viable alternative to employing 

co-cultures for DOL.  

 

While VPCs are valuable for providing overall population growth rates, such end-point 

measurements are unable to capture dynamic growth characteristics. For this reason, we 

additionally monitored the growth of both cross-feeding cultures and controls in minimal media 

devoid of amino acids, recording OD measurements at 5-minute intervals over a 24-hour 

observation period. Such time-lapse data enabled the construction of growth curves for each 

culture, displaying characteristics such as the lag time prior to exponential phase. Similar to 

observations from VPC experiments, both cross-feeding cultures reached a lower maximum OD 

than the control (Fig 3.7C). Further, the double auxotrophic strain exhibited no calculable growth 

over the duration of the experiment while amino acid cross-feeding enabled the growth of both the 

time-sharing strain and heterogeneous co-culture in an environment devoid of amino acids (Fig 

3.7C). Doubling time estimations obtained using the observed slope of the log(OD) revealed that 

our time-sharing strain exhibited a significantly higher doubling time (and therefore slower growth 

rate) compared to a prototrophic control (Fig 3.7D). Though our time-sharing strain similarly 

exhibited a lower fitness than the control in the VPC experiments, the significance of this difference 

was not discerned by the VPC technique. However, no significant differences were observed 
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between the doubling times of the time-sharing population and heterogeneous co-culture, 

suggesting that our time-sharing method is comparable to traditional methods of engineering 

obligate cross-feeding interactions. These preliminary results provide evidence that engineered 

metabolic time-sharing has potential as a means of invoking cooperative population-level 

processes.  
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CHAPTER 4 
 
CONCLUSIONS AND FUTURE DIRECTIONS 
 

In this thesis, we present a versatile platform for generating dynamic shifts between distinct 

metabolic states in single E. coli cells using a hybrid circuit employing elements of CRISPR 

interference and the repressilator. The resultant heterogeneity between individual cells harbouring 

this “metabolic time-sharing” circuit enables cooperative population-level behaviours, such as 

reciprocal nutrient cross-feeding. In Chapter 2, we discussed the advantages and applications of 

single-cell monitoring and imaging techniques. Here, we highlighted the prominent “mother 

machine” microfluidic platform and related devices, which facilitate the tracking of thousands of 

individual cells in parallel under precisely controlled growth conditions. In Chapter 3, we employed 

a combination of endpoint and time-lapse techniques to characterize the phenotypes of individual 

cells, as well as whole populations, exhibiting metabolic time-sharing.  

 

While the classic repressilator circuit has been demonstrated to generate robust oscillations 

in reporter gene expression67, its applicability is limited to altering the expression dynamics of 

genes under control of the plac, ptet, or pR promoters encoded within the circuit. The repressilator 

alone is therefore ill-suited for orchestrating shifts between metabolic states, as extensive genetic 

modification would be required to place native metabolic genes under control of repressilator-

encoded promoters. Previous work has demonstrated oscillator circuits that utilize CRISPRi 

machinery to recapitulate the topology of the repressilator203,207. Rather than encoding three 

repressor proteins, these circuit variations encode three crRNAs, which each repress the expression 

of the subsequent crRNA in the circuit. Conversely, we express the original repressilator circuit in 

parallel with CRISPRi machinery, such that the repressilator dictates the dynamics of CRISPRi-

induced gene repression. Expressing multiple CRISPR arrays under the control of different 

repressilator-encoded promoters enables switching between distinct gene expression states. To our 

knowledge, this is the first synthetic oscillator circuit that couples host cell metabolism with 

CRISPRi to alternate between complementary metabolic states.  
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As proof-of-principle that this platform may be used to engineer cooperative behaviours, 

we adapted our metabolic time-sharing circuit to oscillate between distinct amino acid production 

states. Amino acid auxotrophies induced in one metabolic state are complemented by others, such 

that when a population of time-sharing cells is cultured, cells occupying different states at any 

given time are able to reciprocally cross-feed the required amino acids. This distribution of isogenic 

cells between three distinct states was visualized through the out-of-phase expression of three 

fluorophores encoded in the triple reporter repressilator.  

 

Time-trace data recording the OD of E. coli strains over a 45-hour experiment revealed the 

unexpected growth of histidine or arginine “auxotrophic” strains following a prolonged delay. As 

the cell growth medium was devoid of amino acids, this observation seemingly contradicted our 

hypothesis that our auxotrophic strains would only exhibit growth upon supplementation of the 

culture medium with the required amino acids. Upon further investigation, we identified mutations 

in two of the four crRNA sequences used to induce auxotrophy at the conclusion of a growth 

experiment. These mutations, which were sufficient to eliminate complementarity between crRNA 

and target gene, were not detected in the parent culture. As the variation was small between 

replicates monitored throughout the experiment, it is unlikely that these mutations were 

independently acquired in each replicate throughout the experiment. Rather, this data suggests the 

presence of low frequency “escape mutants” in the parent culture which, as the sole prototrophs in 

the culture, were selected for and became enriched over time under conditions lacking extracellular 

amino acids. The enrichment of these mutants in the population over time was captured using 

kinetic OD measurements, which track dynamic growth characteristics. To the contrary, endpoint 

OD measurements taken at the conclusion of the experiment would have solely reported growth of 

the “auxotrophic” strains, without capturing the initial prolonged lag phase that prompted further 

investigation.   

 

As these escape mutants are selected against under time-sharing conditions, due to the 

burden of synthesizing an additional amino acid compared to their cross-feeding counterparts, we 

hypothesize that escape mutants do not impact the observed growth and fitness of time-sharing 

populations. However, the prevalence of such mutants may be reduced in future work by employing 

an additional crRNA targeting each amino acid biosynthetic gene for silencing, as the likelihood 
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of cells within the parent population acquiring mutations in both crRNAs is greatly reduced. The 

efficacy of using two crRNAs was observed in our “double auxotroph” strain, which 

simultaneously expressed crRNAs targeting arginine and histidine biosynthetic genes, and 

consistently displayed no calculable growth during experiments. As the “no growth” phenotype 

relies on only one of these crRNAs to be functional, the likelihood of aberrant growth in this strain 

is greatly diminished. 

 

Employing alternative methods to measure population fitness yielded similar trends, 

although differences in statistical significance were detected. The results of VPC experiments 

suggest that our time-sharing strain alternating between amino acid auxotrophies exhibits higher 

fitness in minimal media than a heterogeneous co-culture of auxotrophic strains. However, 

measurements taken from time-lapse growth experiments indicate no significant fitness differences 

between time-sharing strains and co-cultures that cross-feed amino acids. These observations 

highlight the benefits of time-lapse tools for recording dynamic behaviours, such as population 

growth. While VPCs have been considered the “gold standard” for measuring population fitness208, 

this technique relies on endpoint measurements which mask defining growth characteristics, and 

is laborious, as it relies on the manual counting of CFUs. Furthermore, these results are inconsistent 

with one study that observed approximately a 20% increase in fitness of an arginine-histidine cross-

feeding co-culture compared to a wildtype control, although differences in the employed growth 

conditions may explain this disparity15. As this study primarily used VPC methods to estimate 

community fitness, the observed discrepancy may also be attributed to low countable numbers of 

CFUs that reduce the power of the technique. Alternatively, the expression of CRISPRi machinery 

in our system, which was not employed in the previous study may be responsible for this 

inconsistency, although further exploration of the burden associated with CRISPRi would be 

required to confirm this. Nevertheless, we can conclude that using our metabolic time-sharing 

system to engineer cooperative behaviours in E. coli populations provides a comparable fitness 

benefit as segregating the same cooperative interactions into heterogeneous co-cultures. 

 

A drawback of using multi-strain consortia for cross-feeding and other cooperative 

processes is the instability associated with co-culturing multiple strains within the same 

environment23,47,48. Conversely, the metabolic time-sharing method presented here is executed 
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within a single, isogenic population, thereby eliminating this disadvantage. To investigate the 

robustness of time-sharing populations, we suggest that the following experiment be included in 

future work. The metabolic time-sharing population should be adapted, such that each cell will 

alternate between being resistant to two distinct environmental stressors, such as the bactericidal 

antibiotics ampicillin and kanamycin. In parallel, a co-culture should be inoculated with two strains 

at identical starting densities: one resistant to ampicillin and the other resistant to kanamycin. 

Challenging both the co-culture and time-sharing population with one of the two stressors (i.e. 

ampicillin) is expected to create an initial population bottleneck in both cultures, as all cells not 

resistant to ampicillin at the time of exposure should be eliminated. However, the time-sharing 

population is expected to regenerate its diversity over time, as each individual cell carries the 

capacity to occupy both resistance states. Conversely, the co-culture should be unable to recover 

the ampicillin resistance phenotype, and would therefore have lost half of its diversity. This 

experiment would highlight the robustness of metabolic time-sharing in the face of environmental 

changes.  

 

The presented metabolic time-sharing platform has ideal applications in the biotechnology 

industry for the synthesis of valuable compounds and chemicals with complex biosynthetic 

pathways. We suggest that future work focus on the adaptation of our metabolic time-sharing 

circuit to the alternating expression of sequential pathway modules for compound production. 

Synthesis of the pigment violacein would be an ideal proof-of-concept to demonstrate the utility of 

this method for progressing through biological pathways, as its synthesis pathway has been 

extensively characterized, and the purple colour of the end product enables yield estimations 

through colorimetric assays209,210. Additionally, it has been reported that simultaneous expression 

of the entire violacein biosynthetic pathway imposes a metabolic burden on the host45. Adopting a 

metabolic time-sharing approach is therefore anticipated to lower the burden placed on host cells, 

as only one pathway module would be expressed at any given time, although this would require 

future work to validate. Potential migration of this circuit into yeast could expand the range of 

value-added compounds that may be synthesized using this method, but would require several 

adaptations. These include altering the CRISPRi setup to use a dCas enzyme fused to a Krüppel-

associated box (KRAB) domain for tight target gene repression211, reconstruction of the 
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repressilator to include eukaryotic transcriptional repressors, and ensuring the ability of 

transcription factors to enter the nucleus.  

 

Future directions could additionally focus on exploring the versatility of this metabolic 

time-sharing system. The MM microfluidic platform could be used to screen large repressilator 

libraries, with the aim of uncovering circuit variants with differing dynamic properties (i.e. period, 

amplitude). Bioproduction of specific compounds which require fixed ratios of time to be spent in 

each state could benefit from selecting a circuit with the ideal dynamics. Characterizing a plethora 

of circuits may therefore prove useful for tailoring this platform to a variety of applications. 

 

DOL is a powerful phenomenon which has enabled natural microbial communities to 

cooperatively perform complex metabolic tasks. Here, we present a platform to emulate this 

behaviour within genetically identical E. coli populations and evaluate its ability to introduce 

obligate cross-feeding interactions into a population. To the best of our knowledge, this is the first 

time this fundamental property of higher organisms is engineered and harnessed but we foresee 

widespread applications, such as DOL to synthesize valuable compounds with increased efficiency, 

by providing a new paradigm for synthetic communities.  
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CHAPTER 5 
 
MATERIALS AND METHODS 
 
5.1 Plasmid construction 
 

The plasmids described in this thesis were constructed using Gibson assembly and/or 

Golden Gate assembly, and are compiled in Table 5.1. Phusion high-fidelity DNA polymerase 

(New England Biolabs) or AccuPrime pfx DNA polymerase (Invitrogen) were used according to 

manufacturer specifications for PCR amplification of plasmid fragments or gBlocks (Integrated 

DNA Technologies). All primers and oligos were purchased from ThermoFisher Scientific. 

Plasmids were sequence-verified by Sanger sequencing (The Centre for Applied Genomics) or 

Oxford Nanopore sequencing (Plasmidsaurus). Golden Gate assemblies were performed in T4 

ligase buffer (New England Biolabs), using T4 DNA ligase (New England Biolabs) and BsmBI or 

BsaI type IIS restriction enzymes (New England Biolabs). All plasmids were assembled in 

Sigma10 cells (Sigma Aldrich) treated to be either chemically competent (using Transformation 

and Storage Solution (TSS)) or electrocompetent, and were subsequently transformed into the 

desired background strain following successful assembly.  

 

CRISPR arrays were cloned into a parent plasmid using the CRATES Golden Gate 

assembly method70. Each crRNA was designed with flanking appropriate BsmBI recognition sites 

and overhangs for array assembly, and purchased as a set of complementary single-stranded oligos. 

Oligos were annealed by mixing equimolar concentrations of each complementary single-stranded 

oligo in annealing buffer (10 mM Tris (pH 7.5-8.0), 1 mM EDTA (pH 8.0), 50 mM NaCl), heating 

to 95ºC for 5 mins, and gradually cooling down to room temperature over 1-2 hours. 

 

Plasmids pTP115 and pTP116 were constructed through restriction cloning. BamHI and 

EcoRI restriction sites were placed flanking the lac and tet promoter fragments, which were ordered 

as sets of single-stranded complementary oligos and annealed as described above. The pTP84 

vector backbone (gift of Chase Beisel70) was PCR amplified using primers that incorporate BamHI 

and EcoRI restriction sites into the amplified plasmid. The amplified plasmid and annealed 
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promoter sequences were digested by BamHI (New England Biolabs) and EcoRI-HF (New 

England Biolabs) according to manufacturer protocols. pTP115 and pTP116 were individually 

assembled by annealing one of the promoters into the digested backbone using T4 DNA ligase and 

its associated buffer (New England Biolabs).  

 

The promoter controlling dCas12 expression was swapped with Gibson assembly, using 

the NEBuilder HiFi DNA assembly mix (New England Biolabs). The araBAD promoter for 

arabinose-inducible dCas12 expression in pTP92 was derived from pZA16mflon (gift from James 

Collins212). The constitutive promoter sequence (pJ23100) used to drive dCas12 expression in 

pTP118 and pTP200 was taken from the EcoFlex MoClo kit for E. coli204, and its corresponding 

Ribosome Binding Site (RBS) was designed using the Salis Lab RBS calculator213. The pJ23100-

RBS sequence fragment was assembled using assembly PCR214 and assembled into the pJK506 

backbone. pTP200 was similarly constructed via Gibson assembly by swapping the SC101 origin 

of replication for the p15A origin, derived from pJS169 (gift from Jeff Hasty).  

 

pTP116 was generated by assembling a gBlock and kanamycin resistance cassette (derived 

from pTP26) into the psgRNA backbone. 
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Plasmid Parent Origin of 
Replication 

Antibiotic 
Resistance 

Genotype 

pFNCpf1
GG 

Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-dropout sfGFP 

pJS169 Gift of Jeff Hasty p15A Ampicillin para/lac-lacI-ssrA 

pJK506 Gift of Pamela 
Silver 

SC101 Chloramphenicol ptetR/tetA-dCas12, ptetR/tetA-
tetR, pA4-mVenus 

pLPT196  SC101 Ampicillin Repressilator, ptet-cI , plac- 
tetR, pR-lacI 

pLPT234  SC101 Ampicillin Triple reporter repressilator, 
ptet-cI, plac- tetR, pR-lacI, 
ptet-mVenus, plac- mSCFP3, 
pR-mKate2 

psgRNA Gift of David 
Bikard 

ColE1 Kanamycin pJ23119-gRNA scaffold 

pTP88 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-mVenus crRNA 1 

pTP89 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119- mVenus crRNA  2 

pTP90 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119- mVenus crRNA  3 

pTP92 Gift of Pamela 
Silver 

SC101 Chloramphenicol paraBAD-dCas12, pA4-mVenus 

pTP107 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-hisD crRNA 1 

pTP108 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-hisD crRNA 2 

pTP109 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-argH crRNA 1 

pTP110 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-argH crRNA 2 

pTP115 Gift of Chase 
Beisel 

ColE1 Ampicillin plac-dropout sfGFP 

Table 5.1 Plasmid list 
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pTP116 Gift of Chase 
Beisel 

ColE1 Ampicillin ptet-dropout sfGFP 

pTP118 Gift of Pamela 
Silver 

SC101 Chloramphenicol pJ23100-dCas12, pA4-mVenus 

pTP119 pTP115 ColE1 Ampicillin plac-mVenus crRNA 1 

pTP120 pTP116 ColE1 Ampicillin ptet-mVenus crRNA 1 

pTP125 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-hisD operon crRNA 1 

pTP126 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-hisD operon crRNA 2 

pTP127 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-argH operon crRNA 
1 

pTP128 Gift of Chase 
Beisel 

ColE1 Ampicillin pJ23119-argH operon crRNA 
2 

pTP141 pTP116 ColE1 Kanamycin ptet-dropout sfGFP, plac-
dropout mNeon green 

pTP162 pTP141 ColE1 Kanamycin ptet-argH crRNA 1-mdh 
crRNA 1, plac-hisD crRNA 1, 
ppc crRNA 1 

pTP200 pTP118 p15A Chloramphenicol pJ23100-dCas12 

pTP213 pTP115 ColE1 Ampicillin plac-his operon crRNA 1-ppc 
crRNA 1 

pTP214 pTP116 ColE1 Ampicillin ptet-arg operon crRNA 1-
mdh crRNA 1 

pZA16m
flon 

Gift of James 
Collins 

p15A Ampicillin paraBAD-mf lon 
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5.2 CRISPRi 
 

All crRNAs used in this thesis are listed in Table 5.2, and were designed using the 

CHOPCHOP tool215, with the exception of mVenus crRNA 1, which has been previously designed 

and validated to silence genes under control of the A4 promoter203. 

 

Targeted gene silencing was achieved through co-expression of one or more crRNAs with 

dCas12. Arabinose-inducible dCas12 cassettes were either induced overnight through the addition 

of 0.02%, 0.2% or 2% arabinose to the culture medium, or repressed by adding 2% glucose to the 

culture medium.  

 

 

crRNA Target gene Sequence (5’ to 3’) Target 
region 

Target 
strand* 

mVenus crRNA 1 mVenus CACCTCCACAACTAGCTGGT Promoter – strand 

mVenus crRNA 2 mVenus ACTGGAGTTGTCCCAATTCT ORF – strand 

mVenus crRNA 3 mVenus TGTCAGTGGAGAGGGTGAAG ORF – strand 

hisD crRNA 1 hisD ACCTAAACCACTTTCACGTT Promoter + strand 

hisD crRNA 2 hisD TTCAACTGATGTCTTTTAAC Promoter + strand 

hisD crRNA 3 hisD ACACAATCATTGACTGGAAT ORF – strand 

hisD crRNA 4 hisD CGCCTCTGAAAGCATTACCC ORF – strand 

argH crRNA 1 argH TTCATAAATACTGCATGAAT Promoter – strand 

argH crRNA 2 argH ATTGTTGACACACCTCTGGT Promoter – strand 

argH crRNA 3 argH CCCAGGCAGCAGATCAACGG ORF – strand 

argH crRNA 4 argH ATTACCGTCTGGCGGAGCAG ORF – strand 

mdh crRNA 1 mdh ACAGTAGTGCAAGCGCCTGG ORF – strand 

ppc crRNA 2 ppc CCGAGCATACTGACATTACT ORF – strand 
*“Target strand” indicates the strand that is complementary to the crRNA 
 
 

Table 5.2 crRNA list 
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5.3 Strain preparation and culturing 
 

The wildtype strain used was LPT370, a derivative of MG1655 (gifted by Mustafa 

Khammash216), and all strains used in this thesis are listed in Table 5.3. Strains were cultivated at 

37ºC in LB media (Fisher Scientific) for propagation, or M9 minimal media (1x M9 salts (Thermo), 

2 mM MgSO4, 0.001 mg/mL thiamine HCl, 0.4% glucose, 0.02 mg/mL uracil, 0.1 mM CaCl2) 

during growth experiments with the appropriate antibiotics.  

 
 

 
Strain Parent Genotype  Plasmids 

LPT370 MG1655 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

- 

TP96 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP85 

TP97 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP85, pTP88 

TP98 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP85, pTP89 

TP99 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP85, pTP90 

TP101 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP88, pTP92 

TP105 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP92 

TP121 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP85, pTP119 

TP122 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP85, pTP120 

TP133 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP118, pTP125 

TP134 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP118, pTP126 

Table 5.3 Strain list 
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TP135 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP118, pTP127 

TP136 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP118, pTP128 

TP137 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP88, pTP118 

TP138 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP118 

TP201 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP200 

TP202 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP200, 
pLPT196 

TP205 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP162, 
pTP200, 
pLPT196  

TP206 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP162, pTP200 

TP217 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP200, pTP213 

TP218 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP200, pTP214 

TP221 LPT370 ΔaraCBAD ΔlacIZYA ΔaraE ΔaraFGH 
attB::lacYA177C ΔrhaSRT ΔrhaBADM 

pTP162, 
pTP200, 
pLPT234 

 
 
5.4 Single-cell fluorescence measurements 
 

E. coli strains were grown overnight in LB medium prior to fluorescence measurements. 

The following morning, cultures were diluted 1:100 and grown another 2 hours at 37ºC. 1 𝜇L of 

diluted culture was pipetted onto an agar pad, and cells were observed using a Zeiss Axio Observer 

inverted microscope. An attached LED epifluorescence illuminator (Collibri 7) was used for 

fluorescence excitation, and emitted fluorescence was captured with an Orca Flash 4.0 LT camera 

(Hamamatsu).  
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5.5 Growth curves 
 

E. coli strains were pre-cultured overnight in LB media prior to growth experiments. The 

following morning, cultures were diluted 1:00 and grown another 2 hours at 37ºC. Diluted cultures 

were washed 3 times and resuspended in M9 minimal media lacking amino acids. Resuspended 

cultures were diluted to an OD 0.005 in M9 minimal media with or without 100 𝜇M of arginine or 

histidine. Co-cultures were created by inoculating M9 minimal media with two strains at a 1:1 

ratio, each at an initial OD of 0.025. 150 𝜇L of each culture was pipetted in triplicate into a 96-well 

plate (Greiner Bio-One) alongside a 150 𝜇L “blank” of M9 minimal media. OD was measured at 

5-minute intervals with continuous shaking at 282 cycles per minute using a Synergy H1 microplate 

reader (BioTek) set to 37ºC.  

 
 
5.6 VPC experiments 
 

Prior to the VPC experiment, E. coli strains were streaked onto LB plates supplemented 

with the appropriate antibiotics, and one isolated colony of each strain was cultured overnight at 

37ºC. The following morning, overnight cultures were diluted 1:50 and incubated for another 3 

hours at 37ºC prior to being washed 3 times and resuspended in M9 minimal media. Resuspended 

cultures were diluted to an OD of 0.005 at the start of the experiment, and were grown at 37ºC for 

16 hours. At the beginning (0-hour) and end (16-hour) of the experiment, 100 𝜇L was removed 

from each culture for 10-fold serial dilutions. 100 𝜇L of the 10-4, 10-5, and 10-6 dilutions were plated 

onto LB plates with the appropriate antibiotics at each timepoint. The number of CFUs on each 

plate after overnight growth at 37ºC were counted manually.  

 
 
5.7 Data analysis 
 
5.7.1 Single-cell fluorescence measurements 
 

Cells were manually segmented and fluorescence intensity values were determined using 

FIJI (Fiji Is Just ImageJ). All images were concatenated before adjusting image brightness and 

contrast. Each cell was manually selected and the maximum pixel intensity of each cell was 
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recorded. To remove autofluorescence, the mean intensity of a non-fluorescent control strain was 

subtracted from the intensities of each individual cell. The adjusted intensity of each cell was then 

divided by the mean intensity of a control strain constitutively expressing mVenus (relative 

expression value of “1”) to determine mVenus expression ratios. Violin plots were created using 

MATLAB (code provided by Bastian Bechtold).  

 
5.7.2 Growth experiments 
 

Changes in population OD over time were plotted using MATLAB (code provided by 

Giselle McCallum). Shaded error bars represent the standard deviation of three replicates, while 

the bolded lines represent the mean. Growth rate was determined by finding the slope of the linear 

region in a plot of log(OD) over time. Doubling time was calculated by dividing ln(2) by the 

determined growth rate.  

 
5.7.3 VPC experiments 
 

The observed change in CFU/mL was used to calculate the Malthusian parameter (M) as 

an estimation of population fitness (Equation 1). Relative fitness of a culture compared to a control 

was determined by the ratio of Malthusian parameters (Equation 2).  

 

                               𝑀 =  
𝑙𝑛(𝐶𝐹𝑈/𝑚𝐿 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝐶𝐹𝑈/𝑚𝐿 𝑎𝑡 𝑡𝑖𝑚𝑒 0)

𝑡𝑖𝑚𝑒 𝑡
                                             (Eqn 1) 

 

                               𝑅𝑒𝑙. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
𝑀(𝑠𝑡𝑟𝑎𝑖𝑛)

𝑀(𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
                                 (Eqn 2) 

 
 
  



 

 70 

CHAPTER 7 
 
REFERENCES 
 
1. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. 

Sci. U. S. A. 115, 6506–6511 (2018). 

2. Wright, C. J. et al. Microbial interactions in building of communities. Mol. Oral Microbiol. 

28, 83–101 (2013). 

3. Cordero, O. X. & Datta, M. S. Microbial interactions and community assembly at 

microscales. Curr. Opin. Microbiol. 31, 227–234 (2016). 

4. D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. 

Nat. Prod. Rep. 35, 455–488 (2018). 

5. Pierce, E. C. & Dutton, R. J. Putting microbial interactions back into community contexts. 

Curr. Opin. Microbiol. 65, 56–63 (2022). 

6. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. M. Local dispersal promotes 

biodiversity in a real-life game of rock–paper–scissors. Nature 418, 171–174 (2002). 

7. Kirkup, B. C. & Riley, M. A. Antibiotic-mediated antagonism leads to a bacterial game of 

rock–paper–scissors in vivo. Nature 428, 412–414 (2004). 

8. Ghoul, M. & Mitri, S. The Ecology and Evolution of Microbial Competition. Trends 

Microbiol. 24, 833–845 (2016). 

9. García-Bayona, L. & Comstock, L. E. Bacterial antagonism in host-associated microbial 

communities. Science 361, (2018). 

10. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving 

and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010). 

11. Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial 



 

 71 

communities. Nat. Commun. 2, 589 (2011). 

12. Ghosh, S., Chowdhury, R. & Bhattacharya, P. Mixed consortia in bioprocesses: role of 

microbial interactions. Appl. Microbiol. Biotechnol. 100, 4283–4295 (2016). 

13. Wintermute, E. H. & Silver, P. A. Dynamics in the mixed microbial concourse. Genes Dev. 

24, 2603–2614 (2010). 

14. Johnson, D. R., Goldschmidt, F., Lilja, E. E. & Ackermann, M. Metabolic specialization and 

the assembly of microbial communities. ISME J. 6, 1985–1991 (2012). 

15. Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon 

gene loss in bacteria. ISME J. 8, 953–962 (2013). 

16. Germerodt, S. et al. Pervasive Selection for Cooperative Cross-Feeding in Bacterial 

Communities. PLoS Comput. Biol. 12, e1004986 (2016). 

17. West, S. A. & Cooper, G. A. Division of labour in microorganisms: an evolutionary 

perspective. Nat. Rev. Microbiol. 14, 716–723 (2016). 

18. Zhang, Z., Claessen, D. & Rozen, D. E. Understanding Microbial Divisions of Labor. Front. 

Microbiol. 7, 2070 (2016). 

19. Tsoi, R. et al. Metabolic division of labor in microbial systems. Proceedings of the National 

Academy of Sciences 115, 2526–2531 (2018). 

20. Momeni, B. Division of Labor: How Microbes Split Their Responsibility. Current biology: 

CB vol. 28 R697–R699 (2018). 

21. Giri, S., Waschina, S., Kaleta, C. & Kost, C. Defining Division of Labor in Microbial 

Communities. J. Mol. Biol. 431, 4712–4731 (2019). 

22. Rossetti, V., Schirrmeister, B. E., Bernasconi, M. V. & Bagheri, H. C. The evolutionary path 

to terminal differentiation and division of labor in cyanobacteria. J. Theor. Biol. 262, 23–34 

(2010). 



 

 72 

23. Roell, G. W. et al. Engineering microbial consortia by division of labor. Microb. Cell Fact. 

18, 35 (2019). 

24. Smith, C. R., Toth, A. L., Suarez, A. V. & Robinson, G. E. Genetic and genomic analyses of 

the division of labour in insect societies. Nat. Rev. Genet. 9, 735–748 (2008). 

25. Gordon, D. M. From division of labor to the collective behavior of social insects. Behav. 

Ecol. Sociobiol. 70, 1101–1108 (2016). 

26. Kirk, D. L. Seeking the ultimate and proximate causes of volvox multicellularity and cellular 

differentiation. Integr. Comp. Biol. 43, 247–253 (2003). 

27. Kirk, D. L. A twelve-step program for evolving multicellularity and a division of labor. 

Bioessays 27, 299–310 (2005). 

28. Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification? Trends 

Microbiol. 14, 213–219 (2006). 

29. Schmidt, E. L. Nitrification in Soil. in Nitrogen in Agricultural Soils 253–288 (American 

Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 

2015). 

30. Schink, B. & Pfennig, N. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. 

nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133, 

195–201 (1982). 

31. Shou, W., Ram, S. & Vilar, J. M. G. Synthetic cooperation in engineered yeast populations. 

Proceedings of the National Academy of Sciences 104, 1877–1882 (2007). 

32. Goyal, G., Tsai, S.-L., Madan, B., DaSilva, N. A. & Chen, W. Simultaneous cell growth and 

ethanol production from cellulose by an engineered yeast consortium displaying a functional 

mini-cellulosome. Microb. Cell Fact. 10, 89 (2011). 

33. Argyros D. Aaron et al. High Ethanol Titers from Cellulose by Using Metabolically 



 

 73 

Engineered Thermophilic, Anaerobic Microbes. Appl. Environ. Microbiol. 77, 8288–8294 

(2011). 

34. Xia, T., Eiteman, M. A. & Altman, E. Simultaneous utilization of glucose, xylose and 

arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb. Cell 

Fact. 11, 77 (2012). 

35. Zuroff, T. R., Xiques, S. B. & Curtis, W. R. Consortia-mediated bioprocessing of cellulose 

to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol. 

Biofuels 6, 59 (2013). 

36. Trinh Cong T., Unrean Pornkamol & Srienc Friedrich. Minimal Escherichia coli Cell for the 

Most Efficient Production of Ethanol from Hexoses and Pentoses. Appl. Environ. Microbiol. 

74, 3634–3643 (2008). 

37. Bokinsky, G. et al. Synthesis of three advanced biofuels from ionic liquid-pretreated 

switchgrass using engineered Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 108, 19949–

19954 (2011). 

38. Den Haan, R., Rose, S. H., Lynd, L. R. & van Zyl, W. H. Hydrolysis and fermentation of 

amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9, 87–94 

(2007). 

39. Olson, D. G., McBride, J. E., Shaw, A. J. & Lynd, L. R. Recent progress in consolidated 

bioprocessing. Curr. Opin. Biotechnol. 23, 396–405 (2012). 

40. Minty, J. J. et al. Design and characterization of synthetic fungal-bacterial consortia for 

direct production of isobutanol from cellulosic biomass. Proceedings of the National 

Academy of Sciences 110, 14592–14597 (2013). 

41. Atkinson, E., Tuza, Z., Perrino, G., Stan, G.-B. & Ledesma-Amaro, R. Resource-aware 

whole-cell model of division of labour in a microbial consortium for complex-substrate 



 

 74 

degradation. Microb. Cell Fact. 21, 115 (2022). 

42. Pande, S. et al. Privatization of cooperative benefits stabilizes mutualistic cross-feeding 

interactions in spatially structured environments. ISME J. 10, 1413–1423 (2015). 

43. Du, J., Shao, Z. & Zhao, H. Engineering microbial factories for synthesis of value-added 

products. J. Ind. Microbiol. Biotechnol. 38, 873–890 (2011). 

44. Jawed, K., Yazdani, S. S. & Koffas, M. A. G. Advances in the development and application 

of microbial consortia for metabolic engineering. Metabolic Engineering Communications 9, 

e00095 (2019). 

45. Guan, Y. et al. Mitigating Host Burden of Genetic Circuits by Engineering Autonegatively 

Regulated Parts and Improving Functional Prediction. ACS Synth. Biol. 11, 2361–2371 

(2022). 

46. Weber, C. et al. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol 

and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl. 

Environ. Microbiol. 78, 8421–8430 (2012). 

47. Zhang, H., Li, Z., Pereira, B. & Stephanopoulos, G. Engineering E. coli-E. coli cocultures 

for production of muconic acid from glycerol. Microb. Cell Fact. 14, 134 (2015). 

48. Zhang, H., Pereira, B., Li, Z. & Stephanopoulos, G. Engineering Escherichia coli coculture 

systems for the production of biochemical products. Proceedings of the National Academy of 

Sciences 112, 8266–8271 (2015). 

49. Zhang, H. & Stephanopoulos, G. Co-culture engineering for microbial biosynthesis of 3-

amino-benzoic acid in Escherichia coli. Biotechnol. J. 11, 981–987 (2016). 

50. Lindemann, S. R. et al. Engineering microbial consortia for controllable outputs. ISME J. 10, 

2077–2084 (2016). 

51. Chen, T. et al. Development and optimization of a microbial co-culture system for 



 

 75 

heterologous indigo biosynthesis. Microb. Cell Fact. 20, 154 (2021). 

52. Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway 

among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 

377–383 (2015). 

53. Wang, X., Policarpio, L., Prajapati, D., Li, Z. & Zhang, H. Developing E. coli-E. coli co-

cultures to overcome barriers of heterologous tryptamine biosynthesis. Metabolic 

Engineering Communications 10, e00110 (2020). 

54. Draths, K. M. & Frost, J. W. Environmentally compatible synthesis of adipic acid from D-

glucose. J. Am. Chem. Soc. 116, 399–400 (1994). 

55. Park, J. et al. Molecular Time Sharing through Dynamic Pulsing in Single Cells. cels 6, 216-

229.e15 (2018). 

56. Rosenthal, A. Z. et al. Metabolic interactions between dynamic bacterial subpopulations. 

Elife 7, (2018). 

57. Flores, E. & Herrero, A. Compartmentalized function through cell differentiation in 

filamentous cyanobacteria. Nat. Rev. Microbiol. 8, 39–50 (2009). 

58. Stal, L. J. & Krumbein, W. E. Temporal separation of nitrogen fixation and photosynthesis 

in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. Arch. Microbiol. 149, 

76–80 (1987). 

59. Gaudana, S. B. et al. Rhythmic and sustained oscillations in metabolism and gene expression 

of Cyanothece sp. ATCC 51142 under constant light. Front. Microbiol. 4, 374 (2013). 

60. Cohen, S. E. & Golden, S. S. Circadian Rhythms in Cyanobacteria. Microbiol. Mol. Biol. 

Rev. 79, 373–385 (2015). 

61. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic Gene Expression in a 

Single Cell. Science 297, 1183–1186 (2002). 



 

 76 

62. Paulsson, J. Models of stochastic gene expression. Phys. Life Rev. 2, 157–175 (2005). 

63. Raj, A. & van Oudenaarden, A. Nature, Nurture, or Chance: Stochastic Gene Expression and 

Its Consequences. Cell 135, 216–226 (2008). 

64. Sampaio, N. M. V., Blassick, C. M., Andreani, V., Lugagne, J.-B. & Dunlop, M. J. Dynamic 

gene expression and growth underlie cell-to-cell heterogeneity in Escherichia coli stress 

response. Proceedings of the National Academy of Sciences 119, e2115032119 (2022). 

65. McCallum, G. & Potvin-Trottier, L. Using Models to (Re-)Design Synthetic Circuits. 

Methods Mol. Biol. 2229, 91–118 (2021). 

66. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in 

Escherichia coli. Nature 403, 339–342 (2000). 

67. Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. & Paulsson, J. Synchronous long-term 

oscillations in a synthetic gene circuit. Nature 538, 514–517 (2016). 

68. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene 

expression. Nat. Protoc. 8, 2180–2196 (2013). 

69. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. 

Nature 403, 335–338 (2000). 

70. Liao, C. et al. Modular one-pot assembly of CRISPR arrays enables library generation and 

reveals factors influencing crRNA biogenesis. Nat. Commun. 10, 1–14 (2019). 

71. Zhang, X. et al. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discovery 3, 1–9 

(2017). 

72. Meliawati, M., Schilling, C. & Schmid, J. Recent advances of Cas12a applications in 

bacteria. Appl. Microbiol. Biotechnol. 105, 2981–2990 (2021). 

73. Miao, C., Zhao, H., Qian, L. & Lou, C. Systematically investigating the key features of the 

DNase deactivated Cpf1 for tunable transcription regulation in prokaryotic cells. Synthetic 



 

 77 

and Systems Biotechnology 4, 1–9 (2019). 

74. Hawkins, J. S., Wong, S., Peters, J. M., Almeida, R. & Qi, L. S. Targeted Transcriptional 

Repression in Bacteria Using CRISPR Interference (CRISPRi). Methods Mol. Biol. 1311, 

349–362 (2015). 

75. Vigouroux, A., Oldewurtel, E., Cui, L., Bikard, D. & van Teeffelen, S. Tuning dCas9’s 

ability to block transcription enables robust, noiseless knockdown of bacterial genes. Mol. 

Syst. Biol. 14, e7899 (2018). 

76. Fontana, J., Dong, C., Ham, J. Y., Zalatan, J. G. & Carothers, J. M. Regulated Expression of 

sgRNAs Tunes CRISPRi in E. coli. Biotechnol. J. 13, e1800069 (2018). 

77. Rousset, F. et al. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes 

and phage host factors. PLoS Genet. 14, e1007749 (2018). 

78. Depardieu, F. & Bikard, D. Gene silencing with CRISPRi in bacteria and optimization of 

dCas9 expression levels. Methods 172, 61–75 (2020). 

79. Cui, L. et al. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat. 

Commun. 9, 1–10 (2018). 

80. Zhang, S. & Voigt, C. A. Engineered dCas9 with reduced toxicity in bacteria: implications 

for genetic circuit design. Nucleic Acids Res. 46, 11115–11125 (2018). 

81. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor 

RNase III. Nature 471, 602–607 (2011). 

82. Wang, P. et al. Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010). 

83. Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. & Kovács, Á. T. Bacillus subtilis 

biofilm formation and social interactions. Nat. Rev. Microbiol. 19, 600–614 (2021). 

84. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile 

bacterial populations at single-cell resolution. Science 373, eabi4882 (2021). 



 

 78 

85. Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, Epigenetics, and Bet-Hedging in 

Bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008). 

86. Morawska, L. P., Hernandez-Valdes, J. A. & Kuipers, O. P. Diversity of bet-hedging 

strategies in microbial communities-Recent cases and insights. WIREs Mech Dis 14, e1544 

(2022). 

87. Karaayvaz, M. et al. Unravelling subclonal heterogeneity and aggressive disease states in 

TNBC through single-cell RNA-seq. Nat. Commun. 9, 3588 (2018). 

88. Kinker, G. S. et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular 

heterogeneity. Nat. Genet. 52, 1208–1218 (2020). 

89. Peyrusson, F. et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. 

Nat. Commun. 11, 2200 (2020). 

90. Young, J. W. et al. Measuring single-cell gene expression dynamics in bacteria using 

fluorescence time-lapse microscopy. Nat. Protoc. 7, 80–88 (2011). 

91. Moffitt, J. R., Lee, J. B. & Cluzel, P. The single-cell chemostat: an agarose-based, 

microfluidic device for high-throughput, single-cell studies of bacteria and bacterial 

communities. Lab Chip 12, 1487–1494 (2012). 

92. Hardo, G. & Bakshi, S. Challenges of analysing stochastic gene expression in bacteria using 

single-cell time-lapse experiments. Essays Biochem. 65, 67–79 (2021). 

93. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a 

phenotypic switch. Science 305, 1622–1625 (2004). 

94. Cookson, S., Ostroff, N., Pang, W. L., Volfson, D. & Hasty, J. Monitoring dynamics of 

single-cell gene expression over multiple cell cycles. Mol. Syst. Biol. 1, 2005.0024 (2005). 

95. Ullman, G. et al. High-throughput gene expression analysis at the level of single proteins 

using a microfluidic turbidostat and automated cell tracking. Philos. Trans. R. Soc. Lond. B 



 

 79 

Biol. Sci. 368, 20120025 (2013). 

96. Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of 

genetic clocks. Nature 463, 326–330 (2010). 

97. Prindle, A. et al. A sensing array of radically coupled genetic ‘biopixels.’ Nature 481, 39–44 

(2011). 

98. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–

85 (2016). 

99. Scott, S. R. & Hasty, J. Quorum Sensing Communication Modules for Microbial Consortia. 

ACS Synth. Biol. 5, 969–977 (2016). 

100. Miano, A., Liao, M. J. & Hasty, J. Inducible cell-to-cell signaling for tunable dynamics in 

microbial communities. Nat. Commun. 11, 1–8 (2020). 

101. Balleza, E., Kim, J. M. & Cluzel, P. Systematic characterization of maturation time of 

fluorescent proteins in living cells. Nat. Methods 15, 47–51 (2017). 

102. Weibel, D. B., Diluzio, W. R. & Whitesides, G. M. Microfabrication meets microbiology. 

Nat. Rev. Microbiol. 5, 209–218 (2007). 

103. Hol, F. J. H. & Dekker, C. Zooming in to see the bigger picture: microfluidic and 

nanofabrication tools to study bacteria. Science 346, 1251821 (2014). 

104. Eland, L. E., Wipat, A., Lee, S., Park, S. & Wu, L. J. Chapter 3 - Microfluidics for bacterial 

imaging. in Methods in Microbiology (eds. Harwood, C. & Jensen, G. J.) vol. 43 69–111 

(Academic Press, 2016). 

105. Yang, Y., Song, X. & Lindner, A. B. Chapter 2 - Time-lapse microscopy and image analysis 

of Escherichia coli cells in mother machines. in Methods in Microbiology (eds. Harwood, C. 

& Jensen, G. J.) vol. 43 49–68 (Academic Press, 2016). 

106. Bennett, M. R. & Hasty, J. Microfluidic devices for measuring gene network dynamics in 



 

 80 

single cells. Nat. Rev. Genet. 10, 628–638 (2009). 

107. Wessel, A. K., Hmelo, L., Parsek, M. R. & Whiteley, M. Going local: technologies for 

exploring bacterial microenvironments. Nat. Rev. Microbiol. 11, 337–348 (2013). 

108. Vasdekis, A. E. & Stephanopoulos, G. Review of methods to probe single cell metabolism 

and bioenergetics. Metab. Eng. 27, 115–135 (2015). 

109. Potvin-Trottier, L., Luro, S. & Paulsson, J. Microfluidics and single-cell microscopy to study 

stochastic processes in bacteria. Curr. Opin. Microbiol. 43, 186–192 (2018). 

110. Scheler, O., Postek, W. & Garstecki, P. Recent developments of microfluidics as a tool for 

biotechnology and microbiology. Curr. Opin. Biotechnol. 55, 60–67 (2019). 

111. Yang, D., Jennings, A. D., Borrego, E., Retterer, S. T. & Männik, J. Analysis of Factors 

Limiting Bacterial Growth in PDMS Mother Machine Devices. Front. Microbiol. 9, 871 

(2018). 

112. Kaiser, M. et al. Monitoring single-cell gene regulation under dynamically controllable 

conditions with integrated microfluidics and software. Nat. Commun. 9, 212 (2018). 

113. Kamande, J. W., Wang, Y. & Taylor, A. M. Cloning SU8 silicon masters using epoxy resins 

to increase feature replicability and production for cell culture devices. Biomicrofluidics 9, 

036502 (2015). 

114. Cabeen, M. T. & Losick, R. Single-cell Microfluidic Analysis of Bacillus subtilis. J. Vis. 

Exp. (2018) doi:10.3791/56901. 

115. Paintdakhi, A. et al. Oufti: an integrated software package for high-accuracy, high-

throughput quantitative microscopy analysis. Mol. Microbiol. 99, 767–777 (2016). 

116. Sachs, C. C. et al. Image-Based Single Cell Profiling: High-Throughput Processing of 

Mother Machine Experiments. PLoS One 11, e0163453 (2016). 

117. Ollion, J., Elez, M. & Robert, L. High-throughput detection and tracking of cells and 



 

 81 

intracellular spots in mother machine experiments. Nat. Protoc. 14, 3144–3161 (2019). 

118. Smith, A., Metz, J. & Pagliara, S. MMHelper: An automated framework for the analysis of 

microscopy images acquired with the mother machine. Sci. Rep. 9, 10123 (2019). 

119. Lugagne, J.-B., Lin, H. & Dunlop, M. J. DeLTA: Automated cell segmentation, tracking, 

and lineage reconstruction using deep learning. PLoS Comput. Biol. 16, e1007673 (2020). 

120. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical 

Image Segmentation. in Medical Image Computing and Computer-Assisted Intervention – 

MICCAI 2015 234–241 (Springer International Publishing, 2015). 

121. Ollion, J. & Ollion, C. DistNet: Deep Tracking by Displacement Regression: Application to 

Bacteria Growing in the Mother Machine. in Medical Image Computing and Computer 

Assisted Intervention – MICCAI 2020: 23rd International Conference, Lima, Peru, October 

4–8, 2020, Proceedings, Part V 215–225 (Springer-Verlag, 2020). 

122. Julou, T., Zweifel, L., Blank, D., Fiori, A. & van Nimwegen, E. Subpopulations of 

sensorless bacteria drive fitness in fluctuating environments. PLoS Biol. 18, e3000952 

(2020). 

123. Bakshi, S. et al. Tracking bacterial lineages in complex and dynamic environments with 

applications for growth control and persistence. Nat Microbiol 6, 783–791 (2021). 

124. Lawson, M. J. et al. In situ genotyping of a pooled strain library after characterizing complex 

phenotypes. Mol. Syst. Biol. 13, 947 (2017). 

125. Camsund, D. et al. Time-resolved imaging-based CRISPRi screening. Nat. Methods 17, 86–

92 (2020). 

126. Luro, S., Potvin-Trottier, L., Okumus, B. & Paulsson, J. Isolating live cells after high-

throughput, long-term, time-lapse microscopy. Nat. Methods 17, 93–100 (2020). 

127. Norman, T. M., Lord, N. D., Paulsson, J. & Losick, R. Memory and modularity in cell-fate 



 

 82 

decision making. Nature 503, 481–486 (2013). 

128. Darnell, C. L. et al. The Ribbon-Helix-Helix Domain Protein CdrS Regulates the Tubulin 

Homolog ftsZ2 To Control Cell Division in Archaea. MBio 11, (2020). 

129. Nakaoka, H. & Wakamoto, Y. Aging, mortality, and the fast growth trade-off of 

Schizosaccharomyces pombe. PLoS Biol. 15, e2001109 (2017). 

130. Li, Y. et al. Multigenerational silencing dynamics control cell aging. Proc. Natl. Acad. Sci. 

U. S. A. 114, 11253–11258 (2017). 

131. Ryley, J. & Pereira-Smith, O. M. Microfluidics device for single cell gene expression 

analysis in Saccharomyces cerevisiae. Yeast 23, 1065–1073 (2006). 

132. Crane, M. M., Clark, I. B. N., Bakker, E., Smith, S. & Swain, P. S. A microfluidic system for 

studying ageing and dynamic single-cell responses in budding yeast. PLoS One 9, e100042 

(2014). 

133. Jo, M. C., Liu, W., Gu, L., Dang, W. & Qin, L. High-throughput analysis of yeast replicative 

aging using a microfluidic system. Proc. Natl. Acad. Sci. U. S. A. 112, 9364–9369 (2015). 

134. Durán, D. C. et al. Slipstreaming Mother Machine: A Microfluidic Device for Single-Cell 

Dynamic Imaging of Yeast. Micromachines (Basel) 12, (2020). 

135. Lee, S. S., Avalos Vizcarra, I., Huberts, D. H. E. W., Lee, L. P. & Heinemann, M. Whole 

lifespan microscopic observation of budding yeast aging through a microfluidic dissection 

platform. Proc. Natl. Acad. Sci. U. S. A. 109, 4916–4920 (2012). 

136. Xie, Z. et al. Molecular phenotyping of aging in single yeast cells using a novel microfluidic 

device. Aging Cell 11, 599–606 (2012). 

137. Zhang, Y. et al. Single cell analysis of yeast replicative aging using a new generation of 

microfluidic device. PLoS One 7, e48275 (2012). 

138. Angert, E. R. Alternatives to binary fission in bacteria. Nat. Rev. Microbiol. 3, 214–224 



 

 83 

(2005). 

139. Facchetti, G., Chang, F. & Howard, M. Controlling cell size through sizer mechanisms. Curr 

Opin Syst Biol 5, 86–92 (2017). 

140. Voorn, W. J. & Koppes, L. J. Skew or third moment of bacterial generation times. Arch. 

Microbiol. 169, 43–51 (1998). 

141. Amir, A. Cell Size Regulation in Bacteria. Phys. Rev. Lett. 112, 208102 (2014). 

142. Campos, M. et al. A constant size extension drives bacterial cell size homeostasis. Cell 159, 

1433–1446 (2014). 

143. Wallden, M., Fange, D., Lundius, E. G., Baltekin, Ö. & Elf, J. The Synchronization of 

Replication and Division Cycles in Individual E. coli Cells. Cell 166, 729–739 (2016). 

144. Taheri-Araghi, S. et al. Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–

391 (2015). 

145. Sauls, J. T. et al. Control of Bacillus subtilis Replication Initiation during Physiological 

Transitions and Perturbations. MBio 10, (2019). 

146. Si, F. et al. Mechanistic Origin of Cell-Size Control and Homeostasis in Bacteria. Curr. Biol. 

29, 1760-1770.e7 (2019). 

147. Witz, G., van Nimwegen, E. & Julou, T. Initiation of chromosome replication controls both 

division and replication cycles in E. coli through a double-adder mechanism. Elife 8, (2019). 

148. Nieto, C., Arias-Castro, J., Sánchez, C., Vargas-García, C. & Pedraza, J. M. Unification of 

cell division control strategies through continuous rate models. Phys Rev E 101, 022401 

(2020). 

149. Ho, P.-Y. & Amir, A. Simultaneous regulation of cell size and chromosome replication in 

bacteria. Front. Microbiol. 6, 662 (2015). 

150. Micali, G., Grilli, J., Osella, M. & Lagomarsino, M. C. Concurrent processes set E. coli cell 



 

 84 

division. Science Advances 4, eaau3324 (2018). 

151. Le Treut, G., Si, F., Li, D. & Jun, S. Quantitative Examination of Five Stochastic Cell-Cycle 

and Cell-Size Control Models for Escherichia coli and Bacillus subtilis. Front. Microbiol. 

12, 721899 (2021). 

152. Gordo, I., Perfeito, L. & Sousa, A. Fitness effects of mutations in bacteria. J. Mol. Microbiol. 

Biotechnol. 21, 20–35 (2011). 

153. Tomanek, I. et al. Gene amplification as a form of population-level gene expression 

regulation. Nat Ecol Evol 4, 612–625 (2020). 

154. Robert, L. et al. Mutation dynamics and fitness effects followed in single cells. Science 359, 

1283–1286 (2018). 

155. Robert, L., Ollion, J. & Elez, M. Real-time visualization of mutations and their fitness 

effects in single bacteria. Nat. Protoc. 14, 3126–3143 (2019). 

156. Wiktor, J. et al. RecA finds homologous DNA by reduced dimensionality search. Nature 

597, 426–429 (2021). 

157. Uphoff, S. et al. Stochastic activation of a DNA damage response causes cell-to-cell 

mutation rate variation. Science 351, 1094–1097 (2016). 

158. Uphoff, S. Real-time dynamics of mutagenesis reveal the chronology of DNA repair and 

damage tolerance responses in single cells. Proc. Natl. Acad. Sci. U. S. A. 115, E6516–

E6525 (2018). 

159. Vincent, M. S. & Uphoff, S. Cellular heterogeneity in DNA alkylation repair increases 

population genetic plasticity. Nucleic Acids Res. 49, 12320–12331 (2021). 

160. Moger-Reischer, R. Z. & Lennon, J. T. Publisher Correction: Microbial ageing and 

longevity. Nat. Rev. Microbiol. 17, 716 (2019). 

161. Knorre, D. A., Azbarova, A. V., Galkina, K. V., Feniouk, B. A. & Severin, F. F. Replicative 



 

 85 

aging as a source of cell heterogeneity in budding yeast. Mech. Ageing Dev. 176, 24–31 

(2018). 

162. Proenca, A. M., Rang, C. U., Buetz, C., Shi, C. & Chao, L. Age structure landscapes emerge 

from the equilibrium between aging and rejuvenation in bacterial populations. Nat. Commun. 

9, 3722 (2018). 

163. Bergmiller, T. et al. Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies 

long-lived phenotypic heterogeneity. Science 356, 311–315 (2017). 

164. Mäkelä, J., Uphoff, S. & Sherratt, D. J. Nonrandom segregation of sister chromosomes by 

Escherichia coli MukBEF. Proceedings of the National Academy of Sciences 118, 

e2022078118 (2021). 

165. Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J. & Taddei, F. Asymmetric 

segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc. 

Natl. Acad. Sci. U. S. A. 105, 3076–3081 (2008). 

166. Proenca, A. M., Rang, C. U., Qiu, A., Shi, C. & Chao, L. Cell aging preserves cellular 

immortality in the presence of lethal levels of damage. PLoS Biol. 17, e3000266 (2019). 

167. Łapińska, U., Glover, G., Capilla-Lasheras, P., Young, A. J. & Pagliara, S. Bacterial ageing 

in the absence of external stressors. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180442 

(2019). 

168. Landgraf, D., Okumus, B., Chien, P., Baker, T. A. & Paulsson, J. Segregation of molecules 

at cell division reveals native protein localization. Nat. Methods 9, 480–482 (2012). 

169. Govers, S. K., Mortier, J., Adam, A. & Aertsen, A. Protein aggregates encode epigenetic 

memory of stressful encounters in individual Escherichia coli cells. PLoS Biol. 16, e2003853 

(2018). 

170. Kim, J. M., Garcia-Alcala, M., Balleza, E. & Cluzel, P. Stochastic transcriptional pulses 



 

 86 

orchestrate flagellar biosynthesis in Escherichia coli. Science Advances 6, eaax0947 (2020). 

171. Patange, O. et al. Escherichia coli can survive stress by noisy growth modulation. Nat. 

Commun. 9, 5333 (2018). 

172. Locke, J. C. W., Young, J. W., Fontes, M., Hernández Jiménez, M. J. & Elowitz, M. B. 

Stochastic pulse regulation in bacterial stress response. Science 334, 366–369 (2011). 

173. Jones, E. C. & Uphoff, S. Single-molecule imaging of LexA degradation in Escherichia coli 

elucidates regulatory mechanisms and heterogeneity of the SOS response. Nat Microbiol 6, 

981–990 (2021). 

174. Cabeen, M. T., Russell, J. R., Paulsson, J. & Losick, R. Use of a microfluidic platform to 

uncover basic features of energy and environmental stress responses in individual cells of 

Bacillus subtilis. PLoS Genet. 13, e1006901 (2017). 

175. Schwall, C. P. et al. Tunable phenotypic variability through an autoregulatory alternative 

sigma factor circuit. Mol. Syst. Biol. 17, e9832 (2021). 

176. Lord, N. D. et al. Stochastic antagonism between two proteins governs a bacterial cell fate 

switch. Science 366, 116–120 (2019). 

177. Russell, J. R., Cabeen, M. T., Wiggins, P. A., Paulsson, J. & Losick, R. Noise in a 

phosphorelay drives stochastic entry into sporulation in Bacillus subtilis. EMBO J. 36, 2856–

2869 (2017). 

178. Aslam, B. et al. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11, 

1645–1658 (2018). 

179. Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. 

Rev. Microbiol. 17, 441–448 (2019). 

180. Goode, O. et al. Persister Escherichia coli Cells Have a Lower Intracellular pH than 

Susceptible Cells but Maintain Their pH in Response to Antibiotic Treatment. MBio 12, 



 

 87 

e0090921 (2021). 

181. Manuse, S. et al. Bacterial persisters are a stochastically formed subpopulation of low-

energy cells. PLoS Biol. 19, e3001194 (2021). 

182. Goode, O. et al. Heterologous Protein Expression Favors the Formation of Protein 

Aggregates in Persister and Viable but Nonculturable Bacteria. ACS Infect Dis 7, 1848–1858 

(2021). 

183. Baltekin, Ö., Boucharin, A., Tano, E., Andersson, D. I. & Elf, J. Antibiotic susceptibility 

testing in less than 30 min using direct single-cell imaging. Proc. Natl. Acad. Sci. U. S. A. 

114, 9170–9175 (2017). 

184. Cama, J. et al. Single-cell microfluidics facilitates the rapid quantification of antibiotic 

accumulation in Gram-negative bacteria. Lab Chip 20, 2765–2775 (2020). 

185. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 

(2008). 

186. Lezia, A., Csicsery, N. & Hasty, J. Design, mutate, screen: Multiplexed creation and arrayed 

screening of synchronized genetic clocks. Cell Syst 13, 365-375.e5 (2022). 

187. Niederholtmeyer, H. et al. Rapid cell-free forward engineering of novel genetic ring 

oscillators. Elife 4, e09771 (2015). 

188. Zhang, F. et al. Independent control of amplitude and period in a synthetic oscillator circuit 

with modified repressilator. Commun Biol 5, 23 (2022). 

189. Lugagne, J.-B. et al. Balancing a genetic toggle switch by real-time feedback control and 

periodic forcing. Nat. Commun. 8, 1671 (2017). 

190. Cooper, R. M., Tsimring, L. & Hasty, J. Inter-species population dynamics enhance 

microbial horizontal gene transfer and spread of antibiotic resistance. Elife 6, e25950 (2017). 

191. Pearl Mizrahi, S., Gefen, O., Simon, I. & Balaban, N. Q. Persistence to anti-cancer 



 

 88 

treatments in the stationary to proliferating transition. Cell Cycle 15, 3442–3453 (2016). 

192. Seita, A., Nakaoka, H., Okura, R. & Wakamoto, Y. Intrinsic growth heterogeneity of mouse 

leukemia cells underlies differential susceptibility to a growth-inhibiting anticancer drug. 

PLoS One 16, e0236534 (2021). 

193. Huang, S. Non-genetic heterogeneity of cells in development: more than just noise. 

Development 136, 3853–3862 (2009). 

194. Jolly, M. K., Kulkarni, P., Weninger, K., Orban, J. & Levine, H. Phenotypic Plasticity, Bet-

Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic 

Heterogeneity. Front. Oncol. 8, 50 (2018). 

195. Reyes, J. & Lahav, G. Leveraging and coping with uncertainty in the response of individual 

cells to therapy. Curr. Opin. Biotechnol. 51, 109–115 (2018). 

196. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019). 

197. Chandrasekaran, S. N., Ceulemans, H., Boyd, J. D. & Carpenter, A. E. Image-based profiling 

for drug discovery: due for a machine-learning upgrade? Nat. Rev. Drug Discov. 20, 145–

159 (2020). 

198. Yuan, A. H. & Hochschild, A. A bacterial global regulator forms a prion. Science 355, 198–

201 (2017). 

199. Fleming, E., Yuan, A. H., Heller, D. M. & Hochschild, A. A bacteria-based genetic assay 

detects prion formation. Proc. Natl. Acad. Sci. U. S. A. 116, 4605–4610 (2019). 

200. Wong, W. W., Tsai, T. Y. & Liao, J. C. Single-cell zeroth-order protein degradation 

enhances the robustness of synthetic oscillator. Mol. Syst. Biol. 3, 130 (2007). 

201. Gefen, O., Fridman, O., Ronin, I. & Balaban, N. Q. Direct observation of single stationary-

phase bacteria reveals a surprisingly long period of constant protein production activity. 

Proceedings of the National Academy of Sciences 111, 556–561 (2014). 



 

 89 

202. Siegele, D. A. & Hu, J. C. Gene expression from plasmids containing the araBAD promoter 

at subsaturating inducer concentrations represents mixed populations. Proceedings of the 

National Academy of Sciences 94, 8168–8172 (1997). 

203. Kuo, J., Yuan, R., Sánchez, C., Paulsson, J. & Silver, P. A. Toward a translationally 

independent RNA-based synthetic oscillator using deactivated CRISPR-Cas. Nucleic Acids 

Res. 48, 8165–8177 (2020). 

204. Moore, S. J. et al. EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology. ACS 

Synth. Biol. 5, 1059–1069 (2016). 

205. Oña, L. et al. Obligate cross-feeding expands the metabolic niche of bacteria. Nature 

Ecology & Evolution 5, 1224–1232 (2021). 

206. Riglar, D. T. et al. Bacterial variability in the mammalian gut captured by a single-cell 

synthetic oscillator. Nat. Commun. 10, 1–12 (2019). 

207. Santos-Moreno, J., Tasiudi, E., Stelling, J. & Schaerli, Y. Multistable and dynamic 

CRISPRi-based synthetic circuits. Nat. Commun. 11, 2746 (2020). 

208. Miller, J. H. Determination of viable cell counts: Bacterial growth curves. in Experiments in 

molecular genetics (ed. Miller, J. H.) 31–36 (Cold Spring Harbour, 1972). 

209. Jones, J. A. et al. ePathOptimize: A Combinatorial Approach for Transcriptional Balancing 

of Metabolic Pathways. Sci. Rep. 5, 11301 (2015). 

210. Füller, J. J. et al. Biosynthesis of Violacein, Structure and Function of l-Tryptophan Oxidase 

VioA from Chromobacterium violaceum. J. Biol. Chem. 291, 20068–20084 (2016). 

211. Gilbert, L. A. et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in 

Eukaryotes. Cell 154, 442–451 (2013). 

212. Cameron, D. E. & Collins, J. J. Tunable protein degradation in bacteria. Nat. Biotechnol. 32, 

1276–1281 (2014). 



 

 90 

213. Salis, H. M. The ribosome binding site calculator. Methods Enzymol. 498, 19–42 (2011). 

214. TerMaat, J. R., Pienaar, E., Whitney, S. E., Mamedov, T. G. & Subramanian, A. Gene 

synthesis by integrated polymerase chain assembly and PCR amplification using a high-

speed thermocycler. J. Microbiol. Methods 79, 295–300 (2009). 

215. Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome 

editing. Nucleic Acids Res. 47, W171–W174 (2019). 

216. Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect 

adaptation. Nature 570, 533–537 (2019). 

 


