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Abstract

Boundedness of Operators on Local Hardy Spaces and Periodic Solutions of
Stochastic Partial Differential Equations with Regime-Switching

Chun Ho Lau, Ph.D.
Concordia University, 2023

In the first part of the thesis, we discuss the boundedness of inhomogeneous singular
integral operators suitable for local Hardy spaces as well as their commutators. First, we
consider the equivalence of different localizations of a given convolution operator by giving
minimal conditions on the localizing functions; in the case of the Riesz transforms this
results in equivalent characterizations of h'. Then, we provide weaker integral conditions
on the kernel of the operator and sufficient and necessary cancellation conditions to ensure
the boundedness on local Hardy spaces for all values of p. Finally, we introduce a new class
of atoms and use them to establish the boundedness of the commutators of inhomogeneous
singular integral operators with bmo function.

In the second part of the thesis, we investigate periodic solutions of a class of stochastic
partial differential equations driven by degenerate noises with regime-switching. First, we
consider the existence and uniqueness of solutions to the equations. Then, we discuss the
existence and uniqueness of periodic measures for the equations. In particular, we establish
the uniqueness of periodic measures by proving the strong Feller property and irreducibility
of semigroups associated with the equations. Finally, we use the stochastic fractional porous
medium equation as an example to illustrate the main results.
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Chapter 1

Introduction

1.1 Introduction to Part 1

Singular integral operators and pseudo-differential operators play crucial roles in har-
monic analysis. They can be applied to solving partial differential equations and studying
the regularity of the solutions. For instance, the Riesz transforms, an important example
of singular integral operators, can be used to express the second derivatives of the solution
to the Poisson equation on R”, Au = f, in terms of f. It is well known that singular in-
tegral operators with the Hormander condition (8) are bounded on LP(R") for 1 < p < o0,
and bounded from L'(R") to weak L!'(R™). However, it is not possible that such oper-
ators are bounded on L'. Therefore, the boundedness of the endpoint case becomes an
important problem. In many cases, one can prove the boundedness of singular integral
operators from H'(R") to L'(R™), where H'(R") is the real Hardy space. Determining the
optimal conditions on the kernels of these operators for this boundedness to hold is still a
topic of current research — see for example [48,109,110] for recent boundedness results with
weakened hypotheses on the kernel.

However, the real Hardy spaces HP(R™) are not closed under multiplication by smooth
functions, which makes them unsuitable for working with partial differential equations. To
include this property, Goldberg [46] introduced the local Hardy spaces h” (R™), which contain
both the real Hardy space HP(R™) and the Schwartz space S(R™). He provided an atomic
theory for h?(R™), assuming the atoms have exact cancellation on a small scale. This raises
a question: what is the optimal “cancellation” condition for all scales? For ;75 < p <1,
Komori [69] imposed a cancellation condition through studying molecular theory. Dafni and
Yue [34] studied a cancellation condition for h'(R™) atoms. In the joint work with Dafni,
Picon, and Vasconcelos [31], we studied the approximate cancellation condition for atoms
and molecules for all 0 < p < 1. See Section 4.1 for a discussion of the atoms and molecules
for hP(R™).

Goldberg [46] introduced local Riesz transform by localizing the multiplier away from
the origin on the Fourier side, and used them to characterize h'(R™), while in [45] he
introduced the local Hilbert transform through localizing near the origin to characterize
hY(R). In [30], we provided a minimal condition on the localizing functions so that both
types of transforms indeed characterize h!(R") — see Theorem 3.0.3.

Because of the localization of local Hardy spaces, it is common to consider pseudo-
differential operators instead of singular integral operators. Some partial results on the



boundedness of pseudo-differential operators are listed in Theorem 2.5.29. Recently, Ding,
Han and Zhu [35] generalized pseudo-differential operators to operators which they called
inhomogeneous singular integral operators, and established separate sufficient and necessary
cancellation conditions for boundedness on A(R") for 75 < p < 1. Can one have the same
sufficient and necessary cancellation conditions for the boundedness of such operators?
In [31], we provided a sufficient condition to ensure the boundedness on hP(R™) of an
inhomogeneous singular integral operator, and in [32], we showed that the same condition
is indeed sufficient — see Theorem 5.1.4 and 5.2.5.

Another story begins with the work Coifman, Rochberg and Weiss [21]. They showed
that the commutator, [b, T], of a singular integral operator 7" with a BMO function b is
bounded on LP(R™) and use this to establish a weak factorization theorem. Another well-
known result is due to Uchiyama [116], who showed that if b € CMO(R"), then [b,T1] is
compact. Recently, Hytonen [63] characterized all LP — L7 boundedness of the commuta-
tors of singular integral operators [b, T'] with suitable b.

What happens in the endpoint case p = 1?7 Harboure, Segovia and Torrea [55] showed
that it is impossible for the commutator of the Hilbert transform with a non-constant
BMO function to be bounded on H!(R). Peréz [93] gave an example to show that [b, T
is not bounded from L' to weak L', and provided an atomic space that is suitable for
the boundedness of [b, T']. Ky [71] then found the largest space that leads to boundedness
of [b,T] = bT(-) — T(b-) from H'(R") to L'(R"). Ky’s space contains the atomic space
introduced by Peréz, but it is not known whether they are the same — see Section 2.4
for the background on commutators. Yang, Wang and Chen [124], Hung and Ky [62]
proved boundedness of [b,T] on the Hardy space by restricting b to lie in a subclass of
BMO of functions of logarithmic mean oscillation, and 7" in a class of pseudo-differential
operators. In [30], we prove the boundedness of commutators of inhomogeneous singular
integral operators with bmo functions on a new atomic space (Theorem 6.3.4). Since that
space coincides with h! if b € Imo(R™), we obtain the boundedness of such commutators on
h', extending the results of Hung and Ky — see Corollary 6.3.5.

1.2 Introduction to Part II

Stochastic partial differential equations (SPDEs) have emerged as a fundamental tool
for modeling random phenomena in diverse fields of science, including physics, biology, and
ecosystems. There are many disciplines of SPDEs that are interesting, such as the existence
and uniqueness of solutions, regularity of solutions, large-time behaviours, and asymptotic
properties with small diffusion coefficients, among others. Notably, the works by experts,
such as [28,77,94], have provided an extensive overview of SPDEs, their applications, and
historical development. In this thesis, we concentrate on the existence and uniqueness of
periodic measures for SPDEs.

The investigation of ergodicity for time-homogeneous SPDEs can be approached system-
atically through several sources, including Da Prato and Zabczyk’s book [27], the survey by
Maslowski and Seidler [83], and relevant references provided therein. In the past decades,
many new results have been obtained for the existence and uniqueness of invariant mea-
sures. Here we list some of them which motivated our study. For instance, Hairer and
Mattingly’s work [54] established the ergodicity of the 2D Navier-Stokes equations with de-
generate stochastic forcing. Romito and Xu [98] discussed the invariant measures of the 3D



stochastic Navier-Stokes equations driven by mildly degenerate noise. Xie [121] obtained the
uniqueness of invariant measures for general SPDEs driven by non-degenerate Lévy noise.
Wang [118] utilized Harnack inequalities to investigate the ergodicity of SPDEs, while Gess
and Rockner [44] explored the regularity and characterization of quasilinear SPDEs driven
by degenerate Wiener noise. Zhang [127] considered invariant measures of 3D stochas-
tic MHD-a models driven by degenerate noise, and Neufl [89] studied the ergodicity for
singular-degenerate stochastic porous medium equations.

If stochastic equations have time-inhomogeneous coefficients, we generally do not ex-
pect the existence of invariant measures; instead, we consider periodic measures. Many
existing results study the periodic behaviour of stochastic differential equations (SDEs)
and SPDEs. For example, in [68], Khasminskii systematically studied periodically varying
properties of SDEs driven by Wiener noise. In [129], Zhang et al. investigated the ex-
istence and uniqueness of periodic solutions of SDEs driven by Lévy noise. In [52], Guo
and Sun generalized Doob’s celebrated theorem on the uniqueness of invariant measures for
time-homogeneous Markov processes to obtain the ergodicity and uniqueness of periodic
solutions for non-autonomous SDEs driven by Lévy noises. For some other results related
to periodic measures of SDEs, we refer the reader to Da Prato and Tudor [26], Xu et al.
[122,123], Chen et al. [17], Hu and Xu [61], and Ji et al. [64]. In [40], Feng and Zhao
showed that there exist pathwise random periodic solutions to some SPDEs. In [25], Da
Prato and Debussche investigated the long time behaviour of solutions to the 2D Stochastic
Navier-Stokes equations with a time-periodic forcing term. In [18], Cheng and Liu used the
variational approach to study recurrent properties of solutions to SPDEs driven by Wiener
noise. Under suitable conditions, in particular, assuming strict monotonicity, they showed
that the recurrent solutions are globally asymptotically stable in the mean-square sense. In
[126], Yuan and Bao used the semigroup method to establish the exponential stability for
a class of finite regime-switching SPDEs driven by Lévy noise. The method of our work is
completely different from the methods of [18] and [126]. We shall investigate the ergodicity
of SPDEs with countable regime-switching by considering the strong Feller property and
irreducibility of the corresponding time-inhomogeneous semigroups.

The study of SDEs with hybrid switching has become increasingly important in different
research areas such as biology, wireless communications, and engineering, as well as mathe-
matical finance. We refer the reader to the monographs [82,125] and references therein for
detailed discussions.

In the second part of this thesis, our goal is to investigate the existence and uniqueness
of periodic measures for a class of SPDEs with regime-switching. The model consists of
two component processes, X (t) and A(t), whose state spaces are continuous and discrete.
The evolution of X (t) is described by an SPDE driven by degenerate Lévy noise. More
flexibility can be added to applications by introducing regime switching A(t) to the random
dynamical system. Furthermore, our work extends previous studies on hybrid systems in
finite dimensions to include some interesting hybrid systems in infinite dimensions. We shall
give a detailed explanation of the model in Chapter 7.



1.3 Intermezzo: Connection between Harmonic Analysis and
Probability Theory

This thesis is separated into two parts, harmonic analysis and stochastic processes.
These two research areas have been developed independently but are closely related. Here,
we give a brief description of the connection between these areas. Readers may refer to
[36,95] for a detailed discussion of the relation between harmonic analysis and probability
theory.

Harmonic analysis and stochastic processes are linked by some of their fundamental
objects, the Laplace operator and Brownian motion. The Laplacian A plays a crucial role
in harmonic analysis and has been widely studied, while Brownian motion is a cornerstone
in stochastic processes. The infinitesimal generator of a d-dimensional Brownian motion
is precisely %A. Additionally, the solution to the Dirichlet problem on an open set with
continuous boundary conditions, including non-differentiable boundaries, can be written
explicitly in terms of the expectation of the Brownian motion. We refer the readers to the
book by Karatzas and Shreve [66, Chapters 4 and 5] for the explanation of the relationship
between SDEs and PDEs.

Furthermore, martingale theory and harmonic analysis are closely connected. A break-
through paper is by Burkholder, Gundy and Silverstein [14]. They established a Poisson
integral characterization of HP(R) for any 0 < p < oo by considering Brownian motion on
R, which led to the fundamental results of Fefferman and Stein [39]. Another example is
the dyadic martingale and expansion in the Haar system. The conditional expectation with
respect to the k-th filtration can be realized as the orthogonal projection onto the subspace
generated by the Haar functions with scale < k. Stein [108, Chapter IV Section 6 Part D]
elucidated the relation between wavelets and martingales and referenced further reading.
The martingale analogues are also of great interest. Herz did much pioneering work in this
area, in particular on martingale Hardy spaces and BMO [57,58]. The book [67] is about
BMO martingales, while [19, Chapter 10 and Appendix A.8| discuss the martingale Hardy
spaces. There are active research areas in the martingale analogue of various spaces nowa-
days, such as [78,91,111,120]. Meanwhile, studying stochastic versions of singular integral
operators has allowed for investigating stochastic partial differential equations as shown in
[79,80].

Additionally, the paraproduct method is another harmonic analysis tool that has appli-
cations in probability theory, particularly in dealing with singular SPDEs where the noise
term is not well-defined. In [50], Gubinelli and Imkeller provided a new method to discuss
the existence and uniqueness of solutions to such SPDEs because of the ill-defined term
in the classical sense. Later, Bailleul and Bernicot [49] generalized it to the higher-order
paraproducts and applied it to singular SPDEs.

It is well-known that Sobolev spaces play an important role in harmonic analysis and the
theory of PDEs. In Chapter 10, we use the stochastic fractional porous medium equation
as a key example to illustrate the main theory. This example relies heavily on the theory
of Sobolev spaces.

1.4 Structure of Thesis

This thesis is chapter-based and most of the material is taken from [30-32,73].



In Chapter 2, we provide a comprehensive background for studying real and local Hardy
spaces, and some known results on the boundedness of certain kinds of operators. Chapter
3 discusses the equivalence of different localizations of a convolution operator. In Chapter
4, we discuss the molecular theory for hP(R™) and prove the Hardy’s inequality as an
illustration of it. In Chapter 5, we focus on the sufficient and necessary conditions for the
boundedness of an inhomogeneous singular integral operators on h”. We end the first part
in Chapter 6, which discusses Imo, the atomic commutator space, and the boundedness of
commutators [b, T].

In Chapter 7, we provide the necessary background and the framework of the SPDE
models. We give the assumptions and main theorems in Chapter 8. All proofs of the
theorems stated in Chapter 8 are given in Chapter 9. Finally, in Chapter 10, we use the
stochastic fractional porous medium equation to illustrate the main theorem, Theorem 8.0.5.



Part 1

Boundedness of Operators on
Local Hardy Spaces



Chapter 2

Background and Preliminary
Results

In this chapter, we will provide the background knowledge of Hardy spaces, the space
of bounded mean oscillations (BMO), Calder6n—Zygmund singular integral operators and
their commutators with BMO functions, and non-homogeneous analogues.

We shall first fix some notations throughout Part I. We shall write Ng = Nu{0} to denote
the set of all non-negative integers. For any real number a, the expression |a| denotes the
greatest integer of a, namely sup{n € Z : n < a}. We also write A < B if there is a constant
C independent of B such that A < CB, and we write A~ Bif A < B and B < A. The
implicit constants may vary from line to line. If we want to emphasize the dependence on
the implicit constants, we will write <x to represent the constants depending on X.

We denote the ball in R™ centered at = with radius r by B(z,r). If a ball B < R" is
given, we will use 7(B) to denote its radius. For a ball B = B(z,r) and ¢ > 0, we write
¢B := B(z,cr). For a set A < R", we denote the complement of A to be A¢:= R™\ A and
its indicator function to be x 4. We will denote the Lebesgue measure of a measurable set
B as |B|. It will be clear from the context whether |- | means the absolute value, the R"
norm, or the Lebesgue measure of a measurable set.

We write LP(R™), 0 < p < o0, to be the space of functions such that |f|? is an integrable
function with respect to Lebesgue measure on R", and

£l e rny := </Rn If(x)lpda:>; = (/Rn f|p>;.

This is a norm when p > 1 and a quasi-norm when 0 < p < 1. If the underlying space is
clear, we omit the expression R™. If |f|P is integrable on every compact subset of R", we
write f € LY (R™). For p = oo, L(R") is defined to be the space of all essentially bounded
measurable functions defined on R™, and

[ £l (ny 1= esssup | f()].

zeR™

We also define L5 (R™) to be the space of the space of all locally bounded measurable
functions defined on R™. The sequence space ¥ with p > 0 is defined to be all complex



sequences {\;}72; that satisfy
N
MNP <
j=1

The Schwartz space S(R™), the space of smooth with rapid decay functions, is the space
of functions such that sup,cgn |05 (¢)(z)| < oo for all multiindices a, 3 € (No)", where
x® = z{tag? - xln for a = (aq, -+, ap) and 02 means (?g} 02 given B = (B1,--+, Bn)-
We denote |a| = |aq| + -+ + |an| if @ = (a1, , ). We denote the dual of S(R™) to be
S'(R™), the space of tempered distributions. We write f x g for the convolution of f and g;
this is a well-defined function when one is in S(R™) and the other is in §'(R™). The space
of all smooth functions is C*(R™), and the space of all smooth functions with compact
support is CZ(R™).

Moreover, in this thesis the Fourier transform of f € S(R™), denoted by forF (f), is
defined to be

~

€)= | fy)e ™ dy,

where y - £ is the inner product of R”, while the inverse Fourier transform of ¢ is denoted
to be F~1(g), which can be computed by

Flo@ = [ gemeric

given g € S(R™). By duality, we use the same notation for the Fourier transform and inverse
Fourier transform if the distribution is in S&'(R"™).

2.1 Real Hardy Spaces

In this section, we will provide the equivalent definitions of Hardy spaces and some
properties of Hardy spaces.

The development of real Hardy spaces, which we will denote by HP(R™), came after the
rich theory of complex (holomorphic) Hardy spaces, such as on the disk D or the upper half
plane RZ . In the critical paper by Fefferman and Stein [39], they proved Theorem 2.1.1 (in
different wording).

In order to state the theorem and define HP(R"™), we begin with the definition of bounded
distributions. We say f € S'(R") is a bounded distribution if ¢ = f € L*(R™) for any
¢ € S(R™). The Poisson kernel is given by
Cn

P(x) :=

n+1?

1+ |z?) =
where ¢, = F("TH)W_nTH. For t > 0, we write P;(z) =t "P(xt~!). Then P, * f € C*(R")
for a bounded distribution f. Now, we can define the nontangential mazximal function of
the Poisson integral of f to be

Mp(f)(x):= sup [P = f(y)l.

|z—y|<t<oo



We also consider other maximal functions. Fix ¢ € S(R™) with [ ¢ # 0. Let f € S'(R™).
We write again ¢¢(z) = t"¢(xt~!). We define the smooth mazximal function of f with
respect to ¢

My(f) (@) == sup o = f(y)],

t>0

and define the grand maximal function of f to be

Mgy (f)(x) := sup{My(f)(2) : ¢ € SFy},

where Sr, = {¢ € S(R") : supcpn 12905 (¢) ()] < 1,|al,|8] < N} and N is a positive
integer.

Theorem 2.1.1 (See [47, Theorem 2.1.4] or [108, Chapter III, Theorem 1]).
Let 0 < p < oo. Let f € S'(R™). Then the following are equivalent.

1. There exists ¢ € S(R™) such that My(f) € LP(R™).
2. There exists N € N such that Mz, (f) € LP(R™).
3. The distribution f is a bounded distribution and Mp(f) e LP(R").

In this case, we have
Mg fllr ~ [Mzy (e = |Mp(f)] Lo

Now we can define real Hardy spaces.

Definition 2.1.2. Let 0 < p < 0. Then, we say f € HP(R™) if one of the conditions in
Theorem 2.1.1 holds and the HP norm of f is defined to be the corresponding LP norm.

That is, if f € HP(R"), we have
[l ~ [ Mg fllze ~ [Mzy (F)lzr ~ [Mp(f)] e,

where N = N, + 1.
We shall remark that although for p < 1, | - |» is not a norm as remarked before, we

still call the “norm” of HP, | - |g», a norm. The following theorem says they coincide with
LP(R™) for p > 1.

Theorem 2.1.3 (See [47, Theorem 2.1.2]). For 1 < p < . The space LP(R™) = HP(R")
with equivalent norms, that is, | My(f)|r@r) = | flLe@®ny. Moreover, H'(R™) < L'(R™).

We will see that the inclusion H'(R") < L'(R") is proper — see Corollary 2.1.11.

Proposition 2.1.4 (See [47, Proposition 2.1.10 (c)]).
The Hardy spaces HP(R™) (0 < p < 1) are complete quasi-metrizable spaces. For p = 1,
H'(R™) is a complete normed space.

Indeed, we have two more characterizations of Hardy spaces. However, before that, we
introduce two more types of functions. Because HP consists of distributions and checking
the norm of a distribution in H? using the maximal function is difficult, it is natural to ask
if there are any “simple” elements in this space that can generate all elements in HP.



Definition 2.1.5 (See [108, Chapter III Section 2]). Let 0 < p < 1 < ¢ < o0 with p < q.
We say a is a (p,q) atom if there exists a ball B = B(xo,r) such that

1. supp(a) < B;
1
2. |la|pagny < [Bla;
3. / (z — mo)¥a(x)dz = 0 for all |a| < |n(p~ —1)] and a € Nj.
B
From now on, we denote N, := [n(p~! —1)| and v, := n(p~* — 1).

Definition 2.1.6 (See [3, Definition 1.1]). Let 0 < p < 1 < ¢ < © with p < q and
A > n(% —1). We say M is a (p,q,\) molecule with respect to a ball B = B(xg,r) if there
exists C' > 0 independent of B and M such that

1. / |M (z)|%dz < CT"(P%);
B

2. / |z — x| N M (z)|%dz < oA tri=g ;
BC

3. / (x — 20)*M(z)dx = 0 for all |o] < N, and a € Njj.

Slightly different definitions of molecules can be found on [42,85].
We shall remark that some authors may prefer to use / in both Item 1 and 2 in

R"
Definition 2.1.6. Indeed, using Item 2 in Definition 2.1.6,
/ |M (z)|%dx < / M (2)|%)x — zo[Mr e < "I A
c BC

and this implies
/ |M (2)|9dz < Cr"U75).

Using Item 1 in Definition 2.1.6,
/ v — xo|M M (z)|%dx < r)‘/ M (2)|%dx < CrA0=3),
B B

Thus,
/ |z — 20| M (2)|%dz < OO0
Rn

10



From Item 1 and 2 in Definition 2.1.6, we can estimate

‘ / (x — 29)*M(z)dx

/ (x — x0)*M (z)dx
B

<

+ ‘/C(:}: —x0)*M (x)dx

_ O . A _ -1
< e Bl M gy + Y (20 )i )( / | o — oMM >rqu)
2ir<|z—xzo|<2it1r

j=1

1

< ploltn-a"Dtna™ =) L NV (i, )\al a (271 pyn(=a ) Aq (e~ —p™T)

'M8

0

J
plol—n(p=1-1) (1)

We will use this later. This estimate does not consider Item 3 in Definition 2.1.6.
The following proposition tells us that a, M are the elements in HP(R").

Proposition 2.1.7 (See [108, Chapter III Section 2.1]).
Let 0 <p<1<qwithp<gqand X\ > n(% —1). Then, for any (p,q) atoms a and (p,q, \)
molecules M, we have |a|gr@ny $ 1 and | M| gp@rny < 1.

We refer the proof of this proposition to the proof of Proposition 4.1.4 with w = 0. The
key is the fact that the remainder term a, has the support and size condition of an HP
atom with the same cancellation condition as the molecule M.

The proof uses Hardy-Littlewood maximal operator, which is defined by

M) = s oz [ 1f s, &)

Bsg
where the supremum is taken over all balls B that containing .
Theorem 2.1.8. Let M be the Hardy-Littlewood maximal operator. Then,
1. for any f e LP(R™) with 1 < p < w0, we have | M f|rr < Ap| fllr-

2. for any a > 0,
e B2 [Mf(@)| > a}] < | fl
This theorem is a classical result in harmonic analysis. We refer to [108, Chapter I
Section 3| for a proof of the theorem.
Theorem 2.1.9. Let 0 < p <1< q with p # q and A > n(}gj —1). Let f € HP(R™). Then,

1. there exists a sequence {7v;}; € ¥ and a sequence of (p,q) atoms {a;}; such that

f=25 170 in S'(R™) and HP(R™); moreover, | f||me ~ inf (X0 ]’yj|p)%, where the
infimum is taken over all such possible decomposition of f;

2. there exists a sequence {7;}; € ¥ and a sequence of (p, g, \) molecules {M;}; such that

1
f= 230:1 v;M; in 8'(R™) and HP(R™); moreover, | f|mr ~ inf(} ;e [vjIP)?, where
the infimum is taken over all such possible decomposition of f.

11



We shall call such a decomposition of f as in Theorem 2.1.9 Item 1 as atomic de-
composition and in Item 2 a molecular decomposition. Indeed, the first proof of atomic
decomposition on R is by Coifman [20], and on R™ is by Latter [72]. The first discussion of
the molecular decomposition on R" is by Taibleson and Weiss [112].

From Theorem 2.1.9, we have the following properties.

Corollary 2.1.10. For0 <p <1< ¢ <0 andp < q, the space HP(R™) n L1(R"™) is dense

in HP(R™).
Corollary 2.1.11. If f € HP(R") for ;%5 <p <1, then
f(@)dz = 0; (3)
Rn

more generally, if f € HP(R™) for 0 < p < 1, we have
/ z®f(x)de =0 V]a| < N,. (4)

A proof of Corollary 2.1.11 without using atoms can be found in [103, Proposition 1.38].
Although every distribution in HP(R™) has global cancellation, it can still be positive
locally. Indeed, we have the following theorem.

Theorem 2.1.12 (Stein’s Llog L theorem, [106]).
Suppose f € H'(R") is positive on B = R™; then for any compact subset K = B, f can be
identify as a function in K with

/ |f(x)|1log(2 + | f(z)])dx < .
K

Moreover, the Fourier transform of an HP distribution behaves well.
Proposition 2.1.13 (See [108, Chapter III Section 5.4]). Let f € HP(R™) for 0 <p < 1.

1. The Fourier transform f(£) is continuous on R™ and |f(€)| < [€]"® =V f| v for all
£ e R,

2. Moreover,

3. We have Hardy’s inequality:

Fer
[ e < |l 5)

Using atomic decomposition, one can prove Item 3. We remark that the proof of Hardy’s
inequality in [31] (Theorem 4.2.1) works in HP(R") when w = 0.

Although atomic decomposition is robust, we have to be careful when we consider the
boundedness of an operator on HP(R™) because Bownik [10] gave a counter-example of a
linear functional which when acting on (1,00) atoms is bounded uniformly, but does not
admit a bounded extension from H' to L!. Fortunately, for H!(R") the “finite atomic
norm” is equivalent to the infinite one in the following cases:

12



Theorem 2.1.14 ([84, Theorem 3.1]).

1. If ¢ < o0, then

N N
inf{ > |N;|:IN €N, f =) Naj, aj is (1,q)-atom} ~ | f] .
j=1 J=1

2. If g = o, then

N N
inf{Z |IA\j| :INeN, f = Z jaj, aj is (1,q)-atom and continuous} ~ | f| g1.
j=1 J=1

Before we end this section, we should mention that there are additional essential charac-
terizations of real Hardy spaces using the Lusin area integral, harmonic functions, wavelets,
and other important tools. We refer the reader to [108, Chapter III, Section 4] for the char-
acterization in terms of the area integral and harmonic functions, which is first established
by Fefferman and Stein [39] and connected to the work of Burkholder, Gundy, and Silver-
stein [14], and [85] for the characterization using wavelets. We also refer to the book [42]
for a detailed development of the theory and history of real Hardy spaces, and in particular
the dual of the Hardy spaces, which we will use below.

2.2 Bounded Mean Oscillation

We start with the definition of bounded mean oscillation.

Definition 2.2.1 ([65]). Let be L} (R"). We say b€ BMO(R") if

1
IblBMo(RR) = Slglgp@ /B |b(x) — bg|dx < o0,

1
where bg = ’m/ b(y)dy =: 7[ b(y)dy and the supremum is taken over all possible balls
B B
B c R".

From the definition, | f|gmo(rr) < 2[|f|pe®n) whenever f e L*(R"); hence, L™(R") =
BMO(R™) and this inclusion is proper. One example is log(|z|) € BMO(R™)\L*(R"™).

It is true that if b is a constant function, [b|gymo(rn) = 0. Therefore, to be more rigorous,
the space (BMO(R™)/R, | - |[Bmo) is a normed space. Moreover, we have the following.

Theorem 2.2.2. The space (BMO(R"™)/R, | - |Bmo) is a Banach space.

From now on, we will continue to use BMO(R") to denote BMO(R")/R.
Here we shall list some basic properties of BMO(R"™) without proof. The reader may
refer to [47, Chapter 3| or [108, Chapter IV].

Proposition 2.2.3.

13



1. Let b e BMO(R™). Then for any ball By c B,

| B
b, — bp,| < @HbHBMo; (6)

indeed, one has a better estimate
B
b, — bs,| < log (’ 2, 1> 16| B7o-
| B
2. Let be BMO(R™). For any zg e R", r > 0, and 6 > 0,

5 |b($) - bB(aco,T)| <
r /Rn (r+ |z _x0|)n+5dx N HbHBMO(Rn)-

3. Suppose there exists a family of constants {kp}p such that supg ﬁ J5 b(x) —kpldz <

o, then be BMO(R"™). We shall remark that the optimal kp in this case is a median
value of b over B.

John and Nirenberg proved the following inequality.
Theorem 2.2.4 ([65]).
Let b e BMO(R™). Then, there exist ¢1,c2 > 0 such that for any a > 0 and ball B,

Co
B:lb(x)—-0b < " Finiteblm ) 2
[{z € B:|b(z) —bp|>a}| < eXP( finiteb‘BMO>‘ |

By the John-Nirenberg inequality,

Corollary 2.2.5.
For any b € BMO(R™), then for all ¢ < ca, where ca is given by Theorem 2.2.4, we have

le‘/ eclb@)=bBl gy 0,
B

where cy is from Theorem 2.2.4. Moreover, for any 0 < p < o0 and ball B,

1
Pllo < 5 /B b(z) — bplPdz <, [BEao.

In particular, be LY (R").

loc

This corollary tells us that if we define

1 P
Ib]BMoOP = sup (/ b(z) — bB\pdx> :
B ’B‘ B

and set b € BMOP(R") to be the space of all functions that satisfy |b|pymor < o0, then we
have BMOP(R™) = BMO(R") and |b|gmor = ||b|BMO-

14



With the atomic decomposition Theorem 2.1.9, for given b € BMO, we first define the
linear functional on finite linear combinations of (1, ¢) atoms by

@D—ZA/ a;(y)dy.
where [ = Zj\;l Ajaj. Then, if a is an (1,q) atom with supp(a) € B, we have

1
1 q
b)) < wm—@wwﬂ<</w—@@ < Polsaior ~ [blsao.
- B/,

We have the Fefferman duality theorem.

Theorem 2.2.6 ([38,39]). 1. Given b e BMO(R"), we can extend the operator {b,-) to
HY(R"™) continuously with

<0, I < [blB7ollf -

2. Conversely, every linear functional on H'(R™) can be written as (b,-) for some b €

BMO(R™) with
lblBMmo < <D, )l (1)
Therefore, we can conclude that (HY)* =~ BMO.

The predual of H(R") is a smaller subspace of BMO(RR") called CMO(R™). This also
gives us a crucial difference between H'(R™) and L'(R") because L'(R") has no predual.

Definition 2.2.7. The space CMO(R™) is defined to be the closure of C(R™) with respect
to | - |lBmo-

Uchiyama proved an equivalent definition of CMO.

Theorem 2.2.8 ([116, Lemma in Section 3]).
Let b e BMO(R™). Then, a function b is in CMO(R™) if and only if the following conditions
hold:

1. lim sup /b—b3|=0
a0 /-0 | B| /5

2. lim sup /|b bp| =
=% g2, | Bl

1
3. lim / b—byyrp| =0 for each ball B.
|z|—00 |.T+B| x+B’ + ’

Moreover,
Theorem 2.2.9 ([22]). We have (CMO(R"))* =~ H!(R").

We shall remark that the space CMO in Coifman and Weiss [22] is called VMO. Here
we use CMO to distinguish it from the space VMO introduced by Sarason [101].
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Definition 2.2.10. The space VMO(R") consists of b € L}, .(R™) such that

1

lim sup / |b(x) — bg|dx =0, (7)
R=0,(B)<R 1Bl /B

We remark that (7) gives the same condition in the Theorem 2.2.8 Item 1.

Therefore, by Theorem 2.2.8, we have the following inclusion

CMO(R™) « VMO(R") ¢ BMO(R").

Sarason [101] showed that the space VMO(R™) is the same as the BMO(R"™)-closure
of uniformly continuous functions. These spaces do not allow jumps and we have L™ ¢
CMO(R"™) and L* ¢ VMO(R"™) because L* contains function that have jump discontinuity.
For example, consider b(x) = X[o,x0)(®), which is in L*(R) = BMO(R); however, when we
consider the ball B = (—r,r), the average is over B is % and the integral

&ﬂéum»—@wm=;(AQL—QM+/1§—MM>

T 1
=% a3

as r — 0. This can be generalized to any bounded functions with jumps.

Unlike in L*(R™), if f,g € BMO(R"), the product fg may not be in BMO(R"), even
if one of them is in L*(R™). This can be seen by considering f(z) = X[o,00)(7) € L*(R)
and g(x) = log(|z]) € BMO(R) on R. The product f(z)g(z) = X[o,c0)() log(|z|) is not
in BMO(R) because the oscillation on intervals centred at zero is unbounded due to the
differences between the averages on the right and left halves - see [47, Example 3.1.4].

In order to have a pointwise multiplier, one needs one of the functions to be in a smaller
space.

Definition 2.2.11. Let b€ BMO(R"). We say b e LMO(R") if

log(1 + [r(B)]™")
Slép B /B |b(z) — bp|dx < o0.

Bounded functions of logarithmic mean oscillation (LMO) have been identified as the
pointwise multipliers of H! and BMO on the circle [105], on the sphere [74], and on spaces
of homogeneous type [16] by considering locally H' instead.

A generalization of LMO is called a 1-generalized Campanato space.

Definition 2.2.12. Let k€ Ny, 1 < ¢ < 00, and ¢ : (0,00) — (0,00). We define

loc

LZW(RH) = {f el! (R"):3C>0st YV BcR"

q
(£ 1760~ FhnWIPay)" < cowen),
where ng(y) s the unique polynomial of degree less than or equal to k that has the same

moments as f over B up to order k. For the case ¢ = oo, with the same notation as above,
we define

L,ZO’¢(R") = {f el (R"): 3C>0st.VB, |f- (ng)HLoo(B) < Cw(r(B))}.
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The space LZ’¢(R") is considered as a quotient space of the above classes of functions
modulo all polynomials of degree less than or equal to k.

Given f e LYY(R™), we define

= su _ — (P a !
g s=swp s (. 110 = (PhD@Ian)

if 1 < ¢ < o0, and
Il 1= 80 s ) = (PO L
where the supremum in both cases is taken over all balls in R™.

With this terminology, we can see that Lg’l(R") ~ BMO(RR™), here 1 in the superscript
is the constant function 1, and L,lg’w(R”) ~ LMO(R") if we take ¢(r) = m. Note
that if ¢ is increasing and has doubling property, i.e. ¥(2r) < 1¥(r), then by following the
proof of the John-Nirenberg inequality [104] or the proof in [75], L,1€’¢(]R”) = Lﬁ’w(R") for
all 1 <p< oo

Definition 2.2.13. We define the space AW(R") to be all f such that
1. if0 <y <1, |f(z+h)— f(z)] < C|h| for all xz,h € R™;
2. ify=1, |f(x+h)—2f(x) + f(x — h)| < Clh| for all x,h € R™;

3. ify=N+6 and 0 € (0,1), [ is continuously differentiable up to order N, and the
N-th order derivatives are in Ag(R™);

4. if v =N, [ is conlinuously differentiable up to order N —1, and the (N —1)-th order
derivatives are in Aq(R™).

If v = N + 0, we need to consider the space AV(RH) modulo all polynomials up to degree
|v]; if v = N, we need to consider the space A, (R™) modulo all polynomials up to degree

7] —1. .
The seminorm of A, is: if v ¢ N,

1£14, == sup sup [h[I2V|f(z + h) = f(2);
T Bl htoe

and if v € N,

Ifli, == sup sup |[h[7|f(z+h) —2f(x) + flz —h).
18l=lr] -1 h#0.a

Theorem 2.2.14 (See [42, Chapter III Theorem 5.30]). We have AV(R”) ~ LH’(R”) with
W(r) =17, with equivalent norms.
With this terminology, we have

Theorem 2.2.15 (See [42, Chapter III Section 5]). Let 0 < p < 1. The dual space of
HP(R™) s Apgp1_1)(R").

For the relation between Campanato spaces, Lipschitz and Zygmund spaces, we refer to
[42, Chapter III Section 5]; for more on Campanato spaces on different domains and their
generalizations, we refer to the exposition [97].
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2.3 Singular Integral Operators

In this section, we will provide the definitions of Calderén—Zygmund singular integral
operators and also the definition of the Hilbert transform and Riesz transforms.
We shall start with the classical singular integral operators of convolution type.

Definition 2.3.1. Let 0 < 0 < 1. A function K defined on R™\{0} is called 6-kernel of
convolution type if there exists C' > 0 such that

1. |K(z)| < Clx|™™ for all x;

2. |K(z —y) — K(z)| < Clyl’l=| 7"~ if 2ly| < |zl;

/ K(x)dx
e<|z|<M

We define the Calderén—Zygmund singular integral operator 1" associated with a d-kernel
of convolution type K to be

3. <C forall0<e< M < .

Tf(z):=PV. | K(z—y)f(y)dy:= lim Kz —y)f(y)dy YfeSR")

NG =0t Jiz—y|>e

The following are typical results on the boundedness of the singular integral operators.
We refer the reader to [108, Chapter 1 and 3] or [47, Chapter 2] for the proof.

Theorem 2.3.2.
Let T be a Calderon—Zygmund singular integral operator T associated with a d-kernel of
convolution type. Then,

1. it is bounded on LP(R™) for 1 < p < oo;
2. it is of weak type (1,1), i.e., for all f € LY(R") and o > 0,

o e B [T7@)| > o] S0 1112

3. it is bounded from H'(R™) to L'(R™) and also from L®(R™) to BMO(R"™);

4. if we further assume that  lim / K(z)de = 0, then T is bounded on
e20,M—>0 Jec|z|<M
H'(R™).

The critical examples of Calderén—Zygmund singular integral operator 1" associated with
a d-kernel of convolution type are the Hilbert transform for n = 1 and Riesz transform for
n = 2.

Definition 2.3.3. The Hilbert transform on R is defined to be
f

Hf(z) = P.V.71T/R (y;dy;

and j-th Riesz transform on R™ for j = 1,--- ,n is defined to be

r(z) Tj—y;
Rif(z) = PV.—2 /]R L )y,

T 2 'n|$—
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We remark that the Hilbert transform is the one-dimensional Riesz transform. The
following theorem tells us that these operators characterize the Hardy space H!.

Theorem 2.3.4 (see [107, Chapter VII, Section 3.2 Corollary 1]). Let f € L*(R™). Then
f e HY(R™) if and only if f € LY(R™) and R;(f) € L*(R™) for j = 1,...,n. Moreover, we
have

Il zr@ny + Z 1R fll iy = 1 f |-

j=1

We can generalize the condition of the pointwise smoothness of K to an integral con-
dition, called the Hormander condition, namely, replace Condition 2 in Definition 2.3.1

by

sup/ |K(x —y) — K(x)|dz < o0. (8)
y#0 J2ly|<]z|

Theorem 2.3.2 still holds for these K — see [107, Chapter II Section 3].
We now move on to a more general form of singular integral operators. The following
definition is taken from [107, Chapter VII Section 3.2] or [47, Section 4.1.1].

Definition 2.3.5. Let 0 < § < 1. We say T is a singular integral operator associated by
a d-kernel K if K, defined on R*\{(z,z) : x € R"}, is locally integrable, and there is a
constant C > 0 such that

1. |K(z,y)| < Clz —y|™" for all x;
2. |K(x,y) = K(,2)| + |K(y,2) = K(2,2)| < Cly — 2’ lo —y|7" 7 if 2ly — 2| < | — yl;

3. the operator T is given (formally) by

(Tf,g)= //K(m,y)f(y)g(m)dyd:n, V f,g € S(R™) with disjoint supports

and extends to a bounded operator on L?*(R™).

Theorem 2.3.6 ([47, Section 4.2]). The conclusions of Theorem 2.3.2 also hold for a
Calderon—Zygmund singular integral operator T associated with a §-kernel.

Here is also a good place to introduce strongly singular integral operators. Strongly
singular integral operators of convolution type were introduced by Fefferman in [37].

Definition 2.3.7 ([3]). Let 0 <0 <1 and 0 < a < 1. We say T is a strongly singular
integral operator associated by K if K, defined on R*"\{(x,z) : x € R"}, is locally integrable,
and there is a constant C > 0 such that

_p—9 .
L |K(z,y) = K(z,2)| + K (y,2) = K(z,2)| < Cly — 2’ lw —y| ™"~ = if 2ly —2|* < |z —yl;
2. the operator T is given by

(Tf,g) = //K(x,y)f(y)g(a:)dydx, V f,g € S(R™) with disjoint supports

and extends to a bounded operator on L*(R™);
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3. there exists @ < B < § such that both T' and its adjoint T™ can be extended from
LYR™) to LA(R™) with £ = 4 + 2.

Alvarez and Milman proved the following boundedness for a strongly singular integral
operator.

Theorem 2.3.8 ([3, Theorem 2.1, 2.2]).
Let T be a strongly singular integral operator. Then,

1. it can be extended to a bounded operator from L*(R™) to BMO(R™);

2. if we further assume that T*(1) =0, T can be extended to a bounded operator on HP
forpo <p <1, where
1 1 B+3)

. - a

o 2 n(d-5+p)

An example of a strongly singular integral operator given by Alvarez and Milman is
a class of pseudo-differential operators. Pseudo-differential operators are closely related to
the non-homogeneous Hardy space, which will be discussed in Section 2.5.3.

2.4 Commutators

This section provides definitions of commutators as well as some boundedness results.

Definition 2.4.1. Let T be an operator. Let b be a function. The commutator of T with b
s formally defined to be

[0, T1(f) := b(T f) = T(bf)-

The story of commutators of Calderén—Zygmund singular integral operator with BMO
starts from the outstanding paper by Coifman, Rochberg, and Weiss.

Theorem 2.4.2 (]21)).
Let T be a singular integral operator and b € BMO(R™). Then the operator [b,T], originally
defined on S(R™), can be extended to a continuous operator on LP(R™) for all 1 < p < o0,

and ||[b, T rr—rr < ||b|BMoO. Conversely, if [b, Rj| for j = 1,--- ,n are bounded on some
LP(R™) with 1 < p < o0, then b€ BMO(R") and |b|smo < 27— [[b, Rjll Le—rr-

Another significant result is the compactness of the commutator.

Theorem 2.4.3 ([116]).
Let b e BMO(R™). Then be CMO(R™) if and only if [b,T] is a compact operator on LP(R™)
for 1 < p < and for all Calderon—Zygmund singular integral operators T .

However, Pérez [93] gave an example that [b,T] is not of weak type (1,1). Moreover,
there is no hope of having H' — L' type boundedness for general b and any singular integral
operator T' by the following theorem.

Theorem 2.4.4. [55, Theorem 3.1] Let b be a locally integrable function. Then the following
are equivalent:
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1. [b, H] is bounded from L¥(R) to BMO(R).
2. [b, H] is bounded from H*(R) to L'(R).
3. The function b is constant almost everywhere.
Here, LY is the space of all bounded functions with compact support.

Earlier, Pérez introduced a new type of atoms instead of H'(R") atoms.

Definition 2.4.5 (]93], Definition 1.3). For b € BMO(R"), a b-atom is a function a such
that for some cube @

(1) supp(a) < Q;
(i) la|z= <1QI™";
(iti)) [a =0 and [ab=0.

Pérez then proceeded to define an atomic space, which he called H} (Ky [71] uses H;
for this space) by taking all f € L! which can be written as f = Z;’;l Ajaj;, where a; are
b-atoms and {\;} € £!. Note that since b-atoms are also H' atoms, such a decomposition
will converge in the H' norm with | f|;1 < >}|);|, and hence Pérez’s space is contained in
H'.

Perez [93] proved that [b,T](a) € L' for all b-atoms a. However, this does not imply
automatically that [b,T|(f) € L' where f € H} because we do not know that the norm of
a finite sum of b-atoms is equivalent to the norm of an infinite sum of b-atoms (i.e. that a
version of Theorem 2.1.14 holds in this case).

Afterwards, Ky [71] introduced another approach, which is using an appropriate maxi-
mal function.

Definition 2.4.6 ([71], Definition 2.2). Let b € BMO(R") be nontrivial. The space H} (R™)
consists of f € HY(R™) such [b, M) f € L*(R™), where

and My is the non-tangential grand maximal function defined by

M f(x) :=sup{|f = de(v)| : |y — x| < t,p € A}
with
A={pe SR : |dloo + V8]l < (1 + [z[*)7" 1}
The norm on Hy is given by | f] g1 := | flm[blsmo + [0, Ml £ 1.

Ky showed that H}(R") is the biggest space on which the commutator is bounded, and
that it contains the Pérez space.

We will end this section by introducing several more operators that are related to the
discussion of commutators. The following two maximal functions were introduced in [21,
Section 6] in the one-dimensional case. Setting

M(b, f)(x) := sup|(b(z) — br) f1],

Iax
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it was shown in [21, Theorem IX] that b € BMO(R) if and only if f — M (b, f) is bounded
on LP(R) for 1 < p < oo. The proof uses [21, Theorem X] which states that for a different
maximal function,

N(b, f)(z) := sup [(0f)1 = blz) f1l,

f— N(b, f) is bounded on LP(R) for 1 < p < oo when b € BMO(R).
The commutator of the Hardy-Littlewood maximal operator M (see (2)) with multipli-
cation by b, that is

[M, b](f)(x) := M(bf)(x) — b(z) M f(x),

was studied in [1,6,88] and shown to be bounded on LP(R") for 1 < p < o if and only if
b e BMO(R"™) and b is bounded below.
Finally, one has the following maximal function,

Myf(e) = s [ b)) 1) . )

Baz

which was studied in [1,41,102] and is sometimes denoted by Cj. In this case, as in [21], one
has that M, is bounded on LP(R™) for 1 < p < oo if and only if b € BMO(R"™). Moreover, for
b e BMO(R"), [1, Corollary 1.11] gives the pointwise domination M f(z) < |b|smoM2f(x)
for f e L}, (R™), and therefore

|My|| o —rr < [bllBMO- (10)

2.5 Non-homogeneous Analogues

In this section, we will discuss the non-homogeneous analogues of Hardy spaces, bounded
mean oscillations, singular integral operators (including pseudo-differential operators) and
their commutators. We will separate them into subsections.

2.5.1 Local Hardy spaces

The local Hardy spaces hP(R™) (p > 0) are introduced by Goldberg [45,46]. As in the
case of the usual Hardy spaces, local Hardy spaces have different characterizations.

Theorem 2.5.1. [46, Theorem 1] For 0 < p < o0, the following are equivalent:

1. For a function ¢ € S(R™) with [ # 0, the mazimal function
My (f)(z) = sup [ib = f(z)]
O<t<l
is in LP(R™).
2. There exists N € N such that
Mry (f)(@) = sup{My(f)(@) : ¢ € SF} € LP(R"),
where Sry 1= {¢ € S(R™) : sup,egn [2207(0) ()] < 1,V |, 8] < N}.

In this case, [|My(f)|rr ~ |[Mxy(f)|Le-
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Definition 2.5.2. We say f € h?(R") if f € S'(R™) satisfies one of the conclusion in
Theorem 2.5.1, and the h? norm of f is defined to be the corresponding LP norm.

That is, if f € hP(R™), we have
I flne ~ [Myflre ~ |Mzy(f)llLe,

where N = N, + 1.

We shall also remark that Goldberg provided equivalent definitions using the Poisson
kernel of the strip R™ x (0,1).

Comparing Theorem 2.1.1 with 2.5.1, we can see that we localize the variable t from
(0,90) to (0, 1) in the definition of the maximal function and therefore we can conclude that
HP(R™) < hP(R™). Still, HP(R™) = hP(R™) = LP(R™) for 1 < p < c0. We will see that the
definition of AP allows us to contain more elements than those with exact cancellations.
Example: Write ¢(z) = e~ and ¢, (z) = 16(%). Consider My(¢) and My(¢,). Using

the Fourier transform, we can see that

@) = e T
bt * Pr(1) = ——=e +7.
V2 + r?
Furthermore,
2
1 e 2 1472
e T if % > =5,
_ 1 B 2 1412
sup ¢t*¢r(x)_ / ) 1f*<$ Si:
o<t<l 2€|IL 2 2
1=tz if 22 <
r ’ 2
while
1 2 r?
—— if x> &~
V2e|z|’ = 20
sup gy gp(x) = 4 VL Y
>0 e 7, if 22 < %

One can see that the first one is in L!(R), and the latter one is not in L*(R). Moreover,
we can compute that

o 1 _
IMo(én) i) = 5 + = log(1 +17%),

From this calculation, we can see that the exact cancellation property no longer holds
for h', and, as we will see later, the “log” term plays an important role here.

In fact, the range of 0 < ¢t < 1 in Defintion 2.5.2 is not mandatory; one can also consider
0 <t < T and get the same set of functions — see [34] for h!(R™). For h?(R"), we introduced
the following maximal function.

Definition 2.5.3 ([32]). Given 0 <T < o and x € R", consider the family

Fhe = {gb e C*(R") : supp(¢) = B(x,t), 0 <t <T and [0°¢|r= <t "1 for all |a| < k’}
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We define the local grand mazimal function associated to the family ]-",?’x of f €S'(R™) by

Mz, (@) = sap [{f, ¢,

qi>e]—',€T’m
where {-,-) denotes the dual pairing between S(R™) and S'(R™).

Lemma 2.5.4 ([32, Lemma 1]). Let f € h?(R"). If k € N is such that 7 <p <
(i.e. k= Np+ 1) then

_n
n+k—1

Mz, (F)lzr < Copr | fllnes
where Cp 17 < 14 max{0,logT} for p =1 and Cp, 7 < max{l, T”(l/pfl)} forp < 1.

Before we provide more characterizations of h?, we give some of the properties shown
by Goldberg.

Theorem 2.5.5 ([46]). Suppose ¢ € S(R") and f € hP(R™). Then, ¢f € h*(R™). In
particular, if ¢ € CP(R"), ¢f € h*(R").

From this, some authors may suggest the name “localizable Hardy spaces” for hP be-
cause we can localize the distribution without leaving the space. In contrast, the usual
Hardy spaces HP are not localizable because multiplying by a C¥ function may destroy the
cancellation property (Corollary 2.1.11). Moreover, Theorem 2.5.5 allows us to consider the
local Hardy spaces on manifolds and domains.

The local Hardy space h?(R™) is not only closed under multiplication by S(R™) functions,
but also contains S(R™) as a dense subset.

Theorem 2.5.6 ([46]). We have S(R™) < hP(R™) and S(R™) is dense in hP?(R™) for all
0<p<oo.

We also have atomic decomposition and molecular decomposition for h'. Before stating
the theorems, we shall introduce the atoms and molecules.

Definition 2.5.7. Let 0 < p < 1 < ¢ < o0 with p < q. We say a is an (p,q) atom for
hP(R™) if there exists a ball B = B(xg,r) such that

1. supp(a) < B;
141

2. lallpesy < [BI7#79;

3. ifr <1, / (x — z0)%a(x)dz = 0 for all |a| < Np.

Theorem 2.5.8 ([46, Lemma 5]). Let 0 < p < 1 and f € hP(R™). Then, there exist a
sequence {vj}; € ¥ and a sequence of (p,o0) atoms for h?, {a;};, such that f = 23021 vja;
in S'(R™) and in hP(R™); moreover, |f|n» ~ inf(3;cy h/j|p)%, where the infimum is taken

over all such possible decomposition of f.

Comparing Theorem 2.1.9 and 2.5.8, we can see that the definition of atom for AP has
the additional restriction if r < 1 for Item (3).
From the atomic decomposition, we have the following property.
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Proposition 2.5.9. For 0 <p <1< ¢ <00 andp < q, the space h?(R™) n L1(R"™) is dense
in hP(R™).

Unlike for the spaces HP, Corollary 2.1.11 is no longer true for h?(R™) by observing that
we do not require the cancellation condition when r(B) > 1. For example, the function
WIZ:BX[(),QOQE}] will be an h!'(R) atom.

We are now ready to prove Lemma 2.5.4.

Proof of Lemma 2.5.4.
The proof is taken from the proof of [32, Lemma 1]. Since the atomic decomposition
converges in the sense of distributions, and Mz, is sub-linear, it suffices to prove that

Mz (a)lr < C

for a (p,0) atom a supported on some ball B = B(zg,r) < R™. Indeed, writing f =
2jen Aj @j, this will give

1/p 1/p
Mo ()0 < (Z AP Mz, (a)lip) < o( 3 w)

jeN jeN

and we can take the decomposition so that the right-hand-side is bounded by a constant
multiple of | f| .
So fix a and split

Mz, (@), = /

B(zo,2r)

M, (a)(2)]Pder + / My, (a) (2)Pdz.

R"\B(x0,2r)

To deal with the first integral, note that for any ¢ € ]-'kT ' one has

[

Then

< lalz |6l | B(zo. ) o B b)] < Cur 5.

[ MA@@Pdr < Copr " [Bla0,20)] = Ca
B(xo,2r)

When = ¢ B(zg,2r), note that [a¢ vanishes unless B(z,t) n B(zg,7) # &, hence
T<|J?—27xo\<t<T_ Thus, if r > 1 we have

oo
and therefore

/ (Mg, (a)(z)]Pdz < / |z—x0| "Pdx < / |z—x0|""Pdx < 0.
R"\B(xo,2r) 2r<|z—mzo|<2T 2<|z—xo|<2T

Note that the integral on the right is of the order of logT when p = 1 and 7"'~?) when
p <1

_1
< lal 16l < Car" (T3 < Gl — o™,
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For 0 < r < 1, we have the standard HP(R") argument, using the moment conditions
of a up to the order N, = k — 1 and the Taylor expansion of ¢ € ]_-]Z“,x to write

[awstwa] | [|ow - 3 corrot -z |ata

lo|<k—1

< ) Callo®@lpe o faf e
|laf=k

< Cn t_n_k rk-&-n(l—%) ‘

Then

[ Ma@@P <G [ ey pia <o
R™\B(zo,2r)

|z—x0|>2r
since p > n/(n + k). O

There are different definitions of atoms for h?(R™). Komori defined an h?(R") atom, for
i1 <p <1, as follows.

Definition 2.5.10 ([69]).

We say a is an (hP,1) atom for -~

g <p<ly

e supp(a) € B(xg,r) for some xg € R™ and r > 0;
o [afpe <r7¥;
° |fa| <1

In other words, there is room for non-vanishing moment conditions for an A”(R™) atom.
However, one cannot include p = 1 in the definition. We will explain this in Section 4.1.

For p = 1, Dafni and Yue gave the following approximate cancellation conditions on atoms
for h'(R™).

Definition 2.5.11 ([34]). Fiz R > 0, 1 < g < 0. We say a is an R-approzimate (1,q)
atom if

e supp(a) € B(xg,r) for some xg € R™ and r > 0;

1_
e lalzs <|B(xo,r)|7 "
o | [a] < [log(1+ &)1,

Next, we discuss molecular theory. Unlike for the H? spaces, the molecular theory
for h? was not fully understood before the work [31]. The first discussion of molecular
decomposition for hP(R"™) is by Komori [69].

Definition 2.5.12 ([69]).
Let a > vy and 5 <p <1. We say M is an (hP, 1, ) molecule centered at xq if there is
r > 0 such that

o / |M(x)|dx < pr=r).
|x—z0|<2r
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¢ / |M (2)||z — zo|%dz < r“*”(lfp‘l);
|z—azo|=2r

M (z)dz
R’VL

< L

We will introduce atoms and molecules for general p in Chapter 4.

Finally, we end this subsection by introducing Hardy’s inequality for h*(R). Goldberg
claimed this inequality in [45] without proof, and it was proved by Dafni and Liflyand [33].
The n-dimensional version is stated in Theorem 4.2.1.

Theorem 2.5.13 ([33, Theorem 1]). For any f € h'(R), we have

F(6)I2
r 1+ ¢

< £ ln -

2.5.2 Non-homogeneous BMO
We start with the definition of non-homogeneous BMO.

Definition 2.5.14. Letbe L}

loc

(R™). We say b € bmo(R™), the non-homogeneous BMO if
1
1blbmo(rn) = sup = [ [b(z) — cpldz < oo, (11)
B |Bl /B
where the constant cg 1s given by

bp = ][ b, if r(B) < 1,
cp = B
0, if r(B) = 1.

(12)

for each ball B, and the supremum is taken over all balls B < R".

We will continue to use this notation when b is a fixed bmo function.
We remark that

sup][ |b(z) — cpldr ~ sup ][ |b(x) — bp|dx + sup ][ |b(x)|dx.
B JB r(B)<1JB r(B)>1/B

Therefore, this explains why we call the space non-homogeneous. In some contexts, the
space bmo(R™) may be called as “local BMO”; however, it is more appropriate to “local
BMO” to be the space of be L} (R™) such that

loc

IblBaton (ke = sup fybu)—bB\dKoo
r(B)<RJB

for some fixed R — see [114]. This space is strictly larger than BMO and /'\7 < BMOy,..
Also, there is a space called “small bmo”, which is related to the product setting, see [24].

We observe that the constant function ¢ has bmo norm c. As a result, unlike BMO, we
do not need to take bmo modulo all the constant functions to obtain a Banach space. In
other words,
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Theorem 2.5.15. The space (bmo(R"), | - [bmo(rn)) 5 @ complete normed space.
Let us state some basic properties of bmo(R").

Proposition 2.5.16.

b) bm.
1. (|34, Lemma 6.1]) Let b € bmo(R™). The averages |bp| < ol +”[];(%)]_1)

2. Let b e bmo(R™). For any xg € R", r> 0,0 >0, and 1 < p < o,

5 6(z) — Bz, P
d b
" /Rn (r + |o — zo|)n+9 % S [Pllmo (Rm)*

3. We have the relations L*(R™) < bmo(R"™) < BMO(R"™) and these inclusions are
proper.

Proof of Proposition 2.5.16.

1. Since we will use this argument later, it is good to provide proof. Let b € bmo(R")
and B be a ball in R™. If (B) > 1, then |bg| < |T§|fB |b(x)|dz < [[b]pmo(rn) and we
use the fact that lo% is an increasing function on R. When r(B) < 1, there

g(1+r—1)
exists N € N such that 2V ~1r(B) < 1 < 2¥7(B). With this N, we obtain

bp| < Z |byip — bai-15| + |ban g

<.
I
_

N
M=

|b2i g — bai—1 8| + [ bmo(rn)

<.
Il
—

N
M=

2”bemo R7) + Hbemo(]R”)

<.
Il
—

16 bmo(rn)
log(1+ [r(B)]™)

We have used the estimate (6) for small balls.

< @N + 1) blomoen) <

2. This proof is from the work [30]. By translation invariance of bmo(R"), we may
assume zo = 0. Denote B(0,2%r) by By, k = 0,1,2,.... Then using (14) and the fact
that for 2/r < 1

lcB; —cB, 1| = [bB; — b, | < 2"(|b]lbmo (13)

and Item 1, we have

b(x) — p
o ) — el
R™\ By |z|

o0
< Z 2_k§|Bkz|_1/ (|b($) - CBk+1|p + |CBk+1 o CBO|p)dx

k=0 Br+1\Bg
0

Z b o (1 + (minfk + 1log, 7~ }P)dx < [b]} -
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3. The first inclusion is proper by considering log(ﬁ) on [—1,1]. We can see that log|z|

x
is not in bmo since as R — o0,

1 R+1
R/ log(z)|dz = (1 + R~ log(R + 1) — 1 — o0,
1

We also have a John-Nirenberg inequality for bmo(R™).

Theorem 2.5.17 ([34, Theorem 3.1]).
For b e bmo(R™), there exist C,c > 0 such that for any ball B,

H{z e B:|b(x)—cp| > A} < C|B|€_)‘C/Hbemo

for all A > 0. As a result, one gets that

1/p
[bllomo ~ [Blmer = <sup £ @) = e rpdx) (14)
B B

for 1 < p < o, with constants depending on p.
Goldberg proved that the dual of h'(R") is the space bmo(R"™).

Theorem 2.5.18 ([46, Corollary 1]). We have (h'(R™))* =~ bmo(R"™) in the sense of
Theorem 2.2.6.

Similarly to the usual BMO case, we have the following definition.
Definition 2.5.19.

1. The space vino(R™) is the bmo(R™)-closure of all bounded uniformly continuous func-
tions.

2. The space cmo(R™) is the bmo(R™)-closure of CP(R™).
Theorem 2.5.20. [29] Let b € bmo(R"™).

1. A function b e vimo(R"™) iff b satisfies (7).

2. A function b e cmo(R™) iff b satisfies (7) and

lim sup ][ |b| = 0. (15)
R—o |B|>1 B
Bc(B(0,R))¢

One should notice that vmo in [29] is cmo in this thesis. Also,
Theorem 2.5.21 ([29]). We have (cmo(R™))* =~ h}(R").

Therefore, we have cmo(R™) < vmo(R™) < bmo(R™) € BMO(R™) (in the sense of sets).
As for BMO, if f,g € bmo(R"), we do not expect that fg € bmo(R™). One needs to
consider a smaller space.
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Definition 2.5.22. Let be L}

loc

(R™).
1. We say b e LMOy,.(R™) if

log(1 + r(B)~!
1670y, (R == sup [los( (B))l / |b(x) — bpldx < o0.
r(B)<1 | B B

2. We define Imo(R") := LMO,.(R™) n bmo(R") and

[l imo@ny = [0lLMmo,, me) + sup |blp < 0.
r(B)=1

Bonami and Fetou [9] showed that the pointwise multipliers of bmo(R") are the elements
of L*(R™)nlmo(R™). Furthermore, the space Imo(R") is useful in PDE. In [113], coefficients
with logarithmic mean oscillation condition of a parabolic equation are considered, while
in [7,8], a range of such conditions are imposed on the initial vorticity in the Euler and
Navier-Stokes equations. We note that the latter articles use a little different notation (for
example, bmo there refers to “local BMO” rather than Goldberg’s non-homogeneous space)
and an L? oscillation, which is equivalent to the L' one by the John-Nirenberg inequality
for these spaces (see [104]).

From the definition of Imo(R™), because [log(1 + r(B)~!)]~t — 0 as » — 0, functions
in LMOjc(R™) satisfy (7) and therefore Imo(R") < vmo(R"™). If b € LMOjoc(R™) n LP(R™)
with 1 < p < oo, then b will also satisfy condition (15). In fact, if |[B] = 1 and B <
R™ B(0, R) € R", then

]i b < bl o(s0.m) — 0

as R — 0o0. Thus, LMOj..(R™) n LP(R™) < cmo(R").
We give some examples for Imo(R"™).

Example 1. The first example is L(z) = log (log (%))X[,Q,Q] (x). Brezis and Nirenberg
[11] showed that L € VMO(R). We shall show L(z) € LMOj..(R). We will use the
fact that for any interval I,

]{\L(x) — Lyldz ~ ]€]€\L(x) — L(y)|dydzx.

For simplicity, we write 8(r) = [log(1 +r~1)]7'. Let 0 < r < 1, g € [-2,2], and
0<e<l

Case 1: if [zo| = (1 +e)r
Without loss of generality, we assume xg = (1 + ¢)r. Then,

zo+r pro+T (zo+r)  p(xo+r)
/ / L(x) — L(y)|dydz < / / & — yl|L (w0 — r)|dydz
zo—r Jxo—T To—T To—T

< Ca_lrz[log(i—i)] < C'e Y2 f(er)].
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We have used that |L'(z)| = [zlog(2¢)]~! and it is decreasing on (0,2]; also the fact
that there are 0 < ¢ < C such that for all z < 2

5

8|8

log(
0(x

<C.

c<

~—

In particular, if |zo| = 2r, we have

( ) o xo—7

where the constant C’ is independent of xg.

Case 2: |zg| < 2r

First, we can reduce to the case [0,3r]. If we let I = [xg —r,x0 + r] and 0 € I, then
by evenness of L, we have

xo+T xo+r
/ / IL(x) — L(y)|dydz < // L(y)|dydz
zo—r JxTo—T
3r  p3r
—4// (y)|dydz

and this shows that we can focus on the case [0,7] (as r is arbitrarily fixed).

Now, we write I = (0,7] and I; = (55, 5=] for j € N, and we have

][\L(x) — Lildz < 2/ |L(z) — Ly, |dz.
I 1

Now by observing I = U I;, we can write as
j=1

1 *
J=1 AR

For the first term, the center of I; is % and the radius of [} is 5757, which satisfies
Case 1. Hence, we can apply Case 1 with ¢ = 1.

For the second term, write J, = Iy_; U Ix and observe that [log(1 + r~1)]7! is an
increasing concave function, then for j > 2

J
|L]j —Lpl< Z |L1k - L1k71‘




We have used Case 1 with ¢ = % Now, we have

; [ +( - 1)[9(2r)]] < C'[0(2r)] < C"[O(r)].

In the last line, we have used the fact that

for all » > 0.

Therefore, if |zg| < 27, we have
][\L( — Ly|dydx < C"0(r)
I

and the constant C” is independent of x.

Combining both cases, there exists C' > 0 such that

C

|L(x) — Ligy—rzo+r]ldr < CO(r) = ———,
]{wo rzo+r] [0 otr] log(l + %)

which implies that

O<r<1

1
sup log(l + )][ ’L(x) - L[:co —rzo+7] ‘dl’ C < o0
r [zo—r,z0+T]

Example 2. Following the idea in Section 3.1 in [13], let A(z) = X,z a;L(x — n;), where
a; is bounded and n; satisfy nj 1 —n; > 2023. Using the same argument as in the
first example, we can show that A € LMOy,.(R). Moreover, if {a;} € ¢}(Z), then we
can also see that for p > 1,

1
A7, —C'/ exp(—e?" )dy < oo.

Example 3. The function £, (z) = (log(|x]’1))ax[_171] for a € (0,1] is not in LMOjoc(R).
For a € (0,1), 4o(x) € vino(R)\LMO)oc(R). By considering the interval B = (r,2r)
where 0 <7 < % and using the Mean Value Theorem, we have

2r 2r 2r 2r y|
dyd — dxd
r2/ / v)ldyde > / / )] 1og 2r) D

24 [log((2 7“) DI

which gives us
i log(1 + %)
70 [log((2r)~1)]'=e

For av = 1, it is not even in vmo(R), so it cannot be in LMOj,.(R).

= 0.
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Finally, we introduce the non-homogeneous Zygmund space.

Definition 2.5.23. The non-homogeneous Zygmund space is defined to be Ay(R") :=
A (R™) n L®(R™). The norm is given by

[flay == 1£14, + 1 F]z=-
Example 4. In fact, A,(R") < Imo(R") for all v > 0. Let b € A(R"). From the bound-

edness of b, we have
sup / b dl‘ b Ay

Therefore, we need to show that |6l Mo,,. < 0. Let B = B(zq, ).

log(1 + 7! ][ b(y) — bp|dy <log(1+r1) ][ |b(y) — bp|dy
<log(l+r~ )TVHbHAW.
Since log(1 + r~1)r7 < C, for 0 < r < 1, we can conclude that |b]no0,, < 0.

As expected, Goldberg also identified the dual of hP spaces:

Theorem 2.5.24 ([46, Theorem 5]).
Let 0 < p < 1. The dual space of hP(R") is App-1_1)(R™).

2.5.3 Pseudo-differential operators and commutators

We begin with the definition of a symbol.

Definition 2.5.25. Let a € C*(R" x R"), m e R, and p,d € [0,1]. We say a € s if for
any «, B € Ny there exists Ay g such that

|07 0¢a(@, €)] < Aap(1+ [¢])m P+l (16)

for all (z,€) € R™ x R™. We also define the pseudo-differential operator associated with
symbol a, Ty, to be

T.f(w) = [ alwOF () 4de

given f e S(R™).

Some authors may write OpS to denote the space of all pseudo-differential operators
associated with a symbol a € SZ)"

We have that T, : S(R") — S(R"™) continuously for all p,d € [0, 1] — see [108, Chapter
VI Section 1.3 and Chapter VII Section 1.1.1].

Two notable examples of pseudo-differential operators are multipliers and multiplication
operators. More precisely, if a(z, &) = m(€) € SY s then T, f(§) = m(£) f(§), which is also
known as a Fourier multiplier operator; if a(x,§) = M(x) € ST}, then T, f(x) = M (z) f(x)
by using the Fourier inversion formula, and this operator is known as a multiplication
operator. However, the multiplication operators by functions in BMO(R™) or bmo(R™) are
not pseudo-differential operators because these functions do not satisfy (16).

Pseudo-differential operators are an example of generalized singular integral operators.
The proof of the following proposition can be found in [108] or [2].
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Proposition 2.5.26. Let a € S/% with0<p<1land0<d<1. Let

K(x,y) = lim [ X0 8a(a, €)y(eg)dg
[Siand Rn

for a ¢ € CP(R™) such that » =1 on |§| < 1, where the limit is taken in S'(R™). Then,
we can write Ty f(x) = / K(xz,y)f(y)dy, K is smooth away from the diagonal, and K

Rn

satisfies

o ﬁ _ M+4m+4n
sup |03 0, K(2,y)| Saplz—yl 7
o +[8]=M
given that x # y and M € N such that M + m +n > 0. Furthermore, for any N € N and
a?ﬁ € I\IO

sup | — y|N[070) K (2,y)| Sapn 1.
lz—y|=1
The pseudo-differential operators associated to an S;% symbol is a strongly singular
integral operator if 0 <d < p<1land —5 <m < —M — see [3, Section 3].
We now introduce an important example of pseudo-differential operators.

Definition 2.5.27. [46] Let ¢ € S(R™) with ¢ =1 on B(0,1). For j =1,--- ,n, we define
the j-th local Riesz transform to be

rif = F ! <¢(1 - @E}), (17)

where F~1 denotes the inverse Fourier transform.

These are pseudo-differential operators with symbols in S‘io because the symbol (1 —

@({))% is smooth away from 0 and it is identically 0 in B(0,1). Moreover, the symbol is
bounded above by a constant for all £, so m = 0; when we differentiate the symbols, we
reduce the power of £ by 1. Thus, the symbol is in S?,o'

Goldberg used these operators to characterize h!(R™).

Theorem 2.5.28 ([46, Theorem 2]). A distribution f € h'(R™) if and only if f € L'(R™)
and rj(f) € L*(R™) for all j=1,--- ,n.

Later, Peloso and Secco [92] provided a characterization using local Riesz transform for
some range of p < 1.

Next, we discuss the boundedness of pseudo-differential operators, which means there
exists an extension of 1" such that it is a bounded operator. For a € S?,o symbols, T, is
bounded on L?(R™), see [108, Chapter VI Section 2]. For a € 5?71, it may not be bounded
on L?(R™), but it is bounded on A, (R™) for v > 0, see [108, Chapter VII Section 1.2 and
1.3]. If a € ST, then T, maps W*2(R") to W* ™2(R") (s € R), where W**(R") is the
generalized Sobolev space and its norm is || f|ws.r := ||(I — A)%fHLp(Rn), see [100, Theorem
2.6.11]; T;, also maps A, (R") to Ay, (R"™) where v > m.

Now we focus on the boundedness on local Hardy spaces. Let us first explain why the
classical Calderén—Zygmund singular integral operators are unsuitable for h!.
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Example. Consider f = X[-

11y, which is an h! atom on R, and the Hilbert transform.
272
Then we have

t+ L
HD) = 1og |3
2

and it is not in L!(R). Indeed, for ¢ > 1, one has H f(t) > ﬁ for some ¢ > 0.
2

Next, we will record some results about the boundedness of pseudo-differential operators
acting on hP, which we will not use in later chapters.

Theorem 2.5.29.

1.

46, Theorem 4] If a € S7, then T, can be extended to a bounded operator on hP(R™)
for any 0 <p < 1.

[115, Chapter 1 Section 2] If a € S%d for 0 < § < 1, then T, can be extended to a
bounded operator on h'(R™).

[60, Theorem 4.1] If a € S n(l P2 ford < p<1land0 <9 <1, then T, can be
extended to a bounded opemtor on h'(R™).

[59] If a € ST for —n < m < 0, 0 < 6 < 1, then Ty can be extended to a bounded
operator from hp(]R") to h1(R™) for any p q < ;5 and 0 < p < 1. Moreover, if
m < 0, T, maps contmuously hP(R™) to = (R™) if p < == to bmo(R") if p =
and to No_pp, if p> =

[90, Theorem 4.1] Let 0 < p < 1. Ifa € S, with0 < p <1 and m = —n(1—p)(p~' —
1), then T, can be extended to a bounded opemtor on hP(R™).

59] Let 0 < p < 1 and —n < m < 0. If a € S with 0 < 6 < p < 1, then
T, can be extended to a bounded operator from hP(R”) to h4(R™) where q satisfies

—m=nlpt—¢ '+ (1-p)¢g ' -]

—n(p-1-1
[59] Let 0 <p< 1. Ifae Sy, 7" ~2) , then T}, can be extended to a bounded operator
from hP(R™) to L*(R").

Finally, we state some results related to commutators of pseudo-differential operators
with some functions.

Theorem 2.5.30 ([70, Theorem 1]). Let b be a function such thatVbe A, for 0 < a < 1.
Suppose a € 51170. Then, [b,Ta] acts continuously on hP(R") for all ;7> <p < 1.

Theorem 2.5.31. Let be Ly (R™) with ¢(r) =

1.

2.

(14 7m)?

— 2 _and 0 = 0.
log(e +r—") an

[124] Suppose a € 59,6 with 0 < § < 1, then [b,T] is bounded from H'(R") to L'(R").

[62] Suppose a € S with 0 < 6 <1,0<p<1,6d<pand-n—-1<m=<
—(n+1)(1 - p), then [b,T] is bounded on h*(R™).
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2.5.4 Inhomogeneous singular integral operators

Another generalization of singular integral operators that fits local Hardy spaces is called
inhomogeneous Calder6n—Zygmund singular integral operators, which [35] introduced.

Definition 2.5.32. A locally integrable function K defined on R™ x R™ away from the
diagonal is called a (p,0)-inhomogeneous standard kernel if there exist >0 and 0 < § < 1
such that

. 1 1
K <0 min{ ok e (18)
and
ly — 2

for all |x — z| = 2|y — z|. A linear bounded operator T : S(R™) — S'(R") is called inhomo-
geneous Calderén-Zygmund operator if

1. T extends to a continuous operator from L*(R™) to itself;

2. T is associated to an (u,d)—inhomogeneous standard kernel given by
(Tf,g)= //K x,y)f (x)dydz, V f,g € S(R™) with disjoint supports.

Theorem 2.5.33 ( . Let T be an inhomogeneous Calderon-Zygmund operator satisfying
the pointwise controls ( 8) and (19). Suppose n/(n + min{d, u}) < p < 1. If T*(1) €
AWP(R”), then T is a bounded operator from hP(R™) to itself. Moreover, if T is a bounded
operator from hP(R™) to itself, then T*(1) € A, (R"™).

This thesis will also generalize this result to wider class of kernels and for all 0 < p < 1.
One example of a (u,1)-inhomogeneous standard kernel is K(x,y) = w, where
o(t)=1on|t| <1, ¢(t) € (0,1) for [¢| € (1,2), ¢(t) =0 on [t| = 2 and ¢ € CF(R). It is true
that K(z,y) =0 if |x —y| > 2 and
1

K(z,y)| <
| | |z —y|

if v —y| <2

Moreover, if 2|y — z| < |z — y],
Mx—w—¢@—dh%w—22<0w—z!
|z =y [z =yl |z =yl

Indeed, this example is the kernel of the local (or localized) Hilbert transform introduced
by Goldberg in [45]:

K (2y) — K(z,2)] <

?ﬁ@%=PV/K@yﬁ@My (20)

He claimed the operator H characterizes h!(R), in the same way that the usual Hilbert
transform characterizes H'(R). This claim was proved by Dafni and Liflyand [33]. Com-
paring with Theorem 2.5.28, we see that there are two different characterizations of h'.
Some natural questions arise: how are these operators related? What are sufficient con-
ditions on the localizing functions so that those operators can characterize h'? We will
answer these questions in the next chapter.
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Chapter 3

Equivalent Localization of Singular
Integral Operators

This chapter will establish a relation between localization in physical spaces near 0 and
frequency space away from 0. It is taken from [30] with minor changes.

Let K be a d-kernel of convolution type (Definition 2.3.1) that satisfies (8) instead. We
define two types of operators via localizations of the kernel K. On the one hand, we look
at operators of the form

TY(f) = T(f =+ f)
for suitable functions 1. These are modelled on Goldberg’s localized Riesz transforms in
(17), with ¢p = F~!(¢). On the other hand, based on the definition of the local Hilbert
transform (20), we look at the operators T;,, associated with the kernel K7, for a class of
functions 7.

We now show that under certain weak smoothness and decay conditions on 7, the
kernel K1 satisfies the same conditions as K and so we can associate to it an operator 7},
in the same way that we associate T to K, and this operator enjoys the same boundedness
properties as T

Lemma 3.0.1. Suppose that n is a bounded function and

Sup/ In(z — y)n— @), _ o
y#0 J |z|>2|y| |z

Then Kn satisfies | K (x)n(x)| < |nllpe|z|™™ and (8).

Proof of Lemma 3.0.1.
We have that |K(x)n(z)| < |K(2)||nlre < |nl|pe|z|™™, and for any y # 0, we get

/ B |K(z —y)n(z —y) — K(z)n(z)|dx

< / [K (2 —y) — K(@)n(z —y) + K(z)[n(z — y) — n(x)]|dz
|z|>2]y]

<o | K= = Kol + /| 0z —y) —n(@)]

z|=2y| |x’n
< CKW.
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O]

Note that the condition on 7 in Lemma 3.0.1 is satisfied whenever 7 is §-Lipschitz for
some ¢ > 0, and the Lipschitz constant in B(x, |z|/2) decays like |x|~°. In particular, if 7
has compact support, then it is enough to require 1 € Lips.

Next we show that K7 satisfies Definition 2.3.1 Item 3. For this we need further assump-
tions on 1 guaranteeing that 1 has a certain decay at infinity and 1 — 1 vanishes sufficiently
fast at the origin. Note that we do not require that n = 1 in a neighborhood of the origin.
For example, if n € Lip;s then it suffices that n(0) = 1.

Lemma 3.0.2. If n satisfies,
-1
[ et [ e, o)
0<|z|<1 |

] az1 |2

then

sup / K(z)n(z)dx
O<r<R<ow | Jr<|z|<R
Proof of Lemma 3.0.2.
Without loss of generality, we assume that 0 < r < 1 < R. For 0 < r < R, by the
assumptions on K and 7,

< Cyi.

/ K(y)n(y)dy‘
r<|y|<R
<| [ K@ - 1]dy\ f O+ \ [ K@y
r<ly|<1 1<]y|<R
-1
<x / Mdy +/ Mdy 1<Cyr,
0<ly|<1 lyl ly|=1 ]

where Ck is the constant from Definition 2.3.1 Item 3 of K and the constant C) i is
independent of r and R. O

If 1 satisfies the hypotheses of both lemmas, we get the boundedness of T}, on L?(R™);
and hence the boundedness on LP(R") and L'(R") to weak-L!.

Theorem 3.0.3. Suppose n satisfies the hypotheses of Lemmas 3.0.1 and 3.0.2, and
satisfies

b e INRY) A L3(R), / v=1,

1
faf M 22
/|w>1 _|x|“ /|y|>|x/2\1/1(y)y y] €T < 00 )

and

[Y(z —y) — ()]
/|x>1 /|y<|x/2 [y dy] d < co. (23)

Then the operator T, is bounded on h*(R™) if and only if TV is bounded on h'(R™).
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Note that condition (22) will hold, for example, if the function |z|7i(x) is integrable
for some 7 > 0, while (23) will hold if ¢ € Lip,, for 0 < a <1 and |2]|*[¢|Lip_ (B(x,«|/2)) 19
integrable.

Proof of Theorem 3.0.3.
We will show that the operator T := T;, — T is bounded on L!(R"), and from that deduce
that T is bounded on h'(R").

For 0 <& < 1/2,let Kc(z) = X|2><K () be the usual truncation of the kernel. Applying
the same to K1, we consider (Kn). — K. + K¢ 1. Set

Ki(x) = sup [(Kn)e(x) — Kc(x) + K * ()]

e>0

We claim that K, € L'(R").
For the local estimate, we write

Ka(2) < [K(2)(n(x) — D] + T (¥)(2),

where Ty (1) (x) = sup.-g |Ke * ¥(z)|. Recall that the maximal operator T} has the same
boundedness as 1" (see [108, Section 1.7],[47, Section 4.2.2]). Thus we have

K. (z)dx < / Mdm + [z < o0

2| <1 o<1 lz]"

For |z| > 1, we can write

Ky(x) < [Kn(z)| + sup |K (z) — K¢ * (x)].

e>0

The first term is integrable for |x| > 1 by condition (21) on 7, so it remains to bound the
integral of the second term. We do this by fixing £ and obtaining a pointwise estimate on
|K(z) — K¢ #9(z)] in terms of 1.

Using the hypotheses on 1, we can write, for |z| > 1 and ¢ < 1/2,

K- [ ke <K@ [ el

lz—y|<e
S (24)
ly|=|z]/2
Thus it remains to consider

/ K@ K@)y
T—y|>e

- /{ lyl<lal/2 } +/{ jyl>Jal/2 } i /€<|z_y<|z/z[K($) — K@ =ylydy

lz—y[=|z|/2 lz—y[=|z|/2

=1+ Iy + Is.
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To estimate I;, note that B(0,|z|/2) < B(x,|x|/2)¢ so we can use the smoothness
condition (8) on K to write

/ sup 11| < / / K (2) — K(z — y)||o(y)|dyde
|z|>1 e>0 |z|=1 J|y|<|z|/2
< / / K (z) — K(z — 3)|dalé(y)\dy
n Jlz|=2y|
< O] L1 @ny-

For I, we use the decay bound on K (Definition 2.3.1 Item 1) to get, as in (24),

/M uplbl= /|/{ yilel2 }<|K<w>uw<y> T K (@ - )l [(y))dy

lz—y|=[x]/2

1
S/ n/ [(y)|dy.
i1 121" Sy (a2

Finally, for I3, we again use the decay bound (Definition 2.3.1 Item 1) as well as the
cancellation condition on K (Definition 2.3.1 Item 3) to obtain

FEIES

/ ctoyciayp W W) = K@ =) (0(y) — v ()] dy\

/ K- y)w(w)dy‘
e<lo—y|<|al/2

\w(y)!d [ (y) — w(w)ld .
s /y v /Iar—y|<|~’vl/2 v

+

Sz 2" |z —y["
1 vz —1vy) —Y(x
s [ Wy [ IO ROlg ),
Z[™ Jiyi= )2 /| <l/2 /]

Since the last estimate is independent of €, we can bound flz\ >1 SUPesg |I5| by

! b —y) — Y@,
ER d d 5
/|z>1 [ /y|>|:r|/2 vy /x|>1 /|y’|<|;r|/2 ly'|" Y+ @l

Combining (24), Conditions (22) and (23) on % and the estimates above, we get

/| sup |K(z) — K. = ¢ (z)] < o0

z|=1 >0

and as a result, K, € L'(R"). Let

Kp(e) = i ((Kn)e — Ko+ Ko 0)(2) = Kne) — K(x) + lim K. 6(a)

This limit exists for almost every x € R™ by the properties of T (see [107, P. 45]). By the
Dominated Convergence Theorem, K € L'(R™) and

lim ((K7)e — Ko+ Kex)) » f = Kp = for fe LY(R™).
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Let f € h}(R"). Then T f € L'(R") with

ITEflor®ny < |KENLr @y [ £l 21 (e

Moreover, the localized Riesz transforms r;, j = 1,...,n of Goldberg (see Theorem 2.5.28)
commute with convolution with the L' function Kg, so

ri(Te(f)) = Te(r;(f)).

Since r;(f) € LY(R™), hence Tg(r;(f)) € L' (R™), we have

ITefln@®ny S I TeflLr@ny + Z I (Te () L1 @ny
j=1

< IEel @ (If i@y + X Ir (Ol @n))
j=1
< [ fllnwny-
O

Corollary 3.0.4. Suppose that n and ¢ satisfy assumptions in Theorem 3.0.3. For j =
1,...,n, define, for f € S(R™),

Rinf(2) = cn lim (s — 900 =9y g,

20 Jjp—y|>e |z — y|n+1
and
Rjpf(@) = R;i(f — = [),
_n+l

where ¢, = T(%)n™ "2 . Then

1. R, and R,y both map h'(R™) to L'(R™);

2. for f e LYR"), f e h{(R") <= Rj,(f) € L'R"),j =1,..n <= Rju(f) €
L'R"),j=1,..,n.

As seen above, because convolution operators commute with the r;, the boundedness
from h'(R™) to L' (R™) implies the boundedness on k' (R™), and extra cancellation conditions
on the kernel are not needed (see also the remark following the proof of [45, Theorem 4]).
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Chapter 4

A New Molecular Theory of hP(R")

In this chapter, we will discuss a generalization of Definition 2.5.10 and 2.5.11, as well as
the Definition 2.5.12. Moreover, we will consider the Hardy inequality in higher dimensions
on local Hardy space.

This chapter is the joint work [31,32].

4.1 New Atoms and Molecules

In this section, we consider the cancellation conditions in the definition of h?(R"™) atoms.
They are different in Definition 2.5.10 and 2.5.11. Moreover, we cannot simply take p = 1
in Definition 2.5.10 as shown in the example below.

Example: In the paper [31, Example 3.4], we have shown that for each r > 0 there exists
a function a, which is supported in an interval of length r, such that a has vanishing
moments up to order n(p~! —1)—1, and if a has bounded norm in h?, then the highest
order moment must decay logarithmically in r. We shall consider two particular cases,
namely, on h!(R) and A2 (R).

Let us start with

ap(x) := M)g[_%é](:c).

T
Here ¢ : [0,00) — [0,1]. We can see that this function satisfies supp(a) < [—%, 5] and
lalze < 7.

We take f(z) := log(|x]_1)x[71,1] () € bmo(R). Since f(z) = log(2r—1) for all z €
[—5, 5], by using Theorem 2.5.18,

< [ flbmolla]p1

o oe(r ) = [ i) )i =| [ aole) )i

If we want ag satisfies |a],1 < 1, then we have ¢(r) < [log(r~!)]~!. In other words,
one cannot replace ¢ by a constant.

To establish the case for h2 (R), we shall now translate ag to the right by ¢ units and
extending it to [—r, 0] in such a way that the resulting function is odd. More precisely,

_ 9(r)

T [ T

X[-r,0] (x) .



Note that [d@p = 0 and [ xzdp(z)dx = ¢(r)r; so we normalize dy so that [ za;(z)dzx =

o(r), i.e.
a1 (z) = (iES)X[D,r](x) - (@X[—T,O](x)-

Similar to above, take g(z) := xlog(|z|)n(x) € A1(R), where n € CL(R) with n = 1
on [—1,1] and n = 0 outside [—2,2]; and by restricting ourselves to 7 < %, we have

’/al dx—/xal( Vlog(r)dz| < ‘/_Tal xlog(’r‘)dm

< ‘2 / al(ry)rylog(y)rdy‘
0

o1 1 —1 1
< 2r°— ; ylog(y )dy=§7"<

r

This implies

¢(r)log(r) ‘/al x)dx

S+ af, s

A similar explanation shows that ¢(r) < [log(r—1)]71.

We now give the definition of an approximate atoms for all 0 < p < 1. Recall that
Y =n(p~t —1) and N, = |n(p~! —1)].

Definition 4.1.1 ([31, Definition 3.2]). Let 0 <p <1< s < o withp < s, w = 0, and

define ¢, : (0,00) — (0,00) by
' 1\ #
op(t) = {log (1 + wt>} ,

where @,(t) = 0 in the limiting case w = 0. We say that a measurable function a is a
(p, s,w) atom (for hP(R™)) if there exists a ball B < R™ such that

1. supp(a) € B;

n(i-1)
2. |lalpsgny < r(B)" vy

7

< w, if o) < p,

/Ba(x)(x —xp)%dr

/B a(z)(z — z5)°dz

S ep(r(B))  iflal = Np = .

Proposition 4.1.2 ([31, Proposition 3.3]). If a is a (p, s,w) atom, then |al|pr <psw 1 and
the constant is independent of a.

Proof of Proposition 4.1.2.
This proof is taken from the proof of [31, Proposition 3.3]. Let a be a (p,s,w) atom
supported in B = B(xpg,r). The idea is to split according to
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Split

P P
||./\/l¢aH’£p = / < sup ¢ * a(:v)]) dx +/ ( sup ¢ * a(x)\) dx.
2B \0<t<1 (2B)e \0<t<1

Using the fact that sup [¢¢ * a(x)| < Cp Ma(z), where M denotes the Hardy-Littlewood
O<t<1

maximal function, by Theorem 2.1.8 it follows that

P
/ < sup |y * a<x>|> de < Cyo|2B|" "% |alh. < Cpapn r" =) 51 = Oy e
B

o<t<1

Note the last estimate holds for all 0 < p < 1. For s = 1 and p < 1, using that M is of
weak type (1,1) and following the argument in [42, Lemma 3.1 p. 248], we have

p
/ ( sup |¢>t*a(:1:)|> dl‘é/ |Ma(z)Pdx
2B \ 0<t<1 2B

a0
:/ ap71|{x € 2B : |Ma(z)| > a}|da

o]
\2B\ paPtda + pap_liHaHLl do
T—np71 (6

n.—n —p~ )~ (p—1)

Now we deal with the estimate outside 2B. From the Taylor expansion of the function
y — ¢¢(x —y) up to order N,, we may write

sup [¢¢ * a(z)] = sup
O<t<1 O<t<1

[3 Catoute ) s - ety

|| <Np—1

. /R S Cad®dula —vp + clan —y)) (05 — y)*aly)dy

n
|o|=Np

forsomece (0,1). As|z—zp| = 2r and |[y—zp| < r, we have]:r rp+c(rp—y)| = |[zr—xpB|/2.

For ¢ € S(R™), we will use the bound [0%¢(z)| < Cy|z|~Y, where N > 0, depending on
||, will be chosen conveniently. Breaking the integral into the integrals over the regions
2r < |z —zp| <2 (empty if r > 1) and |z —zp| > 2, we take N = n+ |a| for the first region
and N = n + N, + 1 for the second one. Since the supremum in ¢ is taken over (0, 1), we
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have ¢t~ lel+n+No+1l < 1 for all |a| < N,. Thus

/ (sup |ér » a(a)|)Pde
(2B)¢

O<t<1

—n—|a||T — TB e @ P
< sup >, Cot — a(y)(y —=p)*dy| | dx
2r<|z—zp|<2 \0<i<l o <N, n
—n—N,—
I A
+ sup Y Cat — a(y)(y — xp)*dy| | da
lz—zp|=2 \ 0<i<l la|<N, n

<y

o] <Np

P
/ a(y)(y — mB)“dy' </ iz — x| lAlP gy
R7 2r<|z—zp|<2

+ / |z — xB\_p("+NF+1)dx).
lz—xp|=2

p
/ a(y)(y — wB)ady‘ / @ — 2| PP dr 4 C
R 2r<|z—xp|<2

A

2

|| <Np

Here we have used the fact that p(n+ N, +1) > n to bound the terms involving the integral
over |z — zp| > 2 and the estimate

[ et —n| 51

for r(B) > 1.

The other terms are nonzero only when r < 1. In the case p # n/(n + k) for any k € N,
meaning N, < 7y,, we have —np—|a|p > —n for all || < N, so the integral over |z —zp| < 2
is convergent, and together with condition 3 in Definition 4.1.1, this gives a bound which
is a constant multiple of w.

The same bound also works when p = n/(n + k), k € N, but |a| < N,. When |a| =

Ny, = p, we have —np — |a|p = —n and therefore f27,<|m_r3|<2 |z — x|~ 1Pdz ~ logr—!.
Using condition 3 again, this time with the log bound on the moments, gives a multiple of
logr~! ¢, (r)P, which is bounded for r < 1. O

Next, we shall establish the approximate molecular theory.

Definition 4.1.3. [31, Definition 3.5] Let 0 < p< 1< s < o0 withp < s, A > n (g - )

and w, p be as in Definition 4.1.1. We say that a measurable function M is a (p, s, A, w)
molecule (for h?(R™)) if there exists a ball B < R™ and a constant C > 0 such that

(M1) [ Mgy < Cr(B)" (75
1/s \ -
(M2) </B (M ()" |o = xBPd%) <crp) i),

M(z)(x — xp)*dx
R

< w, if la| < vp,

(M3)

M (z)(x — zp)*dx
R™

< pp(r(B)) if la] = Np = 7p.
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We call the molecule “normalized” if C' = 1.

Proposition 4.1.4. [31, Proposition 3.7] If M is a normalized (p, s, \,w)-molecule, then
M e Spnsaw L and the constant is independent of M.

Proof of Proposition 4.1.4.

This proof is taken from the proof of [31, Proposition 3.7]. The proof is inspired by the
classical molecular decomposition for real Hardy spaces. We will outline only the main
ideas, highlighting the parts that diverge from the classical proof, which can be consulted
in [42, Theorem II1.7.16], preserving some of the notation from that proof below. Let M be
a normalized (p, s, \,w) molecule associated to a ball B = B(xp,r) < R"™. We show that

o0 o
MZEtkak-I-ZSkbk—l-aw, (25)
k=0 k=0

where ag, by are (p,s) and (p,o0) atoms with full cancellation, respectively, and q,, is a
(p, s,w) atom. Moreover,

o0 o0
ti|P < oo and skl < oo
|t| k

k=0 k=0

independently of B. Let By = Ey = B, By = B(xp,2"r), E;, = By\Br_1 and My(z) =

M(z)xEg,(x) for k € N. Let P, = Z m¥ @k to be the polynomial of degree at most N,,
lo|<Np

restricted to the set Ej, for which, for every |a| < N,

Pi(z) (x — z5)%dx = mF oF (x) (x — xp)%dz = mk = M(x)(x — zp)%dx (26)

(0%
Ey Ey Ey

and

|Py(2)] < Chyp |M (z)|dx (27)

Ex

for some constant independent of k. This is done by choosing the polynomials ¢¥ to have (-
th moment equal to |Ej| when 8 = a, and zero otherwise, and noting that (2Fr)lel|¢k ()| <
C uniformly in k.

Setting, for |a| < N, for k € Ny

I

Q0
D |Bjlmd = | M(z)(e — zp)*de,
]Rn

Vo -

=0
o0
Nk Z |Ej|md, = M(z)(x — zp)*dx
j=k+1 B
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we can represent the sum of Py as

> Pula) = ) (Z (Na ™t = NIER " o0(2) + (va — N3)|E0|1¢3(w)>

k=0 la|<Np \k=1
o0
-y (Z N¥| Ejpy| Lo (2) ZNk|Ek| ok (x )+va|Eo|1¢2(w)>
lo|<Np \k=0 k=0
oo
=2 > Gk + Y valBol ! dh(a),
k=0 |a|<Np lo| <Np

where

Ok (@) = NE 1B | ok (@) = Bl oh(@) | ke No.

Note that last sum appears since we do not have the vanishing moment conditions on the
molecule compared with the case H?.
This allows us to decompose M as follows:

Z My—Po)+ >, >, ®h(@)+ > valBol ™' ¢3(x) = S+ 82+ S5 (28)

k=0 |a|<Np || <Np

We deal first with the terms S;. From conditions (M1) and (M2) one gets

1

Myl < 2% Cos |Bi 5 (23 (G3), (29)

and it follows from (27) that | Py|| s < Cypp | Mg /rs. Moreover, from (26) we get that My — P,

has vanishing moments up the order N,. Thus My — P}, is a multiple of a (p, s) atom. Writing
1.1 My (x) — Py(x 11

(My— Po)(a) = e au(e) where t = |My — Peloe Byl ay(e) = "L PN g o

| My — Pl s

and note that from (29) one gets

o0 o0
P

M Jtrl? < 2% Crps Z 1=8) = Chupor < 0 (30)

provided A > n (s/p —1). We point out that the closer A gets to n(s/p — 1), the bigger the
constant appearing in (30).

For S5, we claim that ®(z) is a multiple of a (p,00) atom with full cancellation condi-
tions. The cancellation follows from the moment conditions on ¢f. For the size condition,
from Hélder inequality and (29), for every |a| < N, and k € N, one has

_A 11
INE < Capon Bel 5 @Fn)el2ty 7+ (4),

Hence, since (2¥7)1*|¢% (2)| < C uniformly, it follows

_A 1_
INF B¢k (2)] < Crpn | Bl 5 (28) 3+ (72)
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" i & ,A+n(l,l>
Therefore, writing Z Q) (z) = si bp(z), where s = Cypsn (2¥) » \P ¢/ for some
lo|<Np
appropriate constants Cy, , 5 x, we get that by are (p,o0) atoms and

a0 0

_2p _r
Z |siP = Chpsa Z (28)=% +n(1-%) ~ 0, (31)
k=0 k=0

where again we used that A > n (s/p — 1).
Finally, for S3 let
=D valBol ™ $(x).

|| <Np

This function is supported on Ey = By and, proceeding as in (1), (M1) and (M2) give

1
val = < pleten(1i=3)

M(z)(x — zp)*dx
R™

The L*-estimate then follows immediately from the fact that 7|0 (z)| < C:

S v Bl 760 < S INY| (Bl (/E |¢3<m>|8da:)5

la|<Np s lo|<Np
1. n(;,;)
< Y ol [Bols 7t rmlel g p™ETR)

|| <Np

It remains to show the moment conditions on a,, which follow immediately from (M3),

since by the choice of v, and ¢J, the moments of a,, are the same as those of M. Indeed,
fOI‘ |B’ < va

[ W (i 0¢3<x><x—x3>ﬂdx)

lo| <Np

= Uy = M (z)(x — z)°dz.
RTL

Thus a,, is a multiple of a (p, s,w) atom. O

From Proposition 4.1.2 and 4.1.4 and Theorem 2.5.8, we have

Theorem 4.1.5 ([31, Corollary 3.8]).
Let 0 <p<1<quwithp<gq (md)\>n(%—1).

1. Given f e hP(R™), there exists a sequence {~;}; € ¥ and a sequence of (p,q,w) atoms
for hP, {a;};, such that f = 230:1 via; in S'(R™) and hP(R™); moreover, | f|n ~

1
inf(X;en [ [F) 7, where the infimum is taken over all such possible decomposition of

2. Given f € hP(R"), there exists a sequence {v;}; € (P and a sequence of (p,q,\,w)
molecules for h?, {M;};, such that f = Z;O=1 v;Mj in S'(R™) and hP(R™); moreover,

1
| £l ~ inf(35e V5 P)P, where the infimum is taken over all such possible decompo-

sition of f.
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4.2 Hardy’s Inequality

As an example of our new molecular theory, we will use it to prove the following.
Theorem 4.2.1 ([31, Theorem 4.1]). Let 0 < p < 1. Then, there exists C > 0 such that

7 p

Lemma 4.2.2 ([31, Lemma 4.2]). Let 0 < p<1<s <00 withp <s and A\ >n (% — 1).

Suppose M satisfies conditions (M1) and (M2) with respect to the ball B = B(xzp,r) < R™.
Then the Fourier transform of M satisfies

M) < e+ Y il

lal<N

M(z)(x — zp)“dz (32)
R"

for any v € (7, % — %) and integer N with N <~y < N + 1.

Proof of Lemma 4.2.2.
The proof is taken from the paper [31]. Since the absolute value of the Fourier transform is
preserved under translation of the function, we may assume xg = 0. For £ = 0, we see that
equality holds by in (32) by considering the a = 0 term in the sum on the right-hand-side,
so we need only consider £ # 0.

Suppose first that vy = N +1 < %— . Denoting e 2™¢ by ¢(z) , we write Py g 0(z) =
2aj<n Ca (0%9)(0)z for its Taylor polynomial of order N at 0, and use the formula for
the remainder to get, for ¢t € (0, 1),

F1©)1 = | [ M@)pla) - Prsa@de + 3 Cal@0)O) [ Ml)ada
jal<N
< M (x) Z Cq (0%p) (tx)z%dx| + Z Ca|2ﬂ§||a/ M (z)x“dx
R™ la|l=N+1 la|<N R™
< N+1 M N+1d ] M Al 33
<™ [ M@l o+ 33 6] [ peeds (3)

Similarly to (1), from conditions (M1) and (M2) of the molecule and Hélder’s inequality,
one has

n4N A 2
/R M) N < T M gy + UM g |

n

= r N M oy 4 1SV M) e
< TN‘H—’Yp7

where the convergence of the integral follows from the assumption that N + 1 < % —

This gives the result in the case v = N + 1.

@3
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Now suppose v < N + 1. Recalling that £ # 0, we write

M(€) = /| " e ML N (1) dx +/ e T WEN (2)dx =: I) + .
x|=|&|

|| <[€]

We estimate the first integral using Holder’s inequality, together with the bound the L*(R"™)
norm of M(x)|x|% with X = s(y 4+ &) < A, as follows:

A X _
ni< [ g M < IV ey 11 s < 77l
xTr|= -

For the second integral, we again proceed via the Taylor expansion of p(x) = e~ 2™%¢ to
get, as in (33)

L) < ¢V / M@)o ¥ de + 3 [efe

lz]<]é|~1 la|<N

/ M (z)x*dx
|z|<[¢]~?

/! !
< e / M (@) 2> 2]V ¥ da
lz|<|gl~t

£l

M(x)x“dx — / M(x)x“dx
Rn |z[=[¢]~

|a| <N
N A N+1-2
SLETIM S Tzs@ny N 175 0 o<y
+ Y lg M ()| *de + Y, (g [ M(x)ada
la]<N |z[=[¢]~? la|]<N R
N1 N _n_ (N1 yn b\ _X
< A B g O S el ¥ ey 119 e
la|<N
+ Z Hi& M (z)x*dx
lal<N R
SrTPIET + Z |¢[le M (z)z%dx|.
lal<N R

Here we have used that v = ’\?/ — & < N + 1 for the local integrability and that |a| < N <

v = )‘?/ — % implies §'(|a| — ’\?/) < —n. This concludes the case v < N + 1. O
For a molecule, the above estimate on the Fourier transform and the control of the

moments allows us to prove the following more refined version of Hardy’s inequality:

Lemma 4.2.3 ([31, Lemma 4.3]). If 1 < s <2 with p < s and M is a (p, s, \,w) molecule
in hP(R™) associated to the ball B = B(xp,r), then for a > 0,

/ MEP e Coc- (34)
rn (

aw + [¢])m=P)
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In the homogeneous case, w = 0, we recover Hardy’s inequality for HP(R™) (Proposition
2.1.13 Ttem 3). For w > 0, taking a = w™! shows that Goldberg’s Hardy inequality holds
uniformly for molecules with a constant depending on w. Applying the Fourier transform
to the molecular decomposition of f in Theorem 4.1.5 gives the result of the Theorem 4.2.1.

Proof of Lemma 4.2.3.

The proof is taken from the paper [31]. To show (34) we split integral in the following way:

M
re (aw + |5| §\<r—1 §|>r_1

Control of Is: Applying the Holder and Hausdorff-Young inequalities, one gets

—~ 1— 2
|M(€)P / n(2-p) ’
dé < || € de
/|§>r1 (aw + [¢|)n(2=P) I3}, E|>r—1 g
1—
n(2—p)
< I, =) ( [ e dg)
[€1>1

<C.

Here we’ve used condition (M1), and the integrability of the second term follows since
1 2—
1>p(1——= = —u<—n.
s 1—p/s
Control of I;: Taking N = N, and v € ('yp, % — §) N (Np, N, + 1] in Lemma 4.2.2, one
has

I < Tp(v—vp)/ €17V (aw + | €)M P2 dg
€<=t

+
|| <Np

=13+ 1y

M(x)(x — zp)%dx
Rr

For I3, using that (1 + |£])"®~2) < |£["P=2) we get

15| < rp(v—w)/ || P=2)+PY ¢
€<=t

~ pPy(p=1) pmpy—n(p=2)—n _ 1

where the integrability follows from py > pv, = n(1 —p).
For 1, using the approximate moment conditions (M3) of the molecule when w > 0, we

o1

p
e+ i

2de.



get

M(x)(x — zp)%dx

o] <Np R

= Z /M(x)(m—a:B)adx
laj<N, VR"

< Z /M(:J;)(x—xB)ad:z:
laj<n, VR"

o0

<Y wpw)qa%,)p/ #(lal

lal <7 !

L+ e
|§l<r—t

p
(@oyrier [ €llP(1 + ¢)mr2)dg

§l<(awr)~—!

P 14 (awr) 1
(aw)npnﬂap/ tp|a|+np7n71dt
1

1 -1 rl+(awr)~?
erelge g ) [log (1 + )} / tdt
wr 1

lo|=yp=Np

1\]¢ 1
< Cowp + Z {log (1 + )] log <1 + >
‘a|=Np wr awr

NPENO

< Cow,p-

02



Chapter 5

Boundedness of Inhomogeneous

Singular Integral Operators on
hP(R™)

In this chapter, we discuss sufficient conditions and necessary conditions for the bound-
edness of inhomogeneous singular integral operators on h”(R™). It is based on [31,32].

5.1 Sufficient Conditions

We shall define a more general class of singular integral operators than Definition 2.5.32.

Definition 5.1.1. We say T is an inhomogeneous Calderén—Zygmund operator with Lj
integral-type condition associated with K, where 1 < s <o, > 0 and § > 0 if

1. the kernel K satisfies (18), i.e. |K(z,y)| < Cmin{|lz —y|™", |z —y| ™"}, = #y;

2. for each x,z € R™ there exist two polynomials lez(y) and sz(y) with degree at most
|6] such that

1
s

1 .
(/A ( )IK(w,y) — P + K (y, ) - Pﬁ,z(y)lsdw> <Az m)ls 727

J

(35)
for|ly—z| <r, where 0 <r <1, jeN,

Aj(z,r) i={z eR": 2r <|z— 2| <277},
3. the operator T is given by
= / / K(z,y)f(y)g(x)dyde, ¥ f,g e SR") with disjoint supports

and extends to a bounded operator on L*(R™).
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If K satisfies (35) for some sy > 1, then K also satisfies (35) for all 1 < s < sp using
Hoélder’s inequality.

Remark.

1. We compare this definition with the one in [31]. In the paper [31], the following
condition is imposed. For all for [y — z| <7, where 0 <7 <1, jeN

s

(/A‘( )|K(x,y)—K(x,z)|S+]K(y,x)_K(Zym),sdx> < |A;(zr)[F L2,

The condition (35) is a generalization because we can take P} _(y) = K(z,z) and
P? (y) = K(z,), which are constant polynomials in the y-variable.

2. In [96, Section 4.2], they imposed the condition that K e C1% and
1

(/ 00K (2,y) — 5K (x,2)]° + |00 K (y, ) — afK(z,m)yde>
A](z r)
b1 4;(z,r)|s 1 2799, (36)

for all for |y — z| < r, where 0 < r < 1, j € N, and 0; and 0y denote the partial
derivative with respect to the first variable and the second variable respectively. We
show that the condition (36) implies the condition (35). We take the polynomials

PLy):= > csly— 25K (zy); PI(y):= > esly 2P K(2 ),
181<9] |8]<|6]

namely the Taylor polynomials of K expanding in the y-variable centered at z. Then,
if we expand K using Taylor’s theorem with derivative remainder, we have

K@y = Y, csly—2 K@)+ Y, csly—2) 0K (x..)
I81<[6]—-1 181=10]
and
K(y,x) = caly —z)ﬁéﬂsz Z —zﬁaﬁK(ﬁyZ, x)
I81<[8]-1 I=1
for some &, ., fg/,,z lying on the line segment joining y and z, and for some constant cg
depending on 3 only.
Therefore,

K(z,y) — Z PIOS K (,6,.) — DK (2, 2)]
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and [&, . —y| < |y — 2| <r. We now can apply condition (36) and get

(/A‘(z,r) K (2, y) - Pag,z(y)lsdm)

J

< X ([ K - SR )
181=15] Aj(zr)

< Y lealrtr A (2, r) s 27
181=15]

<5 |Aj(z, )| s L2770,

s

The same argument shows that

( [ K- Pﬁ,z<y>|8dx>
Aj(z,r)

J

1
< ) |cﬁ|rl5J</ |6§K(§;’Z,x)62’8K(z,a:)|5dx>
181=13] A=)

S5 14z )27,
Therefore, the condition (35) is weaker than (36).

. Condition (35) should be compared with Campanato-type condition given in Defi-
nition 2.2.12. The idea of subtracting some polynomial instead of subtracting the
unique polynomial as in Definition 2.2.12 can be traced back to the work of Calderén
[15], where he defined the maximal function

s

N(F,2) = sup ™ (7[ F(y) - P(e, y)!de)
p>0 B(z,p)

assuming there exists some polynomial P(z,-) of degree at most m — 1 (m € N) such
that N(F,x) < o0.

Before we provide the sufficient conditions, we need to define the meaning of 7% (f). We

will define this for f being a monomial.

Definition 5.1.2 ([31, Definition 5.1]). Let N € Ng. We denote by LE,N(R") the space of
all g € L*(R™) compactly supported functions such that [ g(z)x® = 0 for all |a| < N. For
such an o, define T*(z®) in the distributional sense by

T (@),9) = @ Tl = [ " Tyla)da (37)

for all g € LEVN(R”).

The space Li n, (R™) corresponds to multiples of (p,2) atoms in HP(R"). That T™(z%)

is well-defined by (37) has been stated for standard Calderén-Zygmund operators in [86, p.
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We need to verify that the integral on the right-hand-side of (5.1.2) converges absolutely.
From the definition of the space L2 (R™), for any N € Ny we have

Ly (R") « L N (R™) < LZo(R™) = L*(R™).

Proposition 5.1.3 ([31, Proposition 5.2]). Let T' be an operator given by Definition 5.1.1
with s = 1 and some 1,6 > 0. Then 2*Tg € L'(R") for all g € L2 [5J(Rn) given that

|| < min{p, d}.
Proof of Proposition 5.1.35.

The proof is taken from the proof in [31, Proposition 5.2] with adaptation. Let g € Lao (R™),
fix a ball B = B(zp,r) containing the support of f, and write

/ |xTg(x)|dx :/ |x*Tg(x)|dz +/ |x“Tg(z)|d.
Rn 2B (2B)°
From the boundedness of T on L?(R") we get

/23 2°Tg(w)|de < |2 =) [2B]2 |Tgl2 < 7% |g] 2 < 0.

Suppose now that » > 1. The estimation of the second integral follows by (18):

/(2 2]l Ty () < 3 / | [ 1)l 9] (] + 2y
(zg,r

jeN

< gllgzr2 Z |zl e Z (277) |a’|/ |:E_$B|—n—ltdx
$B7

o [<]a jeN

_la! Nan _
< lgllze Z |z g|lol=1e pledl+ ”Z(QJ)\M P« o

o [<la] jeN

since || < |a| < p.
For r < 1, since g has vanishing moments up to order |d], the bound follows by applying
(35):

L, Tot@attaz < 35 [ 1RG0~ L, Gl o)l e
BT

jeN
< |9z Z ’JZB“O"*‘O‘ |o/|+% 52 2] lo/|=6 _
o[ <e jeN
since |o’| < 0. This completes the proof. .

Theorem 5.1.4 (cf. [31, Theorem 5.3]). Let 0 < p < 1 and T be an operator given by
Definition 5.1.1 for some 1 < s <2 withp < s and |k| = N,. Then T can be extended to a
bounded operator from hP(R™) to itself provided that min{u,} > 7, and there exists C' > 0

such that for any ball B < R™ with r(B) <1 and a € (No)™ with |a| < Np,

1/2
F=TH(—ap)]  satisfies (f ) — PY (D)) dy) <O, (r(B)). (38)
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where Pg"(f) is the polynomial of degree < N, that has the same moments as f over B up
to order Ny, and for ¢, is as in Definition 4.1.1,

A if la| < p,
Ppalt) := { P, (t) if |a| =y, = N, € N,
with w > 0.
Proof of Theorem 5.1.4.

The proof is taken from the work [31] with adaptation. Let a be a (p,2) atom in the sense of
Definition 2.5.7, supported in B := B(xp,r). We will show that Ta is a (p, s, \,w) molecule

n

for X\ satisfying v, < % — % < min{y, 6}. By Theorem 4.1.5 and the h” analogue of the
results of [84], this suffices to show the boundedness of T" on hP.
As 1 < s < 2, condition (M1) follows from L2-continuity of T

| [Ta@)ide < 1B Tals < 1B e < o507,
2B

For (M2), suppose first > 1. From condition (18) it follows that for |z —xp| > 2r we have
|K(z,y)| < |x—xp| " * for all y € B and therefore

Ta@) < [ 1K@ lla@)ldy < lalol B2 [ o= osl " < e = a5
Then, for X satisfying 2 2 — & < p, which means A — s(n + pu) < —n, we have
/ Ta(z)| |z — I'B\)‘dx S / 2 — g A < T)‘Jr"(l*%).
(2B)° (2B)°
Condition (M3) follows from (1).

Suppose now 7 < 1. Using the vanishing moment condition of the atom and (35) we
can apply Minkowski inequality for integrals to get

/ Ta(x)|®|z — 25| dx
(2B)°
0
‘jZ()Aj(xB,T)
14 S

<§0 [/ (/ K (2, 9) — Pl )] o) |x$B|zdy>sd$]‘

S

|z — zp[Mdx

[ 1K) - PL, ()at)dy
B

. j+17,,)\ a 1 s " B
<]§0<2 M <y)'[/,4j(x3,>‘” v~ P, (y) d] dy
- 7 jT‘ —n(s—1) o—jsé a ®
< 3 @ (/B\ <y>|dy)

0
Z (23 ) (23'7«)*71(8*1) 9—Jsd =51

—C r>\+n i i[A—n(s—1)—s8] _ —C T)\+n<1—§)
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assuming A\ < n(s — 1) + sd, which is the same as % — & < 0. Finally, in order to verify

that (M3) holds, note that for r < 1 the function a is in particular a (p,2) atom in HP(R")
with full cancellation condition. From condition (38), setting f = T*[(- — 5)®], we have,
by (37),

N 1/2

= [{f.a)| < (/ f(y) — PBp(f)(y)lzdy> lallz2(m)
B

< Uy (r)|BI"?a] 12(5)

< Up(r)r—

‘ / Ta(z)(z — z5)°dz

which is bounded by C,,, if |a| < v, and by ¢, (r(B)) if |a| = 7, from (38). O
We now define inhomogeneous strongly singular integral operators.

Definition 5.1.5 ([31, Section 5.2]). We say T is an inhomogeneous strongly singular
integral operator with Lj integral-type condition associated with K, where 1 < s < o0, u >0
and § > 0 if

1. the kernel K satisfies (18);

2. for each x,z € R™ there exist two polynomials Py ,(y) and P2 _(y) with degree at most
|6] such that

1

s

J

(/A( 0) ’K(Il',y) - P:tl,z(y)|s + ’K(y,l‘) — sz(y”sdx)

1_q46(1_1 jo
<Ay G (39)
for|ly—z| <r, where 0 <r<1,7eN,6>0,0<p<o<1, and

Aj(z,r) :=={zeR": 2r < |z —2| < 2j+1r}
3. the operator T’ is given by

(Tf,g)= //K(w,y)f(y)g(w)dyd:v, V f,g € S(R™) with disjoint supports

and extends to a bounded operator on L*>(R") as well as LI(R™) to L*(R™) for some
Bell=p)5,5) and 5= 5+ 1.

Theorem 5.1.6 ([31, Theorem 5.8]). Let 0 < p <1 and T an operator in Definition 5.1.5
for some § >0 and 1 < s <2 with p <s. Then T can be extended to a bounded operator
from hP(R™) to itself provided that

n 1 1 B(L+1)
<1 where — = -4 o " 2)
max{n+u,po}<p< where % 2+n(276+5)

and the cancellation condition (38) holds.
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Proof of Theorem 5.1.6.
The proof is taken from the paper [31] with adaptation. Let a be a (p,2) atom in the
sense of Definition 2.5.7, supported in B := B(zp,r). We will show that Ta is a (p, s, A, w)
molecule for A satisfying

A n 1 n B(2+2)
<—-— - <mi ) ) = 1) =—4+—"22=.
<L Ty min {1, Yo 5 Vpo n<p0 ) 2 " 5 T4

If r > 1, conditions (M1) and (M2) will follow by the same arguments presented in the

proof of Theorem 5.1.4, provided % -5 < p.

Suppose now that » < 1. Analogously to [3, Lemma 2.1], we will actually show some
better estimates on T'a. In fact, since 1 < s < 2, from the stronger continuity LY — L2
assumption it follows

s s s_ _s 1_1
[ 1Ta()ode < 1B~ [ Talss < B ol < B alge < 550
B
and so (M1) holds since 1/g —1/2 > 0.

To show (M2), consider 0 < p < o < 1, where p is a parameter that will be chosen
conveniently later. Denote by 2B? := B(xp,2r”) and split

/ |Ta(z)|® |z — x| dx = / |Ta(x)|s|x—x3|)‘dx+/ |Ta(z)|® |z — zp| Nz
R 2Br (2Br)e
=11 + Is.
To estimate I, we use the L¢ — L? continuity again and get
/zB Ta(@)* |0 — wp o < r| B8 | Tal 3, < v (0= F) a3,
P
< rpA+n[p—L;+s(%—%>] < T)\-‘rn(l—i)
assuming
S ns 1 1
A< — <1——>+ =), 40
! 2/ 1—=p <q 2) 40)

Note that this control would not be possible using only the L?-boundedness. For I, we use
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(39) and then

1 S
o0 s
<3 (@) |a<y>|[ / |K<x,y>—P;,mB<y>|de] dy
j=0 B Aj(zp,re)
o 1 q,48(1 1 6\ ° s
< 3 (@) (rAmB,rp)\s i(is) 2‘%) lal. |B|3
j=0

A
s
—
\V)
3
<
)
N—
>
R
N
<.
—
8
Sy
<
-
—
+
3
—/~
=
Q |~
S——
N)I
>[5
N———
=
»
3
~—
T
3=
S——

o0
=C ,,,P)\Jrn[er%fsp(lf%Jr%)*;] Z 23‘[)\711(571)7%‘5] (41)

The convergence of the series in (41) follows from (40), since by the choice of p we have

s ns (1 1 50
_n(1_2>+1*p<q_2> <n(s—1)+55<n(5—1)+;.

In particular, the restriction on A for this particular choice of p is

s\ sB(3+3)

For the validity of (M3) we proceed in the same way as in the proof of Theorem 5.1.4.
Therefore, Ta is a (p, s, \,w) molecule provided that max {ZL_, po} <p<l1. ]
n+ p

5.2 Necessary Conditions

In this subsection, we will prove that the cancellation conditions (38) are also necessary
for the singular (or strongly singular) integral operator to be bounded on hP(R™).
1

As we have seen in the example in Section 2.5.1, the function ;e_% has h! norm

g + \/%? log(1 4+ r~2) while its integral is @ Therefore, the ratio of its integral to its Al

norm is approximately [log(1+7~1)]~!. Let us now observe the general case for compactly
supported distributions in h?(R"™).
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Proposition 5.2.1 ([32, Proposition 1]).
Let g € hP(R™) be supported in B(zg,r) for some xy € R™ and 0 < r < 1. Then for a € N},
the moments (g, (- — x¢)*) are well-defined and satisfy

Coap lgllne y if |l < yp;
g, (- = z0)*)| < I (42)
Capllglne |log |1+ - if |a| = = Np.
T

Proof of Proposition 5.2.1.
The proof is taken from [32].

Since ¢ is a distribution of compact support and hence acts on C*(R"), we can define
(g, (- — z0)*) unambiguously for any multi-index o € Njj, and (g, (- — z0)*) = (g, ¢) for all
¢ € CP(R™) such that ¢(y) = (y — zo)“ on the support of g.

By a translation argument we may assume that 2o = 0. For each unit vector on v € S*~!
and « € N such that |a| < N,, we choose ¢g“ satisfying the following conditions:

(i) ¢g* € CL(R™) with support in B (%,2) and |07 ¢g”| e < 218172 for all |B] < N, +1;

(ii) ¢g“(y) = Coy® for all |y| < 1 for some constant C,, depending only on n and «a;

(i) 65" (y)dy # 0.
For each x € R" with |z| > § we define
1 ahal Yy
T, R .
) = o ok ()
We claim ¢™% € fg’z for T'= 2 and k < N, +1. Indeed, note first that supp(¢™®) < B(z, t)
for t = 4|z| since if |y — x| > t we have

_ly—al ¢

— > -9
20| 2]

Y T
20| 2|z

and then qﬁﬁ’a(y/Q\xD = 0. Moreover, for || < N, + 1,by assumption (i),

S P i WO
L® Lo

On the support of g, |y| <7 and |z| > £ so % < 1 and by assumption (ii), ¢™*(y) =
Cao y®
W. Hence

Mz (g)(@) = sup (g, §)| = g, #")] = Calz| 7711 Kg, (- = 20)*)| .
peF, "

When |a| = v, = N, this gives

o> [ MA@

> Ca g, (= a0)P” [ a0+l g

r 1
5<lol< it

> Cq [€g, (+ = m0)*)|" log (1 + i) :
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When |a| < 7,, we consider 1 < |z| < 3. Since in particular |z| > 5, the same

calculations as above give
lglye = / Mz, (9)(@)]Pdz = Cq [<g, (- = z0)*)[” / | P d
1<|x|<% 1<|x\§%

= Cnapl{g: (- = z0)"IP .
O

Before we move on to a larger class of h?(R™) distributions, we shall observe that in
the decomposition of a molecule (25) in the proof of Proposition 4.1.4, a molecule can be
written as a sum of three components, the first two terms are infinite sums of HP atoms,
which are distributions in HP(R"™), while the last term is an h” atom. This observation
leads to the following definition.

Definition 5.2.2 ([32, Definition 2)).
Let C > 0 be a constant. We say # € S'(R™) is a C-pseudo-molecule in hP(R™) associated
to the ball B if # = g+ h in S'(R™), where g € h?(R™) supported in B, h € HP(R™), and

lgllne + |hllae < C.

Proposition 5.2.3 ([32, Proposition 2|). Let 0 < p < 1 and # a C-pseudo-molecule in
hP(R™) associated to the ball B = B(xo,r) with 0 <r < 1. Then for c € Z%}, |a] < N, the
moments (M, (- — x0)®) are well-defined and satisfy

CopC if ol < vp;
[, (= o)) < R
CapC {log (1 + r>] if |a) =p = Np.

Proof of Proposition 5.2.3.

The following proof is taken directly from [32]. Writing .# = g + h as in Definition 5.2.2,
since h € HP(R™) satisfies vanishing moment conditions up the order N, we have {h, (- —
x0)*) = 0 (the pairing here is the one between HP and its dual space, the homogeneous
Lipschitz space An(l Jp—1))-

For g € h?(R™) supported in B, the moments (g, (- — x¢)*) can be defined as in Propo-
sition 5.2.1. Thus we can set

<%> ( - xO)a> = <.g’ ( - xO)a> + <h7 ( - xO)a> = <g> ( - xO)a>'

If .# has an alternative decomposition ¢’ + h’ satisfying the conditions of Definition 5.2.2,
then we must have that g — ¢ = h’ — h € HP and therefore the moments of ¢’ are the same
as those of g.

The estimates (43) now follow immediately from (42). O

Now we give an example of pseudo-molecules, which are (p, s, A\, w) molecules (Definition
4.1.3) without (M3).

Definition 5.2.4 ([32, Definition 3|). Let 0 <p<1<s <o withp <s, A>n(s/p—1),
and C' > 0. We say that a measurable function M € hP(R™) is a (p, s, A\, C) pre-molecule in
hP(R™) if there exist a ball B(xg,r) < R™ and a constant C > 0 such that
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)

(M1) [M] e < Or" ().

o |

2 1_1
(02) 3] - —z0f? [ e(ey < €70,

To see it is a C-pseudo-molecule for some C, we will follow the proof of [32, Lemma 2].
We observe that from the decomposition (25), the condition (M3) is only used when we
estimate the term a,,. If we take h = >7 (trar + Do Skbr and g := ay, then from (30)
and (31),

IAll () < Crip,s,a
and

Iglnr®ny < [Mpo@ny + [1Blne@ny < 1M |po@ny + [l ar@e) < [M]1e@n) + Crp,sa-
We can now state the main theorem in this subsection.

Theorem 5.2.5 ([32, Theorem 1]).

Let 0 <p<1,C >0, and T be a linear and bounded operator on hP(R™) that maps each
(p,2) atom in hP(R™) into a C-pseudo-molecule centered in the same ball as the support of
the atom. Then the following cancellation conditions must hold:

For any ball B = B(xg,7) < R™ with r < 1 and o € N such that |a| < N, :=
[’YpJ: T = n(}% - 1)7

N 1/2
F=T*[(—20)*] satisfics (]i If(y)—PBp(f)(y)|2dy> < Cwy (),
(44)

where Pg"(f) is the polynomial of degree less then or equal to N, that has the
same moments as f over B up to order Ny, and

e ) if || < vps
U, o(t) := —1/p
palt) ﬂp[log <1+1>] if |a| = vp = Np.

Proof of Theorem 5.2.5.

The proof is taken from [32]. Let 0 < p < 1 and T be a linear and bounded operator on
hP(R™) that maps each (p,2) atom in AP(R"™) into a pseudo-molecule centered in the same
ball as the support of the atom.

As Definition 5.1.2 and Proposition 5.1.3 rely on the specific form of the operators
considered there, namely those with a nice kernel, we first need to make sense of the
cancellation conditions (44) in this more general context. Fix a € Nj with |a| < N,.
We want to show T [(- — x0)?] is well defined locally in the following sense.

Fix a ball B = B(zg,r) ¢ R" with » < 1. We will show that T* [(- — z0)*] can be
identified with f in (Lg n,(B))*. Here Li n,(B) denotes the space of functions in L?*(B)
with vanishing moments up to order N, and its dual space can be identified with the
quotient of L?(B) by the subspace Pn, of polynomials of order up to N,. We then have

= | = inf [f—P —|f — P . (45
Iz, By weLSiVIZ(B)Kf V)l P |f = Plrey = If = Pg"(Fllzes), (45)
||¢||L2(B)<1
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where Pg "(f) is the element of Py, with the same moments as f over B up to order N,.
Given a ¢ € L?VP(B) with []2p) < 1, let
1.1
a(x) = P(z) [B[> 7.

Note that a is a (p,2) atom supported on B (strictly speaking we have supp(a) = B but
in the calculation of the norm we may always take ¢ of compact support in B). By the
boundedness assumptions on T, |Ta|pprn) S |afpr@ny < C independent of @ and .4 = Ta
is a pseudo-molecule, where the choice of the constant C in Definition 5.2.2 should be
consistent with the norm of T'. Therefore, by (43),

KT = 20)%]s @) := (- = 20)%, Ta))
CopC if |af < vp,

< -1/p
Ca,pC[log (14—%)] if |a| = vp = Np.

Replacing a by 1), we see that the left-hand-side defines a bounded linear functional f €
(L2, (B))* with

[{fy W)l = [Bl» 2 KT*[(- — 20)“], @)
1.1 )
Cop|lBlr 2C if |a| < vp,

- —-1/p
Cop|Bl? 2 C[log <1+}H if o =7y = Np.

Thus by (45), we have

<]{B|f—PNp(f)|2>1/2 — |B|"3 </B|f_PNp(f)|2)l/2

—|B|"2  sup  [f, )]

weL?vp(B)
WHL2<B)$1
Chpr® if |of < vp,
< —1/17
Crpr® [log <1 + i)} if |a| = vp = Np,
= Chp \I/p,a(r)-

O]

Since a special case of pseudo-molecules are pre-molecules (see Definition 5.2.4), we
obtain the following 7™ characterization result, in the spirit of [86, Proposition 4].

Corollary 5.2.6 ([32, Corollary 1]).

Let 0 <p<1andT:SR") — S'(R") be a linear and bounded operator that maps each
(p,2) atom in hP(R™) into a pre-molecule centered in the same ball as the support of the
atom. Then the cancellation conditions (44) hold if and only if T is bounded on hP(R™).
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Proof of Corollary 5.2.6.

This proof is directly taken from [32].

One direction follows from the fact that pre-molecules are pseudo-molecules and The-
orem 5.2.5: if T : §'(R") — S'(R™) is bounded on hP(R™) and takes each (p,2) atom to
a pre-molecule centered in the same ball as the support of the atom, then it satisfies the
hypotheses of the Theorem and the cancellation conditions (44) hold.

We now show the converse. Suppose T : S'(R") — S’(R™). If, for some appropriate
fixed constants s, A and C, T takes each (p,2) atom in h”(R") to a (p, s, A, C) pre-molecule
centered in the same ball as the support of the atom, and in addition it satisfies the can-
cellation conditions (44), then we want to show that it maps each (p,2) atoms to a bona
fide molecule M as in Definition 4.1.3. By Proposition 4.1.4 such a molecule will have hP
norm bounded by a constant (depending on s, A and C'), so the atomic decomposition and
the continuity of 7" on &'(R™) will give us the boundedness of T' on hP(R™).

Since the size conditions (M1) and (M2) in Definition 5.2.4 are identical to the ones
in Definition 4.1.3, it just remains to verify that (M3) in Definition 4.1.3 holds for some
w. This follows from the cancellation conditions (44) on 7' in the same way as at the end
of the proof of Theorem 5.1.4. That argument does not use the specific properties of T’
besides the cancellation conditions and, of course, the definition of 7% [(- — z)“], which, as
shown in the proof Theorem 5.2.5 above, is well defined precisely because T takes atoms
to pre-molecules, which are pseudo-molecules. The constant w in (M3) will depend on the
constant C' in (44). O

In the case of inhomogeneous (strongly) Calderén—Zygmund operators, we can conclude
that (44) are both sufficient and necessary conditions for the boundedness of such operators
on hP(R™).

Theorem 5.2.7 ([32, Theorem 2]).

Let 0 < p < 1 and T a (strongly) inhomogeneous Calderéon—Zygmund operator given by
Definition 5.1.1 (Definition 5.1.5, respectively). Then, T is bounded on hP(R™) iff the
condition (44) holds.

Proof of Theorem 5.2.7.

The proof is taken from [32].

Assume T : S(R") — S’(R") is a strongly singular inhomogeneous Calderén—Zygmund
operator. This means it extends continuously from L2(R") to itself, from L(R") to L?(R"),
where

1 1 8

§:§+ﬁ’ for some g(l—a)<6<g, 0<o<l.
The size conditions (18) and (35) (or (39) if it is a strongly singular integral operator) on
the kernel, together with the boundedness assumptions on 7', with no further cancellation
assumption, imply that if a is a (p,2) atom in AP(R™), then Ta satisfies the size conditions
of a molecule in A?”(R™), namely (M1) and (M2) in Definition 5.2.4, as shown in the proofs
of Theorem 5.1.4 and 5.1.6. The desired result is then a consequence of Corollary 5.2.6. [
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Chapter 6

Commutator of Inhomogeneous
Singular Integral Operator

This chapter will discuss a new type of atom that generalizes Pérez atoms to the non-
homogeneous case. Moreover, we will establish some properties of this space. We will apply
these atoms to establish the boundedness of the commutator of an inhomogeneous singular
integral operators with a bmo function.

This chapter is based on the work [30, Sections 4 and 5].

6.1 Commutator Hardy Spaces

We shall start with a local version of Ky’s maximal operators.

Definition 6.1.1 ([30, Definition 4.2]). Given b € L2 (R™), we define the commutator

mazimal function of f € L (R™) to be

My f(x) := [b, M](z) := M[b(z)f(-) = b(-)f(-)](2),
where M here is the local grand maximal function in Definition 2.5.3 with T =1 and k = 1.

We therefore have that for b, f € L? (R"),

loc

My f(x) = sup [Kb(@) () = b()f(), )| = Sup

/Rn [b(z) — b()]f (y)b(y)dy|-

Since (b(z) — b)f € L} (R") for almost every = € R", the integral is well-defined almost

loc
everywhere, and by the size and support conditions on ¢,

My f(z) £ My f(x). (46)
For fixed ¢ € C*(R™) such that supp(¢) = B(x,r) and |¢|r= < |B(z,r)|"t. If g €
L2

2 (R™), then the function g¢ is a constant multiple of an h'-atom with norm |g¢|,:
depending on r. Therefore, using Theorem 2.5.18, we have

[ b= b)a6 = 1 = o). b (47)
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where , (-, 1 denotes the dual pairing between h! and bmo.
From this observation, we can also define the following extension of the commutator
maximal function directly for f € h'(R™) with b € bmo(R").

Definition 6.1.2. Given b € bmo(R"™), we define the commutator mazimal function M; of
f e h'(R™) to be
Mgf(x) = Sl;p | bm0<b - b($), f¢>h1 |a

where (-, -)p1 denotes the dual pairing between h' and bmo, and the supremum is taken

over all ¢ € CY(R™) with supp(¢) < B(x,t) for some 0 <t < 1, |¢|lr» < |B(z,t)|~! and
IVelle < [t1B(z,t)]]7"

This maximal function is well-defined because f¢ € h!(R") and b — b(x) € bmo(R"™) for
almost every z. From (47), we have M, (f)(z) = My(f)(z) for all f € h*(R") n L} (R").
Thus, M} (f)(z) < Mp(f)(z) for all fe h'(R™") A L2 (R").

loc
The following is the definition of the local version of Pérez atoms. It also appears in

[62].

Definition 6.1.3. Fiz b€ bmo(R"). We say a is a Pérez h} atom if for some ball B(xo, )
we have

1. supp(a) < B(zo,r)

_1
2. lla]z2@ny < |B(wo,7)| "2
3. /azO and/ab = 0 whenever r < 1.

For f e LY(R"), we say f € hb,., ,(R™) if f can be written as f = Z;’;l Aja;, where a; are
Pérez h} atoms and {)\;} € £*. For such functions, we define

I£1ng,..., = i 33 N,
J

where the infimum is taken over all such decompositions.

We note that a Pérez hi atom is a (1,2) atom in h' and therefore the decomposition
converges in h' and we have | f],1 < > |\j|. Moreover, each Pérez h} atom supported in a
ball B = B(zg,r) also satisfies that a(b — cg) € h!, where cp is as in (12). In fact, we have
that a(b — ¢p) is supported in B, has integral zero whenever r < 1, and by (14)

la(b — CB)HLS(R”) < HGHH(Rn)Hb - CBHLP(]R”)
_1 1 1_
< B0, )| 72 [blbmo | B(wo, )7 = [blbmoyp| Blzo, )|~ (48)

for1<s<2and 5+ ]% = 1; taking s > 1 makes a(b — cp) a multiple of a (1,s) atom and
we have
la(d = cB)lp < 16lbmo p-

These two observations allow us to have the following generalization of Pérez h; atoms.
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Definition 6.1.4 ([30, Definition 4.5]). Fiz b € bmo(R"™) and let Cy, = ||b||bmo,2 as defined
n (14). We say a is an approzimate hi atom if for some ball B(zo,r) we have

1. supp(a) < B(zo,r);

_1
2. |all2@ny < [B(wo,r)["2;

_— d
‘/‘ [log(1 ~|—7‘1 an ‘/

For f e LY(R™), we say f € hatomb(R") if f can be written as f = 2;0:1 Ajaj, where a; are
approrimate hé atoms and {\;} € 0'. For such functions, we define

atom,b lnf Z |)\‘7 ‘7
J

Cy
1og( +r=1)°

(WA

where the infimum is taken over all such decompositions.

The choice of Cj, = |b]bmo,2 guarantees that, by Cauchy-Schwarz, Condition 2 in Defi-
nition 6.1.4 implies Condition 3 in Definition 6.1.4 when r > 1. Thus every Pérez hé atom
is an approximate h}; atom, and

hPerez b(Rn) c h‘ (Rn)

atom,b
Moreover, compared with Definition 2.5.11 for R = 1 and g = 2, we see, as in (48), that not
only is every approximate h} atom a an approximate (1,2) atom (up to a factor of log2),
but also a(b— ¢p) is a multiple of an approximate (1, s) atom for 1 < s < 2 and % + % = %,
with

la(b =)l < [blomoyp- (49)

Recall that in k' (or hP), every atom (or molecule) with approximate cancellation con-
ditions can be written as an infinite linear combination of atoms with exact cancellation,
see Theorem 4.1.5. Our question is whether it is possible to decompose an approximate h;
atom into Pérez h; atoms with exact cancellation. Although we do not achieve the exact
cancellation against b, we give a partial result in showing that every approximate h; atom
can be written as a finite sum of atoms of integral zero. It will be interesting to see whether
it is possible to express approximate h1 atoms in terms of Pérez h% atoms or if there is a
counterexample to show approximate hatom »(R™) atoms is indeed a larger space.

Proposition 6.1.5 ([30, Proposition 4.1]).
Suppose A is an approrimate hé atom with respect to the ball B(xo,r), and r < 1. Then

A= Z Aja; where the sum is finite, a; are approrimate hé atoms supported in balls B;,
respectively, and in addition, when r(B;) < 1,

/a]’ZO.

Moreover, for some constant depending only on n, Z I\ < C.
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Proof of Proposition 6.1.5.

The proof is taken from the work [30].
Set @ = [ A # 0 (otherwise we are done). Denote B(0,2/r) by Bj, j = 0,1,2,...,k,

where 2871 < 1 < 2%r, and let n; = % be the normalized characteristic function of Bj.
J
Then
k k+1
A:A—an0+2a(nj—l_77j)+a77k: EAj
j=1 =0
where
AO =A- Qato,

Aj:=amj-1—mn;), j=1,...,k and

Agy1 = ang.

First observe that supp(A4;) < B; for j = 1,...,k, and supp(Ax+1) < By. Moreover,
since [n; =1 for all j, we have that [ A; =0 for j =0, ..., k.
Write A; = A\ja; where

1
- o R | -
ap = 5140, )\() = 2, Akp+1 ‘= A Ak-+1, )\k+1 =,

and
4,

aj = SRR
a2 log(1 + [277]~1)
Since |a| < |Alp < 1, |In;llze < |Bj|I7!, and 2%log(1 + [2/7]71) > 1 for j = 1,...,k, we
have that |ao|r2 < ]Bol_%, lajlre < |Bj|™! for j = 1,...,k, and |ag+1]| e < |Bk|~!. Thus,
all the a; satisfy Conditions 1 and conditions in Definition 6.1.4, and in addition [a; = 0

for j =0, ..., k. Since 7(By) = 2¥r > 1, the latter condition is not required for aj.
To verify Condition (3) in Definition 6.1.4 , we need to check that the a; satisfy the ap-
proximate cancellation condition against b. For j = 0, we get the approximate cancellation

for ag from that of A:
1
= [ A[b—
2‘ / [b bB]

1
‘/aob =2‘/Ab—a/b770

For j =1,..., k, we have, using (13),

Aji= a2 log(1+ [277]7Y), j=1,...,k

Cy
< —.
log(1+r—1)

1
b = - b(ne + —
‘/ag 27 log(1 + [277]~1) / (nj—1 —m;)
1
- 27 log(1 + [er,n]—l) |boi—15 — bai g
Hbemo

= log(1 + [29r]7Y)
and for j = k + 1, since 7(By) = 2Fr > 1,

‘/akﬂb

Hbemo
= |b < .
| B’“| log(l + (2kr)—1)
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If, as noted after Definition 6.1.4, we take Cp = [b]bmo,2 = [b|bmo, then we can conclude
that a; for j = 0,...,k + 1 are all approximate hl% atoms.
Finally, we have

k
DAl =2+0a2" > log(l + [27r] ") + o

j=1
on k .
<34+ — Nlog(1 + [20r] )
[log(1 + r—1)]2 ;1

2"klog(1 +r~1)
[log(1 + r—1)]?

2" (logy r—1 + 1)
[log(1 4+ r—1)]

< Ch.

6.2 Relations between the Spaces

The discussion following the definitions of the atomic spaces in the previous section gave
us the inclusions

h%’erez,b(Rn) c hl (Rn) - hl (Rn)

atom,b
In the trivial case, i.e. when b is a constant function, the cancellation conditions against
b reduce to the conditions on the integral of the atoms. Thus every h' atom with exact
cancellation is a Pérez h; atom, so
hberezs(R") = Magom s (R™) = B (R™). (50)

atom,b

In the next section, we will see later that the second equality can hold for b in a nontrivial
subspace of bmo. The next proposition is an analogue of M, acting to the atoms.

Proposition 6.2.1 ([30, Proposition 4.2]). Let b € bmo(R"). Then for every h} atom a,
IMpal L1 < [[bllbmo-

Proof of Proposition 6.2.1.
The proof is taken from [30].

Let a be an approximate hé atom with support in B = B(xg,r). We want to bound
My(a).

For the local estimate, using (46), we can apply the LP boundedness of the maximal
commutator operator Mpf defined in (9), with the bound (10). Thus, using the L? size
condition on a we have

1
/23 Miy(a) < [2B]'V?|Myal p2(25) < 1B a2 Mol 2122 S []bmo-

Next we handle the integral on (2B)°. Note that
/..., 20~ bt 0
x,t
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implies that there exists y € B(x,t) n B(zo,r), which in turn implies

e I g gl < el <t < L 5D

This cannot happen when r > 1, so the integral vanishes for all test functions ¢ and
My(a) =0 on (2B)°.

For r < 1, we may assume, by Proposition 6.1.5, that f a = 0. Thus we have, for almost
all x € (2B)¢,

\ [t - b(y)]a(yw(y)dy\
< ' [6) = o) lat)iot) - ¢(330)]d2/‘ " ‘qﬁ(xo) / b(y)a(y)dy\
< Jb() — b |IV@| por / la(w)\dy + V| por / 1b(y) — balla(y)ldy

+ ol | b(y)a(y)dy\
< b(x) — bp|r THbemOQ Cy (52)
Tl —xoPt |z — xo|?tt | — x| log(1 + 1)’

where in the last step we used the conditions on ¢, (51), the L! estimate on a(b— bp) (see
(48) with s = 1, p = 2), and condition (3) in Definition 6.1.4. Since the estimate above is
independent of ¢, it holds for M;(a)(x) and therefore, again using (51),

My(a)(x)dx =/ My(a)(x)dx
(2B)¢ 2r<|z—mzo|<2
b(x) —b b]bmo
[ W tale f o i 5
@B |T — 2ol @2B)e |7 — o
J s
+ n -1
2r<|z—xzo|<2 |£L‘ - Io‘ log(l +r )
< [bllbmo-
Here we have used Proposition 2.5.16 Item 2, (14), and the fact that Cp = [b]bmo2- O

If we take an h! atom a without assuming any cancellation against b, the boundedness
of the maximal function M, turns out to be equivalent to whether a(b— cg) belongs to h',
where B is the ball containing the support of a. Such boundedness automatically gives us
the approximate cancellation against b.

Proposition 6.2.2 ([30, Proposition 4.3]). Let b € bmo(R"™), b nontrivial. Suppose a is an
h' atom supported in a ball B = B(xg,r), and has vanishing integral when r < 1. Then

[Mpal s s fla(d = cp)lnr + [blbmo < [MbyalLr + [blbmo-

Moreover,

/o

M + b
< min { ” baHLl H ”me’ ’b‘bmo}-

log(1+r—1)
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Proof of Proposition 6.2.2.

The proof is taken from [30].

We assume that a satisfies an L? size condition. First note that by (48), a(b — cp) €
L*(R") for 1 < s < 2, and it has compact support, a(b—cp) is in h!(R™). By Definition 6.1.1,
we have, for almost every x € R",

My(a)(z) = M([b(z) — bla)(z) < [b(z) — cp|M(a)(z) + M([b — cpla)(z),
hence
IMp(a)|rr < / b(z) — cg|M(a)(x)dz + |M([b - cpla)| 1

< / |b(x) — cg|M(a)(x)dz + |a(b— cB)l||p-

Conversely,
M([b = cpla)(z) < My(a)(z) + [b(z) — cp|M(a)(x),

la(b — ) < [My(a)] 1 + / b(z) — eplM(a)(z)dz

It thus remains to show that the integral of |b — cg|M/(a) is controlled by [b[lpmo. The
arguments are similar to those in the proof of Proposition 6.2.1. First, we have

1
/23 b= cp|M(a) < b= cBlr2@n) |MalL228) S [Blbmol Bl [lalz2 < [b]bmo-
Moreover, (51) implies that if 7 > 1, M(a) vanishes outside 2B. For r < 1, we can use the

cancellation condition on a to write, as in (52), for every test function ¢, and for almost
every x € (2B),

|b(z) — cs

/ a<y>¢<y>dy\ <10~ bal ¥l or [ lao)ldy

_ [bla) —balr
~ ‘J} _ IIE()‘"'H

The integral on (2B)°¢ is then estimated as in the first term of (53).
By applying Proposition 5.2.1 to a(b — cg) € h'(R"), followed by the estimates above,
we have

‘/ab:

The other upper bound follows from the duality of bmo and k', or by Cauchy-Schwartz. [

la(b—cp)ln _ (IMpa]rr + [b]bmo)
b_ < < )
‘/a( B ’ ~olog(l4+r71) 7T log(1+r—1)

It is interesting to note that if we had not assumed f a = 0 in the hypotheses of
Proposition 6.2.2 when r < 1, we would have ended up having to estimate an extra term of

/2 —X 2 ‘ ’/ ‘
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Looking at the proof of Proposition 2.5.16 Item 2, if § = 0 and p = 1, the integral in x can
be estimated by [b]bmo(log 2)2. Therefore, we would need a cancellation condition of the
form | [ a| < [log(1 +r~1)]72, as in Condition 3 of Definition 6.1.4.

Combining Propositions 6.1.5, 6.2.1 and 6.2.2, we get the following.

Corollary 6.2.3. Let f € h'(R"). Then the following are equivalent.

1. The function f € hl (R™).

atom,b

2. There exist a sequence {\j} € {1 and a collection of h' atoms {a;}, where B; denotes
the ball containing the support of a; and a; has vanishing integral when r(Bj) < 1, so
that f = >; Aja; and Mya; are uniformly bounded in L' (R™).

3. There exist a sequence {\j} € {* and a collection of h* atoms {a;}, where B; denotes
the ball containing the support of a; and a; has vanishing integral when r(Bj) < 1, so
that f = 3; Aja; and

Z Ajaj(b—cp;) converges absolutely in hY(R™).
J

One may also consider what M (f) tells us.
Proposition 6.2.4. Let f € h'(R") and b € bmo(R"). Then the following are equivalent.
1. The function f satisfies M} (f) € L}(R™).

2. There exist a sequence {\j} € £} and a collection of h* atoms {a;}, where B; denotes
the ball containing the support of aj and a; has vanishing integral when r(Bj) < 1, so
that f = 33; Aja; and

Z Ajaj(b—cp;) converges in hY(R™).
J

We remark that Item 1 implies Item 2 for an arbitrary atomic decomposition of f,
while Item 2 implies Item 1 when there is an atomic decomposition for which the series
2 Ajaj(b—cp;) is in h'(R™), and that of course the norm inequalities depend on which
decomposition is used.

Proof of Proposition 6.2.4.
Consider a function f € h' and take an atomic decomposition f = Zj Ajaj into h' atoms
with exact cancellation for r < 1.

Since for j € N one has [b(z) — cg, || [ a;¢| < |[b— cp;|M(a;)(x), where ¢ is in Definition
6.1.2, and the proof of Proposition 6.2.2 gives

[1b = cp; I M(az) | < [blbmo,

the series Z Aj[b(z) — eB;] / aj¢ converges absolutely in L*(R") and hence converges ab-

solutely for almost every .
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Furthermore, for fixed x, we have

0

Z/Rnlkj\lb(y)—%Iaj(y)\laﬁ( Ny < 8] Blbmo D 1Al (54)
j=1

j=1

Therefore, we can write the dual pairing as a difference of two absolutely convergent
series for almost every x € R™:

bm0<b - b( f¢>h1 = Z )‘] bmo<b b( ) aj¢>h1

.
—_

I
18
QQ

y [ 106) — bl ) 0)dy

<
Il
_

I
ANgE
3/

<
I
_

[ 1) = e Jayétnds = X 0@ —en,] [ ooty

j=

—_

= [ SN0 —en sty — Y Albe) —en) [ oot

J=1 J=1

Because of (54), we can could Fubini’s theorem to the first term to interchange the sum
and the integral.
Taking supremum over all ¢, we have

0

M(f) () < M¢<Z b—cp ] ) )+ S ) - e, M(0) 2

and

(2 b—cs ] aj><> +2|A||b ) — e, |M(ay) (@),

from which we can conclude the equivalence of the statements.
O

In the remainder of this section, we consider the case b € Imo(R™). We now come to the
result which gives us the second equality in (50) even when b is not constant. Recall that
the pointwise multipliers of bmo(R"), and hence h'(R"), were identified as the elements of
L* A 1mo(R™) in [9]. It is therefore not surprising that we have the following results.

Theorem 6.2.5 (30, Theorem 4.6]). Let b e lmo(R™). Then h,, ,(R") = h'(R"™). More-
over,

HbHLMo o
”thl = Hthaton]b S HbH AR Hf”
Proof of Theorem 6.2.5.
This is taken from [30]. It was already observed following Definition 6.1.4 that for b € bmo,
hj atoms are approximate h! atoms (up to a factor of log 2) and therefore i} (R™) < h'(R™)
with || fll < | th1t ,- We only need the Imo condition for the reverse inclusion.
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Let a be an h! atom with support in the ball B = B(xg,r), with L? size condition
and such that [‘@ = 0. This means that conditions (1), (2), and the first part of (3) in
Definition 6.1.4 are satisfied, and we only need to check the approximate cancellation against
b. Since this holds automatically for » > 1, we assume r < 1. By the L? size condition on

‘/na(m)[b(a:)—bB]dx < log(lir_l)log |13+|; (/ |b( —bB\Qda;)

Hb”LMOIOC,Q
log(1 + 1)’

where )
2
bliston, » == sup log(1+ r<B>—1>( JALCE bBFd:c)
r(B)<1 B

Since
- log 2HbHBN[Oloc,Q

<1
HbHLMOloc,2 h

and log 2[b[Bmo,,. » < [b]bmo,2 = Ch, we have that va is an h;, atom.
Finally, for f € h! with an atomic decomposition f = Zoo Ajaj, we can regard it as a
decomposition using h} atoms multiplied by 7!, so f € hatom »(R™) with

ee}
1 )
I, < 2N
j=1

Taking the infimum over all such decompositions, we get | f th Y ]l - The inequal-

m,b
ity in the statement of the theorem is obtained by applying the John Nirenberg inequality

for LMO - see [104]. O
We give a partial converse to the theorem.

Proposition 6.2.6 ([30, Proposition 4.4]). Letbe LL
Cy, such that every h' atom a satisfies

[

where r is the radius of the ball B containing the support of a. Then b € Imo(R™).

(R™). Suppose there exists a constant

min { 1022)11(15;—)1) }

Proof of Proposition 6.2.6.
The proof is taken from [30].
We first handle a ball B with radius r < 1. We define s(x) := sgn[b(z) — bg] and
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a(z) = S(x‘)B‘S xB(z). Then a is an h' atom. Moreover, we can write

log(1 + 1) ]i |b(x) — bgldx = log(1 + rl)][ s(x)(b(z) — bp)dx

B

_log(LrTh) e b(a) — bV
- B [ @) = sm)0ta) ~ )

=log(1 + 771 /B a(z)b(z)dx

/ ab
B
If r > 1, we define a(zx) := %XB(:E). A similar argument shows that

1
— b(x da:z/a:cbxda:
B J, e = [

Therefore, we can conclude that b € Imo(R") with b mo < Cp. O

= log(1 + 7“71)

< Gy

< Gy

In a similar vein, we give a partial converse to Proposition 6.2.1.

Proposition 6.2.7 ([30, Proposition 4.5]). Let b € bmo(R"™). Suppose there exists a con-
stant Ky, such that every h' atom a satisfies

|Mpal 1 < Kp.

Then b satisﬁes

Sup Io = bslxBln + Sup ‘B’H‘b‘XB”h1<OO

\B |
Proof of Proposition 6.2.7.

The proof is taken from [30].
Fix a ball B with radius 7 < 1. As in the previous proof, set s(x) := sgn[b(x) — bg] and

a(x) := s(z ‘)B‘ xB(z). Then a is an k! atom, and from Proposition 6.2.2,

16— bB‘|B‘Hh1 = [|(b—bp)s(x )|B‘Hh1
(b—bp)xB
|B| Bl

(b—=bp)xn
| B

< fla(b = bB)[n + |55l

S [Mi(a)lr + [blbmo + (551

Kl
S [Ma(a)[pr + 0] bmo-

In the last step we used the fact that [sg| < 1 and % is a (1,2) atom.

For B with radius r > 1, we again put a(x) = % and use Proposition 6.2.2:

[16]X2 B = la(d = cg) < [Mo(@)] 22 + [Blbmo.
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One interesting corollary from Propositions 6.2.1 and 6.2.7 is the following.
Corollary 6.2.8 ([30, Corollary 4.2]). Let b € bmo(R"™). Then the following are equivalent.
1. The function b is in lmo(R™).

2. The function b satisfies

1
Ay = sup |6 —bp|xBlp + sup @H‘b’XB|‘h1<OO'

|B| r(B)=1

Proof of Corollary 6.2.8.
The proof is taken from [30].

Suppose b € Imo(R"). Then from the proof of Theorem 6.2.5, for an h' atom a, va is
an hll) atom, hence by Proposition 6.2.1

HbHLMOloc

by
Blsion 1o

HMbaHLl < '7_1Hb”bmo X Ry =

which is exactly the hypothesis of Proposition 6.2.7.
Conversely, suppose Ay < 00. Observe that from Proposition 5.2.1, we can estimate

log(1 + /
|b(x) — bp|dx < sup
r(B)<1 ‘B| r(B)<1 ‘B|

[16 = bslxBA-

Meanwhile, using the fact that HfHLl(Rn) < || f |1 mny, we have

sup = [ B@)lds < sup sl
r(B)=1 ‘ ’ r(B)= ‘ ’
Thus [|b]ime < Ap < 0. O

6.3 Boundedness of Commutators on Atomic Spaces

Theorem 6.3.1 (cf. [30, Theorem 5.1]). Suppose b € bmo(R™) and T is a inhomogeneous
singular integral operator defined in Definition 5.1.1 with s > 2, 0 < § < 1, n > 0 and
P} .(y) = K(x,z8) = P2_(y). Then [b,T](a) € L*(R") and

T,z
I[b, T]al L2 < [[blbmo

for all h} atoms a. Thus, [b,T] : hﬁmteb(R”) — LY(R™) continuously, where hflinite’b(R”)
denotes the space of finite linear combinations of hé atoms.

Proof of Theorem 6.3.1.
The proof is adapted from [30].

Let a be an hi atom with supp(a) < B = B(zg,r). Note that we can write the
commutator acting on a as [b,T](a) = (b —cp)T(a) — T(a(b—cp)).
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We first show that T'(a(b — cp)) € L*(R"™). By the LP boundedness of T' for p = 3, we

have
IT(a(b~ cn))l o) < [2BISIT(a(b — en)l 3,
SIBEIT 3 glab—cp)l
<IT 5 3Bl 16— cBuLs<B>\ra\rLz<B>
SIT 53 1BIs 16— el < IT1 5 31blbmos-

Looking at z € (2B)¢, first consider the case r < 1. From Proposition 6.1.5, we may
assume [a = 0. Since ¢ supp(a(b — bp)), we can use the kernel representation to write

1T (a(b —bB))| L1 (2B)e)

/ /ny (b(y) — bp)dy
“ o

—.I+II.

dx

»y) — K(z,20)]a(y) (b(y) — bp)dy dx

dx +/ | K (2, 20)]
(2B)e

/ ab
We first estimate 1.

Is/w (/ K (@) — K(2,20) dy) (/ b(y) — by m.y)é dr

|B|’ oy (/ |K(x,y) — K(x,20)|* dy) dx

-1

W =

As 2|y — xo| < 2r < |z — x|, we can use the smoothness of K (Condition (2) in Defini-
tion 5.1.1).
Therefore, we have

~ ‘bemo %
Is Z\ ot ( [ [ K - K Fayas
Aj(zo,r) /B

1
(@0, i( / / |K<w,y>—f<<x,xo>18dydx)s
— B JAj(zr)

Hbemo » . %
Z - ( / |Aj<xo,r>|1—82—”5dx>
_ B

o0
< [bllmo 2 279 < Bfmo-
j=1

Using the decay property of K and the cancellation of a against b, recalling that we chose
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Cy = 0] bmo,2, we have

dx

[ab

1 1 Cy
< e —da -
2r<|z—zo|<1 ’(L‘ - .’IJ()‘ |z—z0|=1 ’IB - x()] " log(l +r )

log(1+r71) +1
log(1 + r—1)

1< [ Kwm)
(2B)e°

< [bllbmo,2 < [0llbmo-

When r > 1, using the fact that 2|y — zo| < |z — zo| implies |z — y| > |z — 20|, the
decay of K again gives

7@~ ca)lusqey) < [

(2B)e /BK(x’ y)a(y)b(y)dy|dx

</ S
~ |x710|227' |LE — $0|n+/‘ bmo,2

1
< /| L blbmoz < [Bllbme-

T—x0|>2 |z — 2| FH
Now we can handle the term (b — cp)T'(a). Using the boundedness of T on L?, we have
|6 = cB)T(a)l12m) < [0 = cBl2e2m)T(0)] 2@

1
S [bllbmo.2| BI2 [T 2 2]l @] L2 @n)

b ”bemOHTHLQ—Jﬁ.

When r < 1, we apply the cancellation of a to get

(b~ eB)T(@)] 11 2y

</(2 . |b(z) — cB| /B[K(a:,y)—K(x7xO)]a(y)dy dae
1 ., N Kla %m
< B[ /(zB)C |b(x) B|</B|K( Ly) — K(x, x0)| dy) d (55)
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Then, using Fubini’s theorem and (35), we have

1
1 & 2
(55) < — b(z) — sl | |K(z.y) - K(z,20)[2dy ) da
|B|2 Aj(zo,7) B
j=1"Ai(xor
1 1
1 ¢ 2 2 2 2
< 12( [ 1w el dx) ( [ [ 1K@ - K dydx)
|B|2 523 \JAj(zo,r) Aj(zor) /B
1 & 3 . 3
<) ( / |b<x>—cB|2dx) ( / |Aj<xo,r>|122ﬁdy)
|B|2 j=1 \ /A (wo,r) B

=1
0 1 % A 1 |
< L st ([, 1060 = by ) 1277 BG + 1) 279
j=1 ? /

< 2,6+ 2)[blbmo2 ™ < [blbmo-

<
Il
—_

When r > 1, similar to the estimate of ||T'(a(b— cp))||11((2B)<), We have, again by Theorem
2.5.16,

6= cn T @m0 [ Kty ds
(2B)c B
S bl
(2B)e |7 — @o|"TH
b(a) — e
< r ————dz < ||bbmo- 56
g i < 1l (56)

We have thus shown | [b, T]a] 1 < [blpmo for all h} atoms a. Finally, f € h}inite,b(R”)

means it can be written as a finite linear combination ), yiay of hll) atoms, so by linearity
and taking the infimum over all such decompositions, we have

106, T) £l 2@y S [Bllbmo inf Y, [ el-
k

O

It is not possible to extend the conclusion to all hl_ ,(R™) because it is unknown

whether the infimum inf )}, x| taken over all finite linear combinations of atoms is com-
parable to | f Hh1t ) the infimum taken over all possible atomic decomposition. However,

if hitom,b
parable to the h' norm. In this case, verifying the boundedness on one h! atom is enough
to obtain a bounded extension to the entire space (see [84, Theorem 3.1, Corollary 3.4] for
the case of H' and [56, Proposition 7.1] for the case of h! on a space of homogeneous type).

This gives us the following corollary.

(R™) = h'(R"), the infimum over the finite linear combinations of atoms is com-
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Corollary 6.3.2 ([30, Corollary 5.1]). Let b € lImo(R™), and T be an inhomogeneous sin-
gular integral operator given by Theorem 6.3.1. Then there exists a unique extension Ly of

[b,T] that is bounded from h'(R™) to L*(R™).

In particular, this corollary implies the boundedness of the commutators [b, R;,| and
[b,R;] defined in Corollary 3.0.4, given that the resulting localized convolution kernels
have extra decay away from the origin, which requires some extra assumptions on 7 and
in addition to those in Theorem 3.0.3, and b € Imo(R").

We can also compare this corollary with the results of [62]. While our assumption b € Imo
is stronger than their assumption on b in Theorem 2.5.31, which allows the oscillation to
grow on large balls, and they obtain h' to h' boundedness, their results only apply to a class
of pseudo-differential operators, which have kernels with much better decay and smoothness
(see [62, Proposition 2.1]).

We next discuss the boundedness from hénite »(R™) to h'. We first impose some approx-
imate cancellation conditions, the same idea as in Definition 5.1.2.

Definition 6.3.3 ([30, Definition 5.2]).
Suppose T is an inhomogeneous singular integral operator. For b € bmo, define Tj(b),
relative to this ball B, in the distributional sense, by

(0> = [ 0=be)Ta(w)de, Vg € L3(B). 67)

Asin (55), the conditions on the kernel and the vanishing integral of g guarantee that the
integral on the right-hand-side of (57) converges absolutely and T} (b) is a bounded linear
functional on L2(B) with norm bounded by a constant multiple of ||b]pme|B|"/2. Therefore,
we can identify T3 (b) with an equivalence class of functions in L?(B) modulo constants. In
particular, we can impose the following condition, denoting f := Tj(b), without ambiguity:

<]é f = fB\2>1/2 < ol +17~(B)1)' (58)

Theorem 6.3.4 ([30, Theorem 5.3]). Let b € bmo(R"™). Suppose T is a inhomogeneous
singular integral operator defined in Definition 5.1.1 with s > %, 0<d<1,n7>0and
P} (y) = K(z,zp) = P2 _(y). If T*(1) € LMOy,(R"), and, for any ball B with r(B) < 1,
f:=T}(b) satisfies (58), then

116 T1(a) [ < C[bllbmo

for all h; atoms a.

Proof of Theorem 6.3.4.
The proof is adapted from [30].

Let a be an hi atom supported in a ball B = B(z¢,7); as above, we may assume that
when r <1, [a = 0. Again write [b,T](a) = (b — ¢g)T'(a) — T(a(b — ¢cB)).

The assumption 7%(1) € LMOj,.(R™) allows us to apply Theorem 5.1.4 get the bound-
edness of T on h'; thus from (49) we get

IT(a(b = cB)nr < [a(b = cB)[n1 < [b]bmo-
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It remains to estimate the term ||(b — cp)T'(a)|,1. We will show that M = (b—cp)T(a)
3

A, 1) molecule (see Definition 4.1.3) associated to the ball 2B, where

is a multiple of an (1, 3,
we choose
n 3 .

A= 5 +e O<e< §m1n(5,,u).

We first verify condition (M1). Proceeding as in (48) and using the boundedness of T

on L?, we have
oy < 10— 8) 10| (@) |2

[ =bp)T(a)l 5,
< [b—bgllLs 2B)H@HL2

n

< Hbemo,ﬁr_3 .
|M($)|%|x — xo|Mz < r°. Suppose that 7 < 1

(2B)¢

Next, we need to show condition M2: /

Note that
/( | |(b(z) — bp)T(a)(z)|2 |z — zo
2 c

/BW% y) — K (z,20)|a(y)dy| |z — zoldx

=/ b(z) — bpl3
(2B)¢

B)
< |BJ} / / b
(2B)c JB

3 3 3
)= b3 K (2,9) — K(z,20)|*la) ||z — w0l dyda
1 0 3 3 3
<|BF Y / / b@) — b |} | K (2 ) — K (z,20)|}la(y)|} e — 2o dedy
j=17B Aj(zo,r)

3

o0
<BES 2 [ o)~ b ) - Ko la)] ey
j=1 B Aj(mo,r)

3
3

e [ (] e ) (], PNLCORE a)l)” lat by
(59)

o¢]

<|Bl2 Y,

j=1

~\ 25
([ -oaf)
45(
([ = baarn) o+ (anings + Llog ()} blums)
B(x0,27+17)

3, 30 3 3
< |B[#(27) 2 52|50
~H-4is,

and using (35) of K,

2 . .
( [ Kty - K<~,xo>|8) < A, (w0, )| 32390 < |BlE3omh
Aj(xg,r)
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substituting into (59) we have
100-)\)\3 3, . 3n, 3 3 3 .3 _3y_3.s 1
(59) < 1B> 3, 273183 ()8 [0l B 32~ D-17 3}
j=1

3 ® 1 3 . 3 3 1 3
—intr 3 5j(A-2-35 —In+A
< bz D rm 2 220075720 < pf2 TR = b2
j=1

Here we have used the fact that A — % - %5 < 0.

Finally, condition (58) on f = T7}(b) gives us

1/2
- asoo] < ([ 1= 5P lalza,
< [log(1 +r(B)~H)] ™"

[ @) - baT (@) (@)

Now looking at the case r > 1, we can proceed as in (56) to write
3
1 0@~ en) T @@ o]
2 c
1 3 3 3 A
< |B|2 b(z) — cp|2|[K(z,y)[2]a(y)]2 |z — zo| *dydz
@2B) JB

3
b — 2
$/ b() = CBJ dx
@B)e |z — xg|2"T2HA

_n_3
< HbemOTA g 2# < Hbemora-

Here we have used Theorem 2.5.16 and the fact that r > 1, € < %u.

To proceed to the one with | [ a| < [log(1+771)]72, note that if we write a = Z;VZI Ajaj
according to Proposition 6.1.5, we have
106, TY@) e S [6bmo Y 141 S [blbmo-
O

Similarly to Corollary 6.3.2, when hé atom = h', the boundedness extends from one atom
to all functions in the space.

Corollary 6.3.5 ([30, Corollary 5.2]). Assuming the hypotheses of Theorem 6.5.4, if in
addition b € lmo(R™), then [b,T] is bounded from h'(R™) to h'(R™).
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Part 11

Periodic Solutions of Stochastic
Partial Differential Equations with
Regime-Switching
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Chapter 7

Preliminary of Part II and
Framework

This chapter provides the background and definitions that will be used in later chapters
as well as the framework for the SPDE model. We fix some notations for Part II of this
thesis. We use the set N := {1,2,3,...} and denote Ny = N u {0}, Np o, = N u {0, 00}.
We also use the notation By(H) (Cy(H)) to denote the space of all bounded measurable
functions (bounded continuous functions, respectively) defined on H.

In addition, we work with a complete probability space (€2,.%,P), and denote the ex-
pectation of a random variable X with respect to P by E(X). Then, we have P(4) = E(14),
where 14 is the indicator function of an event A. We also fix a filtration {.%;};>0 such that
(Q, .7, {F:}1=0,P) is the complete filtered probability space throughout Part II.

The remaining part of this chapter is organized as follows. In Section 7.1, we introduce
definitions related to functional analysis. In Section 7.2, we give the basic definitions of
stochastic integrals and their properties. In Section 7.3, we recall some concepts related to
ergodicity. In Section 7.4, we describe the framework of our SPDE model.

7.1 Analysis Preliminary

7.1.1 Gelfand triple

We consider a Gelfand triple (V, H,V*) such that V < H < V*. Here, (H,{:,-)p) is a
real separable Hilbert space, (V, |- |y) is a real reflexive Banach space that is continuously
and densely embedded into H, and V* is the dual of V. The dual pairing of V and V* is
denoted by (-, ), and if h € H,v € V then (h,v) = (h,v)g.

7.1.2 Operators

Let Hj, Hy be two separable Hilbert spaces. The set L(Hj; Hz) is defined to be the
space of all bounded linear operators from H; to Ha with the norm denoted by |- | 1(z,;m)-
In this thesis, the following two subspaces of L(H1; Hy) are considered.

Definition 7.1.1. Let T € L(Hy; Ha), {ex};, and {e}}{_, be a orthonormal basis of Hy
and Hs, respectively.
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1. We say T is a trace class operator and we write T € Ly(Hy; Ha) if
o0
KT (er), b ym| < oo.
k=1
2. We say T is a Hilbert-Schmidt operator and we write T' € Lo(H1; Ha) if

o0
Z T (ex) |3, < .
k=1

The definitions are independent of the choices of basis. This can be seen by writing
one basis in terms of the second basis and interchanging the sums. For shortening the
notations, if Hy = Hy = H, we write L(H), L1(H) and Lo(H) as L(H; H), L1(H; H) and
Lo(H; H) respectively. For a Hilbert space H, it is also known that 7" € Lqi(H) iff there
exists ) € Lo(H) such that T' = Q*Q (see [99, Theorem 12.33]).

In our applications, we are interested in the case that H; = Hs = H. We define the
Hilbert-Schmidt norm for Lo(H) to be

0 , %
1Tl oy = (2 T(emH) ,
j=1

where the {e;} is an orthonormal basis of H and the trace norm to be

1Ty = D) KT (eg) €50 ml-

j=1

We refer to [23, Chapter 3] for a detailed discussion. We also denote the identity operator
on H as I, which is not in Lj(H) nor Lo(H) if H is infinite-dimensional since these are
classes of compact operators.

7.1.3 Gronwall’s inequalities
In this thesis, we use the following two forms of Gronwall’s lemma.

Proposition 7.1.2. If B(t) is non-negative, a(x) = 0, and u(t) satisfies

u(t) < a(t)+ | B(s)u(s)ds,

to

then .
u(t) < aft) —l—/ a(s)ﬁ(s)efst Blrydr g,

to

Proposition 7.1.3. Suppose u is differentiable on I and satisfies
u'(t) < a(t)u(t) +b(t) Vte (to,T),
for some integrable a(t) and b(t) on [to,T]. Then,
t
u(t) < elo a(s)dsq,(0) + / b(s)efst a(r)dr g
0
for all t € [to, T].
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7.2 Stochastic Integrals

7.2.1 Wiener integrals
We now introduce H-valued Wiener processes.

Definition 7.2.1. Let Q € Li(H), non-negative and symmetric. An H-valued adapted
stochastic process W = {W (t)}s=0 is called Q-Wiener process if

1. for any 0 < tg < t1 < -+ < tn, the set {W(t;) — W(ti—1)}}_ is an independent
collection of random variables;

2. W(t) — W (s) has normal distribution with mean 0 and variance (t — s)Q.
3. W(0) =0; and
4. t— W(t) is continuous a.s.

We can express W (1) as 3,y 1/AjWj(t)e;, where {\;} are the eigenvalues (all positive)
of @ with eigenvectors {e;}, W;(t) := ()\j)_%<W(t), ejym and each W; are independent one
dimensional Brownian motion, see [81, Theorem 2.119].

If Q € Li(H), then one can directly define (see [77, Page 53] and [81, Section 2.10])

T

the stochastic integral / f(t)dW (t) with respect to Q-Wiener process for progressively
0
measurable (and adapted) f that satisfies

T 1
| U 0QHE gyt <o e (60)

For Q ¢ L1(H), we need another way to define Wiener processes.

Definition 7.2.2 (See [81, Definition 2.120]). Let Q) be a non-negative and symmetric
operator on H. An H-valued adapted stochastic process W = {W (t)}i=0 is called Wiener
process with covariance Q if we have the following formal series

W(t) = > wi(t)Q3 (e)
j=1

where {e;}jen are the eigenvectors of Q and {w;(t)}jen are independent real-valued standard
Brownian motions.

For such a Wiener process, the series does not converges in H but in a larger Hilbert
space, see [81, Theorem 2.121], so we can define (W (t),hyy for all h € H. We refer the
reader to [81, Section 2.9] or [28, Sections 4.1.2] for the construction of Wiener processes
with generalized covariance (). We can also define the stochastic integral for progressively
measurable functions, but the integrand still has to satisfy (60), which requires a stronger
assumption on f. One particular choice of Q ¢ Lq(H) is the identity operator I and the
Wiener process with this covariance operator is called the cylindrical Wiener process. For
a detailed discussion of the construction of the stochastic integrals with respect to Wiener
processes, we refer the reader to [28, Chapter 4] and [77, Chapter 2].

We give some useful results on stochastic integrals with respect to Wiener processes.
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Theorem 7.2.3 (See [81, Sections 2.10 and 2.11] or [28, Chapter 4]). Let T > 0 and W be
a Q-Wiener process. Suppose f satisfies (60). Then, fort e [0,T],

1. E(/Otf(s)dW(s)> —0;

/ f(s)dW (s) is a H-valued and continuous local martingale;

2 5(| [ aveol ) =5 [ 156004 unts).

7.2.2 Poisson integrals

We introduce the Poisson measure on a measurable and separable Banach space (E, ).
The space M(E;Nyp ) is defined to be the space of all Ny o-valued measures defined on
(E,E). We equip M(E;Np ) with a o-field (also known as o-algebra) </ generated by the
map M(E;Ng ) 3 p— p(A) for all Ae&.

Definition 7.2.4. A map N : Q2 x £ — Ny o s called Poisson random measure if

1. N(w,-) is a measure on E for any w € Q and N(-,A) is a random variable on
(Q,ﬂ‘, {y}tZ(b]P)) fOT’ any A€ 87

2. for any A € € that \(A) := E(N (-, A)) < o0, the random variable N (w, A) is a Poisson

random variable with parameter n, that is

P({weQ: N(w,A) =n}) = LGOI

n!

3. for any pairwise disjoint sets Ay,--- ,Ap € E, {N(-, A;)}I", are independent random
variables.

We write N(A) instead of N(-, A). Moreover, the measure A\ defined on & is called the
intensity measure of N.

Definition 7.2.5. Let N be a Poisson random measure with intensity A. The compensated
Poisson measure is defined

N(A):=N(A)—AA4) VAe€.

We are particularly interested in the Poisson random measure defined on [0,00) X Z,
where (Z, Z) is a measurable Banach space. We say N is stationary in ¢ if for any ¢ > 0 and
T x Ae A([]0,0)) x Z, the law of the random variables N(7 x A) and N((7 +t) x A) are
the same. It is equivalent to saying the intensity measure is of the form dtv(do) for some
non-negative o-additive measure on Z. We assume that v is finite.

Definition 7.2.6. We say p is a Poisson point process corresponding to N(dt,dz) if p is
Z-valued adapted process such that

N(w, (0,t] x A) = #{s:p(s,w) e A} YAeZ, te (0,T].
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Definition 7.2.7. We say a point process p is stationary if p(-,-) and p(- +t,-) have the
same probability distribution for all t > 0.

We denote the collection
={Ac[0,0) x Q:An([0,t] x Q) e AB(0,t]) ®.F Vte[0,T]}.

By [130, Corollary 3.2.26], we can define the stochastic integral for H-valued function f
that is measurable with respect to Z4 ® Z (also known as progressively measurable) that

is )
/0 /ZE(f(S’w’Z)‘%)V(dZ)ds<007

where 1 < r < 2. We remark that Zhu [130] introduced Poisson integrals for the Banach
spaces E of martingale type p € [1,2], of which the Hilbert space H is (see [130, Remark
3.2.10]).

Now we state some properties of stochastic integrals with respect to N.

Theorem 7.2.8 ([130, Theorem 3.3.2]). Suppose f that is measurable with respect to

By Z that is
T
/ / E(|f (s, 2)|5)v(dz)ds < +o0,
0o Jz

for 1 <r <2. Then, for allte[0,T],

1E<//f,, dsdz))z;

t
2. E( ) < Cp/ /E(|f(s,-,z)]%)v(dz)ds; in particular, if
0Jz

p=2E f(s,-, 2)N(ds,dz)| | = t E(|f(s,-, 2)|[%)v(dz)ds
(\/ / L)1

3. Moreover, the stochastic integral with respect to N has a cadlag modification.

8,2 ds ,dz)

Next, we define the stochastic integral with respect to Poisson random measure N. For
our purpose, we only consider the case where |z|z > 1. In this case, there are only finitely
number of jumps by time 7', and we denote them by 0 < t; <to < --- <t, <T. Then we
can define

T n
/ / g(s,w,z)N(dt,dz) := Z g(s,w, p(tj)(w)).
0 ‘Z|Z>1 j:1

7.2.3 Itd’s formula
In this thesis, we apply the following infinite-dimensional It6’s formula.

Theorem 7.2.9 (It6’s formula).
Suppose (V, H,V*) is a Gelfand triple. Suppose W is a I-Wiener process; N is a Poisson
random measure defined on [0,00) X Z, where Z is a Banach space, independent of W; and

X(t):/OtA ds+/B )W (s //|Z|Z<1 s,2)N(ds, dz),
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where A(s) is V*-valued, B(s) € Lo(H) for all s, and G(s, z) is H-valued. Then we have
(a.s.)

X () = \X(())\%Jr/o 2<A(8)7X(8)>d8+/0 | ()17, (ar)ds
+2 /O (X(s), B(s)dW (s))u+
’ /0 /| <1 (1X(s) + G(s, 2)|F — |X () |7 — |G (5, 2)|F) N (ds, d=)
+/0 /| » (IX(s) + G(s,2) |7 — | X (8)|3)v(d2)ds,

where X (t) is a V-valued process that is X (t) = X (t) for dt x dP-a.e.
We will also apply the following argument in later chapter.
t d ol t Y ) d
H ™ H ™ Te H = P H 7. H
X~ 1XO) = [ (IXER )ds = [ DX (1X6)5 )as 6
o as 0 $

7.3 FErgodicity

In this section, we recall the concepts related to ergodicity. We refer to [27] for the
comprehensive discussion of ergodicity of SPDEs.

Definition 7.3.1.

e We say P(s,x;t,A) fort 2 s >0, z€ H and A € B(H) is a Markovian transition
function if

1. for eachx € H andt > s >0, P(s,z;t,-) is a probability measure on (H, B(H));

2. for each A € B(H) and t = s = 0, the function x — P(s,x;t, A) is a B(H)
measurable function defined on H; and

3. for each x € H and A € B(H), we have P(s,x;s,A) = xa(x).

e For this P(s,xz;t, A), define Py as a linear operator on By(H) by

Pufle)i= [ f@)PGsitdy)  E € Bi(H)

Such {Pst}t=s is called Markovian transition semigroup.

It is clear that if f is a characteristic function of a measurable set A, then P, f(z) =
Psi(1a)(x) = P(s,x;t, A).

Definition 7.3.2. Let {P;+}i>s be a Markovian transition semigroup.
o We say Ps; is strong Feller at to > 0 if Py sf € Cy(H) whenever f € By(H).

o We say Ps; is strong Feller if Ps; is strong Feller at all t > 0.
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Definition 7.3.3. Let {P;+}i>s be a Markovian transition semigroup.

o We say Ps; is irreducible at to > s if for any non-empty set A e B(H) and v € H,
the transition semigroup satisfies

Fro,s(2; A) = Prg s(xa)(x) > 0.

o We say Ps; is irreducible if Psy is irreducible at all t > s.

7.4 Framework

This section provides the framework of our SPDE model. Let (V, H,V*) be a Gelfand
triple. Let {W (¢)};>0 be an H-valued cylindrical Wiener process (i.e. Q = I) on a complete
filtered probability space (2, %, {.%;}i>0,P) which we fixed at the beginning. To ease the
notation, we let Z be a real Banach space with norm |-| instead of |-|z. Let N be a Poisson
random measure on (Z, %(Z)) with intensity measure v. We assume that W and N are
independent.

We consider the SPDE

AX(t) = A(t, X (t), A(t))dt + B(t, X (), A(£))dW (t)

+ / G(t, X (t), A(t), 2)N(dt, dz)

{lzl<1}

+ / J(t, X (t), A(t), z) N (dt, dz) (62)
{1211}

with X (0) = 2z € H. From now on, we assume that the functions A : [0,00) x V x N — V*,
B:[0,00) x V xN — Ly(H) and G,J : [0,0) x V x N x Z — H are all measurable. We
also assume that the process A(t) has the state space N such that when A — 0,

gij (2)A + o(A), if ¢ # 4,

U (63)
1+ gij(z)A + o(A), if i = 7.

PA(t+ A) =j|A(t) =4, X (t) =z) = {
Hereafter, we assume that {g;;} are Borel measurable functions on H; ¢;;(x) > 0 for any
x € H and 4,5 € N with 7 # j; and ZjeNqij(x) = 0 for any x € H and i € N. In the
remaining discussion, we assume

(QO)

According to Guo and Sun [51], A(f) can be written as a stochastic integral with respect
to a Poisson random measure. More precise, for each x € H and ¢,j € N that ¢ # j, define
gio(x) = 0 and

Agi(2) [:goqimm,;qzm(a:))

Set



Then, A(t) can be written as
AAD) = [ D), A(E).r) Nt ), (69
[0,L]

where Nj is a Poisson random measure with the Lebesgue measure on [0, L] as its charac-
teristic measure. We assume that Ny is independent of W and N henceforth.
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Chapter 8

Main Results

In this chapter, we will state the main results. All the statements are from work [73].
We start with the existence and uniqueness of solutions. Therefore, we first impose the
following assumption.

Assumption 1. Suppose that there exist « > 1, 20,0 >0, K e R, v < %, c >0,

B+2
p e Lp.(V;[0,0)) and C € L2 ([0,0);[0,00)) such that for vi,ve,v € V, i € N and
t € [0,00),

(HC) (Hemicontinuity) s — (A(t,v1 + sva,1),v) is continuous on R.
(LM) (Local monotonicity)
2<A(t7 U1, Z) - A(ta V2, 7’)7 U1 — /U2> + HB(ta U1, 7’) - B(t7 V2, 7’)”%2(H)
G 2) - Gltn i ()
{l=1<1}
< K+ po)]lor — vl

(C) (Coercivity)

A, 0,3), 0) + | Bt v, D2, ) + /{ | lat
< COt) = 0v|$ + clvl%.
(G1) (Growth of A)
[A(t,0,0) 5" < [C) + clolE] (1 + [v]%).
(G2) (Growth of B and H)

1Bt v, ), ) + /{ |6 ei 2 vdz) < O+l + el
z|I<

(GB) (Growth of H in LP+2)

+2

/{ G ) < [CO1E + ol
z|<
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(Gp) (Growth of p)
p(v) < e(1+ [o[f) (1 + o))

Now we can state the theorem of the existence and uniqueness of solutions to the equa-
tions (62) and (64).

Theorem 8.0.1. Suppose that Assumption 1 and condition (Q0) hold. Let T > 0, x € H
andi € N. Then, there exists a unique H xN-valued adapted cadlag process {(X (t), A(t))}e[o,1]
such that

1. any dt x P-equivalent class X of X is in L*([0,T]; V) L2([0,T]; H), P-a.s.;

2. for any V -valued progressively measurable dt x P-version X of )A(, the following holds
for allt € [0,T] and P-a.s.:

X(t) = :1:+/0 A(s,X(S),A(s))ds—i—/0 B(s, X (s),A(s))dW (s)

~

+/0 /{|2|<1} G(s,X(s),A(s),2)N(ds,dz)
+/0 /{|Z|>1} J(s, X(s), Als), 2) N (ds, dz); (65)

3. A(0) =i and Equation (64) holds.

By the standard argument, we know that {(X(¢),A(t))}:=0 is a Markov process (cf.
[43, Theorem 4.8] and [5, Theorem 6.4.5]). We now shall establish the strong Feller property
and irreducibility under the assumption that the noise is degenerate.

Assumption 2. Suppose that a = 2 and the following conditions hold:
1.(LipB) For any n € N, there exists Cy, > 0 such that
|B(t,v1,i) — B(t,v2,1)| o) < Cnlvr — v2|h
for all vi,ve € V with |v1|g, |va|gr <n, t =0 and i € N.

2. There exist A € [2,00) N (a—2,0), {B,} = Ly**(H) and ng € N such that the following
conditions hold:

(N) For anyneN, t>0,veV with |v|g <n and i € N,
B(t,v,i)[B(t,v,i)]* = B2.

(M) Each By, has a Moore-Penrose pseudo-inverse B, : V. — H and for any n > ny,
there exist K,, = 0 and 6, > 0 such that

2<A(t,’01,’i> - A(t, v2, i)7vl - U2> + HB(tv U1, Z) - B(tvv%i)H%g(H)
+/ G(t,v1,i,2) — Gt w2, 2) v (du)
{lz]<1}

< —0n| By (01 — v2)[3ylor — w2l + Kalvr — vl

for all vi,voeV,t >0 and i€ N.

94



Here we denote L;’S(H) to be all Hilbert-Schmidt operators that are positive and self-adjoint.

Theorem 8.0.2. Suppose that Assumption 1 holds with C' € L} ([0, 00);(0,00)), Assump-

tion 2 and condition (Q0) hold. Then, the transition semigroup {Ps;} of (X(t),A(t)) is
strong Feller.

To obtain irreducibility, we need some assumptions on the domain of the operator A.
For @ > 0, define

t
D(A, w) := {(’U,i) eV xN: A(t,v,7) € H and / |A(s,v,1)|Fds < o0, Vt € [0, oo)} .
0

We impose the following assumptions.

(D) There exists @ > 2 such that D(A,w) = H x N.

(Q1) For any distinct 4,5 € N, there exist an open set U ¢ H and ji,...,j, € N with
Jp # Jp+1, j1 = 1 and j, = j such that ¢;,;,.,(x) >0forp=1,...,r—land z e U.

Assumption 3. Assumption 1 holds with C' € L ([0,00);(0,00)), v = 0 and the exponent

loc
a in condition (Gp) replaced by some o' € (1,a).

Theorem 8.0.3. Suppose that Assumption 3 and conditions (D), (Q1) hold. Then, the
transition semigroup {Ps;} of (X(t),A(t)) is irreducible.

From the definition, Condition (M) implies Condition (LM). We remark that to obtain
the existence and uniqueness of the solutions as well as the irreducibility, and we may relax
to assuming the coefficients are locally monotone, i.e. (LM). However, to establish the
strong Feller property, one has to assume a stronger assumption that the coefficients are
only monotone, i.e. (M). Monotonicity plays an important role in establishing strong Feller
property and studying Harnack inequalities, e.g. , [76,118,128].

Finally, we give the definition of periodic measures and state the main theorem of Part
IT of the thesis.

Definition 8.0.4. A probability measure po on HB(H) is said to be an {-periodic measure
for {Y (t)}4=0 if the following condition holds:

e Y (0) has distribution pio implies that the joint distribution of Y (t1+kl), ..., Y (t,+kf)
is independent of k for all0 <t; <--- <t, and n € N.

We remark that this definition can be applied to any Polish space E with its Borel
o-algebra. Stating in terms of Hilbert space is just to reduce complexity.
We need to impose one more assumption concerning about the function @ := (g;;(x)).

(Q2) There exists a positive increasing function f on N satisfying

lim f(j) = o0, sup D [f()—=F(@)gy(x) <o, lim sup > [f(F)—Ff(i)]gi(x) = —0.

—0 : i—00
J z€H, leNj;ﬁi erj;éi
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Theorem 8.0.5. Let £ > 0. Suppose that functions A, B, G, J are all £-periodic with respect
tot, the embedding of V into H is compact, Assumption 3 holds with C' € L* ([0, o0); (0, 00)),
Assumption 2 and conditions (D), (Q0), (Q1), (Q2) hold, and

lim sup {=013 + clvly
n—00 |v]y >n,t=0,ieN
+ / [1J(t, ., 2)[3 + 200, J(t, 0,1, 2)) V(dz)} = —0o0. (66)
{l=[>1}

Then,
(i) Equations (62) and (64) have a unique solution {(X(t), A(t))}i=o0;
(ii) The transition semigroup {Ps.} of {(X(t), A(t))}i=0 is strong Feller and irreducible;
(iii) The hybrid system {(X(t), A(t))}+=0 has a unique £-periodic measure po;
() Let ps(A) = P,y ((X(s),A(s)) € A) for Ae B(H x N) and s = 0. Then, for any
5> 0 and p e L2(H x N; pg),

1L
77,h—r>rolo E Z Ps,s-i—z'ﬁso = /

i=1 Hx

wdps in L*(H x N; pg). (67)
N
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Chapter 9

Proofs

All the proofs of this chapter are taken from the paper [73] with more details.

9.1 Proof of Theorem 8.0.1

We first consider the case that A(t) = i for fixed i € N. The existence and uniqueness
of solutions to SPDEs without regime-switching has been considered by [12].

Theorem 9.1.1. ([12, Theorem 1.2])  Under the assumptions of Theorem 8.0.1, there
exists a unique H-valued adapted cadlag process { X (t)}ejo,r) such that

1. any dt x P-equivalent class X of X is in Le([0,T]; V) L3([0,T); H), P-a.s.;

2. for any V -valued progressively measurable dt x P-version X of f(, the following holds
for all t € [0,T] and P-a.s.:

X(t) = J:—i—/o A(S,X(s))ds—i—/o B(s, X (s))dW (s)

" /0 /{|z|<1} Gl Ao 2V )

+/0 /{|z|>1} J(s,X(s),z)N(ds,dz).

We remark that if the coefficients are random, i.e. a mapping from [0,0) x V' x Q or
[0,00) x V x Z x € that are progressively measurable, Theorem 9.1.1 still holds.
Using Theorem 9.1.1, we can construct the solution with regime-switching.

Proof of Theorem 8.0.1.
Using Theorem 9.1.1, we know that for any (x,7) € H x N, there exists a unique H-valued
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adapted process X () (t) such that

XO0) =z + A ),1)ds + /t B(s, X (s),1)dW (s)

0
+ / / G(s, X()(s),i,2)N(ds, dz)
0 J{|z|<1}
t
+// J(s,X@(s),i,2)N(ds,dz), (68)
0 |z|=1}

where X (@) is a V-valued progressively measurable dt x P-version. Let 0 < 01 < 09 < --- <
on < -+ be the set of all jump points of the stationary point process pi(t) corresponding
to the Poisson random measure Nj(dt,dr). From condition (Q0), we have lim,,_,o, 0y, = 00
almost surely.

Now we construct the processes (X, A) and its progressively measurable version. For
t €[0,01), define

(X(8), A1) = (XW(@),4),  X(1) = XO(@). (69)

Set
Alor) =i+ D (G = D) la, (x0) (o)) (P1(01))-

Then, (65) holds for ¢ € [0,07).

- W(t)=W(t+o1)—W(o), pt)=p(t+o1), pi(t)=pi(t+o).
Set
XN (0) = X (o),
<5<<t>,K<t>> = (XA, A<al>) vie[0,00— o),
7\( o9 —01) = A(01) +Z (J—A A()(p1(02_01))a
jeN
where

Af) = Dp(oy (XA (0 — 01)-)).
Then, for t € [01,02), we define

~

(X(0).A0) = (Xt~ o). Kt~ o)), X(t) = X(0).
which together with (69) gives the unique solution on the time interval [0, o2). Continuing
this procedure inductively, we define (X(¢), A(¢)) on the time interval [0,0,,) for each n.
Therefore, (X (¢), A(t)) is the unique (cadlag) solution to the hybrid system (62) and (64)

since limy,—,o0 07, = 00 almost surely. Finally, since Xis L® ([oi,0041); V) L3 ([04, 0441); H)
P-a.s., we conclude that X is also in LY([0,T]; V) L%([0,T]; H), P-a.s. O

We remark that Theorem 8.0.1 still holds if the coefficients are random and progressively
measurable. This observation may be useful for the future work.
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9.2 Proof of Theorem 8.0.2

We again first consider the strong Feller property without regime-switching and then
the case with regime-switching.
9.2.1 Without regime-switching

Zhang [128] already considered the strong Feller property for SPDEs driven by Wiener
processes without regime-switching. We will follow his idea and generalize it to SPDEs
driven by Lévy noises. We first consider the case that there is no large jump (i.e. J = 0).

Theorem 9.2.1. Under the assumptions of Theorem 8.0.2, the transition semigroup {Ps;}
of X(t) is strong Feller.

To simplify notation, we drop the dependence on i. Fix T' > 0. We need a lemma.

Lemma 9.2.2.  Suppose that Assumption 1 holds with o = 2, J = 0 and the following
conditions hold:

(i) There exists Ko > 0 such that
[B(t,v1) = B(t, v2)]*(v1 — v2)|ir < Ka([v1r — val A 1 — v2l)
for allt€[0,T] and vi,ve € V.
(ii) There exist A € [2,00) (o — 2,00), Be LI*(H), § >0, K >0 such that
B(t,v)[B(t,v)]* = B°,
and
2(A(t,v1) — A(t, v2),v1 — v2) + | B(t,v1) — B(t, UQ)HQLQ(H)
+/ |G(t, 01, 2) — G(t, va, 2) |5 (du)
{l=1<1}
< =8B (v1 — va)yfor — vl + Klor —vaffy (70)
for all t € [0,T] and v,v1,v2 € V.
Then, Psf is ’\+227)\_°‘—H6lder continuous for any f € By(H).

Proof of Lemma 9.2.2.

We follow the method of [128, Lemma 3.1]. Let ¢ € (0,1) satisfying 0 v (a —2) < A(1—¢) <
(2a — 2) A . Take o/ € (0,¢), whose value will be determined at the end of the proof. For
x,y € H, consider

dX (t) =A(t, X (£))dt + B(t, X (£))dW (t) + / G(t, X (1), 2)N(dt, dz),

{lz[<1}
dY (£) =A(1, Y (8))dt + B(t, Y (1)) dW (#) + / Gt Y (£), 2) N (dt, d=)
{lz1<1}
e XY
el v g
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with X (0) = z and Y (0) = y, respectively. Since X (¢) is an adapted cadldg process, it is
progressively measurable; thus, we have the unique solution Y'(¢) using Theorem 9.1.1, the
random coefficients case. To verify the additional drift term satisfies Assumption 1, but

this is done in [117, Theorem A.2] and in fact we have

X(t)—v  X(M)—w
<|X(t)—v1|§{ ’X(t)—q&%’ 1 2>H<O.

Define 1
Tn 1= inf{t >0:1X@)—-Y(@)|g < }, neN,
n
and
T:= lim 7,.
n—o0

From now on, to simplify notation, we write A(t, X (¢)) instead of A(t, X(t)) etc. unless it

is necessary to distinguish them.
Using It6’s formula (Theorem 7.2.9), we find that for ¢ < 7,

X (1) =Y ()7 — o~ ylE

- /0 (2<A<u, X () — Alu, Y (), X () — Y (w)) + | Blu, X (u)) — B(u, Y<u>>|i2(H)>du

+/0 2 X (u) = Y(u), [B(u, X (u)) = B(u, Y () |[dW (u))

t u) —Y(u w, X (u),2) — Gu, Y (u), 2)|% — W) — V()2
+/0/{z|<1}[|X() Y (u) + G(u, X (u), 2) — G(u, Y (u), 2) | — [ X (u) — Y( )|H]

t U u),z) — Gu u), 2)|3v(dz)du
+/0/{Z|<1}]G( X (), 2) — G(u, Y (u), 2)}v(dz)d

t
oyl /0 X (u) — Y (w) %<,

here we have used the fact that X = X for almost every point in dt x P (recall that we

N

define the additional drift term is defined using V'-valued progressive measurable version of

X, X))
Then equation (71) and hypothesis (%) implies that

X0 =YW~ 2~ vl
< [ -0 x ) Y@ X @ - Y
0

+RIX () = Y (@) — 2l — yIF1X (w) = Y ()] du

+/0 2 X (u) = Y(u), [B(u, X (u)) = B(uw, Y () |[dW (u))

3 A1
P S Sl ( _E).

2
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t u) —Y(u w, X (u), 2) — Gu, Y (u), 2)|% — W) — V()2
+/0 /{z|<1} [|X( ) = Y (u) + Glu, X(u), 2) = G(w, Y (u), 2) [ — | X (u) = Y( )|H]
et

N

(du,dz)

(du,dz).



We have r € (0,1).
By (70) and (61), and the assumption on B, we obtain that for ¢t < 7,,

X() = YOI — o — gl
< / 51— )BT (X () — Y () [ 1X () — V()] Ndu + / R(1— )X (u) — ¥ (u) 52 du
0 0
—2<1—r>|x—y|%{/o X () — ¥ () 35 du
(1)K / (X () = Y (@) A [X(u) — Y () [527) du
2(1 =) 1000 = Y3 CX @) = Y0, T3l X ()~ B Y )l
X(u) =Y () + Gu, X (u), 2) — G(u,Y (u), 2)| 72"
+/O/{Z|<1}[| (u) — Y1) + Glu, X (u), 2) — Clu, Y (u), 2)|5
— X (u) = Y (u) ;,27'] N(du,dz). (72)
Taking expectation from both sides, we have
E(X(t) - Y(OIZ) < |z — g5 + / R(1 - nE(X (u) - Y (u) [372)du;
we then use Gronwall’s lemma and obtain

tATR
/ E(|X(s) — Y (s)2")ds < ROz — 2727
0

Hence,
T ATh Eil X(t) =Y (t A TATn - -
/ 5(1 _ T)E | ( ( ) (}\) H)du < / K(l _ ’l“)eK(l_T)t|ﬂj‘ _ yﬁ{_%dt
0 | X(t) =Y (@)|37 0
< 6[?(1_T) | y|2 27"’

which leads

1

TATn |§7 (X(t) —Y(t))|)\ 6(1 T)KT i
E{/g |X(t)_Y(t);\fHdt]<5(l)|x_y|2 2r

Further, by Fatou’s lemma, we get

1

Tam BTHX () = Y (1)) S(1-mKT )
EUO X - YOIk Hdt] < m\ —yl5r (73)

Define )

il BT YO,
-u{e0: [ Sy =)

By (73), we get lim 7, =T A 7. Set
n—o0

En = ATy AT
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Then, we have that lim &, =T A 7.
n—0oo
Define

S.

Ty Wit + /O“x_y%[B<s7Y<s>>]*<B<s,Y|;zig (s ?fgn]) X (5) = Y(s))

Thus, {W(S)} se[0,6n ~1] 18 @ cylindrical Wiener process on H under the probability mea-
sure Ry, ¢,P. Define
E7H(t,v) := (B(t,v)[B(t,0)]*) " B(t,v),

and

R e { ool [ (OIS ey eare))

el [T 1B s Y ()X () ~ V(s
) X(s) - Y(5)[% d}‘

We will show that {W(s)} sefo,7] 18 a cylindrical Wiener process on H under RrP.
By (72) and the definition of W, we obtain that for all ¢ < 7,

X = YO — e —ylz™
—-1

' B X W) - Y@y~ a2
< [(a=n|-o BB TR Rix) - vl

ol — gl X () — Y () ]du

/ (L, PT, (u,X<u>>—B(u,Y<u>>Jdv“v<u>>H
) Vo) (B X(0) - B )IE Y ) (X - Y)Y,
2=l ~ vl / <\X O X () — Yl )
/ /{‘ K@) =Y @) 6 X0, 2) G Y ), K@) —Y(u)|,;2’"]ﬂr(du,dz).
(74)

By Young’s inequality and condition (i), we obtain that for ¢t < 7,

[B(t, X (1)) — BULY(O)]E (s, Y (5))(X(s) - Y(s))
' y'H< X(1) >H’
) - Y

IQ’”’ [X(s) =Y (s)|%

<21—1)|z—ylf ~K2(|X( )— Y()|H A X)) =Y (0)u)X() - Y77 °IB [X(t) -
A—1
<

(Mz“i(l SR eyl Ka(IX () — YO A 1X(1) - V() }ﬂ))”l
A
1 (10057 B0 - YOl
U([ 2 ] X(0) - YO )
Al adea (|X(t) Y@L A X y<t>|;(i—f"’)>

< S 2SI (L - nle -yl K

L A=n)d B [X() - YOl
22 X6 -Y@®ly

—1

>

1
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/\(1—2r) A(2—2r)
Since | X (1)~ Y (O]~ < |IX(O)-Y(O)R [ X(0)-Y (0)]rr > Land [X(6)-Y (1) ;"
X(8) = YO 5 X (1) — Y (0)| i < 1, we get

[B(t, X (1)) — Bt Y (1)]E (s, Y ())(X(5) — Y(5))
”'H<|X \‘” X(s) V()T >

) -
rd B X@®) - YOy
2 X (1) = Y(t)l3f

N

| Hw

< Craral - Mle — 51X () - YOI + 12

where C) 5 i, depends only on ¢, A and K3. Thus, for ¢ < 75,, we have that

X = YOIF™ — o -yl

T (1 -r)8 BT (X (u) — Y (w))) - o
</o[‘ T R o OOl

+ CA,&,Kg(l - T)|:p — y|I/\{71 |X(u) _ Y(u>|2—2r:| du
t u) — V(4 N
+2<1r)/ <|;(( ) Y())%,[B(U,X(u))B(u,Y(u))]dW(u)>
/ / [Xu Y () + Gl X (), 2) — Glu, Y (), )72
(l-1<1)

— | X (u) =Y (u )H ] (du,dz).

H

By Gronwall’s lemma, we get

|$ _ y|2 2r.

(75)
By the definition of W and (75), we get

sup IE[RSA&R log(RSAgn)]
s€[0,T],neN

- swp En,. ]p[|a:—yH/SAEn< X() _Y(t)),dW(t)>

s€[0,T],neN Y (t)|5
eyl /Mg" |E~ (tY( ))(X(t) - Y (1)) ]
> ), IX(0) —Y(t

)
_a2d sA&n E—l Y X -Y 2
R SN e (UIE GRS (G
s€[0,T],neN 2 " LJo | X

)
@ — |20 e BTV Y (0) (X — Y)Y ) Fase
R E P[</0 IX(6) =Y () dt) . }

ol

T 5 eXP{[CA,a,Kzlxylﬁ‘l+K] (1r)2§“}

<= : i _
(2) [(1—1r)]3

< 0.
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Then {Rs ¢, }sefo,7],nen and thus {Rs}e[o,7] is uniform integrable. Hence, {WN/(t)}tE[O,T]
is a cylindrical Wiener process under R7P. Moreover, {Y (t)}:>0 satisfies

dY (t) = A(t,Y (t))dt + B(t, Y (t))dW (t) + /{ y }G(t,Y(t),z)N(dt,dz)
<1

with Y'(0) = y. This implies that {Y (¢)}+>0 is also a solution to (62) with J = 0.
We now show that P f is M -Holder continuous for any f € By(H). To simplify
notation, we only give the proof for the case that s = 0. The proof for the case that s > 0

is completely similar.
Let fe By(H),0<t<T and z,y € H. We have

|Po,if(z) — Porf(y)| = [ELf ( ( )) Rtf(Y( DIl
< ‘ - R f(Y ’ + ’E{ (t)) — f(Y(t))]l{th}}’
< \f’LOC{E fl—Rt|]+2P( t)}. (77)
By (73), (76) and the inequality
|1 —e"| <xe® +2|z], veR,

, )
there exists C T 0 such that if |x —y|g < 1

E[|1 — R[] < E[R;log R;] + 2E[|log R[]

2(1—7‘)+ 4(1—r) +92q/
<Clrmam|l vl o=l ™, (78)

Next, we estimate P(r > t). Similar to (74), we can show that for s < 7,,
X(s) — Y ()l — o — yl5
Kf/rx Y (u)5ydu — sl — ol
2 ) — Y ()2 ) = Y (), 1Bl X () ~ Bl Y ()W ()i
+Ajﬁﬂnhxwwdmo+awxw»> Glu,Y (), 2)f5
- X) = Y ()l | W, ),
which implies that

E[|X(5 ATn) =Y (s A Tn)|§q] <|lz —yly + /OS %EHX(U) —Y(u) %]du

—elz — y|%]E[s A Tnl

s K
=lx —yly + /0 {EUX(U ATn) =Y (un Tn)\%]du

—elz — y|§“{’]E[s A Tnl- (79)
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By Gronwall’s lemma, we get
E[IX (s A ) = Y (s A 7a)l57] < X522 — y5.

Then,

t 2 ~
/ E[|X(s ATh) =Y (s A Tn)|§1]ds < IN{—(zetK‘E/2 — D]z —yl%,
0 g

which together with (79) implies that
E[t A 7] <& (K20 — g5
Thus, we have that

L .. JE[t AT etie/2 o
P(r>t) < hﬁgf P(r, >t) < hﬁlélf " < - |z —y|5 . (80)

Now we can choose
;. AT2—a

o )
Therefore, by (77), (78) and (80), we obtain that for any z,y € H with |z — y|g < 1,

|P0,tf(37) - Po,tf(y)|

201=1) 4 o A=) 4 o0 2etl~(s/2 -,
< |f|LOC {C;“,[N(,T,(;,)\,KQ |:|x*y|H/\ + |‘IE*y|HA :| + |x*y|§{a

te

< 2 CT,',f(,T,(s,/\,KQ,E + te |f|Loc|:L‘ - y|H2A

etf(s/Q] A2—a

Proof of Theorem 9.2.1.
We first consider the case that J = 0. For R > 0, define

Ba(t.v) B(t,v) if |v|lg < R,
7/U :: .
R B(t,EL) i vy > R

Denote by X (s,w;t) the solution to (62) with X (s) = w, w € H for fixed ¢ € N. Suppose
|w|g < R. Define

TR = inf{t > s: | X(s,w;t)|g = R}.

Let {XRr(s,w;t)} be the unique solution to the SPDE:

AXR(t) = A(t, Xp(t))dt + Br(t, Xp(t))dW (t) + /{ . G(t, Xp(t), 2)N(dt, dz)

with X(s) = w. Denote by {Pf} the transition semigroup of {Xg(s,w;t)}. Suppose
x,y € H with |z|g,|y|g < R. By the uniqueness of solutions, we find that X(s,z;t) =
Xg(s,z;t) and X(s,y;t) = Xg(s,y;t) for all t < 7 A 75, Let R > ng, where ng is given
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in condition (M). By conditions (N), (LipB), (M) and replacing 6,, K, By with &,,, K,
By, respectively, we can apply Lemma 9.2.2 to show that {P, t} is strong Feller.
Let f € By(H). We have

Py (2) = Porf ()

< [E[{S(X (s 258) = F(X (8,5 ) grz v syl + 20 f 1 [P(mR < t) + P(rp < 1)]

= [E[{f(Xr(s,2:1)) = F(XR(s,y: )} re prsoy ]| + 21|22 [B(r < 8) + B(r}y < 1)]
<P f(@) = PEf(y)] + 21 f = [P(rh < t) + P(rh, < 1)]. (81)
By Theorem 7.2.9, we get

| X (s, 25) | — |l

=/ [2<A(U»X(S,SU;U))7X(87$;U)>+|B(u,X(S,93;U))|%2(H)
—I—/{ . |G(u,X(s,x;u),z)ﬁfu(dz)]du—I—/S 2(B(u, X (s,x;u)), dW (u))g
t X(s,z;u) + Gu, X (s, 2;u), 2) |3 — | X (s, 2;u)|? deu,dz
o UG Gl X a5, 2l X o0 ) ¥ )

t
<t swp (O + [ (—0|X<s,x;u>|av+c|X<s,x;u>|%1)du
u€el0,t] s

+/ 2(B(u, X (s,z;u)), dW(u))g
t X(s,z;u) + Gu, X (s, z;u), 2) % — | X (s, z;u)|? Ndu,dz.
o[ I G X s, 2l — X oy ) ]V 2

Then, by Gronwall’s lemma, we obtain that
E[|X (s,z;:0)[H] < | sup |C(u)| + |z|3; ceolt=3)
u€el0,t]
and also

supuefo. [C(W| + 121H o | SWPuepog IC(u)]

t
/E[|X(s,x;u)|‘{‘/]du< ’ 7 e ’0 (t—s).

By the Burkholder-Davis-Gundy inequality, there exists C’ > 0 such that

E[ sup |X(s,z3u)|3]

s<u<t

< C’E{/gt{|B(t,X(s,x;u))||i2(H) +/{|z|<1} ]G(t,X(s,m;u),z)\%y(dz)}du}

¢
< C'/E{/ { sup |C(u)| + v|X (s, z;u)|y + c|X(s,x;u)|fq} du}

u€el0,t]

C" (suPyefo,q [C(w)] + |23
< ( 101 7 H> . [(7 +0)(t—s)+(v+ cQ)ec(t*S)] ,
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which implies that

Pt <t) < P(sup |X(s,z;u)|g = R)

u€ls,t]
E[Supue[s,t] ‘X(Sv €T, u)‘%{]
C" (suPyefo,q |C(w)] + 2]
< < i ]0R2 ) : [(7 +O)(t—s)+ (v + c@)ec(t’s)] .

Hence for [ € (0, R — |z|m), we have that

sup P(rg < t)
{weH:|w—z|g<l}

C" (5upuepoy IC )] + [l + 1)
6 R?

< |+ 0 -9+ (+ et (82)

Therefore, Ps . f is continuous at z by (81) and (82). Since z € H is arbitrary, the proof for
the case that J = 0 is complete.

We now consider the case that J # 0. Let {X (¢)};>0 be the unique solution to the SPDE
(62) with arbitrary J. Let {Z(¢)}:>0 be the unique solution to the SPDE (62) with J = 0.

Denote by PZ(s,z;t, X) the transition semigroup of {Z(t)};>0, where v € H, X € (H)
and 0 < s <t < . Define (; := inf{u > s : N([s,u],{|z| = 1}) = 1}, which is the first
jump time of u — N([s,u],{|z] = 1}) after time s. Then, by conditioning on ¢;, we get

PX(s,x;t, X)
R0 pZ (g ot x)

t
+/ / / eiy({‘zl>1})(tlis)PX(t1,1’1 + J(thl’l,ZL'Q);t,X)PZ(S,I';tl,diL’l)V(d.’ﬁQ)dtl.
s J{lz2|=1} JH

Repeating this procedure, we get

PX(s, 258, X) = e (U=1D)(=9)

0
PZ(s,z;t, X) + Z U, (83)
k=1

where

0, = // / / / PZ(s,x;t1,dx1)P? (t1, 21 + J(t1, 21, T2); ta, das)
{lz2]=1} {lz2k|=1} JH™

s<t1<--<tp<t

x - P2 (tg, wop_1 + J(tr, Top—1, Tor); t, X)v(dzo)v(dzy) - - - v(dwog)dtydts - - - diy,.

Since we have shown that the transition semigroup of {Z(t)};o is strong Feller, PZ (s, x;t, X)
and Vi, k € N, are all continuous with respect to x. Then, by (83), we conclude that
PX(s,x;t,X) is lower semi-continuous with respect to 2. Therefore, the transition semi-
group {P;} is strong Feller by [87, Proposition 6.1.1]. O

9.2.2 With regime-switching

Proof of Theorem 8.0.2.
Denote the transition probability function of (X (t),A(t)) by {P(s, (z,i),t,B x {j}) : 0 <
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s<t,(v,i)e HxN,Be B(H),jeN}. ForieNand ge C1?([0,00) x H;R), define
Zigt,x) = gt,x) +{A(t,x,1),9.(t,z)) + %trace(BT(t,x, 0)gaz(t, 2)B(t, 2,1))
gl Gt 2) = glt0)  (galt), Gt D)
{lz]<1}

+/ lg(t,z + J(t, 2,4, 2)) — g(t,x)|v(dz). (84)
{|z[>1}

For (z,i) € H x N, let X®)(t) be defined by (68). We also define X (t) to be the killing
process with generator .%; + ¢;;. Then, for f € By(H),

—~

B0 0)) = [ 1x0 @y exp { [ (X (w)iu |

Let P(i)(s,x; -) be the transition probability function of X (@) (t). Then, for 0 < s < t,
Be #(H) and j € N, we have
P(S (z,9);t, B x {j})
= 0 P (s,z;t, B)
/ / , ),t, B x {j})( Z qij/<$/)>P(i)(s,$;t”dx’)dt/.
J'eN\{i}
Repeating this procedure, we get

—~—

P(s,(z,i);t, B x {j}) = 6;; PV (s, 21, B) +Z\If;€+Un,
k=1

where

Uy, :// 2 / ij,l,jk(ﬂvk)P(jk)(tk,$k§t7 B)
s<ty<--<tp<t ; . JHk

]07“".]](3

—_—

X Qs (@1 )P (tp g, g 1; gy dg) - - g gy (21) POV (8, 215 b, da)

X P(i)(s, xyty, dzy)dty - - - diy,

and the sum is over

j0:i7 ngN\{jﬁ—l} fOI‘éE{l,...,]{}*l}, ]k:],

vn= [ f 5 [ G @) Pl it B x )
s<t1<---<tn+1<tj - Hn+1

0s5-+9In+1

—~—

X qJ'n,hjn(xn)P(j")(tmwn;t, B)"'Qi,jl(xl)P(jl)(tl,301;752,61332)

X P(i)(s, Z; tl, da:l)dtl cee dtn+1
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and the sum is over

jo =1, jee N\{jy_1} for £ {1,... .n+1}.

By condition (QO0), we find that U, < % Letting n — o0, we get
—~ o
P(s,(z,i);t, B x {j}) = 6; PV (s,2:t,B) + > Ty, (85)
k=1

By Theorem 9.2.1, we know that the transition semigroup of X (t) is strong Feller.
Then, following the argument of [119, Lemma 4.5], we can show that the semigroup of

—~—

X @ (#) is also strong Feller. Thus, we conclude that P®)(s,2;t, B) and ¥}, for k € N are all
continuous with respect to x. Using the fact that N is equipped with a discrete metric, we
conclude that P(s, (z,1);t, Bx{j}) is lower semi-continuous with respect to (z, ). Therefore,
the transition semigroup {Ps;} of (X (¢), A(t)) is strong Feller by [87, Proposition 6.1.1]. [

9.3 Proof of Theorem 8.0.3

First, we consider the case that i € N is fixed. To simplify notation, we drop the
dependence on i. Define the first jump time of {X (¢)};>0 by

G :=inf{t > 0: N([0,t],{]z]| = 1}) = 1},

which is exponentially distributed with rate v({|z|] = 1}). Let {X(¢)};>0 be the unique
solution to the SPDE (62) with arbitrary J. Let {Z(t)};=0 be the unique solution to the
SPDE (62) with J = 0. We have that Z(t) = X(¢) for ¢ < (;. Hence, to obtain the
irreducibility of {P;;}, we may assume without loss of generality that J = 0.

Denote by {X?(t)};=0 the solution to Equation (62) with X(0) = =, z € H. Let
T,M,R >0, t; € (0,T), y(0) € D(Ag) and {y(t)}[o,r] be the solution to the following
equation:

dy(t) = Al y(t)dt — 2 (y(t) — y(O)dt, € > 11
y(t) = X* ()1 x=() | u<ry t<t1- (86)

Lemma 9.3.1. Let m :=2M — (K + p(y(0)) + 1)T > 0. Then,

_ m(t—ty) t_m(—s)
ly(t) —y(0)F <e” T (R+[y(0)|u)? +/ e T |A(s,y(0)[Fds, te[ti,T],
t1
(87)
4 2 -t 2 4 2
t [y() = y(O)zdt < —— [ (R +[y(0)|r)" + t [A(s,y(0))[zds |, (88)
1 1
and there exists ¥ > 0, which is independent of t1, such that
T Oé—(!,
| plutsds < o - 1), (89)
t1
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Proof of Lemma 9.3.1.

By (LM) and Theorem 7.2.9, we get
ly(8) — y(0) %

— [ A (w) = Al 5(0). ) = yO)du -

oM [t
t ly(u) — y(0)|7du
1

+/2@MMM®%Mﬂ—M®Mu

t1

< (K pto) + 1= 7225 ) [ o) = O+ [ 1A 0) Brd

m t t
T [ W= y(0)[Fdu+ [ |A(u,y(0))[Fdu.
1 J#; t1

Then, by Gronwall’s lemma, we get

_m(t—ty) m(t—s)

t
ly(t) —y(0)[F < e T (R+Jy(0)|n)” +/ e T A, yo) [ ds.

t1

Hence (87) and (88) hold.
By (C) and Theorem 7.2.9, we get

MW%—MM@=A¢%M%WMWW»—2M

T—1t

<mw—mwmwm}w

2M

< [ ot oty + el - 725

<mm—mmmwm}m
Let p = 2. We have

() =yt

¢ C
< [ [pemeatcc)
t1

0 c
—2 D —2 o 74
< 5 ly(u)ly ™ — gly(U)ﬁ{ y(@)lv + 5 ly(w) i

pM

|ww@%mw—mwmwmku

STt
</Wp)2mm%mﬂwwn+w op
2
t1

< . )l + s (00)| - Lyl
ve[0,u]

pM
T—t

pM

+
T—-1%

()| arly(u) " - wwgkw

Set

(p — 2) supyefo, |C(u)| + cp
5 :

c=

Then, for t € [t1,T], we have

N 6]? t . _ pM t N
e“Mm%+/e“Mﬂ%%@W@+ A /ewww%w
2 t1 T tl t1

. oM o () g 10|
< el + o O [ o)l s + e
1

(90)
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which implies that

pM [

ey (s)|E,ds
T-t /, ()

. M b _ (1 — e et sup, |C(u)]
<ePly(t)[?, + (0 a1 / ey (s) |2 Lds + lo] .

T - tl t1 /C\CEtl
Further, by Young’s inequality, we get

t
Tt ;

t
s < £ glen)fy + Ol [ Oyl ds
t1 p t1

LTt (= ) sup ()
pM Cetta

T —t1 44 &(t— ! —1
<]M16@hnw+wwa&tﬂljw$@«ﬁ

Tt N s O)
pM c
< T —t (Clt—t1) (Rp n SuPue[O,/t\] ’C(u)>
pM c
201y 0) o) L

(T —t1) + = y(s)[%, ds.
K )+ [ W

+

Therefore, there exists 91 (p) > 0, which is independent of ¢, such that

T
ZM®@®<ﬂMMT—m> (91)

Further, by (90) and (91), we conclude that there exists ¥J2(p) > 0, which is independent of
t1, such that

T
[ )l s < 0260 (92)

t1

By Assumption 3, we get

p(y(t)) < c(L+ ly@)F + @15 + @I ly@)l7). (93)

(91) implies that

T
/mw@w<ﬁm%@—n> (94)

t1

By (91), (92) and Holder ’s inequality, we get

&/

! / /
a—a o a—a

T T o
/mm%ﬁs(/’mwww)<T—n>asqm@na@—m>a, (95)

t1 t1
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and

’

T , 5 T o T o oo
|t < ([ o) ([ ol @)
1 1 L

<[92(2)]% {791< Oiﬁa/>(T—t1)]a;a . (96)

a

Therefore, by (93)—(96), we conclude that there exists ¥ > 0, which is independent of ¢,
such that (89) holds. This completes the proof of Lemma 9.3.1. O

Let € > 0 and n € N. We consider the following equation:

dX"(t) = A@t, X" @)dt + B(t, X" (£))dW (t) + /{ " }G(t,)?”(t),z)ﬁ(dt,dz)
z|<1

T4 (B, + D7 y(t) — y(0)xqn 7y (t)dt,
X"(0) =z, (97)
where {y(t)}e[0,7] is the solution to (86). Note that )N(n(tl) = X(t1). By Theorem 9.1.1
and (87), we know that (97) has a unique solution {)N(’n(t)}te[o,T].

Lemma 9.3.2. There exists 9 > 0, which is independent of e,n,T, M, R,t1, such that

sup {B| s (X0}

neN s€[0,T]

2 T
< (90 +of) + s R O+ [ 4G (O 5] )

Proof of Lemma 9.5.2.

We will obtain the estimation for the solution X by following the argument of [128] and
carefully handling the dependence of constants. By Theorem 7.2.9, we get

X" )% — |2k
- [ |2 X" X ) - 722 %"
+ B, &"(u>)|\iZ<H>]du N / (X" (u), B, X (u))dW ()
(X" (u ,G u,)?n u),2))H N du,dz
+/O/M<U[< (w), G, X" (w), 2)) 1 1N (du, d2)

+ / / (X" () + G, X (), ) — X" (W)l — 20X (), G, X" (), 2)) N (du, d2).
0 J{zl<1} 08)
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Define

() =2 sup " . B X ) )|
Ir( —2;1%[1 //|Z|<1}X w), G(u, X" (u), 2)>g N(du, dz)|,
B0 = 30|, g0 OO0 K0

—I)N( ()l — 20X (w), Glu, X" (), 2))n] N (du, dz)|,

I4(t) := sup
s€[0,t]

/Os ;,%%T] (W{(eBy" + D)7 (y(u) — y(0)), X" (u)) udul.

Then, by (C) and (98), we get

t
suwx<m@+ﬂ/WX<mwm
u€el0,t] 0

<zl + /Ot(C(u) + c|)~("(u)|§{)du + I (t) + Io(t) + I3(t) + La(2). (99)

By the Burkholder-Davis-Gundy inequality and Assumption 3, we get

E[11(t)] < C’EH /t ‘[B(“J?n(u))]*f("(u)y%{du}é]
Cy{{/‘B“X' DI, r%WW@m}ﬂ

< C/{HELEE] !X"(U)I%} }é{iE[/ot[C(u) " cy)”("(u)@l]du] }%

for some constants C’, k > 0. Then,

o "2 t .
E[L(t)] < KE | sup |X (u)ﬁg + (Z’) E[/ [C(u) + | X (u)|12q]du] (100)
| uel0,t] ] K 0

Similarly, we get

_n "2 ¢ o
E[L(t)] < KE | sup |X (u)|% | + (i’) E[/ [C(u) + | X (u)ﬁ{]du] (101)
| uel0,¢] K 0

By Assumption 3, we get

B[t <IE[/ /Z|<1} G, X" (), )ﬁqy(dz)du}
<E[/O [Clu) + | X" (u )|H]du}. (102)
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By (88), we get
oM 1 12 2 T len o
nw< | B + D7 B o) — @+ [ 1% )y
t1 (T_tl)

t1

2 T T
< m(f_tl)[(zﬂ |y(0)|H)2+/t1 |A(u,y(0))|§1du] +/t1 X" (w)|%du.  (103)

Take x = . Thus, by (99)-(103), we obtain that for ¢ > ¢,

E[ sup rif”w)\%{}
u€[0,t]

2 T
< el + o | R+ O + [ 1A (0) |

t
+[2(C)2 +1]T sup |C(t)] +2(2(C")%c + c+ 1) (/ E{ sup |Xn(7“)|fq} du).
te[0,T] 0 r€[0,u]

Therefore, the proof is complete with the aid of Gronwall’s lemma. 0

Lemma 9.3.3. Let T > 0, y(0) € D(A,w) for some w > 2 and n,d € (0,1). Then, there
exist M, R > 0 and t1 € (0,T) such that for any n € N we can find an € € (0,1) satisfying

P(IX"(T) — y(0)|z > 8) <.

Proof of Lemma 9.3.3.
First, note that

(IX"(1) = y(O)l > 8} = {|IX"(T) = y(Dlar + [y(T) = y(O)]u > o}

{
IR @ -yl > § UL -0l > 5} 0w
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For t € [t1,T], by Theorem 7.2.9, (LM) and Assumption 3, we get
X () —y)3 — X" () —y(t) %
= / (20A(u, X" (u) = Alu,y(u), X" (u) — y(w)) + [Blu, X ()3, 41 du
2 Xu— uX ))dW (u uX (u), 2)|%v(dz)du
+/< y(u), B( P + //{|<1} (w), 2) Zv(d2)
" / /{ IR~y + G X @, )l — X ) — 01 )

~n

([ + D)7 = 1(y(u) = y(0), X (u) — y(u)yrdu

< / [(K + ply(u)) + 2¢ + 1DIX" () — y(w)ffy + (Claw) + 2ely () 3p)]du
+ e [ B+ 1) = 1yta) = )

+9 / (X" () = y(u), Blu, X" (u))dW (u))g

~n

¥ / / (X" () = y(u) + Gl X" (), 2) — X" (W) — y()PIN (du,dz).  (105)
t1 J{]z|<1}

Set )
O = (K +2c+ 1T + 9.

Then, by (89), (105) and Gronwall’s lemma, we get
E[IX"(T) - y(T)[3]

a=a ~n T
< eV Th) e {IE[|X EDIHL %" o] + (T — 1) sup |C(t)\+2cE[/t Iy(u)l?qdu}
1

te[0,T]
M? T -1 -1 2
+ 3 E [[(eB,” +I)7" — IN(y(u) — y(0))[fdu| ¢ (106)
(T - tl) t1
Choose a sufficiently large R such that
2 5277
E[IX ) ELxem=ml < 55 - (107)

Then, by (87), we can choose a sufficiently large M and hence sufficiently large m such that

W)~ O < e ™R+ |y(O)])? + (T(“‘”) (f ' Aol

Qv

mwo

< - (108)
Next, we choose a t1; which is sufficiently close to T" such that

afa/ 2
VT=t) o 9 (T —+t)) sup |C(t)| < ‘L”, (109)
te[0,77] 32
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and by (91),
T 2
0°1
E 4d —, 110
[ ] < 5 (110
With R, M, t; chosen as above, note that for any n € N and ¢ € [t1,T],

(B + )71 = 1(y(#) — y(O)|a < 2|y(t) — yola,
lim [[(eB," + 1)~ = I](y(t) — y(0))|m = im leB, (Bt + 1) (y(t) — y(0)|u = 0.

e—0t

By (88), we find that |y(t) —y(0)|% € L*([t1, T] x ). Then, by the dominated convergence
theorem, we get

T
i 5| [ e84 7 = 10(0) — y(O) By | - .

e—0t t1

Thus, for any n € N, there exists € > 0 such that

Mg /T (B + 1)~ = I(y(s) — y(0)|7ds | < ] (111)
T—-u)2 ), )yl 32
Therefore, the proof is complete by (104) and (106)—(111). O

The remaining argument is the same as [128, Theorem 1.1], but for completeness, we
include the proof here.
Let 0<s<T,ye H and 0 € (0,1). We will show that

P(X(T) ¢ Bu(y,0)|X(s) =x) <1, VreH,

where By (y,0) := {z € H : |z — y| < d}. To simplify notation, we only give the proof for
the case that s = 0. The proof for the case that s > 0 is completely similar.

Let {X(t)}+=0 be the unique solution of (62) with X (0) = z and A(t) =i. By (D), there
exists y(0) € D(Ap) such that |y — y(0)|g < % Let n € (0,1). By Lemmas 9.3.2 and 9.3.3,
there exists ng > |x| such that for any n > ny we can find an € € (0, 1) satisfying

1 ~ > 1)
e s X0k | <1 2(IX'@) -0l >3) <2
n* meN | te[0,1] 2 2 2

Then, we have that

P(\S{”(T) —yly > 5) < g (112)

Define 7, := inf{t : | X (t)|g = n}. Then,

~n E| su X" ()2
P(7, <T) < IP’( sup | X (¢)|g = n> < [ ptE[O’T]2| ol < i
te[0,T] n 2
which together with (112) implies that
B ({rn < THUUX"(@) = olur > 8}) <. (113)
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Define (abuse of notation)
E7Y(t,v) := (B(t,0)[B(t,0)]") ' B(t,v), veV.
For v € V with |u|y < n, we have B(t,u)[B(t,u)]* = B2. Hence,

[l

|E7Ht o) (eByt + 1) hly < 1By (B + DAl < 2

for all h e H and v € V with |u|g < n. Then, (87), we get

T ATy ~n
/ B (s, X () (B, + D)7 y(s) — y(0)][7ds

t1

<L T 19(5) — y(0) s < o
Define
W0 = w0 - 7 [ B0l BBl B + 17 00— 0)ds
and
ROy = e { M [T D7 00 - 0, B X )W 6
s [ X OB D o)~ w0 s

Then, {W(t)}te[O,T] is a cylindrical Wiener process under the probability measure Q :=

~

R(T)P, which is equivalent to P. By (113), we get

Q ({7 < X" — 9l > 5}) < 1. (114)
Define
7 = inf{t : | X (t)|g = n}.
By Girsanov’s theorem, we know that the joint distribution of ({X ()1, ~7}se[o,r], 7,) under
[P is the same as that of ({)N(n(t)l;n>T}te[O7T],?n) under Q. Therefore, by (114), we get

P(X(T) —ylu > 0) <P ({r, < T} J{ri > T.1X(T) = ylus > 6})
—Q ({7 < THJtFa > TIX" (1) — ylu > 8})
<Q(fF < T JUX"(@) ~ vlar > 3})
< 1.

The proof is complete when there is no regime-switching.
For the general case, we follow the argument in [51, Theorem 3]. For (x,i) € H x N, let

X@(t) be defined by Equation (68). We also define X (t) to be the killing process with

generator .%; + ¢;;. The idea is that using (85), the process X @ (t), and assumption (Q1),
the right-hand-side of (85) is positive if B is a non-empty open subset in H, which implies
the irreducibility. This completes the proof of Theorem 8.0.3.
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9.4 Proof of Theorem 8.0.5

Claims (i) and (i) follow from Theorems 8.0.1, 8.0.2 and 8.0.3. To prove claims (i)
and (iv), we are going to apply [52, Theorem 3.13], which also holds with the state space
R™ replaced by H x N.

Let (X (t),A(t)) be the unique solution to the hybrid system (62) and (64) with initial
value (z,7) € H x N. For g e C1%([0,0) x H x N;R), define

dg(tw%"i) = -’g/ﬂig('v '7i)(t7x) + Z[g(t>$aj) - g(tvxvi)]%j(x)a
JeN

where % is defined by (84). Define V(t,x,i) = |z|% + f(i), where f is given by condition
(Q2). Then,

AV(t, 1) = 2A(t2,0), 2) + | Bt )2, ) + /{ GRS

+ /{| - [1J(t, 2,4, 2) |} + 22, J(t, 2,4, 2))u | v(dz) + Z[f(j) — F()]aij (@).
> jeN
Thus, by conditions (C), (66) and (Q2), we obtain that

lim inf V(¢,y,i) = o,

|y‘H+i—>OO t=0

lim sup IV (t,y,i) = —0, (115)

n—00 lyly +i>n,ieN,t=0

sup ’Q{V(ta Y, 7’) < 0.
yeV,ieN;1=0

For n € N, define the stopping time T;, by
T, :=inf{t > 0: |X(t)|y v A(t) = n}.
For t > 0, by [53, Theorem 2], we get
E[V(t A Tn, X(t A Ty), At A T)))]
— E[V(0, X(0), A(0))] + E[/OMT” V(u, X (1), A(u))du]. (116)

Define
A, = — sup GV(t,y, k).

[ylv +k>n,t=0
By (115), we get lingo A, = 0.
n—
We have

JZ/V(U, X(U), A(U)) < _1{|X(u)\v+k2n}An + sup JZ{V(U, Y, k)

lylv +k<n,u=0

Then, there exist positive constants €; and es such that for sufficiently large n,

tnTn €1t +¢€
E{A 1{X(u)|v+k>n}du} < 1A 2. (117)
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Letting n — o0 in (117), we get

1 (T
lim lim sup T/ P(0, (x,7);u, By, )du = 0, (118)
0

n=%0 T .0

where BS = {(y,k) € H x N: |y|ly + k = n}.
By (116), we find that there exists A > 0 such that

E[V(s, X (s),A(s))] < As+V(0,z,7), s>0,

which, together with Chebyshev’s inequality, implies that

As +V(0,z,1)
inf |y, =n, ien >0 V(E, Y, 1)

P(0, (2,4); s, B) <

Hence, there exists a sequence of positive integers v, 1 o such that

lim { sup P(0, (z,1); s,BfL)} =0, (119)
(,4)

n—o0 eByxn(m), s€(0,0)

where Brun(t) :=={(y,k) € H x N : |y|lg + k < ¢} for ¢« > 0.
By the assumption that functions A, B, H, J are all ¢-periodic with respect to ¢, we find
that the transition semigroup {P;;} is ¢-periodic, i.e.,

P(s,(z,i);t,A) = P(s+ ¢, (z,i);t+ 0, A), VO<s<t,we HieN Ae B(H xN). (120)

Since the embedding of V' into H is compact, combining the periodicity and the strong
Feller property of {Ps;} with (118), (119) and following the argument of [68, Theorem 3.2
and Remark 3.1], we conclude that {(X (), A(t))}:>0 has an ¢-periodic measure py.

By Theorems 8.0.2 and 8.0.3, we know that {Ps;} is strong Feller and irreducible. Then,
following the same argument of [52, Lemma 3.12], we can show that {Ps} is regular. That
is, for any 0 < s < t, the transition probability measures P(s, (z,i);t,-) are mutually
equivalent for all (z,7) € H x N. Further, by virtue of (120), we conclude that there exists
a unique family of probability measures {n;} on Z(H x N) that is ¢-periodic with respect
to {Ps.}, ie.,

Ns(A) = / P(s,z;s + 0, A)ns(dz), Vs=0,Ae B(H xN).
H

Hence, we obtain the uniqueness of periodic measures, namely, pg := 1. Finally, following
the same argument of the proof of [52, Theorem 3.13|, we obtain (67). This finishes the
proof.
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Chapter 10

Example

This chapter provides an example explaining how Theorem 8.0.5 can be applied. We
consider stochastic fractional porous medium equations. We first explain how to choose the
coefficients A, B, G, J and the Gelfand triple, and then we verify all conditions of Theorem
8.0.5. This section is also based on [73].

Equations:
The equations read

dX (1) = A(t, X (1), A(t))dt + B(t, X(t), A(t))dW (t)

+ / G(t, X (1), A(t), 2) N (dt, dz)
{l1<1}

+ / J(t, X (), A(t), 2) N (dt, dz)
=1}

and
¢ij(z)A + o(A), if 1 # 7,

P(A(t + A) = jIA(t) =4, X(t) =) = {1 + i (2)A + o(A) ifi=j

where W is a (cylindrical) I-Wiener process on H and N is a Poisson random measure
on a real Banach space (Z, %(Z)) with intensity measure v. We assume that W and
N are independent.

Choices of H and V:
Let d > 1 and O c R? be a bounded open set with smooth boundary. For v > 0, let A
be the Dirichlet Laplacian on O and set £ = —(—=A)7. Let Ay <Ay <--- <Ay < -+
be the eigenvalues of —A and {e;} the corresponding unit eigenvectors. The operator
£ is given by £(e;) := —)\j-ej for j € N. Let r > 1. Denote by du the normalized
Lebesgue measure on O and define

V=L"(0idp), H=H"(0;dp),

where H~7(O;du) is the completion of L?(O;du) with respect to the norm for f e
L*(O; )

1

Fli = ( /. |<—A>%f\2du)2. (121)
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Note that the embedding of V into H is compact. Here H 7(O;dpu) is called the
generalized Sobolev space (do not confuse with Hardy spaces introduced in Part I).

Choice of g;;:
Let {¢;;} be measurable functions defined on H such that one of the following condi-
tions is satisfied:

(a) There exist m € N and M > 0 such that for all z € H,

Qij(x) =0 if [i —j| > m,
qij(z) € (0,M] if0<li—j|<m,

and

inf gij(z) > sup qij ().

xeH i>m,je[i—m,i) zeH,i>m,je(ii+m)]

(b)
0< inf {j"Mgq;(x)} < sup {j'"gq;(z)} <o for some & > 0.
xzeH, j#i zeH, j#i

Then, conditions (Q0), (Q1) and (Q2) (setting f(i) = i under condition (a), and
f(i) = i%? under condition (b)) hold (cf. [51, Examples 1 and 2]).

Choice of A:
Let ¢ > 0 and g be a measurable function on [0,0) x N such that g(-,7) € L*[0, c0)
is {-periodic for each i € N and supsc(g ) jen [9(t,7)| < 00. For t € [0,%0), s € R and
x €V, define
U(s) = |s|" s, ®(t,s,i) = g(t,i)s,

and
A(t,z,i) = k(t,9)L(V(2)) + P(t, z,1),

where (-, 1) is (-periodic for each i € N and k; < k(t,7) < ko for all t € [0,0), i € N
and some positive constants k1 < ko. Then, there exists C, > 0 such that for all
te[0,0), 1,22 € V and i € N,

(A(t,x1,1) — A(t,x2,1), 21 — x2) < —Cri(t,i)|z) — $2|7‘}+1 +g(t i)z — :U2|12L]
(122)

Note that, for @w > 2, there exists ¢ > 0 such that

|A(s,2,9) [T < 1o (|6(s,0)[T|1S(0(2))[Fx + |®(s,2,0)[F+), Vs=0,z€V,ieN.

Choice of B:
Suppose % < s < 3. Define By € Lo(H) by

Boej = j_sej, jE N.
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Let b > 0 and {b;}jeny be measurable functions defined on [0,00) x H x N satisfying
the following conditions:

bij(t,x,i) = bj(t +4,x,i), te[0,0),xe HieN,jeN,
|bj(t7$ai) - bj(tvyai)| < b|$ _y|H7 le [O,E),x,y € H)Z € N)J € Na

sup bj(t,z,7)| < b,
t€[0,¢),ze H ieN,jeN
inf bj(t,z,i) >0, VneN.

te[0,0),|z| i <n,ieN,jeN
Define
B(t,x,i)e; = bj(t,x,i)j %ej, te[0,0),xe H,ieN,jeN.
As an explicit example, similar to [128, Example 4.6], we may let
b (t, 1)

2y ’
7|

bi(t,x, 1) :=
! (x, €j>L2(0) |

1+J57

where ' is a measurable function on [0, 00) x N such that b/(-,4) is ¢-periodic for each

ieNand 0 < inf V(t,9)< sup V(i) < oo.
te[0,£) ieN te[0,0),ieN

Choices of G and J:
Suppose that ¢ > 0, K > 0, and G,J : [0,0) x V x N x Z — H are measurable
functions satisfying the following conditions:

e foranyt >0,x€V,ieNand ze€ Z, we have G(t,z,i,2) = G(t + {,x,i,z) and
J(t,zyi,z) = J(t +,x,i,2);

e foranyt >0, z1,29€ V,ieNand z € Z,
/ |G(t, 21,1, 2) — G(t, x9,1, 2)|5v(dz) < K|z — 22|%; (123)
{l=]<1}
o foranyt>0,zeV,ieNand z€ Z,
|16 2 ) < e(1 + Joff) (124)
{lz]<1}
and

/ (i, 2) Z(d2) < c. (125)
{l=l1)

We now verify all the conditions of Theorem 8.0.5.

(V,H,V*) is a Gelfand triple with compact embedding:
Here we define H7(O) to be the set of all f € L?(O;u) such that \fﬁﬁ(o) =
Y NI ez = fo|(—A)%f|2d,u < o for v > 0. Without further men-
tioning, all integrals are with respect to pu. From the definition, H°(O) = L?(0).

Moreover, the operator (—A)?, which is originally defined on Ci°(O), can be extended
to a bounded operator from H7(O) to H~7(0O).
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Since (—A)Y : HY(O) — (HY(0O))*, see [4, Section 2.1], and satisfies

(A u vy = [ (A u()ela)n(da) < fular ol
O
Hence, we have

(=A)u, (=A) )0y = (w, V)
Thus, following [77, Lemma 4.1.12], we have (—A)™7 : (H7)* — H” and
Cu, vy yx = (=) Tu, (=A) ") Ey.
Therefore, we can identify H~7 and H” by (—A)7, see that | - |[g— is the same as

(121) and the space H~7 is the | - | —~-closure of L2.
Next, we find that C°(O) = H? since for arbitrary g € L*(0),

v

Y12 I_|X]—1
FL (A 33105 < [ flozea? 2 gl < oo,

X
2

X
[((=A)2 fog2] = (=)
Therefore, we have the inclusions

CE(0) c H'(0) c L*(0) c L'*4(0)

for any 0 < ¢ < 1. Thus, we have Hlee _ plte pecause C’T%’Ol"LHE = L'*¢; and
this implies for any r > 1

L) c H(O); L) = B(0)

_x
and |v]g— (o) < A ?|v|p14r (o). Hence, if V = L'*7(O) and H = H™7(0) = H?(0),
then (V, H,V*) is a Gelfand triple.
Finally, the operator (—A)Y : L7 ' (0) — V*. Using the argument in [77, Lemma
4.1.13], we have |(=A)Yv|y* = [v|14,-1. Thus, we have

X
[olvs = [(=8) 0] 11 < [(A) 0]z < Ay o] p1er o)

_x
In terms of V' and H, we have |v|y+ < |v|g < A, ?|v|y for any ve V.

By Rellich-Kondrashov theorem, the embedding H?(Q) < L'*¢(0) is compact. There-
fore, the embedding L!*"(O) ¢ H~7(0) is compact.

(Q0), (Q1) and (Q2) hold:
We refer to [51, Examples 1 and 2].

(HC) holds:
Note that A(t,v; + sve,i) = k(t,1)L(V(vy + sv2)) + P(¢t,v1 + sva,i). The second
term is continuous in s as it is linear in the second variable. The first term is also
continuous as £ is a linear operator and the function ¥(s) is continuous. Therefore,
(A(t,v1 + svg,1),v) is continuous in s.
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(C) holds:
First, for z e V

2(A(t, i), &) = 2(k(t, ) L(¥(x)), x) + 29(t, 1) z[3,
= —2/{(t z)|x|7url + 29(t,i)|x|%/

<=2l 12 sup gt i)y
te[0,€),ieN

For the coefficient B,

0

|B(t 2, )17,y = Z |B(t, z,i)ej|% < Z (t,2,1)]%5 2 < bC,
Jj=1 j=1

where we have used the fact that 2s > 1. Finally, from (124), we can conclude that

A, 7,1), 3 + | Bt 2,1) |2, ) + /{ NI
z|I<

< c+ Csb— 2k Crlz[iHh + +(2 sup |g(t,i)\+c)|x|§{.

t€[0,¢) 5N

(G1) holds:
T r—1 - T T r—1
At i)l < 2t (|m<t,z>s<w<m>>1v: gt )

—1 —1 —1 . 14+7r—
<o (Wl o O s o) elt )
te[0,),ieN

<2 (el O sup ) el )
te[0,£),ieN

< Aryk2’9|x|%/+r + Brvg’

_ — —1
where the constants A, g, , = 2117 1[14:%” gt C(SUPte[o,e),ieN |g(t,i)|)1+r ] and

_ ~1
B4 =217 1C’(suplte[o 0),ieN |g(t,z')\)1+r . We have used the fact that |z|y+ < Clz|y,

and 2V < (2L 4 1).

(G2) and (Gp) hold:
This follows from the computation above. Moreover, when 5 = 0, Condition (G/3)
reduces to Condition (G2).

(LipB) holds:

124



Note that for B, we have
HB(t7 L1, 7’) - B(tv T2, Z)H%Z(H)

|[B(t, z1,4) — B(t,x2,1)]e;|H

I
8

<.
Il
_

j_zs’bj(tv I, Z) - bj(ta x2, ’L)IQ

/A
ANgE

<
Il
_

x1 — 2|3,

b’l’l — 332|12qj_25 < CSJ,

VA
18

<.
Il
Jut

where we have used the fact that 2s > 1.

(N) holds:
Take

B, := inf (t,x,1) | By, .
<te[0,€) in bj(txz)) 0, n€N

|z i <n,ieN,jeN

Then, for all j,k e N,
(B(t,z,i)[B(t, =, i)]*(ej), ekyH = b;(t,x, )by (t, z, i)<BQ€j, Boegyg = <BZ€]‘, ekVH-
Hence, B(t,z,i)[B(t,z,i)]* = B2.

(M) holds:
By (122) and [118, Theorem 2.4.1], we get

<A(t7 xy, 2) - A(t) x2, Z)v 1 — iL‘2>

< —k(t, ) Crlrr — 22| + g(t,3) |21 — 22|

< —r(t,0)Cr| By (1 — ma) 3yl — ol A + gt 0) | — ol
Finally, Condition (M) holds for G from (123).

(D) holds:
Define D(A, w) := C§° x N. Then, we have CT?OHH = H, and for (z,i) € D(A,w) and
t = 0, we have

t
/ |A(s, z,1)|Fds < 0.
0

Thus, Condition (D) holds.

(66) holds:
Since v =1 + 1 > 2, |z]% < Clz[3, and the fact that limg_,o, —0d" ™! + CKd* = —oo,
we can deduce (66) holds with aid of (125).

Therefore, all assertions of Theorem 8.0.5 hold.
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