
Investigating Impacts of Wood Harvest on the Canadian Boreal Forest Carbon Store

Graham Clyne

A Thesis
In the Department of

Geography

Presented in Partial Fulfillment of the Requirements
For the Degree of

Master of Geography
at Concordia University

Montréal, Québec, Canada

June 2023

©Graham Clyne, 2023



ii



iii

Abstract
Investigating Impacts of Wood Harvest on the Canadian Boreal Forest Carbon

Store
by Graham CLYNE

Earth System Models provide important insight into global climate dynamics. These
models often require large computational resources to run, inhibiting accessibility
and exploration of a wide range of climate-related scenarios. Machine learning can
help by creating an emulation of an aspect of an ESM to enable less expensive sce-
nario simulation. I use a Long Short-Term Memory model to emulate forest carbon
dynamics in the Community Earth System Model 2 in order to understand the im-
pact of wood harvest on carbon stocks in the Canadian Boreal forest. To validate the
emulation, I use available external datasets that explicitly quantify carbon stocks in
soil and above-ground biomass. The emulation can predict CESM2 several carbon
stock variables accurately (0.89 R2 Score) and can be explained with important cli-
matic relationships. I then create land-cover scenarios to simulate no wood harvest
for the years 1984-2019. These scenarios show that 584 Mt C were lost to wood har-
vest over this period, with an additional 172 Mt C attributed to regrowth from wood
harvest over the same period. The LSTM model I use in this study provides a more
flexible approach to investigating land-use change impacts on carbon stocks by har-
nessing the power of both machine learning models and process-based ESMs. This
approach can help understand land-use change scenarios that are not considered in
large inter-model comparison efforts.
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Chapter 1

Introduction

Over the past several decades, the IPCC has consistently reported a sharp and con-
sistent increase in CO2 concentration in the atmosphere, entirely attributed to hu-
man activities (Arias et al., 2021). Increased atmospheric CO2 concentrations cause
increased temperatures that create a wide variety of climatic impacts, such as in-
creased frequency of natural disasters and increased sea level (Arias et al., 2021). As
per the Paris Agreement, the global community has agreed to attempt to keep the
temperature increase to between 1.5°C and well below 2°C above pre-industrial lev-
els (Arias et al., 2021). By limiting temperature increases to this level, it is thought
that many of the negative effects of climate change will be manageable (Arias et al.,
2021). The temperature increase has an almost linear relationship to cumulative
CO2 emissions and it is, therefore, important to limit total CO2 emissions to reach
the Paris Agreement’s targets (Matthews et al., 2009).

Forests are vital ecosystems that provide numerous benefits, including carbon
sequestration and storage. Modelling forest carbon dynamics is a crucial tool for
predicting the future of forests and their role in mitigating climate change. Land
Use and Land-Cover Change (LULCC) are anthropogenic actions taken to alter land
cover and have a large impact on forest carbon dynamics. LULCC contribute signif-
icantly to the uncertainties in quantifying forest carbon stocks (Friedlingstein et al.,
2022). By quantifying wood harvest impacts on carbon stores via several different
methods, this uncertainty can be reduced. The IPCC encourages consideration of
differences in methods to understand better net emissions from land sectors (Joeri
Rogelj et al., 2022).

Nature-based solutions (NbS) are tools that leverage natural solutions to climate
change mitigation (Griscom et al., 2017). Forest management is one such tool, and by
further understanding wood harvest impact this NbS can be implemented more ef-
fectively. Canada’s forest is a large carbon sink due to the large amount of vegetation
(Kurz et al., 2018). This is a good opportunity to utilize NbS, as low-cost strategies
can be implemented with high impacts (Griscom et al., 2017). A significant amount
of carbon is lost due to wood harvest each year, and with further understanding
mitigation efforts can be more effectively implemented (Kurz et al., 2018).

The aim of this thesis is to develop and apply a machine learning model that
accurately captures the dynamics of forest carbon storage as represented by a com-
prehensive ESM. Specifically, this thesis will focus on developing an ML model that
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represents forest carbon dynamics to be able to understand impacts of wood har-
vest on forest carbon stocks in the Canadian Boreal forest. This approach will en-
able knowledge from large climate models to be applied to climate-related scenarios
without having to spend the computational resources often required to use a large
climate model.

In this thesis, I set out to advance our understanding of the impact of wood
harvest on forest carbon and contribute to the development of more effective forest
management and climate change mitigation strategies. By combining process-based
climate models with learning algorithms, I look to make a meaningful contribution
to the ongoing efforts to mitigate climate change.
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Chapter 2

Literature Review

2.1 Impacts of LULCC and Associated Uncertainties

Fossil fuels and Land Use and Land-Cover Change (LULCC) are the two most sig-
nificant sources of anthropogenic CO2 emissions (Canadell et al., 2021). LULCC is
any practice that changes land cover, including creating or abandoning cropland,
afforestation, logging, and urbanization (Friedlingstein et al., 2022). Disturbance
events release carbon back into the atmosphere, decreasing the carbon storage of
the affected forest (Anderegg et al., 2020). Reforestation of grazing areas in previ-
ously forested areas and further avoidance of deforestation, both types of LULCC,
are two practices with a large potential for climate change mitigation (Griscom et al.,
2017). Even though there is potential to increase carbon sequestration through more
carbon-conscious forest management, natural climate solutions must be used in tan-
dem with solutions that reduce fossil fuel emissions to net zero as it is not guaran-
teed that the carbon sequestered from natural climate solutions will be permanent
(Matthews et al., 2022).

Determining particular effects of LULCC, and wood harvest in particular, on car-
bon stores has many uncertainties. Intuitively, both Wang et al. and a 2022 study of
British Columbia forests conducted with inventory data and carbon models found
that logging had a negative effect on carbon stocks (DellaSala et al. 2022, Wang et al.
2021). However, how a forest is defined can play a large role in determining the
different effects of LULCC. The Food and Agriculture Organization (FAO), a large
source for inventory-based studies (which are also used in the Global Carbon Bud-
get analysis), assembles over 90% of its data from countries where reports are incon-
sistent in method, scope and definition (MacDicken, 2015). The FAO also defines
deforestation as the removal of trees where no regrowth occurs, but it is not consid-
ered deforestation if the forest is expected to grow back with or without silviculture
(Chazdon et al., 2016). This definition could be misleading when trying to under-
stand climatic impacts, as rates of carbon sequestration vary over the life of a tree
(Chazdon et al., 2016). These definitions can also undervalue adjacent processes to
tree growth. Researchers found that carbon content in soil decreased after a harvest
event for several decades until carbon sequestration from regrowth outweighed car-
bon loss from decomposition (Johnson et al., 2010).
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The 2022 Global Carbon Budget, the most well-known global effort to quantify
yearly anthropogenic carbon emissions and natural carbon exchange with the land
and ocean carbon systems, assigns high uncertainty (determined by the standard
deviation of the ensemble of Dynamic Global Vegetation Models, process-based
models that simulate vegetation dynamics) to the carbon flux of the terrestrial land
sink and LULCC emissions (Friedlingstein et al., 2022). Pongratz et al. concluded
that differences in approaches to modeling terrestrial carbon stores and LULCC -
setup of model parameters, different underlying LULCC data sources, and different
complexity of LULCC representation in models - is a major source of uncertainty
for the Global Carbon Budget (Pongratz et al., 2021). For example, both the Global
Carbon Budget and Pan et al. found over 50% uncertainty in the emissions from
global land-use change from 1990-2000 (4.8GtC +/- 2.6 compared with 5.5GtC +/-
2.6, Friedlingstein et al. 2022, Pan et al. 2011).

2.2 Afforestation and Nature-Based Solutions

Nature-based Solutions (NbS) have been recently highlighted as tools that can pro-
vide potential mitigation for the impacts of future climate change (Griscom et al.,
2017). Forest management is one such method of NbS, and is one of the most
promising methods to increase carbon sequestration in Canadian forests (Wang et al.,
2021). Afforestation, the practice of creating forests where there was no forest,
would generate an increased carbon sequestration associated with the increased
amount of forests. While the effect of afforestation on the carbon cycle is some-
what clear (i.e., promotes carbon uptake), the effect of afforestation on global mean
temperature is uncertain and locally specific. For instance, increasing forest cover
reduces surface albedo and can cause regional warming which offsets the climate
benefit of carbon sequestration (Canadell et al. 2021, Pongratz et al. 2021). Refor-
estation is a similar process to afforestation, but instead creates forest where there
was previously forest (Pongratz et al., 2021). Pongratz et al. identify that further
investigation on the effects of particular LULCC practices on the climate is needed,
noting that this is becoming more feasible as datasets that distinguish LULCC prac-
tices are more readily available (Pongratz et al., 2021).

2.3 Canada’s Forests and Carbon Stock Estimation

Being able to approximate carbon storage accurately is crucial to understanding the
historical and future impacts of wood harvest. Estimations of the terrestrial car-
bon flux in the 2022 GCB includes several Dynamic Global Vegetation Models as
well as bookkeeping methods (a tally of carbon emissions and sequestrations from
a historical base level). The terrestrial carbon flux has two components that are in-
fluenced by human factors: the terrestrial land sink (the portion of anthropogenic
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CO2 emissions being sequestered by the land biosphere), and land-use change emis-
sions. The terrestrial land sink is composed of elements that contribute to increased
land carbon sequestration in response to anthropogenic influence on the carbon cy-
cle. Depending on the region, these could include a longer growing season and
CO2 fertilization – the enhancement of photosynthesis that results from elevated
atmospheric CO2 concentrations (Friedlingstein et al., 2022). The land-use change
emissions are determined by human-induced factors, such as logging, agriculture
and deforestation (Friedlingstein et al., 2022). The GCB does not explicitly quan-
tify the effects of individual LULCC, instead aggregating all land-use practices into
one group (Friedlingstein et al., 2022). This aggregation provides a yearly estimate
of the net global terrestrial carbon flux, although the GCB does not provide more
regionally granular data (Friedlingstein et al., 2022).

Canada’s forests are deemed “managed” or “unmanaged” based on the occur-
rence of forestry activities that include wood harvest and silviculture practices (Canada
2023,Kurz et al. 2018). Canada’s managed forest is 225.52 million hectares and spans
all provinces and territories, with the exception of Nunavut (Canada, 2023). The
managed forest designation is used for GHG inventories for the National Inven-
tory Report and submission to the United Nations Framework Convention on Cli-
mate Change (Canada, 2023). Canada’s forest is also sometimes divided by eco-
zone. Canada is divided into several ecozones that represent different ecological
areas (Wiken et al., 1996). Each ecozone designates an area of cohesive biophysical
traits and biome (Wiken et al., 1996). Canada’s managed forest does not include
several of Canada’s ecozones, as there is no harvest activity in several of the biomes
due to a lack of forest cover (Canada, 2023).

Several studies investigate above-ground biomass (AGB, biomass stored in the
region above-ground, i.e. stems, bark, leaves etc. Distinct from below-ground
biomass) and wood harvest impacts in Canada’s forests using some combination
of the study areas described above. Canada uses the Carbon Budget Model of
the Canadian Forest Sector (CBM-CFS3) to model the forest carbon dynamics for
Canada’s managed forest (Kurz et al. 2018,Canada 2023). This is a yield data driven
regional climate model that focuses on forest carbon dynamics and can represent
anthropogenic effects on forests (Kurz et al., 2018).

Kurz et al. found that forest that was affected by anthropogenic activities after
the year 1990 was an estimated net sink of between 134-163 Mt CO2 per year from
1990 to 2016 (Kurz et al., 2018). This includes activities such as clear cutting, partial
harvest and burning of forest residues and reforestation (Kurz et al., 2018). The
CBM-CFS3 has been validated externally using ground plot data from the National
Forest Inventory, and found high agreement with observations (Kurz et al., 2013).

As more observational data becomes available, approaches incorporating this
data are becoming more common (Pongratz et al., 2021). Eddy-covariance tow-
ers have also been very important for quantifying local carbon exchanges between
land and the atmosphere, but have difficulty when trying to calculate carbon stocks
of larger areas (Schulze et al., 2021). Another study that quantifies AGB in all of
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Canada’s ecozones with a combination of LiDAR and satellite imagery found that
1.73 Gt C of above-ground biomass carbon were lost due to wood harvest between
the years 1984 and 2016 (Wulder et al., 2020). This is approximately 50 Mt C per
year over the period, which is significantly lower than the estimate in Kurz et al.
This study, unlike Kurz et al., looks at both the managed and unmanaged forests of
Canada, although by definition, the vast majority of wood harvest activity occurs in
the managed forest (Wulder et al., 2020). Wulder et al. employ several land-cover
datasets provided by the National Forest Inventory that have been recently devel-
oped and are not employed in Kurz et al. (Wulder et al. 2020, Kurz et al. 2018).
Wulder only considers AGB and uses data-driven approaches, opposed to Kurz et
al. who account for the whole forest carbon store (AGB, BGB, DOM etc.) using a
yield data-driven model (Kurz et al., 2018). Pan et al. compose a global image of
forest carbon and find that for the years 1990-2007, 22 +/- 7 Mt C per year were
attributed to wood harvest in Canada (Pan et al., 2011). These numbers are based
on simulations from the CBM-CFS3 (Pan et al., 2011). There is clearly significant
disparity in estimations of impact on forest carbon stocks across studies.

Significant differences are also found in comparisons in total AGB. Wang et al.
combines LiDAR data with Landsat satellite imagery to estimate above-ground biomass
(AGB) in North-Western North America (Wang et al., 2021). Wang et al. find for the
year 2014, the total AGB in the Boreal Plain (an ecozone in central Canada) was 1763
Mt C. For the same area, Wulder et al. find the total AGB to be 3324 Mt C (Wulder
et al., 2020).

There is strong agreement from this myriad of methods that the canadian boreal
carbon store has increased over the last few decades (Pan et al. 2011,Tagesson et al.
2020,Friedlingstein et al. 2022,Wang et al. 2021). The cause for this increase is still in
debate, but its largest driver is widely attributed to CO2 fertilization (Tagesson et al.,
2020). Initial carbon pool size, nitrogen deposition and climate are also important
factors, but the size of the impact from these factors is variable depending on the
model (Huntzinger et al., 2017). The Canadian boreal forest was the largest global
terrestrial carbon sink from 1992-2015, and the contribution of the Canadian boreal
forest to the global carbon sink increased over that period (Tagesson et al., 2020).

Although there is agreement that the boreal carbon store has increased, the quan-
tity of the carbon store and rate of increase is still uncertain. Wang et al. found
that the Coupled Model Intercomparison Project 6 (CMIP6) models (the ensemble of
models used in the GCB) routinely over-estimated AGB and net biome productivity
(the net carbon accumulation of an ecosystem) when compared to the observational
method employed (Wang et al., 2021). The source of this discrepancy is unclear.
Wang et al. use a scaling relationship to convert total vegetation carbon from cli-
mate models to AGB to be able to compare observational results (Wang et al., 2021).
Using AGB to understand the total carbon vegetation in an ecosystem, as in Wang
et al., can potentially overlook other forest carbon dynamics. When carbon alloca-
tion to AGB is compared to net ecosystem productivity (NEP, the same as net biome
productivity), the carbon allocation remains stable while the NEP is highly variable
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(Pappas et al., 2020). While this may explain some of the discrepancies outlined in
the above studies, further study is needed to reduce uncertainty.

2.4 Climate Models and Machine Learning

To understand the past and future climate, numerical models are used (Arias et al.,
2021). Climate models that are based on mathematical equations that represent
physical processes are known as process-based models (Danabasoglu et al., 2020).
The CBM-CFS3 used in Kurz et al. contains elements that are process-based, such
as dead organic matter (DOM - dead fall, slash etc.), but is predominantly a yield
data driven climate model (Kurz et al., 2009). Yield data driven models take in-
put on wood volume derived from stand age and type, as well as spatially explicit
maps of land-use change and return variables that describe carbon dynamics (Kurz
et al., 2009). Instead of attempting to recreate physical processes, the CBM-CFS3 pri-
marly relies on yield curves over time to describe changing forest dynamics (Kurz
et al., 2009). Numerical models (both process-based and yield-curve models) can
be both simple and complex representations of the climate. For example, the FAIR
model only models the atmospheric concentration and effective radiative forcing of
greenhouse gases (Smith et al., 2018). The model is tuned to approximate future pro-
jections of larger models and is used to model thousands of scenarios (Smith et al.,
2018). On the other hand, the Community Earth System Model 2 represents a large
number of climatic processes in Earth’s climatic system (Danabasoglu et al., 2020).
The latter requires significant computational resources to run, and is often run with
large computer clusters (Watson-Parris, 2020).

As a way to circumvent this large computational cost, climate model emulations,
also known as surrogate models, have been used (Watson-Parris, 2020). The Finite
Amplitude Impulse Response model is considered a climate model emulation, as it
attempts to reproduce results used in more complex climate models (Smith et al.,
2018). Recently, machine learning has been used as a tool to complement process-
based climate models (Watson-Parris, 2020). Climate models have many parame-
ters that represent different physical processes. For example, the Community Land
Model 5 (the land component of the CESM2) has a parameter that represents the
dimension of leaves in the direction of windflow (Dagon et al. 2020,Lawrence et al.
2019). This parameter can be tuned to best match historical observations, and ma-
chine learning can aid in finding the best value by learning the relationships in the
climate model and permuting many different parameter values (Dagon et al., 2020).
With this emulation, they were able to quickly run many simulations of the model
using different values of parameters to find optimal values that best fit observations
(Dagon et al., 2020). These optimal values were then used in the climate models
to help future predictions. Machine learning can also help in creating new param-
eterizations for processes not fully understood, or processes that resolve at a res-
olution smaller than the resolution of the climate model (Rasp et al., 2018). ML is
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also frequently used for down scaling resolution of climate models to provide re-
gional climate predictions (Doury et al., 2022). Doury et al. train a neural network
(a machine learning algorithm that optimizes a function using gradient descent)
with several climatic variables from a regional climate model (Doury et al., 2022).
Once the model is trained, they apply it to a global climate model with much lower
resolution but wider spatial coverage. With this model, they are able to get a finer
resolution of climate without having to run a process-based climate model at a finer
resolution (Doury et al., 2022).

There is precedent for incorporating machine learning techniques to work with
both data from climate models and real-world observations. In both Doury et al.
and Dagon et al., only climate model output is used. Machine learning can learn an
approximation of the processes behaviour through observed data, and couple this
approximation to a climate model (Rasp et al., 2018). One study extended prediction
lead times of El Niño/Southern Oscillation to one and a half years by supplement-
ing observational weather data with data generated from a climate model and using
deep learning techniques (Ham et al., 2019). This methodology of mapping simu-
lated output to observational data goes by several names (such as hybrid modeling,
process-guided learning, climate model emulation, and process-informed learning)
and can be used in a wide range of domains in environmental science (e.g. (Gibson
et al., 2021),(Hanson et al., 2020)).

Recently there have been significant contributions to the study of emulating
process-based climate models with machine learning. Climatebench was a recent
effort to provide a benchmark for data-driven climate modelling efforts (Watson-
Parris et al., 2022). Watson-Parris et al. defined a set of metrics to help guide emu-
lator evaluation, and applied their metrics to a neural network that performed well
when compared with other climate models (Watson-Parris et al., 2022). ClimaX,
more recently, was an attempt to create a more general emulation (a "foundation
model") that can perform multiple climate related tasks by emulating an ensemble
of climate models (Nguyen et al., 2023). Nyugen et al. trained a machine learn-
ing model using output from several process-based climate models in order to per-
form weather forecasting, downscaling and long-range climate prediction (Nguyen
et al., 2023). Graphcast, a medium-range weather forecasting model based on graph
neural networks, outperformed other state-of-the-art process-based weather models
(Lam et al., 2022).

Long Short-Term Memory models are a special case of a neural network that has
been shown to work well with climatic time series data (Granata and Di Nunno,
2021). In Granata et al., researchers use several observed climatic variables that in-
form evapotranspiration in Florida. They then applied LSTMs to estimate 1-day
ahead predictions of evapotranspiration using time series of the climatic variables
(Granata and Di Nunno, 2021). By using a time series of variables, the neural
network learned a more holistic picture of the climate in question (Granata and
Di Nunno, 2021).

Explainability of machine learning algorithms is important when working with
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climatic data, as the how is often just as important as the why (Watson-Parris, 2020).
Neural networks are considered a "black box", an algorithm where the process that
it learns is not visible (Mamalakis et al., 2022). To help understand neural networks,
Sundararajan et al. used a method called Integrated Gradients (IG), which deter-
mines the importance of features by taking the integral of the model’s gradients
along a straight path from a baseline (a zero vector, which in this case is the mean
of the normalized data) to the input (Sundararajan et al., 2017). This method helps
understand what the model has learned by attributing importance to the different
input features (Sundararajan et al., 2017).

To learn better impacts of wood harvest, these machine learning techniques can
learn forest carbon dynamics. This understanding can be applied to real-world data
to explore a different method of forest carbon stock estimation. In this research I
will use machine learning with output from climate models to learn a comprehen-
sive representation of forest carbon dynamics. I will then create two wood-harvest
scenarios: one that considers no wood harvest occurred from 1984-2019, and one
that considers no regrowth occurred after wood harvest for the same period. Us-
ing both of these scenarios, I apply the machine learning model trained on climate
model data to estimate the impact of wood harvest on forest carbon stocks.
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Manuscript

3.1 Abstract

Earth System Models provide important insight into global climate dynamics. These
models often require large computational resources to run, inhibiting accessibility
and exploration of a wide range of climate-related scenarios. Machine learning can
help by creating an emulation of an aspect of an ESM to enable less expensive sce-
nario simulation. I use a Long Short-Term Memory model to emulate forest carbon
dynamics in the Community Earth System Model 2 in order to understand the im-
pact of wood harvest on carbon stocks in the Canadian Boreal forest. To validate the
emulation, I use available external datasets that explicitly quantify carbon stocks in
soil and above-ground biomass. The emulation can predict CESM2 several carbon
stock variables accurately (0.89 R2 Score) and can be explained with important cli-
matic relationships. I then create land-cover scenarios to simulate no wood harvest
for the years 1984-2019. These scenarios show that 584 Mt C were lost to wood har-
vest over this period, with an additional 172 Mt C attributed to regrowth from wood
harvest over the same period. The LSTM model I use in this study provides a more
flexible approach to investigating land-use change impacts on carbon stocks by har-
nessing the power of both machine learning models and process-based ESMs. This
approach can help understand land-use change scenarios that are not considered in
large inter-model comparison efforts.

3.2 Introduction

Earth System Models (ESMs) simulate climate by representing climatic processes
mathematically to generate estimations of past and future climates. ESMs can be
used to understand impacts of climate change and mitigation efforts to combat cli-
mate change. These models represent a large number of climatic processes globally
and require considerable amounts of computational resources to run. In order to
reduce these demands of an ESM, creating an emulation of an ESM has proven to
be a useful complement to process based modelling. Climate model emulation has
been popular for several decades as a method to circumvent the large computational
resources needed to run an ESM (Osborn et al., 2006). These climate emulators have
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been used in the IPCC to help simulate future climate scenarios, although detailed
climate and carbon cycle dynamics are still represented with ESMs (Canadell et al.,
2021). Some emulators use many parameters that represent different climatic pro-
cesses, and are tuned to match the output of larger ESMs (Smith et al., 2018). Such
emulators can then be run thousands of times at a fraction of the computational
resource in order to explore many different future climate scenarios (Smith et al.,
2018).

Machine learning has proven effective at emulating some climatic processes (Rasp
et al., 2018) (Ham et al., 2019) (Nguyen et al., 2023). Forest carbon dynamics are one
such group of processes. Simulating these processes is often done with an ESM,
and is used to help understand global carbon dynamics (Friedlingstein et al., 2022).
There is also a rich practice of estimating forest carbon through remote sensing,
often using some combination of lidar, allometric equations and satellite imagery
(Wulder et al., 2020). These methods focus on estimating above-ground biomass
(AGB, the amount of living biomass above ground, shrubs, trees, leaves etc), with
far less research aimed at estimating soil carbon or below-ground biomass due to
a lack of observations (Sothe et al., 2022). Using machine learning (ML) within the
field of Earth Sciences has become increasingly popular to help estimate and explain
climatic processes (Watson-Parris, 2020). For example, ML has been used to gain
at-scale estimations of soil carbon and improve medium-range weather forecasting
(Sothe et al. (2022),Lam et al. (2022)).

In this work I use machine learning to emulate the Community Earth System
Model 2 (CESM2) simulation of above- and below-ground carbon stocks. I first em-
ulate the CESM2 model using a Long Short-Term Memory (LSTM) model, which
excels at interpreting time series data. I then validate the LSTM model by compar-
ing the emulation to available data sources. I aim to train a machine learning model
on climate model data that is internally consistent. Once the emulation accurately
represents the selected processes, I apply this emulation to a land-cover scenario
that investigates the historical impacts of wood harvest in the Canadian Boreal for-
est. The land-cover scenario is based on principles inspired by Nature-based So-
lutions (NbS), actions or practices that protect or restore natural habitats (Griscom
et al., 2017). NbS have been recently highlighted as tools that can provide potential
mitigation for the impacts of future climate change (Griscom et al., 2017). Forest
management is one such method of NbS, and is one of the most promising methods
to increase carbon sequestration in Canadian forests ((Wang et al., 2021) (Griscom
et al., 2017)). By simulating several forest management scenarios, this research will
provide methods to inform actionable mitigation policy.
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3.3 Materials and Methods

3.3.1 Study Area

Canada is divided into several ecozones that represent different ecological areas
(Wiken et al., 1996). In this research I focused on three ecozones: the Boreal Plain,
the Boreal Shield and the Boreal Cordillera. These three ecozones share differing
biophysical traits but have similar vegetation, primarily covered in forest (Wiken
et al., 1996). Canada’s forests are deemed “managed” or “unmanaged” based on
the occurrence of forestry activities that include wood harvest and silviculture prac-
tices ((Canada, 2023) (Kurz et al., 2018)). Canada’s managed forest is 225.52 mil-
lion hectares and spans all provinces and territories, with the exception of Nunavut
(Canada, 2023). The managed forest designation is used for GHG inventories for the
National Inventory Report and submission to the United Nations Framework Con-
vention on Climate Change (Canada, 2023). The three ecozones in this research are
all within Canada’s managed forest and represent a significant portion of Canada’s
forest cover (Wiken et al., 1996). I chose these three ecozones to provide a coherent
and unified study area composed of similar ecosystems and climates. These boreal
regions are dominated by tree cover and have longer winters and shorter summers
(Wiken et al., 1996).

FIGURE 3.1: Study area used for training and harvest scenario.
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Ecozone Forest Area (kha)
Boreal Cordillera 19,116.46
Boreal Plains 38,454.65
Boreal Shield 131,274.73
Canada 361,732.00

TABLE 3.1: Area of forest cover (kha) in the ecozones used in this study.
Last line is total forest cover in Canada.

3.3.2 Data Sources

The climate model data I used to train the ML model comes from the CESM2 (Dan-
abasoglu et al., 2020). The CESM2 is a coupled climate model that comprises several
smaller modules representing particular physical processes, such as ocean dynam-
ics or ice dynamics. The land climate model is called the Community Land Model
5 (CLM5). The CLM5 represents several land-carbon cycle dynamics, notably pro-
cesses related to the nitrogen cycle, fire, CO2 fertilization, permafrost and peatlands
(Lawrence et al., 2019). The CLM5 represents many LULCC processes such as wood
harvest (by mass) and agricultural management (Lawrence et al., 2019). The CLM5
adheres to a land-use change dataset, the LUH2, to determine what land-cover class
is replaced by wood-harvest (David Lawrence et al., 2018). The Coupled Model In-
tercomparison Project (CMIP6), an organization aimed at facilitating climate model
comparison, provides standardized variables as experiments for public use. The ex-
periment “historical” is used as a control for several experiments in the CMIP6, and
I used it here as input data (Danabasoglu et al., 2020). The historical experiment
simulates recent (1850-2014) climate. I included seven variants of this experiment
in the training data, where each variant was run with different initial forcings. This
provides approximately 600,000 data points at a resolution of 100 km2. I used six in-
put variables: surface pressure, soil temperature, percentage of tree cover, summer
near-surface air temperature, winter near-surface air temperature and precipitation
(See Table 2).

To train the LSTM, I aggregated model output from CESM2 to a yearly temporal
resolution to match the temporal resolution of the land-cover classes. I then aggre-
gated the data to the lowest spatial resolution, that of the CESM2 (.9x1.25 degree
finite volume grid, approximately 100 km2). I then converted this data to time series
data with a 30-year rolling window. All input data is scaled to a standard normal
distribution.

After training the ML model, I used a combination of National Terrestrial Ecosys-
tem Monitoring System (NTEMS) and ERA5 reanalysis land monthly means to cre-
ate a dataset that I used to represent the climate of the study areas without the bias
of the climate model (Muñoz-Sabater et al., 2021). The NTEMS dataset provides
land-cover classification from 1984-2019 and uses the EOSD land cover hierarchy to
provide 12 land-cover classes at 30m resolution and provides the treeFrac variable
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data (Hermosilla et al., 2018). These data products provide a country-wide con-
sistent land use and land-cover change map for the study period. The ERA data
provides the rest of the climatic variables. I aggregated this data to the 100km2/year
resolution used in the CESM2 and used a 30-year rolling window. This dataset will
be referred to as ERANFIS in this study.

To validate the ERANFIS dataset, I used two available datasets that provide
spatially-explicit maps of AGB carbon. Another product from NTEMS, a 2015 AGB
dataset, approximates AGB carbon using lidar and LANDSAT satellite imagery
(Matasci et al., 2018). Walker et al. use lidar and MODIS satellite imagery with
regression models to estimate AGB carbon (Walker et al., 2022). I used both Walker
et al. and Matasci et al. to validate the AGB carbon represented in ERANFIS. I used
a dataset made from a collaboration between the World Wildlife Foundation and
McMaster University that provides country-wide estimates for soil carbon above
1m depth at 250m resolution to validate the soil estimates of ERANFIS (Sothe et al.,
2022). In the CESM2, above-ground biomass is defined as the sum of cLeaf, cOther
and cStem. Both AGB and cSoilAbove1m are chosen for ease of comparison to other
studies (see Results section). I used another product from NTEMS that provides
a map of wood harvest events from 1985-2019 at 30m resolution to create wood-
harvest scenarios (see Wood-harvest Scenario section, Hermosilla et al. (2016)).

3.3.3 Model Description and Metrics

FIGURE 3.2: Flowchart of methods used in this study.

The ML model is an LSTM (long short-term memory) neural network with 4
layers and 256 hidden units in each layer. The inputs are 6 climate and land-cover
variables: surface pressure, soil temperature, tree cover fraction, summer surface
temperature, winter surface temperature and precipitation. The targets are 4 carbon
stock variables: carbon mass in other vegetation, carbon mass in stems, carbon mass
in leaves and carbon mass above 1m depth in soil pool. I chose these variables so
that a dataset that represents real-world climate could be made (ERANFIS) and used
to compare the model with other observable data. By only including one land cover
class, tree cover, the ML model is the simplest and ideally most explainable version
of the model possible. See Table 2 for further details. The model was trained for 16
hours on one v100 GPU.
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CMIP6 Variable Name Description Units
ps Surface pressure (not mean sea-level

pressure) 2-D field to calculate the 3-
D pressure field from hybrid coordi-
nates

Pa

tsl Temperature of soil, only consider
top-layer (0-7cm)

K

treeFrac Percentage of entire grid cell that is
covered by trees

tasJ JA Near-surface (usually, 2 meter) air
temperature for the months June, July
and August

K

tasDJF Near-surface (usually, 2 meter) air
temperature for the months Decem-
ber, January and February

K

pr Precipitation, both liquid and solid
phases

kg/m2/s

cOther Carbon mass in vegetation compo-
nents other than leaves, stems and
roots

kg/m2

cStem Carbon mass in stems kg/m2

cLeaf Carbon mass per unit area in leaves kg/m2

cSoilAbove1m Carbon mass in soil pool above 1m
depth

kg/m2

TABLE 3.2: Variable descriptions and units in CMIP6. Variables below
the double line are target variables, with cStem, cLeaf and cOther mak-

ing up above-ground biomass.

I used the following loss function, where cos(lat) is the latitudinal scaling factor
to account for decreasing grid cell size, y is the target and ŷ is the prediction:

LAMSE = cos(lat) ∗ ∑n
i (yi − ŷi)

2

n
(3.1)

To evaluate the model, I used the coefficient of determination, denoted R2 and com-
puted as follows (where SSres is the sum of residual squares and SStot is the total
sum of squares). This metric helps determine the amount of variation that can be
attributed to the predictions:

R2 = 1 − SSres

SStot
(3.2)
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3.4 Results

I first trained the model using the CESM2 model output. I trained the model with
an 70/20/10 train/validation/hold-out split, with the data split spatially by grid
cell. The units for the Latitude-Adjusted MSE (LAMSE) in Table 2 are the original
units used in training, and have not been converted to Mt C. This ensures spatial
scaling with the loss function is consistent. Table 3 shows the results from training
the LSTM on the output from the CESM2 model. These numbers show the LSTM is
capable of optimizing the loss function provided and can accurately predict values
in the hold-out data.

R2 LAMSE (kg/m2)
Training Data (70%) .91 .11
Validation Data (20%) .91 .20
Hold-out Data (10%) .89 .35

TABLE 3.3: Evaluation metrics from model training. CESM2 data
was split randomly by grid cell to compose each dataset. LAMSE is

Latitude-Adjusted Mean Squared Error.

I compared the emulation applied to ERANFIS (the dataset created based on
ERA5 reanalysis data and observed land-cover from NFIS) with the original out-
put from the CESM2. There are significant differences between the two datasets
although this is to be expected; while the climates are similar in aggregate, they
differ from grid cell to grid cell (See the Supplemental Material section for compar-
isons of input data). We can see in Figures 3 and 4 that there are significant spatial
differences between the carbon stocks estimated by ERANFIS and CESM2.

FIGURE 3.3: ERANFIS compared to CESM2 model output of AGB car-
bon.

I then compared ERANFIS to two different observation-based datasets that esti-
mate AGB for the year 2015. The first dataset, from Matasci et al., is derived from the
same land-cover data used in training (from NTEMS) and uses lidar with satellite
imagery to generate country-wide estimates of AGB (Matasci et al., 2018). The sec-
ond dataset (Walker et al., 2022) combines lidar with field measurements to make
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FIGURE 3.4: ERANFIS compared to CESM2 model output of soil car-
bon.

estimations of AGB globally (Walker et al., 2022). Data from 2014 is used for the
CESM2, the last available year of data coverage. When comparing ERANFIS to
observation-based datasets I used a non-spatial error estimator, the Mean-Squared
Error (MSE), as the data is converted to Mt C for ease of comparison. We can see in
Figure 5 that each dataset has noticeably different distributions of AGB. This is enu-
merated in Table 4 and Table 6, where we see that the R2 of both the emulation and
CESM2 is less than 0 in both cases (i.e., both compare worse than a dataset that only
predicted the mean), although there is significant improvement with the emulation
compared to the CESM2 model output. Table 5 shows the AGB totals where we can
see that there is significant disagreement across all datasets. While the CESM2 esti-
mates the highest values, ERANFIS displays the least variation in totals (the Boreal
Cordillera and Boreal Plains are almost the same, see Supplemental Material for fur-
ther discussion). Matasci et al. finds almost double the AGB that Walker et al. does
(Matasci et al. (2018),Walker et al. (2022)).

Model R2 Average LAMSE (kg/m2)
Matasci et al.

ERANFIS -0.47 9.63
CESM2 -1.85 18.76

Walker et al.
ERANFIS -8.27 8.33
CESM2 -21.19 19.94

TABLE 3.4: Evaluation metrics for ERANFIS and the CESM2 compared
to both Matasci et al. and Walker et al. A negative R2 score means the

predictions are worse than predicting the mean.

Sothe et al. is used for comparison to cSoilAbove1m. We can see in Figure 5 that
there are significant differences between the estimations. We can note that the scale
of Sothe et al. is approximately 5 times greater, and reports more than 3 times the
soil carbon when compared to the CESM2 and ERANFIS (See Table 5 and Table 7).
Both ERANFIS and CESM2 perform equally poorly when compared to Sothe et al.
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FIGURE 3.5: Spatial visualization of AGB comparison. The top row
shows the two validation datasets. The bottom left is the trained LSTM
emulation and the bottom right is the original output from the CESM2.
CESM2 model data is only available until 2014, so that year is used as a
comparison. The darker grid cells indicate more carbon stored in AGB.

Ecozone Matasci et al. (Mt C) Walker et al. (Mt C) ERANFIS (Mt C) CESM2 (Mt C)
Boreal Shield 8837.93 5294.87 6998.04 9329.47
Boreal Cordillera 1578.7 906.74 2920.79 2547.19
Boreal Plain 4165.49 2092.03 2947.92 4647.0
Total 14582.13 8293.64 12866.74 16523.66

TABLE 3.5: Total AGB carbon comparisons for Matasci et al, Walker et
al., ERANFIS and the original output from the CESM2. All values are

in Mt C. Total is the sum of all three ecozones.

It is important to note that Sothe et al. find significant carbon stocks in the Hudson
Plains, an ecozone that contains the majority of Canada’s wetlands (Sothe et al.,
2022). Neither the CESM2 nor the emulation simulate a significant amount of carbon
to this region. As for AGB, the emulation estimates values that are very similar
across ecozones, with the smallest amount of variation between the ecozones.

3.4.1 Explainability

I used two feature attribution methods to help explain the model’s output and im-
prove confidence in the model’s predictions. Explainability methods help to provide
explanations of models behaviours after inference. These methods are not meant to
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FIGURE 3.6: Spatial visualization of soil carbon comparison. Note the
significantly larger quantities for Sothe. et al. The Hudson Plains was

found to be a large soil carbon store.

Model R2 Average LAMSE (kg/m2)
Sothe et al.

ERANFIS -1.02 1405.37
CESM2 -1.00 1396.12

TABLE 3.6: Evaluation metrics for ERANFIS and CESM2 compared to
Sothe et al. Both models differ significantly from Sothe et al.

Ecozone Sothe et al. (Mt C) ERANFIS (Mt C) CESM2 Model Output (Mt C)
Boreal Shield 67565.9 8832.3 12931.02
Boreal Cordillera 10047.73 7073.49 5172.8
Boreal Plain 16702.99 8162.71 13199.31
Total 94316.62 24068.51 31303.14

TABLE 3.7: Total soil carbon comparisons for Sothe et al., ERANFIS and
the CESM2. The total is the sum of all three ecozones. All values are in

Mt C.

replace the physical laws that process-based climate models are built on, but in-
stead to improve confidence that the ML model is learning in the right direction.
Integrated Gradients (IG), which determines the importance of features by taking
the integral of the ML model’s gradients along a straight path from a baseline (a
zero vector, which in this case is the mean of the normalized data) to the input, and
Shapley values, which are used to help understand a feature’s contribution to the
output (Sundararajan et al. (2017), Lundberg and Lee (2017)). Here I used IG for
cStem (the largest contributor to AGB) and I used ERANFIS to understand the pre-
dictions of the model. To do so, I took the mean of the attributions for a single grid
cell (see Figure 7). Correlations between physical processes and results from emula-
tions help to increase confidence in machine learning models and can help explain
the results of the model (Holzinger et al., 2022).
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FIGURE 3.7: Grid cell (longitude=-73.75, latitude = 49.476440) used for
explainability techniques. This a region in the eastern Boreal Shield.

In Figure 8 and Figure 9 we can see the feature attributions for the cStem vari-
able. The cStem variable is the most significant contributor to AGB and provides
the strongest signal for feature attribution (see Supplemental Materials). The mean
of ERANFIS for each variable is in the center of the y axis for each variable to aid
visualization. The attribution spans the 30-year window from 1985-2014. We can see
in Figure 8 that the higher values of tsl and tasJ JA (i.e. hot soil and summer temper-
atures) negatively contribute to cStem. Low values of pr also contribute negatively
to cStem. Figure 9 shows that higher values of precipitation and above-average
treeFrac values positively contribute to the cStem variable. Scientifically this makes
sense - warmer soil temperatures have been found to hold less carbon (similarly for
precipitation, Hartley et al. (2021)).

I applied the Shapley value solution and find that the results generally echo the
findings of IG although there are some differences (see Figures 10 and 11). The Shap-
ley values clearly indicate that higher soil temperature (tsl) leads to higher positive
impact on the model, whereas the Integrated Gradients method shows no strong
signal for the soil temperature. The Shapley values were averaged across the three
AGB target variables and the soil target variable separately for each grid cell. We can
see that for both soil and AGB target variables they have similar results. High val-
ues of tree cover seldom negatively attribute, although the impacts are very noisy.
Other vegetation has been found to hold more soil carbon (shrubs and grass) and
could explain how grid cells with lower treeFrac contribute positively to the target
variables (Canadell et al., 2021).

3.4.2 Wood Harvest Scenario

The benefit of creating an emulation of a climate model is to be able to explore cli-
matic scenarios that would otherwise require significant computational resources.
In this spirit, I created two scenarios to understand the impacts of wood harvest on
carbon stocks. Because of the significant discrepancy of observed and modeled soil
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FIGURE 3.8: Negative Attributions for cStem. The darker colour repre-
sents higher attribution, a stronger negative contribution to the output
of the model. The y-axis is centered on the mean of the entire input
dataset, with two standard deviations above and below. Each vertical

bar in the plots represents a year.

carbon stocks, the soil carbon stock results in these scenarios should be interpreted
with caution. For comparison to other studies, the soil carbon results are omitted.

I created two scenarios from an additional land-cover product that quantifies
wood harvest for the years 1985-2019 (Hermosilla et al., 2016). The first scenario
assumes all wood harvest for the years 1985-2019 is replaced by forested area. This
scenario can be thought of as an alternate reality where the wood harvest did not
occur for the years 1985-2019. This was done by adding the percentage of area har-
vested per grid cell to the treeFrac variable in ERANFIS. In all other respects the
input data is the same as ERANFIS. By simulating reforestation of areas deforested
from wood harvest, the simulation adheres to ensuring food security and biodiver-
sity remain intact, assuming the harvested land was not converted to cropland.

I created a second scenario that assumes that wood harvest occurred but without
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FIGURE 3.9: Positive Attributions for cStem. The darker colour repre-
sents higher attribution, a stronger positive contribution to the output
of the model. The y-axis is centered on the mean of the entire input
dataset, with two standard deviations above and below. Each vertical

bar in the plots represents a year.

any subsequent regrowth. This scenario is made by finding all the areas that were
harvested in the study period and subsequently were classified as tree-covered.

I applied the emulation to the reforested scenario and to the no regrowth sce-
nario. I then took the difference of carbon stocks and quantified this as carbon lost
due to wood harvest. Because of the 30-year time series used in the experiment, only
the years 2014-2019 are used for analysis. When the reforested scenario is compared
with ERANFIS, 412 Mt C is sequestered in above-ground biomass and 516 Mt C is
sequestered in soil carbon by the year 2019 using the reforestation scenario. When
the no regrowth scenario is compared to ERANFIS, 172 Mt C in AGB and 88 Mt C in
soil carbon is attributed to regrowth (see Figure 12). In total, 584 Mt C of AGB and
604 Mt of soil carbon is lost to wood harvest over the study period, although 172 Mt
C and 88 Mt C respectively has grown back. The 584 Mt of AGB carbon accounts for
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FIGURE 3.10: Shapley values for AGB target variables. The yellow
colour indicates a higher value and the placement along the x-axis in-
dicates the impact on model output. Values further to the right indicate

higher positive impact.

FIGURE 3.11: Shapley values for the soil target variable. The yellow
colour indicates a higher value and the placement along the x-axis in-
dicates the impact on model output. Values further to the right indicate

higher positive impact.

approximately 1.5% of the total estimated AGB carbon in the study area. Overall,
reforestation leads to 1188 Mt C gained over the study period.

In general, Figures 14 and 15 show an increase of carbon storage in both AGB
carbon and soil carbon where there is more forest cover. Both figures show there
are grid cells that have more soil carbon in no-regrowth scenarios and more soil
carbon in ERANFIS instead of the reforested scenario. As the CESM2 represents
agricultural management and land-use change, the increase in soil carbon on these
grid cells could be attributed to increased soil carbon storage of grasslands and crops
when compared to tree cover (Canadell et al. (2021),Lawrence et al. (2019), David
Lawrence et al. (2018)).
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FIGURE 3.12: Yearly comparison for harvest scenarios. Each year rep-
resents the total AGB carbon for the study area.

FIGURE 3.13: Yearly comparison for harvest scenarios. Each year rep-
resents the total soil carbon for the study area.

3.5 Discussion

A significant portion of Canada’s emissions reported in the National Inventory Re-
port (NIR) is attributed to land-use and land cover change (LULCC) (Canada, 2023).
Harvested Wood Products (HWP) is all wooded material that leaves harvest sites in
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FIGURE 3.14: Scenario that sees all previously harvested forest refor-
ested. From left to right: The reforested estimations, the emulated esti-
mations and the difference between the two scenarios. Note the differ-

ence in scale between the images.

AGB
Ecozone Reforested Scenario (Mt C) No-regrowth Scenario (Mt C) ERANFIS (Mt C)
Boreal Shield 7523.80 6904.01 7046.49
Boreal Cordillera 2962.24 2954.80 2955.64
Boreal Plain 3032.18 2903.64 2932.39
Total 13518.22 12762.46 12934.52

Soil
Boreal Shield 10973.56 10563.48 10634.74
Boreal Cordillera 8083.69 8071.37 8072.21
Boreal Plain 8524.70 8430.31 8446.18
Total 27581.97 27065.17 27153.14

TABLE 3.8: Total carbon (Mt C) in 2019 for the reforest scenario and the
no-regrowth scenario for both AGB and soil carbon.

the IPCC Guidelines for National Greenhouse Gas Inventories and plays an impor-
tant part in Canada’s GHG reporting (H Eggleston et al., 2006). HWP is a carbon
pool that holds all the carbon captured by wood transferred from harvest (H Eggle-
ston et al., 2006). The wood harvest scenario used in this research can be considered
an accounting method tracking carbon transfer from forest to the HWP pool. In
the 2021 NIR, Canada reports this value as "Commercial harvest transfers to HWP"
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FIGURE 3.15: Scenario that sees all regrowth in harvested areas re-
moved. From left to right: ERANFIS estimations, the no-regrowth esti-
mations and the difference between the two. In this case it is (Observed

- No-regrowth) as the no-regrowth will have smaller values.

(Canada, 2023). The report finds that approximately 25 Mt C are transferred per
year from the years 1990-2021 (Canada, 2023). In 2021, almost 30 Mt C was re-
ported, equivalent to 109 Mt CO2, a significant portion of Canada’s 670 Mt CO2
net emissions for 2021 (Canada, 2023). All of these emissions are offset by forest
carbon sequestration and the sector reports a net sink, but looking at gross emis-
sions caused by wood harvest better highlights the potential for carbon mitigation
(Canada, 2023). This shows the importance of being able to accurately account for
the impact of wood harvest on carbon stores as it has the potential to make a signif-
icant contribution to the reduction of GHG emissions nationally.

The quantities found in this paper are different than what is reported in the 2021
NIR - I found in this study that from 1984-2019, 584 Mt C of AGB carbon were at-
tributed to wood harvest emissions. This amount averaged over the study period
is 16.7 Mt C per year of carbon emissions. The study area is 52.2% of Canada’s
forested area (see Table 1) but accounts for more than half of the reported values in
the NIR. The NIR uses the entire national forest cover, and considers total ecosys-
tem carbon instead of only AGB considered here. The NIR uses the Carbon Budget
Model of the Canadian Forest Sector (CBM-CFS3), a process-based climate model
that focuses on forest dynamics and uses forest disturbance data from the National
Forestry Database (Canada (2023),Kurz et al. (2013)).

Another study that uses the same land-cover products finds a significantly higher
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loss of AGB due to wood harvest over the same period (Wulder et al., 2020). Wul-
der et al. reports for the three ecozones used in this study, at 800 Mt C lost due to
wood harvest from the years 1985-2016 with an average loss of 25 Mt C per year.
Wulder et al. use allometric equations combined with lidar and satellite imagery
to quantify AGB dynamics Wulder et al. (2020). Pan et al. 2011 finds 23 Mt C car-
bon per year lost due to wood harvest from 1990-1999 and 21 Mt C per year lost
from 2000-2009 for all of Canada. This is within the uncertainty range provided by
Pan et al., although it is at the lowest end of this range (Pan et al., 2011). Pan et
al. gather national inventory data and observational sources to make global forest
carbon storage estimations (Pan et al., 2011).

The AGB carbon quantities I found in this study ( 16.7 Mt C per year) are within
plausible range of values when compared to other studies. Wulder et al. overes-
timates AGB carbon ( 25 Mt C per year, same study area) compared to this study,
and both the NIR ( 25 Mt C per year,total ecosystem carbon and for all of Canada)
and Pan et al. ( 22 Mt C per year, all of Canada) underestimate forest carbon in
comparison (Pan et al. (2011),Wulder et al. (2020),Canada (2023)).

The IPCC encourages consideration of differences in methods to understand bet-
ter net emissions from land sectors (Joeri Rogelj et al., 2022). There is significant dif-
ference in method between the studies mentioned, and attributing quantities to the
differences in the modelling approaches is not realistic, although it is encouraging
that the approaches discussed here approximate similar quantities given different
methodologies. There are many disparate methods to accounting for land carbon
and comparison is integral to making a meaningful contribution.

Not only can reforestation or reduced wood harvest contribute to reducing GHG
emissions, these practices can also reduce land degradation, preserve regional biodi-
versity and ensure other ecosystem services such as water filtration (Canadell et al.,
2021). Forest management practices can have adverse side effects. By allocating
land for forest, land meant for agriculture could be jeopardized. Forest management
practices that reduce the forest species complexity can leave the forest vulnerable to
natural disasters, such as invasive insect species that target a particular species of
tree (Canadell et al., 2021). These factors, among others, need to be carefully con-
sidered when implementing forest management practices such as reforestation or
afforestation.

The method used to replace harvested forest regions with tree cover neglects
the impact of the additional tree cover on the other climatic variables (Mills et al.,
2023). Recent research has found that idealized research such as the work done here
leaves out important climatic signals of forest cover change (Alkama and Cescatti,
2016). Changes in forest cover can have a significant impact on surface air temper-
ature and surface albedo which is not considered in the wood harvest scenario, as
the tree-cover fraction is changed without considering the effect of this change on
the other input variables (Alkama and Cescatti (2016) Mills et al. (2023)). Harvested
areas can lead to greater above-ground biomass gain, but recently it has been found
that the loss of soil carbon can eclipse this gain, and can be considered a carbon
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source (Mills et al., 2023). Climate model emulations are at the mercy of the scien-
tific choices made in the process-based models being emulated; machine learning
emulations are not able to account for changing physical processes, although effort
is being made to change this by incorporating physical laws into machine learning
models, a technique often called "physics-informed machine learning" (Karniadakis
et al., 2021). These methods could help confidence in climate model emulations by
providing a physical basis on which estimations are made.

To help explain estimations made in this study two techniques were used. These
techniques, IG and Shapley values, assess the importance of each feature to the out-
put. While these techniques cannot be taken as surrogates for physical processes, it
can guide understanding of the model’s behaviour and output. More recent efforts
have incorporated scenarios that test an emulator’s ability to respond accurately
to the change in input (Watson-Parris et al., 2022). For example, Watson-Parris et
al., when using an emulation trained to predict atmospheric temperature, create an
experiment where only aeresol forcings are used (Watson-Parris et al., 2022). This
more nuanced testing can help increase confidence by rooting the experimentation
in well-known physical processes. It is difficult to assess the impact of omitting these
feedbacks on emulation, but through further comparison progress can be made to
increase confidence that emulations are providing accurate and holistic predictions.
This research only considers two aspects of forest carbon (soil carbon to 1m depth,
and carbon in above-ground biomass) for reasons of comparability, as the literature
often isolates AGB and soil carbon to 1m depth ((Sothe et al., 2022), see Results).

3.5.1 Further Work

Creating more nuanced scenarios, perhaps with other land-cover scenario efforts
(e.g. https://luh.umd.edu/) could be a fruitful avenue of research. These scenar-
ios could take into account regrowth dynamics and effects that forest cover has on
climatic variables. The wood-harvest scenarios created in this study do not define
what is replacing the tree cover that has been harvested. Considering the variation
that different land-cover classes have on carbon stocks, this is a significant factor
to exclude. A more nuanced wood harvest scenario could be made with explicit
land-use change taking place.

Exploring different model architectures could improve performance and inter-
pretability. Architectures exist that considers both spatial and temporal dimen-
sions, which could be applied to climate model output. Exploring different rolling-
window sizes, feature selections and model inputs could also improve model per-
formance. Recent efforts using variations of the transformer model architecture
have proven effective at learning climate and weather tasks, and could improve
estimations in this domain (Nguyen et al., 2023) (Bi et al., 2022). As both machine
learning techniques and process-based understanding of forest dynamics improve,
we will better be able to predict and estimate carbon stocks and anthropogenic im-
pacts on these stocks.
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3.6 Conclusion

I used machine learning to emulate the CESM2, which I then used to estimate car-
bon stock loss due to wood harvest. I began by applying the emulation to ERANFIS
(a dataset created from ERA5 reanalysis data and NFIS land-cover classification to
create a dataset that more closely resembles actual climate) and comparing this to
CESM2 estimates of forest carbon. The estimates provided from ERANFIS are sig-
nificantly different from CESM2 as the input datasets are substantially different. I
then compared ERANFIS to several datasets based on remote-sensing observations.
In this comparison, ERANFIS performs better than the CESM2 when compared to
AGB datasets, although neither perform well against the soil carbon dataset. I then
utilized a land-cover dataset that represents wood harvest to create two land-cover
scenarios: one in which no wood harvest occurred, and one where wood harvest
occurred with no subsequent regrowth. I took these land-cover scenarios and ap-
plied the machine-learning emulation to them, which produced estimations of AGB
and soil carbon. The model estimates that for the period 1985-2019, 584 Mt C was
lost due to wood harvest. This does not include the 172 Mt C attributed to regrowth
for the same period. These values are within a reasonable range of several other
attempts to quantify impacts of wood harvest, which can be used together to help
inform climate mitigation policy and action. This research highlights the synergy be-
tween process-based climate models and machine learning. By employing an LSTM
model to learn relationships of climatic processes employed by the CESM2, I was
able to investigate novel land-use change scenarios forest carbon dynamics with
significantly lower computational costs. Machine learning emulation will increase
accessibility to powerful climate models that can provide important information to
inform policy and help guide climate change mitigation. Here I have investigated
net loss from carbon to illuminate both the climate impact of wood harvest alone, as
well as the carbon mitigation potential of reforestation efforts.

3.7 Data availability

Please see github.com/grahamclyne/thesis

3.8 Conflicts of interest

The authors declare no conflict of interest.
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3.9 Supplementary Material

Figures S1 and S2 outline a significant deficiency in the emulation - the model is
not good at predicting outliers. In Figure S2, we can see that the values are less
varied than the other models. When summed by ecozone in Table 5 and Table 7,
the emulation indicates noticeably less variance than the observed datasets. We
can see the standard deviations of the predictions in Figure S1 are smaller than the
trained data. In the aggregate this model is able to accurately assess carbon stores,
but for smaller regions it is unable to estimate large differences in carbon stores. By
using multiple climate models as inputs, or by using a model architecture that has
been shown to generalize better, such as a transformer, estimations for more extreme
carbon stocks could be improved.

FIGURE 3.16: Distributions of the four target variables used in the
LSTM model.

FIGURE 3.17: Distributions of the input variables used in the LSTM
model.

Figures S3-S8 show the comparisons between each input variable for ERANFIS
and CESM2.
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FIGURE 3.18: Comparison of precipitation.

FIGURE 3.19: Comparison of surface pressure.

FIGURE 3.20: Comparison of soil temperature.
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FIGURE 3.21: Comparison of surface air temperature for Decem-
ber,January and February.

FIGURE 3.22: Comparison of surface air temperature for June,July and
August.

FIGURE 3.23: Comparison of tree fraction cover.
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Chapter 4

Conclusion

This research helps to highlight the synergy between process-based climate mod-
els and machine learning. By employing an LSTM to learn relationships of climatic
processes described by the CESM2, I was able to investigate difficult-to-observe for-
est carbon dynamics with significantly lower computational costs. Emulating cli-
mate models can be helpful in exploring scenarios with changing land-use and land
cover dynamics when coupled with detailed land-cover classification products. I
was able to understand the impacts of wood harvest in the Canadian Boreal forest
by simulating several variables of the CESM2 with an LSTM model. This model
performed well learning the dataset, obtaining an R2 score of .89. I then created a
dataset of climatic data based on ERA5 data and NTEMS land-cover data. I then
applied the model emulation to this dataset to help understand the climate based
on real-world observations, instead of climate model output simulated by a climate
model. Comparing this data to several AGB observation-based datasets, I find that
the ERA5/NTEMS dataset correlates more to the datasets than the CESM2 does,
and provides a closer total carbon stock. When compared to an external soil carbon
dataset, the emulation and the CESM2 perform comparably, although both estimate
significantly lower soil carbon stocks mostly due to a large carbon store in the Hud-
son Plains indicated in the external dataset.

To help increase confidence in the model, I use two feature attribution methods,
Integrated Gradients and Shapley values. In both cases, the feature attributions are
concurrent with physical understandings of biogeophysical processes.

Finally, to answer the question, "What is the impact of wood harvest on Canadian
Boreal forests?" I create two more datasets that represent two scenarios - one where
no wood harvest occurred and another where no forest regrowth occurred in places
of wood harvest. Using these two datasets, I again apply the emulation and find that
409 Mt C was sequestered by the year 2019 in the "no wood harvest" scenario. This
is not including the 129 Mt C attributed to regrowth in the same region found in the
"no regrowth from wood harvest" scenario. This 409 Mt C is equivalent to 1497 Mt
CO2. For the study period 1985-2019 this is 50 Mt CO2 per year, a substantial contri-
bution to Canada’s net GHG emissions (670 Mt CO2 in 2021). The contribution from
LULCC in the 2021 NIR released by Canada is a carbon sink because of the large
amount of carbon sequestration provided by the forest. Here I have investigated
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net loss from carbon to illuminate both the climate impact of wood harvest alone, as
well as the carbon mitigation potential of reforestation efforts.

Reforestation and reduction in wood harvest as a nature-based solution is a vi-
able and effective method to mitigate climate change. Increasing forest cover can
help sequester carbon and help achieve a more sustainable environment. Moreover,
reducing wood harvest can help conserve existing forests and limit the amount of
carbon released into the atmosphere through deforestation. While this should be
complemented by other measures, it is an important step towards reducing GHG
emissions.
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Appendix A

Appendix

The efforts described in this Appendix use the managed forest as a study area - I ini-
tially thought I would be best to consider the area where wood harvest occurred, but
this definition and boundary changes year to year depending on the extent of wood
harvest. Using Canada’s ecozones provided more comparability with other studies
and a much more stable boundary. I initially trained the LSTM on all ecozones, in-
cluding marine and arctic areas. This was unable to be learned by the model as there
was too much difference between the data between ecozones. Creating a model ar-
chitecture that took this into consideration, such as multi-task learning, could be an
interesting avenue of research.

Before working with an LSTM, I attempted to use fully-connected neural net-
work (also known as an artificial neural network or multi-layer perceptron) to make
the carbon stock estimations. This model architecture is not temporally aware and
only considered a single year and grid cell at a time. This cause the model to have
very noisy predictions over the study period, but enabled a much longer inference
period. Because 30 of the 35 years of observable data were not being used as time se-
ries input, all 35 years could be used for inference. We can see in Figure A.1 there is
an extreme amount of variability, with total carbon stocks fluctuating by thousands
of Mt C year to year. As the data is yearly averages, there can be some variation
year to year and this was misleading for the neural network. It necessitated taking
a longer "image" of the climate at a particular grid cell, to better teach the neural
network the local climate.

Figure A.2 Shows the predictions based on the reforestation scenario. Here we
can again see large variation year to year and a negative contribution on the last
year, which should not be the case when adding tree cover.

Finally, in Figure A.3 we can see the spatial distribution of predictions made for
the year 2013. As discussed in the Supplemental Material of the manuscript, the
LSTM did not perform well at predicting variability in the carbon store. This model
was even less able to predict variation, as we can see the only substantial areas with
little carbon are areas with almost no tree cover (the area spanning the southern
parts of Alberta, Saskatchewan and Manitoba).
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FIGURE A.1: Predictions of total carbon in Canada’s managed forest
using the fully-connected neural network.

FIGURE A.2: Predictions of total carbon with reforestation dataset us-
ing the fully-connected neural network.
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FIGURE A.3: Spatial distributions of carbon predictions for the year
2013 using the fully-connected neural network.
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