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Abstract 
Performance Modeling of Vehicular Clouds Under Different Service Strategies Using 

Stochastic Methods 

Chinh Tran, Ph. D. 

Concordia University, 2023 

The amount of data being generated at the edge of the Internet is rapidly rising as a result of the 

Internet of Things (IoT). Vehicles themselves are contributing enormously to data generation 

with their advanced sensor systems. This data contains contextual information; it's temporal and 

needs to be processed in real-time to be of any value. Transferring this data to the cloud is not 

feasible due to high cost and latency. This has led to the introduction of edge computing for 

processing of data close to the source. However, edge servers may not have the computing 

capacity to process all the data. Future vehicles will have significant computing power, which 

may be underutilized, and they may have a stake in the processing of the data. This led to the 

introduction of a new computing paradigm called vehicular cloud (VC), which consists of 

interconnected vehicles that can share resources and communicate with each other. The VCs may 

process the data by themselves or in cooperation with edge servers. 

Performance modeling of VCs is important, as it will help to determine whether it can provide 

adequate service to users. It will enable determining appropriate service strategies and the type of 

jobs that may be served by the VC such that Quality of service (QoS) requirements are met. Job 

completion time and throughput of VCs are important performance metrics. However, 

performance modeling of VCs is difficult because of the volatility of resources. As vehicles join 

and leave the VC, available resources vary in time. Performance evaluation results in the 

literature are lacking, and available results mostly pertain to stationary VCs formed from parked 

vehicles. This thesis proposes novel stochastic models for the performance evaluation of 

vehicular cloud systems that take into account resource volatility, composition of jobs from 

multiple tasks that can execute concurrently under different service strategies. First, we 

developed a stochastic model to analyze the job completion time in a VC system deployed on a 

highway with service interruption. Next, we developed a model to analyze the job completion 

time in a VC system with a service interruption avoidance strategy. This strategy aims to prevent 
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disruptions in task service by only assigning tasks to vehicles that can complete the tasks’ 

execution before they leave the VC. In addition to analyzing job completion time, we evaluated 

the computing capacity of VC systems with a service interruption avoidance strategy, 

determining the number of jobs a VC system can complete during its lifetime. Finally, we 

studied the computing capacity of a robotaxi fleet, analyzing the average number of tasks that a 

robotaxi fleet can serve to completion during a cycle. By developing these models, conducting 

various analyses, and comparing the numerical results of the analyses to extensive Monte Carlo 

simulation results, we gained insights into job completion time, computing capacity, and overall 

performance of VC systems deployed in different contexts. 
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Chapter 1  

Introduction 
 

1.1. Motivation for Vehicular Cloud 

The number of smart devices, including vehicles, phones, watches, glasses, and meters, is 

growing rapidly. New devices are introduced continuously, and they generate massive amounts 

of data. These devices reside at the edge of the Internet, forming the network known as the 

Internet of Things (IoT).  

Data generated at the edge of the Internet is increasing rapidly due to vehicles equipped 

with advanced sensors. The generated data is transient by nature, and its significance for 

potential users decreases rapidly if not processed in a timely manner. The transferring of this data 

to the cloud is not feasible because of cost and latency [1]. This led to the introduction of the 

edge computing paradigm to provide computing power close to the source of data. However, this 

also may not be sufficient as we move towards smart cities [2], which envision providing 

intelligent services in transportation systems, healthcare, homes, workplaces, and more. Smart 

cities interconnect city infrastructure, allowing data collection from various human and machine 

sources. Additionally, recent smart devices like wearables and Augmented Reality/ Virtual 

Reality (AR/VR) systems, which often execute computationally demanding and time-sensitive 

applications, further increase the demand for nearby computing resources. The modern vehicles 

are having high computational power and storage capabilities. These resources may be under 

utilized which may be used to address the rising computational needs at the edge of the Internet 

[3], [4]. The cluster of computation and interconnectivity based on a network of modern vehicles 

is called a vehicular cloud (VC). As a result, the emerging vehicular cloud concept offers a 

promising solution, combining the untapped computational resources of the vehicles to tackle the 

challenges related to the generation of large amounts of data and latency requirements [5]–[7]. 

Vehicular cloud technology goes beyond simply offering surplus computational resources 

to nearby devices; it also presents potential solutions to pressing societal issues like traffic 

congestion and accidents. In the following sub-sections, we will explore the various applications 
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of vehicular cloud that can lead to safer and more efficient transportation systems as well as 

creative value-added services and applications. 

1.1.1. Improved traffic management 

The exponential rise in vehicular traffic in recent years has placed considerable strain on 

existing traffic management systems [8], prompting the search for innovative solutions to 

alleviate congestion and improve overall traffic conditions. 

It has been demonstrated that incorporating vehicular cloud technology into traffic 

management systems can substantially improve traffic flow and reduce congestion. This is 

largely due to the ability of vehicular cloud networks to collect and share real-time traffic 

information from numerous vehicles, which allows traffic management systems to make more 

informed decisions [9]. 

1.1.2. Enhanced road safety 

Vehicular cloud may help to enhance road safety and reduce traffic accidents [10], [11]. 

One of the primary motivations for research in this domain is the rising number of fatalities due 

to traffic accidents, which has been a global concern for years [12]. Vehicular cloud systems will 

facilitate the exchange of critical data related to traffic conditions and road hazards, which can be 

instrumental in developing predictive models and early warning mechanisms to mitigate 

accidents. By pooling the sensing capabilities of multiple vehicles, the vehicular cloud can create 

a more comprehensive and accurate picture of the road environment. Group sensing can help 

identify potential risks and hazards, such as road obstructions or pedestrians, leading to improved 

safety measures [13]. In the event of an accident, the vehicular cloud can streamline 

communication between emergency services and connected vehicles, ensuring a faster and more 

efficient response. Streamline communication can help minimize the severity of accidents and 

improve overall road safety [14], [15]. As such, exploring the potential of the vehicular cloud for 

improving road safety is essential for supporting safer and more efficient transportation 

ecosystems. 



3 

 

1.1.3. Enabling new services and applications 

One of the most compelling aspects of vehicular cloud computing is its ability to 

facilitate dynamic and adaptive resource sharing, which can revolutionize providing services 

such as in-vehicle infotainment and cooperative sensing [16], [17]. Additionally, the vehicular 

cloud enables the proliferation of location-aware services, thus enhancing the overall driving 

experience by providing real-time information about traffic conditions, parking availability, and 

locations of interest [18]. Furthermore, vehicular cloud computing allows for seamless, 

ubiquitous connectivity. This enables the development of many location-based services, 

significantly improving the overall driving experience [19]. However, extensive research in 

various aspects of the field is still necessary to realize these value-added applications. For 

example, it is essential to explore advanced techniques for efficient management of vehicular 

resources, as in [20], [21].  

1.2. Architectures of Vehicular Cloud 

Vehicular Cloud architecture has evolved since its conception due to the advancement in 

vehicular design and technology, communication capabilities, and potential applications of VC. 

Thus, it encompasses many different architectures, such as Vehicular Cloud Computing, 

Vehicular Fog Computing, and Vehicular Edge Computing. Vehicular Cloud Computing is 

originally an evolution of Vehicular-Ad-hoc-Networks (VANETs) inspired by Mobile Cloud 

Computing (MCC) [22], which allows mobile devices, such as mobile phones and laptops, to 

leverage cloud computing services and resources [23]. Eventually, as the number of data-

generating devices surged unexpectedly, Cloud Computing struggled to process these data in 

real-time due to network bandwidth constraints. Consequently, Edge Computing [24] and Fog 

Computing [25] emerged almost simultaneously to address the challenge in two different 

manners. While Edge Computing proposes a pervasive and miniaturized version of Cloud 

Computing and still permits users to leverage the processing of external edge servers nearby, Fog 

Computing proposes a network of user devices to interconnect and “co-operate among them and 

with the network to perform storage and processing tasks without the intervention of third-

parties.” Vehicular Edge Computing and Vehicular Fog Computing are the subsets of Edge 

Computing and Fog Computing, respectively, where the users are the vehicles. However, 
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specific to the vehicular domain, edge servers can be placed at Road-side Units (RSUs) to serve 

moving vehicles [26]. 

VC can also be classified into two categories called static or stationary VCs and dynamic 

VCs. Static VCs are usually based on stationary vehicles in parking lots, while dynamic VCs are 

based on moving vehicles on highways and roads in the cities.  

As there is yet a realization of vehicular cloud, a VC architecture that is more recent and 

evolved does not necessarily replace the older architectures. Thus, this section intends to 

investigate the details of three primary vehicular cloud architectures: centralized, distributed, and 

hybrid. Our goal is to dissect the unique attributes of each architectural type while assessing their 

respective strengths and weaknesses concerning scalability, reliability, and communication 

efficacy. By examining these architectures in depth, we aim to provide a comprehensive 

understanding of the design principles supporting the development of robust and efficient 

vehicular cloud systems. 

1.2.1. Centralized architecture (Vehicular Edge Computing) 

In the realm of vehicular cloud computing, the centralized architecture is characterized by 

a central server, which is often a nearby edge computing system that serves the communication 

and computation needs of vehicles and other network devices [27], [28].  

The primary strength of the centralized architecture is its potential for improved 

communication efficacy, as the single control entity can efficiently coordinate data transfer and 

computation among vehicles [29]. Moreover, the centralized nature of this architecture facilitates 

better resource allocation and task prioritization, which can lead to more efficient resource 

utilization and overall performance improvements [20]. Another advantage is the ease of 

implementing security measures, as the central control entity can oversee and enforce security 

protocols across the entire network, ensuring a consistent and robust security framework.  

Nevertheless, this architecture also exhibits certain drawbacks, particularly with regard to 

scalability and reliability. As the vehicular cloud expands and the number of connected vehicles 

grows, the central control unit may struggle to accommodate the increased computational 

workload, leading to possible congestion and performance issues. Additionally, the centralized 
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nature of this architecture makes it vulnerable to single-point failures, as any disruption in the 

central control unit can have significant consequences for the entire network. 

In conclusion, the centralized architecture of the vehicular cloud offers benefits in terms 

of communication efficacy, resource allocation, task prioritization, and security but may face 

significant challenges regarding scalability and reliability. 

1.2.2. Distributed architecture (Vehicular Fog Computing) 

In the modern era of vehicular technology, the distributed architecture of the vehicular 

cloud has emerged as a promising solution to harness the potential of computing resources 

available in vehicles [7]. The distributed architecture of the vehicular cloud is based on the 

assumption that vehicles are capable of handling offloaded computation, albeit with 

opportunistic resources [30]–[37]. This architecture is characterized by its ability to utilize the 

computing power of individual vehicles despite their resource intermittence nature. 

Due to the distributed characteristics of the architecture, the system does not suffer 

detrimentally when any single vehicle or component fails. In other words, this system's fault 

tolerance capability is higher than the centralized system, which enables continuous operation 

under this architecture. Additionally, since the computational workload is shared among multiple 

vehicles, this system makes better use of under-utilized resources on vehicles [38]. Moreover, the 

distributed architecture facilitates data processing closer to the source. This reduces energy 

consumption from data transmission. Furthermore, a distributed architecture allows the system to 

scale easily. A vehicle with computational resources and communication capabilities can easily 

and seamlessly be integrated into the computing network. This flexibility to incorporate new 

computing resources also means that utilization of the resources is opportunistic, and their 

availability is time-varying. The increased reliability comes at the expense of increased 

complexity in terms of communication and coordination among the vehicles, which could 

potentially impact the overall efficacy of the communication process. 

On the other hand,  the pool of resources from the vehicles can vary dynamically due to 

various reasons, such as congested communication channels or intermittent availability of 

computing resources, which may penalize the overall performance of the vehicular cloud. As the 

processing load is distributed across multiple vehicles, delays in communication between these 
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vehicles could negatively impact the speed at which tasks are completed. Moreover, the varying 

capabilities of individual vehicles in terms of computing power and resource availability may 

lead to an uneven workload distribution, further intensifying the latency issue [5]. 

1.2.3. Hybrid architecture 

The hybrid architecture of the vehicular cloud allows offloading of the computational 

tasks among vehicles, edge servers, and cloud servers, enabling dynamic allocation of resources 

based on the workload at any given time [39]–[42]. By leveraging the unique capabilities of 

these different entities, hybrid architecture aims to create a highly efficient and adaptive 

computing environment to meet the ever-increasing and diverse demand for computation power 

by new applications. 

The architecture shares multiple advantages with the distributed architecture, such as 

scalability, fault-tolerant, resource management, and scheduling flexibility. In this system, each 

component, including the vehicles, edge servers, and cloud servers, can autonomously contribute 

to the computational demands of the network, thereby mitigating the potential for bottlenecks in 

processing capabilities [43]. Furthermore, it is almost always possible to find more resource 

options for a specific task due to the diverse resource pool [44]. Moreover, hybrid architecture is 

quite reliable because of its decentralized design. Single points of failure are distributed across 

different computing platforms, creating a more stable system that is less likely to experience 

major failures. 

Hybrid architecture is not without its limitations. The communication efficacy between 

vehicles, edge servers, and cloud servers may be hampered by latency issues, particularly in 

scenarios where rapid real-time data processing is essential for optimal functionality. Another 

potential issue with this architecture is the complex orchestration required to synchronize and 

coordinate the dynamic offloading of computational tasks among vehicles, edge servers, and 

cloud servers, thereby causing operational inefficiencies and worsening resource allocation 

challenges. Another concern is the increased risk of security vulnerabilities in the system. The 

larger and more diverse a system becomes, the more interfaces and vulnerabilities it might have. 

Thus, there will be many more potential attack vectors to compromise the system. 
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1.3. Enabling technologies of Vehicular Cloud 

The vehicular cloud cannot emerge without a foundation laid by other enabling 

technologies since the vehicles have not always been computationally capable, and the 

communication channels have not been advanced enough to support tasks offloading. Recently, 

wireless communications, such as fifth-generation mobile network (5G) and sixth-generation 

mobile network (6G) technologies and vehicle-to-everything (V2X) communication, have played 

a pivotal role in facilitating the seamless exchange of information between vehicles and their 

surrounding environment. The computation capacities of the vehicles have increased drastically 

to support vehicular autonomy. Furthermore, advanced vehicular sensor systems have emerged 

as an enabling technology, encouraging data from the sensor system to be processed by nearby 

vehicles, which enhances situational awareness and cooperative decision-making in the vehicular 

cloud. Software-defined networks (SDNs) offer adaptable resource management, enhancing 

control and resource sharing in vehicular cloud operations. 

Next, we will describe each of the enabling technologies mentioned above that is 

contributing to the development of vehicular clouds. 

1.3.1. Advanced vehicular sensor systems 

In the present era, advanced sensor systems have emerged as indispensable components 

of modern vehicles, contributing significantly to enhanced safety, performance, and efficiency. 

Among the collection of sensors integrated into modern automobiles, radar, lidar, camera, and 

ultrasonic sensors feature prominently, working together to achieve optimal vehicular operation 

[45]. At the same time, the sensors produce an extremely large amount of data, which is 

incredibly rich in contextual information, extremely valuable, highly time-sensitive, and location 

bound. As such, the data must be processed immediately after its generation. However, the 

colossal amount of data generated by these sensor systems poses a daunting challenge, as the 

movement of this amount of data to the cloud is not feasible due to cost and bandwidth 

limitations. 
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1.3.2. Wireless communication 

The evolution of wireless communication enabling vehicular cloud systems started with 

VANETs. Initially, VANETs were dependent on Vehicle-to-Vehicle (V2V) communication, 

facilitated by Dedicated Short-Range Communications (DSRC). As the standards facilitating 

VANETs evolved, which allowed vehicles to interact with surrounding infrastructure improved, 

Vehicle-to-Infrastructure (V2I) paradigm emerged. 

The introduction of 5G, the fifth-generation mobile network, played a significant role in 

the evolution of vehicular communication. 5G offers superior speed, latency, and reliability 

compared to its predecessors and is based on three pillars: enhanced Mobile Broadband (eMBB), 

massive Machine Type Communications (mMTC), and Ultra-Reliable and Low-Latency 

Communications (URLLC). The development of 5G has been crucial in fostering V2X 

communication [46], [47], which aims to create a seamless flow of information among the 

various elements in the transportation ecosystem. 

V2X communication encompasses the exchange of information between a vehicle and 

any other entity, including other vehicles, infrastructures, and people. V2X enables vehicles to 

communicate with smart objects that belong to IoT. URLLC, the building block of V2X 

communication, has significantly enhanced the capabilities and potential of vehicular cloud 

systems by enabling real-time data sharing among vehicles. Recent studies have demonstrated 

the superiority of New Radio Vehicle-to-Everything (NR-V2X) over Wi-Fi-based technologies, 

such as DSRC, in terms of data rate and latency [48]. The study shows that NR-V2X can achieve 

10 ms latency for 100 bytes and 1500 bytes packets for a communication range of up to 500 m. 

Additionally, the study also shows that NR-V2X can achieve around 2 Mbps transmission rate 

for non line of sight (NLOS) for 500 m, which is an order of magnitude difference compare to 

Wi-Fi-based technologies. Other research has highlighted the advantages of Long Term 

Evolution (LTE) - based V2X communication, including wide coverage, high capacity, and high 

penetration [49]. More recently, empirical results show that LTE-V2X outperforms DSRC at 

long range and higher traffic density [50], which enables further the realization of VC.  

5G's key contribution to vehicular cloud systems is the enablement of V2X 

communication, fostering connectivity and collaboration among vehicles, infrastructure 

elements, and other road users. The ultra-low latency characteristics of 5G networks support 
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time-critical applications like collision avoidance, emergency response, and intelligent traffic 

management [46]. Additionally, the high data rates offered by 5G networks significantly enhance 

the computing capabilities of vehicular cloud systems, enabling the sharing of multimedia 

content, advanced mapping information, and real-time data analytics [47]. By seamlessly 

integrating 5G and V2X communication technologies, vehicular cloud systems can provide 

vehicles with faster access to cloud computing resources, thereby improving the efficiency of 

onboard computing units [51]. 

The significance of V2X in overcoming the challenges posed by unreliable 

communication channels in the Vehicular Cloud cannot be overstated. By seamlessly connecting 

vehicles and enabling resource sharing, V2X serves as the critical part of establishing a robust 

and dependable distributed network of computing power, storage, and supplementary services 

like location and witnesses [52]. V2X communication can also facilitate traffic flow 

optimization, enhances situational awareness, and enables cooperative driving applications, such 

as platooning or smart intersections [53]. This facilitation would reinforce and further stabilize 

the communication channels in Vehicular Cloud. Additionally, by providing vehicles with access 

to localized services and content, V2X technology significantly reduces dependence on 

continuous Internet connectivity, leading to a more stable and efficient network [54]. 

1.3.3. Autonomous vehicles 

Autonomous vehicles, commonly referred to as self-driving cars, represent a paradigm 

shift in transportation, leading the way to a new era of mobility. These sophisticated machines 

employ a wide range of sensors, algorithms, and advanced technologies to make their way 

through city streets and highways and make split-second decisions autonomously without relying 

on human input [4]. Consequently, autonomous vehicles promise to considerably mitigate 

traffic-related accidents, enhance fuel efficiency, and improve overall traffic conditions [55] 

while also potentially playing an enormous part in enabling vehicular cloud. 

For example, autonomous vehicles can exchange data to maintain optimal distances,  

circumvent collisions, and reduce redundant sensory resources. The latter perk permits the 

reduction in overall computation utilization rate if the vehicles are not connected, allowing 

excess computing to be leveraged by external devices. Furthermore, they can collaborate in 
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orchestrating traffic flow, thereby mitigating congestion and minimizing emissions. Additionally, 

the immense processing power of autonomous vehicles can be harnessed to examine and 

combine massive amounts of data, thereby facilitating the emergence of intelligent urban 

ecosystems and cutting-edge transportation infrastructures. In sum, the emergence of 

autonomous vehicles stands not only to revolutionize transportation and urban living in myriad 

ways but also to support the emergence of vehicular clouds.  

1.3.4. Software-defined networks (SDNs) 

SDNs paved the way for a transformative change in network management and 

orchestration, offering a more dynamic and programmable approach to controlling network 

resources [56]. By decoupling the control plane from the data plane, SDNs promote a centralized 

system for configuring, managing, and optimizing network infrastructure. The myriad 

advantages of SDNs, encompassing flexibility, scalability, and resource optimization, have 

brought about a wide array of applications spanning cloud computing, the IoT, and vehicular 

networks, including vehicular cloud 

 Software-defined networks play an instrumental role in facilitating vehicular cloud 

deployment. Firstly, SDNs foster a more robust and efficient connection between vehicles, 

thereby augmenting the overall vehicular cloud performance [57]. This is achieved through the 

optimization of routing paths and the utilization of real-time information for adaptive network 

infrastructure adjustments. SDNs are capable of managing and directing traffic in a distributed 

manner, thus improving network resilience and flexibility. Further, SDNs also bolster the 

security of the vehicular cloud by enabling distributed threat detection and mitigation [58]. 

Network traffic can be analyzed in various parts of the network for abnormal patterns, allowing 

for a more comprehensive and efficient response to potential threats. Thirdly, SDNs facilitate the 

management and allocation of vehicular cloud resources. By centralizing control, administrators 

can effortlessly monitor the network's available resources of the vehicular clouds and allocate 

them based on demand, mitigating resource contention and augmenting overall performance 

[59]. Lastly, SDNs contribute to the scalability of the vehicular cloud. As the number of vehicles 

surges, the network configuration can be easily adjusted and expanded to cater to growing 

requirements [60]. In summation, software-defined networks are indispensable in actualizing 
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vehicular cloud and possess the potential to revolutionize vehicular communication and 

resource-sharing paradigms. 

1.4. Security and privacy in Vehicular Cloud 

Vehicular cloud computing demands a thorough focus on security and privacy aspects. In 

fact, security and privacy in vehicular clouds directly impact the passengers onboard, making 

them two major obstacles in the implementation of vehicular cloud technology. Thus, ensuring 

data security and integrity is a primary concern, requiring strong encryption techniques and 

robust communication infrastructures to protect vehicular data against malicious actors and 

breaches. Additionally, adopting privacy-protection methods, including data anonymization, 

obfuscation, and aggregation techniques, is crucial for user anonymity and the reduction of 

personal information exploitation. The brief literature review below outlines possible strategies 

to tackle security and privacy issues in vehicular cloud, thereby increasing the feasibility of this 

paradigm. 

Data security and integrity are vital in information technology. Implementing strong 

encryption algorithms is essential for secure vehicle communication, preventing eavesdropping, 

tampering, or illegal data access [61]. Deployment of secure authentication protocols is 

necessary for the confirmation of vehicle identities and the prevention of unauthorized access 

[62]. Data integrity involves guaranteeing unaltered and consistent information, using techniques 

like checksums, digital signatures, and error-correcting codes [63]. Preserving data integrity is 

crucial for smooth vehicular cloud operation, as network-provided services rely on exchanged 

data accuracy [64]. 

Privacy-preserving techniques are essential in modern digital environments. In vehicular 

cloud, these techniques ensure data privacy for exchanged data volumes, including geolocation, 

driving patterns, and vehicle diagnostics. Encryption can secure communication channels, 

ensuring access solely for authorized entities [65]. Differential privacy can obscure individual 

data points within aggregate datasets, preserving user privacy while providing valuable insights 

[66]. Privacy-preserving techniques enable secure and private computation, using methods like 

secure multiparty computation (SMC) and homomorphic encryption for computations on 

encrypted data, preserving sensitive data confidentiality even during processing [67]. These 
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methods promote trust between users and service providers, driving widespread vehicular cloud 

technology adoption. 

1.5. Resource Management in Vehicular Cloud 

Effective resource management plays an important role in vehicular cloud computing, as 

it directly impacts the performance, efficiency, and quality of services offered by this 

technology. More importantly, by employing well-designed resource management methods, 

vehicles can be given more incentives to share their resources, promoting greater collaboration 

and resource pooling within the network. The motivation for resource management in vehicular 

cloud is to maximize system performance, minimize latency, and improve overall reliability 

while addressing the challenges of limited availability, dynamic topology, and diverse 

application requirements. In this context, various resource allocation and scheduling techniques 

have been proposed to achieve these objectives, which can be categorized into six groups: game 

theoretic approaches, auction-based mechanisms, learning-oriented optimization techniques, 

optimization-based strategies, bio-inspired algorithms, and consensus-based methodologies. 

Game theory provides a mathematical instrument for interpreting and examining strategic 

interactions amongst multiple rational actors within a system [68]. Concerning vehicular clouds, 

game-theoretic principles have been employed to investigate cooperative and adversarial 

engagements between vehicles to attain optimal resource allocation [69]. Importantly, game 

theory provides incentives for vehicles to share their resources, promoting more efficient 

utilization and distribution of vehicular resources. Various game-theoretic frameworks have been 

applied to vehicular cloud resource allocation, including cooperative games, non-cooperative 

games [70], and coalitional games, each with its distinctive characteristics and assumptions. 

Additionally, solution concepts, such as Nash equilibrium [71] and Pareto efficiency, have been 

employed to analyze the outcomes of strategic interactions among vehicles, thus facilitating 

stable and efficient resource allocation schemes. 

Conversely, auction mechanisms offer a decentralized methodology for resource 

allocation [72], [73]. Under this schema, vehicles can function as buyers and bidders, tendering 

bids for accessible resources to satisfy their computational requisites. Auction-based mechanisms 

provide incentives for vehicles to share their resources, as vehicles can benefit from pooling 
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resources together to increase their bidding power and maximize their chances of acquiring the 

required resources. Auction-oriented systems can foster efficient resource allocation by 

integrating market forces and stimulating competition amongst vehicles. Various auction 

formats, such as double auctions [72], [74], have been proposed to facilitate resource allocation 

in vehicular cloud environments. These auction mechanisms can be further refined through the 

incorporation of incentive-compatible mechanisms, pricing schemes [75], and truthful bidding 

strategies [76], ultimately prompting a fair and transparent resource allocation process. 

Learning-centric optimization techniques are a promising approach to resource allocation 

in vehicular clouds [27], [46], [77]–[79]. Such methods employ machine learning algorithms to 

extrapolate knowledge from past experiences and adapt resource allocation strategies 

accordingly. Incorporating learning-based optimization enables vehicular cloud systems to 

accomplish superior resource allocation outcomes in dynamic and uncertain environments. 

Various learning techniques, such as reinforcement learning [32], [46], [77], have been employed 

to enhance resource allocation decisions in vehicular clouds. These algorithms can leverage 

historical data and feedback mechanisms to continuously refine and update resource allocation 

policies, ensuring a robust and adaptive response to changing vehicular network conditions. 

Optimization-based strategies are grounded in mathematical models designed to 

maximize or minimize an objective function while adhering to specified constraints. More 

specifically, they intend to efficiently allocate computing, storage, and communication resources 

among connected vehicles in a vehicular cloud network to solve computationally intensive tasks 

[44]. These methods aim to maximize the overall performance and minimize the latency while 

taking into account the constraints and requirements specific to vehicular environments, such as 

high mobility, limited resources, and variable network conditions [34]–[36]. By leveraging 

mathematical optimization techniques, such as linear programming [33], [80], integer 

programming [81], and dynamic programming [82], researchers can attain optimal resource 

allocation solutions for vehicular cloud systems. Moreover, multi-objective optimization 

approaches, which consider multiple conflicting objectives simultaneously, have been proposed 

to account for the trade-offs inherent in vehicular cloud resource allocation, ensuring a 

comprehensive process [83]. 
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Bio-inspired algorithms, as the name suggests, are heuristics and metaheuristics derived 

from natural phenomena, emulating the processes observed in biological systems. These 

algorithms, which include genetic algorithms [20], [37], [84], swarm intelligence [85], [86], and 

ant colony optimization [87], have been used in vehicular cloud resource allocation due to their 

adaptability and ability to find near-optimal solutions. These algorithms help manage the 

complexity of resource allocation in vehicular cloud systems. Hybrid bio-inspired algorithms, 

which combine multiple techniques, improve performance and efficiency. Examples include 

combining genetic algorithms with particle swarm optimization or ant colony optimization, 

enabling more efficient exploration and exploitation of the solution space [88]. As a result, bio-

inspired algorithms are well-suited for addressing the challenges of vehicular cloud resource 

allocation. 

Consensus-based methodologies employ distributed coordination and decision-making 

principles to achieve consensus on tasks allocation amongst vehicles [39], [89]. Vehicles in a 

network communicate, share information, and iteratively update their local knowledge to 

converge on a collective agreement for tasks allocation. This approach to resource allocation 

fosters a self-organized, decentralized system in which vehicles can collaborate and synchronize 

their actions to attain optimal tasks distribution. Various consensus algorithms, such as the 

average consensus algorithm [90], the weighted consensus algorithm [91], and the gossip-based 

consensus algorithm [92], have been utilized to facilitate resource allocation in vehicular cloud 

systems. Additionally, fault-tolerance mechanisms and privacy-preserving techniques can 

improve the robustness and security of consensus-based resource allocation, ensuring reliable 

and trustworthy resource distribution in vehicular networks. 

1.6. Performance Modeling of Vehicular Cloud 

As explained in the previous section, resource management deals with the allocation of 

computational resources to tasks such that the system performance is maximized. In general, 

resource management assumes that available resources and task workloads are constant. Given 

the available resources and workload, it attempts to determine the optimal allocation of the 

resources to the tasks. Thus, random processes that govern the system's behavior, such as the 
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arrival process of vehicles to the VC, residency times of the vehicles, number of tasks in a job, 

and task execution times, are not captured. 

Performance modeling of vehicular cloud systems attempts to evaluate system 

performance by taking into account its stochastic nature. Job completion time, resource 

utilization, and service capacity of vehicular cloud are important performance measures. There 

are three primary methods of performance modeling: stochastic modeling, simulation, and 

statistical analysis. Stochastic modeling offers a mathematical framework to study the 

performance of vehicular clouds [93]–[97]. Simulation, on the other hand, creates a digital 

environment replicating real-world vehicular cloud scenarios, enabling researchers to analyze 

various configurations and identify potential bottlenecks without implementing them in an actual 

system [39], [44], [98]. Lastly, statistical analysis involves examining data from real-world 

vehicular cloud systems to identify trends and patterns in traffic, which can inform the design of 

increasingly more efficient architectures [6].  

As the main subject of this thesis is performance modeling using the stochastic modeling 

method, detailed reviews of relevant works on the same subject matter will be discussed further 

below in two different subsections divided by vehicular cloud architectures. 

1.6.1. Hybrid or Centralized VC architectures 

In [99], the authors address the growing demand for powerful mobile applications, such 

as VR and AR, which are often limited by storage, computing capability, and battery life of 

mobile devices. The paper focuses on an application scenario where Mobile-Edge Computing 

(MEC) facilities are provided as a Software as a Service (SaaS) within a limited geographical 

area for mobile-edge devices (MEDs). The authors employ a Markov model with requests 

reneging to analyze the MEC system performance concerning task-dropping probability and 

mean time spent by a computation request in the MEC system. They develop a design procedure 

to identify the optimal number of computation resources to be allocated to the MEC system to 

fulfill specific QoS requirements. However, the analytical model relies on several simplifying 

assumptions, making the problem more manageable but potentially limiting the model's 

applicability in more complex real-world scenarios. 

[100] investigates the local delay problem in a MEC-based VANET, specifically focusing 

on a suburban scenario where a vehicle node requires computing services from an edge node. 
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The authors derive closed-form expressions for both uplink and downlink local delays using 

stochastic geometry. Key assumptions include the spatial distribution of vehicle nodes on each 

street following an independent 1-D homogeneous Poisson point process (PPP) and edge nodes 

being deployed at each intersection with a certain probability. Contrary to most existing local 

delay models for VANETs, the authors employ a carrier sense multiple access (CSMA) 

mechanism for channel access by both vehicle and edge nodes. The derived analytical model's 

effectiveness is verified through numerical results, which also investigate the impacts of 

underlying network parameters on the local delay. The model serves as a guideline for edge node 

deployment. Despite its contributions, the work focuses exclusively on a suburban scenario, 

leaving the analysis of an urban scenario to be explored in future research. 

The work presented in [101]  revolves around the performance modeling of a single-

server MEC system under a task scheduling strategy that considers both the priority and time 

constraint of computing tasks. The authors construct a 3-D Markov chain to depict the queuing 

and processing process at a MEC server, accommodating the task scheduling strategy. From this 

Markov model, they derive the system's performance in terms of the average drop probability 

and average waiting time. However, the work has its limitations, as it focuses on a single-server 

MEC system, which may not be representative of more complex MEC systems. 

In [102], the authors propose the use of Software Defined Vehicular Networks (SDVN) 

to address the challenges posed by the significant increase in traffic within VANET, which has 

resulted in considerable delays in data transfer. By employing reliable multi-hop cooperative 

data dissemination (MHCDD) for data traffic forwarding, SD-VANETs, a form of SDVN, 

enhance end-to-end connectivity and network resource utilization in dynamic network 

topologies. The authors analyze the network model using 𝑀/𝑀/𝑚 queueing model to effectively 

minimize delay and enhance throughput within the multi-server queueing system of SDVN. 

[103] presents an analytical model for evaluating the performance of vehicular edge 

computing (VEC) systems with bursty task arrivals. It’s assumed that the tasks may be executed 

locally, at neighboring vehicles and edge servers. It’s assumed that the vehicles generate tasks 

according to Markov Modulated Poisson Process (MMPP). Each vehicle keeps locally generated 

tasks and the offloaded tasks from the neighboring vehicles in separate queues. They use a 

Markov chain analysis to determine the average task delay. The analysis in this work does not 
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consider jobs with multiple tasks, and there is no resource volatility as the number of vehicles is 

assumed to be constant. 

In [104], a cooperative computation model is studied between the nearby vehicles and 

edge servers. They consider three node computation model where the nodes are two vehicles and 

an edge server. One of the vehicles is the host vehicle for the task, and the other vehicle and the 

edge server are within one-hop communication range of the host vehicle. The authors consider 

three execution modes of the task: by a single node, by two nodes, and by all three nodes. In the 

cases of multiple node executions, the task is partitioned into subtasks, each to be executed by a 

node. The analysis also takes into account communication reliability and overhead. They 

determine the probability of successful completion of a task through constrained optimization. 

Their results show that jobs with short deadlines and large data sizes will benefit from 

cooperative computation as opposed to noncooperative solutions. 

1.6.2. Distributed VC architecture 

 In [105], the authors analyze a VC based on the vehicles at a traffic-light-controlled 

intersection.  The authors examine an intersection’s traffic by modeling it as a G/G/1 queue. 

Then, they analyze it with the diffusion method. Based on this traffic model, the distribution of 

the lifetime of the VC that follows a specific quality of service criteria, which is that number of 

vehicles must be above a certain threshold, is determined. However, the task service strategy and 

the performance of the VC under computational load have not been studied. 

 [106] presents a model to evaluate the time-dependent performance of platooning 

communications at intersections using the 802.11p protocol in autonomous driving scenarios. 

The authors consider various movement behaviors of platoons at intersections, including turning, 

accelerating, decelerating, and stopping, as well as the periodic change of traffic lights. 

Subsequently, they establish a hearing network to reflect the time-varying connectivity among 

vehicles. The pointwise stationary fluid flow approximation (PSFFA) is employed to model the 

nonstationary behavior of the packet transmission queue. The packet transmission delay (PTD) 

and packet delivery ratio (PDR) are derived, and the accuracy of the proposed model is validated 

through simulation. 
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In the [107], the authors examined the performance of broadcast packets in a one-

dimensional VANET using the slotted ALOHA protocol. The analysis primarily centered on the 

packet delivery probability (PDP) under a delay constraint, given its importance in safety-related 

applications within VANETs. The authors used stochastic geometry theory to represent vehicle 

locations and introduced an approximation technique to address spatial correlations in 

interference. The authors showcased, via numerical and simulation findings, that spatial 

correlations in interference have a notable impact on PDP and produced an analytical formula for 

PDP that can be numerically computed. 

In [108], [109], the authors investigated job completion time in a stationary VC in a 

parking lot. It is assumed that the execution time of a job is a random variable with a finite mean, 

and the residency time of the vehicles in the VC is exponentially distributed. For reliability, the 

system uses redundancy which assigns a job to two vehicles. Each of the vehicles executes its 

instance of the job. When one of the vehicles departs before finishing the execution of the job, 

the remaining vehicle halts its execution, and the work done by the leaving vehicle is saved. 

Then, the system starts recruiting an additional vehicle to resume the execution of the job. The 

recruitment duration is a random variable with a general distribution. If a new vehicle is recruited 

before the remaining vehicle departs, then the saved work is migrated to the new vehicle. 

Following that, both vehicles resume the execution of the job. This iteration of the execution 

fails if the remaining vehicle leaves before another vehicle is recruited. The unfinished work is 

discarded, and a new iteration begins with the recruitment of two new vehicles for the execution 

of the job. This process continues until the execution of the job is successfully completed. The 

paper determines the expected completion time of job execution.  

The work in [110] is a follow-up of [108] and it uses the same assumptions. They 

propose an alternative approach for the derivation of job completion time that takes into account 

the cost of failures. This is done by assuming that approximations to the first and second-order 

moments of the parameters are available. They consider three scenarios: both the first and second 

moments of both the duration of the recruitment and execution time of a job are available; only 

the first moment of the job execution time is known; the first and second moments of the job 

execution time are known. The scenario that assumes the availability of the first and second 

moments of job execution time seems to follow the simulation results better than the other 



19 

 

scenarios. However, for longer job execution times, the correlation between the approximations 

and simulations is not good.  

In [111], the availability aspect of a stationary VC in a parking lot is analyzed using 

stochastic modeling. Jobs are serviced under “𝐽𝑛” strategy, where each of the 𝑛 copies of a job is 

executed by different vehicles. The work determines a closed-form expression for the mean time 

to failure (MTTF) of 𝐽𝑛 job assignment and presents a formulation to determine 𝑛 given a QoS 

threshold. 

Though the works in [108], [110], [111] derive job completion time in a VC, the models 

assume a stationary VC, and the job consists of a single task. The assumption of simultaneous 

execution of a job by multiple vehicles increases job completion time substantially. Since the 

model assumes a stationary VC with parked vehicles, this redundancy seems to be unnecessary, 

as communication in this environment should be reliable. 

In [112], the authors investigate job completion time for a dynamic VC system on a 

highway with a service without redundant execution and migration overhead. It is assumed that 

there are access points (AP) on the highway with arbitrary coverage, but there will be segments 

of the highway with no coverage. The vehicles can only upload and download their work under 

the coverage of an AP. The authors also assume that the downloading and uploading can only 

occur under the coverage of a single AP, and a job can be completed by a single vehicle without 

communicating with other vehicles. The authors list three scenarios where a vehicle completes 

its job: a vehicle finishes a job under the coverage of one AP but finishes the uploading of the 

result under the coverage of the next AP; job execution ends outside of the coverage of an AP; 

job execution and uploading of the result is completed under the same AP. Then, the authors 

derive the completion time of a job in each case. After that, they combine the results of the three 

cases by weighing them with their limiting probabilities. The authors then confirm their findings 

by simulation. Though this work studies job completion time in a dynamic VC, they assume that 

the residency time of the vehicle does not expire during the execution of a job and a job consists 

of a single task.  

In [113], they study energy-aware resource management in Electric Connected 

Autonomous Vehicles (eCAVs). It’s stated that these vehicles will generate a massive amount of 

data that needs to be processed with minimum latency. This problem may be addressed by 
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having edge servers located at RSUs. However, this solution may not be scalable due to a large 

number of vehicles, workload, and limited capacity of edge servers. Local execution of the 

workload by operating a central processing unit (CPU) at a high frequency, even if it meets the 

requirements, is not desirable because it will result in high power consumption, which will 

reduce the driving range of the electric vehicle. It has been found that a task executed at a high 

CPU frequency may consume much more power than executing a task at a lower CPU 

frequency. As a result, energy savings may be achieved by partitioning the tasks into subtasks 

and executing them in multiple vehicles in parallel at lower CPU frequencies. The authors 

propose an energy management algorithm that minimizes computational energy by distributing 

the workload among a number of eCAVs. 

1.7. Research objectives 

In this section, we explain the objectives of the research in this thesis. The widespread 

realization and acceptance of VCs still face many challenges. These challenges arise due to the 

volatility of resources, privacy concerns, and drivers not willing to share their resources. 

However, the realization of many societal goals requires the assistance that VCs may offer. 

Resource volatility arises from intermittent communication connectivity and random residence 

times of the vehicles in the VCs. Advances in wireless communications, installation of RSUs, 

and deployment of Unmanned Aerial Vehicles (UAVs) [114] will help maintain connectivity in 

VCs. Smart vehicles and smart cities will benefit from cooperative driving in data collection and 

forming a view of the environment. These will provide incentives for drivers to share their 

resources and remain members of a VC for a longer period of time. Thus, drivers may be willing 

to form a platoon by adjusting their speeds to prevent the breakup of the VCs. In the future, VCs 

will be more stable and have longer lifetimes. 

The objective of this thesis is the performance evaluation of these networks under 

different operating environments and workloads. Important performance measures of VCs are 

job completion time and their computation capacity. Knowledge of job completion time will help 

inform deployment strategies and ensure that QoS requirements are met. The computation 

capacity of a VC indicates the number of jobs that can be completed during the lifetime of this 

system. The complexity of vehicular cloud systems presents a significant challenge to their 
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performance modeling. Next, we discuss the factors that impact the performance of these 

systems. 

- Ressource volatility: As stated in the above, the behavior of these systems can vary 

greatly depending on the specific workload and environment in which they operate. 

Since vehicles are moving in and out of the vehicular cloud randomly in these 

systems, the available resources are time-varying. The variability of the resources 

depends on whether VCs are dynamic or static. The volatility of the resources will be 

higher in dynamic VCs than in static ones. Even in dynamic VCs, resource volatility 

depends on whether VCs are formed on highways or on streets with traffic lights and 

stop signs. Also, whether the traffic is free-flowing or congested impacts the 

availability of resources. The residency time of vehicles in congested traffic will be 

longer. The drivers caught in congested traffic will be more willing to share their 

resources, especially if the objective of an application is to alleviate the congestion. 

- Job Composition: The performance of the system depends on whether a job consists 

of single or multiple tasks. In the case of a job with multiple tasks, whether these 

tasks are independent of each other or dependent on each other also impacts the 

performance. If the tasks of a job are independent, they can be executed concurrently 

without waiting for the results from the other tasks.  

- Service strategy: Another important factor that impacts the performance of the 

system is the task service strategy. In this case, we have three service strategies: 

interrupted, uninterrupted service, or hybrid task service. In the interrupted service 

strategy, a task is assigned to a vehicle even if the residency time of the vehicle is not 

sufficient to finish the execution of the task. In this strategy, when the vehicle departs, 

the task is assigned to another vehicle, which resumes its execution from where it was 

left. This strategy suffers from migration overhead. In the uninterrupted service 

strategy, a task is assigned to a vehicle only if the residency time of the vehicle is 

sufficient to finish the execution of the task. Thus, this strategy does not experience 

migration overhead due to service interruption. However, if the execution time of a 

task is long compared to vehicle residency times, then the task assignment may take a 

long time. The job completion time increases due to migration overhead in the 

interrupted service strategy and due to task assignment delay in the uninterrupted 
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service strategy. A hybrid service strategy is a mix of interrupted and uninterrupted 

service strategies. It uses an interrupted service strategy to assign tasks with long 

execution times and an uninterrupted service strategy to assign tasks with short 

execution times. An important parameter will be the threshold that determines which 

service strategy to use.  

From the literature survey in the previous section, research work on the performance 

evaluation of VCs is very limited. The references [108]–[111] determine the average job 

completion time in a stationary VC in a parking lot. They assume a service strategy with 

interruption, thus, a vehicle may depart before execution is completed. The drawback of this 

work is that there is no vehicle arrival process to the VC. It is assumed that the amount of time to 

recruit a vehicle to execute the job is a random variable with a general distribution. The 

recruitment time is assumed to be the same whether or not there are vehicles in the parking lot. 

Another drawback of these works is the assumption that the job consists of a single task. 

The work in [112] determines job completion time in a dynamic VC on a highway 

scenario. It is assumed that there are APs along the highway; however, there are gaps in the 

coverage of the APs. Jobs may only be downloaded and uploaded under the coverage of APs.  

The objective of the research in this thesis is to study the job completion time and the 

throughput of the VCs under different service strategies in various environments. 

1.8. Contributions 

The main contributions of this thesis are centered around the performance modeling of 

vehicular cloud systems using stochastic methods. These contributions are as follows: 

1. Job completion time in a dynamic VC on a highway: In this work, we developed a 

stochastic model to analyze the job completion time in a VC system deployed on a 

highway. Our model accounts for the dynamic nature of the VC, where vehicles are 

constantly entering and exiting the system. The computing power and the complexity of a 

task are characterized by the time taken to complete the task. 

Publication:  

a. C. Tran and M. Mehmet-Ali, “Analysis of Job Completion Time in Vehicular Cloud 

Under Concurrent Task Execution,” International Conference on Computing, 
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Networking and Communications (ICNC 2023). IEEE, Feb. 22, 2023. doi: 

10.1109/ICNC57223.2023.10074524 

b. C. Tran and M. Mehmet-Ali, “A Performance Modeling of Dynamic Vehicular 

Clouds: Job Completion Time of Concurrently Executed Tasks,” 6th International 

Workshop on Vehicular Networking and Intelligent Transportation Systems 

(VENITS). July 18 – Accepted 

2. Job completion time in VC with interruption avoidance strategy: We also developed a 

model to analyze the job completion time in a VC system with an interruption avoidance 

strategy. This strategy aims to prevent disruptions to the VC by only assigning the task to 

a vehicle if it can complete it before it leaves the VC.  

Publication:  

a. C. Tran and M. Mehmet-Ali, “Towards Job Completion Time in Vehicular Cloud by 

Overcoming Resource Volatility,” 2022 IEEE 47th Conference on Local Computer 

Networks (LCN). IEEE, Sep. 26, 2022. doi: 10.1109/lcn53696.2022.9843398. 

b. C. Tran and M. Mehmet-Ali, “Performance Analysis of Vehicular Cloud Under 

Interruption Avoidance Strategy,” 2022 IEEE Canadian Conference on Electrical and 

Computer Engineering (CCECE). IEEE, Sep. 18, 2022. doi: 

10.1109/ccece49351.2022.9918500. 

3. The computing capacity of a VC with interruption avoidance strategy: In addition to 

analyzing the job completion time, we also evaluated the number of jobs consisting of a 

random number of tasks that a VC system can complete during its lifetime with an 

interruption avoidance strategy. 

Publication:  

a. C. Tran and M. Mehmet-Ali, “Towards Modeling Computation Capacity of a 

Vehicular Cloud while Overcoming Resource Volatility,” 2023 Biennial Symposium 

on Communications (BSC 2023). IEEE, Jul. 4-7, 2023 - Accepted 

4. The computing capacity of a robotaxi fleet: Finally, we studied the computing capacity of 

a robotaxi fleet, a type of VC system where self-driving vehicles provide on-demand 

transportation services and during their idles times perform task computations. More 

specifically, the average number of completed tasks that a robotaxi fleet can complete is 

analyzed, which can be determined numerically. 
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Publication:  

b. C. Tran and M. Mehmet-Ali, “Robotaxis as Computing Clusters: A Stochastic 

Modeling Approach,” Sixteen International Workshop on Selected Topics in Mobile 

and Wireless Computing. IEEE, Jun. 21-23, 2023 - Accepted 

Overall, this thesis makes measurable contributions to VC performance modeling by 

comprehensively analyzing the job completion time and computing capacity of VC systems 

under various scenarios and conditions. 

1.9. Organization 

The remainder of this thesis is structured as follows: Chapter 2 analyses job completion 

time in a dynamic VC under free-flow and congested traffic conditions with a service 

interruption strategy. Chapter 3 analyzes job completion time under an interruption avoidance 

service strategy. Chapter 4 derives the computing capacity of a VC under the interruption 

avoidance strategy, including the number of completed jobs for a given number of tasks. Chapter 

5 derives the computing capacity of a robotaxi fleet, including the average number of tasks that 

the fleet can complete. Finally, Chapter 6 presents the conclusions. 
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Chapter 2  

Job completion time in a VC with service 

interruption  

 

In this chapter, we will evaluate the performance of a dynamic VC formed by moving 

vehicles. We will consider a VC on a highway and study its performance both under free-flow 

and congested traffic. In the model, the vehicles join the VC randomly, and after spending a 

random amount of time, they depart. Thus the population size of the VC is time-varying. We 

analyze the completion time of a job consisting of multiple tasks executed concurrently. We 

consider a task assignment scheme where a task may only be served at any time by a single 

vehicle, and a vehicle can only serve one task at a time. If a vehicle serving a task leaves the VC, 

that task must be migrated to another vehicle. The migration occurs immediately if there is an 

idle vehicle in the VC. Otherwise, the VC suspends the task until another vehicle becomes 

available. Regardless, the VC migrates the image of the task to the new vehicle to resume 

execution from where it was left. The execution of a job is completed when the execution of all 

its tasks completes.  

 

2.1 Free-flow traffic on a highway 

Traditionally, highways are considered uninterrupted flow facilities [115]. However, it is 

common to see congestion on highways in major cities. In this section, we will consider 

highways with free-flow traffic where the residency time of the vehicles on the highway is 

independent of each other. 

First, we will analyze job completion time by assuming that migration overhead is 

negligible. Then we relax this assumption, introduce migration overhead to the model, and use 

an ad-hoc method to derive the bounds of the job completion time for this case. The main 
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contributions of this section are below: 

• The system is modeled as a two-dimensional birth-death process, and a set of differential 

difference-equations describing the system's behavior is provided. After solving these 

equations, the job completion time's probability density function (pdf) is determined.   

• Based on the first result, the probability distribution of the number of service interruptions 

of a task is subsequently provided.  

• Finally, the upper bound for average job completion time with migration overhead is 

derived based on the previous results. 

2.1.1. System model 

Vehicle Cloud Model 

We consider a highway scenario where the vehicles can wirelessly interconnect to form a 

VC, as shown in Fig. 2.1.  

 

Fig. 2.1.  System model 

It is assumed that a vehicle may generate a new job with several tasks. This vehicle is 

called the owner of the job. Then, this vehicle initiates the formation of a VC and becomes the 

VC's leader. We further assume that all the vehicles within the transmission range of the leader 

become members of the VC, and these vehicles are called worker vehicles. The worker vehicles' 

primary function is to execute the job's tasks. A worker vehicle has two states which are referred 

to as active and idle. A worker vehicle is in the active state when working on a task; otherwise, it 
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is in the idle state. The leader only manages the assignment and migration of the tasks and does 

not actively process the tasks. A worker can only process a single task at any time. The size of 

the VC refers to the number of vehicles currently in the cloud, and it does not include the leader. 

The population of the VC is dynamic since the workers join to and depart from the VC as they 

may have different speeds than the leader. The VC terminates when processing of all the tasks of 

the job is completed. In this work, workers and worker vehicles will be used interchangeably. 

Similarly, the leader and leader vehicle are also interchangeable. 

Job Model 

We assume that a job consists of 𝔍 tasks, each requiring a random amount of processing 

time. A worker vehicle can only execute a single task at any time and vice versa. Each task can 

be in three states which will be referred to as completed, active, and suspended. A task is in the 

completed state if its processing is complete. A task is in the active state if it is currently under 

execution. A task is suspended if its processing is halted because no worker can process it. In 

other words, the tasks in either active or suspended states are uncompleted. The processing of a 

job finishes when all its tasks complete their processing. During the execution of a job, job size 

refers to the total number of uncompleted tasks. At any time, the job size can be either bigger 

than, smaller than, or equal to the VC size. If the VC size is larger than the job size, it means all 

uncompleted tasks are in active state, and there are idle workers. On the other hand, if the VC 

size is smaller than the job size, the number of tasks in the active state equals to the VC size, and 

the remaining uncompleted tasks are in the suspended state. Finally, when the VC size equals the 

job size, all the uncompleted tasks are in active state, and there are no idle workers or suspended 

tasks. 

Task Service Strategy 

As explained above, each task may be served by a single vehicle, and each vehicle can 

only serve a single task at any time. After generating a job and forming of the VC, the leader 

vehicle randomly assigns the tasks to the worker vehicles initially present in the VC. If the job 

size is larger than the VC size, the number of idle vehicles is zero, and unassigned tasks are 

suspended. When a new worker joins the VC, if there are any suspended tasks, the leader 

randomly chooses one of the suspended tasks and assigns it to the arriving worker vehicle for 

execution. When a worker completes the processing of a task, the leader assigns to the vehicle a 
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suspended task, if any. When a worker departs from the VC, if this worker is serving a task, that 

task will be suspended if there are no idle workers in the VC; otherwise, the leader will randomly 

assign the task to one of the idle workers. 

As an example in Fig. 2.2, we show an execution of a job with 3 tasks in a VC. At the 

time of the VC formation, 𝑡0, there are 2 vehicles (vehicles 1 and 2) in the VC. Vehicle 1 is 

randomly assigned task 3, and vehicle 2 is randomly assigned task 2. As may be seen, at time 𝑡1 

vehicle 2 leaves the VC. Since there is no other vehicle that can take over the execution of task 2, 

the task is suspended. At 𝑡2, vehicle 3 arrives to the VC, and the VC randomly chooses task 2 to 

assign to the vehicle. As vehicle 3 leaves the VC shortly after, task 2 becomes suspended again. 

At 𝑡3, vehicle 1 completes task 3. As there are 2 suspended tasks, the VC randomly chooses task 

2 from the suspended tasks (tasks 1 and 2) and assigns it to the vehicle 1. At 𝑡4, vehicle 4 arrives 

when only task 1 is in the suspended state. Therefore, the VC picks task 1 and assigns it to this 

vehicle. When vehicles 5 and 6 arrive to the VC between 𝑡4 and 𝑡5, as there are no suspended 

tasks these vehicles remain idle. Finally, at 𝑡5, vehicle 1 stops executing task 2 and departs from 

the VC. Since vehicles 5 and 6 are idle, VC assigns this task to randomly chosen vehicle 6. Then, 

the task immediately continues its execution. 

 

Fig. 2.2.  An example of a timeline of a VC executing a job of 3 tasks starting from the VC’s 

creation to the completion of the job. 

 The notation used in this sub-section is shown in Table 2.1. 
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Notation Description Notation Description 

𝔍 Number of tasks in a job 𝜃𝑗 
Subsystem 𝑗 representing the set of 

states that is reachable from state 

{𝑗, 𝑘} for a fixed value of 𝑗 

𝜇 Service rate of a task 𝑋𝑗 
Absorbing time of subsystem 𝜃𝑗 to 

make the transition to an absorbing 

state 

𝜆 Arrival rate of vehicles 𝐺𝑋𝑗(𝑥𝑗) 
Cumulative distribution function of 

the absorbing time 𝑋𝑗 

𝛼 Service rate of a vehicle 𝑔𝑋𝑗(𝑥𝑗) 
Probability density function of the 

absorbing time 𝑋𝑗 

�̅� 
Mean residency time of a vehicle in 

the system 
𝒢𝑗(𝑠) 

Laplace transform of the probability 

density function of the absorbing time 

𝑋𝑗 

�̅� Mean execution time of a task 𝑌𝑛 Completion time of the 𝑛′𝑡ℎ task 

�̅� 
Average number of vehicles in the 

system 
𝒴𝑛(𝑠) 

Laplace transform of the probability 

density function of completion time 

of the 𝑛′𝑡ℎ task 

𝑘 
Number of vehicles in the system, 

𝑘 ≥ 0 
�̅�𝑛 Average completion time of 𝑛′𝑡ℎ task 

𝑗 
Number of uncompleted tasks in the 

system, 0 ≤ 𝑗 ≤ 𝔍 
�̅� Average task service time 

𝑃𝑗(𝑡) 
Probability that there are 𝑗 

uncompleted tasks in the subsystem 𝜃𝑗 

at time 𝑡. 
𝛾 

Probability that an execution of a task 

will be interrupted 

𝑃𝑗,𝑘(𝑡) 
Probability that there are 𝑗 

uncompleted tasks and 𝑘 vehicles in 

the subsystem 𝜃𝑗 at time 𝑡 
ℓ 

Number of interruptions that a task 

experiences during its service time 

𝑄𝑘 
Steady-state probability that there are 

𝑘 vehicles in the system 
ℓ̅ 

Average number of interruptions 

leading to workload migration. 
ℒ𝑗,𝑘(𝑠) Laplace transform of 𝑃𝑗,𝑘(𝑡)   

Table 2.1. Main notations of section 2.1 

2.1.2. An analysis of job completion time 

Next, we analyze the system under the service strategy described in the previous 

subsection. The objective of the analysis is determining the probability density functions of task 

completion and job completion times. This objective requires the knowledge of the transient 

behavior of the system starting from the time that the job is created to the completion of the last 

task. Since, in this strategy, there will be service interruptions due to premature departures of 

workers during the task processing, we will also be interested in the probability distribution of 

the number of service interruptions a task undergoes during its execution.  
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i) Mathematical Assumptions 

As stated in the previous subsection, a new job will have 𝔍 tasks. We assume that the 

execution times of the tasks are independent and identically distributed (i.i.d) according to an 

exponential distribution with parameter 𝜇. The assumption of exponential execution times for 

tasks is often used in cloud computing [116]–[119] and, more recently, in vehicular edge 

computing [99]. It is shown in [120] that the distances between two adjacent vehicles on a 

highway are i.i.d with an exponential distribution. This result assumes a Poisson arrival of the 

vehicles to an arbitrary point on a highway, which was empirically confirmed in [115]. In [6], the 

vehicles' arrival and departure processes and the number of vehicles in a VC have been shown 

empirically to follow a Poisson process. As a result, we will model VC population size as a 

𝑀/𝑀/∞ queueing system with a Poisson arrival process with parameter 𝜆 and exponentially 

distributed residency times with parameter 𝛼. We assume that at the time that a leader vehicle 

creates the job, the number of worker vehicles in the VC is at a steady state. Defining k as the 

number of worker vehicles in the VC, it is given by the steady-state probability distribution of 

the number of customers in a 𝑀/𝑀/∞ queueing system. From [121], 

𝑄𝑘 = 𝑃𝑟(𝑘 𝑤𝑜𝑟𝑘𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑉𝐶) =
(𝜆 𝛼⁄ )𝑘

𝑘!
𝑒−𝜆 𝛼⁄ ,        𝑘 ≥ 0 

(2.1) 
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ii) State Transition Diagram of The System 

A set of two variables, {𝑗, 𝑘}, may represent the states of the system, where 𝑗 denotes the 

number of uncompleted tasks, and 𝑘 denotes the number of worker vehicles in the system at any 

time. We note that when the system is in the state {𝑗, 𝑘}, it means that the execution of 𝔍 − 𝑗 

tasks has been completed, and the number of suspended tasks is given by max(0, 𝑗 − 𝑘). We can 

 

 

Fig. 2.3. State transition diagram for the system. In each state the number of uncompleted tasks 

is shown above the of number of worker vehicles in the system. 
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model the system using a two-dimensional birth-death process, whose state-transition diagram is 

shown in Fig. 2.3. In the figure, in the states of each row the number of vehicles varies while the 

number of uncompleted tasks remains same. More specifically, in a row, the number of vehicles 

increases by rate 𝜆 as the system state moves from left to right and decreases by rate 𝑘𝛼, where 𝑘 

is the current number of vehicles in the VC, as the system state moves from right to left. In a 

column, the number of unfinished tasks decreases by one as the system state moves from top to 

bottom row by row. However, in the states of the left-most column the number of vehicles in the 

VC is zero, i.e., 𝑘 = 0, as a result there are no transitions between the states in this column since 

there are no vehicles to execute the tasks. Additionally, in the columns that have transitions 

between neighboring states these transitions are uni-directional (going from top to bottom) 

because no new tasks are created during job execution.   

iii) Derivation of the Differential-difference equations describing the system 

Next, we write the differential-difference equations describing the system in Fig. 2.3.  We 

identify four types of states in Fig. 2.3, which are shown in Fig. 2.4. 

Fig. 2.4a shows the state transition diagram for the states {𝑗, 0} where 0 ≤ 𝑗 ≤ 𝔍. This 

subfigure represents all the states in the first column and their adjacent states in the second 

column in Fig. 2.3. In these states, no worker vehicles are available to process the tasks. Thus, all 

the unfinished tasks are in a suspended state. Therefore, the transitions between the states only 

involves the change in the number of vehicles in the system.  

Fig. 2.4b  shows the state transition diagram for the states {𝔍, 𝑘} where 𝑘 > 0. This 

subfigure represents all the states in the first row except the left-most state and the adjacent states 

in the second row from the top in Fig. 2.3. In these states, none of the tasks have yet been 

completed, and min (𝔍, 𝑘) of the tasks are in the active state and the remainder are in the 

suspended state. As previously noted, the transition between state {𝔍, 𝑘} and {𝔍 − 1, 𝑘} is uni-

directional since no new tasks are created during the job execution.  

Fig. 2.4c shows the state transition diagram for the states {𝑗, 𝑘} where 0 < 𝑗 < 𝔍, 𝑘 > 0. 

The subfigure corresponds to all the states in Fig. 2.3 except the first column and the first and 

last rows. In these states, 𝔍 − 𝑗 tasks are completed, min (𝑗, 𝑘) tasks are in the active state and 

𝑗 − min (𝑗, 𝑘) are in the suspended state. More specifically, we can see two uni-directional 

transitions from the state with an additional uncompleted task to the state with one fewer 
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uncompleted tasks. Furthermore, we can see the transitions between the states on the same row 

as the number of vehicles in the system increases and decreases. 

Fig. 2.4d shows the state transition diagram for the states {0, 𝑘} where k > 0. This 

subfigure corresponds to all the states on the bottom row and their adjacent states above in Fig. 

2.3. As the last row represents states with no uncompleted tasks remaining in the system (or all 

tasks have been completed), there is only a single uni-directional transition into states {0, 𝑘}. 

Next, let 𝔓𝑗,𝑘(𝑡) denote the probability that there will be 𝑗 uncompleted tasks and 𝑘 

worker vehicles in the system at time 𝑡. Then, from the state transition diagrams in Fig. 2.4, we 

can write the following differential-difference equations describing the system, 

𝑑𝔓𝑗,0(𝑡)

𝑑𝑡
= 𝛼𝔓𝑗,1(𝑡) − 𝜆𝔓𝑗,0(𝑡), 𝔍 ≥ 𝑗 ≥ 0, 𝑘 = 0 

(2.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. State transition diagram for the system for different values of 𝑗 and 𝑘. 

 

 

(a) State transition diagram for 𝑘 = 0, 0 ≤ 𝑗 ≤ 𝔍 

  

 

(b) State transition diagram for 𝑘 > 0, 𝑗 = 𝔍 

  

 

(c) State transition diagram for 𝑘 > 0, 0 < 𝑗 < 𝔍 

  

 

(d) State transition diagram for 𝑘 > 0, 𝑗 = 0 
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𝑑𝔓𝔍,𝑘(𝑡)

𝑑𝑡
= 𝜆𝔓𝔍,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝔓𝔍,𝑘+1(𝑡) 

−[𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝔍, 𝑘)𝜇]𝔓𝔍,𝑘(𝑡), 𝑗 = 𝔍, 𝑘 > 0 (2.3) 

𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
= 𝜆𝔓𝑗,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝔓𝑗,𝑘+1(𝑡) 

−[𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝔓𝑗,𝑘(𝑡) 

+𝑚𝑖𝑛(𝑗 + 1, 𝑘)𝜇𝔓𝑗+1,𝑘(𝑡), 0 < 𝑗 < 𝔍, 𝑘 > 0 (2.4) 

𝑑𝔓0,𝑘(𝑡)

𝑑𝑡
= 𝜆𝔓0,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝔓0,𝑘+1(𝑡) 

−[𝜆 + 𝑘𝛼]𝔓0,𝑘(𝑡) + 𝜇𝔓1,𝑘(𝑡), 𝑗 = 0, 𝑘 > 0 (2.5) 

The above set of differential-difference equations determines the behavior of the system, 

and the solution of the set of equations must satisfy the normalization condition, 

 ∑∑𝔓𝑗,𝑘(𝑡) 

∞

𝑘=0

𝔍

𝑗=0

= 1 

(2.6) 

Next, we let 𝔓𝑗(𝑡), 𝔓 𝑘(𝑡) denote the marginal probability distributions of the number of 

uncompleted tasks and the number of worker vehicles in the system at time 𝑡, respectively. Then, 

 𝔓𝑗(𝑡) = ∑𝔓𝑗,𝑘(𝑡)

∞

𝑘=0

 
(2.7) 

 𝔓𝑘(𝑡) =∑𝔓𝑗,𝑘(𝑡)

𝔍

𝑗=0

 
(2.8) 

 𝔓𝑗(0) = {
1              𝑓𝑜𝑟 𝑗 = 𝔍
0            otherwise

 
(2.9) 

 𝔓𝑘(𝑡) = 𝑄𝑘,        𝑘 ≥ 0 (2.10) 

where in (2.10), 𝑄𝑘 is given by (2.1). We note that if the initial size of VC is larger than the 

number of tasks in the job, all the tasks will be initially under execution by the worker vehicles. 
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In Appendix A, we have attempted to solve the above set of differential-difference 

equations through transform methods. However, this approach was not successful because we 

could not determine all the unknowns. As a result, we tried the decomposition approach to 

below.  

iv) Derivation of the joint probability distribution of the number of uncompleted tasks and 

vehicles through decomposition 

In the state transition diagram of Fig. 2.3, the states in row 𝑗 correspond to the system 

having 𝑗 uncompleted tasks. When the system is in row 𝑗, it moves to the row 𝑗 − 1 immediately 

when one of the tasks completes its execution. The execution of the job begins in one of the 

states at the top row 𝔍, and it’s completed when the system enters one of the states at the bottom 

row.  Therefore, the job completion time is the sum of the periods the system spends in the states 

in each row. Following this observation, we will derive the amount of time the system spends in 

the states of each row. As a result, we will divide the system into several subsystems, where we 

can analyze each subsystem independently of the other subsystems.  Let 𝜃𝑗  denote the subsystem 

j where 0 < 𝑗 ≤ 𝔍. We define the subsystem 𝜃𝑗  as the set of states of rows 𝑗 and 𝑗 − 1 in Fig. 2.3 

with the state-transition diagram as shown in Fig. 2.5. 

𝜃𝑗 = {(𝑗, 𝑘) ∀  𝑘 ≥ 0 ∪ (𝑗 − 1, 𝑘) ∀ 𝑘 > 0}, 0 < 𝑗 ≤ 𝔍 (2.11) 

The states of row 𝑗 − 1 for 𝑘 > 0 will be absorbing states [121] for this subsystem. When 

the subsystem enters one of the absorbing states, then the system immediately exits the 

subsystem 𝜃𝑗  and enters the subsystem 𝜃𝑗−1.  This transition happens  when service of one of the 

tasks is completed. We will refer to the amount of time that the system spends in the subsystem 

𝜃𝑗  as absorbing time and will denote it by 𝑋𝑗.  
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Next, we will derive the joint probability distribution of the number of uncompleted tasks 

and the number of vehicles in a subsystem as a function of time. Since the subsystems are 

analyzed independently, we set the initial time for each subsystem to zero. Let 𝑃𝑗,𝑘(𝑡) denote the 

probability that there will be j uncompleted tasks and k worker vehicles in the subsystem 𝜃𝑗   at 

time t. From Fig. 2.5, the behavior of the subsystem 𝜃𝑗  may be described by the following set of 

differential-difference equations, 

𝑑𝑃𝑗,𝑘(𝑡)

𝑑𝑡
= 𝜆𝑃𝑗,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝑃𝑗,𝑘+1(𝑡) − [𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝑃𝑗,𝑘(𝑡), 𝑘 > 0 

(2.12) 

𝑑𝑃𝑗−1,𝑘(𝑡)

𝑑𝑡
= 𝑚𝑖𝑛(𝑗, 𝑘)𝜇𝑃𝑗,𝑘(𝑡), 𝑘 > 0 

(2.13) 

𝑑𝑃𝑗,0(𝑡)

𝑑𝑡
= 𝛼𝑃𝑗,1(𝑡) − 𝜆𝑃𝑗,0(𝑡), 𝑘 = 0 

(2.14) 

Since the number of worker vehicles is at the steady state, the initial distribution of the 

number of workers in the subsystem 𝜃𝔍 is given by (2.1). In the subsystem 𝜃𝑗 , 0 < 𝑗 < 𝔍,  the 

initial number of vehicles in the subsystem will be given by the number of vehicles in the 

subsystem 𝜃𝑗+1 when that subsystem enters an absorbing state. As a result, we have the 

following initial distributions, 

 

 

Fig. 2.5. State transition diagram for subsystem 𝜃𝑗 . States {𝑗 − 1, 𝑘} are absorbing states.  
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𝑃𝑗,𝑘(0) = {
𝑄𝑘, 𝑓𝑜𝑟 𝑘 ≥ 0 𝑎𝑛𝑑 𝜃𝑗 , 𝑗 = 𝔍

𝑃𝑗+1,𝑘(∞),             𝑓𝑜𝑟  𝜃𝑗 , 𝑗 < 𝔍
 

(2.15) 

 

Moreover, we also note that at time 𝑡 = 0, the VC cannot have any completed task in the 

subsystem 𝜃𝑗 , thus, we can write, 

𝑃𝑗−1,𝑘(0) = 0, 0 < 𝑗 ≤ 𝔍, 𝑘 > 0  (2.16) 

Next, let us define the following Laplace transform, 

ℒ𝑗,𝑘(𝑠) = 𝕃{𝑃𝑗,𝑘(𝑡)} = ∫ 𝑃𝑗,𝑘(𝑡)
∞

𝑡=0

 𝑒−𝑠𝑡𝑑𝑡 
(2.17) 

To solve the set of equations (2.12) to (2.14), we will take their Laplace transforms, 

 

𝑠ℒ𝑗,𝑘(𝑠) − 𝑃𝑗,𝑘(0)

= 𝜆ℒ𝑗,𝑘−1(𝑠) + (𝑘 + 1)𝛼ℒ𝑗,𝑘+1(𝑠) − [𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠) 

𝑘 > 0 (2.18) 

𝑠ℒ𝑗−1,𝑘(𝑠) − 𝑃𝑗−1,𝑘(0) = 𝑚𝑖𝑛(𝑗, 𝑘)𝜇ℒ𝑗,𝑘(𝑠), 𝑘 > 0 (2.19) 

𝑠ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0) = 𝛼ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠), 𝑘 = 0 (2.20) 

Next, we express ℒ𝑗,𝑘(𝑠) in terms of ℒ𝑗,0(𝑠). From (2.20), we can write ℒ𝑗,1(𝑠) in terms 

of ℒ𝑗,0(𝑠),  

 ℒ𝑗,1(𝑠) =
1

𝛼
[(𝑠 + 𝜆)ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0)] (2.21) 

Substituting 𝑘 = 1 in (2.18) while noting 𝑗 ≥ 1 gives,  

 

𝑠ℒ𝑗,1(𝑠) − 𝑃𝑗,1(0) = 𝜆ℒ𝑗,0(𝑠) + 2𝛼ℒ𝑗,2(𝑠) − [𝜆 + 𝛼 + 𝜇]ℒ𝑗,1(𝑠) 

⇔ ℒ𝑗,2(𝑠) =
[𝑠 + 𝜆 + 𝛼 + 𝜇]ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠) − 𝑃𝑗,1(0)

2𝛼
 

(2.22) 
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Substituting ℒ𝑗,1(𝑠) in (2.21) to (2.22), we can also express 𝐿𝑗,2(𝑠) in terms of 𝐿𝑗,0(𝑠) as 

follows: 

 

ℒ𝑗,2(𝑠) =
[𝑠 + 𝜆 + 𝛼 + 𝜇]

1
𝛼 [(𝑠 + 𝜆)ℒ𝑗,0

(𝑠) − 𝑃𝑗,0(0)] − 𝜆ℒ𝑗,0(𝑠) − 𝑃𝑗,1(0)

2𝛼
 

=
[
1
𝛼
(𝑠 + 𝜆 + 𝛼 + 𝜇)(𝑠 + 𝜆) − 𝜆] ℒ𝑗,0(𝑠) − [𝑠 + 𝜆 + 𝛼 + 𝜇]

1
𝛼 𝑃𝑗,0

(0) − 𝑃𝑗,1(0)

2𝛼
 

(2.23) 

Next, we solve for 𝐿𝑗,𝑘+1(𝑠) in (2.18),  

 

ℒ𝑗,𝑘+1(𝑠) =
[𝑠 + 𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]

(𝑘 + 1)𝛼
ℒ𝑗,𝑘(𝑠) −

𝜆

(𝑘 + 1)𝛼
ℒ𝑗,𝑘−1(𝑠)

−
1

(𝑘 + 1)𝛼
𝑃𝑗,𝑘(0), 

𝑓𝑜𝑟 𝑘 > 0 (2.24) 

In (2.24), we see that ℒ𝑗,𝑘+1(𝑠) depends on ℒ𝑗,𝑘(𝑠), and ℒ𝑗,𝑘−1(𝑠). As a result, we can 

express ℒ𝑗,𝑘+1(𝑠) recursively in terms of ℒ𝑗,0(𝑠) using (2.21) and (2.22). This implies ℒ𝑗,𝑘(𝑠) can 

be written as a function of ℒ𝑗,0(𝑠) for 𝑘 > 0. Next, we show how to determine ℒ𝑗,0(𝑠) from the 

normalization condition, 

 ∑𝑃𝑗,𝑘(𝑡)

∞

𝑘=0

+∑𝑃𝑗−1,𝑘(𝑡)

∞

𝑘=1

= 1 
(2.25) 

Taking Laplace transform of the conservation relation in the above, we have, 

 ∑ℒ𝑗,𝑘(𝑠)

∞

𝑘=0

+∑ℒ𝑗−1,𝑘(𝑠)

∞

𝑘=1

=
1

𝑠
 

(2.26) 

After substituting (2.16) in (2.19), we solve for ℒ𝑗−1,𝑘(𝑠) as followed: 

 ℒ𝑗−1,𝑘(𝑠) =
𝑚𝑖𝑛(𝑗, 𝑘)𝜇

𝑠
ℒ𝑗,𝑘(𝑠), 𝑘 > 0 

(2.27) 
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Then, results in (2.21) and (2.27) are substituted on the left-hand side of (2.26), which 

gives, 

 
∑ℒ𝑗,𝑘(𝑠)

∞

𝑘=0

+∑
𝑚𝑖𝑛(𝑗, 𝑘)𝜇

𝑠
ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

= 𝑠ℒ𝑗,0(𝑠) +∑𝑠ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

+∑𝑚𝑖𝑛(𝑗, 𝑘)𝜇ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

= 𝑠ℒ𝑗,0(𝑠) +∑[𝑠 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

= 𝑠ℒ𝑗,0(𝑠) + (𝑠 + 𝜇)ℒ𝑗,1(𝑠) +∑[𝑠 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)

∞

𝑘=2

= 𝑠ℒ𝑗,0(𝑠) + (𝑠 + 𝜇)
1

𝛼
[(𝑠 + 𝜆)ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0)]

+∑[𝑠 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)

∞

𝑘=2

 

(2.28) 

 

Next, using the change of variables, we can rewrite equation (2.24) as below: 

 

ℒ𝑗,𝑘(𝑠) =
[𝑠 + 𝜆 + (𝑘 − 1)𝛼 +𝑚𝑖𝑛(𝑗, 𝑘 − 1)𝜇]

𝑘𝛼
ℒ𝑗,𝑘−1(𝑠) −

𝜆

𝑘𝛼
ℒ𝑗,𝑘−2(𝑠)

−
1

𝑘𝛼
𝑃𝑗,𝑘−1(0), 

𝑓𝑜𝑟 𝑘 ≥ 2 (2.29) 

Since 𝑃𝑗,𝑘(0) ∀𝑘 ≥ 1 can be found from (2.15), as previously noted, ℒ𝑗,𝑘(𝑠) can be 

expressed as a function of only ℒ𝑗,0(𝑠) from the recursion in (2.29). As a result, the sum 

∑ [𝑠 + 𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)
∞
𝑘=2  in (2.28) can be expressed as a function of ℒ𝑗,0(𝑠). Therefore, we 

can solve for the unknown function ℒ𝑗,0(𝑠) using (2.26). 

After the determination of ℒ𝑗,0(𝑠), this means that we have obtained all ℒ𝑗,𝑘(𝑠) functions 

using (2.21), (2.28) and (2.26). Then, by taking the inverse Laplace transforms of ℒ𝑗,𝑘(𝑠), 𝑃𝑗,𝑘(𝑡) 
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can be finally derived. In determining ℒ𝑗,0(𝑠) we need to truncate the infinite summation in 

(2.28), the accuracy of this truncation is tested through simulation.  

We note that from the final value theorem property of the Laplace transforms,  

 𝑃𝑗+1,𝑘(∞) = lim
𝑠→0

𝑠ℒ𝑗+1,𝑘(𝑠) (2.30) 

which gives the initial distribution of the number of vehicles in the subsystem 𝜃𝑗 , 0 < 𝑗 < 𝔍, in 

(2.15). This initial distribution of the number of vehicles in a subsystem has also been confirmed 

by simulation. 

v) Derivation of the probability density function of the job completion time 

We define the service time of a task as the time interval between the job generation and 

the task completion time. Let 𝜏𝑖, 𝑠𝑖 denote the execution and service time of the task 𝑖, 

respectively. Also, let sets 𝑇, 𝑆 denote the execution and service times of all the tasks in the job, 

respectively, 

 𝑇 = {𝜏1, 𝜏2, … , 𝜏𝑖 , … . , 𝜏𝔍}  

 𝑆 = {𝑠1, 𝑠2, … . , 𝑠𝑖 , … . , 𝑠𝔍}  

We note that the order of the service times of the tasks is not necessarily the same as their 

execution time durations since the random assignment of the tasks to the vehicles and suspension 

of the tasks may change the order of the service time completions. Thus, it is possible to have 

𝑠𝑖 < 𝑠𝑗 despite of 𝜏𝑖 > 𝜏𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝔍. Let us define 𝑌 as the ordered set of task service times, 

 𝑌 = {𝑌1, 𝑌2, … , 𝑌𝑛, … , 𝑌𝔍} 

where 𝑌1 denote the smallest and 𝑌𝔍 the largest of the task service times. Thus, the elements of 

the ordered set of task service times satisfy the following inequalities, 

 𝑌1 < 𝑌2 < ⋯𝑌𝑛 < ⋯ < 𝑌𝔍 (2.31) 

As we noted before, when the subsystem 𝜃𝑗  reaches an absorbing state, the service time 

of a task completes, and that subsystem makes a transition to the subsystem 𝜃𝑗−1. The ordered 
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service times of the tasks and absorbing time of the subsystems are related by the following 

equations, 

 𝑌1 = 𝑋ℑ (2.32) 

𝑌𝑛 = 𝑌𝑛−1 + 𝑋(ℑ−𝑛+1) (2.33) 

𝑌𝔍 = 𝑌ℑ−1 + 𝑋1 (2.34) 

We note that the service time of the last task to complete, 𝑌𝔍, also corresponds to the 

completion time of the job. Fig. 2.6 shows an example of the relationship between 𝑋𝑗, 𝜏𝑖, 𝑠𝑖 and 

𝑌𝑛 for ℑ = 5.  

First, we will determine the pdf of the absorbing time of each subsystem. Let us define 

the cumulative distribution function (CDF) of the absorbing time of the subsystem  𝜃𝑗  as, 

 
𝐺𝑋𝑗(𝑥𝑗) = 𝑃𝑟𝑜𝑏(𝑋𝑗 ≤ 𝑥𝑗) 

= 1 −  𝑃𝑟𝑜𝑏(𝑋𝑗 > 𝑥𝑗) (2.35) 

Let 𝑃𝑗(𝑡) denote the marginal probability distribution of the number of uncompleted tasks 

in the subsystem 𝜃𝑗  at time 𝑡, then this distribution is given by, 

𝑃𝑗(𝑡) = ∑𝑃𝑗,𝑘(𝑡) 

∞

𝑘=0

 
(2.36) 

We note that if 𝑋𝑗 is the absorbing time of the subsystem 𝜃𝑗 , at moment 𝑋𝑗, the system 

will make the transition from the subsystem 𝜃𝑗  to subsystem 𝜃𝑗−1. Thus, the event 𝑋𝑗 > 𝑥𝑗 is 

equivalent to the event that there are 𝑗 uncompleted tasks in the subsystem 𝜃𝑗  at time 𝑡. Then, the 

complementary probability 𝑃𝑟𝑜𝑏(𝑋𝑗 > 𝑥𝑗) maybe determined from the marginal distribution of 

the number of tasks in the subsystem 𝜃𝑗  as follow: 

𝑃𝑟𝑜𝑏(𝑋𝑗 > 𝑥𝑗) = 𝑃𝑗(𝑥𝑗) (2.37) 

Substituting the above in (2.35), we have, 
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 𝐺𝑋𝑗(𝑥𝑗) = 1 − 𝑃𝑗(𝑥𝑗) (2.38) 

Then, the pdf of the absorbing time of the subsystem 𝜃𝑗  is given by 

 𝑔𝑋𝑗(𝑥𝑗) =
𝑑𝐺𝑋𝑗(𝑥𝑗)

𝑑𝑥𝑗
= −

𝑑𝑃𝑗(𝑥𝑗)

𝑑𝑥𝑗
 

(2.39) 

Next, we determine the pdfs of the completion time of the tasks. Let us define Laplace 

 

 

Fig. 2.6. An example showing task execution and service times, subsystem absorption times for a  

job with ℑ = 5 tasks. 𝜏𝑖 and 𝑠𝑖  are execution and service times of task i, 𝑌𝑖 is the service time of 

the task that is i’th to complete. 
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transforms of the pdf of absorbing time of subsystem 𝜃𝑗  and service time of the task completed in 

this subsystem as, 

 𝒢𝑗(𝑠) = 𝐸[𝑒
−𝑠𝑋𝑗] (2.40) 

 𝒴𝑛(𝑠) = 𝐸[𝑒−𝑠𝑌𝑛]   (2.41) 

  Since the absorbing times of the subsystems are independent of each other, we can first 

rewrite equations (2.32) to (2.34) as follow, 

 𝒴1(𝑠) = 𝒢ℑ(𝑠) (2.42) 

𝒴𝑛(𝑠) = 𝒴𝑛−1(𝑠)𝒢(ℑ−𝑛+1)(𝑠) (2.43) 

𝒴ℑ(𝑠) = 𝒴ℑ−1(𝑠)𝒢1(𝑠) (2.44) 

From the above recursion, we can determine 𝒴𝑛(𝑠) and Laplace transform of the pdf of 

the job completion time, 𝒴𝔍(𝑠), respectively, as 

 𝒴𝑛(𝑠) = ∏ 𝒢𝑖(𝑠)
ℑ
𝑖=ℑ−𝑛+1 ,     1 ≤ 𝑛 ≤ 𝔍 (2.45) 

 𝒴𝔍(𝑠) =∏𝒢𝑖(𝑠)

ℑ

𝑖=1

 
(2.46) 

Let 𝑓𝑌𝑛(𝑡) denote the pdf of the random variable 𝑌𝑛.  Then, 𝑓𝑌𝑛(𝑡) may be obtained by the 

inversion of 𝒴𝑛(𝑠). Similarly, the inversion of  𝒴𝔍(𝑠) gives the pdf of the job completion time 

𝑓𝑌𝔍(𝑡). From the above, we can also obtain, the 𝑚𝑡ℎ moment of the task service time using the 

following relation, 

 �̅�𝑛
𝑚 = (−1)𝑚

𝑑𝑚𝒴𝑛(𝑠)

𝑑𝑠𝑚
|
𝑠=0

 
(2.47) 

From the above, the first moment of service time of the 𝑛‘𝑡ℎ task to be completed is 

given by, 
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 �̅�𝑛 = −
𝑑𝒴𝑛(𝑠)

𝑑𝑠
|
𝑠=0

 
(2.48) 

The expected value of job completion time is given by �̅�𝔍 using 𝒴𝔍(𝑠), from (2.46) 

 �̅�𝔍 = −
𝑑𝒴𝔍(𝑠)

𝑑𝑠
|
𝑠=0

 
(2.49) 

Let  �̅� denote the average of the service times of all the tasks. Then, it is given by, 

 �̅� =
1

𝔍
∑ �̅�𝑛

𝔍

𝑛=1

 
(2.50) 

2.1.3. Derivation of the probability distribution of the number of service 

interruptions 

In this subsection, we determine the probability distribution of the number of service 

interruptions of a task. Service of a task will be interrupted when a worker vehicle serving that 

task departs prematurely from the system. Let 𝜏 and r denote the execution time of a task and the 

residency time of a vehicle in the VC, respectively. Let 𝛾 denote the probability that the 

execution of a task will be interrupted, then, 

                    𝛾 = 𝑃𝑟(𝜏 > 𝑟)  (2.51) 

Since the task execution times and the vehicle residency times are exponentially 

distributed with parameters 𝜇 and 𝛼 respectively, then,  

 

𝛾 = ∫ ∫ 𝜇𝑒−𝜇𝜏𝛼𝑒−𝛼𝑟𝑑𝑟𝑑𝜏
𝜏

0

∞

0

= ∫ 𝜇𝑒−𝜇𝜏 [∫ 𝛼𝑒−𝛼𝑟𝑑𝑟
𝜏

0

] 𝑑𝑡
∞

0

 

= ∫ 𝜇𝑒−𝜇𝜏(1 − 𝑒−𝛼𝜏)𝑑𝑡
∞

0

= ∫ 𝜇𝑒−𝜇𝜏𝑑𝑡
∞

0

−∫ 𝜇𝑒−(𝜇+𝛼)𝜏𝑑𝑡
∞

0

 

=
𝛼

𝛼 + 𝜇
 

(2.52) 

Let ℓ denote the number of interruptions a task experiences during its service time. Since 
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the service interruptions are independent of each other, then the probability distribution of the 

number of interruptions during the execution of a task is given by the geometric distribution, 

 𝑃𝑟𝑜𝑏(ℓ = 𝑘) = (1 − 𝛾)𝛾𝑘 , 𝑘 = 0, 1, 2, … (2.53) 

The average number of interruptions leading to a workload migration is given by 

 ℓ̅ =
𝛾

1 − 𝛾
 

(2.54) 

It is noted that not every service interruption results in the suspension of a task. If an idle 

worker vehicle is available when a task is interrupted, its service will immediately resume. 

However, every service interruption results in migration overhead. 

2.1.4. Numerical and Simulation Results 

In this subsection, we present the numerical results about the analysis and simulation 

results to verify the analysis. The numerical results are obtained by solving for ℒ0,𝑘(𝑠) in (2.28). 

This derivation requires truncation of the infinite summation. We set the upper limit of the sum 

to be at least twice the mean of the average number of vehicles in the VC. As will be seen, the 

simulation results validate this choice of the truncation limit. We used Monte Carlo simulation to 

validate the numerical results, test the accuracy of the truncation of the infinite summation in 

(2.28) and confirm that the analysis is error-free. The simulation program was written in Matlab 

and is described in Appendix B. 

We have chosen five cases to illustrate the results based on the average number of 

vehicles in the VC, �̅�, the average task execution times, 𝜏̅, the mean vehicle residency time, �̅�, 

and the number of tasks in a job, 𝔍. Table 2.2 presents the parameter values for each case in a 

column. For cases 4 and 5, the residency time of the vehicles and the average number of vehicles 

in the VC is higher. As a result, processing of jobs with a higher number of tasks with longer 

task execution times will be possible. 
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Case 1 2 3 4 5 

�̅� (min) 6 6 6 20 20 

�̅� 2 4 8 9 9 

�̅�(𝐦𝐢𝐧) 6 6 9 20 25 

𝕵 2 4 4 6 8 

Table 2.2. Values of system parameters 

Table 2.3 presents the numerical and simulation results of the ordered average task 

service times for cases 2 and 3 in Table 2.2. Also shown in the last column of Table 2.3. is the 

overall average task service time (�̅�). It may be seen that the overall average service time is 

larger than the average task execution time, �̅� > 𝜏̅. This difference is due to task suspension 

times, which results from not having an idle vehicle to continue with the execution of a task. The 

difference between the average task service time and the average task execution time gives the 

average task suspension time,  �̅� − 𝜏̅ . In Fig. 2.7, we plot the average task suspension time as a 

function of the average number of vehicles in the VC, �̅�, for Case 2. It may be seen that as �̅�  

increases, the average task suspension time decreases and eventually drops to zero. From this  

point on, the job completion time is no longer dependent on the average number of vehicles in 

the VC. We note that the numerical and simulation results are very close in both the table and the 

figure. 

Case �̅�1 �̅�2 �̅�3 �̅�4 �̅� 

2 
Num 2.101 4.409 7.569 13.67 6.937 

Sim 2.103 4.412 7.574 13.67 6.94 

3 
Num 2.293 5.311 9.817 18.82 9.06 

Sim 2.293 5.308 9.815 18.82 9.059 

Table 2.3. Numerical and simulation results for average task service time in minutes for 

Cases 2 and 3 
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Fig. 2.7.  Numerical and simulation results for average task suspension times as a function of the 

average number of vehicles in the VC for Case 2.  

Table 2.4 presents the average job completion time for all cases shown in Table 2.2. It 

may be seen that the average job completion times in cases 4 and 5 are significantly higher than 

the other cases because their average task execution times are longer, and the number of tasks in 

the job is also higher. Fig. 2.8 to Fig. 2.10 show the average job completion time as a function of 

the average number of vehicles in the VC, �̅�, for cases 1, 3, 5 in Table 2.2. As may be seen, the 

average job completion times continuously decrease with increasing �̅�, until it reaches to a 

plateau, at which, the job completion times are seemingly no longer dependent on �̅�. As shown 

in Fig. 2.7, this behavior is due to the elimination of the task suspension times with increasing �̅�.  

Fig. 2.11 to Fig. 2.13 show both the numerical and simulation results for the probability 

density function of the job completion times for cases 1, 3, and 5 in Table 2.2. From the graphs, 

we can see that the numerical results match the simulation results. 

Case No 1 2 3 4 5 

�̅�𝔍 (num) 11.861 13.666 18.82 49.296 68.954 

�̅�𝔍 (sim) 11.869 13.669 18.818 49.282 68.956 

Table 2.4. Numerical and simulation results for average job completion time in minutes for cases 

in Table 2.2 
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Fig. 2.8.  Average job completion time as a function of the average number of vehicles in the VC 

for case 1in Table 2.2. 

 

 

Fig. 2.9.  Average job completion time as a function of the average number of vehicles in the VC 

for case 3 in Table 2.2. 
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Fig. 2.10.  Average job completion time as a function of the average number of vehicles in the 

VC for case 5 in Table 2.2. 

 

Fig. 2.11.  Probability density function of the job completion time for the case 1 in Table 2.2 
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Fig. 2.12.  Probability density function of the job completion time for the case 3 in Table 2.2 

 

Fig. 2.13.  Probability density function of the job completion time for the case 5 in Table 2.2 
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Fig. 2.14 shows the average number of service interruptions of a task as a function of the 

mean vehicle residency time, �̅�. It may be seen that the average number of interruptions 

decreases as the residency time of the vehicles increases.   

 

Fig. 2.14.  Numerical and simulation results for the average number of interruptions as a function 

of average vehicle residency time. 

 

2.1.5. Approximate Analysis of Average Job Completion Time with Migration 

Overhead 

Next, we will present an adhoc method to determine an upper bound for average job 

completion time with migration overhead. Execution of a task will be interrupted each time the 

worker vehicle serving that task leaves the VC. As a result, the worker vehicle will take time to 

upload its progress to the leader before it leaves. Similarly, an idle vehicle needs time to 

download a task from the leader to resume its execution. We let m denote the upload/download 

time of the VM.  Thus, the total migration time overhead of each service interruption will be 2𝑚. 

We will assume, in our case, the average size of a VM to be 2 Mbytes. Then given the average 

data transmission rate is 1 Mbps in 5G NR V2X at 500 m [48], the average migration time, 

including the overhead, would be approximately 20 seconds. 
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Simulations have shown that the impact of the migration overhead on the average job 

completion time is more than the sum of the migration overheads during the job execution time. 

Let �̅�𝔍,𝑀 denote the average job completion time that includes migration. From the simulation 

results, we found that it may be estimated as follows, 

�̅�𝔍,𝑀 = 𝑏(2𝑚ℓ̅ + �̅�𝔍) 

Where ℓ̅ is the average number of interruptions from (2.54) and �̅�𝔍 is the average job 

completion time without migration overhead, and 𝑏 is a bias factor introduced to take into 

account the extra migration overhead. Simulations have shown that the bias factor depends on 

the average number of vehicles in the VC, assuming that mean residency time is constant. An 

appropriate choice of the bias factor enabled us to determine an upper bound for average job 

completion time. In Fig. 2.15 to Fig. 2.17, we present the average job completion times with 

migration overhead for scenarios with different �̅� and a chosen migration time of 10, 20, or 30 

seconds. From the comparison with the simulation results, the chosen bias factors result in tight 

upper bounds for average job completion times. 

 

Fig. 2.15.  Average job completion time as a function of the average residency time of the 

vehicles, �̅�, for case 1 in Table 2.2. 
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Fig. 2.16.  Average job completion time as a function of the average residency times of the 

vehicles, �̅�, for case 1 in Table 2.2 and �̅� = 4. 

 

Fig. 2.17.  Average job completion time as a function of the average residency times of the 

vehicles, �̅�, for case 1 in Table 2.2 and �̅� = 6. 



54 

 

2.2. Congested traffic on a highway 

 As previously noted, while highways are often considered uninterrupted flow facilities in 

traffic engineering, congestion is often seen in the cities. Thus, the vehicle model must be 

adjusted to reflect the difference between free-flow and congested traffic flow. More specifically, 

as vehicles slow down when more vehicles are on the highway during the congestion period, 

their time spent in a VC should increase accordingly. 

 Regarding the system model, the vehicular cloud model, job model, and task service 

strategy will remain the same as the work in the previous section. The traffic model is the only 

difference between this section and the previous section. Therefore, only the important steps of 

the modeling and analysis will be presented in this section. The details of the analysis may be 

found in Appendix C.  

2.2.1. Modeling approach 

In free-flow traffic, the residency times of the vehicles on the highway are independent of 

each other.  As a result, the motion of the vehicles in free-flow traffic is modeled as a 𝑀/𝑀/∞ 

queueing system. In a 𝑀/𝑀/∞ system, there is no customer waiting time, and the customer 

delay in the system equals the customer service time. Under congested traffic, the residency 

times of the vehicles on the highway are correlated with each other. As a result, the motion of the 

vehicles in congested traffic is modeled with the 𝑀/𝑀/𝑚 queuing system, where 𝑚 is the 

number of lanes on the highway. In a 𝑀/𝑀/𝑚 system, customers experience waiting time, and 

customer delay is given by the sum of its waiting and service times. Since the customers' waiting 

times depend on each other, customer delays will be correlated. In our application, the customer 

delay in the queueing system corresponds to the residency time of a vehicle on a highway. Since 

customer delays in a 𝑀/𝑀/𝑚 queueing system depend on each other, this will capture the 

correlation between the residency times of the vehicles under congested traffic. We can find a 

similar assumption made under a single-lane scenario with a general service time distribution in 

[122]. 
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Similar to the analysis of the job completion time during a free-flow traffic scenario, a set 

of two variables, {𝑗, 𝑘}, will represent the state of the system, where 𝑗 denotes the number of 

uncompleted tasks, and 𝑘 denotes the number of worker vehicles in the system at any time. Then 

we can draw the state transition diagram for the system, as shown in Fig. 2.18. In the figure, in 

 

 

Fig. 2.18.  State transition diagram for the system in congested traffic. In each state number of 

uncompleted tasks is shown above the number of worker vehicles in the system. 
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the states of each row the number of unfinished tasks in the system is same, and in the states of 

each column the number of vehicles in the VC is same, similar to the case of free-flowing traffic 

in Fig. 2.3.  

The main difference between this model and the previous one is the transitions between 

the states when there are at least 𝑚 vehicles in the system. Since the traffic is congested, and the 

service rate of all the 𝑚 lanes is same, the rate of vehicles leaving the VC is limited by the 

number of lanes, 𝑚, in the system. More specifically, the rate of vehicles leaving the VC should 

be 𝑚𝛼 when there are at least 𝑚 vehicles in the system, as shown in the columns with at least 𝑚 

vehicles in the system in Fig. 2.18. Additionally, the average wait time of a vehicle in a VC may 

be nonzero. We note further that the vehicles can serve tasks during their wait time in the VC. 

Therefore, the vehicles would stay longer in the VC to serve tasks under congested traffic 

compared to the free-flowing traffic scenario with the same service time. As a result, jobs should 

complete faster under congested traffic than free-flow traffic when all system parameters are 

equal. 

Then similarly to the decomposition approach in the previous section, we split the system 

in Fig. 2.18 into subsystems, 𝜃𝑗 , based on the number of remaining uncompleted tasks in the 

system, 𝑗. The state transition of each sub-system is shown in Fig. 2.19. 

 

Fig. 2.19. State transition diagram for subsystem 𝜃𝑗 . States {𝑗 − 1, 𝑘} are absorption states. Once 

the transition to states {𝑗 − 1, 𝑘} occur, the reverse transition is not allowed. 

Due to the similarities of the models between the congested and free-flow scenarios, the 

analysis is repetitive. As a result, the analysis of the model shown in Fig. 2.19 is presented in 

Appendix C.  
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2.2.2. Numerical results 

In this section, we present the numerical results of the analysis and Monte Carlo 

simulation results to verify the accuracy of the analysis.  

We obtain the numerical results by solving for ℒ0,𝑘(𝑠) in (C.26). The operation will 

require truncation of the infinite summation. In this truncation, we set the upper limit of the sum 

to be at least twice the mean of the average number of vehicles in the VC. As will be seen, the 

simulation results validate this choice of the truncation limit. A Monte Carlo simulation program 

has been written in Matlab, and the results are obtained over 106 runs. 

Table 2.5 shows the numerical and simulation results of average job completion time, �̅�𝔍, 

for different values of average vehicle residency times, �̅�. We assumed 𝔍 =  6 tasks in a job, 

𝑚 = 4 lanes on the highway, mean task execution time (1/𝜇 =  6 𝑚𝑖𝑛), and mean service time 

of the vehicles (1/𝛼 =  6 𝑚𝑖𝑛). The results were obtained for different values of vehicle arrival 

rate. As the vehicle arrival rate increases, vehicle residency times increase because of increasing 

congestion on the highway.  As residency time increases, job completion times decrease since 

there will be more vehicles in the VC to execute tasks.  It may be seen that numerical results 

match simulation results, showing that the analysis is correct. 

 

�̅�(𝑚𝑖𝑛) 7 8 9 10 11 12 13 14 15 16 17 18 

𝜌 0.589 0.69 0.747 0.785 0.813 0.834 0.851 0.865 0.876 0.886 0.894 0.901 

�̅�𝔍 (Num) 22.05 19.59 18.46 17.77 17.31 16.97 16.71 16.51 16.35 16.21 16.09 15.99 

�̅�𝔍 (Sim) 22.05 19.58 18.44 17.76 17.31 16.97 16.71 16.51 16.35 16.21 16.10 15.99 

Table 2.5. Job completion time as a function of average residency time, �̅� 

2.3. Summary 

In this chapter, we analyzed the performance of a dynamic VC serving a job with 

multiple tasks under both free-flow and congested traffic flow on a highway. In free-flow traffic, 

vehicle residency times are independent of each other, while in congestion, they are correlated. 

As a result, under free-flow traffic, service to vehicles has been modeled as a 𝑀/𝑀/∞ , and 
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under congestion, it has been modeled as a 𝑀/𝑀/𝑚 queueing system. Since customer waiting 

times in a 𝑀/𝑀/𝑚 system are dependent, that takes care of the correlation in the residency times 

of the vehicles in the congested traffic. In the analysis, we assume that a task can be served by a 

single vehicle at any time, and a task is not suspended if there are idle vehicles in the VC. A 

transient analysis is carried out to determine the pdf of the job completion time under zero 

migration overhead. This analysis is far more difficult than the steady-state analysis of Markov 

chains. This result provides the minimum job completion time for any task-serving strategy 

because a task will be served as long as there are idle vehicles in the VC. We show that as the 

number of vehicles in the system increases, the task suspension times drop and the task service 

time approaches to the task execution time. We also determine the distribution of the number of 

service interruptions during task execution, which allows us to infer job completion time under 

migration overhead. We provide extensive simulation and numerical results to show the accuracy 

of our analytical model. 

 

.
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Chapter 3  

Job completion time in a VC with service 

interruption avoidance strategy 

 

In the service strategy studied in the previous chapter, the execution of a task may be 

interrupted if the vehicle serving the task leaves the VC. This service strategy may result in 

excessive virtual machine migration overhead, and further, certain job models may require their 

tasks to be entirely executed without interruption. In this chapter, we will consider a service 

strategy that avoids interruption of task execution. In this strategy, a task will only be assigned to 

a vehicle if the task execution time can be fitted entirely into the residency time of the vehicle. 

This service strategy directly alleviates the challenges by ensuring that the tasks are executed 

entirely without being interrupted by migration. However, we can intuitively see that the job 

completion time under this service strategy may significantly increase depending on the 

durations of task execution times and vehicle residency times. For instance, if a vehicle does not 

reside in the VC long enough to complete the task in one go, the task must wait for future 

vehicles with suitable residency times to arrive at the VC. 

 In this chapter, for this service strategy, we will derive the distribution of the required 

number of vehicle arrivals at the VC for the assignment of all the tasks, the bounds of job 

completion time, and an approximation to job completion time.  

3.1. System model 

Next, we will describe the system model consisting of vehicular cloud, job model, and 

task service strategy. 

3.1.1. Vehicular cloud and job model 

The vehicular cloud and job models are the same as the work in the previous chapter: the 

VC is formed on a highway by the VC leader, which will recruit nearby moving worker vehicles 
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to assign the tasks of the job. Upon joining the VC, the workers will let the leader know their 

routes and speeds, and, based on this information, the leader vehicle will be able to estimate their 

residency times in the VC. 

3.1.2. Task service strategy 

A job is assumed to consist of 𝔍 independent tasks in our model, and each task requires a 

random amount of execution time to be completed. A job will be completed when all its tasks 

complete their executions. The leader will attempt to assign the vehicles to the remaining 

unassigned tasks as vehicles arrive. For each arriving vehicle, the leader will assign the longest 

unassigned task the vehicle can complete within its residency time. In making this assignment 

decision, the leader will use its estimate of the residency time of the worker vehicle. Finally, the 

vehicle will return the task execution results to the leader upon task completion and will not be 

assigned any additional task. In this service strategy, tasks will not experience interruptions in 

execution and, therefore, no interruptions-related workload migration overhead. Furthermore, a 

vehicle joining the VC will either execute a single task or remain unassigned during its residency 

time at the VC. Moreover, the unassigned task with the longest execution time will have the 

highest priority for assignment to a vehicle. Thus, the first vehicle whose residency time is 

longer than the longest task execution time will always be the one that will be assigned that task. 

Another implication of this task service strategy is that the completion time of the last assigned 

task will not always be the completion time of the job since the last assigned task is not always 

the longest task. Finally, in this service strategy, a task with a long execution time may 

substantially increase job completion time since assigning that task to a vehicle may take a long 

time. 

To demonstrate this task service strategy, we give an example in Fig. 3.1 showing how a 

job of 4 tasks is assigned according to the vehicles' arrival times and residency times in the VC. 

Firstly, the execution times of the four tasks of a job and their ordered execution times are shown 

by the bar charts on the left of Fig. 3.1. The residency times of the vehicles arriving at the VC are 

shown in the bar charts at the upper right of the figure, and the timeline showing the respective 

arrival time of the vehicles and the completion times of the tasks are at the right bottom of the 

figure. With respect to the task assignment order, when the first vehicle arrives with the 

residency time 𝑅1 = 8 𝑚𝑖𝑛𝑠, it can execute tasks 2, 3 and 4. Therefore, the VC will assign it the 
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task with the longest execution time, which is task 3 with 𝑋3 = 7 mins. This task assignment 

ensures that the task execution is completed within the residency time of vehicle 1. Next, when 

vehicle 2 arrives with the residency time 𝑅2 = 1 𝑚𝑖𝑛, the vehicle cannot execute any remaining 

tasks (1, 2 and 4) to completion during its residency time, it’s not assigned any task. For all the 

subsequent arrivals, the same logic applies. Thus, upon the arrival of the 5th vehicle, the last task, 

which is task 2, is assigned. As mentioned before, it is important to note that the last assigned 

task is not always the task that completes last. As shown in the task assignment timeline in Fig. 

3.1, the last task to complete in the job is task 1, which is assigned before tasks 2 and 4. 

However, since task 1 has a much longer execution time than tasks 2 and 4, its completion time 

is last. Furthermore, the completion time of task 1 is also the completion time of the job. 

 

Fig. 3.1.  An example of task service strategy for a job with four tasks.  

 

3.1.3. System model assumptions 

A job has 𝔍 independent tasks whose execution times are i.i.d random variables with 

mean 1/𝜇. We assume that vehicles arrive at the VC randomly with mean interarrival time of 

1/𝜆. We further assume that the residency times of vehicles are i.i.d random variables with mean  

1/𝛼. Finally, we assume there are no vehicles in the VC when it is formed. 

The main notations employed in this chapter is in Table 3.1. 
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Notation Description Notation Description 

𝔍 Number of tasks in a job 𝑔𝑅𝑘(𝑟𝑘) Probability density function of 𝑅𝑘 

𝐾 
Number of vehicles have 

joined the VC 
𝐹𝑋𝑗(𝑥𝑗) 

Cumulative distribution function of 

𝑋𝑗 

�̅� 
Average residency time of 

vehicles 𝐺𝑅𝑘(𝑟𝑘) 
Cumulative distribution function of 

𝑅𝑘 

�̅� 
Average execution time of 

tasks 
𝑓𝑋(1),…,𝑋(𝔍)(𝑥1, … , 𝑥𝔍) 

Joint probability density function of 

all order statistics of execution times 

𝜏̅ 
Average interarrival time of 

vehicles to the VC 
𝑔𝑅(1),…,𝑅(𝐾)(𝑟1, … , 𝑟𝐾) 

Joint probability density function of 

all order statistics of vehicle 

residency times 

𝜇 Service rate of a task 𝐴𝐾 

Event of all tasks are assigned when 

there have been 𝐾 vehicles joining a 

VC 

𝜆 
Arrival rate of worker 

vehicles 
𝐾𝔍 

Number of vehicles arrivals at the VC 

to assign the last task 

𝛼 
Departure rate of vehicles 

from the VC 
𝒟𝑈 Upper bound of job completion time 

𝜉 
Upper bound of the execution 

time of a truncated task 
𝒟𝐿 Lower bound of job completion time 

𝑋𝑗 
Random variable as execution 

time of task 𝑗 
𝑌𝑘 Arrival time of the 𝑘𝑡ℎ vehicle 

𝑅𝑘 
Random variable as residency 

time of vehicle 𝑘 
𝐾∗ 

Number of vehicle arrivals until the 

longest task is assigned 

𝑋(𝑗) 
𝑗𝑡ℎ order statistics of 

execution times 
𝑍𝑋(𝑗) 

Completion time of the 𝑗𝑡ℎ shortest 

task 

𝑅(𝑘) 
𝑘𝑡ℎ order statistics of vehicle 

residency times 
𝑃𝐾𝔍(𝑘) Probability mass function of 𝐾𝔍 

𝑓𝑋𝑗(𝑥𝑗) 
Probability density function of 

𝑋𝑗 
𝑔𝑅𝑘(𝑟𝑘) Probability density function of 𝑅𝑘 

𝔍 Number of tasks in a job 𝐹𝑋𝑗(𝑥𝑗) 
Cumulative distribution function of 

𝑋𝑗 

𝐾 
Number of vehicles have 

joined the VC 
𝐺𝑅𝑘(𝑟𝑘) 

Cumulative distribution function of 

𝑅𝑘 

�̅� 
Average residency time of 

vehicles 
𝑓𝑋(1),…,𝑋(𝔍)(𝑥1, … , 𝑥𝔍) 

Joint probability density function of 

all order statistics of execution times 

�̅� 
Average execution time of 

tasks 
𝑔𝑅(1),…,𝑅(𝐾)(𝑟1, … , 𝑟𝐾) 

Joint probability density function of 

all order statistics of vehicle 

residency times 

𝜏̅ 
Average interarrival time of 

vehicles to the VC 

  

Table 3.1. Main notations of this chapter 
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3.2. Mathematical preliminaries 

We assume that task execution times have a general distribution that is supported by a 

semi-infinite interval of (0,∞). As noted earlier, a task with a long execution time may 

significantly increase job completion time. As a result, we will also consider the impact of the 

bounding of the task execution times on job completion time. We let  𝑓𝑋(𝑥) and 𝐹𝑋(𝑥)  denote 

the pdf and the cdf of task execution times, respectively. We can set upper bound for the task 

execution times to 𝜉 by truncating the pdf as follows, 

 𝑓𝑋(𝑥|𝑋 ≤ 𝜉) =
𝑓𝑋(𝑥)

𝐹𝑋(𝜉)
 

(3.1) 

For task execution times that are exponentially distributed random variables with mean 

1/𝜇 , the truncated pdf from (3.1) becomes, 

 𝑓𝑋(𝑥|𝑋 ≤ 𝜉) =
𝜇𝑒−𝜇𝑥

(1 − 𝑒−𝜇𝜉)
 

(3.2) 

We let 𝑋𝑗 denote the execution time of 𝑗’th task for 1 ≤ 𝑗 ≤ 𝔍, and 𝑅𝑘  denote the 

residency time of the 𝑘’th vehicle, for 1 ≤ 𝑘 ≤ 𝐾, where 𝐾 is the number of vehicle arrivals at 

the VC. We assume that 𝑋𝑗 and 𝑅𝑘 are i.i.d for 1 ≤ 𝑗 ≤ 𝔍 and 1 ≤ 𝑘 ≤ 𝐾. We further denote the 

cdfs and pdfs of 𝑋𝑗 and 𝑅𝑘 as 𝐹𝑋(𝑥), 𝑓𝑋(𝑥) and 𝐺𝑅(𝑟), 𝑔𝑅(𝑟), respectively.  Let us arrange all 𝑋𝑗 

and all 𝑅𝑘 among themselves according to the order of their magnitudes as follows,  

 𝑋(1) ≤. . . ≤ 𝑋(𝑗) ≤. . . ≤ 𝑋(𝔍),               𝑅(1) ≤. . . ≤ 𝑅(𝑘) ≤. . . ≤ 𝑅(𝐾) (3.3) 

then 𝑋(𝑗), 𝑅(𝑘) are known as the 𝑗𝑡ℎ and 𝑘𝑡ℎ order statistics, respectively. From [39] the pdfs of 

𝑋(𝑗) and 𝑅(𝑘) are given by, 

 𝑓𝑋(𝑗)(𝑥) =
𝔍!

(𝑗 − 1)! (𝔍 − 𝑗)!
𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]

𝑗−1[1 − 𝐹𝑋(𝑥)]
𝔍−𝑗 

(3.4) 

 𝑔𝑅(𝑘)(𝑟) =
𝐾!

(𝑘 − 1)! (𝐾 − 𝑘)!
𝑔𝑅(𝑟)[𝐺𝑅(𝑟)]

𝑘−1[1 − 𝐺𝑅(𝑟)]
𝐾−𝑘 

(3.5) 
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We let 𝑓𝑋(1),…,𝑋(𝔍)(𝑥1, … , 𝑥𝔍) and 𝑔𝑅(1),…,𝑅(𝐾)(𝑟1, … , 𝑟𝐾) denote the joint distributions of all 

𝑋(𝑗) and all 𝑅(𝑘), respectively, then 

 𝑓𝑋(1),…,𝑋(𝔍)(𝑥1, … , 𝑥𝔍) = ℑ!∏𝑓𝑋𝑖(𝑥𝑖)

ℑ

𝑖=1

 
(3.6) 

 𝑔𝑅(1),…,𝑅(𝐾)(𝑟1, … , 𝑟𝐾) = 𝐾!∏𝑔𝑅𝑖(𝑟𝑖)

𝐾

𝑖=1

 
(3.7) 

3.3. Analysis of job completion time 

In this section, the probability distribution of the number of vehicle arrivals to assign all 

tasks of a job, the probability density function of the upper and lower bounds of the job 

completion time, and the probability density function of the completion time of the longest task 

will be determined. 

3.3.1. Probability distribution of the number of vehicle arrivals for the 

assignment of all the tasks in a job 

In this subsection, we will determine the probability distribution of the required number 

of vehicle arrivals to assign all the tasks in a job. For all the tasks to be assigned, there must have 

been at least 𝔍 vehicle arrivals at the VC. Let 𝐴𝐾 denote the event that all the tasks have been 

assigned when there are 𝐾 vehicle arrivals to the VC. If 𝐾 ≥ 𝔍, it means that 𝑅(𝐾−𝔍+𝑖) >

𝑋(𝑖), ∀𝑖 = 1. . 𝔍. The probability of the event 𝐴𝐾 is given by, 

 𝑃𝑟(𝐴𝐾) = {
𝑃𝑟𝑜𝑏(𝑅(𝐾) > 𝑋(𝔍), … , 𝑅(𝐾−𝔍+1) > 𝑋(1)), 𝐾 ≥ 𝔍

0, 𝐾 < 𝔍
 

(3.8) 

We note that the probability in (3.8) only involves the highest 𝔍 residency times, whose joint pdf 

can be determined from (3.7) as, 

   𝑔𝑅(𝐾),…,𝑅(𝐾−𝔍+1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1) (3.9) 
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= ∫ …∫ 𝑔𝑅(𝐾),…,𝑅(1)(𝑟𝐾, … , 𝑟1)𝑑𝑟1…𝑑𝑟𝐾−𝔍

𝑟2

0

𝑟𝐾−𝔍+1

0

 

  If the residency times of the vehicles are exponentially distributed, then integrations in 

(3.9) can be evaluated, which results in the following closed form (derivation of this result is 

given in Appendix D), 

   

𝑔𝑅(𝐾),…,𝑅(𝐾−𝔍+1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1) 

= 𝐾! 𝛼𝔍𝑒−𝛼(𝑟𝐾+⋯+𝑟𝐾−𝔍+1) ∙
𝑒−(𝐾−𝐽)𝛼𝑟𝐾−𝐽+1(𝑒𝛼𝑟𝐾−𝐽+1 − 1)𝐾−𝐽

(𝐾 − 𝐽)!
 

(3.10) 

To determine the probability in (3.8), we need to derive the joint pdf of the ordered 

vehicle residency times and the ordered task execution times, which is denoted as 

ℎ𝑅(𝐾),…,𝑅(𝐾−𝔍+1),𝑋(𝔍),…,𝑋(1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1, 𝑥𝔍, … 𝑥1). Since task execution times are independent of 

vehicle residency times, the joint pdf is given by, 

 

ℎ𝑅(𝐾),…,𝑅(𝐾−𝔍+1),𝑋(𝔍),…,𝑋(1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1, 𝑥𝔍, … 𝑥1)

= 𝑔𝑅(𝐾),…,𝑅(𝐾−𝔍+1)(𝑟𝐾, … , 𝑟𝐾−𝔍+1)𝑓𝑋(𝔍),…,𝑋(1)(𝑥𝔍, … , 𝑥1) (3.11) 

Then, 𝑃(𝐴𝑘) can be determined as,  

 𝑃𝑟(𝐴𝐾) = ∫…∫ℎ𝑅(𝐾),…,𝑋(1)(𝑟𝐾, … , 𝑥1)
𝐷

𝑑𝑥1…𝑑𝑟𝐾  
(3.12) 

where in the above  𝐷 is the domain of the integration. Let 𝐷𝑢𝑛𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 and 𝐷𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 denote 

the domain of integration for untrancated and truncated execution times respectively. Then, they 

are given by (3.13) and (3.14),  

 

𝐷𝑢𝑛𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = {(𝑥1, … , 𝑥𝔍, 𝑟𝐾−𝔍+1, … , 𝑟𝐾): (𝑥𝑖 ≤ 𝑟𝑗∀𝑗 = 𝐾 − 𝔍 + 𝑖, 1 ≤ 𝑖

≤ 𝔍 − 1) 𝑎𝑛𝑑 (𝑥𝑖 ≤ 𝑥𝑖+1∀1 ≤ 𝑖 ≤ 𝔍 − 1) 𝑎𝑛𝑑 (𝑟𝑗 ≤ 𝑟𝑗+1∀𝐾 − 𝔍 + 1

≤ 𝑗 ≤ 𝐾 − 1)} 
(3.13) 
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𝐷𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 = {(𝑥1, … , 𝑥𝔍, 𝑟𝐾−𝔍+1, … , 𝑟𝐾): (𝑥𝑖 ≤ 𝑟𝑗∀𝑗 = 𝐾 − 𝔍 + 𝑖, 1 ≤ 𝑖

≤ 𝔍 − 1) 𝑎𝑛𝑑 (𝑥𝑖 ≤ 𝑥𝑖+1∀1 ≤ 𝑖 ≤ 𝔍 − 1) 𝑎𝑛𝑑 (𝑟𝑗 ≤ 𝑟𝑗+1∀𝐾 − 𝔍 + 1

≤ 𝑗 ≤ 𝐾 − 1) 𝑎𝑛𝑑 (𝑥𝑖 ≤ 𝜉∀1 ≤ 𝑖 ≤ 𝔍)} 
(3.14) 

 As an example, let us assume that we have 𝔍 = 2 tasks, then the domains of the 

integration in (3.13) and  for the untruncated and truncated cases are, respectively, 

 
𝐷𝑢𝑛𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
𝔍=2 = {(0 ≤ 𝑥1 < 𝑥2 < 𝑟𝐾−1 < 𝑟𝐾 < ∞)

∨ (0 ≤ 𝑥1 < 𝑟𝐾−1 < 𝑥2 < 𝑟𝐾 < ∞)} (3.15) 

 

𝐷𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
𝔍=2 = {(0 ≤ 𝑥1 < 𝑥2 < 𝜉 < 𝑟𝐾−1 < 𝑟𝐾 < ∞)

∨ (0 ≤ 𝑥1 < 𝑥2 < 𝑟𝐾−1 < 𝜉 < 𝑟𝐾 < ∞)

∨ (0 ≤ 𝑥1 < 𝑥2 < 𝑟𝐾−1 < 𝑟𝐾 < 𝜉)

∨ (0 ≤ 𝑥1 < 𝑟𝐾−1 < 𝑥2 < 𝜉 < 𝑟𝐾 < ∞)

∨ (0 ≤ 𝑥1 < 𝑟𝐾−1 < 𝑥2 < 𝑟𝐾 < 𝜉)} 

(3.16) 

 From (3.15) and (3.16), (3.12) can be rewritten for the untruncated and truncated cases as 

shown in (3.17) and (3.18), respectively. We first denote ℎ𝑅(𝐾),𝑅(𝐾−1),𝑋(2),𝑋(1)(𝑟𝐾, 𝑟𝐾−1, 𝑥2, 𝑥1) as 

ℍ2, then, 

 

𝑃(𝐴𝐾,𝑢𝑛𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
𝔍=2 )

= ∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑥2𝑑𝑟𝐾−1𝑑𝑟𝐾 
𝑥2

0

𝑟𝐾−1

0

𝑟𝐾

0

∞

0

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑟𝐾−1𝑑𝑥2𝑑𝑟𝐾 
𝑟𝐾−1

0

𝑥2

0

𝑟𝐾

0

∞

0

 

(3.17) 
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𝑃(𝐴𝐾,𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑
𝔍=2 ) =

= ∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑥2𝑑𝑟𝐾−1𝑑𝑟𝐾 
𝑥2

0

𝜉

0

𝑟𝐾

𝜉

∞

𝜉

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑥2𝑑𝑟𝐾−1𝑑𝑟𝐾 
𝑥2

0

𝑟𝐾−1

0

𝜉

0

∞

𝜉

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑥2𝑑𝑟𝐾−1𝑑𝑟𝐾 
𝑥2

0

𝑟𝐾−1

0

𝑟𝐾

0

𝜉

0

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑟𝐾−1𝑑𝑥2𝑑𝑟𝐾 
𝑟𝐾−1

0

𝑥2

0

𝜉

0

∞

𝜉

+∫ ∫ ∫ ∫ ℍ2𝑑𝑥1𝑑𝑟𝐾−1𝑑𝑥2𝑑𝑟𝐾 
𝑟𝐾−1

0

𝑥2

0

𝑟𝐾

0

𝜉

0

  

(3.18) 

 

Let 𝐾𝔍 denote the number of vehicle arrivals when the last task is assigned, and define 

𝑃𝐾𝔍 (𝑘) as the probability distribution of 𝐾𝔍, 

 𝑃𝐾𝔍 (𝑘) = 𝑃𝑟(𝐾𝔍 = 𝑘) (3.19) 

Then, the probability of the event 𝐴𝐾 may be expressed in terms of 𝑃𝐾𝔍(𝑘) as, 

 𝑃𝑟(𝐴𝐾) =∑ 𝑃𝐾𝔍(𝑘)
𝐾

𝑘=𝔍
 

(3.20) 

From the above, finally, we determine the probability distribution of the number of 

vehicle arrivals for the assignment of all the tasks in a job,  

 𝑃𝐾𝔍(𝐾) = {
𝑃𝑟(𝐴𝐾) − 𝑃𝑟(𝐴𝐾−1), 𝐾 > 𝔍

𝑃(𝐴𝐾), 𝐾 = 𝔍
0, 𝐾 < 𝔍

  

(3.21) 
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3.3.2. Probability density function of the upper and lower bound of job completion time 

Next, we will derive the pdf of the upper and lower bound of job completion time. First, 

let us determine the pdf of the vehicle's arrival time assigned to the last task. Let 𝑌𝑘 denote the 

arrival time of the 𝑘’th vehicle and 𝑓𝑌𝑘(𝑡) its pdf. Let 𝜏𝑘 denote the interarrival time of the 𝑘′𝑡ℎ 

vehicle, then, 

 𝑌𝑘 =∑𝜏𝑖

𝑘

𝑖=1

 
(3.22) 

Since 𝜏𝑘∀𝑘 is assumed to be i.i.d with pdf 𝑓𝜏(𝑡),  Laplace transform of 𝑌𝑘 could be 

obtained as follows. Let us define 𝑌𝑘(𝑠) = 𝐸[𝑒
−𝑠𝑌𝑘] and 𝜏(𝑠) = 𝐸[𝑒−𝑠𝜏] as Laplace transforms 

of 𝑓𝑌𝑘(𝑡) and 𝑓𝜏(𝑡), respectively. Then, 

 𝑌𝑘(𝑠) =∏𝜏𝑖(𝑠)

𝑘

𝑖=1

= [𝜏(𝑠)]𝑘 
(3.23) 

If 𝜏𝑘 ∀𝑘 are exponentially distributed, then the pdf of 𝑌𝑘 is given by the Erlang 

distribution [121], 

 𝑓𝑌𝑘(𝑡) =
𝜆𝑘𝑡𝑘−1𝑒−𝜆𝑡

(𝑘 − 1)!
 

(3.24) 

Let 𝑌𝐾𝔍 denote the arrival time of the vehicle which has been assigned to the last task. 

Since, distribution of the number of vehicle arrivals to assign the last task is given in (3.21), 

using the law of total probability, we determine the pdf of 𝑌𝐾𝔍 as follows, 

 𝑓𝑌𝐾𝔍
(𝑡) = ∑𝑓𝑌𝑘(𝑡)𝑃𝐾𝔍(𝑘)

∞

𝑘=𝔍

 

(3.25) 

Clearly, the job completion time will be the longest when the longest task is assigned for 

execution last. Otherwise,job completion time will be the shortest when the shortest task is 
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assigned to execute last. Let  𝒟𝑈 and 𝒟𝐿 denote the upper and lower bound of the job completion 

time, then, 

 𝒟𝑈 = 𝑌𝐾𝔍 + 𝑋(𝔍)  (3.26) 

 𝒟𝐿 = 𝑌𝐾𝔍 + 𝑋(1)  (3.27) 

The pdfs of 𝒟𝑈 and 𝒟𝐿 can be determined from (3.26), (3.27) using convolution property 

as follows 

 𝑓𝒟𝑈(𝑡) = 𝑓𝑌𝐾𝔍
(𝑡) ∗ 𝑓𝑋(𝔍)(𝑡) = ∫ 𝑓𝑌𝐾𝔍

(𝑥)𝑓𝑋(𝔍)(𝑡 − 𝑥)𝑑𝑥
∞

0

  
(3.28) 

 𝑓𝒟𝐿(𝑡) = 𝑓𝑌𝐾𝔍
(𝑡) ∗ 𝑓𝑋(1)(𝑡) = ∫ 𝑓𝑌𝐾𝔍

(𝑥)𝑓𝑋(1)(𝑡 − 𝑥)𝑑𝑥
∞

0

  
(3.29) 

3.3.3. Mean of upper and lower bound of job completion time 

Next, we will determine the mean of the job completion time's upper and lower bound. 

From (3.26) and (3.27), 

 𝐸[𝒟𝑈] = 𝐸[𝑌𝐾𝔍] + 𝐸[𝑋(𝔍)]  (3.30) 

 𝐸[𝒟𝐿] = 𝐸[𝑌𝐾𝔍] + 𝐸[𝑋(1)]  (3.31) 

 Similarly to the reasoning for the derivation of (3.25), the expected arrival time of the 

vehicle which has been assigned to the last task is given by, 

 𝐸[𝑌𝐾𝔍] = ∑𝐸[𝑌𝑘]𝑃𝐾𝔍(𝑘)

∞

𝑘=𝔍

  
(3.32) 

Since the interarrival times are i.i.d., from (3.22), 𝐸[𝑌𝑘] = 𝑘𝐸[𝜏], where 𝐸[𝜏] = 1 𝜆⁄ . 

Substituting this in (3.32) and then (3.32) in (3.30) and (3.31) gives the mean of the upper and 

lower bound of job completion time as 
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 𝐸[𝒟𝑈] = 𝜆𝐸[𝐾𝔍] + 𝐸[𝑋(𝔍)]  (3.33) 

 𝐸[𝒟𝐿] = 𝜆𝐸[𝐾𝔍] + 𝐸[𝑋(1)]  (3.34) 

3.3.4. Probability density function of the longest task completion time 

Due to the service strategy, the completion time of the longest task execution is expected 

to be a good approximation of the job completion time. As a result, the pdf of the longest task 

completion time will be derived in this subsection. Since the longest task has the highest 

assignment priority, when a vehicle's residency time, 𝑅, is larger than the execution time of the 

longest task, 𝑋(𝔍), it is the only possible task that can get assigned. Let us assume that the longest 

task execution time is a constant, then the comparisons of 𝑅 and 𝑋(𝔍) are independent Bernoulli 

trials. Let  𝑝∗ denote the probability that the outcome of a trial is a "success," we then have  

 𝑝∗ = 𝑃𝑟𝑜𝑏(𝑅 > 𝑋(𝔍)|𝑋(𝔍) = 𝑐)  (3.35) 

Let 𝐾∗ denote the number of the vehicle that has been assigned the longest task. Then the 

random variable 𝐾∗ has a geometric distribution with parameter 𝑝∗: 

 𝑃𝐾∗|𝑋(𝔍)=𝑐(𝐾
∗ = 𝑘|𝑋(𝔍) = 𝑐) = (1 − 𝑝∗)𝑘−1𝑝∗, 𝑘 ≥ 1  (3.36) 

We further denote the arrival time of the vehicle serving the longest task as 𝑌𝐾∗. Similarly 

to the derivation of 𝑓𝑌𝐾𝔍
(𝑡) in equations (3.22) to (3.25), we can determine the pdf of 𝑌𝐾∗ as: 

 𝑓𝑌𝐾∗|𝑋(𝔍)=𝑐(𝑡|𝑋(𝔍) = 𝑐) = ∑𝑓𝑌𝑘(𝑡)𝑃𝐾∗|𝑋(𝔍)=𝑐(𝐾
∗ = 𝑘|𝑋(𝔍) = 𝑐)

∞

𝑘=1

 
(3.37) 

When the interarrival time of the vehicles is exponentially distributed, substituting in the above 

from (3.24), we have, 
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𝑓𝑌𝐾∗|𝑋(𝔍)=𝑐(𝑡|𝑋(𝔍) = 𝑐) = ∑
𝜆𝑚𝑡𝑚−1𝑒−𝜆𝑡

(𝑚 − 1)!
𝑃𝐾∗|𝑋(𝔍)=𝑐(𝐾

∗ = 𝑘|𝑋(𝔍) = 𝑐)

∞

𝑚=1

= 𝜆(1 − 𝑝∗)𝑒−𝜆𝑡∑
(𝜆𝑝∗𝑡)𝑘−1

(𝑘 − 1)!

∞

𝑘=1

= 𝜆(1 − 𝑝∗)𝑒−(1−𝑝
∗)𝜆𝑡  

(3.38) 

Let us finally denote the completion time of the longest task as 𝑍𝑋(𝔍). Then, 

 𝑍𝑋(𝔍) = 𝑌𝐾∗ + 𝑋(𝔍) (3.39) 

Assuming that 𝑋(𝔍) is a constant, the conditional pdf of 𝑍𝑋(𝔍) can be written as 

  𝑓𝑍𝑋(𝔍)|𝑋(𝔍)=𝑐
(𝑧|𝑋(𝔍) = 𝑐) = {

0, 𝑧 ≤ 𝑐

𝑓𝑌𝐾∗|𝑋(𝔍)=𝑐(𝑧 − 𝑐|𝑋(𝔍) = 𝑐), 𝑧 > 𝑐 
(3.40) 

Since the pdf of 𝑋(𝔍) can be determined from (3.4), we can finally find the unconditional 

pdf of the longest task completion time as : 

 𝑓𝑍𝑋(𝔍)
(𝑧) = ∫ 𝑓𝑍𝑋(𝔍)|𝑋(𝔍)=𝑥𝔍

(𝑧|𝑋(𝔍) = 𝑥𝔍)𝑓𝑋(𝔍)(𝑥𝔍)𝑑𝑥𝔍

∞

0

 
(3.41) 

3.4. Numerical results 

In this section, we will present the representative numerical and simulation results to 

show the correctness of our analysis. It is noted that the interarrival times and the residency times 

of the vehicles will be chosen to be exponentially distributed in this section. We let �̅� denote the 

average residency time of a vehicle, �̅�  the average execution time of a task and 𝜏̅ the average 

vehicle interarrival time. Simulation has been implemented in Matlab, and it has been described 

in Appendix E. 

Fig. 3.2 plots the probability of the event that all the tasks of a job will be assigned before 

or at K’th vehicle, 𝑃𝑟(𝐴𝐾), as a function of the number of vehicle arrivals with average task 

execution time as a parameter. Fig. 3.3 plots the probability of the event of assigning the last task 

of a job at the k’th vehicle, 𝑃𝐾𝔍(𝑘), as a function of the number of vehicle arrivals for the same 
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system. We first note that the numerical and simulation results agree very well in both figures. 

Furthermore, the figures support our intuitive understanding of the system's behavior. As the 

average task execution times increases with constant vehicle residency times, finding a vehicle 

that can execute a task within the vehicle's residency period becomes harder. Thus, the VC will 

need more vehicles joining before finding the ones that can complete the job. This reasoning is 

confirmed in Fig. 3.3 when the 𝑃𝐾𝔍(𝑘) curve for �̅� = 8 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, denoted by 𝑃𝐾𝔍
�̅�=8(𝑘), is 

compared with the 𝑃𝐾𝔍(𝑘) curve for �̅� = 2 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, denoted 𝑃𝐾𝔍
�̅�=2(𝑘), at 𝑘 = 4 and 𝑘 = 24: It 

may be seen that  𝑃𝐾𝔍
�̅�=8(4) < 𝑃𝐾𝔍

�̅�=2(4) and 𝑃𝐾𝔍
�̅�=8(24) > 𝑃𝐾𝔍

�̅�=2(24) which confirms our intuition. 

 

Fig. 3.2. Numerical and simulation results of probability of assigning all the tasks of a job as a 

function of the number of vehicle  arrivals with average task execution time as a parameter and 

constant average residency time. 
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Fig. 3.3. Numerical and simulation results of probability of assigning the last task to the k’th 

vehicle as a function of k with average task execution time as a parameter. 

 

Fig. 3.4. Numerical and simulation results of upper and lower bound of job completion time for 

truncated and untruncated task execution times. 



74 

 

Fig. 3.4 plots the cdf curves of the upper and lower bounds of job completion times 

𝑃𝑟𝑜𝑏(𝐷𝑈 < 𝑡), 𝑃𝑟𝑜𝑏(𝐷𝐿 < 𝑡)  and the simulation results of job completion times 𝑃𝑟𝑜𝑏(𝐷 < 𝑡) 

under uninterrupted and interrupted task assignment schemes. Further, results have been plotted 

both for truncated and untruncated task execution times. In the truncated cases, the upperbound 

for task execution time is chosen to be 𝜉 = 4 𝑚𝑖𝑛. It may be seen that simulation results for job 

completion time fall between the upper and lower bounds for both truncated and untruncated task 

execution times. It's also seen that truncation of the distribution of the task execution time 

effectively reduces the mean task execution time and job completion time and bounds. Finally, 

it's seen that the system's performance under interrupted service with no migration overhead is 

better than uninterrupted service. This observation is an example of the previous conclusion that 

the pdf of job completion time under interrupted task assignment serves as the lowest bound of 

any task servicing discipline. 

Fig. 3.5 plots the numerical and simulation results of the pdf of the longest task 

completion time and the simulation result of job completion time for untruncated task execution 

times. Again, it may be seen that numerical and simulation results for the longest task 

completion time agree well. Further, the results show that the completion time of the longest task 

is a good approximation for the job completion time for this example. 

 

Fig. 3.5. Numerical and simulation results for the pdf of the completion time of the longest task 

for untruncated task execution time.  
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Fig. 3.6 presents the numerical and simulation results of the average completion time of 

the longest task and the average simulation job completion time as a function of the number of 

tasks in the job for truncated task execution times with bound 𝜉 = 8 and 𝜉 = 18  mins. It may be 

seen that as the number of tasks in a job increases, the completion time of the longest task will no 

longer be a good approximation for the completion time of the job. This may be due to having 

other tasks with execution times close to the task with the longest execution time. Despite this 

difference, as 𝜉 increases, the difference between these two vanishes regardless of the number of 

tasks in a job, an example of which is shown in Fig. 3.7. This means that for the untruncated 

case, the average job completion time can be approximated very well by the average longest task 

completion time. 

 

Fig. 3.6. Numerical and simulation results for the mean completion time of the task with longest 

truncated execution time as a function of the number of tasks in a job.  
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Fig. 3.7. Simulation results for average completion time of the longest task and the job and their 

ratio as a function of task execution bound. 

3.5. Summary 

In the VC architecture, there may be cases that task migration may not be desirable 

because of its overhead or due to the Quality of Service (QoS) requirements of the application. In 

these cases, the VC has to employ a service strategy to avoid workload migration caused by 

interruptions. This chapter employs the strategy that the leader only assigns a task to a vehicle 

when the vehicle can finish the task during its residency time in the VC. The arrival times, the 

vehicles' residency times, and the execution times of the tasks in a job are assumed to be i.i.d 

with arbitrary probability distributions. Based on this assumption and the interruption-avoidance 

service strategy, we provide the probability distribution of the number of vehicles arriving at the 

VC to assign all the tasks in a job. Based on this foundational result, the probability density 

function of the bounds of the job completion times and their first moments are derived. We 

derive the pdf of the competion time of the task with longest execution time. We show that 

average longest task’s completion time is a good approximation for the average job completion 

time. The numerical results show that if a job has tasks with long execution times this strategy 

will result in long job completion times. As a result, it will be good to use a hiybrid strategy, 
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where short tasks are assigned according to the interruption avoidance strategy and long tasks 

according to the strategy that allows interruption. Finally, Monte Carlo simulation results are 

used to verify the numerical results of the analysis. 
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Chapter 4  

Computing capacity of a VC with service 

interruption avoidance strategy 

In this chapter, we will derive the computing capacity of a VC during its lifetime for 

service interruption avoidance strategy. The computing capacity gives us the distribution of the 

number of jobs a VC can execute during its existence. 

4.1. System model  

In this section, we describe vehicular cloud, job, and service models and state the 

mathematical assumptions. 

4.1.1. Vehicular Cloud model 

We assume a highway with free-flow traffic where vehicles can choose to interconnect 

and form a VC through wireless communications. The vehicle that initiates the formation of the 

VC becomes its leader. The leader recruits other vehicles and manages and assigns computing 

tasks to the vehicles in the VC.  A vehicle joining the VC agrees the VC to utilize its computing 

resources and must connect directly to the leader to join the VC. We assume that the connectivity 

range of the leader vehicle is sufficiently large. A vehicle may leave the VC when it exits from 

the highway or if it decides to stop sharing its resources. The period that a vehicle is a member of 

a VC will be referred to as its residency time. A vehicle joining to VC will share its path and 

speed with the VC leader. Then, the leader will be able to estimate the residency times of the 

joining vehicles. When the leader leaves the VC, its role is transferred to another member while 

guaranteeing connectivity to the remaining members. The lifetime of a VC ends when the leader 

is the only vehicle in the VC.  
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4.1.2. Job and service model 

A job contains a number of tasks, which can either come from the VC members or 

external mobile devices connected to the VC called a requester. A job may have random number 

of tasks with Poisson distribution with parameter 𝛾. The execution times of the tasks will be i.i.d. 

random variables with exponential distribution with parameter 𝜇. We assume that the VC 

continuously receives jobs until the last vehicle leaves the VC; therefore, the VC never runs out 

of jobs to execute. 

In this work, a vehicle will keep executing tasks one after another during its residency 

time in the VC. However, we assume an uninterrupted task service strategy which means that a 

vehicle will only be assigned a task if it can finish its execution before leaving the VC. An 

example of the job and service models are given in Fig. 4.1. In part a of the figure, we have job 1 

and 2 with 5 and 4 tasks in each job, respectively. These tasks are ready to be assigned at the 

conception of the VC. In part b of the figure, it shows that each vehicle executes tasks 

subsequently, and the vehicles are only assigned the next task only if it finishes the current task. 

This approach continues until the remaining residency times of the vehicles no longer 

sufficiently long to execute the task entirely. Then the vehicle will be idle.  

 

Fig. 4.1.  An example of the job model and service strategy. 
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Notation Description Notation Description 

𝜇 Service rate of a task 𝐽𝑖 
Number of tasks served by the i’th 

vehicle,  𝑖 = 1…𝑀 

𝜆 Arrival rate of vehicles 𝐽(𝑧) Probability generating function of 𝐽 

𝛼 Service rate of  vehicles 𝕂 
Number of tasks served during the 

lifetime of a VC 

𝑅 
Residency times of the 

vehicles in the VC 
�̅� 

Average number of tasks served 

during the lifetime of a VC 

𝑓𝑅(𝑟) 
Probability density function of 

the residency times 
𝕂(𝑧) Probability generating function of 𝕂 

𝑅(𝑠) Laplace transform of 𝑓𝑅(𝑟) 𝛾 Average number of tasks in a job 

Τ 
Interarrival times of the 

vehicles at the VC 
𝐿 Number of tasks in a job 

𝑓Τ(𝜏) 
Probability density function of 

the interarrival times 
𝐿𝑖 Number of tasks in the 𝑖𝑡ℎ job 

𝑀 

Number of customers served 

during the busy period of a 

𝐺/𝐺/∞ queue 

𝐿(𝑧) Probability generating function of 𝐿 

�̅� Average number of customers 

served during the busy period 

of a 𝐺/𝐺/∞ queue 

𝑃0 
Probability that there is no task in a 

job 

𝑀(𝑧) 
Probability generating 

function of 𝑀 
𝐴𝑛 Number of tasks in 𝑛 jobs 

�̂� 

Number of vehicles served 

during the busy period of a 

𝑀/𝐺/∞ queue 

𝐴𝑛(𝑧) Probability generating function of 𝐴𝑛 

�̂�(𝑧) 
Probability generating 

function of �̂� 
ℕ 

Number of completed jobs during the 

lifetime of the VC 

𝐽 
Number of completed tasks by 

a single vehicle 
ℕ̅ 

Average number of completed jobs 

during the lifetime of the VC 

𝜇 Service rate of a task 𝐽𝑖 
Number of tasks served by the i’th 

vehicle,  𝑖 = 1…𝑀 

𝜆 Arrival rate of vehicles 𝐽(𝑧) Probability generating function of 𝐽 

𝛼 Service rate of  vehicles 𝕂 
Number of tasks served during the 

lifetime of a VC 

𝑅 
Residency times of the 

vehicles in the VC 
�̅� 

Average number of tasks served 

during the lifetime of a VC 

𝑓𝑅(𝑟) 
Probability density function of 

the residency times 
𝕂(𝑧) Probability generating function of 𝕂 

Table 4.1. Main notations of Chapter 4 
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4.1.3. Mathematical assumptions 

We will be considering free-flow highway scenario where vehicles' driving behaviors are 

independent of each other. It will be assumed that the residency times of the vehicles in the VC 

are i.i.d random variables with mean 1/𝛼 and pdf 𝑓𝑅(𝑟), whose Laplace transform is 𝑅(𝑠). We 

assume that the interarrival time of the vehicles to the VC has the pdf 𝑓Τ(𝜏) and the arrival rate 

of the vehicles is 𝜆.  

The main notations employed in this chapter is shown in Table 4.1. 

4.2. Derivation of the Computing Capacity 

In this section, we will determine the number of completed jobs during the lifetime of a 

VC. We first determine the number of vehicle arrivals to the VC during its lifetime and the 

number of tasks each vehicle can serve during its residency. Then, we determine the total 

number of completed tasks and, subsequently, the number of completed jobs during the lifetime 

of the VC. 

4.2.1. Probability generating function of the number of vehicle arrivals to the 

VC during its lifetime 

We will assume that the interarrival time of the vehicles to VC and residency time the of 

the vehicles in the VC are i.i.d and they have arbitrary distributions. We will model the number 

of vehicles in the VC as a 𝐺/𝐺/∞ queueing system. The lifetime of the VC corresponds to the 

busy period of the queueing system. As a result, the number of vehicles that has joined to the VC 

during its lifetime corresponds to the number of customers served during the busy period of a  

𝐺/𝐺/∞ queueing system. Let 𝑀 denote the number of customers served during the busy period 

of  a 𝐺/𝐺/∞ queueing system and 𝑀(𝑧) its PGF. Then, from Theorem 4 in [123], 𝑀(𝑧) is given 

by, 

 𝑀(𝑧) =∑ 𝑧𝑛∫ …∫ ∏{[𝑓𝑅 (∑𝑥𝑗

𝑛

𝑗=𝑖

) − 𝑓𝑅(𝑥𝑖)] 𝑑𝑓Τ(𝑥𝑖)} 𝑓𝑅(𝑥𝑛)𝑑𝑓Τ(𝑥𝑛)

𝑛−1

𝑖=1

∞

0

∞

0

∞

𝑛=1
 

(4.1) 



82 

 

Let �̂�(𝑧) denote the PGF of the number of customers served during the busy period of a 

𝑀/𝐺/∞ queue. Then from Theorem 2 in [124], the above  𝑀(𝑧) reduces to, 

 �̂�(𝑧) = 1 −
1

𝜆𝐹(𝑧)
 

(4.2) 

where 

 𝐹(𝑧) = ∫ 𝑒
[−𝜆𝑡+𝜆 ∫ 𝑧𝑅(𝑦)

𝑡
𝑦=0 𝑑𝑦]

𝑑𝑡
∞

𝑡=0

 
(4.3) 

4.2.2. PMF of the number of completed tasks during the lifetime of a VC 

Next, we will derive the number of tasks served during the lifetime of the VC. First, we 

will determine the number of tasks a vehicle serves during its residency time in the VC. Since the 

execution times of the tasks are i.i.d exponentially distributed with parameter 𝜇, the number of 

tasks that a vehicle can serve is given by the number of Poisson points with parameter 𝜇 that may 

occur during its residency time. Then, the distribution of the number of completed tasks by a 

single vehicle, 𝐽, is given by 

 𝑃(𝐽 = 𝑗) = ∫
(𝜇𝑟)𝑗

𝑗!
𝑒−𝜇𝑟

∞

0

𝑓𝑅(𝑟)𝑑𝑟 

(4.4) 

Let us denote the probability-generating function of 𝐽 as 𝐽(𝑧), then 

 𝐽(𝑧) =∑𝑃(𝐽 = 𝑗)𝑧𝑗
∞

𝑗=0

=∑∫
(𝜇𝑟)𝑗

𝑗!
𝑒−𝜇𝑟𝑓𝑅(𝑟) 𝑑𝑟

∞

0

𝑧𝑗
∞

𝑗=0

 

(4.5) 

Interchanging the order of summation and integration gives 

 𝐽(𝑧) = ∫ 𝑒−(𝜇−𝜇𝑧)𝑟𝑓𝑅(𝑟) 𝑑𝑟

∞

0

= 𝑅(𝑠)|𝑠=𝜇−𝜇𝑧 
(4.6) 

where 𝑅(𝑠) is the Laplace transform of the residency time. 
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Let 𝕂 denote the number of tasks served during the lifetime of a VC, and 𝕂(𝑧) = 𝐸[𝑧𝕜] 

denote the PGF of the distribution of 𝕂. Let also  𝐽𝑖 denote the number of tasks served by the 𝑖'th 

vehicle,  𝑖 = 1…𝑀, where M is the number of vehicles that were members of the VC during its 

lifetime. Then, 𝕂 is given by, 

 𝕂 =∑𝐽𝑖

𝑀

𝑖=1

 
(4.7) 

As 𝑀 and 𝐽𝑖 are independent, the PGF of 𝕂 is given by, 

 𝕂(𝑧) = 𝑀(𝑧)|𝑧=𝐽(𝑧) (4.8) 

4.2.3. Probability distribution of the number of completed jobs during the 

lifetime of VC 

Next, we will determine the number of jobs the VC will serve during its lifetime. We 

assume that the number of tasks in a job is given by the Poisson distribution with parameter 𝛾 

and each job has at least one task. Let 𝐿 denote the number of tasks in a job and 𝐿(𝑧) the PGF of 

the distribution of 𝐿. Then, we have 

 𝑃𝑟𝑜𝑏(𝐿 = 𝑖) = {
1

1 − 𝑃0

𝛾𝑖𝑃0
𝑖!

, 𝑖 ≥ 1

0, 𝑖 = 0

 

(4.9) 

 𝐿(𝑧) = 𝐸[𝑧𝐿] =
𝑒−𝛾(1−𝑧) − 𝑃0

1 − 𝑃0
 

(4.10) 

where 𝑃0 = 𝑒−𝛾. 

 Let 𝐴𝑛 denote the number of tasks in 𝑛 jobs and 𝐴𝑛(𝑧) the PGF of 𝐴𝑛. Since the number 

of tasks in each job is i.i.d, from (4.10), we  can write the PGF of the sum of the tasks in 𝑛 jobs, 

𝐴𝑛(𝑧), as 
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𝐴𝑛(𝑧) = [𝐿(𝑧)]𝑛 =
1

(1 − 𝑃0)𝑛
[𝑒−𝛾(1−𝑧) − 𝑃0]

𝑛

=
1

(1 − 𝑃0)𝑛
∑ (

𝑛

𝑘
) 𝑒−𝛾(1−𝑧)𝑘(−𝑃0)

(𝑛−𝑘)
𝑛

𝑘=0
 

(4.11) 

where the last equation in the above follows from the Binomial theorem. We also note that 

 𝑒−𝛾(1−𝑧)𝑘 =∑
𝑒−𝛾𝑘(𝛾𝑘)ℓ

ℓ!
𝑧ℓ

∞

ℓ=0

 
(4.12) 

 Substitute (4.12) into (4.11), then we have, 

 𝐴𝑛(𝑧) =∑[
1

(1 − 𝑃0)
𝑛
∑ (

𝑛

𝑘
)
𝑒−𝛾𝑘(𝛾𝑘)ℓ

ℓ!
(−𝑃0)

(𝑛−𝑘)
𝑛

𝑘=0
] 𝑧ℓ

∞

ℓ=0

 
(4.13) 

 From the definition of the probability-generating function, the probability distribution of 

𝐴𝑛 can be determined from (4.13) as: 

  𝑃𝑟𝑜𝑏(𝐴𝑛 = ℓ) = {

1

(1 − 𝑃0)𝑛
∑ (

𝑛

𝑘
)
𝑒−𝛾𝑘(𝛾𝑘)ℓ

ℓ!
(−𝑃0)

(𝑛−𝑘)
𝑛

𝑘=0
, ℓ ≥ 𝑛

0, ℓ < 𝑛

  

(4.14) 

Finally, let ℕ denote the number of completed jobs during the lifetime of the VC and 𝐿𝑖 

the number of tasks in the 𝑖𝑡ℎ job. Since the number of tasks in jobs is i.i.d, then the probability 

distribution of 𝐿𝑖  is given by (4.10). Then, the probability that there will be 𝑛 completed jobs 

given 𝕜 completed tasks when 𝕜 ≥ 𝑛 will be given by  
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𝑃𝑟𝑜𝑏(𝑁 = 𝑛|𝕂 = 𝕜) = 𝑃𝑟𝑜𝑏(𝐴𝑛 ≤ 𝕜 ∩ 𝐴𝑛+1 > 𝕜) 

=∑𝑃𝑟(𝐴𝑛 = 𝒾)𝑃𝑟(𝐿𝑛+1 > 𝕜 − 𝒾)

𝕜

𝒾=𝑛

 

=∑𝑃𝑟(𝐴𝑛 = 𝒾)

𝕜

𝒾=𝑛

∑ 𝑃𝑟(𝐿𝑛+1 = 𝑗)

∞

𝑗=𝕜−𝒾+1

 

=∑𝑃𝑟(𝐴𝑛 = 𝒾)

𝕜

𝒾=𝑛

(1 −∑𝑃𝑟(𝐿𝑛+1 = 𝑗)

𝕜−𝒾

𝑗=1

) 

(4.15) 

We note that 𝑃𝑟(ℕ = 𝑛|𝕂 = 𝕜) = 0  for 𝕜 < 𝑛. From the inversion of 𝕂(𝑧) in (4.8), we 

can determine the probability distribution of 𝕂, with which, we can determine the unconditional 

distribution of the number of completed jobs during the lifetime of a VC, ℕ, 

 𝑃𝑟(ℕ = 𝑛) = ∑𝑃𝑟(ℕ = 𝑛|𝕂 = 𝕜)𝑃𝑟(𝕂 = 𝕜)

∞

𝕜=𝑛

 
(4.16) 

4.2.4. Average number of attempted jobs during VC lifetime 

Although we can determine the average number of completed jobs from (4.16), we will 

provide an alternative derivation of the average number of completed jobs which is 

computationally less intensive. The work in [125] provides a closed-form result for the average 

number of customers served during the busy period of an 𝐺/𝐺/∞ queue. Thus from equation 

(2.6) in [125], the average number of vehicles that became a member of a VC during its lifetime, 

�̅�, is approximately given by,  

 �̅� ≅
𝑒(𝜑

(𝐶𝑠
2+1))(𝜑(𝐶𝑠

2 + 1) + 1) + 𝜑(𝐶𝑠
2 + 1) − 1

2𝜑(𝐶𝑠2 + 1)
 

(4.17) 

where 𝜑 and 𝐶𝑠 are the mean number of vehicles in the system and the coefficient of variance of 

the residency time, respectively. We note 

 𝜑 =
𝜆

𝛼
, 𝐶𝑠 =

√𝐸[𝑅2] − (𝐸[𝑅])2

𝐸[𝑅]
 (4.18) 
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 Then, the average number of completed tasks, �̅� , is given by, 

 �̅� = �̅�𝐸[𝐽] = �̅�𝐽′(𝑧) |𝑧=1 (4.19) 

 Where 𝐸[𝐽] is the average number of tasks served to completion by a vehicle.  𝐽′(𝑧) is the 

derivative of 𝐽(𝑧) wrt z, which is the PGF of the number of completed tasks by a vehicle during 

its residency given by (4.5). Let us next determine the average number of tasks in a job. From 

(4.9), 

 �̅� =
𝛾

1 − 𝑃0
 

(4.20) 

Finally, the average number of completed jobs during the lifetime of a VC is given by 

 ℕ̅ =
�̅�

�̅�
  

(4.21) 

4.3. Numerical results 

In this section, we will present numerical results from the analysis above as well as 

simulation results to demonstrate that the analysis is correct. We assume that the  interarrival and 

residency times of the vehicles are exponentially distributed. In the base case, the values of 

system parameters are set as 𝛼 = 0.2 vehicle/min, 𝜇 = 1/3 tasks/ min, 𝜆 = 1 vehicle/min, 𝛾 = 4 

tasks. 

Fig. 4.2 to Fig. 4.4 plot the average number of job completions as one of the parameters 

in the base case varies. In general, the system performance confirms our intuition of the system. 

An increasing 𝜆 leads to more job completions as there will be more vehicles during the lifetime 

of a VC to execute tasks, as shown in Fig. 4.2. An increasing 𝛼 or a shorter average residency 

time reduces the number of tasks that a vehicle completes. Thus, the number of completed jobs 

will be less, which is shown in Fig. 4.3. An increase in the average number of tasks in a job, 𝛾, 

will decrease the number of completed jobs, as shown in Fig. 4.4. Finally, it may be seen that 

numerical and simulations results agree with each other. 
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Fig. 4.2. The average number of  jobs completed as a function of vehicle arrival rate 

 

Fig. 4.3. Average number of completed jobs as a function of vehicle service rate. 
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Fig. 4.4. Average number of jobs completed as a function of average number of tasks in a job. 

4.4. Summary 

In this chapter, we analyze the computing capacity of a VC architecture. Similar to the 

previous chapters, the VC is formed by vehicles on a free-flow highway. However, in this 

chapter, when the leader leaves the VC, the leadership is transferred to another member without 

disconnecting the remaining members. Furthermore, a vehicle can join the VC if it allows the 

VC to utilize its computing resources and is within the communication range of the leader of the 

VC. The VC exists when at least one vehicle is in the VC and terminates when the last vehicle 

disconnects from the VC. The number of completed jobs characterizes the computing capacity of 

the VC during its existence. We model the number of vehicles within the VC as a 𝑀/𝐺/∞ 

queueing system. The number of tasks in a job follows a Poisson distribution and task execution 

times are exponentially distributed. Under these assumptions, we first determine the probability 

distribution of the total number of vehicles that join the VC during its existence. Then, we follow 

up with the distribution of the number of tasks served by these vehicles. Finally, we derive the 

distribution of the number of jobs completed during the VC lifetime. 
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Chapter 5  

Computing capacity of a robotaxi fleet 

 

Future vehicles will likely become increasingly autonomous for various reasons, such as 

comfort, safety, and economics. In fact, besides traditional modes of transportation, passengers 

will be able to order autonomous taxis or robotaxis operated by technology companies to get to 

their destinations. From the perspective of the robotaxi fleet operators, they would want to utilize 

all the resources of their fleet fully and continuously. However, passengers’ demand for robotaxi 

services will be high during rush hours and low during off-peak periods. Thus, the operators are 

left with an intermittently idling fleet of computationally powerful autonomous vehicles. This 

work explores the possibility of utilizing the processing units on these vehicles as a computing 

cluster during their idling period and providing computing services to nearby external customers 

with computationally demanding tasks.  

Computing cluster based on robotaxis is a form of edge computing (EC) and, therefore, 

holds several advantages over cloud computing. For example, a robotaxi fleet can execute tasks 

with lower latency than cloud computing due to its proximity to end users. Additionally, as 

developers must design robotaxis to be fault-tolerant to ensure passengers’ safety, the onboard 

computing units should also be relatively reliable. This characteristic of robotaxi-based EC will 

ensure the ease of deployment and operation of such computing clusters. Therefore, the 

feasibility of such a system should be higher than its counterparts.  

We study the performance of the system under two scenarios, infinite and finite backlog 

of tasks. In the infinite backlog case, there will always be tasks to execute for idling taxis. In this 

case, we derive the probability distribution of the number of tasks that the fleet can serve to 

completion during a cycle. A cycle is defined as the interval between two consecutive time 

points when the entire fleet becomes idle. In the finite backlog case, we assume that the tasks 

requiring service arrive at the system according to a Poisson process. The tasks requiring service 

enter a queue until they can be served by an idling taxi. If a task is pre-empted during execution 
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due to the arrival of a passenger service request, it has to wait until another idling taxi becomes 

available. We derive an approximation for the average task delay in the system.  

5.1. System model and assumptions 

5.1.2. Robotaxi model 

 We consider a robotaxi company that owns a fleet of vehicles. The fleet operates in a 

geo-fenced area for regulatory and efficiency reasons and serves only passenger requests within 

that area. To manage and assist the operations of the vehicles of the fleet, the fleet operator 

connects wirelessly to the vehicles. The operator monitors the occupancy status of each vehicle 

and assigns the passenger requests and computing tasks over the air to these vehicles. In 

addition, the fleet operator also manages task transfer when the arrival of a passenger request 

halts the execution of a task. Thus, the operator will know when the vehicles are transporting 

passengers or are idling and ready to execute tasks. The vehicle’s only responsibility is carrying 

out assigned passenger requests, executing tasks, and backing up the execution progress when 

interruptions occur. From here on, the vehicles in the robotaxi fleet are called taxis. 

 We will assume that the arrival of the passenger requests is according to a Poisson 

process with parameter λ. The passenger service requests will wait in a queue until taxis become 

available to serve them. The passenger service times are assumed to be exponentially distributed 

with parameter 𝛼. The fleet will include 𝑐 taxis in total. As a result, we will model the service of 

the passengers as a 𝑀/𝑀/𝑐 queuing system.  

 

5.1.3. Task service model 

 The execution times of the tasks are independent of passenger service times, and they are 

assumed to be exponentially distributed with the parameter 𝜇. When a taxi in the fleet finishes 

serving a passenger, if there are no pending passenger requests for service, it will idle and will be 

available for execution of computing tasks. During this period, the taxi will execute tasks 

assigned by the fleet operator. However, since the main functionality of the robotaxi fleet is to 

provide transportation services, carrying out passenger requests from taxi hailers are prioritized 

over executing tasks. Thus, if a passenger service request arrives when an idling taxi is running a 
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task, the taxi will halt the execution, save the progress, and drive to the passenger location to 

serve it. The operator will retrieve the unfinished task with the progress intact and assign it to 

another idling taxi. When the taxi completes the trip, it will continue to serve other waiting 

requests from the passengers, if any. Otherwise, if there are no waiting passenger requests, it will 

be available for task execution.  

 We will consider two operating scenarios. In the first scenario, the system has a 

seemingly infinite backlog of tasks to execute; in the second scenario, the backlog of tasks will 

be finite. In the second scenario, we will assume that arrival of task requests for service is 

according to a Poisson process with rate 𝛽. In the following, we will evaluate the task-serving 

performance of the system for both scenarios. We will derive the distribution of the number of 

tasks the system can serve over a period for the first scenario and the average task delay in the 

system for the second scenario. 

 In Fig. 5.1a, we show the above task service strategy for a robotaxi fleet with 2 taxis for 

scenario 1. When passenger 1 arrives at the system, taxi 1 begins to serve this passenger. As 

there are no other pending passenger requests for service at this time, taxi 2 begins 

simultaneously executing task 1. However, during the task execution, the passenger 2 request 

arrives. As a result, taxi 2 has to halt its task execution and start serving passenger 2. Taxi 2 

returns the task to the operator with all its progress intact. When taxi 1 finishes serving passenger 

1, since there are no pending passenger requests it resumes execution of task 1 from where it was 

halted. The same thing happens to task 2 where its execution is halted by the arrivals of 

passengers 3 and 5. 
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Fig. 5.1. An example of the passenger and task service strategy mechanism of a robotaxi fleet 

with 2 taxis for scenario 1. Additionally, the figure also shows the relationship between the 

number of passengers in the system and the duration of the busy period, the idle period and the 

cycle. 

5.1.4. Cyclical nature of the system 

We will refer to the period that all the taxis are idle, meaning none of them serving any 

passenger requests, as system idle period. The system idle periods will alternate with system 

busy periods. During the system busy period at least one taxi will be busy serving a passenger 

request at any time. A system idle period followed by a system busy period will be referred to as 

a cycle. During the system busy period some taxis will be idle some of the time. We will reserve 

“idle period” to refer to the total amount of time that a single taxi will be idle during a system 

busy period. We will consider operation of a taxi fleet in cycles. During a system idle period all 

the taxis will be executing tasks. During the system busy period, taxis will be executing tasks 

during their idle periods. During the system busy period the execution of the tasks will be 
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intermittent and often interrupted to serve passenger requests. An example of the cycle is shown 

in Fig. 5.1b.  

The main notations used in this chapter is shown in Table 5.1. 

Notation Description Notation Description 

𝑐 Number of taxis in the robotaxi fleet 𝑋 Length of the idle period 

𝜇 Service rate of a task 𝑄𝑏 
Number of tasks the system can 

compute during the busy period 

𝜆 Arrival rate of passengers 𝑄𝑖 
Number of tasks the system can 

compute during the idle period 
𝛼 Service rate of a passenger 𝕂 Tasks served during the idle period 

𝐿 Interval of the busy period 𝑄 
Total number of tasks the system 

finish during the busy cycle 

𝜑𝑖(𝑠) 
Laplace transform of the first passage time 

from state 𝑖 to state 0 in a 𝑀/𝑀/𝑐 queue 
𝑘 

Number of passengers in the 

system 

Ψ(𝑠) 
Laplace transform of the length of the busy 

period of an 𝑀/𝑀/1 queue with service rate 

𝑐𝛼 and arrival rate 𝜆. 
𝑗 Number of idle taxis in the system 

𝑁𝑏 
Number of passengers served during the 

busy period 
𝑚 

Number of idle taxis serving tasks 

in the system 

𝜙𝑖(𝑧) 
PGF of the number of passengers served 

during the first passage time from state 𝑖 to 

state 0 
𝑛 Number of tasks in the system 

Φ(𝑧) 
PGF of the number of passengers served 

during the busy period of an 𝑀/𝑀/1 queue 

with service rate 𝑐𝛼 and arrival rate 𝜆. 
�̅� 

Average delay of tasks in the 

system 

𝜔 Service time of a passenger in the fleet 𝑋 Length of the idle period 

𝑌𝑏 Length of the busy period 𝑄𝑏 
Number of tasks the system can 

compute during the busy period 

𝑌𝑝 
Total time that taxis spend serving 

passengers during the busy period. 
𝑄𝑖 

Number of tasks the system can 

compute during the idle period 
𝑌𝑢 Idle time of the taxis during the busy period 𝕂 Tasks served during the idle period 

𝑐 Number of taxis in the robotaxi fleet 𝑄 
Total number of tasks the system 

finish during the busy cycle 

𝜇 Service rate of a task 𝑘 
Number of passengers in the 

system 
𝜆 Arrival rate of passengers 𝑗 Number of idle taxis in the system 

𝛼 Service rate of a passenger 𝑚 
Number of idle taxis serving tasks 

in the system 
𝐿 Interval of the busy period 𝑛 Number of tasks in the system 

Table 5.1. Main notations of Chapter 5 
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5.2. Computing Capacity of a Robotaxi Fleet with Infinite 

Backlog of Tasks 

In this section, we determine the computing capacity of the system described above for 

an infinite backlog of tasks. Since fleet operation is in cycles, we will derive the probability 

distribution of the number of tasks that can be served to completion during a cycle and its first 

moment. For this result, we need to determine the number of tasks that can be served during 

system idle and busy periods. For the latter, we would need to know the duration of a system 

busy period and the number of passengers served during that busy period. 

5.2.1.  Laplace transform of the duration of a busy period of a 𝑴/𝑴/𝒄 queue 

Next, we will determine the system busy period of a robotaxi fleet. As stated in the 

previous section, the passenger service may be modeled as a 𝑀/𝑀/𝑐 queuing system. Let 𝜑𝑖,

𝜑𝑖(𝑠) denote the duration of the first passage time from state 𝑖 to state 0 and its Laplace 

transform in a 𝑀/𝑀/𝑐 queue. As a result, the duration of the busy period of the 𝑀/𝑀/𝑐 queue 

and its Laplace transform are given by 𝜑1 and 𝜑1(𝑠), respectively. In [126], the authors derived 

a recursion to determine 𝜑𝑖(𝑠) given below, 

 𝜑1(𝑠) =
𝜆

𝜆 + 𝛼 + 𝑠
𝜑2(𝑠) +

𝛼

𝜆 + 𝛼 + 𝑠 
 

(5.1) 

 𝜑𝑖(𝑠) =
𝜆

𝜆 + 𝑖𝛼 + 𝑠
𝜑𝑖+1(𝑠) +

𝑖𝛼

𝜆 + 𝑖𝛼 + 𝑠 
𝜑𝑖−1(𝑠), 2 ≤ 𝑖 ≤ 𝑐 − 1 

(5.2) 

 𝜑𝑐(𝑠) = 𝜑𝑐−1(𝑠)Ψ(𝑠), 𝜑0(𝑠) = 1 (5.3) 

 Ψ(𝑠) =
𝜆 + 𝑐𝛼 + 𝑠 − ((𝜆 + 𝑐𝛼 + 𝑠)2 − 4𝑐𝜆𝛼)

1
2

2𝜆
 

(5.4) 

We note that Ψ(𝑠) is the Laplace transform of the duration of the busy period of an 

𝑀/𝑀/1 queue with service rate 𝑐𝛼 and arrival rate 𝜆. 

5.2.2. PGF of the number of passengers served during a system busy period 

Next, we provide the result for the number of passengers served during a system busy 

period. Let 𝑁𝑏 and 𝑁𝑏 (𝑧) denote the number of passengers served during a system busy period 
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and its PGF, respectively. Let 𝜙𝑖(𝑧) denote the PGF of the number of passengers served during 

the first passage time from state 𝑖 to state 0 in a 𝑀/𝑀/𝑐 queuing system. Thus, 𝜙1(𝑧) will give 

PGF of the number of customers served during the busy period of an 𝑀/𝑀/𝑐 queue. As a result, 

the PGF of the number of passengers served during the system busy period of the robotaxi fleet 

is given by 𝑁𝑏 (𝑧) = 𝜙1(𝑧). From [126], we have the following recursion to determine  𝜙𝑖(𝑧) 

 𝜙1(𝑧) = 𝑁𝑏 (𝑧) = 𝐸[𝑧𝑁𝑏] (5.5) 

 𝜙1(𝑧) =
𝜆

𝜆 + 𝛼
𝜙2(𝑧) + 𝑧

𝛼

𝜆 + 𝛼 
  

(5.6) 

 𝜙𝑖(𝑧) =
𝜆

𝜆 + 𝑖𝛼
𝜙𝑖+1(𝑧) + 𝑧

𝑖𝛼

𝜆 + 𝑖𝛼 
𝜙𝑖−1(𝑧), 1 ≤ 𝑖 ≤ 𝑐 − 1 

(5.7) 

 𝜙𝑐(𝑧) = 𝜙𝑐−1(𝑧)Φ(𝑧), 𝜙0(𝑧) = 1  (5.8) 

Φ(𝑧) =
𝜆 + 𝑐𝛼 − ((𝜆 + 𝑐𝛼)2 − 4𝑐𝜆𝛼𝑧)

1
2

2𝜆
 

(5.9) 

We note that Φ(𝑧) is the PGF of the number of passengers served during the system busy 

period of an 𝑀/𝑀/1 queue with service rate 𝑐𝛼 and arrival rate 𝜆. 

5.2.3. Computing capacity of the robotaxi fleet 

 Now that we have the duration of the system busy period and the number of passengers 

served during that period, we will be able to determine probability distribution of the number of 

tasks that may be served during a cycle of the robotaxi fleet. The number of tasks served during a 

cycle is given by the sum of the number of tasks served during system busy and idle periods. 

 First, we will determine the number of tasks served during a system busy period. For this, 

we will determine sum of the durations of idle periods of all the taxis during a system busy 

period. Let 𝑌𝑝 denote the total amount of time that taxis spend serving the passengers during a 

system busy period and 𝑌𝑝(s) its Laplace transform. Also, let 𝑌𝑢 denote the sum of the durations 

of idle periods of all the taxis during a system busy period and 𝑌𝑢(𝑠) its Laplace transform. From 

these definitions, we have,  

 𝑌𝑢 = 𝑌𝑏 − 𝑌𝑝 (5.10) 
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 Where 𝑌𝑏 = 𝑐𝜑1. The Laplace transform of 𝑌𝑏 is given by,  

 𝑌𝑏(𝑠) = 𝐸[𝑒−𝑠𝑌𝑏 ] = 𝐸[𝑒−𝑠𝑐𝜑1 ] = 𝜑1(𝑠)|𝑠=𝑠𝑐 (5.11) 

 Let 𝜔𝑖 denote the service time of a passenger. Then, 

 𝑌𝑝 =∑𝜔𝑖

𝑁𝑏

𝑖=1

 

(5.12) 

 Since passenger service times are i.i.d, we let  𝜔 denote 𝜔𝑖. Then, from (5.5) we have, 

 𝑌𝑝(𝑠) = 𝑁𝑏(𝑧)⌋𝑧=𝜔(𝑠)  (5.13) 

 Where, 𝜔(𝑠) is the Laplace transform of a passenger’s service time given by, 

 𝜔(𝑠) =
𝛼

𝑠 + 𝛼
  

(5.14) 

 Let 𝑓𝑌𝑏(𝑦𝑏), 𝑓𝑌𝑝(𝑦𝑝)  and 𝑓𝑌𝑢(𝑦𝑢) denote the pdfs of the random variables 𝑌𝑏 , 𝑌𝑝, 𝑌𝑢, 

respectively. We can obtain 𝑓𝑌𝑏(𝑦𝑏) and 𝑓𝑌𝑝(𝑦𝑝) through the inverse Laplace transform of 𝑌𝑏(s) 

and 𝑌𝑝(𝑠) from (5.11) and (5.5), respectively. Since 𝑌𝑏 > 𝑌𝑝, from (5.10), we can write 

 𝑓𝑌𝑢(𝑦𝑢) = ∫ 𝑓𝑌𝑏(𝑦𝑢 + 𝑦𝑝)𝑓𝑌𝑝(𝑦𝑝)𝑑𝑦𝑝

∞

0

  
(5.15) 

 By taking the Laplace transform of the above pdf, we obtain 𝑌𝑢(𝑠). During the idling 

times of the system busy periods, taxis will be executing tasks. Since task execution times are 

exponentially distributed with parameter 𝜇, the number of tasks that can be executed to 

completion will be given by the number of Poisson points that may occur with parameter 𝜇 

during the 𝑌𝑢 interval. From  equation 5.46 in [121], PGF of the number of tasks the system can 

compute during the system busy period, 𝑄𝑏(𝑧), is given by, 

 𝑄𝑏(𝑧) = 𝑌𝑢(𝑠)|𝑠=𝜇−𝜇𝑧 (5.16) 

 Next, we will derive the number of tasks that can be executed during the system idle 

period. During the system’s idle period, there are no passengers in the system. Since the 
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passengers arrive at the system according to a Poisson process with parameter 𝜆, the system idle 

duration will be exponentially distributed with the same parameter. Let random variable X 

denote the duration of the idle period and  𝑓𝑋(𝑥) its pdf, then, 

 𝑓𝑋(𝑥) = 𝜆𝑒
−𝜆𝑥, 𝑥 ≥ 0 (5.17) 

Let us also define 𝕂 as the number of tasks served during the system idle period by a 

single taxi. Also let, 𝑃𝕂(𝕜) and 𝕂(𝑧) denote probability distribution and its PGF of 𝕂 

respectively. If we condition on the duration of the system idle period, the probability 

distribution of the number of tasks completed during this period, 

 𝑃𝕂(𝕜|𝑋 = 𝑥) =
(𝜇𝑥)𝕜𝑒−𝜇𝑥

𝕜!
, 𝕜 ≥ 0 

(5.18) 

 𝕂(𝑧|𝑋 = 𝑥) = 𝑒−𝜇𝑥(1−𝑧) 
(5.19) 

 Let also  𝑄𝑖 and 𝑄𝑖(𝑧) denote the sum of the tasks all the taxis serve during the system 

idle period and its PGF, respectively. We then can write, 

 𝑄𝑖(𝑧|𝑋 = 𝑥) = [𝐾(𝑧|𝑋 = 𝑥)]𝑐 = 𝑒−𝜇𝑐𝑥(1−𝑧)  (5.20) 

 𝑄𝑖(𝑧) = ∫ 𝑒−𝜇𝑐𝑥(1−𝑧)𝑓𝑋(𝑥)𝑑𝑥
∞

0
=

𝜆

𝜆+𝜇𝑐(1−𝑧)
  (5.21) 

 Finally, let us denote the total number of tasks completed during a cycle as 𝑄. Then 𝑄 is 

the number of tasks completed during the system busy and idle periods, 𝑄 = 𝑄𝑖 + 𝑄𝑏. From 

(5.16) and (5.21), the number of tasks served during a cycle of a robotaxi system is given by,  

 𝑄(𝑧) = 𝑄𝑖(𝑧)𝑄𝑏(𝑧)  (5.22) 

5.2.4. Mean number of completed tasks during a cycle 

 The distribution of the number of completed tasks can be challenging to determine 

numerically for a large number of taxis. On the other hand, its mean is often easier to obtain. As 

a result, we will next determine the mean number of tasks served to completion during a cycle. 

 From (5.10), (5.13) and (5.17), we can write the mean for the sum of the idle times of the 

taxis during the system busy period 𝑌𝑢 as 
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 𝐸[𝑌𝑢] = 𝐸[𝑌𝑏] − 𝐸[𝑌𝑝] = −𝑌𝑏
′(𝑠)|𝑠=0 + 𝑌𝑝

′(𝑠)|
𝑠=0

 (5.23) 

where 𝑌𝑏
′(𝑠) and 𝑌𝑝

′(𝑠) denote the derivatives of 𝑌𝑏(𝑠) and  𝑌𝑝(𝑠) w.r.t 𝑠. As a computing task is 

exponentially distributed with parameter 𝜇, then the mean number of completed tasks during the 

system busy period is given by, 

 𝐸[𝑄𝑏] = 𝜇𝐸[𝑌𝑢] (5.24) 

 From (5.21), the mean number of tasks served during a system idle period will be given 

by, 

 𝐸[𝑄𝑖] =
𝑑𝑄𝑖(𝑧)

𝑑𝑧
|
𝑧=1

 
(5.25) 

 Finally, the mean number of tasks served during a cycle of a robotaxi system is given by, 

 𝐸[𝑄] = 𝐸[𝑄𝑖] + 𝐸[𝑄𝑏]  (5.26) 

5.3. Delay analysis of the tasks in a robotaxi fleet with Finite 

Backlog of Tasks 

In this section, we consider the same system model as the previous section, except that 

we assume a finite backlog of tasks waiting to be served. We assume that the tasks arrive at the 

system according to a Poisson process with parameter 𝛽. As in the previous section, passengers 

have preemptive priority over tasks. We will determine the average delay of a task in the system. 

The system may be modeled as a 𝑀/𝑀/𝑐 queue with two classes of customers. The high-priority 

customers (passengers) do not see the low-priority customers (tasks). As in the previous section, 

the service of the passengers follows the 𝑀/𝑀/𝑐 queuing system. Then from [121], the 

stationary probability distribution of having 𝑘 passengers in the system, 𝑃𝑘, is given by, 

 𝑃𝑘 =

{
 

 𝑃0
(𝑐𝜌)𝑘

𝑘!
, 𝑓𝑜𝑟 0 < 𝑘 < 𝑐    

𝑃0
(𝑐𝜌)𝑘𝑐𝑐−𝑘

𝑐!
, 𝑓𝑜𝑟 𝑐 ≤ 𝑘

 

(5.27) 

where 𝜌 is the utilization factor given by, 𝜌 =
𝜆

𝑐𝛼
. 
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 In [127], an algorithmic method has been developed to determine the distribution of the 

number of low-priority customers in the system. However, the application of this method is 

computationally very cumbersome for more than two servers, 𝑐 > 2. As a result, we will develop 

an approximate analysis for the low-priority customers. If there are 𝑘 passengers in the system, 

then, there will be 𝑗 = 𝑐 − 𝑘 idle taxis for 𝑘 ≤ 𝑐. From (5.27), we can determine the probability 

distribution of 𝑗 idle taxis in the system, 𝑇𝑗, as follows 

 𝑇𝑗 = {

𝑃𝑐−𝑗, 𝑓𝑜𝑟    1 < 𝑗 ≤ 𝑐

1 −∑𝑃𝑘

𝑐−1

𝑘=0

, 𝑓𝑜𝑟  𝑗 = 0
 

(5.28) 

 Furthermore, let us define the average number of idle taxis as 𝑚, 

 𝑚 = ⌊∑ 𝑗𝑇𝑗
𝑐

𝑗=0
⌋ 

(5.29) 

 Then, we make the approximation that tasks are served by 𝑚 taxis continuously. Thus, 

the service given to the tasks will be modeled as a 𝑀/𝑀/𝑚 queueing system. Let us further 

denote the utilization factor of this system as 𝜎 =
𝛽

𝑚𝜇
. Then, the stationary distribution of 𝑛 tasks 

in the system, 𝑄𝑛, can be written as 

 𝑄𝑛 =

{
 
 

 
 𝑄0

(𝑛𝜎)𝑗

𝑗!
            𝑓𝑜𝑟 0 < 𝑗 < 𝑛

𝑄0
(𝑛𝜎)𝑗𝑞𝑛−𝑗

𝑗!
            𝑓𝑜𝑟 𝑛 ≤ 𝑗

 

(5.30) 

 From the definition of the expected value, we can determine the average number of tasks 

in the system �̅� from (5.22). Using Little’s result, the average delay of the tasks in the system �̅� 

is given by, 

 �̅� =
�̅�

𝛽
=
∑ 𝑛𝑄𝑛
∞
𝑛=0

𝛽
 

(5.31) 
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5.4. Numerical results 

This section presents numerical results about the analysis for the infinite and finite 

backlog of tasks. We also provide results of a Monte-Carlo simulation written in Matlab to verify 

the analysis. Simulate was run 50,000 cycles. We note that simulation run time increases rapidly 

with increasing duration of busy periods; as a result, we could not obtain simulation results for 

large values of busy period duration. In each cycle, the passengers arrive at the system according 

to a Poisson process and either immediately receive service if there are idle taxis or enter a 

waiting queue until taxis become available. The tasks have exponentially distributed execution 

times and are served according to the service strategy described in the system model. An arriving 

passenger may preempt an executing task. The total number of tasks served to completion is 

averaged over the number of cycles to determine the average number of tasks completed. 

Fig. 5.2 and Fig. 5.3 show the average number of completed tasks during a cycle for an 

infinite backlog of tasks as a function of passenger service and arrival rates, respectively. Fig. 5.3 

also shows average number of completed tasks per minute as a function of passenger arrival rate. 

In Fig. 5.2, the average number of completed tasks decreases as passenger service rate increases 

because the busy period duration decreases as service rate increases. In Fig. 5.3, we can see that 

the average number of completed tasks initially slightly decreases until passenger arrival rate 

equals to 𝜆 ≈ 2 vehicles/min and after that, it starts increasing. However, this plot is misleading 

because the average cycle duration is not constant as passenger rate increases. In the same figure, 

it’s shown that the average number of completed tasks per minute decreases linearly as a 

function of passenger arrival rate. This behavior may be explained by Fig. 5.4, which shows the 

average cycle, system busy period, and the total idle period durations of the fleet as a function of 

passenger arrival rate. It may be seen that while the duration of the busy period increases as 

passenger arrival rate increases, the system’s idle period decreases. As a result, cycle duration 

initially decreases but then it starts increasing with increasing passenger service rate because the 

busy period increases much faster than the system idle period decreases. Fig. 5.4 also shows that 

duration of the fleet’s total idle period follows the pattern of cycle duration. The number of 

completed tasks during a cycle is a function of the total idle period, which explains the behavior 

of the curve in Fig. 5.3. Though the number of completed tasks increases during a cycle as 
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passenger arrival rate increases, when normalized to cycle duration, the average number of 

completed tasks per unit time decreases.  

Fig. 5.5 shows the average delay of a task in the case of a finite task backlog. The 

average task delay has been plotted as a function of task service rate for constant values of 

passenger and task arrival rates and passenger service rates. The arriving tasks join a queue when 

there are no idling taxis and can be preempted by any new arriving passengers during their 

execution. We can see that the average task delay decreases as the service rate increases. 

Finally, in all figures, numerical results match simulation results. 

 

Fig. 5.2.  Numerical and simulation results of the average number of completed tasks during a 

cycle as a function of passenger service rate 𝛼 
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Fig. 5.3.  Numerical and simulation results of the average number of completed tasks during a 

cycle as a function of passenger arrival rate 𝜆 

 

Fig. 5.4.  Numerical and simulation results of the average cycle, system busy period and total 

idle durations of the fleet as a function of the passenger arrival rate.  
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Fig. 5.5.  Numerical and simulation results of the average task delay as a function of task service 

rate.  

5.5 Summary 

In this chapter, we considered a robotaxi fleet that transports passengers to their 

destinations. Since the robotaxis are autonomous, they will have high computing resources. Fleet 

operators would like to utilize these taxis during idle times as they are costly. In this work, we 

evaluate the fleet’s performance in serving computational tasks during idle times under infinite 

and finite backlog of tasks. We model the system as a 𝑀/𝑀/𝑐 queue with two types of 

customers, which are passengers and tasks. Passengers are given preemptive priority over the 

tasks. In the infinite backlog of tasks, we determine the probability distribution and the first 

moment of the number of completed tasks during a cycle. We show that the average number of 

completed tasks decreases with increasing task service rate and passenger arrival rates. In the 

finite backlog of tasks, the average task delay decreases with an increasing task service rate. 

These results will help in determining benefits of using idle resources in a robotaxi fleet in task 

execution. 
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Chapter 6 

Conclusion and Future work 

 

Conclusion 

The data generated at the edge of the Internet is increasing rapidly due to the proliferation 

of smart devices. This data cannot be transferred to the cloud because of high cost and latency. 

Further, the data needs to be processed in real-time to be of value to the users. Modern vehicles 

are equipped with powerful computers and storage facilities. Furthermore, these vehicles are 

being designed with redundancy for vehicular autonomy. As a result, the computing resources of 

these vehicles can be underutilized, which can be pooled together to form a computing cluster 

called a vehicular cloud.  Vehicular clouds may help to solve the processing needs of the massive 

data being generated at the edge of the Internet. As a result, there is great interest in determining 

the capabilities of the VCs.  

In this thesis, we model and analyze the performance of Vehicular Cloud under different 

traffic conditions, task assignment strategies, job models, and service priorities. The goal of this 

work is to analytically derive the key performance measures, such as job completion time and 

computing capacity of VCs, to estimate the capability of the VCs. In the following, the main 

contributions of this work are briefly summarized. 

The first contribution concern the derivation of the probability distribution of the job 

completion time of an ad-hoc vehicular cloud on a highway under free-flowing and congested 

traffic conditions with a service interruption strategy. In this service strategy, when a vehicle 

serving a task leaves the VC, that task is assigned to an idle vehicle in the VC. It’s assumed that 

the vehicles arrive at the VC according to a Poisson process, and they have independent 

residency times under free-flowing traffic and correlated residency times under congested traffic. 

We assumed that a job contains multiple independent tasks with random execution times. Under 

this service strategy, we derived the probability density function of job completion time for both 

mentioned traffic conditions with zero migration overhead. This result is significant because no 
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service strategy can provide a lower job completion time. We also provide an ad hoc method to 

include the migration overhead in the job completion time.  

In the second contribution, we determined an approximation to the job completion time 

under the service interruption avoidance strategy. This service strategy avoids the migration 

overhead due to service interruption. In this service strategy, a vehicle will only be assigned a 

task if it can finish its execution during its residency time. Further, a vehicle will be assigned the 

longest of the unassigned tasks that it can complete. Under these conditions, we derived the 

distribution of the completion time of the longest task. Numerical results show that the 

completion time of the longest task may be used to approximate the job completion time. 

However, the completion time of a job will be long if the job has tasks with long execution 

times. Thus, a hybrid service strategy that serves short-duration tasks according to the service 

avoidance strategy and it serves long-duration tasks according to the service with interruption 

strategy will be a better choice.   

In the third contribution, we derived the probability distribution of the number of 

completed jobs during the lifetime of a VC. This work makes the same assumptions as the 

previous contribution, except it assumes that the number of tasks in a job follows a Poisson 

distribution. Under these assumptions, the distribution of the total number of vehicles that join 

the VC during its existence is derived and serves as a foundation for subsequent results. Then, 

the distributions of the number of tasks completed by these vehicles and the number of jobs 

completed during the VC lifetime are derived. 

 In the final contribution of this thesis, we analyzed the computing capacity of a robotaxi 

fleet that serves passengers. The vehicles in the fleet form a VC, and they can execute tasks 

during their idle times; however, passengers have pre-emptive priority over task executions.  

Contrary to the previous contributions, the VC is permanent, and the number of vehicles in the 

VC is constant as the robotaxi often functions within a geofenced area. We study this system 

both under infinite and finite backlog of tasks. In the case of an infinite backlog of tasks, we 

derived the probability distribution of the number of tasks the system can serve over a period. In 

the second case, it is assumed that the tasks will queue for service, and we derived the average 

delay of the tasks in the system. 
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The work in this thesis helps to a better understanding of the capabilities of vehicular clouds. It 

determines job completion time in terms of the arrival rate of vehicles to the VC, vehicle 

residence times, number of tasks in a job, and task execution times. This helps in determining 

whether a VC can meet the QoS requirements of a job. 

Future work 

There remain potential models stemming from the current model that can be explored in 

future work. These problems are described below, 

Optimal Hybrid Service Strategy 

As explained in the above, hybrid service strategy may result in better job performance. Thus, 

tasks with execution times below a threshold will be served with service interruption avoidance 

strategy and those above the threshold with service interruption strategy. It will be useful to 

determine the optimal value of the threshold that will result in the shortest job completion time. 

This optimal threshold value will depend on the arrival rate of the vehicles, as well as 

distributions of residency and task execution times. 

Heterogeneity in the VC 

The current model assumes that the vehicles have identical computational powers. In 

practice, this may not be true. The computational powers of vehicles may be different. Also, the 

vehicles may not make available all their computational powers for the external jobs and keep 

part of it for their local computations. Another variable may be introduced to the system model 

to capture the computational powers of the vehicles. We will attempt to extend the present 

analysis to cover this case. However, the state-space explosion will be a problem. 

Migration overhead 

In the preliminary work, we have developed an ad hoc method to determine an upper-

bound for average job completion time with constant migration overhead. The migration 

overhead may be a random variable as the data rates of the communication links are variable. We 

would like to extend our model to include migration overhead rather than determining it in an ad-

hoc manner. It will be assumed that the residence time of a vehicle will consist of three stages of 
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Erlangian distribution with different parameters. The first stage will correspond to the 

downloading of the VM from the VC leader, the second stage execution of a task, and the third 

stage to the uploading of either the VM or the results of the completed task to the VC leader. In 

this case, the number of vehicles in the system may be modeled as an 𝑀 ∕ 𝐺 ∕ ∞ queuing 

system. Clearly, we will need to increase the dimensions of the state vector that describes the 

system. Again, we will attempt to extend the current analysis to handle this case. We will also 

investigate the results of absorption time in Markov chains theory to help in solving this 

problem.  

Deadline driven task execution 

The service strategies studied in this thesis donot take into consideration the deadlines for 

completion of the task execution times. Thus the tasks in addition to the duration of their 

execution times may also have deadlines for service completion. Defining the task waiting time 

as the difference between service completion deadline and task execution time, the tasks with 

smaller waiting times should be given priority in service. This strategy ensures that a task with 

less waiting time is executed earlier, thus improving the likelihood of all tasks meeting their 

respective deadlines. The challenge lies in the likely increase in the dimensions of the state 

vector that describes the system, similar to the case when migration overhead is included. 

Despite the complexity, it is expected that incorporating this nuanced scheduling approach will 

enhance the performance of the VC systems. The analytical methods developed for dealing with 

heterogeneity and migration overhead could potentially be adapted to handle this new feature in 

the model. 

Non-homogeneous traffic flow 

The existing models assume a homogeneous traffic flow where vehicles are joining and 

leaving the VC at a constant rate. However, in real-world scenarios, the traffic flow might not be 

uniform, especially during peak and off-peak hours. There might be instances where a large 

number of vehicles join the VC, causing a sudden surge in the available computational power. 

Conversely, during off-peak hours, the number of vehicles, and therefore the computational 

power, may drastically reduce. Future work should aim to incorporate non-homogeneous traffic 

flow into the model. The traffic flow variation of vehicles could be captured by a non-
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homogeneous Poisson process where the arrival and departure rates are time-dependent. The 

modeling of such a system will provide more accurate results to the real-world.   
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Appendix A  

Solving differential-difference equations 

in 2.1.2 with transform methods 

Let us define the probability generating function (PGF) of the joint probability 

distribution of the number of uncompleted tasks and number of worker vehicles in the system at 

time t as 

 𝔓(𝑧1, 𝑧2, 𝑡) =∑∑𝔓𝑗,𝑘(𝑡)𝑧1
𝑗
𝑧2
𝑘

∞

𝑘=0

𝔍

𝑗=0

 
(A.1) 

 

We now multiply both sides of each of the equations (2.2) to (2.5) by 𝑧1
𝑗𝑧2

𝑘 and sum 

them over 𝑗 and 𝑘, which results in: 

∑
𝑑𝔓𝑗,0(𝑡)

𝑑𝑡
𝑧1
𝑗

𝔍

𝑗=0

=∑𝛼𝔓𝑗,1(𝑡)𝑧1
𝑗

𝔍

𝑗=0

−∑𝜆𝔓𝑗,0(𝑡)𝑧1
𝑗

𝔍

𝑗=0

 

(A.2) 

∑
𝑑𝔓𝔍,𝑘(𝑡)

𝑑𝑡
𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

=∑𝜆𝔓𝔍,𝑘−1(𝑡)𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

+∑(𝑘 + 1)𝛼𝔓𝔍,𝑘+1(𝑡)𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

 

−∑[𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝔍, 𝑘)𝜇]𝔓𝔍,𝑘(𝑡)𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

 
(A.3) 
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∑∑
𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

=∑∑𝜆𝔓𝑗,𝑘−1(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

+∑∑(𝑘 + 1)𝛼𝔓𝑗,𝑘+1(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

 

−∑∑[𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

 

+∑∑𝑚𝑖𝑛(𝑗 + 1, 𝑘)𝜇𝔓𝑗+1,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

 

(A.4) 

∑
𝑑𝔓0,𝑘(𝑡)

𝑑𝑡
𝑧2
𝑘

∞

𝑘=1

=∑𝜆𝔓0,𝑘−1(𝑡)𝑧2
𝑘

∞

𝑘=1

+∑(𝑘 + 1)𝛼𝔓0,𝑘+1(𝑡)𝑧2
𝑘

∞

𝑘=1

 

−∑[𝜆 + 𝑘𝛼]𝔓0,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

+∑𝜇𝔓1,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

 
(A.5) 

 

Using the change of variables technique and algebraic manipulations, we can rewrite 

equations (A.3), (A.4), and (A.5), respectively, as: 

∑
𝑑𝔓𝔍,𝑘(𝑡)

𝑑𝑡
𝑧1
𝔍𝑧2

𝑘

∞

𝑘=1

= 𝜆𝑧1
𝔍∑𝔓𝔍,𝑘(𝑡)𝑧2

𝑘+1

∞

𝑘=0

+ 𝛼𝑧1
𝔍 [∑𝑘𝔓𝔍,𝑘(𝑡)𝑧2

𝑘−1

∞

𝑘=0

−𝔓𝔍,1(𝑡)]

− 𝜆𝑧1
𝔍∑𝔓𝔍,𝑘(𝑡)𝑧2

𝑘

∞

𝑘=1

− 𝛼𝑧1
𝔍∑𝑘𝔓𝔍,𝑘(𝑡)𝑧2

𝑘

∞

𝑘=1

− 𝜇𝑧1
𝔍∑𝑚𝑖𝑛(𝔍, 𝑘)𝔓𝔍,𝑘(𝑡)𝑧2

𝑘

∞

𝑘=1

 

(A.6) 
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∑∑
𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

= 𝜆∑∑𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘+1

∞

𝑘=0

𝔍−1

𝑗=1

 

+𝛼 [∑∑𝑘𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘−1

∞

𝑘=0

𝔍−1

𝑗=1

−∑𝔓𝑗,1(𝑡)𝑧1
𝑗

𝔍−1

𝑗=1

] − 𝜆∑∑𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

 

−𝛼∑∑𝑘𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

− 𝜇∑∑𝑚𝑖𝑛(𝑗, 𝑘)𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

 

+𝜇∑∑𝑚𝑖𝑛(𝑗 + 1, 𝑘)𝔓𝑗+1,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

 

(A.7) 

∑
𝑑𝔓0,𝑘(𝑡)

𝑑𝑡
𝑧2
𝑘

∞

𝑘=1

= 𝜆∑𝔓0,𝑘(𝑡)𝑧2
𝑘+1

∞

𝑘=0

+ 𝛼 [∑𝑘𝔓0,𝑘(𝑡)𝑧2
𝑘−1

∞

𝑘=0

−𝔓0,1(𝑡)]

− 𝜆∑𝔓0,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

− 𝛼∑𝑘𝔓0,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

+ 𝜇∑𝔓1,𝑘(𝑡)𝑧2
𝑘

∞

𝑘=1

 

(A.8) 

On the left-hand sides of equations (A.2) to (A.5), since ∑ ∑
𝑑𝔓𝑗,𝑘(𝑡)

dt
 ∞

𝑘=0
𝔍
𝑗=0  converges 

uniformly, we can interchange the order of differentiation and summation. Then summing the 

derivations all together results in 

 

∑
𝑑𝔓𝑗,0(𝑡)

𝑑𝑡
𝑧1
𝑗

𝔍

𝑗=0

+∑
𝑑𝔓𝔍,𝑘(𝑡)

𝑑𝑡
𝑧2
𝑘

∞

𝑘=1

+∑∑
𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=1

+∑
𝑑𝔓0,𝑘(𝑡)

𝑑𝑡
𝑧2
𝑘

∞

𝑘=1

=∑∑
𝑑𝔓𝑗,𝑘(𝑡)

𝑑𝑡
𝑧1
𝑗
𝑧2
𝑘

∞

𝑘=0

𝔍

𝑗=0

=
𝜕

𝜕𝑡
∑∑𝔓𝑗,𝑘(𝑡)𝑧1

𝑗
𝑧2
𝑘

∞

𝑘=0

𝔍

𝑗=0

=
𝜕𝑃(𝑧1, 𝑧2, 𝑡)

𝜕𝑡
 

(A.9) 

 

 Summing the right-hand sides of equations (A.2), (A.6) to (A.8) and using the results 

from equation (A.9), we obtain the following partial differential equation of 𝔓(𝑧1, 𝑧2, 𝑡),  
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𝜕𝔓(𝑧1, 𝑧2, 𝑡)

𝜕𝑡
= 𝜆𝑧2𝔓(𝑧1, 𝑧2, 𝑡) + 𝛼

𝜕𝔓(𝑧1, 𝑧2, 𝑡)

𝜕𝑧2
− 𝜆𝔓(𝑧1, 𝑧2, 𝑡) − 𝛼𝑧2

𝜕𝔓(𝑧1, 𝑧2, 𝑡)

𝜕𝑧2
 

−𝜇∑∑𝑚𝑖𝑛(𝑗, 𝑘)𝔓𝑗,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍

𝑗=1

+ 𝜇∑∑𝑚𝑖𝑛(𝑗 + 1, 𝑘)𝔓𝑗+1,𝑘(𝑡)𝑧1
𝑗𝑧2

𝑘

∞

𝑘=1

𝔍−1

𝑗=0

 
(A.10) 

 

We note that the above partial differential equation is unsolvable as not all the terms can 

be written as a function of 𝔓(𝑧1, 𝑧2, 𝑡) and its partial derivatives. 
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Appendix B  

Section 2.1 Simulation description 

In the simulation script, we use a 𝑛 × 5 matrix to represent the vehicles, such as one in 

Table B.1, where the rows are the vehicles in the VC during a simulation run, and the columns 

are the characteristics of the vehicles, such as, unique vehicle ID , minutes until the vehicle’s 

arrival, residency duration of the vehicle in the VC, status of the vehicle, the ID of the task 

assigned to the vehicle (v_task). Similarly, we use another 𝔍 × 5 matrix to represent the status of 

the 𝔍 tasks during a simulation run, such as one in Table B.2. The 𝔍 rows of the matrix represent 

the 𝔍 tasks, and the columns represents the unique task ID, the remaining task execution times, 

the completion time (t_comp), the status of the tasks (t_stat) and the ID of the vehicle working 

the task (t_veh).  

Vehicle ID Interarrival times Residency times Status Assigned task ID 

1 0 12.65 𝑖𝑛_𝑉𝐶 2 
2 11.39 16.45 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 0 
… … … … … 

Table B.1. The vehicle matrix upon the start of the simulation where there is 1 initial vehicle 

Task ID Task execution 

time 

Task completion 

time 

Status Assigned vehicle 

ID 

1 35.86 0 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 0 
2 16.89 0 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 1 
… … … … … 

𝔍 44.19 0 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 0 

Table B.2. The task matrix upon the start of the simulation where there no time has elapsed and 

task 2 is assigned to vehicle 1 

To record the completion time of all the tasks for all the runs, we create a 𝑛 × 𝔍 matrix, 

where each row is the completion time results for all the runs, and each column is the completion 

time of task 𝑗𝑡ℎ. Contrary to the task and vehicle matrices, the values of the completion time 

matrix will remain intact after each simulation run.  
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Runs 
Task completion times 

1 2 3 … 𝔍 

1 5.01 3.49 6.32 … 6.6 

2 2.99 3.39 1.53 … 4.61 

… … … … … … 

𝑛 1.75 13.6 1.63 … 2.34 

Table B.3. The completion time matrix after 𝑛 runs for a job of 𝔍 tasks 

We then create the task matrix by creating a unique ID for the tasks. Then, we generate 

an exponentially distributed execution times for each task using exprnd function with the mean 

execution time of a task, 1/𝜇. At this point, there are no vehicles in the VC, thus the remaining 

columns of the matrix are zero. 

Then, we generate the initial vehicles with unique vehicles ID in the VC in MATLAB 

using poissrnd function with the parameter 𝜆/𝛼. These vehicles will form the first rows of the 

vehicle matrix. For each of the vehicles, we assign them an exponentially distributed random 

variable from exprnd function using the mean residency time, 1/𝛼. As these are initial vehicles, 

their arrival times to the VC are 0. For each vehicle, we will randomly select the ID of an 

unassigned task in the task matrix and assign the value to the v_task field. Concurrently, we also 

change the task status after each assignment. Finally, an arriving vehicle is added to the matrix 

by generating the interarrival time and residency time to the last row. When the number of initial 

vehicles is zero, the arriving vehicle is the first row of the vehicle matrix. Furthermore, since the 

vehicle is yet to arrive to the VC, no task is assigned to this vehicle.  

The simulation will run until the sum of all the remaining task execution times is zero. 

During the run, we will find the event that will occur next by comparing the arrival time of the 

next vehicle, the shortest residency times of the vehicles in the VC, the shortest remaining 

execution time of the unfinished tasks. The comparison also allows us to determine the time delta 

until the next event (delta_t). Regardless of the type of the event, the interarrival time, the 

residency times of all the vehicles in the VC and the execution times of the assigned tasks must 

be subtracted by delta_t. Furthermore, the completion time of all unfinished tasks will increase 

by delta_t.  

The type of the event will determine which complementary action will take place next. 

For instance, when the next event is an arrival, we need to check first if there are still unassigned 
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tasks. If that is indeed the case, then we have to randomly select one of the unassigned tasks and 

assign it to the arriving vehicle. Otherwise, the vehicle will change its status to “idle” in the VC 

upon arriving. When the next event is a completion of a task, then the status of the task will 

change to “complete”. Additionally, the vehicle completing the task will continue to handle an 

unassigned task, if any. Finally, when the next event is a departure of the vehicle, then the status 

of the vehicle in the matrix will change. Furthermore, when the vehicle has been serving a task, 

the VC will assign the task to another idle vehicle, if any. Otherwise, the status of the task will 

change to suspend.  

When a simulation ends, the completion time of the tasks should be available in the 3rd 

column of the task matrix. The VC completes a job when the remaining execution time of the 

last unfinished task of the job is zero. Therefore, the completion time of the job is the maximum 

value in the completion time column of the task matrix. We then transpose the column into a row 

and append the values to the completion time matrix.  

Finally, the simulation is computed over 106 times to form the final completion matrix. 

Then from the matrix, we can compute the average and the distribution of the task completion 

time, the completion time of the 𝑗𝑡ℎ task, and the completion time of a job. 
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Appendix C  

Analysis of job completion time in 

dynamic VC on a highway with congested 

traffic 

As we mentioned previously, the analysis of the job completion time in dynamic VC on a 

highway with congested traffic shares a lot of methodological similarities with free-flowing 

traffic case. Hence, the section was distilled to show only important figures and results, and this 

appendix section aims to provide a more detailed analysis of the work.  

Notation Description Notation Description 

𝔍 Number of tasks in a job ℒ𝑗,𝑘(𝑠) Laplace transform of 𝑃𝑗,𝑘(𝑡) 

𝜇 Service rate of a task 𝜆 Arrival rate of vehicles 
𝛼 Service rate of a vehicle �̿� Average delay of a vehicle 

𝜌 Utilization factor of an 𝑀/𝑀/𝑚 queue �̅�𝑛 
Average completion time of 𝑛′𝑡ℎ 

task 

𝑋𝑗 
Absorbing time of subsystem 𝜃𝑗 to make 

the transition to an absorbing state 
𝑔𝑋𝑗(𝑥𝑗) 

Probability density function of the 

absorbing time 𝑋𝑗 

𝑘 Number of vehicles in the system, 𝑘 ≥ 0 𝒢𝑗(𝑠) 
Laplace transform of the 

probability density function of the 

absorbing time 𝑋𝑗 

𝑗 
Number of uncompleted tasks in the 

system, 0 ≤ 𝑗 ≤ 𝔍 𝑌𝑛 Completion time of the 𝑛′𝑡ℎ task 

𝑃𝑗(𝑡) 
Probability that there are 𝑗 uncompleted 

tasks in the subsystem 𝜃𝑗 at time 𝑡. 
𝒴𝑛(𝑠) 

Laplace transform of the 

probability density function of 

completion time of the 𝑛′𝑡ℎ task 

𝑃𝑗,𝑘(𝑡) 
Probability that there are 𝑗 uncompleted 

tasks and 𝑘 vehicles in the subsystem 𝜃𝑗 at 

time 𝑡 

𝐺𝑋𝑗(𝑥𝑗) 
Cumulative distribution function 

of the absorbing time 𝑋𝑗 

𝑄𝑘 
Steady-state probability that there are 𝑘 

vehicles in the system 
𝔏 

Average number of customers in 

the system of an 𝑀/𝑀/𝑚  queue 

𝜃𝑗 
Subsystem 𝑗 representing the set of states 

that is reachable from state {𝑗, 𝑘} for a 

fixed value of 𝑗 
  

Table C.1. Main notations of the analysis of section 2.2 
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Vehicle model preliminary 

Under congested traffic, we assume that the vehicle model follows the 𝑀/𝑀/𝑚 queuing 

model where 𝑚 is the number of lanes on the highway. This change from 𝑀/𝑀/∞ allows us to 

incorporate the increased wait time of a vehicle in a VC when congestion occurs. We can find a 

similar assumption made under a single-lane scenario with a general service distribution in [122]. 

Vehicles arrive at the traffic at each lane according to the Poisson process with rate 𝜆 and spend 

an exponentially distributed time of mean 𝛼 in the service to escape the traffic. Vehicles need to 

wait to be served with an average waiting time 𝑤. From [121], the distribution of vehicles in the 

system is given as follows: 

 

𝑄𝑘 = 𝑃𝑟𝑜𝑏(𝑘 𝑤𝑜𝑟𝑘𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑉𝐶) 

=

{
 

 𝑄0
(𝑚𝜌)𝑘

𝑘!
, 𝑘 < 𝑚

𝑄0
𝜌𝑘𝑚𝑚

𝑚!
, 𝑘 ≥ 𝑚

 

(C.1) 

where the probability that there are 0 vehicles in the system is: 

 𝑄0 = [∑
(𝑚𝜌)𝑘

𝑘!

𝑚−1

𝑘=0

+ (
(𝑚𝜌)𝑚

𝑚!
) (

1

1 − 𝜌
)]

−1

 
(C.2) 

From [128, p. 42], the average number of customers in an 𝑀/𝑀/𝑚 queue, 𝔏, is given by, 

 𝔏 =
𝜌

1 − 𝜌
𝐶(𝑚, 𝜆 𝜇⁄ ) + 𝑐𝜌 

(C.3) 

where 𝜌 = 𝜆/𝑚𝛼 is the utilization factor and 𝐶(𝑚, 𝜆 𝜇⁄ ) is the Erlang C formula [121]. 

From Little's result average delay of a customer, �̅�, is given by, 

 �̅� =
𝔏

𝜆
 (C.4) 

The utilization factor is 𝜌 where it must follow the condition to be ergodic: 

 𝜌 =
𝜆

𝑚𝛼
< 1 

(C.5) 
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Derivation of the joint probability distribution of the 

number of uncompleted tasks and vehicles  

Similar to the analysis of the job completion time during a free-flow traffic scenario, a set 

of two variables, {𝑗, 𝑘}, may represent the state of the system, where 𝑗 denotes the number of 

uncompleted tasks, and 𝑘 denotes the number of worker vehicles in the system at any time. We 

again note that when the system is in the state {𝑗, 𝑘}, it means that the execution of 𝔍 − 𝑗 tasks 

finishes, and the number of suspended tasks is given by max(0, 𝑗 − 𝑘). Then, as shown in the 

state transition diagram in  Fig. C.1, we can model the system using a two-dimensional birth-

death process. However, when we write the global balance equation for this system, we will also 

end up with a differential-difference equation containing unknowns similar to that of equation 

(A.10).  

In the state transition diagram of Fig. C.1, the states in row 𝑗 correspond to having 𝑗 

uncompleted tasks in the system. The execution of the job begins in one of the states at the top 

row. Each time execution of a task is completed, the system moves to the next row below. The 

execution of the job is completed when the system enters one of the states at the bottom row.  

Thus the job completion time is the sum of the times the system spends in the states at each row. 

Following this observation, we will derive the amount of time the system spends in the states of 

each row. As a result, we will divide the system into several subsystems, where we can analyze 

each subsystem independently of the other subsystems.  Let 𝜃𝑗  denote subsystem j where 0 <

𝑗 ≤ 𝔍. We define subsystem 𝜃𝑗  as the set of states of rows 𝑗 and 𝑗 − 1 of the state-transition 

diagram as shown in Fig. C.2. 

 𝜃𝑗 = {(𝑗, 𝑘) ∀  𝑘 ≥ 0 ∪ (𝑗 − 1, 𝑘) ∀ 𝑘 > 0}, 0 < 𝑗 ≤ 𝔍 (C.6) 
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The states of row 𝑗 − 1 for 𝑘 > 0 will be absorbing states [121] for this subsystem. When 

the subsystem enters one of the absorbing states, then the system immediately exits the 

subsystem 𝜃𝑗  and enters the subsystem 𝜃𝑗−1. During this transition, the service of one of the tasks 

completes. We will refer to the amount of time that the system spends in the subsystem 𝜃𝑗  as 

absorbing time and denote it by 𝑋𝑗. 

 

 

Fig. C.1. State transition diagram for the system in a congested traffic vehicle model. In each 

state number of uncompleted tasks is shown above the number of worker vehicles in the system. 
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Next, we will derive the joint probability distribution of the number of uncompleted tasks 

and the number of vehicles in a subsystem as a function of time. Since subsystems are analyzed 

independently, we assume that the initial time for each subsystem will be set to zero. Let 𝑃𝑗,𝑘(𝑡) 

denote the probability that there will be j uncompleted tasks and k worker vehicles in the 

subsystem 𝜃𝑗   at time 𝑡. From Fig. C.2, the behavior of the subsystem 𝜃𝑗  may be described by the 

following set of differential-difference equations: 

𝑑𝑃𝑗,𝑘(𝑡)

𝑑𝑡
= 𝜆𝑃𝑗,𝑘−1(𝑡) + (𝑘 + 1)𝛼𝑃𝑗,𝑘+1(𝑡)  − [𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝑃𝑗,𝑘(𝑡),

0 < 𝑘 ≤ 𝑚 − 1  
(C.7) 

𝑑𝑃𝑗,𝑘(𝑡)

𝑑𝑡
= 𝜆𝑃𝑗,𝑘−1(𝑡) + 𝑚𝛼𝑃𝑗,𝑘+1(𝑡)  − [𝜆 + 𝑚𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]𝑃𝑗,𝑘(𝑡), 0 < 𝑚 ≤ 𝑘  

(C.8) 

𝑑𝑃𝑗−1,𝑘(𝑡)

𝑑𝑡
= 𝑚𝑖𝑛(𝑗, 𝑘)𝜇𝑃𝑗,𝑘(𝑡), 0 < 𝑘  

(C.9) 

𝑑𝑃𝑗,0(𝑡)

𝑑𝑡
= 𝛼𝑃𝑗,1(𝑡) − 𝜆𝑃𝑗,0(𝑡), 𝑘 = 0  

(C.10) 

Since the number of worker vehicles in the system is at a steady state, then initial 

distribution of the number of workers in the subsystem 𝜃𝔍 is given by (C.1) and (C.2). In 

subsystem 𝜃𝑗 , 0 < 𝑗 < 𝔍,  the initial number of vehicles in the system will be given by the 

number of vehicles in the subsystem 𝜃𝑗+1 when that subsystem has entered into an absorbing 

state. As a result, we have the following initial distributions, 

 

Fig. C.2. State transition diagram for sub system 𝜃𝑗. States {𝑗 − 1, 𝑘} are absorption states. Once 

transitions to states {𝑗 − 1, 𝑘} occur, the reverse is not allowed. 
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 𝑃𝑗,𝑘(0) = {
𝑄𝑘, 𝑓𝑜𝑟 𝑘 ≥ 0 𝑎𝑛𝑑 𝜃𝑗 , 𝑗 = 𝔍

𝑃𝑗+1,𝑘(∞),             𝑓𝑜𝑟  𝜃𝑗 , 𝑗 < 𝔍
 

(C.11) 

 

We note that from the final value theorem property of the Laplace transforms, 

 𝑃𝑗+1,𝑘(∞) = lim
𝑠→0

𝑠ℒ𝑗+1,𝑘(𝑠) (C.12) 

which gives the initial distribution of the number of vehicles in the subsystem 𝜃𝑗 . This initial 

distribution of the number of vehicles in a subsystem has also been confirmed by simulation. 

Moreover, we also note that at time 𝑡 = 0, no task should have been completed in the 

subsystem 𝜃𝑗 , thus, we can write, 

 𝑃𝑗−1,𝑘(0) = 0, 0 < 𝑗 ≤ 𝔍, 𝑘 > 0,  (C.13) 

Next, let us define the following Laplace transform, 

  ℒ𝑗,𝑘(𝑠) = 𝕃{𝑃𝑗,𝑘(𝑡)} = ∫ 𝑃𝑗,𝑘(𝑡)
∞

𝑡=0

 𝑒−𝑠𝑡𝑑𝑡 
(C.14) 

To solve the set of equations (C.7) to (C.10), we will take their Laplace transforms, 

 

𝑠ℒ𝑗,𝑘(𝑠) − 𝑃𝑗,𝑘(0)

= 𝜆ℒ𝑗,𝑘−1(𝑠) + (𝑘 + 1)𝛼ℒ𝑗,𝑘+1(𝑠) − [𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠), 

0 < 𝑘 ≤ 𝑚 − 1  (C.15) 

 

𝑠ℒ𝑗,𝑘(𝑠) − 𝑃𝑗,𝑘(0) = 𝜆ℒ𝑗,𝑘−1(𝑠) + 𝑚𝛼ℒ𝑗,𝑘+1(𝑠) − [𝜆 +𝑚𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠), 

0 < 𝑚 ≤ 𝑘  (C.16) 

 𝑠ℒ𝑗−1,𝑘(𝑠) − 𝑃𝑗−1,𝑘(0) = 𝑚𝑖𝑛(𝑗, 𝑘)𝜇ℒ𝑗,𝑘(𝑠), 𝑘 > 0 (C.17) 

 𝑠ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0) = 𝛼ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠), 𝑘 = 0 (C.18) 

Next, we express ℒ𝑗,𝑘(𝑠) in terms of ℒ𝑗,0(𝑠). From (C.18), we can write ℒ𝑗,1(𝑠) in terms of 
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ℒ𝑗,0(𝑠), 

 ℒ𝑗,1(𝑠) =
1

𝛼
[(𝑠 + 𝜆)ℒ𝑗,0(𝑠) − 𝑃𝑗,0(0)] (C.19) 

Depending on the value of 𝑚, substituting 𝑘 = 1 in either  (C.15) or (C.16) gives, respectively, 

 
ℒ𝑗,2(𝑠) =

[𝑠 + 𝜆 + 𝛼 + 𝜇]ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠) − 𝑃𝑗,1(0)

2𝛼
, 

𝑓𝑜𝑟 0 < 𝑘 ≤ 𝑚 − 1 (C.20) 

 
ℒ𝑗,2(𝑠) =

[𝑠 + 𝜆 +𝑚𝛼 + 𝜇]ℒ𝑗,1(𝑠) − 𝜆ℒ𝑗,0(𝑠) − 𝑃𝑗,1(0)

𝑚𝛼
, 

𝑓𝑜𝑟 0 < 𝑚 ≤ 𝑘  (C.21) 

Substituting (C.19) in either (C.20) or (C.21), we can also express 𝐿𝑗,2(𝑠) in terms of  

𝐿𝑗,0(𝑠). Next, we solve for 𝐿𝑗,𝑘+1(𝑠) in (C.15) and (C.16), respectively, 

 

ℒ𝑗,𝑘+1(𝑠) =
[𝑠 + 𝜆 + 𝑘𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]

(𝑘 + 1)𝛼
ℒ𝑗,𝑘(𝑠) 

−
𝜆

(𝑘 + 1)𝛼
ℒ𝑗,𝑘−1(𝑠) −

1

(𝑘 + 1)𝛼
𝑃𝑗,𝑘(0), 0 < 𝑘 ≤ 𝑚 − 1  

(C.22) 

 

ℒ𝑗,𝑘+1(𝑠) =
[𝑠 + 𝜆 +𝑚𝛼 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]

𝑚𝛼
ℒ𝑗,𝑘(𝑠) 

−
𝜆

𝑚𝛼
ℒ𝑗,𝑘−1(𝑠) −

1

𝑚𝛼
𝑃𝑗,𝑘(0), 0 < 𝑚 ≤ 𝑘 

(C.23) 

In the above, we see that ℒ𝑗,𝑘+1(𝑠) depends on ℒ𝑗,𝑘(𝑠), and ℒ𝑗,𝑘−1(𝑠). As a result, we can 

express ℒ𝑗,𝑘+1(𝑠) recursively in terms of ℒ𝑗,0(𝑠) using (C.19), (C.20), and (C.21). This recursion 

implies ℒ𝑗,𝑘(𝑠) can be written as a function of ℒ𝑗,0(𝑠) for 𝑘 > 0. Next, we show how to 

determine ℒ𝑗,0(𝑠) from the normalization condition, 

 ∑𝑃𝑗,𝑘(𝑡)

∞

𝑘=0

+∑𝑃𝑗−1,𝑘(𝑡)

∞

𝑘=1

= 1 
(C.24) 
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Taking Laplace transform of the conservation relation in the above, we have, 

 ∑ℒ𝑗,𝑘(𝑠)

∞

𝑘=0

+∑ℒ𝑗−1,𝑘(𝑠)

∞

𝑘=1

=
1

𝑠
 

(C.25) 

After substituting (C.13) in (C.17), we solve for ℒ𝑗−1,𝑘(𝑠), then this result is substituted 

in (C.25), which gives, 

 𝑠ℒ𝑗,0(𝑠) +∑[𝑠 +𝑚𝑖𝑛(𝑗, 𝑘)𝜇]ℒ𝑗,𝑘(𝑠)

∞

𝑘=1

= 1 
(C.26) 

Next, since ℒ𝑗,𝑘(𝑠) can be written as a function of ℒ𝑗,0(𝑠), from (C.22) and (C.23), we 

can substitute it into (C.26) to solve for the unknown function ℒ𝑗,0(𝑠). After determination of 

ℒ𝑗,0(𝑠), it means that we have obtained all ℒ𝑗,𝑘(𝑠) functions and then application of the inverse 

Laplace transforms to ℒ𝑗,𝑘(𝑠) results in 𝑃𝑗,𝑘(𝑡). In determining ℒ𝑗,0(𝑠) we need to truncate the 

infinite summation in (C.26), the accuracy of this truncation is tested through simulation.  

Derivation of the probability density function of the job 

completion time and the number of service interruptions in 

congested traffic 

 Since we also determined 𝑃𝑗,𝑘(𝑡) for the congested traffic vehicle model, the derivation of 

the probability density function of the job completion time, and the number of service 

interruptions in congested traffic are similar to that of free-flow traffic and will not be given 

here.  
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Appendix D  

Proof of equation (3.9) 

 

We will first need to prove an important result to derive equation (3.9), which is 

 ∫𝛼𝑒−𝛼𝑥
𝑒−𝑘𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘

𝑘!
𝑑𝑥 =

𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘+1

(𝑘 + 1)!
 

(D.1) 

We prove (D.1) by taking the derivative with respect to 𝑥 on the right-hand side. Denote 

𝑣(𝑥) =
𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥−1)𝑘+1

(𝑘+1)!
, 

 

𝑑𝑣(𝑥)

𝑑𝑥
=

1

(𝑘 + 1)!
∙
𝑑

𝑑𝑥
[𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘+1] 

 

=
1

(𝑘 + 1)!
{
𝑑

𝑑𝑥
[𝑒−(𝑘+1)𝛼𝑥](𝑒𝛼𝑥 − 1)𝑘+1 + 𝑒−(𝑘+1)𝛼𝑥

𝑑

𝑑𝑥
[(𝑒𝛼𝑥 − 1)𝑘+1]} 

=
1

(𝑘 + 1)!
[(𝑘 + 1)𝛼𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘𝑒𝛼𝑥

− (𝑘 + 1)𝛼𝑒−(𝑘+1)𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘(𝑒𝛼𝑥 − 1)] 

=
𝛼𝑒−𝛼𝑥𝑒−𝑘𝛼𝑥(𝑒𝛼𝑥 − 1)𝑘

𝑘!
 

(D.2) 

  Since the residency times or the workers are i.i.d and exponentially distributed, their joint pdf 

can be written as 

 𝑔𝑅(𝐾),…,𝑅(1)(𝑟𝐾, … , 𝑟1) = 𝐾! 𝛼
𝐾𝑒−𝛼𝑟1 …𝑒−𝛼𝑟𝐾 (D.3) 

Then we can rewrite the integral in equation (3.9) as below 

 ∫ …∫ 𝑔𝑅(𝐾),…,𝑅(1)(𝑟𝐾, … , 𝑟1)𝑑𝑟1…𝑑𝑟𝐾−𝔍

𝑟2

0

𝑟𝐾−𝔍+1

0

 
(D.4) 
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= 𝐾!𝛼𝔍𝑒−𝛼(𝑟𝐾+⋯+𝑟𝐾−𝔍+1) ∙ ∫ 𝛼𝑒−𝛼𝑟𝐾−𝔍 …∫ 𝛼𝑒−𝛼𝑟1𝑑𝑟1…𝑑𝑟𝐾−𝔍

𝑟2

0

𝑟𝐾−𝔍+1

0

 

After that, we can apply result of (D.1) to (D.4) starting from 𝑘 = 0 in (D.1) since each 

definite integral in (D.4) has the lower limit of 0 and the upper limit of its following integral. We 

finally have, 

 

∫ …∫ 𝑔𝑅(𝐾),…,𝑅(1)(𝑟𝐾, … , 𝑟1)𝑑𝑟1…𝑑𝑟𝐾−𝔍

𝑟2

0

𝑟𝐾−𝔍+1

0

 

= 𝐾! 𝛼𝔍𝑒−𝛼(𝑟𝐾+⋯+𝑟𝐾−𝔍+1) ∙
𝑒−(𝐾−𝐽)𝛼𝑟𝐾−𝐽+1(𝑒𝛼𝑟𝐾−𝐽+1 − 1)𝐾−𝐽

(𝐾 − 𝐽)!
 

(D.5) 
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Appendix E  

Chapter 3 simulation description 

We use Monte Carlo simulation to validate our numerical results since we employed 

stochastic modeling as our analytical methods.  

At the start of a simulation run, a task matrix of size 2 × 𝔍 is created. The first row of the 

matrix is an ascending order array of 𝔍 exponential random variables with mean 1/𝜇, which is 

created by sorting the exprnd function with parameters 1/𝜇, 1 and 𝔍. The second row is the zero-

value array to flag completed tasks. Then, we initiate a counter variable, veh_count, with value 

zero to keep track of the number of vehicles arrival to assign all tasks in a job in a simulation 

run. Additionally, another arrival time variable, veh_arrival_curr, is initiate with value zero to 

accumulate the interarrival times of all vehicles arrival at the VC. Essentially, when a vehicle 

arrives, veh_arrival_curr will increase the amount of interarrival time of the vehicle. 

Furthermore, if the vehicle can execute a task, then veh_arrival_curr also allows us to register the 

task completion time by adding the task execution time to veh_arrival_curr. 

To register ordered task completion times, we initiate a zero-value array of 𝔍 elements. 

Thus, there will be a 𝑛 × 𝔍 matrix to record the results of the simulation runs. Additionally, we 

will also create two arrays of 𝑛 elements to store the job completion time and the number of 

vehicles arrival to assign all tasks in a job for each simulation run.  

In each simulation run, we will loop until the second row of the task matrix is all flagged 

after initiating all the necessary variables above. During each iteration, we will increment 

veh_count and generate two exponential random variables of the interarrival time and residency 

time of a vehicle using exprnd with the parameter 1/𝜆 and 1/𝛼, respectively. Then, 

veh_arrival_curr increases by the recently generated interarrival time. After that, we compare the 

residency time to the first row of the task matrix to see if the residency time is larger than any 

uncompleted task. If so, we will flag the task with the longest execution time. Then we compute 

the task completion time by adding the residency time to veh_arrival_curr and appending it to 

the task completion time array with the corresponding index. Table E.1 shows an example of an 
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arriving vehicle with the residency time of 4.96 compared to the tasks. We see that the residency 

time is larger than values of the first row of the matrix at index 0, 1, 2, 3, 4 and indices 1 and 4 is 

flagged at the second row. Since the task row is sorted in the ascending order, task at index 3 is 

the largest among the uncompleted tasks. Thus, the index 3 at the second row will be flagged. On 

the other hand, if the residency time is smaller than all the incomplete tasks, we will let the loop 

continue to run and do nothing. 

Current vehicle’s residency time: 4.96 

 
Tasks 

0 1 2 3 4 … 𝔍 

Ordered 

Execution 

time 

1.57 2.31 2.95 4.88 4.92 … 10.34 

Completion 

flag 
 x  x x …  

Table E.1. An example of the comparison of the residency time of a vehicle to the task matrix to 

determine which task to assign to the vehicle. 

After all the tasks are flagged, we should have the array of the task completion time in the 

second row of the task matrix and the number of vehicle arrivals to assign all tasks in a job. The 

array is appended to the ordered task completion time. Then, the job completion time, which is 

the longest task completion time, is then appended to the array of job completion time. Finally, 

the number of vehicle arrivals is recorded for the run. The matrix and the arrays will allow us to 

compute the average and the distribution of the 𝑗𝑡ℎ ordered task completion times, the job 

completion time and the number of vehicle arrivals to assign all the tasks.  

Finally the simulation is ran over 105 times to obtain the final results. 
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