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Abstract

Investigating and Testing Performance Issues in Deep Learning Frameworks

Tarek Makkouk

Machine Learning (ML) and Deep Learning (DL) applications are becoming more popular due
to the availability of DL frameworks such as PyTorch, Keras, and TensorFlow. Therefore, the quality
of DL frameworks is essential to ensure DL/ML application quality. Given the computationally
expensive nature of DL tasks (e.g., training), performance is a critical aspect of DL frameworks.
However, optimizing DL frameworks may have its own unique challenges due to the peculiarities
of DL (e.g., hardware integration and the nature of the computation).

In this thesis, we first aim to better understand performance bugs in DL frameworks by conduct-
ing an empirical study. We conduct our study on PyTorch and TensorFlow by mining and studying
their performance and non-performance bug reports from their respective GitHub repositories. We
find that 1) the proportion of newly reported performance bugs increases faster than fixed perfor-
mance bugs, and the ratio of performance bugs among all bugs increases over time; 2) performance
bugs take more time to fix, have larger fix sizes, and more community engagement (e.g., discus-
sion) compared to non-performance bugs; and 3) we manually derived a taxonomy of 12 categories
and 19 sub-categories of the root causes of performance bugs in DL frameworks by studying all
performance bug fixes.

We then aim to investigate the potential of differential testing as a viable technique to detect
and prevent performance bugs in DL frameworks. To do so, we train and evaluate two state-of-
the-art CNN and RNN architectures (i.e., the Lenet-5 architecture on the MNIST dataset and the
LSTM architecture on the IMDB movie review dataset), using different DL frameworks (i.e., Py-
Torch, Keras, and TensorFlow), and different configurations (i.e., the training dataset sample size,

the batch size, the number of epochs, the weight initialization technique, the data type, the hardware
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used, the learning rate, and the dropout rate). To assess the performance of the DL models, we use a
variety of performance metrics (i.e., training/inference time, hardware (CPU or GPU) usage during
training/inference, and memory (RAM or GPU VRAM) usage during training/inference). Then,
we compare the performance of the DL models across the DL frameworks. We train and evaluate
21,870 Lenet5 models and 21,870 LSTM models across the DL frameworks, for a grand total of
43,740 models. Our experiments took over 42 days. We find that 1) differences in performance
between different DL frameworks, for the same task, may be indicative of a performance optimiza-
tion opportunity/performance bug; 2) our approach is viable when training and evaluating a smaller
number of DL models, which makes it more accessible for developers.

Finally, we present some potential avenues for future work that aim to further study performance

bugs in DL frameworks.
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Chapter 1

Introduction

Deep Learning (DL) has gained tremendous popularity in recent years in academia and in nu-
merous industrial and commercial settings due to the availability of big data, improved hardware,
and its capability to produce high predictive accuracy. One crucial stepping stone in DL adoption in
practice is the availability of open-sourced DL frameworks, which abstract complex mathematical
formulas and empower developers to implement DL models efficiently in practice. Unfortunately,
as DL applications become an integral part of our everyday lives, the quality of both the DL ap-
plications and their underlying DL frameworks, especially their performance, becomes of utmost
importance. For example, a small delay in the time it takes to make an inference can lead to life-
threatening situations (e.g., self-driving cars).

Performance bugs in DL refer specifically to software defects that impede the optimal utilization
of system resources, such as memory, computation power, and data access. These bugs may have
different causes, including inefficient algorithms, sub-optimal memory management, improper us-
age of hardware resources, or poorly optimized libraries and APIs (Makkouk, Kim, & Chen, 2022).
While these bugs may not directly affect the correctness of the DL models, they can severely ham-
per their efficiency, resulting in increased training and inference times, higher computational costs,
and reduced overall performance.

Many previous works have focused on characterizing and resolving performance bugs in tra-
ditional software settings (Han & Yu, 2016; Jin, Song, Shi, Scherpelz, & Lu, 2012; Y. Liu, Xu, &
Cheung, 2014; Nistor, Jiang, & Tan, 2013; Zaman, Adams, & Hassan, 2011, 2012). However, there



are new challenges that arise when developing DL software due to the fundamental differences that
exist between traditional and DL software applications (Amershi et al., 2019; Ma, Zhang, et al.,
2018; Sculley et al., 2015). DL requires communication amongst numerous hardware components
(e.g., GPU, CPU), finer-grained memory management, is data-driven, and is primarily based on
gradient computations, requiring countless iterations through large datasets to improve model ac-
curacy. Such characteristics of DL frameworks and the repetitiveness of DL tasks risk the quality
assurance of DL applications and frameworks. While prior research aims to understand and study
the characteristics of bugs in DL frameworks (J. Chen, Liang, Shen, & Jiang, 2022; Jia, Zhong,
Wang, Huang, & Lu, 2020, 2021), many studies focus on bugs in a single DL framework, and there
is a lack of detailed empirical studies on characterizing and detecting specifically performance bugs.
We believe that studying performance bugs in DL frameworks is of paramount importance for both
researchers and framework developers, as: (1) it can direct future research efforts toward develop-
ing better test oracles to better detect performance bugs; (2) it can provide new evidence on how
performance bugs arise and are fixed in DL systems for future tool development; and (3) it can help
prevent future encounters of performance bugs.

As a stepping-stone to help bridge research gaps, we collect performance and non-performance
bugs from the GitHub repositories of two of the most popular DL frameworks (Hale, 2018), PyTorch
and TensorFlow, and quantitatively study the characteristics and the prevalence of performance bugs
in DL frameworks. Then, we manually study and categorize 141 fixed performance bugs from the
DL frameworks into a taxonomy of 12 categories and 19 sub-categories of their root causes.

After which, we aim to build on this foundation by exploring the viability of differential test-
ing for detecting performance bugs in DL frameworks. To do so, we train and evaluate 43,740
DL models across two state-of-the-arts architectures (i.e., LenetS and LSTM), using different DL
frameworks (i.e., PyTorch, Keras, and TensorFlow v1.X), and configurations, and compare their

performance across different performance metrics in search of optimization opportunities.



1.1 Thesis Overview

1.1.1 An Empirical Study on Performance Bugs in Deep Learning Frameworks

Firstly, we collect performance and non-performance bugs from the PyTorch and TensorFlow
GitHub repositories and investigate how the prevalence of performance bugs in DL frameworks
evolves over time. We find that despite increasing efforts to fix performance bugs in DL frameworks
over time, their prevalence is still increasing.

Then, we compare performance and non-performance bugs collected across two dimensions
(i.e., the complexity of the bugs and the amount of engagement the bugs attract). We find that
performance bugs take more time to fix (median is 20 vs 10 days), and the fixes are larger (median
is 38 vs 28 LOC) than non-performance bugs. We also find that performance bugs attract more
discussions and involve more distinct developers.

Finally, We manually study all fixed performance bugs (141 bugs) in the two DL frameworks
and derive a comprehensive and detailed taxonomy of the root causes of the bugs. Our taxonomy
contains 12 categories and 19 sub-categories.

In summary, we highlight the potential research directions in developing better test oracles and
differential testing to improve performance. Our findings also reveal both differences and simi-
larities between the performance bugs in traditional and DL systems. Finally, we highlight best

practices to fix trivial bugs to assist developers in practice.

1.1.2 An Exploratory Study on the Viability of Performance Differential Testing for

Deep Learning Frameworks

Our primary objective is to explore the potential for identifying optimization opportunities
through the utilization of differential testing. To accomplish this, we investigate the existence of
significant performance variations across the multiple DL frameworks (i.e., PyTorch, Keras, and
TensorFlow V1.X), along with various configuration combinations.

In particular, we implemented and trained a total of 43,740 DL models (21,870 Lenet5 and
21,870 LSTM models) using multiple of DL frameworks, as well as various configurations, includ-

ing training sample size, batch size, number of epochs, weight initialization technique, hardware



device, precision mode (when applicable), and learning rate.

We collect numerous performance metrics as indicators of the performance of the DL models.
Namely, we collect training time, inference time, hardware (GPU/CPU) utilization, and memory
consumption. We find many performance variations across different DL frameworks implemented
for the same DL model. Such variations help us uncover performance trade-offs and optimization
opportunities.

Finally, to allow the adoption of our approach for industry, we investigate the reproducibility
of our results when training and evaluating smaller samples of DL models. We do so by selecting
random samples of varied sizes (i.e., 5%, 25%, 50%, and 75% of the Lenet5 and LSTM model
sets, each of which consists of 2,430 CPU models and 4,860 GPU models for each of the three DL
frameworks, for 21,870 trained and evaluated models each). The samples are then used to train
linear regression models to infer the performance metrics of the DL models from their configu-
rations (i.e., given the configurations used to train and evaluate a given DL model, the regression
models are trained to infer the performance metrics of the DL model). Lastly, we examine the Root
Mean-Square Errors (RMSEs) we obtain using the various sample sizes using the trained regression
models on the set of unselected models.

We repeat the experiment a hundred times for each sample size, using the Monte Carlo method,
and provide the average RMSEs. We find that we lose minimal predictive power when training
regression models with a 5% sample compared to a 75% sample, which implies that our approach
is valid even when training and evaluating a smaller number of DL models.

In summary, we find that differential testing may have the potential to be an effective tool for
finding performance issues in DL frameworks, but future research is needed to further evaluate this

approach.

1.2 Thesis Contributions

In this section, we present the main contributions of this thesis.



1.2.1 An Empirical Study on Performance Bugs in Deep Learning Frameworks

The main contributions of our study of performance bugs in DL frameworks are the following.

* We web scrape and extract information (e.g., number of comments, date of first comment,
whether fixed or not, fix size if fixed) from 17,893 performance and non-performance bug
reports from TensorFlow and 16,284 from PyTorch, for a total of 34,177 bug reports. This
data can be further studied by researchers to better understand bugs in DL frameworks. We

make this data available online (Chap3data, 2022).

* We study quantitative statistics on the prevalence of performance bugs from different aspects.
Namely, we study how the prevalence of open performance bug reports (i.e., unresolved per-
formance bug reports) among all open bug reports and fixed performance bug reports (i.e.,
performance bugs for which a fix was committed) among all fixed bug reports evolves over
time using more than 4 years worth of bug reports collected from the PyTorch and TensorFlow
GitHub repositories. We also make this data available online (Chap3data, 2022). We find that
performance bug reports are opening at a faster rate than performance bug reports being fixed,

which indicates that performance is increasingly becoming a concern in DL frameworks.

* We study and compare the fix time, community engagement, and the fix sizes of performance
and non-performance bugs. We find that performance bugs take more time to fix, despite
benefiting from higher community engagement, and that their fixes tend to be larger. This is

indicative of the complexity and importance of performance bugs in DL frameworks.

* We performed a qualitative analysis on fixed performance bugs collected from the PyTorch
and TensorFlow GitHub repositories (i.e., 141 fixed performance bugs), and categorized them

into a taxonomy compromised of 12 categories and 19 subcategories of their root causes.

1.2.2 An Exploratory Study on the Viability of Performance Differential Testing for

Deep Learning Frameworks

The main contributions of our exploratory study of the viability of using performance differen-

tial testing for DL frameworks are the following.



* We train and evaluate 21,870 Lenet5 models and 21,870 LSTM models implemented in three
different DL frameworks (i.e., PyTorch, Keras, and TensorFlow V1.X) and across differ-
ent combinations of configurations (i.e., 486 unique combinations for CPU models and 972
unique combinations for GPU models, for each architecture and DL framework), for a to-
tal of 43,740 models. We evaluate these models across different performance metrics (i.e.,
training/inference time, hardware (GPU or CPU), and memory (GPU VRAM or RAM) usage
during training/inference), and compare them across multiple DL frameworks. We do so in
search of variations in performance between the implementations that may map to perfor-
mance optimization opportunities for DL frameworks. The experiments took over 42 days.

We make this data available online (Chap4data, 2023).

* We find that differences in performance metrics between the same models implemented in
different DL frameworks may lead to uncovering performance bugs and optimization oppor-
tunities, which is indicative of the potential of differential testing as a tool to test and prevent

performance bugs in DL frameworks.

* We find that, when training and evaluating a smaller sample of DL models, we lose little
information, which indicates the potential scalability of differential testing for performance

bugs in DL frameworks.

1.3 Thesis Organization

The rest of this thesis is organized as follows; Chapter 2 provides a general background on
DL frameworks and the literature review. Chapter 3 presents our empirical study of performance
bugs in DL frameworks. Chapter 4 presents our study on the viability of using differential testing
for performance bugs in DL frameworks. Finally, Chapter 5 provides a summary of the thesis and

potential research directions for future work.



Chapter 2

Background and Related Works

In this chapter, we discuss the important background to our work, such as the Deep Learning
(DL) frameworks that we studied throughout this thesis. Furthermore, we discuss relevant works
to our research, such as works on performance bugs, DL system quality, and benchmarking DL

frameworks.

2.1 An Overview of DL Frameworks

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that focuses on learning pat-
terns from data to solve complex problems. Deep Learning (DL) is a subcategory of ML that uses a
neural network and gradient-based computations to optimize a loss function and extract patterns by
continuously iterating through a large dataset while adjusting parameters. Unlike traditional ML,
DL allows for automated feature selection and increases model precision and accuracy (Arel, Rose,
& Karnowski, 2010; Bengio, Courville, & Vincent, 2013; Bottou, Chapelle, DeCoste, & Weston,
2007; Sestili, 2018. [Online]). However, the DL model is notoriously complex and colossal, which
introduces a new set of challenges, such as optimizing a wide range of configurations (Sculley et
al., 2015).

DL frameworks aim to abstract the complex mathematical details of DL algorithms (e.g., gradi-
ent computations) to allow developers to efficiently implement DL systems in practice. Moreover,

DL frameworks implement performance optimizations by representing gradient computations as



computational graphs. These are directed graphs where each node represents a mathematical com-
putation, and each edge represents a tensor (i.e., a multi-dimensional array) (Paszke et al., 2017).
Such representation allows DL frameworks to distribute the model training and inference processes
across many CPU or GPU cores for better performance. Finally, DL frameworks abstract the under-
lying hardware so that ML developers can train and run DL models on various devices (e.g., CPU
or GPU) and environment settings (e.g., different operating systems).

While many DL frameworks have been released (e.g., TensorFlow, PyTorch, Caffe2, MxNet),
PyTorch and Keras/TensorFlow have become the most popular DL frameworks (Hale, 2018). Py-
Torch was developed by Meta’s Al research group (Paszke et al., 2017). Google’s Brain team
developed TensorFlow (Abadi et al., 2016), and made Keras the default execution mode with the
release of TensorFlow V2.X. Therefore, in this thesis, we focus our study on those frameworks.

Given the widespread adoption of DL in various domains of industry and commercial settings,
it becomes crucial to validate their quality to mitigate severe consequences. Hence, prior research
efforts have studied and characterized bugs in DL frameworks (e.g., J. Chen et al. (2022); Jia et al.
(2021); Y. Zhang, Chen, Cheung, Xiong, and Zhang (2018)). Among those bugs are performance
bugs, which may significantly impact the downstream tasks due to the repetitive and computation-
ally expensive nature of DL. However, prior research has identified performance bugs as the most
difficult type of bug to address in DL systems (T. Zhang, Gao, Ma, Lyu, & Kim, 2019), and there
have been limited comprehensive studies that focus on the characteristics of performance bugs in
DL frameworks. Hence, in this thesis, we conduct a comprehensive empirical study on the perfor-
mance bugs within two widely used DL frameworks today (Hale, 2018), PyTorch and TensorFlow.
As part of this thesis, we compare and contrast performance bugs with non-performance to uncover
distinct nature of performance bugs. we quantitatively analyze how the performance bugs in DL
frameworks compare to non-performance bugs. Moreover, we perform a comprehensive and de-
tailed qualitative study to derive a taxonomy of performance bugs and their underlying root causes.
Our study sheds light on key characteristics that define performance bugs in DL frameworks and

may inspire future research to address performance problems.



2.2 Empirical Studies on Performance Bugs

Many prior studies aim to characterize performance bugs in traditional software systems. For
example, Jin et al. (2012) conducted a comprehensive study on 109 performance bugs from five
systems (i.e., Apache, Chrome, GCC, Mozilla, and MySQL). Similar studies on bug reports from
Android and iOS applications have been conducted by Y. Liu et al. (2014) and Afjehei, Chen, and
Tsantalis (2019). They developed a static analysis tool based on the patterns they observed and were
able to detect previously unknown performance bugs. Zaman et al. (2012) compared 400 perfor-
mance and non-performance bugs collected from Firefox and Google Chrome. Nistor et al. (2013)
studied over 420 performance and non-performance bugs and studied how the bugs are discovered,
reported, and fixed by developers. Many prior studies focus on the characteristics of performance
bugs in traditional systems. They found that performance bugs have different characteristics (e.g.,
different fix sizes), and the empirical insights gained from those studies have facilitated the devel-
opment of bug detection tools. In this thesis, Our focus centers on performance bugs that occur in
DL frameworks, which present new challenges that are unknown to traditional software systems.
Our findings may inspire future research to further help developers improve the performance of DL

frameworks.

2.3 Quality Assurance of Deep Learning Systems

There is a large number of prior work on the software quality assurance of DL systems. One line
of research is bugs in DL systems, with a focus on bugs associated with the use of DL framework
APIs. For example, Y. Zhang et al. (2018) and Humbatova et al. (2020) analyze common mistakes
that happen when using DL frameworks from Stack Overflow (SO) and GitHub projects. Islam,
Nguyen, Pan, and Rajan (2019) studied the characteristics of common bug patterns in DL systems
and their impact. Z. Chen et al. (2021) built a taxonomy of bug symptoms related to the deployment
of DL systems on mobile applications. Cao, Chen, Sun, Hu, and Peng (2021) study performance
issues in using APIs from DL frameworks from SO. T. Zhang et al. (2019) conducted an empirical
study on 715 DL-related questions from StackOverflow (SO). Their research shows that there are

five main reasons why users are having problems with DL framework APIs: improper use of APIs;



wrong choice of hyper-parameters; computation on GPUs; static graph computation; and lack of
support for debugging and profiling.

There are also some studies that look into bugs in DL frameworks. Jia et al. (2020) studied the
symptoms and causes of bugs in TensorFlow by analyzing the bug reports. The authors later extend
their work (Jia et al., 2021) by also studying the fixes and multi-language bugs. J. Chen et al. (2022)
conducted a larger-scale study by collecting and analyzing the root causes and symptoms of 800
bugs from different popular DL frameworks (i.e., TensorFlow, PyTorch, MXNet, and DL4J). While
these studies focus on general bugs that occur in DL frameworks, we take a finer-grained approach
by studying a specific type of bug (i.e., performance bugs). Performance bugs in DL frameworks
may have different characteristics and require special attention from the research community.

Finally, another line of research focuses on testing the quality of deep learning models (Ma,
Juefei-Xu, et al., 2018; Pei, Cao, Yang, & Jana, 2017; Sun et al., 2018; M. Zhang, Zhang, Zhang,
Liu, & Khurshid, 2018). For example, DeepXplore (Pei et al., 2017) uses a differential testing ap-
proach to detect inconsistencies in the prediction output of DL models to detect issues. Some other
work applies concolic testing (Sun et al., 2018), and metamorphic relations to test the models (Ma,
Juefei-Xu, et al., 2018; M. Zhang et al., 2018). In addition to models, much research focuses on
the quality of DL application code. TheDeepChecker (Braiek & Khomh, 2022) uses property-based
testing to help debug issues and misconfigurations when using DL frameworks. Qian et al. (2021)
found that there are fairness issues in DL frameworks where different runs of the same configuration
can result in different results.

While understanding bugs associated with the usage DL framework APIs is beneficial for end-
users, we focus on performance bugs inherent to DL frameworks. These bugs may impact any DL
application that uses the corresponding DL framework API. Thus, by studying performance bugs
in DL frameworks, we contribute to overall improvements of DL frameworks, which also enhance

end-user usages of DL frameworks.
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2.4 Benchmarking of DL frameworks

Several studies benchmarked the prediction accuracy or performance of the DL frameworks
(El Shawi, Wahab, Barnawi, & Sakr, 2021; Guo et al., 2019; L. Liu et al., 2018; Pham et al., 2020,
Shams, Platania, Lee, & Park, 2017). Shams et al. (2017) analyze the performance of DL models
on different hardware environments (e.g., single v.s. multi-node setup). Similarly, Guo et al. (2019)
studied the accuracy differences across DL frameworks, DL architectures, and deployments (e.g.,
desktop v.s. mobile), using the same configuration settings. Both studies found that there are
performance or accuracy differences on different hardware environments. L. Liu et al. (2018) found
that the default configuration for a dataset trained using a specific DL framework may not work well
when switching to another framework. El Shawi et al. (2021) and Pham et al. (2020) benchmarked
the accuracy and training time of the same model configuration across DL frameworks and DL
architectures. They found that there can be a large variation in accuracy and training time across
frameworks.

We are the first to conduct a comprehensive study on the performance differences across frame-
works with different combinations of configuration values through differential testing. In compari-
son to prior works, which only focus on one set of default configurations, we also focus on a variety
of different configuration settings. In total, we consider 1,452 unique sets of configurations (i.e., 486
unique combinations for CPU models and 972 unique combinations for GPU models). Our findings
show that differential testing can locate performance differences, which can help us conduct root

cause analysis further down the line.
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Chapter 3

An Empirical Study on Performance

Bugs in Deep Learning Frameworks

Performance bugs in DL frameworks may have catastrophic consequences as DL becomes
widely adapted in multiple domains, including life-critical ones. Moreover, performance bugs in DL
frameworks involve new challenges due to the peculiarities of DL, and its repetitive and resource-
hungry nature. Despite this, in Chapter 2, we discover a lack of research focusing on performance
bugs in DL frameworks by reviewing the available literature. Thus, in this chapter, we aim to gain a
better understanding of the characteristics, prevalence, and root causes of performance bugs in DL
frameworks by investigating performance bugs reported in two of the most popular DL frameworks
(i.e., PyTorch and TensorFlow) (Hale, 2018).

The rest of this chapter is organized as follows; Section 3.1 describes our data collection process.
Section 3.2 presents the results of our case study. Section 3.3 discusses the implications of our
findings. Section 3.4 discusses the threats to validity to our work in this chapter. Finally, Section

3.5 concludes the paper.

3.1 Data Collection

Our goal is to investigate performance issues present in the studied systems. We study their

characteristics of performance issues by leveraging bug reports. In this section, we discuss our data
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Table 3.1: Breakdown of the bugs we collected for each framework.

Performance bugs Non performance bugs

Open Closed Fixed Open Closed Fixed

PyTorch 405 603 113 3919 11,357 2,675
TensorFlow 301 952 47 1,874 14,766 1,348
Total 706 1,555 160 5,793 26,123 4,023

collection process.

3.1.1 Collecting the Bug Reports.

Our goal is to study the characteristics of performance issues that exist in DL frameworks. For
our study, we consider TensorFlow and PyTorch as they are the most widely used DL frameworks
(Hale, 2018). To collect data for our study, we developed a tool capable of gathering bug reports
from both PyTorch and TensorFlow. We have successfully retrieved a substantial number of bug
reports reported from the release date of the frameworks until February 2021, amounting to 19,098
reports for PyTorch and 29,941 reports for TensorFlow. We then filter out the bug reports that
are labeled as non-bugs (e.g., feature requests). After this step, 17,893 bug reports remain from

TensorFlow, and 16,284 remain from PyTorch, for a total of 34,177 bug reports.

3.1.2 Collecting Bug Fixing Commits.

Given the collection of a substantial number of bug reports, the next step is to identify bugs
that have been resolved with associated fixing commits. We collect the fixes to compare the charac-
teristics between performance and non-performance bugs (e.g., fix size), and to manually derive a
taxonomy of the causes of performance bugs in DL frameworks. To collect the bug-fixing commits
for a given bug, we implemented a web crawler that checks whether there exists a commit whose
log contains a URL link to the bug report. If such a commit exists, then the commit is considered to
be a bug-fixing commit. There may be some cases where developers are not following the standard
practice of providing the link to the bug report in the commit log. To mitigate this concern, we
follow a similar process to that done by prior studies (Bachmann & Bernstein, 2009; Schréter, Zim-
mermann, Premraj, & Zeller, 2006; Sliwerski, Zimmermann, & Zeller, 2005; Zhong & Su, 2015;

Zimmermann, Premraj, & Zeller, 2007) and use a regular expression to capture the fixing commits
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based on bug report IDs (e.g., a commit that mentions the bug with ID 1234 in TensorFlow is con-
sidered to be a fixing commit for TensorFlow#1234). We found a fixing commit for a total of 5,578
bugs. Note that some bugs may have more than one fix commit. For such bugs, we consider all

fixing commits to be a single fixing patch.

3.1.3 Identifying Performance Bugs.

From the collected bug reports, we aim to identify performance bugs from their non-performance
counterparts among the bug reports collected. As aforementioned, some of the bug reports may be
categorized through labels. Thus, we consider bug reports whose labels suggest an association with
the performance of the framework (e.g., the performance label) as performance bug reports. How-
ever, those labels are optional and may not be used for all bug reports. To increase the recall of
identifying the performance bug reports, we follow prior studies and use a keyword-search (e.g.,
slow, laggy) to further identify performance-related bug reports (T.-H. Chen et al., 2016; Jin et al.,
2012; Y. Liu et al., 2014; Smith & Williams, 2001; Zaman et al., 2012). We make the list of the
full list of keywords used publicly available online (Chap3data, 2022). In total, we collect a total
of 2,261 performance bugs and 31,916 non-performance bugs. We manually investigate the fixed
performance bugs and discover that 141 out of 160 bugs identified as performance-related are true
positives, implying that our heuristic had a precision of around 88.13%, which is consistent with

previous work that used a similar heuristic (e.g., Zaman et al. (2012)).

3.2 Case Study Results

In this section, we conduct both quantitative and qualitative analyses to comprehensively exam-
ine performance bugs in the DL frameworks. In particular, we quantitatively study the prevalence
of reported and fixed performance bugs in DL frameworks to better understand the concern that
they represent. Then, we compare performance and non-performance bugs to identify key char-
acteristics that differentiate them and gain deeper insights into performance bugs in DL systems.
We do so by comparing performance and non-performance bugs across different dimensions (i.e.,

bug complexity and community engagement). Finally, we conduct a qualitative study and derive
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Figure 3.1: Percentage of open and fixed performance bugs among ALL open and fixed bugs in DL
frameworks, respectively

a taxonomy of the root causes for performance bugs in DL frameworks by manually studying 141

fixed performance bugs.

3.2.1 RQI1: What is the trend of reported and fixed performance bugs over time?
Motivation

The performance of DL frameworks may influence all the applications that use them. Notably,
performance bugs in DL frameworks may exacerbate the infamously lengthy training process of
DL models and their inference time, which may be critical in certain applications (e.g., self-driving
cars). In this RQ, we study the prevalence of performance bugs in DL frameworks and how it
changes over time. An increasing trend may indicate the need for more attention from the research

community to assist DL framework developers in addressing performance bugs.

Approach

We study the trend of reported and fixed performance bugs across the studied time periods. We
considered all bugs (both fixed and open) from February 2016 to February 2021 for TensorFlow, and
from December 2016 to April 2021 for PyTorch. We chose the start date as three months after the
release of each framework to make sure the frameworks had enough bugs reported to be properly
studied.

We compute the percentage of fixed and open performance bugs among all fixed and open bugs
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(including non-performance bugs). For each month, we calculate the percentage based on all the
bugs reported in the prior months (e.g., we compute the percentage of fixed performance bugs in
September 2018 by considering all the bug reports that are fixed up to September 2018). We use
the right-sided Cox-Stuart statistical test (Cox & Stuart, 1955) to investigate the existence of an
increasing trend. To quantify the significance of the observed data, we report the p-values obtained
from the statistical tests we conduct (i.e., the lower the p-value, the higher the probability that a

significant increasing trend exists).

Results

Despite increasing efforts to fix performance bugs in DL frameworks over time, their preva-
lence is still increasing. Figure 3.1 shows the trend of the percentage of open and fixed performance
bugs against all bugs in the two studied DL frameworks. We obtain low p-values for both the rate
of open (i.e., p-value < 0.0001 for TensorFlow and p-value < 0.005 for PyTorch) and fixed (i.e.,
p-value < 0.0001 for TensorFlow and p-value < 0.0001 for PyTorch) performance bugs. In short,
for both DL frameworks, the percentage of performance bug reports (either open or fixed) continues
to rise, which shows the prevalence and increased concern about performance issues.

The performance bugs are fixed at a higher rate compared to non-performance bugs. Namely,
the percentage of fixed bugs in TensorFlow was 0.54% in February 2016 and increased to 3.37%
in February 2021 (i.e., an increase of around 2.83%). However, TensorFlow’s percentage of open
performance bugs shows a much higher increase. For example, there is an increase of 9.1% between
February 2016 and February 2021 (i.e., from 4.79% to 13.89%). The finding may indicate that the
rate of new performance bug reports increases much faster than the rate at which developers fix
performance bugs.

We observe a similar trend in PyTorch. The percentage of open performance bugs increased
by 9.37% between December 2016 and April 2021 (i.e., from 0.0% to 9.37%). The percentage of
fixed performance bugs is higher initially, then stabilized and started to increase steadily to around
4% in April 2021. After some manual investigation, we found that the higher percentage of fixed
performance bugs at the beginning of the studied period is due to PyTorch having fewer bug reports.

Similarly, there were fewer open bug reports in PyTorch around the end of 2017 and the beginning
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of 2018, causing the percentage of open performance bugs to be higher. Nevertheless, we observe a

trend where the percentage of performance bugs (either open or fixed) continues to increase.

The rate of newly reported performance bugs increases faster than fixed performance bugs. More-
over, the ratio of performance bugs among all bugs also increases, which shows that performance

problems may be an increasing concern in DL frameworks.

3.2.2 RQ2: What are the differences between performance and non-performance

bugs in terms of fixes and community engagement?
Motivation

Prior studies have shown that performance bugs in traditional systems have different character-
istics (e.g., bug fixing time) than non-performance bugs (Han & Yu, 2016; Jin et al., 2012; Nistor et
al., 2013; Zaman et al., 2011, 2012). Traditional software systems and DL frameworks have major
differences. Namely, DL tasks are computation-heavy and require hardware integration (Amershi
et al., 2019; Sculley et al., 2015).

In this RQ, we quantitatively study the characteristics of performance bugs in DL systems by
studying the differences between performance and non-performance bugs along different dimen-
sions (i.e., their complexity and the community engagement they attract). The findings may provide

preliminary insights on the characteristics of performance bugs in DL frameworks.

Approach

We compare performance and non-performance bugs by analyzing two dimensions: the com-
plexity of the bugs and the engagement they receive from the community.
Bug complexity. We calculate two metrics as proxies to measure bug complexity (T.-H. Chen, Na-
gappan, Shihab, & Hassan, 2014):
Bug fixing time. We compute the time difference between the initial report date and the close date.
For the bugs that have been re-opened, we consider the latest date on which the bugs were closed.
A longer fixing time may be indicative of more complex bugs.

Bug fix size. We compute the total number of lines of code deleted, added, and modified in every
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bug fix as a proxy for the fix complexity (T.-H. Chen et al., 2014; Sobreira, Durieux, Madeiral,
Monperrus, & Maia, 2018). Note that if a bug fix is composed of multiple commits, we take the
sum of all the commits.

Community engagement. Developers may focus on bugs that impede their progress in a specific use-

case (Lee, Carver, & Bosu, 2017). A higher community engagement in a particular category of bugs
may indicate that those bugs have a wider impact. Thus, we calculate three metrics as proxies for
community engagement:

Time before first comment. We compute the time difference between the bug report’s creation date
and the date of the first comment (i.e., how fast the community reacts to the bug). We only consider
bug reports that have at least one comment when computing this metric, and the first comment
cannot be posted by the user who created the bug report.

Number of comments. We compute the total number of comments posted for a given bug as a
proxy to measure the amount of associated discussion. A higher amount of discussion may indicate
a higher engagement with the given bug and may correlate with more complex bugs (Arya, Wang,
Guo, & Cheng, 2019; Zaman et al., 2012).

Number of commentators. We consider the number of distinct commentators in each bug report.
More distinct commentators may reflect more interest from the community (Arya et al., 2019).

We use the Wilcoxon rank-sum test to determine whether there is a statistically significant dif-
ference between the performance and non-performance bugs, as it is a non-parametric test that does
not make any assumptions about the underlying data distribution. To quantify the significance of the
observed data, we report the p-values from the statistical tests we obtain (i.e., the smaller the p-value,
the higher the probability that there exists a difference between performance and non-performance
bugs).

We also apply Cliff’s delta (Long, Feng, & Cliff, 2003) to measure the effect size. We quantify
the effect size by using the thresholds proposed by Romano and Kromrey (2006) (i.e., effect size is
negligible if |d| < 0.147, small if 0.33 < |d| < 0.474, medium if 0.33 < |d| < 0.474 and large if
0.474 < |d| < 1).
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Table 3.2: The median values and effect size of the computed metrics for performance and non-
performance bugs. The larger distributions are indicated by a (¥).

Complexity of bugs E
Fix time (in days) Fix size Time before first comment (hours) Number of comments Number of commentators
Median Cliff’s Delta Median Cliff’s Delta Median Cliff’s Delta Median Cliff’s Delta Median Cliff’s Delta
Performance bugs 20.34% 38.0% .. 14! . 5.0% .
Non-performance bugs 10.46 0.248 (small) 28.0 0.111 (negligible) 12.1 0.034 (negligible) 30 0.191 (small) 20 0.168 (small)

Results

Performance bugs require 94.46% more time to fix compared to non-performance bugs, and
their fix sizes are also 35.71% larger. Table 3.2 shows the median of the computed metrics for
performance and non-performance bugs and their statistical test to compare distributions. Namely,
the performance bugs take more time to fix (median of 20.34 v.s. 10.46 days, with a p-value <
0.0001 and a small effect size), and the fix sizes are larger (median is 38 v.s. 28 LOC, with a p-value
= 0.024 and a negligible effect size). In short, the median fix time and fix size for performance
bugs are 94% and 35% larger, respectively, and the differences for all the metrics are statistically
significant (i.e., p-value < 0.05). Although we do not compare the results with bugs in traditional
software systems, a prior study by Nistor et al. (2013) found that performance bugs in traditional
systems (e.g., Mozilla) take only, on average, 37% more time to fix compared to non-performance
bugs. The finding may provide an initial hint that performance bugs in DL frameworks may have
unique characteristics and require more attention from the research community.

While the first comments on performance bug reports take around 15.75% longer to be posted
compared to non-performance bugs, the discussions involving performance bugs have around
66.67% more comments and 50% more commentators than non-performance bugs. As shown in
Table 3.2, the first comments take approximately 14.7 and 12.1 hours (median) for performance and
non-performance bugs, respectively. While the differences are statistically significant (i.e., p-value
< 0.001), the effect size is negligible. However, we find performance bugs have significantly more
comments than non-performance bugs (median is 5 v.s. 3 comments, with a p-value < 0.0001 and a
small effect size). Moreover, the discussions for performance bugs have significantly more distinct
commentators than for non-performance bugs (median is 3 v.s. 2 commentators, with a p-value <
0.0001 and a small effect size), which also tends to be the case in traditional software settings (e.g.,

(Zaman et al., 2012)). Our findings show more community engagement in performance-related bug
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reports, which may reflect the community’s interest in the problem.

Similarly to performance bugs in traditional software systems, performance bugs in DL frameworks
take more time to fix, and the fix sizes are often larger. Moreover, there is a higher level of commu-
nity engagement in discussing performance bugs. Our findings show initial evidence of performance

bugs’ complexity and importance in DL frameworks.

3.2.3 RQ3: What are the causes of performance bugs in DL frameworks?
Motivation

Traditional software suffers from frequent and costly performance issues (Han & Yu, 2016; Jin
etal.,2012; Y. Liu et al., 2014; Nistor et al., 2013; Zaman et al., 2012). In DL frameworks, such per-
formance bugs may have different characteristics and may scale many-fold due to the repetitiveness
of the training loop (e.g., involving many epochs through the same input data). Our goal is to derive
a comprehensive and detailed taxonomy of the causes of performance bugs in DL frameworks.
We believe our taxonomy will inspire future research and provide insights into the maintenance of

performance problems in DL frameworks.

Approach

We conduct a comprehensive qualitative study on the causes of performance bugs in deep learn-
ing frameworks. Our manual study is composed of the following phases:

Phase I: To create the taxonomy for the performance bugs, we manually study all the fixed
performance bugs that we identified in Section 3.1. The author of this thesis and another contributor
(A1 and A2) independently derived an initial list of the causes by manually inspecting the relevant
commit messages, source code, and bug reports. We found 12 main categories of performance bugs
in DL frameworks.

Phase II: Al and A2 unified the derived reasons and compared the assigned reason for each
performance bug. Any disagreement was discussed until a consensus was reached. The list of
categories remains unchanged in this step. The inter-rater agreement of the coding process has a

Cohen’s kappa of 0.92, indicating almost a perfect agreement level (Viera & Garrett, 2005). We
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make the taxonomy and the corresponding bug report IDs publicly available online (Chap3data,

2022).

Results

Table 3.3 shows the taxonomy of performance bugs in DL frameworks. Below, we discuss each

category in detail.
— Memory inefficiencies (37/141, 26.24%). Memory inefficiencies are the most common perfor-
mance bugs in DL frameworks. One potential reason may be that a large part of DL frameworks
are implemented in the C/C++ and CUDA programming languages for performance gains and finer-
grained memory management. However, such memory resource management is often manual and
may more likely result in performance bugs. Notably, DL requires a constant exchange of in-
memory data between the different components (i.e., RAM, CPU, GPU, etc.), which makes those
memory inefficiencies ever more frequent.

Unreleased memory allocations (24/141, 17.02%) is the most frequent cause of memory-related
performance bugs. For example, when an error happens, developers may forget to free up memory
resources, which can lead to a memory leak (e.g., TensorFlow#14800 (TensorFlow#14800, 2017)).
This case can be observed in TensorFlow#14800 (TensorFlow#14800, 2017), which reports that
a certain function does not release the memory it allocated if its execution ends in an error. The
developers fixed this issue by simply making sure the funtion releases the memory resources it
allocated when execution ends, as shown in Figure 3.2.

In some cases (e.g., PyTorch#50522 (PyTorch#50522, 2021)), in a distributed runtime, Remote
Procedure Calls (RPCs), which allow users to communicate and train models across multiple ma-
chines, are only cleared from memory once when timed out. This causes PyTorch to use memory
resources for needlessly long periods (i.e., memory bloat). The severity of this bug depends on the
number of RPCs used. If the number of RPCs used is small, the memory bloat may be too insignif-
icant to detect. Developers also often discuss the importance of using various grain sizes to expose
inefficient memory handling that only manifests under specific workloads (e.g., PyTorch#50522
(PyTorch#50522, 2021)). This highlights the need for better test oracles that consider different

workloads to improve the detection of memory bugs in DL frameworks.
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Table 3.3: Qualitative Analysis: Taxonomy of Performance Bugs in Deep Learning Frame-

works (Chap3data, 2022).

Cause

Description

Impact (speed,
memory, both)

Frequency

Memory inefficiency 4,31,2) 37/141 (26.24%)

Unreleased memory resources Memory resources not released after serving their purpose (e.g., stream (1, 23, 0) 24/141 (17.02%)
not cleared, object reference count mishandling).

Unnecessary memory allocation Allocating unnecessary memory resources/references to implement the (3, 8, 2) 13/141 (9.22%)
same functionality in the implementation.

Traditional SE inefficiency Traditional coding errors found in traditional software systems can re- (22, 6, 1) 29/141 (20.57%)

sult in downstream performance-related faults (e.g., inefficient loops,
unnecessary copy when converting a read-only array to a tensor without
flagging as read-only array, unnecessary caching caused by incorrect
cache index, inefficient API usage).

Threading inefficiency a152,1) 14/141 (9.93%)
Lack of parallelization Failure to reap the full benefits of multithreading (e.g., excessive usage (7, 0, 0) 71141 (4.96%)

of atomic operators resulting in unnecessary device synchronization.
Excessive usage of multithreading Making use of too many threads may lead to adverse consequences (e.g., (1,1, 1) 3/141 (2.13%)
thread starvation).
Challenges in fine-tuning the opti- Some tasks (e.g., iterating over a dataset) require the work to be divis- (2, 0, 0) 2/141 (1.42%)
mum number of threads ible among the cores to fully utilize them. In some cases, if not done
correctly, task division can lead to performance degradation.
Excessive usage of thread-local Thread-local variables are variables that are created and can only be (0, 1, 0) 1/141 (0.71%)
variables accessed by the same thread. The excessive usage of such variables may
lead to excessive memory consumption during forward propagation.
Thread not returning on time Certain multithreaded tasks need to wait for a thread to return before (1,0, 0) 1/141 (0.71%)
continuing the computation (e.g., loading data during training process).
In those cases, if a thread does not return as soon as it can, this will
cause a performance degradation.

Matrix computation inefficiency 9,2,1) 12/141 (8.51%)
Trade-off of using different linear Failure to use the appropriate linear algebra library/operator (e.g., the (3,0, 0) 3/141 (2.13%)
libraries/operators trade-off of using Magma and cuBlas for certain sizes of input).

Use of intermediate matrices Making use of temporary intermediate matrices in the implementation (2, 1, 0) 3/141 (2.13%)
of certain linear algebra operations, leading to extra operations or extra
memory consumption.
Inefficiency for specific sizes Failure to optimize execution for inputs of specific sizes and/or shapes. (1, 1, 0) 2/141 (1.42%)
and/or shapes
Inefficient broadcasting Broadcasting is usually done so that two matrices, involved in an oper- (1,0, 1) 2/141 (1.42%)
ation, have compatible shapes. However, when done inefficiently (e.g.,
through the usage of an expensive expand operation, which is used to
expand a tensor to a larger size), it may lead to significant performance
degradation.
Lack of vectorization Vectorization is the process of transforming a scalar program into a vec- (2, 0, 0) 2/141 (1.42%)
torized program. Given the prevalence of linear algebra operations in
DL applications, not vectorizing inputs in those operations can cause
performance degradation.

Inefficient AI algorithm implementation Inefficient implementation of certain core algorithms (e.g., wrong (7,1, 0) 8/141 (5.67 %)

choice of sampling algorithms).

Inefficiency for certain input data types Slowdown occurring for certain input data types (e.g., using half- (6, 0, 0) 6/141 (4.26 %)

precision data types (e.g., float16) on GPU may result in slowdowns).
Unnecessary computation ,3,2) 5/141 (3.55%)
Unnecessary gradient computation Computing the gradient of inputs that are not needed to implement the (0, 2, 1) 3/141 (2.13%)
wanted functionality.

Unnecessary node creation Unnecessarily root node creation in a computational graph that has only (0, 1, 0) 1/141 (0.71%)
one node.

Unnecessary operation Unnecessary matrix multiplication by 1. 0,0,1) 1/141 (0.71%)

Inefficient hardware optimization 4,1,0) 5/141 (3.55%)
‘Wrong device placement Incorrectly or inadvertently executing a task on the wrong device (e.g., (2, 1,0) 3/141 (2.13%)

executing the training process on CPU when GPU is available).
Lack of support for hardware opti- Not making use of hardware optimization libraries due to a lack of sup- (2, 0, 0) 2/141 (1.42%)
mization libraries port for the libraries.

Hardware components communication overhead (6,0,0) 6/141 (4.26%)
Local communication overhead Overhead associated with communication between hardware compo- (4, 0, 0) 4/141 (2.84%)

nents on the same local machine (e.g., transferring a sequence from CPU
to GPU locally).
Remote communication overhead Overhead associated with the communication between different compo- (2, 0, 0) 2/141 (1.42%)

nents in a distributed runtime (e.g., overhead associated with workers
communicating with a remote server).

Inefficient caching Inefficiently making use of cache (e.g., lack of caching or excessive (2,2, 0) 4/141 (2.84%)
usage of caching). This includes the unnecessary caching of certain
gradient values.

C/C++ abstraction Bugs caused by the abstraction of the C/C++ backend using a higher (1,2, 0) 3/141 (2.13%)

level language (e.g., Python).

Other Performance bugs that do not fit into any of the categories identified (8, 4, 0) 12/141 (8.51%)

(e.g., user-end bugs, not enough discussion).
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C++ Function {
char* base = new char[size];

if (error){
delete[] base;
return error;

}

Figure 3.2: The fix for a performance bug due to unreleased memory allocations (7ensor-
Flow#14800 (TensorFlow#14800, 2017)).

Another type of memory-related performance bug is unnecessary memory allocations (13/141,
9.22%). Such bugs are caused by unnecessarily copying or creating objects. For example, in 7en-
sorFlow#14572 (TensorFlow#14572, 2017), loading datasets and checkpoints from Amazon Web
Services (AWS) cloud storage service caused unnecessary copies of the retrieved data, causing both
a slowdown and memory bloat. Other examples include unnecessary copies of a tensor because
developers wrongly assumed that a function would return a new tensor (e.g., PyTorch#5611 (Py-
Torch#5611, 2018) and PyTorch#6222 (PyTorch#6222, 2018)).

Our findings show that DL frameworks are prone to memory-related bugs due to the usage of
lower-level programming languages and the constant exchange of in-memory data between the dif-
ferent components at play. Hence, developers may benefit from the creation of automatic tools for

better memory management mechanisms, especially for heterogeneous computation environments.

Many memory-related performance bugs are related to the usage of low-level languages and the

complex exchange of in-memory data between the different components or external resources.

— Traditional SE inefficiency (29/141, 20.57%). Despite the fundamental differences between
DL-based and traditional software systems, the performance bugs that affect traditional software
systems, such as function misuses, inefficient usage of APIs or unnecessary conditions (Jin et al.,
2012; Sujon, Shafiuzzaman, Rahman, & Rahman, 2016; Sanchez, Delgado-Pérez, Medina-Bulo, &

Segura, 2020), are also common in DL frameworks. Specifically, many trivial bugs may cause a
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significant slowdown due to the repetitive nature of the training loops and the prevalence of large
datasets in DL frameworks. For example, in PyTorch #10851 (PyTorch#10851, 2018), using a
profiler is particularly slow due to the usage of the += operator for string concatenation, which
causes repeatedly copying a new string object, instead of a more efficient append call, as shown in

Figure 3.3.

Python Profiler Class {

result W

result = []

def append(s):
result += s
result.append(s)
result += “\n”
result.append (“\n”)

return result
return “”.join(result)

}

Figure 3.3: The fix for a performance bug due to traditional SE inefficiencies (PyTorch #10851
(PyTorch#10851, 2018)).

Many previous works have investigated these performance bugs (Han & Yu, 2016; Jin et al.,
2012; Nistor et al., 2013; Zaman et al., 2011, 2012). More work is needed to adopt prior tools to

help improve the performance of DL frameworks.

Traditional performance bugs are common in DL frameworks. Such bugs may be exacerbated by

the repetitive and resource-hungry nature of the model training process. Future research may adapt

existing tools to further analyze and improve the performance of DL frameworks.

— Threading inefficiency (14/141, 9.93%). While multithreading is critical for improving DL
framework performance for resource-intensive tasks, inefficient thread usage can cause performance
issues. Some issues include not being able to compute the optimal number of threads for a given

task and/or adopting threading configurations based on the runtime environment (e.g., the libraries
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used and CPU vs GPU).

Lack of parallelization (7/141, 4.96%) is the most prominent cause of threading inefficiencies,
which happens when a low number of threads is being used or when the runtime becomes se-
quential. We find that this issue is commonly found in GPU-related code due to the prevalence
of parallelization in GPU computations. One example is the excessive use of atomic operations.
These operations help developers manage concurrent variable accesses and are thus asynchronous.
For example, in PyTorch#9646 (PyTorch#9646, 2018), the excessive use of atomic operations when
managing CUDA streams causes the runtime to be synchronized and, hence, causes performance
degradation. Developers fixed the bug by overhauling the stream creation process to implement a
priority system.

Another common cause is the excessive usage of multithreading (3/141, 2.13%). Using too
many threads to execute a task may lead to performance degradation due to overheads associated
with multithreading (e.g., context switches). For example, in TensorFlow#3470 (TensorFlow#3470,
2016), an excessive number of threads are used for training in a distributed environment due to the
creation of an unbounded number of threads that do not depend on the completion of the previous
ones.

The final causes are the challenges in fine-tuning the optimum number of threads (2/141, 1.42%).
We find that fine-tuning the optimum number of threads for a given task may be challenging in some
cases, and a suboptimal number of threads could lead to performance degradation. Deciding the op-
timal number of threads depends on numerous factors, such as the number of available CPU/GPU
cores or the workload associated with the task. For example, in PyTorch#24080 (PyTorch#24080,
2019), developers found that the calculation for the number of threads varied across different multi-
threading frameworks. Such imprecision led to performance degradation during DL training tasks.
There are also other threading issues (i.e., excessive usage of thread-local variables and threads not
returning on time) that we found in the DL frameworks. Although the number of instances is small,
these issues still caused significant performance impacts.

While parallelization can help circumvent the computationally-demanding nature of certain DL
tasks, there are challenges associated with determining the most efficient threading configuration

(e.g., number of threads) based on different factors (e.g., across a varying number of CPU/GPU
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cores). Future studies may assist developers in automatically tuning those configurations based on

the environment to improve performance.

The optimum threading configurations depend on numerous factors, including the environment and
the task at hand. Developers may benefit from future works that focus on automating such configu-

rations.

— Matrix computation inefficiency (12/141, 8.51%). Matrices represent the multidimensional
containers of algebraic elements and the data structure used in model computation (e.g., training
and inference). Therefore, computations associated with matrices and their efficiency play a crucial
role in DL frameworks. Some bugs in this category are the result of a trade-off of using different
linear algebra libraries/operators (3/141, 2.13%). Such cases occur when certain linear algebra
operators from diverse libraries have different performances under specific conditions (e.g., slower
on GPU/CPU or a particular matrix size). For example, in PyTorch#42265 (PyTorch#42265, 2020),
a specific matrix operation during inference suffers from a performance slowdown when using GPU
when the input is a small matrix. This is because of the developers’ usage of cuBlas, which executes
the entire operation on GPU. For such small workloads, the overhead of transferring the data to GPU
may outweigh the benefits of using GPU acceleration.

On the other hand, Magma (Tomov, Dongarra, & Baboulin, 2010) executes such operations on
the CPU before moving the output to GPU. The developers were not aware of the differences be-
tween the libraries and used the libraries inefficiently (i.e., not using each library in their best-suited
scenario). To fix the issue, developers added a manual condition to choose the most optimal library
to use at runtime. Another example is TensorFlow#17246 (TensorFlow#17246, 2018), where the
memcpy operator, which is used to copy tensors around different memory addresses in linear algebra
operations, is slower for large tensors on the Linux OS. Developers did not find an explanation for
this behavior, and instead used a different operation (i.e., memmove) to prevent the slowdown, as
shown in Figure 3.4.

We also find some matrix computation inefficiencies for specifc sizes and/or shapes (2/141,
1.42%). For example, in PyTorch#12006 (PyTorch#12006, 2018), a large batch size results in low

GPU utilization. To fix this, the developers opted to transpose and reshape the inputs when the batch
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C++ Function {

memcpy (tensor) ;

if (size < && 1sOnLinux) {
memcpy (tensor) ;
} else {

memmove (tensor) ;

}

Figure 3.4: The fix for a performance bug due to trade-offs of using different linear algebra operators
(TensorFlow#17246 (TensorFlow#17246, 2018)).

size for this operation exceeds a certain number. These bugs highlight the need for more thorough
testing that involves different libraries and operators alongside different input sizes and shapes.

Moreover, matrices of different dimensions and sizes cannot be added, subtracted or used in
most arithmetic operations. In such cases, developers often use broadcasting, which duplicates a
smaller matrix across the larger matrix’s dimension so that their shapes are compatible. We find that
one cause for matrix computation inefficiencies is the inefficient implementation of the broadcasting
process (2/141, 1.42%). For example, in PyTorch#17206 (PyTorch#17206, 2019), the use of extra
expand and reshape operations, instead of making use of broadcasting, results in a computation
time of almost nine minutes, when it was supposed to take seconds.

We find that many performance bugs related to matrix computations are caused by incorrect
library usage and the peculiarities of linear algebra operations. While many previous works have
benchmarked DL frameworks (e.g., (Elshawi, Wahab, Barnawi, & Sakr, 2021; Ganeshan, Elumalai,
& Achar, 2020; L. Liu et al., 2018)), there is little empirical evidence that discusses the trade-offs be-
tween using different linear algebra libraries and operators. Given the number of available libraries
and the wide variety of hardware, future studies may further assist developers in understanding
the trade-offs of using the different tools available across different situations. Future studies may
also investigate potential code smells or optimization opportunities when doing matrix computation

(e.g., choosing the optimal input shape) to further improve the performance of DL frameworks.
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Performance bugs associated with linear algebra operations may lead to exacerbated effects. Future
studies may focus on more exhaustively testing these operations and on helping developers abstract

complex linear algebra optimization and parallelization.

— Inefficient AI algorithm implementation (8/141, 5.67%). DL is an active research area, with
new and more efficient Al algorithms constantly being proposed. However, developers may not
keep up with the latest research and may use less efficient Al algorithms. For example, in Py-
Torch#7883 (PyTorch#7883, 2018), the short-time Fourier transform is slower on PyTorch than on
Librosa (McFee et al., 2015). This is due to the fact that, unlike PyTorch, Librosa’s implementation
is based on the fast Fourier transform (Cochran et al., 1967). Another example is PyTorch#11931
(PyTorch#11931, 2018), where sampling numerous elements with no replacement from a multino-
mial distribution is slow. To fix this, the developers implemented a fast-path inspired by the NumPy
implementation and the weighted random sampling algorithm (Efraimidis & Spirakis, 2016).

We observe that these bugs were discovered by comparing the performance of different imple-
mentations of the same operation. This suggests approaches such as performance differential testing

may help uncover possible performance bugs or help developers choose more efficient libraries.

Developers may use less efficient algorithms in their implementations. In addition to adopting the
newest algorithms, developers compare similar implementations across libraries to uncover perfor-

mance bugs and optimization opportunities.

— Inefficiency for certain input data types (6/141, 4.26%). DL frameworks support various data
types (Sapunov, 2020). We find that there may be performance bugs specific to certain data types.
The majority of such bugs are concerned with using half-precision data types (e.g., float16) on GPU.
Using these data types for the training and inference processes should result in faster execution time
with lower memory consumption, at the expense of some precision in the outputs. However, in
some cases, using these data types may lead to performance degradation. For all the manually
studied bugs, developers do not know why such performance bugs occur. As a workaround, devel-
opers cast half-precision inputs to a single-precision data type (e.g., float32) and then cast the output
back to half-point (e.g., TensorFlow#41715 (TensorFlow#41715, 2020)). Such bugs that only occur

under certain configurations are also common in traditional software systems and are notoriously
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hard to detect (He et al., 2020). Such flakiness reveals the need for further work to better under-
stand the advantages and disadvantages of using different data types and their expected and actual

performance on different configurations (e.g., CPU/GPU and Windows/Linux).

There is unexpected performance degradation when running certain data types on different con-
figurations. There may be opportunities for performance optimization when training/applying the

models using different data types.

— Unnecessary computation (5/141, 3.55%). Unnecessary computations are a common cause of
performance degradation in traditional software systems (Alzamil & Korel, 2005). We find that such
issues also exist in DL frameworks but for DL-specific contexts. The most prevalent cause of these
bugs is unnecessarily gradient computations (3/141, 2.13%), where gradients are calculated through
backward propagation when not required. For example, in PyTorch#7261 (PyTorch#7261, 2018),
the unnecessary gradient calculation of an argument in the spectral normalization implementation

increased the memory consumption and caused an Out-of-Memory exception.

Python Class {

def compute weight() :
with torch.no grad():

def call ():
with torch.no grad():

}

Figure 3.5: The fix for a performance bug due to unnecessary gradient computations (PyTorch#7261
(PyTorch#7261, 2018)).
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Another cause of such bugs is an unnecessary creation of nodes (1/141, 0.71%) in computa-
tional graphs. In PyTorch and TensorFlow, computational graphs are the foundations of backward
propagation in calculating the gradients of neural networks. Our study finds cases where nodes in

the graph are unnecessarily created, causing additional computation and memory consumption.

Similar to traditional software systems, unnecessary computations may also affect the performance

of DL frameworks, especially during backward propagation.

— Inefficient hardware optimization (5/141, 3.55%). DL frameworks enable users to use numer-
ous types of devices (e.g., CPU and GPU). Typically, the CPU is used for the data preprocessing
tasks, while the GPU is preferred for the computationally demanding training tasks. However, we
find cases where a wrong device placement (3/141, 2.13%) causes performance degradation. For
example, in TensorFlow#32138 (TensorFlow#32138, 2019), iterating through a dataset automati-
cally places the computation on CPU due to the assumption that iterating through the data must be
for preprocessing. Such assumption is false for customized training loops, where iterating through
a dataset is done to train a model. In such cases, the computation (i.e., the training) was inadver-
tently moved to CPU, resulting in performance degradation. Another cause of such bugs is a lack of
support for hardware optimization libraries (2/141, 1.42%). Many hardware manufacturers (e.g.,
Nvidia) develop libraries that optimize DL computations on their devices. However, DL frameworks
may not support some of those libraries, which results in suboptimal performance. For example,
in PyTorch#19797 (PyTorch#19797, 2019), PyTorch does not support Intel’s MKL-DNN for the
average pooling operation. Thus, despite having the compatible hardware (i.e., an Intel CPU) to
benefit from the library’s improved performance, the user was still unable to do so for such opera-
tion. Future studies should help developers automatically integrate various hardware optimization

libraries for optimal performance across multiple platforms.

Failing to properly integrate the usage of hardware optimization libraries specific to certain hardware
devices may cause performance degradations. Future research may focus on aiding developers in

properly supporting those libraries for optimal performance across various platforms.

— Hardware components communication overhead (6/141, 4.26%). Some bugs are due to the

overhead associated with the communication between the numerous hardware components in DL

30



(i.e., RAM, CPU, GPU, etc.). These bugs may be associated with a local communication overhead
(4/141, 2.84%). For example, in PyTorch#158 (PyTorch#158, 2016), the process of creating a tensor
on GPU from a sequence on CPU, suffers from a slowdown, due to the sequence not being buffered.
These bugs may have exacerbated adverse consequences on the performance of DL frameworks, no-
tably due to some DL tasks involving large amounts of data or a constant exchange of data between
different hardware devices (e.g., CPU and GPU). These bugs may also be associated with a remote
communication overhead (2/141, 1.42%). For example, in TensorFlow#11411 (TensorFlow#11411,
2017), there is an overhead associated with different workers fetching data from remote servers.
The performance degradation that ensues is exacerbated by using GPU acceleration due to the over-
head associated with the data being serialized on CPU before being passed on GPU. Future studies
should focus on further enabling efficient communication between these components and on better

understanding the performance bugs that are caused by these interactions.

Efficient communication between different hardware components is important for ensuring the per-
formance of DL frameworks. Future studies may focus on these interactions and on the performance

bugs they may cause.

— Inefficient caching (4/141, 2.84%). Some performance bugs are due to the inefficient usage
of caching techniques, which are used to speed up data access operations. For example, in Py-
Torch#33334 (PyTorch#33334, 2020), concatenating a sequence of tensors is slow due to the input
being consistently loaded instead of being loaded once and then cached. This bug only occurs when
using a single core on CPU. This may highlight the need for comprehensive DL testing, which con-
siders different sets of environment configurations. Moreover, such bug may be exacerbated by the

use of large datasets (i.e., tensors).

Failing to efficiently store data in DL frameworks may cause significant performance degradation.
This is partly due to the data-intensive nature of certain DL tasks. We also find that these bugs may

only occur in specific conditions (e.g., certain environment configurations).

— C/C++ abstraction (3/141, 2.13%). Interactions and clashes in behavior between C/C++ and

31



higher-level languages (e.g., Python) are also the cause of some performance bugs in DL frame-
works. For example, in TensorFlow#40758 (TensorFlow#40758, 2020), a clash of behaviour be-
tween TensorFlow’s C/C++ backend and its GO implementation led to a cache blow-up. Previous
research has focused on software systems that use the polyglot architecture (i.e., systems written in
multiple programming languages) (e.g., (Harmanen & Mikkonen, 2016)). However, no such stud-
ies have been conducted on the adoption of the polyglot architecture for DL frameworks. These
bugs highlight the need for such works. This may also highlight the need for tools that may aid

developers in addressing such bugs.

The abstraction of the C/C++ backend using a higher-level language may cause erroneous behaviour,
leading to huge performance degradation. This highlights the need for future research into the

effects of using the polyglot architecture for DL frameworks.

— Other (12/141, 8.51%). The bugs under this category do not correspond to the aforementioned
categories. The bugs include user-end bugs (e.g., PyTorch#18853 (PyTorch#18853, 2019)), bugs
that were not discussed enough (e.g., Pytorch#18405 (PyTorch#18405, 2019)) and bugs that are due

to bugs in third-party libraries (e.g., PyTorch#82 (PyTorch#82, 2016)).

3.3 Implications and Future Work

Based on our empirical findings, we present actionable implications and future work for two

groups of audiences: 1) researchers and 2) framework developers.

3.3.1 Researchers

R1: There may be unexpected performance differences when DL frameworks are used with
different combinations of environment configurations (e.g., the data type used at runtime).
Future studies should further explore such unexpected performance differences under differ-
ent combinations of configurations. As seen in RQ3, there were cases where performance bugs
only occur under certain conditions. For example, we find cases where using the float16 data type
causes a slowdown instead of a performance improvement. In this case, flakiness in the slowdown

was difficult to rationalize, and for the inefficacy of data types, developers applied a workaround to
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bypass them (e.g., temporary conversion). While there is tremendous research studying flakiness in
traditional systems, there is a lack of research studies in DL systems in benchmarking performance
trade-offs for different configurations (L. Liu et al., 2018), especially in detecting flakiness in per-
formance. Our study raises new research opportunities for better configuration recommendations in
future DL systems by studying their trade-offs.

R2: Similar libraries may have different performances, especially when operating in different
environments. Future research should help DL framework developers choose the most perfor-
mant library given various scenarios. We found that there were several scenarios where a lack of
understanding of the performance differences between external libraries led to performance degra-
dation. For example, the trade-offs between linear algebra libraries (e.g., cuBlas v.s. Magma) cause
matrix inefficiencies. We also find cases where particular hardware optimization libraries are not
supported by the DL framework, leading to suboptimal performance. Managing external libraries
is a known challenge in many traditional systems. Similarly, in DL frameworks, we find that while
there may be multiple external libraries that offer many similar functionalities (e.g., matrix solver),
each library may have different performance optimization based on factors such as the OS and the
underlying hardware. Hence, creating a performance benchmark on how different libraries perform
under different environments, hardware devices, or even versions may help DL framework develop-
ers make better decisions in choosing the libraries. Future research may also help DL frameworks
automatically choose or recommend libraries that have better performance given an environment
setting.

R3: There are future research opportunities for finding the optimal number of threads for
different workloads. As we found in RQ3, parallelization can help circumvent the resource-
intensive nature of DL tasks. However, there are challenges associated with determining the most
efficient threading configuration (e.g., number of threads) based on different factors (e.g., across
many CPU/GPU cores and workloads). Future studies may assist developers in automatically tun-
ing the threading configuration based on the environment.

R4: Future studies should help DL framework developers improve and optimize hardware

utilization (i.e., CPU and GPU usage) from the perspective of linear algebra operations. We
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find that specific matrix sizes and shapes may cause hardware underutilization, resulting in perfor-
mance degradation. For example, we observe cases where certain batch shapes lead to a low GPU
usage and hence, sub-optimal performance. In this case, while DL developers manipulate the matrix
into different shapes (e.g., reshape) to allow higher GPU utilization, the issue is partially fixed, and
problems re-occur in the future. In another case, we find slowdowns caused by matrix reshaping
when dealing with matrix operations for different shapes and sizes. Our study opens an interesting
direction for future research to optimize matrix operations involving calculating and reshaping ma-
trices to improve and optimize hardware utilization. Notably, future research is required to identify
and remove code smells related to inefficient matrix operations to improve the performance of DL

systems.

3.3.2 Framework Developers

F1: DL framework developers may benefit from a better understanding of the state-of-the-
art in SE research. We find that traditional SE programming errors (e.g., String append v.s. +=
operator) also appear in DL systems. Such problems are more susceptible to performance slowdown
due to large data usage and the repetitiveness of computations (e.g., gradients) in certain DL tasks.
Many cutting-edge studies in SE research have already investigated such performance bugs and
how to better address them. Hence, we find that developers can benefit tremendously from having
a better understanding of the state-of-the-art in SE research in order to improve the quality of DL

frameworks.

3.4 Threats to Validity

3.4.1 External Validity

We conducted our study on TensorFlow and PyTorch. Thus, our findings may not generalize
to all DL frameworks. However, these two are the most popular DL frameworks (Hale, 2018),

well-maintained, consistently updated, and used in various commercial settings.
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3.4.2 Internal Validity

We conducted our study based on the performance bug reports on GitHub repositories. To
increase the precision and recall of finding the bug reports, we follow prior studies (T.-H. Chen et
al., 2016; Jin et al., 2012; Y. Liu et al., 2014; Smith & Williams, 2001; Zaman et al., 2012) and
use both developer-provided labels and performance-related keywords (e.g., slow, laggy) to identify
performance bugs. Our manual verification found that the precision of our approach is above 88%,

which is similar to what was reported in a prior study (Zaman et al., 2012).

3.4.3 Construct Validity

DL frameworks are undergoing continuous development, so some studied issues may be related
to certain releases/versions of hardware or libraries. However, with constant hardware innovations
(e.g., new Nvidia GPUs) and software changes, such new releases would always be part of DL
framework evolution. Hence, we believe our trend analysis (RQ1), which includes around five
years of data, should reflect such patterns to a certain degree.

Our manual study may have biases on the causes of the performance bugs. Thus, two authors
independently examined all available software artifacts. The inter-rater agreement was high between
the two authors. We do not claim to find all performance bugs. However, we show the existence of

such issues and identify further research opportunities.

3.5 Conclusion

Deep Learning (DL) has gained tremendous popularity in recent years due to the availability
of open-sourced DL frameworks, which empower developers to implement DL models efficiently.
However, optimizing DL frameworks may have its unique challenges due to the peculiarities of DL.
In particular, fixing performance bugs is vital to avoid severe life-threatening consequences. In this
work, we collected the performance bug reports from the TensorFlow and PyTorch GitHub reposi-
tories and studied their characteristics and prevalence compared to non-performance bugs. We find

that: 1) performance bugs may increasingly become a concern in DL frameworks; 2) performance
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bugs take significantly more time and necessitate significantly larger fixes; and 3) we build a com-
prehensive and detailed taxonomy of the root causes of performance bugs in DL frameworks. We
hope our findings can inspire future research that focuses on improving the quality of DL frame-

works and DL systems.
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Chapter 4

An Exploratory Study on the Viability of
Performance Differential Testing for

Deep Learning Frameworks

In Chapter 3, we analyze performance bugs in two of the most popular DL frameworks (i.e.,
PyTorch and TensorFlow) in order to better understand them, asses their prevalence, and understand
their causes. Building on this foundation, we aim to assess the viability of using differential testing
for detecting these performance bugs, as well as optimization opportunities in DL frameworks. To
do so, we compare two state-of-the-arts architectures (i.e., Lenet5 and LSTM), while considering
different configurations, across different DL frameworks (i.e., PyTorch, Keras, and TensorFlow
v1.X), using a variety of performance metrics.

Differential testing is a technique that compromises of comparing two or more implementations
of the same algorithm, in search of discrepancies or differences in output or behavior, that could be
indicative of optimization opportunities or bugs McKeeman (1998). Differential testing is already
widely used in the industry (Gulzar, Zhu, & Han, 2019), but its effectiveness in a DL environment

is yet to be explored.
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In particular, all DL frameworks aim to abstract the complex mathematical details of DL algo-
rithms to allow users to efficiently implement and deploy DL models. Thus, comparing the imple-
mentations of the same DL model across different DL frameworks may represent an opportunity to
develop better test oracles for testing the performance of DL frameworks.

Moreover, DL frameworks allow for the use of numerous configurations (e.g., data precision)
and support multiple platforms (e.g., CPU/GPU, different OS). In such cases, differential testing
may be useful to detect inefficiencies that only occur under certain configurations or platforms, such
as certain categories of performance bugs discussed in Chapter 3 (e.g., inefficiencies for certain data
types, inefficient hardware optimization).

The rest of this chapter is organized as follows; Section 4.1 describes the setup for our case
study. Section 4.2 presents the results of our case study. Section 4.3 discusses the implications of
our findings. Section 4.4 discusses the threats to validity to our work in this chapter. Finally, Section

4.5 concludes the chapter.

4.1 Case Study Setup
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Figure 4.1: The overview of the end-to-end process of collecting performance metrics for differen-
tial analysis.

Figure 4.1 shows the outline of our differential testing step. We apply variations in three main
sources: (1) DL framework, (2) architecture, and (3) configurations. We first discuss the types of
variations we introduced for differential testing, and we outline the methodology we used to train
and test our DL models under different variation configurations. Finally, we present the perfor-
mance metrics we collected for each variation configuration. These metrics are used to detect any
differences in behavior resulting from incremental changes in the variations, helping us locate po-
tential performance issues. In total, we trained 43,740 models with 1,452 unique combinations of

configurations for each architecture and framework.
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4.1.1 Variations Types in Different Testing

Framework Variation. We perform differential testing on three popular DL frameworks; Pytorch
(v1.10.0), Tensorflow v1.X (v2.5.0), and Keras (v2.5.0).

F1: TensorFlow. TensorFlow was created by Google’s Brain team and made available as an open-

source project in 2015. The framework enables users to build static computation graphs, where each
edge is a tensor (i.e., a multi-dimensional array) and each node denotes an action.

F2: Pytorch. PyTorch was released by Facebook in 2016.PyTorch employs dynamic computational
graphs, in contrast to the majority of DL frameworks, allowing for greater flexibility when develop-
ing models (Paszke et al., 2017).

F3: Keras. Keras was released by Google as an open-source project in 2015. In contrast to the DL
frameworks listed above, Keras is an API designed to be used on top of other DL frameworks in
order to provide additional abstraction. Since 2019, TensorFlow runtime uses Keras as the default.

Architecture Variation. For our experiments, we selected state-of-the-art CNN (i.e., Lenet5) and
RNN (i.e., LSTM) architectures. We employ Lenet5 models on the MNIST dataset and LSTM
models on the IMDB dataset. Below, we discuss the implementation of these models.

M]1: Lenet5. Lenet5 is one of the earliest Convolutional Neural Network (CNN) architectures widely
used for image classification tasks (Lecun, Bottou, Bengio, & Haffner, 1998). It consists of several
layers of convolution, pooling, and fully connected layers that extract features from input images
and make predictions based on those features. To train the Lenet5 model, we utilize the popular
MNIST dataset which consists of a large number of grayscale images of handwritten digits. The
dataset is randomly split into two parts: a training dataset containing 60K images and a testing
dataset containing 10K images.

M2: LSTM. LSTM is a type of Recurrent Neural Network (RNN) architecture that is commonly
used for natural language processing tasks (Hochreiter & Schmidhuber, 1997). For our study, we
use an LSTM architecture for binary sentiment analysis on the IMDB movie review dataset. The
dataset contains S0K reviews in the form of text files, which are randomly split into a training set
and a testing set with 25K samples each. The LSTM architecture we use consists of an embedding

layer with a size of 32, followed by a dropout layer, an LSTM layer with a hidden size of 100, and
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a second dropout layer. Finally, a dense layer with a sigmoid activation function is used to produce
a single output representing the sentiment of the review.

Varying Hardware. We train the Lenet5 and LSTM models on both CPU and GPU. This allows us
to compare the performance of DL frameworks on different processing units.

DI: CPU. We use the CPU to train and evaluate the DL models, alongside the optimization available
to Intel CPUs (e.g., MKL).

D2: GPU. We use the CPU to train and evaluate the DL models, alongside the optimization available
to Nvidia GPUs (e.g., cuDNN).

DL Configuration Variation. We use seven configurations to comprehensively study the perfor-
mance differences of the deep learning (DL) frameworks. We vary each configuration across a
range of pre-defined values to compare how the models behave to the configuration changes across
the different frameworks. We consider the following configurations:

C1: Training Size. Given the resource-intensive and time-consuming nature of training deep learn-

ing (DL) models, we aim to find differences between DL frameworks by training models on a
portion of the original datasets. Specifically, we use 20%, 35%, and 50% of the dataset to train both
models.

C2: Batch Size. We vary the batch size during both the training and inference phases. The batch
size defines the number of data samples that go through the model before updating the model pa-
rameters. Hence, batch sizes may affect the accuracy and performance (e.g., a larger batch size uses
more memory). In particular, we consider batch sizes of 64, 256 and 512 for both the Lenet5 and
LSTM models.

C3: Number of Epochs. The number of epochs defines the number of times that training data is fed

to the model for training. We use 5, 15, and 30 epochs for the training phase of the Lenet5 models,
while we use 3, 5, and 10 epochs for the training phase of the LSTM models.

C4: Weight Initialization. We employ different weight initialization techniques to initialize the ini-

tial weights of our models. We consider two popular techniques, Xavier and He initialization, for
both Lenet5 and LSTM models. This enables us to evaluate the impact of weight initialization tech-
niques on the performance of the models across DL frameworks.

C5: Precision Mode. When using GPU-acceleration (i.e., GPU runtime), we use both float32 data
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type and mixed-precision for the training and inference phases of both models. Larger datatypes
may result in higher precision in computation but may take more time and memory.

C6: Learning Rate. A higher learning rate means that the weights in the model are adjusted faster,

which may result in faster training time but reduce the model’s accuracy. We use learning rates of
0.01, 0.05, and 0.01 during the training phase of the Lenet5 models. On the other hand, we use,
learning rates of 0.01, 0.005, and 0.001 for the LSTM models.

C7: Dropout Rate. Dropout rate defines the percentage of nodes to be dropped randomly during

training to reduce overfitting. We use dropping rates of 0, 0.15, and 0.25 for the training phases of

both the Lenet5 and the LSTM models.

4.1.2 Experimental Runtime Phase

To thoroughly evaluate the performance of DL architecture across different frameworks, we
assess their effectiveness during both the training and inference phases.
Collecting Inference-Related Performance Metrics. Since model inference is often significantly
faster than training, we artificially increased the test sets, such that model inference on test sets lasts
long enough for us to collect reliable performance metrics. For the Lenet5 models, we replicate the
original IMDB testing dataset 100 times, resulting in 1 million samples. For the LSTM models, we
use eight times the original IMDB testing dataset, resulting in 200K samples.
Training DL Models Using Incremental Configuration Changes. To ensure comprehensive eval-
uation, we train and evaluate DL models resulting from every possible combination of adjustable
parameters discussed in Section 4.1.1. We evaluated a total of 43,740 DL models, with 21,870
models for each LSTM and Lenet5 architecture. These configurations resulted from three sources
of differential testing variation, including 3 frameworks, 2 DL architectures, 2 hardware devices
used (i.e., GPU and CPU) and 6 different configurations. Specifically, we varied 6 configuration
sources, resulting in 1,452 possible configurations (i.e, 486 on CPU and 972 on GPU). We evalu-
ated these configurations times across 3 frameworks, which amounts to 4,374 DL models for each
DL architecture. To ensure accuracy and reliability, we replicate these experiments five times, re-

sulting in a total of 21,870 DL models for each DL architecture. We use a standalone machine
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equipped with an Intel(R) Core(TM) 19-9900K CPU operating at 3.60GHz and an NVIDIA Quadro
RTX 4000 GPU with 8GB of VRAM for our experiments. The entire process is time-consuming
and computationally expensive. The entire training and inference took over 42 days. We believe the
collected data is important not only for replicating this work but also for future research. Thus, we
made the data publicly available online (Chap4data, 2023).

Collected Performance Metrics To evaluate and compare the performance of the models across
different DL frameworks, architectures, and configurations, we collect six performance metrics
from each possible combination of configurations.

Training time (in seconds). We collect the time it takes to train the models (i.e., the time it takes for

the model to get through the training phase).

Inference time (in seconds). We collect the time it takes the models to get through the inference

phase.

GPU usage (in %). For the models that are on GPU, we collect the GPU consumption for both the

training and the inference phases of the models.

GPU’S VRAM usage (in %). For the models that are on GPU, we collect the GPU VRAM consump-

tion for both the training and inference phases of the models.

CPU usage (in %). For the models that are on CPU, we collect the CPU consumption for both the

training and inference phases of the models.

CPU’S RAM usage (in %). For the models that are on CPU, we collect the RAM consumption for

both the training and inference phases of the models.

4.2 Case Study Results

In this section, we first conduct a quantitative study to compare the performance of the DL
frameworks across the different configurations and architectures and investigate whether those dif-
ferences may lead to optimization opportunities. Then, we use linear models to analyze the influence
of the incremental configuration changes on the performance of the DL models across the different
DL frameworks and to better comprehend the performance differences found. Finally, we compare

the predictive abilities of linear models trained on smaller samples of DL models to investigate
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whether our approach is viable when considering a smaller sample of DL models.

4.2.1 RQ1: How does the performance of the DL models compare across different

DL frameworks and different combinations of configurations?
Motivation

PyTorch, TensorFlow, and Keras are among the many DL frameworks that support the develop-
ment of large-scale DL applications. While these frameworks can be used interchangeably to solve
DL tasks, it is crucial for developers to understand their trade-offs, particularly in terms of perfor-
mance. Hence, several studies benchmarked the performance of the DL frameworks (El Shawi et
al., 2021; Guo et al., 2019; L. Liu et al., 2018; Pham et al., 2020; Shams et al., 2017). However,
these studies focused more on benchmarking and did not consider the differential differences across
frameworks with various combinations of configurations. In this RQ, we compare all the configu-
rations studied in previous research to gain a comprehensive understanding of the performance of

these DL frameworks.

Approach

We conducted a statistical analysis to identify performance differences across various frame-
works and configurations. We first utilize one-way ANOVA (Heiberger, Neuwirth, Heiberger, &
Neuwirth, 2009) to compare the distributions of performance metrics across Keras, PyTorch, and
TensorFlow, checking for statistically significant differences. We use ANOVA parametric test as
the assumption is that the performance metric being compared across the framework is normally
distributed and their variances should be equal. We then apply Cliff’s Delta to measure the effect
size for performance metrics that are statistically significantly different. We quantify the effect size
by using the thresholds proposed by Romano et al. (Romano & Kromrey, 2000) (i.e., the effect size
is negligible if |d| < 0.147, small if 0.33 < |d| < 0.474, medium if 0.33 < |d| < 0.474 and large if
0.474 < |d| < 1). From Cliff’s Delta, we focus our differential testing analysis on the performance
metrics with large effect sizes that may be more concerning for both framework and application

developers.
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Figure 4.2: Comparing the performance metrics of Lenet and LSTM Models: Analyzing all differ-
ential testing combinations with boxplots (Top) and effect sizes (Bottom).

Results

We present a comprehensive analysis of our findings from multiple perspectives. Firstly, we use
a box plot (Figure 4.2) to display the distribution of performance metrics collected from various
differential testing configurations (as shown in Figure 4.1). To supplement this, we also include a
table in Figure 4.2 highlighting the statistical analysis results, identifying the performance metrics
exhibiting statistically significantly different distributions across the studied DL models and frame-
works. Interestingly, our ANOVA analysis reveals that the differences across all performance met-
rics are statistically significant. This indicates that DL frameworks achieve different performance
outcomes, with some frameworks performing more efficiently than others.

The table at the bottom of Figure 4.2 also report the Cliff’s Delta effect sizes. We only show sta-
tistically significant samples with large effect sizes that should be first focused on by the framework
developers. We report either positive or negative effect sizes. For example, a positive effect size
for PyTorch CPU inference time indicates that PyTorch takes the longest inference time while using
CPU compared to Keras and TensorFlow. Based on these large effect sizes automatically acquired

through our statistical analysis, we list several observations of performance differences in this RQ
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and report them to developers of frameworks.
Result A: Training and Inference Time Comparison.

RQ1-A Observation 1: While PyTorch has the fastest median training and inference time in both

CPU and GPU for Lenet5 models, interestingly, it has the slowest training and inference times
Jor LSTM when using CPU. However, its performance improves significantly when using GPU,
with the highest speed observed. As shown in Figure 4.2, Pytorch achieves the fastest median
training time for LenetS models in both CPU (12 seconds) and GPU (4 seconds), and inference
time in both CPU (16.5 seconds) and GPU (5.8 seconds). Note that, all the differences across the
frameworks are statistically significant (p-value < 0.001), and the differences in Lenet5 inference
time have a large effect size for both CPU and GPU. Similarly, PyTorch’s GPU execution achieves
the fastest training time for the LSTM architecture, with a median of 4.55 seconds, compared to
Keras (8.959 seconds) and TensorFlow (6.352 seconds). Despite its fastest performance time in
most cases, based on a combination of statistical tests and data visualization, we find that PyTorch’s
LSTM architecture has the slowest median training time (with a large effect size) when executed
on CPU (257.7 seconds), compared to Keras (74.06 seconds) and TensorFlow (69.59 seconds). The
significant slowdown observed in the CPU implementation of PyTorch’s LSTM architecture sug-
gests a potential performance bug. We reported this issue to PyTorch developers (PyTorch#94457
(PyTorch#94457, 2023)), and the developers confirmed the bug was partly due to a hardware op-
timization library (i.e., oneDNN) not being utilized and provided a bug fix. Note that this bug fits
under the “inefficient hardware optimization” category and the "lack of support for hardware op-
timization libraries” subcategory of our taxonomy of the root causes for performance bugs in DL
frameworks discussed in Chapter 3.

Overall, the issue highlights the importance and benefits of differential testing in DL frameworks
to detect potential performance bugs.

RQ1-A Observation 2: As anticipated, all frameworks show improved training and inference times

when utilizing GPU. However, Keras exhibits significantly slower inference times (28% slower)
when using CPU and even slower inference times (107.8% slower) when using GPU. Figure 4.2
illustrates that when using Keras, the inference process takes almost twice as long on both CPU (me-

dian time 32.64s) and GPU (21.99s) compared to the other DL frameworks (with a large effect size),
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where PyTorch’s median inference time is 16.49s and 5.84s seconds, and TensorFlow is 19.36s and
10.62s on CPU and GPU, respectively. Since we do not observe such performance disparities during
training, it is possible that Keras’ implementation of the Lenet5 architecture’s forward pass is inef-
ficient. It is worth noting that we used cuDNN for all frameworks during our experiments, which
means that they use the same low-level code for DL-related computations. Therefore, the difference
in training time may be implementation-specific. We reported the potential area of improvement
to developers and are waiting for their response (TensorFlow#60462 (TensorFlow#60492, 2023)).
Overall, we find that PyTorch may be the most beneficial framework for improving DL development

due to its faster inference times.

We observed several discrepancies between different frameworks. We reported the discrepancies to

developers. One of the reported issues is confirmed and fixed by developers (we are still waiting for

responses on other issues).

Result B: CPU and GPU Consumption Comparison.

RQ1-B Observation 1: Despite PyTorch consuming the lowest CPU usage in Lenet5 training and

inference, it achieves higher performance than Keras and TensorFlow. In contrast, PyTorch con-
sumes the highest CPU usage for LSTM training and inference. Figure 4.2 demonstrates that
PyTorch has lower median CPU usage for Lenet5’s training (54.25%) and inference (53.88%) pro-
cesses than Keras (71.76% and 57.76%) and TensorFlow (73.86% and 68.52%). Despite lower CPU
usage, PyTorch outperforms the other frameworks during CPU execution, confirming that higher
hardware usage does not always result in better performance (El Shawi et al., 2021). This also sug-
gests potential inefficiencies in Lenet5’s training and inference processes on Keras and TensorFlow
during CPU execution. In contrast, Figure 4.2 shows PyTorch has higher average CPU usage for
the LSTM architecture’s training (51.33%) and inference (53.79%) processes compared to Keras
(45.05% and 35.65%) and TensorFlow (44.58% and 48.5%), yet underperforms in performance.
This may indicate inefficiencies in PyTorch’s LSTM training and inference processes during CPU
execution.

RQ1-B Observation 2: PyTorch has high GPU consumption during the training and inference
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processes of both Lenet5 and LSTM models. In the case of Lenet5, higher GPU consump-
tion leads to faster training and inference times. In contrast, for LSTM models, higher GPU
consumption results in slower training time but faster inference time. In Figure 4.2, PyTorch
shows the highest GPU consumption in both training (40.45%) and inference (34.91%) processes
of Lenet5, compared to 22.953% and 21.23% for Keras and 19.83% and 18.58% for TensorFlow.
Based on Figure 4.2, a similar trend exists for training (81.76%) and inference (82.83%) of LSTM,
compared to 70.31% and 74.03% for TensorFlow and 52.73% and 63.00% for Keras. Moreover, we
observe the high variations in GPU consumption when training Lenet5, indicating the influence of
configurations on GPU consumption. In contrast, during inference, PyTorch demonstrates consis-
tent GPU consumption, with an IQR of only 0.1% compared to IQRs of 5.% for Keras and 10.71%
for TensorFlow. Hence, PyTorch provides consistent performance during the inference process of
the Lenet5 architecture, regardless of configuration changes. We reported the potential area of im-
provement to developers and are waiting for their response (PyTorch#100425 (PyTorch#100425,
2023)).

PyTorch requires more GPU memory compared to Keras and TensorFlow for both training and
inference processes of the Lenet5 and LSTM architecture. The increase in GPU consumption im-
proves training and inference time while providing consistent performance in the inference, which

may be suitable for situations where reliability is critical.

Result C: CPU’s RAM and GPU’s VRAM Comparison.

RQ1-C Observation 1: Keras exhibits the highest CPU RAM consumption specifically during in-

ference for Lenet5. Given that Keras also experienced the slowest inference time, there may be
potential performance issues associated with Keras. Figure 4.2 shows that RAM consumption stay
generally consistent around 23% to 24% across all DL frameworks for Lenet5. However, we observe
that using Keras yields a higher average RAM usage during the training (23.34 %) and inference
(28.85%) processes of the Lenet5 architecture, followed by PyTorch (i.e., medians of 23.06% and
23.01%), and with TensorFlow yielding slightly lower RAM usage (i.e., medians of 22.45% and
22.10%). The differences are all statistically significant and the difference between Keras and other

frameworks have a large effect size. Given the higher CPU RAM consumption during inference
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for Lenet5 in Keras, combined with its slower inference time, could indicate potential performance
inefficiencies within the Keras framework. We reported the potential area of improvement to devel-

opers and are waiting for their response (TensorFlow#60494 (TensorFlow#60494, 2023)).

RQ1-C Observation 2: PyTorch exhibits the highest GPU VRAM consumption during both train-

ing and inference for Lenet5, whereas TensorFlow’s LSTM architecture presents high GPU
VRAM consumption. As shown in Figure 4.2, PyTorch’s Lenet5 implementation had a higher me-
dian GPU VRAM usage of 72.50% and 72.34% during training and inference, compared to 25.21%
and 24.16% for Keras and 25.80% and 25.70% for TensorFlow (the differences are statistically sig-
nificant with a large effect size). We reported the potential area of improvement to developers and
are waiting for their response (PyTorch#100617 (PyTorch#100617, 2023)).

Figure 4.2 also shows that TensorFlow’s LSTM implementation has higher and more vari-
able GPU VRAM consumption during training and inference, with median usages of 59.30% and
61.50%, and IQRs of 33.19% and 45.04%, respectively (the differences are statistically significant
with a large effect size), whereas PyTorch yields a lower median GPU VRAM’s of 33.93% and
29.67%, and a 30.23% and 29.08% for Tensorflow. We also reported this performance issue to de-
velopers and are waiting for their response (TensorFlow#60495 (TensorFlow#60495, 2023)). Inter-
estingly, LSTM’s VRAM fluctuates significantly and consumes much more VRAM than PyTorch.
Despite this, PyTorch achieves faster training and inference times, suggesting potential memory

issues associated with the TensorFlow LSTM implementation.

The Lenet5 architecture’s Keras implementation uses a little bit more RAM than the other frame-
works, which might point to a place for optimization. Moreover, during both phases of the LSTM

architecture, Keras and TensorFlow show higher RAM usage, which might indicate another area for

optimization.
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Figure 4.3:

Comparing the performance metrics of Lenet and LSTM Models: Investigating the

feasibility of using subsets of DL configurations to evaluate unseen configurations with lineplots
(Top) and RMSE increase when training linear models with 5% subsets instead of 75% subsets

(Bottom).

4.2.2 RQ2: How do the differences between different implementations generalize

when a smaller sample of models is used?

Motivation

In our previous research question (RQ), we utilized differential testing techniques to identify

areas for performance optimization in DL frameworks. Subsequently, we shared our findings with

framework developers to help them improve framework performance. However, this process was

highly resource-intensive and time-consuming, requiring the training and evaluation of over 40K

DL models for different combinations of configurations. Therefore, in this RQ, we aim to inves-

tigate the feasibility of utilizing a smaller subset of configurations of DL models to identify the
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same performance trend on new unseen configurations. Namely, getting comparable results with a
smaller subset of models would make the testing process less resource-intensive and beneficial for

framework developers.

Approach

To test the feasibility of using a subset of configurations to achieve comparable results, we
randomly sampled 5%, 25%, 50%, and 75% of the configurations for each framework and DL
architecture. We used these subsets to build linear regression models, which were trained to predict
the expected performance metrics such as training and inference time. Finally, we evaluated the
accuracy of these regression models using the rest of the unseen (unselected) configurations and
compared the predicted and actual DL model performance results using Root Mean Squared Error

(RMSE), which is calculated as shown below;

N

1
RMSE = | + Z;(x — ;)2

N number of unseen configurations
x; inferred value for a given performance metric

y; actual value for a given performance metric

Our goal is to determine the extent to which the predictive power of the linear regression models
is preserved across different configuration sample sizes. We repeat the experiment a hundred times
for each sample size with different samples, using the Monte Carlo method, and provide the average

RMSE:s.

Results

There is a minimal change in the root mean squared error (RMSE) when training regression
models with a 5% sample compared to a 75% sample. This suggests that the regression models
maintain their predictive power even when trained on smaller sample sizes. Figure 4.3 illustrate

the change in RMSEs of the linear regression models across different sample sizes for both Lenet5
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and LSTM.

The table at the bottom of Figure 4.3 showcases the average RMSE increase when going from
a linear model trained with 75% of the training samples to linear models trained with 5% of the
training samples. In Figure 4.3, most changes in RMSE show a plateau between using 5% and 75%
training sample; hence RMSE remains relatively stable across different sample sizes and maintains
its predictive power even when trained with fewer trained samples.

For example, for Lenet5, the average increase in RMSE when reducing sample size from a 75%
to 5% training sample is only around 3.03% for the Keras CPU models, around 1.66% for the Keras
GPU, around 3.10% for the PyTorch CPU models, 1.79% for the PyTorch GPU models, 2.89%
for the TensorFlow CPU models, and 1.70% for the TensorFlow GPU models. We observe similar
trends for LSTM; the average increase in RMSE from 75% to 5% training sample is 2.93% for
the Keras CPU models, 1.77% for the Keras GPU models, 2.87% for the PyTorch CPU models,
1.96% for the PyTorch GPU models, 2.82% for the TensorFlow CPU models, and 1.59% for the
TensorFlow GPU models.

Therefore, despite a greater risk of missing out on optimization opportunities as some perfor-
mance differences may only be visible under particular configurations, we find that working with a

smaller set of DL models leads to similar performance trends.

We find that utilizing smaller training samples does not result in a substantial loss of predictive
ability of the regression models. This demonstrates that our technique is viable even when training

a substantially smaller number of DL models, making it more accessible to developers.

4.3 Implications and future work

Based on our findings, we believe differential testing can locate performance differences across
DL frameworks, which enables us to conduct root cause analysis further down the line, and in turn,
find optimization opportunities. This opens up several avenues for future research in this area.

Firstly, this study focused on a limited set of configurations and architectures. Future works can
expand to a broader set of configurations and models to find a wider spectrum of performance bugs

(e.g., using different library versions for the same task may reveal an inefficient use of APIs).
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Moreover, future work may also incorporate machine learning techniques and search-based al-
gorithms into the differential testing process, to better pinpoint the given optimization opportunity
or to better the choice of configurations and their values.

Future work may also focus on the potential of differential testing for performance bugs in DL
frameworks as a complementary approach to be used with other techniques that are used to test
these frameworks (e.g., unit testing).

Finally, future work should further study the influence of the configurations considered on the
performance of the different DL frameworks, as this could be key to finding performance bugs that
are specific to a certain set of configurations.

Overall, the findings of this study indicate that differential testing has the potential to be an
effective approach for detecting performance problems in DL frameworks, highlighting the need

for additional research in this area.

4.4 Threats to Validity

4.4.1 External Validity

Our research was carried out using PyTorch, Keras, and TensorFlow v1.X. As a result, our
findings may not be applicable to all DL frameworks. These three frameworks, on the other hand,
are the most popular DL frameworks, well-maintained, consistently updated, and used in a variety of
commercial situations. Our research was also limited to two architectures (i.e., Lenet5 and LSTM),
which may also restrict the generalizability of our findings. We aim to reduce this effect in part by

using state-of-the-art and popular CNN (i.e., Lenet5) and RNN (i.e., LSTM) architectures.

4.4.2 Internal Validity

DL models are known to have a large number of configurations, and we have conducted our
study based on a number of designated configurations. As a result, our study is inherently lim-
ited by the number of configurations included, and more findings may be discovered if more are
included. Given that the purpose of this research is to investigate the viability of employing differ-

ential testing for DL frameworks, we attempted to select a broad and inclusive set of configurations.
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We also believe that domain expertise allows DL framework developers to uncover more optimiza-

tion opportunities by picking better-suited configurations.

4.4.3 Construct Validity

DL frameworks continually undergo new optimizations and new releases, so some of the dis-
parities and optimization opportunities identified in our study may no longer exist. However, due to
the nature of our research, we contend that our emphasis should be on the existence of optimization

opportunities rather than the optimization opportunities themselves.

4.5 Conclusion

Deep Learning (DL) is growing in popularity and, as a result, is rapidly being employed in
a wide range of applications, including life-critical ones. This is due in part to DL frameworks,
which enable developers to efficiently develop DL applications. However, because of the uniqueness
of DL, optimizing and testing these frameworks may provide distinct challenges. In this work,
we aim to study the viability of using differential testing for DL frameworks to find optimization
opportunities. We train, evaluate and compare 21,870 LenetS models and 21,870 LSTM models,
using numerous configurations and performance metrics, across three different DL frameworks (i.e.,
PyTorch, Keras, and TensorFlow v1.X. We find that: (1) differences in performance between the DL
frameworks may lead us to performance optimization opportunities; and (2) this approach is also
valid when using a smaller sample of DL. models. We hope our findings can inspire future research
that focus on further studying the potential of differential testing to improve the quality of DL

frameworks and DL systems.
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Chapter 5

Summary and Future Work

Deep Learning (DL) has revolutionized the field of Artificial Intelligence (Al), enabling sev-
eral breakthroughs in image recognition, Natural Language Processing (NLP), and other complex
tasks. This was made possible partly due DL frameworks, which enabled developers to efficiently
develop DL systems. However, as with any complex software system, DL frameworks are prone
to performance bugs and issues that can undermine their effectiveness and reliability. Moreover,
performance bugs in DL environments can be challenging to detect and diagnose, as they often
involve subtle interactions between hardware, software, and data inputs. Performance bugs in DL
frameworks, in particular, are of utmost importance, as a performance bug in a DL framework may
negatively affect a number of DL systems that relies on that DL framework. Moreover, as DL sys-
tems are increasingly being used in a wide spectrum of applications, these bugs may be increasingly
likely lead to life-critical circumstances. Despite this, performance bugs in DL frameworks have
received an underwhelming amount of attention from the research community.

This thesis has delved into this issue by analyzing the characteristics and the root causes of
performance bugs in DL frameworks. Then we built on this understanding to explore the potential
of differential testing as a strategy to detect and prevent them.

In this chapter, we conclude this thesis by providing a summary of our work and our findings,

and by discussing avenues for future work that focus on performance bugs in DL frameworks.
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5.1 Summary and Findings

5.1.1 An Empirical Study on Performance Bugs in Deep Learning Frameworks

In Chapter 3, we set out to study the characteristics of performance bugs in DL frameworks. To
do so, we web-scrape and extract numerous metrics of 34,177 performance and non-performance
bug reports from the PyTorch and TensorFlow GitHub repositories. We then use the data collected
to study the characteristics of the performance bugs collected from those DL frameworks. More

precisely, we explore the following Research Questions (RQs):
* What is the trend of fixed and reported performance bugs over time?

* What are the differences between performance and non-performance bugs in terms of fixes

and community engagement?
* What are the causes of performance bugs in DL frameworks?
To address these RQs, we do the following:

* We study the prevalence of open performance bugs and fixed performance bugs in DL frame-
works (i.e., PyTorch and TensorFlow) over a span of more than 4 years. We find performance
bug reports are being opened at a faster rate than DL framework developers fixing them, which

indicates that performance bugs are increasingly becoming a concern on DL frameworks.

* We compare performance and non-performance bugs in DL frameworks across different di-
mensions (i.e., complexity, and community engagement) using a variety of metrics (i.e., fix
time, fix size, time for first comment, number of comments, and number of commentators).
We find that performance bugs in DL frameworks tend to take more time to fix and have larger
fixes, when compared to non-performance bugs. We also find that performance bugs tend to
benefit from higher community engagement, which further underlines their importance for

the community.

* We manually study and characterized 141 fixed performance bugs from the DL frameworks.
We find 12 main categories of performance bugs in DL frameworks, which are composed of

19 smaller subcategories.
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5.1.2 An Exploratory Study on the Viability of Performance Differential Testing for

Deep Learning Frameworks

In Chapter 4, we set out to investigate the viability of using performance bugs for DL frame-
works. To do so, we implement two state-of-the-arts CNN (i.e., Lenet5 for image classification
on the MNIST dataset) and RNN (i.e, LSTM for sentiment analysis on the IMDB review dataset)
architectures in three different DL frameworks (i.e., PyTorch, Keras, and TensorFlow). Then, we
train and evaluate 21,870 models of each architecture, using a variety of different configurations
(i.e., training sample size, batch size, number of epochs, weight initialization technique, precision
mode, learning rate, and dropout rate). We evaluate those models collecting numerous performance
metrics (i.e., training/inference time, hardware (CPU or GPU) usage during training/inference, and
memory usage (RAM or GPU VRAM) during training/inference).

More precisely, we explore the following Research Questions (RQs):

* How does the performance of the DL models compare across different DL frameworks and

different combinations of configurations?

* How do the differences between different implementations generalize when a smaller sample

of models is used?
To address these RQs, we do the following:

* We compare the performance of the DL models across the three different DL frameworks,
using the aforementioned performance metrics. We find that when the performance of the
models implemented in one of the frameworks stands out, it may be indicative of perfor-
mance optimization opportunities or performance bugs. This, in turn, is indicative of the
potential of differential testing as an efficient tool to detect and prevent performance bugs in

DL frameworks.

* We train linear regression models to predict the performance metrics of the DL models for
each architecture (i.e., LenetS and LSTM), framework (PyTorch, Keras, and TensorFlow) and

device (i.e., CPU or GPU) used, using randomly sampled 5%, 25%, 50%, and 75% of the
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DL models evaluated. Then, we compare their accuracies by using the regression models to
predict the rest of the unseen (unselected) DL models. We find that the regression models
lose little predictive power when being trained with smaller samples. This suggests that our
method can be applied by training a smaller number of DL models which, in turn, makes it

more viable for developers.

5.2 Future Work

We believe that this thesis makes significant contributions towards addressing performance bugs
in DL frameworks and towards the assessment of the potential of differential testing as an efficient
tool for detecting and preventing them. However, our work also highlights the need for future work
to address the significant challenges associated with handling performance bugs in a DL environ-

ment. We highlight some avenues for future work.

5.2.1 Handling Performance Bugs That only occur under certain configurations

We find that some unexpected performance discrepancies occur for certain configurations. For
example, in Chapter 3, we find cases where using mixed-precision during GPU runtime cause a per-
formance degradation instead of a performance improvement. Despite the existence of those bugs,
there is a lack of studies that consider the trade-offs between different combinations of configura-
tions for DL systems (L. Liu et al., 2018). We take the first step to fill this void by considering
multiple configurations when training and evaluating the DL models used in our experiments in
Chapter 4. However, future studies should further focus on exploring performance discrepancies

that only occur under certain configurations.

5.2.2 Choosing the Optimal Libraries Based on The Environment Settings

In other cases, we find that libraries may perform differently for different tasks, and when op-
erating in different environments. For example, we observe in Chapter 3, that in certain cases
choosing the wrong linear algebra library may cause matrix inefficiencies. There exists numerous

libraries that offer similar functionalities, but they may have different performance optimization
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based on factors such as OS and underlying hardware. Similar to what we have done in Chap-
ter 4 for DL frameworks, benchmarking those libraries under different environment variables may
help DL framework developers in selecting the optimal library in a given scenario. Moreover, fu-
ture work may focus on automatically choosing or recommending the optimal libraries based on an

environment setting.

5.2.3 Choosing the Optimal Threading Configurations For a Given DL Task

Parallelization is a critical component in mitigating the resource-intensive nature of DL. How-
ever, we observed in Chapter 3 that DL framework developers may face difficulties in establishing
the most efficient threading configurations (e.g., number of threads) based on a variety of factors
(e.g., across many CPU/GPU cores and workloads). Future research could help developers in auto-

matically tuning the threading configurations based on the environment.

5.2.4 Identifying and Detecting Linear Algebra Code Smells in DL Systems

Linear algebra is a crucial part of DL, as it provides the mathematical foundation for many of its
key operations and concepts. Thus, linear algebra code smells in DL frameworks may exorbitantly
undermine their performance. For instance, we find in Chapter 3 that the usage of inefficient linear
algebra operations or shapes may lead to sub-optimal hardware and memory usage, and thus, sub-
optimal performance. Future work may assist developers in optimizing linear algebra operations
and reshaping matrices in order to optimize hardware and memory usage in DL systems. Moreover,
future work could focus on identifying and removing code smells related to linear algebra operations

in order to improve the performance of DL systems.

5.2.5 Exploring the Potential of Differential Testing as a Tool for DL Systems

We find in Chapter 4 that differential testing may be a viable tool to detect performance opti-
mization opportunities and prevent performance bugs in DL frameworks. However, our study of
the usage of differential testing in a DL environment is exploratory, and further work is required to
fully assess the potential of the method as an efficient tool. For instance, future work could focus on

a more granular approach to how different DL frameworks react to the same configurations for the
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same task, in order to better detect performance discrepancies that only occur under certain config-
urations. Future work may also incorporate ML techniques and search-based algorithms to better
choose the optimal configurations to be used in a given differential testing procedure, alongside
their optimal values for finding performance differences. Moreover, future work may also integrate
differential testing as a complementary approach to other testing methods used to test DL systems,

such as unit testing and integration testing.
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