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Abstract

Enhancing Text Annotation with Few-shot and Active Learning: A Comprehensive Study

and Tool Development

Ishika Dhall

The exponential growth of digital communication channels such as social media and messaging

platforms has resulted in an unprecedented influx of unstructured text data, thereby underscoring

the need for Natural Language Processing (NLP) techniques. NLP-based techniques play a pivotal

role in the analysis and comprehension of human language, facilitating the processing of unstruc-

tured text data, and allowing tasks like sentiment analysis, entity recognition, and text classification.

NLP-driven applications are made possible due to the advancements in deep learning models. How-

ever, deep learning models require a large amount of labeled data for training, thereby making

labeled data an indispensable component of these models. Retrieving labeled data can be a major

challenge as the task of annotating large amounts of data is laborious and error-prone. Often, profes-

sional experts are hired for task-specific data annotation, which can be prohibitively expensive and

time-consuming. Moreover, the annotation process can be subjective and lead to inconsistencies,

resulting in models that are biased and less accurate.

This thesis presents a comprehensive study of Few-shot and active learning strategies, systems

that combine the two techniques, and current text annotation tools while proposing a solution that

addresses the aforementioned challenges through the integration of these methods. The proposed

solution is an efficient text annotation platform that leverages Few-shot and Active Learning tech-

niques. It has the potential to assist the field of text annotation by enabling organizations to process

vast amounts of unstructured text data efficiently. Also, this research paves the way for inspiring

ideas and promising growth opportunities in the future of this field.
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Chapter 1

Introduction

1.1 Overview

With the proliferation of digital communication channels, such as social media and messaging

platforms, the volume of unstructured text data has grown significantly in recent years (Messaoudi,

Guessoum, & Ben Romdhane, 2022). This has led to an increased demand for natural language pro-

cessing (NLP) techniques to extract valuable insights and automate various services. NLP enables

the analysis and comprehension of human language, making it possible to process unstructured text

data effectively. This, in turn, opens up a wide array of applications, including information retrieval,

text summarization, sentiment analysis, entity identification, text classification, and translation. One

of the significant challenges in the field of NLP-based tasks is the labor-intensive task of manually

annotating vast amounts of data. This process, also known as data annotation, is crucial for training

machine learning models but can be a time-consuming, costly, and error-prone endeavor (Snow,

O’connor, Jurafsky, & Ng, 2008). The increasing volume of unstructured text data exacerbates this

challenge, as manual annotation becomes increasingly infeasible. Various techniques have been

proposed to mitigate this challenge, such as active learning, weak supervision, and self-supervised

learning. Weak supervision relies on noisy labels and heuristics to generate supervision signals

(Varma & RÂe, 2018) and representations learned using self-supervised learning techniques are sig-

nificantly inferior to those delivered by fully supervised techniques, so previous work shows that

the pretext tasks for self-supervised learning should not be considered in isolation (Zhai, Oliver,

1



Kolesnikov, & Beyer, 2019). On the other hand, active learning techniques allow the model to

interact with the annotator and request labels for specific instances, rather than requiring manual

annotations for the entire dataset leading to a better model performance with less labeled data there-

fore, they are more efficient than weak supervision and self-supervised learning. This continues

to be a significant area of research in NLP and machine learning. Active learning is a powerful

technique for reducing the labor-intensive task of manual annotation in training machine learning

models. It utilizes a semi-supervised learning approach, where an iterative process is followed. To

further address the challenges faced in active learning and enhance the capabilities of text annotation

tools, additional techniques like few-shot learning can be considered. Few-shot learning empow-

ers models to generalize from a limited number of labeled examples, thus boosting adaptability to

new and diverse data scenarios (Bennequin, Bouvier, Tami, Toubhans, & Hudelot, 2021). As we

delve deeper into the advancements of text annotation tools, it is crucial to consider and evaluate

key concepts that contribute to the development of comprehensive and high-performing platforms.

Concepts such as flexibility in supporting user-defined models and acquisition techniques, the in-

tegration of active learning for efficient annotation, and the exploration of few-shot learning for

enhanced model generalization are paramount.

The main aim of this thesis is to explore key concepts for data annotation and conduct a com-

prehensive study with the evaluation of data annotation tools. By understanding the strengths and

limitations of these techniques, we seek to pave the way for more sophisticated and adaptable text

annotation platforms, thereby advancing the field of NLP and machine learning. Through this re-

search, we aspire to provide valuable insights and practical guidance for the design and develop-

ment of cutting-edge text annotation tools. In conclusion, this paper aims to shed light on the

key aspects that underpin text annotation tools, offering valuable insights into their advantages and

disadvantages. Through an investigation, we also aspire to present a transformative approach to

developing a cutting-edge text annotation platform that addresses the challenges and demands of

the ever-expanding field of natural language processing.

2



1.2 Contributions

In this thesis, we aim to present various techniques that can be utilized and combined to form a

holistic platform that can address the challenges of data annotation. We present a comprehensive in-

vestigation of data annotation tools, analyzing their requirements, drawbacks, and proposing a novel

approach to building a holistic and efficient platform. We identify three main research questions that

form the backbone of this study.

• This thesis seeks to address essential research questions related to data annotation platforms.

The primary objectives are to identify key concepts and characteristics that contribute to the

efficacy of such platforms and establish a strong foundation for an advanced annotation tool.

By thoroughly understanding these fundamental concepts and features, we aim to develop an

annotation tool that effectively caters to the diverse needs of users.

• Another essential research question involves investigating whether the existing systems sat-

isfy the requirements by comparing their features based on the defined concepts. To gain

insights into the current landscape of text annotation tools, an in-depth analysis of existing

systems is conducted. This examination will provide a comprehensive understanding of the

gaps and limitations present in the current state-of-the-art.

• Lastly, the thesis also tries to address the question of how to bring together various latest

concepts to create a holistic annotation platform along with an evaluation of techniques used.

1.3 Outline

The paper is organized as follows. Chapter 2 explains the concepts of active learning and various

active learning based strategies. Next, the chapter 3 covers few-shot learning concepts and how

we can combine active learning and few-shot learning together. Chapter 4 show a comprehensive

framework along with a comparison of existing annotation tools. In Chapter 5, we talk about an

efficient annotation system outlining the system architecture and implementation details. Also,

perform experimentation to evaluate the concept on different tasks. Chapter 6 concludes the paper.
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Chapter 2

Efficient data selection - Active Learning

2.1 Overview

Active learning is a machine learning approach that involves an iterative process of selecting

and labeling the most informative samples from a large pool of unlabeled data. In active learning,

an algorithm actively selects the data instances to be labeled by an oracle (e.g., a human expert or an

existing labeled dataset) in order to improve the learning model’s performance. The key idea behind

active learning is to make the learning process more efficient by selectively querying the labels of

data points that are expected to provide the most valuable information to the model. By actively

selecting informative samples for labeling, active learning can achieve good performance with fewer

labeled examples compared to traditional supervised learning approaches that require labeling the

entire dataset. An ideal active learning pipeline would choose the most informative data points using

defined heuristics and subsequently pass these data points to an oracle for annotation and inclusion

in the final set of training data as shown in Figure 2.1. The figure depicts the iterative Active

Learning process, where an initially labeled dataset trains the model. Leveraging active learning

techniques and model predictions, the loop intelligently identifies and selects the most valuable

samples for labeling, improving the model’s performance through iterative sampling and retraining.

Active learning optimizes the use of data by recognizing that not all data points contribute equally to

the training of the model. It acknowledges that certain data points may be redundant, already well-

covered by existing labeled examples, or may provide little additional information for improving
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the model’s performance. By selectively choosing the most informative samples for labeling, active

learning focuses on acquiring new information that effectively complements the existing training

data, leading to more efficient and effective model training. There can be various active learning

scenarios in which the user may ask queries, including Membership Query Synthesis, Stream-Based

Selective Sampling, and Pool-Based Sampling, which represent the three primary settings (Settles,

2009). In the membership query synthesis scenario, the learner can request labels for any unlabeled

instance in the input space, including queries that the learner newly generated, instead of relying

solely on samples from some underlying natural distribution. However, this approach can also pose

challenges, particularly in cases involving complex data like natural language. In such scenarios,

the learner may have to deal with many gibberish and noisy queries, making it difficult to determine

the most informative instances to query. Other active learning scenarios like Stream based query

selection can be very useful when an unlabeled instance can be easily sampled from the distribution

and the learner can then decide whether the label of that instance is required or not. It is also

referred to as sequential active learning as this approach involves sampling instances one at a time

from the distribution and allowing the learner to decide whether to query or discard them. To make

effective decisions on which instances to query, active learning often relies on informative measures

and query strategies. Two very commonly used query strategies are uncertainty-based sampling and

query-by-committee. Uncertainty-based sampling selects instances that the model finds difficult to

classify. This strategy can be used with various uncertainty measures, including entropy, margin,

and least confidence. Alternatively, Query-by-committee relies on multiple models, rather than just

one. The idea is to train several models with different parameter settings. Then, when an unlabeled

instance is queried, each model predicts its label. The most informative instance is the one that

has the greatest disagreement between the models, indicating a high degree of uncertainty (Gilad-

Bachrach, Navot, & Tishby, 2005). If there is a small set of labeled data and a large pool of unlabeled

data available, queries can be drawn from the pool. This scenario comes under the category of

pool-based active learning which has its main application in Text Classification (D. D. Lewis &

Gale, 1994; McCallum & Nigam, 1998), Image classification (C. Zhang & Chen, 2002), Speech

Recognition (TÈur, Hakkani-TÈur, & Schapire, 2005), etc. The pool-based approach is different than

the stream-based approach as it ranks the entire pool of data before finally querying the instance
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Another main challenge in combining the two is dealing with model uncertainty. Many AL tech-

niques like uncertainty-based query strategies rely on the model uncertainty, which is often difficult

to quantify accurately. One way that uncertainty manifests in Deep Learning models is through

overconfident probability distributions. The final output layers, like softmax, yield probability dis-

tributions that are not always calibrated (Guo, Pleiss, Sun, & Weinberger, 2017). This means that the

probabilities output by a neural network can’t always be trusted to accurately reflect the uncertainty

in the model’s predictions. To address this issue, post-processing techniques such as calibration and

temperature scaling (Rahaman & ThiÂery, 2021) (Guo et al., 2017) have been developed to improve

the accuracy of model predictions. Deep learning models require a vast amount of labeled data to

learn their complex parameters effectively, whereas classical active learning methods rely on a small

amount of labeled sample data to learn and update the model. This makes it difficult to combine the

two approaches since the small labeled data samples used in active learning are often insufficient to

train deep learning models effectively. Moreover, the one-by-one sample query method commonly

used in active learning is not suitable for deep learning models due to their complexity and the

need for full training until convergence (Zhdanov, 2019a). As a result, alternative batch sampling

methods must be employed to select a large subset of data points for labeling, resulting in correlated

samples even for moderately small subset sizes. Also, the inconsistency in the processing pipeline

is another challenge in combining active learning and deep learning. AL algorithms concentrate on

training classifiers based on fixed feature representations, while in deep learning, feature learning

and classifier training are jointly optimized. Overall, combining deep learning and active learning is

a challenging task that requires careful consideration of the sampling method, labeling budget, and

model uncertainty to achieve accurate and scalable results.

2.2 Active Learning Strategies

Active learning strategies have received considerable attention in research and have been exten-

sively studied and documented in the literature, as evident from the surveys conducted by (Ren et

al., 2021) and (Settles, 2009). In order to gain a thorough understanding and systematically evaluate
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the wide range of query strategies and techniques employed in active learning, we will explore vari-

ous query strategies, with a particular focus on text annotation tasks. By examining these strategies,

we aim to identify effective approaches that can enhance the efficiency and effectiveness of active

learning in text annotation for a given use case.

2.2.1 Uncertainty and Hybrid Query Strategy

Uncertainty and hybrid query strategy is a popular and straightforward approach due to its sim-

plicity and low computational cost. This approach selects the most uncertain samples in the given

distribution to form a batch query set, as these samples are expected to provide the learning model

with the most information. This strategy is particularly effective with probabilistic models, and it has

been widely used with shallow networks like KNNs and SVMs because these traditional models can

accurately obtain the uncertainty of the predictions. A use case of uncertainty-based query strategies

can be a simple binary classification task using a probabilistic model. In such cases, the strategy

selects the instance whose posterior probability for being positive is closest to 0.5 (D. D. Lewis &

Catlett, 1994). For problems with multiple classes, a more specific variant of this technique like

Least Confidence (LC) can be used. Here, the instance with the least confident prediction or the

class label with the highest posterior probability is queried using equation 1 (Culotta & McCallum,

2005).

1− max
y1,..,yn

IP[y1, .., yn | {xij}] (1)

Another example of an uncertainty-based query strategy can be the Margin sampling query strategy

(Scheffer, Decomain, & Wrobel, 2001), where the difference between the highest predicted prob-

ability and the second-highest predicted probability for a given sample is computed and called the

margin. Samples with the lowest margin, i.e., samples with the least certain prediction, are selected

for labeling. This simple approach has been proven effective and has been widely used in various

applications. For example, (An, Wu, & Han, 2018) claimed that Margin Sampling is the best tech-

nique to be used when combining acquisition strategies with deep neural networks like RNNs for

text classification. They considered two strategies, namely Query-by-committee (QBC) and LC.

They mentioned that QBC is not a very easy technique to be combined with Deep Learning as it
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can be really computationally expensive and on the other hand, LC may not always choose the most

informative instance. Also, although LC was popular in statistical sequence models, it was later

found to select longer sequences disproportionately, such as in named entity recognition tasks. To

address this issue, Maximum Normalised Log probability (MNLP) (Shen, Yun, Lipton, Kronrod, &

Anandkumar, 2017) was proposed, which normalizes the LC equation to mitigate this problem, as

shown in equation 2.

max
y1,..,yn

1

n

n∑

i=1

log IP[yi | y1, .., yn−1, {xij}] (2)

Experiments using this technique showed that models incorporating semantic relationships be-

tween words in a sentence outperformed classical methods while using only 25% of the training

dataset (Shen et al., 2017). Another system proposed by (Radmard, Fathullah, & Lipani, 2021) gen-

eralized the concept of LC and MNLP (Shen et al., 2017) to define a family of acquisition functions

that would work well with both long sequences and smaller sub-sequences. Other uncertainty-

based query strategies include entropy-based methods, such as Maximum Entropy (Z. Qiu, Miller,

& Kesidis, 2017), which generalize well to probabilistic multiclass classifiers. These methods per-

form comparably depending on the use case when empirically evaluated in different tasks (Settles,

2009) (Settles & Craven, 2008) (Schein & Ungar, 2007). Many DeepAL systems, such as Bayesian

dropout approximation (Gal & Ghahramani, 2016a) using model uncertainties, neural link predic-

tion with Activelink (Ostapuk, Yang, & CudrÂe-Mauroux, 2019), and an approach that uses both fea-

ture learning and task learning-based uncertainty (He, Jin, Ding, Yi, & Yan, 2019), follow the con-

cept of uncertainty query strategy. Some other techniques like DeepFool Active Learning (DFAL)

(Ducoffe & Precioso, 2018) challenges the efficiency of existing uncertainty-based methods for

deep networks. DFAL argues that these techniques are not effective in handling adversarial ex-

amples, which are samples that have been slightly modified with specific perturbations to cause

the model to misclassify even when it is highly confident in its prediction. To address this chal-

lenge, DFAL uses decision boundary-based margin sampling, which has been shown to outperform

state-of-the-art methods with faster computation. By leveraging this technique, DFAL provides a

more efficient and effective way to handle adversarial examples and improve the performance of

9



deep learning models. Although these active learning techniques can effectively select informative

samples for labeling, they may not fully capture the underlying distribution of the data and the rela-

tionship between the samples and relevant knowledge about the data distribution (Marbinah, 2021).

Consequently, it can lead to the collection of a redundant set of samples at every step. To address this

problem, researchers have proposed hybrid query strategies that take into account both the diversity

and information volume of samples, particularly in a batch query setting. By incorporating diversity

as a criterion for selecting samples, hybrid query strategies can enhance the overall performance of

the active learning process. A diverse set of samples ensures that the underlying distribution of the

data is fully captured and avoids the collection of redundant samples.

Furthermore, hybrid query strategies can provide more flexibility in the selection of samples,

which can improve the efficiency of the active learning process. For example, Exploration-P uses

information entropy to evaluate the uncertainty of a sample under a given model and considers the

similarity between samples to understand the true data distribution of the feature space (Yin et al.,

2017). Similarly, other systems like Diverse Mini-Batch Active Learning (DMBAL) focus on both

informativeness and diversity in the mini-batch query setting (Zhdanov, 2019b), while Weighted

Incremental Dictionary Learning (WI-DL) incorporates an unsupervised feature learning stage in

addition to the supervised fine-tuning stage of deep belief networks (P. Liu, Zhang, & Eom, 2017).

Batch Active Learning by Diverse Gradient (BADGE) offers a trade-off between predictive uncer-

tainty and sample diversity without requiring hyperparameter tuning (Ash, Zhang, Krishnamurthy,

Langford, & Agarwal, 2020). By utilizing these and other query strategies, deep active learning

can achieve high-performance gains with a small set of labeled data. In recent years, several hybrid

methods have emerged that combine uncertainty-based and data distribution-based active learning

techniques. WAAL (Shui, Zhou, GagnÂe, & Wang, 2020) is one such method that explicitly incorpo-

rates an uncertainty-diversity trade-off in the selection of a query batch. Unlike uncertainty-based

methods that may fail to fully utilize the data distribution, or data distribution-based methods that

may ignore the structure of the task, WAAL strikes a balance between the two. Another approach,

called Variational Adversarial Active Learning (VAAL) (Sinha, Ebrahimi, & Darrell, 2019), utilizes

variational autoencoders and a discriminator to learn a latent representation of labeled and unla-

beled data points in an adversarial game. VAAL combines uncertainty and representativeness during
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sampling in a task-agnostic manner. A subsequent work, called TA-VAAL, builds on VAAL and

leverages the latent space via ranking conditional generative adversarial networks (RankCGANs)

(Saquil, Kim, & Hall, 2018) to possess task awareness (Kim, Park, Kim, & Chun, 2021). These

hybrid methods represent an exciting direction for active learning research and may offer promising

solutions for tackling the challenges of uncertainty and distribution-based sampling.

2.2.2 Query-by-committee

As mentioned previously, uncertainty sampling is a commonly used active learning strategy that

selects informative samples based on the uncertainty estimation of a single model that can bring

bias in the system. However, Query by Committee (QBC) overcomes the limitations of uncertainty

sampling by involving multiple models or ºcommittee membersº in the decision-making process1.

In QBC, a diverse committee of models is trained using available labeled data. Each committee

member independently predicts the labels for unlabeled instances. The committee’s disagreement

or consensus on these predictions serves as a measure of uncertainty or informativeness. Instances

that generate higher disagreement among committee members are considered more uncertain and

thus selected for labeling. By incorporating the collective opinion of the committee members, QBC

mitigates the bias that may arise from relying on a single learner, which is a limitation of uncertainty

sampling. Additionally, QBC facilitates the capture of examples that fall beyond the scope of a

single model’s perspective. QBC enables the exploration of diverse viewpoints and information

sources within the committee, enhancing the robustness and reliability of the active learning process.

Leveraging the diversity of the committee members, QBC makes more informed decisions regarding

which samples to label. This approach improves the reliability and effectiveness of the process by

leveraging the collective decision-making power and diversity within the committee. In query-by-

committee, a committee of models C can be represented as:

ϕ(1), ..., ϕ(C) (3)

1https://modal-python.readthedocs.io/ /downloads/en/latest/pdf/
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for C different hypotheses that align with the labeled set. The objective is to identify the most infor-

mative query, which is determined by the instance that elicits the highest disagreement among the

committee members in terms of labeling. Various approaches can be employed within the query-

by-committee strategy. For instance, query-by-bagging can be used to train a committee of Condi-

tional Random Fields (Seung, Opper, & Sompolinsky, 1992). Vote entropy is another strategy that

leverages Kullback-Leibler divergence, an information-theoretic measure quantifying the difference

between two probability distributions, to guide the committee’s decision-making process (Dagan &

Engelson, 1995). A modification of the aforementioned technique was proposed by (Settles &

Craven, 2008) specifically for sequence models. This modification involves computing the average

Kullback-Leibler divergence scores by summing the marginals at each token position. Similar to

vote entropy, the scores are normalized for the length of the sequence. This adaptation allows for the

effective utilization of the Kullback-Leibler divergence measure in the context of sequence models,

enhancing the accuracy and reliability of the active learning process. Additionally, a variant based

on sequence Kullback-Leibler divergence can also be employed in this context called sequence vote

entropy (Settles & Craven, 2008). These approaches provide effective means to select informative

queries by exploiting the disagreement or entropy measures among committee members. By lever-

aging diverse hypotheses within the committee, these strategies contribute to the robustness and

accuracy of the active learning process.

2.2.3 Density-weighted query strategy

Many active learning heuristics are ineffective when applied to deep learning models in batch

settings (T. Wang, Zhao, Lv, Hu, & Sun, 2021). Deep learning architectures such as CNNs, RNNs,

etc., require a significant amount of labeled data to learn complex parameters. However, labeling

a dataset can be a time-consuming and expensive task. Therefore, the optimal way to choose data

points to label given a fixed labeling budget is a crucial question. Classical active learning algo-

rithms choose a single point at each iteration, but for large networks, this is not feasible due to local

optimization methods and the need for full training until convergence, making it intractable to query

labels one by one. Instead, a large subset must be queried at each iteration, resulting in correlated
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samples even for moderately small subset sizes. The basic idea of the Density-weighted query strat-

egy is that samples that are more different from labeled samples can bring more information, and

samples that are highly representative of unlabeled samples can promote model generalization. It

selects a batch of informative samples as representative as possible at each iteration by making use

of the geometry of the samples. Active learning methods can be tailored to the batch sampling case

by defining the problem as a core-set selection problem, where the goal is to select a small subset of

labeled data, called the core set, that is representative of the entire dataset (Sener & Savarese, 2018).

This is achieved without using the labels, and the core set is used to train a model that is competitive

for the remaining data points. To tackle the unlabeled core-set problem for CNNs, a rigorous bound

between the average loss over any subset of the dataset and the remaining data points is provided

via the geometry of the data points. The active learning algorithm aims to choose a subset that min-

imizes this bound. This approach significantly reduces the cost of acquiring labeled data, making

it a cost-effective and scalable solution for various machine-learning problems. By employing this

approach, deep learning architectures can learn from a smaller amount of labeled data, thus enabling

faster and more accurate model training.

Another technique in this category is Discriminative Active Learning (DAL) (Gissin & Shalev-

Shwartz, 2019). DAL is a batch-mode active learning algorithm designed for neural networks and

large query batch sizes. It leverages the data density information during the active learning pro-

cess. DAL formulates active learning as a binary classification task, aiming to select examples for

labeling in such a way that the labeled set and the unlabeled pool become indistinguishable. One

notable advantage of DAL is its ability to sample from the unlabeled dataset in proportion to the

data density, without introducing bias towards densely populated regions. It operates by iteratively

selecting batches of examples from the unlabeled pool for labeling. It leverages the discriminative

power of a trained neural network to identify instances that are most likely to improve the model’s

performance when labeled. The goal is to create a labeled set that closely resembles the overall

distribution and characteristics of the unlabeled pool, thus ensuring that the model generalizes well

to unseen data. One key strength of DAL is its capability to sample from the unlabeled dataset in

proportion to the data density. This means that the algorithm can effectively prioritize regions of

the data space that are sparsely populated, ensuring that important but underrepresented samples
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are not overlooked during the active learning process. By constructing a core set, the goal is to

ensure that the output of an algorithm applied to the core set closely resembles its output when ap-

plied to the complete dataset. Building upon the concept of dataset compression through core sets,

a new active learning algorithm called Farthest First Active Learning(FF-Active) is introduced in

(Geifman & El-Yaniv, 2017). This algorithm introduces a novel approach to querying consecutive

points from the unlabeled pool by utilizing farthest-first traversals in the space of neural activation

over a representation layer. However, samples in the query batch sample set cannot represent the

true data distribution of the feature space due to the insufficient diversity of batch sample sets. To

mitigate this limitation, an algorithm called Exploration-P (Yin et al., 2017) employs a deep neural

network to learn the feature representation of the samples and subsequently calculate their similarity

explicitly. It addresses the challenge of striking a balance between exploitation and exploration by

incorporating a balanced approach, considering both the exploitation of learned representations and

the exploration of uncertain regions in the early stages of model training. Previous studies (Roy

& McCallum, 2001b; X. Zhu, Lafferty, & Ghahramani, 2003) have highlighted a potential draw-

back of uncertainty sampling and Query by Committee methods, namely their tendency to query

outliers. The least specific instance, which typically lies on the classification boundary, may not

be representative of the overall data distribution. Consequently, obtaining its label is unlikely to

significantly enhance the accuracy of the model on the entire dataset. Both QBC and Expected

Gradient Length exhibit similar behavior, as they allocate resources to querying potential outliers

based on their controversial nature or the expectation that they would induce substantial changes in

the model. While this approach can be valuable in specific scenarios, such as when exploring novel

or uncertain regions of the feature space, it may lead to the selection of instances that do not effec-

tively contribute to the overall model performance. To tackle this challenge, a novel active learning

method called Information Density is introduced by (Settles & Craven, 2008) where the approach

addresses the problem of selecting informative instances for labeling by considering their average

similarity to all other sequences in the unlabeled pool, weighted by a parameter that determines the

relative importance of the density term. To calculate the information density of an instance, the

paper first computes its sequence entropy which measures the base informativeness of the sample.

Then, the paper computes the average similarity of the instance to all other sequences in the pool,
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using a cosine similarity function. One of the potential drawbacks of information density could be

the number of required similarity calculations that grow with the number of instances in the pool.

2.2.4 Batch Mode Deep Active Learning

Batch Mode Deep Active Learning (BMDAL) is a query strategy that operates by selecting

batches of samples instead of individual ones. This approach is particularly useful for mitigating

the inefficiencies of traditional active learning, where the model is trained with only small incremen-

tal changes to the training data. Such a training method is prone to overfitting and can be challenging

for deep-learning models. BMDAL, on the other hand, allows for the simultaneous querying and

training of the model, leading to more efficient and effective learning. To employ BMDAL, an ac-

quisition function is used to score a batch of unlabeled samples from a large pool of data. The top-k

samples with the highest scores are then selected in each acquisition step. One popular approach

for selecting batches of informative samples is Bayesian Active Learning by Disagreement (BALD)

(Houlsby, Huszar, Ghahramani, & Lengyel, 2011), which was applied to various classification and

regression tasks in (Gal & Ghahramani, 2016a). In this approach, the mutual information between

the model predictions and parameters is used to select the top-k samples with the highest scores. A

technique inspired by BALD and extends the work is BatchBALD (Kirsch, van Amersfoort, & Gal,

2019), which jointly selects multiple informative points for deep Bayesian active learning based on

a tractable approximation to the mutual information between a batch of points and model parame-

ters. Another such method proposed by (Azimi, Fern, Fern, Borradaile, & Heeringa, 2012) utilizes

a Monte Carlo simulation to estimate the distribution of unlabeled examples. These examples are

sequentially selected, and the k best samples are chosen for labeling. This approach leverages the

benefits of batch sampling to improve the overall performance of the learning process. In (Shui et

al., 2020), Wasserstein distance, which considers the joint probability distribution, is employed to

unify the querying and training processes in deep batch active learning. By utilizing this distance

metric, a comprehensive method is developed that effectively integrates the selection of samples

and the model training procedure. Additionally, another approach introduced in (Settles, Craven, &

Ray, 2007) is Multiple Instance Active Learning (MIAL). This technique addresses the challenge
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of learning from labels at mixed levels of granularity. Instead of labeling individual instances, it or-

ganizes instances into bags, and the bags are labeled for training. The goal is to learn a function that

maps bags to their correct labels while inferring the labels of individual instances within each bag.

This method extends the traditional supervised learning strategy and incorporates active query se-

lection strategies inspired by the Multiple Instance setting. Collectively, active learning techniques

in batch mode, such as those discussed above, offer efficient and effective ways to train deep learn-

ing models. By selecting batches of informative samples, these approaches enhance performance,

reduce overfitting, and enable more accurate modeling of the underlying data distributions.

2.2.5 Deep Bayesian Active Learning

Deep Bayesian Active Learning (DBAL) leverages Bayesian deep learning models to enhance

classification accuracy by incorporating uncertainty modeling within the network’s predictions.

This approach has shown promising results in reducing the required training data while improving

performance (Gal, Islam, & Ghahramani, 2017). One such notable method was proposed by (Sid-

dhant & Lipton, 2018) applies Bayes-by-Backprop in the context of Deep Active Learning. This

method explores various data acquisition strategies across different text classification tasks such

as Named Entity Recognition, Sentiment Classification, and Semantic Role Labeling. Their study

demonstrates the consistent superiority of the Bayesian approach compared to other methods across

all scenarios. Several other systems, including Bayesian Active Learning by Disagreement (Houlsby

et al., 2011), BatchBALD (Kirsch et al., 2019), Dropout as a Bayesian Approximation (Gal &

Ghahramani, 2016a) and Batch Active Learning via Coordinated Matching (Azimi et al., 2012)

operate on similar principles. These systems employ different techniques to incorporate Bayesian

concepts and active learning strategies, contributing to the advancement of batch-mode active learn-

ing. A reusable library with a systematic study was presented in (Atighehchian, Branchaud-Charron,

& Lacoste, 2020) which is a system that demonstrates the effectiveness of partial uncertainty sam-

pling and larger query sizes in improving the efficiency and accuracy of the active learning loop. It

is an open-source Bayesian active learning library that promotes further exploration and develop-

ment in this area. They focus on two techniques that enhance the active learning process. The first

technique, partial uncertainty sampling, improves efficiency by selectively sampling instances that
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exhibit higher uncertainty which accelerates the learning loop by focusing on the most informative

data points. The second technique involves increasing the query size, enabling the model to receive

larger batches of labeled data at once. This larger query size enhances the speed and efficiency

of the active learning process. Bayesian models provide a mathematically rigorous framework for

reasoning about uncertainty, although they typically come with high computational costs. Another

strategy that casts dropout training in deep neural networks as approximate Bayesian inference in

deep Gaussian processes was proposed by (Gal & Ghahramani, 2016b). This theoretical frame-

work enables them to leverage dropout neural networks as a means to model uncertainty, extracting

valuable information from existing models that would otherwise be discarded. This addresses the

challenge of representing uncertainty in deep learning without compromising computational com-

plexity or test accuracy. Another potential Bayesian Active Learning-based solution can be offered

by leveraging uncertainty estimates from Bayesian Neural Networks. However, applying BNNs

to large-scale problems requires approximations due to the need for both performance and uncer-

tainty estimation. Therefore, a method that tries to solve the problem of applying Bayesian Neural

Networks at a large scale called Deep Probabilistic Ensembles (DPEs) was presented in (Chitta,

Alvarez, & Lesnikowski, 2018). DPEs are a scalable technique that approximates deep Bayesian

Neural Networks using a regularized ensemble. The key idea is to train multiple models with a novel

KL regularization term that encourages diversity among the models, while also approximating the

posterior distribution of a BNN. There is an issue of mode collapse in the current state-of-the-art

deep Bayesian active learning method, where the acquisition function of the active learning process

can become overconfident and focus on a small subset of the data, leading to poor performance.

To deal with this problem, the Deep Ensemble Bayesian Active Learning (DEBAL) method was

proposed by (Pop & Fulop, 2018) which corrects this deficiency by making use of the expressive

power and statistical properties of model ensembles. This allows DEBAL to capture superior data

uncertainty and avoid the mode collapse problem, resulting in improved classification performance.

2.2.6 Expected Gradient Length and Model Change

In contrast to existing active learning methods that focus on reducing version space size, some

research, such as (Roy & McCallum, 2001a), introduces an active learning approach that directly
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optimizes expected future error. Gradient-based Active Learning methods such as Expected Gra-

dient Length (EGL) have remained less explored and understood, as highlighted in (Huang et al.,

2016). The work in (Huang et al., 2016) specifically opted for EGL due to its unique ability to

reduce variance and effectively identify informative samples that differ from those selected based

on confidence scores in the context of Speech Recognition tasks. The paper demonstrates the sig-

nificant benefits of EGL in speech recognition, showcasing its potential to substantially improve

performance by reducing word errors and minimizing the reliance on labeled samples. These find-

ings underscore the value of EGL as a promising approach for efficient and accurate systems. An-

other work (Settles & Craven, 2008) proposes to work with the general active learning strategy of

EGL by calculating it as an expectation over the N-best labelings, where the Euclidean norm of

each resulting gradient vector is computed. Since discriminative models like Conditional Random

Fields are trained using gradient-based optimization, this involves querying the instance which, if

labeled and added to the training set, would create the greatest change in the gradient of the objec-

tive function. However, it’s mentioned that this technique is computationally expensive as it must

first perform inference over the possible labelings and then calculate gradients for each candidate

label sequence. EGL technique has been used and compared in many works. Multiple Instance

Active Learning also considers EGL and compares it with other acquisition techniques. An active

learning approach proposed by (Y. Zhang, Lease, & Wallace, 2017) focuses on sentence classifi-

cation, specifically selecting instances that contain words expected to have the most impact on the

embeddings. They calculate the expected gradient length (EGL) concerning the embeddings for

each word in the remaining unlabeled sentences. This helps in rapidly learning discriminative and

task-specific embeddings. The approach demonstrates effective classification of sentiment in sen-

tences by separating embeddings of words like ’bad’ and ’good’ quickly. As per this work, one key

difference between the EGL approach and the other active learning methods is its focus on word-

level embeddings. Instead of considering the entire text or document as a unit for selection, the

EGL approach specifically targets individual words within sentences. By selecting instances that

contain words expected to have the most influence on the embeddings, the approach aims to achieve

discriminative and task-specific embeddings more rapidly. An alternative strategy that leverages

the concept of Expected Model Change entails a new active learning strategy for regression tasks
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called Expected Model Change Maximization (EMCM) (Cai, Zhang, & Zhou, 2013). The moti-

vation behind active learning in regression is to maximize the performance of a learning model

while minimizing the cost of data annotation by using as few labeled training examples as possible.

The change is estimated using the gradient of the loss function with respect to a candidate example

for active learning, inspired by the Stochastic Gradient Descent (SGD) update rule. The paper de-

rives novel active learning algorithms for both linear regression and nonlinear regression within the

EMCM strategy. These algorithms are designed to select the most informative examples that lead to

significant changes in the model parameters. Another effective method for active learning discussed

by (Mussmann et al., 2022) is Expected Error Reduction (EER). It aims to select candidate samples

that, on average, minimize the error on an unlabeled set. However, it has not been widely used for

modern deep neural networks due to its computational cost as the model needs to be retrained for

every candidate sample. So, (Mussmann et al., 2022) tried to reformulate the concept of Expected

Error Reduction from a Bayesian active learning perspective deriving a computationally efficient

version that can utilize any Bayesian parameter sampling method.

2.2.7 Alternative Approaches in Active Learning

While the aforementioned active learning methods have proven effective, researchers have been

exploring alternative approaches further to enhance the efficiency and effectiveness of active learn-

ing strategies. One such example could be the Automated Design of Deep AL which refers to the

methods that utilize automation to design an Active Learning Query strategy affecting the overall

Deep AL performance. Some other active learning-based methods like Fisher Information (Settles

& Craven, 2008) focus on active learning with sequence models. Fisher information is a measure of

the overall uncertainty about the estimated model parameters. It is a theoretical strategy proposed

by (T. Zhang & Oles, 2000) represented as a K × K covariance matrix for a model with K parame-

ters. Another work that discusses a departure from the traditional active learning setting, where only

labeled examples are used for model training while unlabeled data is solely used for acquisition was

presented in (SimÂeoni, Budnik, Avrithis, & Gravier, 2020). This work proposes a different approach

by incorporating both labeled and unlabeled data throughout the active learning process. It involves

utilizing unsupervised feature learning at the beginning and semi-supervised learning at each active
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learning cycle, incorporating all available data. The use of unsupervised feature learning in active

learning is a novel aspect that has not been extensively studied before. Similarly, the exploration

of semi-supervised learning in the context of deep learning is relatively scarce, and recent findings

regarding its benefits are inconclusive (Rebuffi, Ehrhardt, Han, Vedaldi, & Zisserman, 2020). The

main idea is to leverage the additional unlabeled data during model training, similar to how ensem-

ble methods utilize multiple models. By systematically evaluating various acquisition strategies and

datasets, the study reveals that incorporating unlabeled data during model training leads to surpris-

ing improvements in classification accuracy, surpassing the differences observed between different

acquisition strategies. As a result, the research investigates the effectiveness of active learning with

smaller label budgets, even with only one labeled example per class. Another similar work that

introduced an efficient way to make use of both labeled and unlabelled data with a limited number

of labeled samples in multi-class classification tasks was presented in (Rebuffi et al., 2020). It intro-

duces two key ideas where the first idea involves leveraging transfer learning and self-supervision

techniques to initialize a robust representation of the data without relying on any labels. By lever-

aging the knowledge learned from related tasks and self-supervised learning, the model can build a

strong initial representation of the data. The second idea presented is a novel self-supervised learn-

ing algorithm designed to effectively utilize the pre-trained representation. Recent advancements

in deep generative models can also be leveraged to achieve superior results compared to existing

approaches in active learning. One such method uses Adversarial Representation Active Learning

(Mottaghi & Yeung, 2019) where the approach was to utilize not only labeled data but also unla-

beled and generated data to co-train the entire model. By incorporating unlabeled and generated

data into the training process, the proposed method achieves higher classification accuracy while

using as few labeled samples as possible. It showcases a successful utilization of deep generative

models to enhance active learning performance. Another approach called active learning by query

synthesis using Generative Adversarial Networks was proposed in (J. Zhu & Bento, 2017). This

approach dynamically generates training instances to expedite the learning process and the gener-

ated queries are based on the uncertainty principle, although the approach is supposed to adapt to

other active learning principles. Later, a model called Semi-supervIsed GeNerative Active Learning

(SIGNAL) was designed by (Jiang et al., 2020) to address several challenges like class imbalance,
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efficiency, and the problem of text camouflage in the task of Chinese text spam detection. It intro-

duces a self-diversity criterion that measures the worthiness of a candidate instance for annotation.

This criterion helps identify the most informative samples to be labeled, considering their potential

contribution to the learning process.

2.3 Navigating Active Learning Challenges: Strategies for Success

Active learning encounters numerous challenges that necessitate effective solutions for success-

ful implementation. In this section, we will go through a few key challenges faced in real-world

scenarios. One of the primary challenges in active learning is query selection (Settles, 2011), which

refers to the process of selecting the most informative instances from the unlabeled data pool to

query for labeling. The main objective is to choose instances that can provide the most valuable

information to the learning algorithm, thereby improving the model’s performance. The selection

strategy for queries varies depending on factors such as the nature of the problem, available re-

sources, and data characteristics. Often, a combination of different strategies or their variations is

employed to achieve a more effective and diverse selection of instances for labeling as per the strate-

gies mentioned above. The ultimate goal is to strike a balance by maximizing the learning impact

while minimizing the annotation effort and cost. It requires careful consideration and experimen-

tation to identify the most suitable query selection approach for a specific active learning scenario.

Another significant challenge is the cost associated with data annotation. Annotating data can be

a labor-intensive and time-consuming process, especially in complex tasks that require domain ex-

pertise. Selecting the most informative instances for annotation becomes crucial to maximize the

utilization of limited annotation resources. Another challenge is the quality of the labeling process.

Human annotators may introduce errors, inconsistencies, or biases while labeling the data. Ensuring

the accuracy and reliability of labeled data is essential for training robust and reliable models. Qual-

ity control measures, iterative annotation with assistive labels, and reviewer feedback mechanisms

can help mitigate labeling errors and maintain high-quality annotated data. Adaptability to changing

data distributions is another challenge in active learning. Data distributions may evolve or drift over
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time, making the initially selected informative instances less representative or informative. Continu-

ous monitoring, retraining, and adaptation strategies are necessary to ensure that the active learning

model remains effective and performs well as new unlabeled data becomes available. Additionally,

the cold start problem is one of the most faced condition challenges in active learning, particularly

when starting with small or no labeled data (Yuan et al., 2020). The model lacks initial knowledge

about the data distribution and informative instances, making it difficult to select instances for an-

notation. Strategies such as domain knowledge incorporation, leveraging pre-existing labeled data

from related tasks, or few-shot learning can help overcome the cold start problem.

To address some of these challenges in active learning, researchers have explored the use of deep

pre-trained models. These models, when fine-tuned on smaller, task-specific datasets, enable trans-

fer learning and improve model performance while reducing the need for extensive labeled data. In a

recent empirical investigation conducted by (Shelmanov et al., 2021), the effectiveness of deep pre-

trained models combined with Monte-Carlo Dropout and various Bayesian uncertainty estimation

methods was evaluated for Sequence Tagging tasks. The study aimed to assess the potential of fine-

tuning pre-trained models and the impact of different Bayesian techniques on model performance.

The findings showcased that incorporating these techniques can enhance computational efficiency

and facilitate the practical implementation of deep active learning. Another empirical study by (Dor

et al., 2020) focused on active learning using BERT-based classification on a large scale. This re-

search employed active learning techniques to boost the performance of BERT models in diverse

domains and settings while exploring advanced AL strategies. The objective was to demonstrate

the effectiveness of active learning in improving the performance of BERT-based models and their

applicability across different domains. These studies emphasize the potential benefits of leverag-

ing deep pre-trained models and active learning techniques in text annotation tasks. By enhancing

model performance, simplifying implementation, and reducing the reliance on labeled data, these

approaches offer promising avenues for advancing text annotation tools. Overall, the exploration of

deep pre-trained models and active learning techniques in text annotation tasks presents an exciting

opportunity to address the challenges faced in AL. The findings from these studies shed light on

the effectiveness of these approaches and their potential to improve model performance, increase

efficiency, and reduce annotation efforts in various text annotation scenarios.
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2.4 Summary

This chapter talks about various active learning strategies, highlighting the challenges and pre-

senting effective solutions. Text annotation is a crucial step in many natural language processing

applications, but manual labeling can be time-consuming and expensive. Active learning techniques

can effectively address these challenges by intelligently selecting the most informative instances for

annotation, reducing the annotation effort while maintaining high-quality models. This chapter also

explores the integration of active learning with other techniques to further enhance performance

like combining active learning with semi-supervised learning, where unlabeled data is leveraged in

conjunction with labeled data for training. Additionally, the use of transfer learning, pretraining

models, and ensemble methods are discussed as strategies to improve active learning performance.

Furthermore, it highlights recent advancements in deep active learning, which utilize deep neural

networks to address different challenges. It talks about several techniques categorized into vari-

ous strategies and some techniques may fall into multiple categories depending on the nature of

the technique. Overall, the section emphasizes the importance of active learning strategies and

their potential to mitigate annotation challenges. By intelligently selecting informative instances

for annotation, active learning enables the creation of high-quality models with reduced annota-

tion efforts. The exploration of different active learning strategies and their integration with other

techniques offers valuable insights into the development of efficient data annotation strategies.
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Chapter 3

Synergizing Active Learning and

Few-Shot Learning

3.1 Overview

In today’s world, critical infrastructure systems such as security, health, and transportation rely

heavily on a large number of terminal devices that generate a significant amount of data. Storing

and processing this data remains a significant challenge due to difficulties in extracting useful la-

beled data, and lack of model generalization when applying the same models across diverse domains

resulting in sub-optimal performance in new and different settings. Existing annotation tools and

systems still have a huge room for improvement, particularly in scenarios where new classes need

to be added, or the model needs to adapt to changing data distributions. One promising direction

that is gaining traction to address these challenges is Few-shot Learning (FSL). It aims to address

challenges related to data distribution, future task generality, and feature reuse sensitivity as well.

FSL involves building an accurate model using a minimal set of samples. The primary objective of

FSL is to learn how to learn, which is accomplished by finding similarities and differences between

samples using a similarity function. We will explore some key concepts in the field of FSL that

play a crucial role in advancing the research (Song, Wang, Mondal, & Sahoo, 2022). These few-

shot concepts are integral for enabling models to effectively learn from a limited number of labeled
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examples. The field of FSL has witnessed significant advancements in recent years, offering inno-

vative approaches to tackle the challenge of learning from limited labeled examples. This chapter

aims to provide a comprehensive exploration of the various concepts that underpin the foundations

of FSL. By delving into these concepts, we can gain a deeper understanding of the strategies and

techniques that empower models to generalize effectively and make accurate predictions, even in

scenarios with scarce labeled data.

The main learning objective of FSL is to classify unseen classes with limited labeled data. FSL

can be defined in multiple ways, but the most widely accepted formal definition was presented in

(Y. Wang, Yao, Kwok, & Ni, 2021). According to this definition, FSL is a type of machine learning

problem, which is understood as a computer program that can learn from experience E in order to

improve its performance on certain classes of tasks T, as measured by performance measure P. It is

important to note that in FSL, the amount of experience E available is limited. Numerous surveys

and studies have aimed to investigate various techniques in FSL and develop a taxonomy for these

techniques. Some of these efforts have attempted to differentiate the techniques based on different

learning behaviors (Shu, Xu, & Meng, 2018), while others rely on different categories of models,

like Generative and Discriminative (Lu, Gong, Ye, & Zhang, 2020). Some have taken a broader per-

spective based on prior knowledge with respect to data, model, and algorithm (Y. Wang et al., 2021).

More recently, another survey by (Song et al., 2022) proposed a taxonomy based on the challenges

faced by the community in few-shot learning. Based on the existing taxonomies, one possible way

to categorize FSL techniques is to first roughly divide them based on their evolution period, then

based on the models types, and finally based on the challenges faced by users. Research in FSL

has undergone significant evolution over time, with two distinct periods marked by a significant

breakthrough in 2015 by (Koch, Zemel, Salakhutdinov, et al., 2015). This breakthrough introduced

the first combination of deep learning techniques with FSL problems. During the evolution of FSL,

approaches were predominantly classified as either generative or discriminative model-based. In

the latter period of development, discriminative-based models dominated generative-based models.

As a result, FSL research has become increasingly sophisticated, enabling the development of more

effective models for solving complex real-world problems.
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Prior to the milestone in 2015, all FSL solutions were based on non-deep learning method-

ologies or techniques. The congealing algorithm (Miller, Matsakis, & Viola, 2000) is one of the

earliest pioneers in the study of learning from very few samples. Then the term ºone-shot learningº

in the context of few-shot appeared in the paper (Fei-Fei, Fergus, & Perona, 2003) which proposed

a Bayesian approach to unsupervised one-shot learning of object categories. During the earlier pe-

riod of FSL research, the majority of popular approaches were based on generative models. These

methods aimed to estimate either the joint distribution P(X, Y) or the conditional distribution P(X/

Y) given very few training samples with supervision, and then make predictions for test samples

using Bayesian decision theory. While there were also several discriminative model-based FSL ap-

proaches during this period such as (Fink, 2004), (Wolf & Martin, 2005a), and (Bart & Ullman,

2005), they were not as popular. Discriminative model-based FSL approaches aim to learn a con-

ditional distribution P(Y/ X) directly from a single observed sample, which allows for direct prob-

ability prediction. The generative models learn the underlying probability distribution of the data,

while discriminative models directly learn the decision boundary that separates the classes. Gener-

ative models can be more flexible in modeling complex distributions, but discriminative models are

generally more efficient and can perform better in high-dimensional spaces with limited data.

Despite all these efforts, the FSL research during this period progressed slowly. The emergence

of deep learning (Krizhevsky, Sutskever, & Hinton, 2012) (Wolf & Martin, 2005b), led many FSL

researchers to shift their focus to deep learning models. The year 2015 witnessed a groundbreaking

development in the field of FSL, when (Koch et al., 2015) pioneered the integration of deep learning

with FSL through the introduction of Siamese CNNs. This innovative approach enabled the network

to learn a class-agnostic similarity metric for pairwise samples, thus revolutionizing the way FSL is

approached and studied. A few generative techniques like Sequential Generative Models (Rezende,

Mohamed, Danihelka, Gregor, & Wierstra, 2016) and Neural Statisticians (Edwards & Storkey,

2016) were also introduced in this era but the majority of FSL techniques were discriminative-

based. Following the introduction of deep neural networks in FSL research, subsequent approaches

have fully leveraged their advantages in end-to-end model optimization and feature representation

to tackle FSL problems from various perspectives. One of the most effective ways to enhance

active learning and optimize human effort is by integrating it with few-shot fine-tuning via transfer
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learning. By integrating few-shot fine-tuning via transfer learning with active learning, we can

significantly enhance the overall effectiveness and efficiency of the active learning process. This

integration offers several key benefits, such as improving the optimization of the learning model and

reducing the amount of human effort required in the active learning pipeline. With few-shot fine-

tuning, the model can leverage prior knowledge and generalize from a small amount of labeled data,

enabling it to quickly adapt and make accurate predictions on new, unseen samples. This reduces

the dependency on large labeled datasets and extensive human annotation, thereby decreasing the

overall human effort needed for active learning.

3.2 Key concepts in Few-Shot Learning

This section will shed light on the key concepts of FSL like the N-way-K-shot problem, meta-

learning, metric learning, and transfer learning, and their significance in advancing the field of few-

shot learning. Through this exploration, we aim to uncover the principles and methodologies that

drive the success of few-shot learning algorithms and inspire further advancements in this exciting

research area. Two key concepts related to FSL are the N-way-K-shot problem and the cross-domain

FSL (Song et al., 2022). The N-way-K-shot problem is a common formulation used in FSL. It refers

to the scenario where a model is trained on a small support set, which consists of a limited amount

of labeled data. This support set is used to provide reference information for the model’s testing

phase. The query set, on the other hand, represents the actual tasks on which the model needs to

make predictions. Importantly, the classes in the query set do not appear in the support set. The

notation N-way-K-shot signifies that the support set contains N categories, each with K samples,

resulting in a total of N * K samples for the task. For instance, N-way-1-shot represents one-shot

learning, where there is only one labeled example per category, and N-way-0-shot corresponds to

zero-shot learning, where there are no labeled examples for the target categories in the support set.

On the other hand, the concept of cross-domain originates from transfer learning, which involves

transferring knowledge from a source domain to a target domain. Cross-domain FSL combines the

characteristics of both cross-domain learning and FSL. It deals with the challenges of transferring

knowledge and learning from one domain to another, where domain gaps and differences may exist.
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This integration of cross-domain and FSL presents a challenging research direction that has gained

attention recently. To further understand how we can deal with various challenges in FSL (Song et

al., 2022), let us now dive deeper into the FSL concepts like Meta-Learning, Metric Learning, and

Transfer Learning.

Meta-Learning refers to the ability of a model to quickly adapt to new tasks with limited data

by building mappings from known tasks to target models in previously unseen tasks (Hochreiter,

Younger, & Conwell, 2001). In meta-learning, the algorithms are designed to generate a ºbaseº

model that can efficiently adapt to new tasks through a process like fine-tuning. This base model is

created by training it on a small set of sample tasks drawn from a larger distribution of tasks. By us-

ing this training approach, the model is able to quickly generalize to new tasks it has not seen before,

making it a powerful tool for applications that require rapid learning and adaptation (Hochreiter et

al., 2001) (Goldblum, Fowl, & Goldstein, 2020). The task and data are both sampled, and the meta-

knowledge is summarized from different tasks to enable fast integration of unseen tasks at a lower

cost. In recent years, there has been a surge of interest in meta-learning-based FSL techniques,

with several innovative approaches emerging. These include Matching Nets (Vinyals, Blundell, Lil-

licrap, Kavukcuoglu, & Wierstra, 2016), MAML (Finn, Abbeel, & Levine, 2017), Meta-Learner

LSTM (Ravi & Larochelle, 2017), Prototypical Nets (Snell, Swersky, & Zemel, 2017), and LGM-

Nets (Li et al., 2019), among others. Meta-learning strategies have become the dominant approach

for FSL, and these advanced techniques have been directly applied or improved to solve a wide

range of problems in computer vision, natural language processing, audio and speech, data analysis,

robotics, and other fields. It is not a distinct FSL model; instead, it is a cross-task learning strategy

at a high level. The progress made in meta-learning and FSL in recent years has opened up exciting

new avenues for research and practical applications.

Metric Learning is a branch of the meta-learning-based FSL approach and it is sometimes re-

ferred to as a Learn to Measure technique (Musgrave, Belongie, & Lim, 2020) (Lu et al., 2020). It is

an embedding-based technique that focuses on learning a metric space that can effectively capture

the similarity or distance between samples, thereby enabling accurate classification of previously

unseen samples. This involves learning a metric that can effectively distinguish between different

classes using only a limited amount of labeled data. Metric learning has extensively been studied
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in the literature, with several notable works being developed over the years. Among these, Neigh-

borhood Components Analysis (NCA) (Goldberger, Roweis, Hinton, & Salakhutdinov, 2004) is a

popular approach that learns a Mahalanobis distance to maximize the leave-one-out accuracy of

K-nearest neighbors (KNN) in the transformed space. Another notable work is an extended version

of NCA by (Salakhutdinov & Hinton, 2007), which uses a neural network to perform the trans-

formation. Another popular approach is Prototypical Networks (Snell et al., 2017) which are very

similar to the non-linear extension of NCA (Salakhutdinov & Hinton, 2007), but they form a soft-

max directly over classes, unlike non-linear NCA. Their approach is also similar to the nearest class

mean approach (Mensink, Verbeek, Perronnin, & Csurka, 2013) where it utilizes neural networks

to non-linearly embed points and handles few-shot scenarios. The authors also highlight that Pro-

totypical Networks learn a non-linear embedding in an end-to-end manner, producing a non-linear

classifier that still only requires one prototype per class, and the approach generalizes well to other

distance functions, specifically Bregman divergences. Siamese Neural Network is a metric-based

learning model that employs a discriminator with a set of positive or negative sample pairs as input

to the model. During the inference stage, the model evaluates the similarity of the incoming data.

The concept of Siamese networks was first introduced in (Bromley, Guyon, LeCun, SÈackinger, &

Shah, 1993), where they were used to identify signature forgeries using dual identical sub-networks.

The sub-networks were trained by extracting features from two given signatures and measuring the

distance between the two using the joining neuron. This approach enabled the creation of highly

discriminative features that could distinguish between genuine and forged signatures. The extracted

feature vectors were then compared to the existing stored feature vectors to verify the signatures.

Since their inception, Siamese networks have been successfully applied in various applications such

as face recognition, image retrieval, and more. The effectiveness of Siamese networks lies in their

ability to learn a similarity metric that can generalize well across different data distributions and

enable accurate classification with limited labeled examples. The input text and its labels are en-

coded independently so the label vectors are pre-computed and the similarity of the two vectors can

be measured using various similarity functions like cosine similarity. One such work which uses

cosine similarity to derive semantically meaningful sentence embeddings using a modification of

BERT model (Devlin, Chang, Lee, & Toutanova, 2019) with siamese network and triplet network
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structures was presented by (Reimers & Gurevych, 2019). These methods are just a few examples

of the vast body of work in metric learning and have been shown to be effective in various tasks

such as image classification and object detection.

Transfer Learning is a machine learning technique where knowledge gained from training a

model on one task is leveraged to improve the performance of a related task or domain with minimal

additional training data. The goal is to transfer the learned features, representations, or knowledge

from one task or domain to another, where the target task or domain has a different but related distri-

bution of data (Zhuang et al., 2021). It is a technique that uses pre-training and fine-tuning to extract

prior knowledge from large-scale auxiliary datasets (Bozinovski & Fulgosi, 1976). This approach

can be particularly useful in the context of FSL, as it allows models to leverage prior knowledge

from large datasets to improve performance on specific tasks. Through a continuous accumulation

of a priori knowledge from large-scale auxiliary datasets, transfer learning enables models to easily

transfer knowledge from the source domain to a similar target domain. The pre-training stage in-

volves extracting high-dimensional feature vectors through a feature extractor, while the fine-tuning

stage is focused on making minor adjustments to the initial parameters of the pre-training to op-

timize performance on the target task. Recent advances in language model fine-tuning, such as

Text-to-Text approaches, have achieved state-of-the-art few-shot performance through techniques

like in-context learning (ICL). These advancements have improved the ability of language models

to adapt to new tasks with limited training data1. With the scaling of model size and corpus size,

large language models (LLMs) have shown remarkable progress in ICL (Dong et al., 2023). In

numerous studies, LLMs have demonstrated their capability to perform a variety of complex tasks

through ICL, including mathematical reasoning problems (Wei et al., 2022). It relies on the principle

of analogical reasoning, where an LLM can infer new knowledge by relating it to previous knowl-

edge and reasoning based on the analogy between them. This approach allows LLMs to acquire new

knowledge quickly and efficiently, making them a promising tool for various applications. However,

this technique has several challenges associated with it like its inability to distill to smaller models,

issues in improving and updating knowledge in LLMs, and various other problems related to using

1https://towardsdatascience.com/sentence-transformer-fine-tuning-setfit

-outperforms-gpt-3-on-few-shot-text-classification-while-d9a3788f0b4e
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ICL for data annotation, augmentation, pruning, and adversarial data generation (Dong et al., 2023).

Another very popular technique called T-Few (H. Liu et al., n.d.) is a parameter-efficient few-shot

learning recipe that achieves strong performance on novel tasks while updating only a tiny fraction

of the model’s parameters. It is based on the T0 model (Sanh et al., 2022) and (IA)ˆ3 method

which is a Parameter Efficient Fine-Tuning (PEFT) method introduced in this paper that re-scales

inner activations with learned vectors. T-Few also uses two loss terms in addition to a standard

cross-entropy loss, which helps the model to lower the probabilities for an incorrect choice and ac-

count for the length of different answer choices using an unlikelihood loss and a standard softmax

cross-entropy loss, respectively. The technique was evaluated using the RAFT benchmark (Alex et

al., 2021) and achieved super-human performance while outperforming prior submissions by a large

margin. The authors also performed computational cost analysis which shows that T-Few uses over

1,000× fewer FLOPs during inference than few-shot ICL with GPT-3. Overall, T-Few provides a

new perspective on how to effectively perform few-shot learning with LLMs on classification tasks.

In addition to techniques like PEFT (H. Liu et al., n.d.), other FSL methods like Pattern Exploit-

ing Training (PET) called ADAPET(Tam, Menon, Bansal, Srivastava, & Raffel, 2021), or prompt-

free techniques like PERFECT (Mahabadi et al., 2022) have shown impressive results in label-scarce

scenarios. However, these methods are challenging to employ due to their high variability from

manually crafted prompts and typically require billion-parameter language models to achieve high

accuracy (Tunstall et al., 2022). To address these challenges, a Sentence Transformer Fine-tuning

(SETFIT) method was proposed by (Tunstall et al., 2022). SETFIT is an efficient and prompt-free

framework for few-shot fine-tuning of Sentence Transformers. It fine-tunes a pre-trained sentence

transformer in a contrastive Siamese manner on a small number of text pairs to generate rich text em-

beddings, which are used to train a classification head. The approach is prompt-free and requires no

verbalizers, making it much simpler to implement and less prone to variability. During inference, the

fine-tuned transformer encodes an unseen input sentence and produces a sentence embedding, based

on this sentence embedding the classification head then produces the class prediction. It achieves

high accuracy while requiring fewer parameters than existing techniques. SETFIT underwent eval-

uation on various benchmarks, including RAFT, where it outperformed the human baseline in 7 out

of 11 tasks. It is over 30 times smaller than the T-FEW model and does not require manual prompt
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crafting. Additionally, experiments conducted on pre-defined benchmarks showed that SETFIT is

considerably faster during both training and inference compared to comparable approaches such

as T-FEW, ADAPET, and PERFECT. Furthermore, SETFIT requires much smaller base models to

achieve high performance without external computing, making it an efficient and effective few-shot

learning method that can be utilized well for an efficient text annotation platform. In recent years,

FSL-based transfer learning techniques have been applied not only to text classification tasks but

also to sequence labeling tasks such as named entity recognition. To support research in this area,

(N. Ding et al., 2021) created a large-scale human-annotated named entity recognition dataset for

FSL. Additionally, they performed experiments using existing state-of-the-art models like BERT-

Tagger (Devlin et al., 2019), ProtoBERT (Snell et al., 2017), NNShot, and StructShot (Yang &

Katiyar, 2020b) on this dataset to evaluate their performance. Another work proposed by (MÈuller,

PÂerez-TorrÂo, & Franco-Salvador, 2022) focuses on the problem of building text classifiers when

there is limited or no training data available, which is commonly referred to as zero and few-shot

text classification. Traditionally, neural textual entailment models have been used for this purpose

and have shown strong results across various tasks. However, the researchers propose an alternative

approach using Siamese Networks, which embed texts and labels, and demonstrate that with proper

pre-training, these models can provide competitive performance. One significant advantage of using

Siamese Networks is the reduced inference cost, as it is constant in the number of labels rather than

linear. They also introduced label tuning, a computationally efficient approach that enables adapt-

ing the models in a few-shot setup by only modifying the label embeddings. Although label tuning

may yield lower performance compared to model fine-tuning, it offers the architectural advantage

of sharing a single encoder across multiple tasks.

Sometimes it can be challenging to apply transfer learning when a large domain shift occurs

between the source and target domains, as the learned knowledge may not be directly applicable to

the new domain. So, we can use concepts like Cross-domain few-shot learning (Tseng, Lee, Huang,

& Yang, 2020) which is a subfield of few-shot learning that deals with the problem of generalizing

knowledge from a few samples of new classes in a target domain, when those classes do not exist

in the source domain. In this scenario, the model has to learn to recognize and classify new classes

with only a few examples in a domain that is different from the one it was trained on. It combines
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the challenges of both transfer learning and few-shot learning. There is no intersection of classes

between the source and target domains, and the available sample size for each class in the target

domain is extremely small. This makes it difficult for the model to generalize well to new classes

and domains. To further enhance the discussion on cross-domain few-shot learning, it’s important to

note that it involves not only distinguishing domain-irrelevant features but also employing domain

adaptive techniques using transfer learning. This includes identifying and transforming features

(Tseng et al., 2020) that are most relevant to the target domain, as well as creating auxiliary datasets

to help the model learn new classes with limited samples. By leveraging transfer learning and

domain adaptation, the model’s generalization capability can be improved, even in the face of large

domain shifts between the source and target domains.

3.3 Fusion of Active Learning and Few-Shot Learning

3.3.1 Synergistic potential of combining AL and FSL

The combination of AL and FSL presents a promising opportunity for synergistic advancements

in model development. By integrating these two approaches, researchers seek to enhance the effi-

ciency and effectiveness of the annotation process and improve overall model performance. AL

plays a crucial role in the annotation process by intelligently selecting the most relevant instances

for labeling. This reduces the reliance on extensive manual annotation and saves valuable time and

resources, especially in situations where labeling large datasets is costly or time-consuming. The

integration of FSL techniques with AL further strengthens the annotation process. FSL models, de-

signed to adapt quickly to new tasks with limited labeled data, can contribute valuable insights and

knowledge transfer to AL. Leveraging FSL models, the AL process can identify critical data points

that maximize model performance with minimal labeling efforts. Additionally, the combination of

AL and FSL offers the potential for improved model generalization and performance. FSL models

excel at learning from a few labeled examples and generalizing well to new, unseen instances. AL

complements this by actively selecting diverse and informative samples, refining the model’s adapt-

ability and generalization across various tasks and domains. Chapter 2 discusses how FSL mitigates

challenges in AL, such as model adaptability to changing data distributions and cold start problems.
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Existing systems like (Margatina, Vernikos, Barrault, & Aletras, 2021) start with a small set of la-

beled examples, ranging from 100 to several thousand, and systems like (Grieûhaber, Maucher, &

Vu, 2020) work with few-shot scenarios, typically involving less than a thousand training examples,

but they still rely on a seed set of labeled data. However, in real-life scenarios, it is often impractical

to assume the availability of labeled data from the outset. This issue becomes particularly relevant in

settings where obtaining labeled data is costly, time-consuming, or impractical. Therefore, address-

ing the Cold Start challenge necessitates the development of novel approaches that effectively learn

from limited or even zero-labeled data. In this context, few-shot and zero-shot learning paradigms

play a crucial role. Research works such as (MÈuller, PÂerez-TorrÂo, Basile, & Franco-Salvador, 2022)

and (Yuan et al., 2020) focus on exploring the domains of active learning and few-shot learning for

the relatively unexplored cold-start scenario. These works aim to develop innovative strategies that

enable efficient learning from limited or zero-labeled data, further advancing the integration of AL

and FSL.

3.3.2 AL-FSL Integration in NLP

The integration of Active Learning and Few-Shot Learning techniques in the field of Natural

Language Processing has the potential to unleash a new level of power and efficiency in various

NLP models. By combining the strengths of Active Learning, which focuses on selecting the most

informative instances for labeling, and FSL, which enables effective generalization with limited la-

beled data, researchers can harness the benefits of both approaches simultaneously. This integration

allows for the intelligent selection of labeled instances during active learning iterations, while also

leveraging the knowledge and patterns captured through FSL to enhance the model’s ability to gen-

eralize to unseen classes or tasks. This synergy between AL and FSL opens up exciting possibilities

for advancing the capabilities of NLP models, enabling them to achieve higher performance and

efficiency in various NLP tasks. One of the biggest challenges of training text classification mod-

els in natural language processing is the need for a large number of labeled examples. Therefore,

(MÈuller, PÂerez-TorrÂo, Basile, & Franco-Salvador, 2022) suggested using the concepts of FSL and

AL as two research directions to address this problem. The work presented combines these two

approaches into a platform called FASL, which enables the iterative and efficient training of text
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classification models. The researchers investigate different active learning methods within the FSL

setup to determine the most effective approach. Furthermore, they develop a model that predicts

when to stop annotating data, which is particularly important in FSL scenarios where a large valida-

tion set is not available. It focuses on investigating the efficacy of AL techniques on both balanced

and unbalanced datasets, shedding light on the challenges and potential solutions in this unique

setting. Another work that discusses the challenges and limitations of FSL in the context of text

classification was presented by (KÈoksal, Schick, & SchÈutze, 2022). It highlights the high variance

observed across different sets of few-shot examples (data selection) and across different fine-tuning

runs, which hinders fair comparisons and makes FSL unreliable for real-world applications. To

address these issues, (KÈoksal et al., 2022) proposed two concepts. First, they introduce novel en-

sembling methods that significantly reduce the variability across different fine-tuning runs, leading

to more stable few-shot learning. Second, they present a new active learning criterion for data se-

lection, specifically tailored towards prompt-based learning. Then these methods are combined into

a framework called MEAL (Multiprompt finetuning and prediction Ensembling with Active Learn-

ing). Similarly, a library by (SchrÈoder, MÈuller, Niekler, & Potthast, 2023) was designed to be easy

to use and provide pre-implemented state-of-the-art query strategies, some of which leverage GPU

capabilities. It offers standardized interfaces that allow users to combine different classifiers, query

strategies, and stopping criteria, enabling a flexible and efficient development of active learning ex-

periments and applications. The small-text library integrates well-known machine learning libraries

such as scikit-learn, PyTorch, and Hugging Face transformers, making various classifiers and query

strategies accessible. The library also supports optional installations for GPU usage. There are also

some tools like Argilla2 which empower users to build robust language models by facilitating faster

data curation through a combination of human and machine feedback. Unlike previous studies that

primarily focused on low inter-task variance in image domains, (Yu et al., 2018) addresses the more

realistic scenario of diverse tasks in natural language processing. The challenge lies in the fact that

a single metric is inadequate to capture the complex task variations in this domain, making existing

metric-based algorithms ineffective. To address this limitation, (Yu et al., 2018) propose an adaptive

2https://docs.argilla.io/en/latest/
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metric learning approach that automatically determines the optimally weighted combination of met-

rics obtained from meta-training tasks for new few-shot tasks. Extensive quantitative evaluations

conducted on real-world sentiment analysis and dialog intent classification datasets demonstrate

that the proposed method outperforms state-of-the-art few-shot learning algorithms in terms of pre-

dictive accuracy. Another work by (Z. L. Zhu, Yadav, Afzal, & Tsatsaronis, 2022) discusses the

challenges in domain-specific applications that require annotating and labeling large volumes of un-

structured textual data. To address this problem, the paper proposes a novel approach that combines

active learning and meta-learning. The active learner is initialized with meta-learned parameters

obtained through meta-training on tasks similar to the target task. The approach utilizes the pre-

trained BERT as the text-encoder and meta-learns its parameters using LEOPARD, an extension of

the model-agnostic meta-learning method. LEOPARD generates task-dependent softmax weights

to enable learning across tasks with varying numbers of classes. The effectiveness of the proposed

method is demonstrated through experiments on five natural language understanding tasks and six

datasets, using five different acquisition functions. The results show that the approach outperforms

the baseline, especially when closely related tasks were present during meta-learning. Additionally,

the study reveals that better performance with fewer labeled samples leads to better performance

when larger acquisition batches are used. The ablation study indicates that active learning with only

the meta-learned weights is beneficial while adding the meta-learned learning rates and generating

the softmax has negative consequences for performance. One important approach introduced in (As-

ghar, Poupart, Jiang, & Li, 2017) proposes an online, end-to-end, neural generative conversational

model for open-domain dialogue. It is trained using a unique combination of offline two-phase

supervised learning and online human-in-the-loop active learning. The model promotes the genera-

tion of semantically coherent, relevant, and interesting responses and can be trained to adopt diverse

moods, personas, and conversation styles. The hamming-diverse beam search mechanism is used

for response generation and one-character user feedback is provided at each step. The model can be

used to create agents with customized backgrounds and characters. The experiments show that the

model outperforms existing models in generating semantically relevant and interesting responses.
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3.3.3 AL-FSL Integration in Other Task Domains

Harnessing the potential of AL and FSL integration in various task domains opens up exciting

possibilities for advancing machine learning capabilities. By combining the benefits of AL and

FSL, we can overcome the limitations of traditional learning approaches and achieve remarkable

results in tasks requiring limited labeled data. In this section, we explore the transformative im-

pact of AL-FSL integration in different task domains, shedding light on its potential applications

and the key advantages it brings to the table. A concept of using a continual learning agent was

introduced in (Ayub & Fendley, 2022) where the problem of Few-Shot Continual Active Learning

(FoCAL) was addressed. In FoCAL, a Continual Learning (CL) agent is given unlabeled data for a

new or previously learned task in each increment, but it only has a limited budget for labeling. The

paper builds upon the literature on continual learning and active learning to develop a framework

that enables the CL agent to learn new object classes with only a few labeled training examples.

The framework utilizes a uniform Gaussian mixture model (GMM) to represent each object class

and employs pseudo-rehearsal to mitigate catastrophic forgetting. Additionally, uncertainty mea-

sures on the Gaussian representations of previously learned classes are used to identify the most

informative samples for labeling in each increment. The proposed approach is evaluated on the

CORe-50 dataset and a real humanoid robot for object classification, demonstrating state-of-the-art

results and the ability of the real robot to continually learn new objects in a real environment with

limited labeling supervision. Another novel approach to tackle the problem of few-shot learning is

by examining it through the lens of inference on a partially observed graphical model which was

introduced in (Satorras & Estrach, 2018). They construct a graphical model using a collection of

input images, where the labels can be either observed or unknown. The authors combine traditional

message-passing inference algorithms with neural-network counterparts to create a graph neural

network architecture. This architecture offers a generalized framework that encompasses several

existing few-shot learning models and the proposed framework can be extended to incorporate vari-

ants of few-shot learning, such as semi-supervised or active learning. In the active learning setup,

the learner has the capability to request labels from a sub-collection of unlabeled samples and the

goal is to investigate the improvement in performance compared to the previous semi-supervised
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setup and achieve similar performance as the one-shot learning setting. The GNN is trained using

a Softmax attention mechanism over the unlabeled nodes of the graph. A neural network-based

function is applied to each unlabeled vector node to map it to a scalar value, and a Softmax op-

eration is performed over these scalar values to determine the most informative label to query for

classification. The experiments in (Satorras & Estrach, 2018) follow the q-shot, K-way setting,

where q denotes the number of labeled samples per class and K represents the number of classes.

Overall, the approach utilizes active learning to improve the performance of the GNN in the few-

shot learning and semi-supervised learning settings by selectively querying informative labels for

unlabeled samples. Later, the combination of reinforcement learning and one-shot learning was

explored by (Woodward & Finn, 2017) to improve classification tasks. In this work, the authors

introduce a classification task where a stream of images is presented, and at each time step, the

model must decide whether to predict a label or pay for the correct label. The goal is to train a

recurrent neural network-based action-value function that learns when and how to request labels

effectively. By designing an appropriate reward function, the model can achieve higher prediction

accuracy compared to a similar model trained purely with supervised learning. Furthermore, the

model can also trade prediction accuracy for fewer label requests, making it more efficient in terms

of resource utilization. Another work that mitigates the limitation of limited availability of labeled

data in few-shot learning was presented in (Pezeshkpour, Zhao, & Singh, 2020). They discuss the

combination of few-shot learning and active learning. Few-shot learning aims to acquire knowledge

about new concepts using only a small number of labeled samples. Active learning, on the other

hand, involves the deliberate selection of informative samples to improve model performance. They

investigated the effectiveness of actively identifying informative samples in the context of few-shot

learning. It finds that while active learning approaches are beneficial for regular classification tasks

with larger amounts of labeled data, these benefits do not reliably extend to few-shot learning tasks.

The paper introduces two active methods, Single-Instance-Oracle and Batch-Oracle, which assume

access to labels of the unlabeled pool and the test set. These methods serve as ºupper boundsº to

characterize the best possible performance of active few-shot learning. The findings suggest that

actively selecting instances does not offer significant room for improving few-shot models.
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3.4 Summary

This chapter discussed various concepts of few-shot learning and explores its combination with

active learning to develop an effective annotation tool. Few-shot learning addresses the challenge

of training models with limited labeled data, while active learning focuses on iteratively selecting

informative instances for model training. By combining these two approaches, researchers aim

to enhance the performance of annotation tools. The chapter delves into various techniques and

methodologies used in the integration of few-shot learning and active learning. It explores the ben-

efits of leveraging pre-trained models, transfer learning, and self-supervised learning to initialize

representations of data without relying heavily on labeled data. The chapter also introduces novel

algorithms and criteria for active learning in the context of few-shot learning, enabling the selection

of informative samples for annotation. The findings highlight the potential of this integrated ap-

proach in developing annotation tools with improved accuracy and efficiency, ultimately facilitating

faster and more effective model development.
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Chapter 4

Comparative Framework - Text

Annotation Tools

4.1 Overview

Despite the availability of several annotation tools, many of them are limited in terms of effi-

ciency and model adaptation. While some modern tools such as Label Studio (Tkachenko, Malyuk,

Holmanyuk, & Liubimov, 2020-2022), Label Sleuth (Shnarch et al., 2022), Light Tag (Perry, 2021),

Potato (Pei et al., 2022), and Prodigy (Prodigy, 2017) offer certain functionalities related to auto-

annotation, active learning, and model training, they still do not provide a comprehensive platform

that can adapt well to dynamically added labels and may undergo problems like cold-start. Further-

more, these tools are not fully equipped to provide comprehensive insights about their data. Hence,

there is a need for a holistic platform that supports assisting auto-labels, a fast adaptation mecha-

nism of data using concepts like few-shot learning, and gradual improvement of annotations over

iterations using active learning and fine-tuning.

In this chapter, we present a novel approach to compare various systems working on the anno-

tations based on a comprehensive comparative framework that can be defined using a set of criteria.

While existing surveys such as (X. Qiu et al., 2020) and (Ren et al., 2021), compared various an-

notation systems working in a diverse field of study, they missed a few important technical aspects.

Some prior research, including the survey of annotation tools for biomedical literature (Neves &
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Figure 4.1: A Comparative Framework to differentiate between different auto-annotation-based

systems based on various characteristics

Leser, 2014), has evaluated tools based on criteria within categories such as basics, publication,

system properties, data, and functionalities. However, these evaluations have lacked a comprehen-

sive consideration of key technical aspects such as efficiency, seamless integration, scalability, and

configurability. This study aims to fill this gap by emphasizing crucial technical aspects and pro-

viding a thorough comparison of existing annotation systems. To address this issue, we propose

to define a set of criteria that considers both the technical aspects and other systematic desirable

characteristics of annotation systems. Our primary objective is to evaluate these systems based on

a well-defined set of criteria. Throughout this evaluation process, we will carefully consider three
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critical characteristics, namely: Machine Learning Capabilities, User Experience, and Workflow In-

tegration. Our approach to comparing the annotation systems builds upon the existing surveys and

studies in the field but goes further by taking into account the technical aspects that are critical to

the success of an annotation system. By defining these three main characteristics, we aim to provide

a comprehensive and systematic framework that can be used to evaluate different systems working

on the annotation problem.

Existing systems can be differentiated based on the fine-grained features from the above-mentioned

three main desirable characteristics as illustrated in Figure 4.1. Let’s explore this comparison be-

tween several existing systems as showcased in Table 4.1 and explain them in detail.

4.2 Features of the Comparative Framework

4.2.1 Machine Learning Capabilities

This criterion refers to the ability of a system to incorporate machine learning-based capabilities

to effectively learn and make predictions on a given set of data. This includes the data used for fine-

tuning a model, the model training process, and the ability to adapt to new data. It encompasses the

ability of the system to learn from data, improve over time, and make accurate predictions based on

that learning. The main goal is to enable the system to accurately annotate data with limited human

input. We can consider various features like active learning, few-shot learning and iterative model

training to further understand this criterion.

Active Learning: An Active Learning-based Data Acquisition enables an annotation tool to acquire

a focused, limited amount of training data in a cost-effective manner. This technique actively se-

lects the most informative examples from the available data pool to be annotated and used for model

training, reducing the requirement for large annotated datasets, which can be resource-intensive to

acquire. The key advantages of this technique are twofold. First, by focusing on the most valuable

examples, the model is trained on relevant data, resulting in improved accuracy and precision of

annotations. This targeted approach ensures that the model learns from the most critical data points,

enhancing its performance and generalization capabilities. Second, the reduction in the requirement

for large amounts of annotated data translates into significant cost and time savings. This approach

42



is a cost-effective solution for large-scale annotation projects with limited resources.

Iterative Model fine-tuning: The significance of model training in annotation tools lies in its abil-

ity to derive knowledge from a pre-annotated dataset and utilize it to make predictions on new,

previously unseen data. The performance of the training process and the quality of the training data

play a pivotal role in determining the accuracy and dependability of the tool’s predictions. Improper

training of the model or the usage of non-representative training data can result in erroneous and po-

tentially damaging predictions made by the auto-annotation tool. Thus, a thorough and systematic

training process is imperative for guaranteeing the efficiency and reliability of the annotation tool.

This features focuses on rectifying potential biases, inconsistencies, or labeling errors by providing

a way for the human-in-the-loop to give feedback before every model fine-tuning.

Few-shot Learning: As discussed in previous chapters, few-shot learning plays a pivotal role in ad-

dressing the challenges of adapting to new data and making accurate predictions over time. Unlike

traditional machine learning approaches that heavily rely on extensive labeled datasets, few-shot

learning empowers models to generalize effectively from only a limited number of labeled exam-

ples. This ability to learn from scarce data is crucial in dynamic environments where new data

constantly emerges which is very common in annotation tasks. As the model accumulates knowl-

edge and experience over time, it becomes more adept at recognizing patterns and adapting to novel

scenarios. This adaptability is particularly valuable when facing concept drift, where the underlying

data distribution changes. By continuously updating its knowledge through few-shot learning, the

model can maintain its performance and relevancy, ensuring accurate predictions even as the data

landscape evolves. Ultimately, few-shot learning serves as a powerful tool for building robust and

intelligent systems capable of learning from sparse data, thereby facilitating continuous improve-

ment and reliable performance over time.

4.2.2 User Experience

In the context of annotation tools, user experience encompasses the overall satisfaction of an-

notators while utilizing the tool. This includes various aspects, such as the intuitiveness of the

user interface, the efficiency and speed of the annotation process, and the seamless integration of

new features into the data annotation platforms. An important aspect is to facilitate the annotators’
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tasks by empowering them with label suggestions for guidance. These suggestions provide valu-

able insights into the input data, enabling annotators to make more informed decisions during the

annotation process. The main goal is to enhance the overall user experience by providing guidance

through label suggestions, insights on the data, and seamless extensibility.

Label Suggestions: An auto-annotation modeling is crucial in an annotation tool as it facilitates

the automation of data annotation through the application of machine learning techniques, thereby

reducing manual labor and improving efficiency. The model’s performance can be monitored by

the expert human-in-the-loop, ensuring the accuracy and reliability of annotations. Additionally,

auto-annotation mitigates human error, resulting in more consistent and reliable annotations. By

incorporating this feature, the annotation tool can learn from previously annotated data and contin-

uously improve its predictions, making it a valuable tool for large-scale annotation projects. Also, a

user-friendly interface makes it easy for annotators to perform their tasks and reduces the risk of er-

rors. An annotator-friendly user interface typically includes intuitive navigation, clear instructions,

and simple tools for performing annotations. By providing a user-friendly interface, an annotation

platform can improve the overall annotation process and ensure high-quality annotations. A user-

friendly interface that is intuitive and easy to use also ensures that the tool is accessible to a broad

range of users, thereby increasing its adoption and utility.

Data Insights and Annotator performance: Gaining insights into the amount of data required to

achieve convergence yields valuable information about the quality and quantity of data needed for

effective model training. The point at which the model’s performance stops improving and reaches

a plateau indicates that additional data will not significantly improve the model’s accuracy. This

information helps annotators determine the minimum amount of data required for effective training

and optimize their data utilization and set the budget of annotation accordingly. By having insights

into the percent of data used to attain convergence, annotators can balance the trade-off between the

cost of acquiring additional data and the accuracy of the model. This information is essential for

ensuring the quality and reliability of the annotations produced by the tool, and it enables annotators

to make informed decisions about the data they use to train the model.

Seamless Extensibility: Seamless extensibility is important for an annotation platform because

it allows new functionalities, models, and acquisition techniques in addition to the existing ones
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without causing disruption to the existing platform. This enhances the overall user experience and

allows for customization to meet specific needs. With seamless extensibility, new tools, features,

and integrations can be easily added as needed, making the platform more adaptable to changing

requirements and enabling it to grow and evolve over time. Eventually, enabling organizations to

continuously optimize and improve the tool, ensuring its relevance and usefulness over time.

4.2.3 Workflow Integration

Easy and effective integration of an auto annotation tool into an existing workflow or process for

annotating data is very desirable. Integrating the tool with other tools and systems that are already

being used in the annotation process, such as data annotation platforms, data management systems,

and other software applications shows whether the system can scale or not. The goal of workflow

integration is to streamline the annotation process and make it more efficient while ensuring that the

annotations produced are of high quality and consistent with existing standards. Integrating the tool

into the existing workflow becomes a seamless part of the process and reduces manual effort and

time. It can include features like compatibility with multiple file formats, Scalability, and effective

integration with existing workflows and tools.

Versatility: Versatility refers to the ability of the tool to have multifaceted file format support and

the capability to handle a wide range of data types and formats. The ability to support multiple

file formats and annotation types enables the tool to be used for a broader range of applications,

as different data sources and annotation types require different methods for processing and storing

data. This versatility also enables organizations to utilize the tool for a variety of projects, reducing

the need for multiple specialized tools. The support for multiple file formats and annotation types

also makes it easier to integrate the tool into existing workflows, as it can work with the data and

systems that organizations are already using. The ability to handle a broad range of data types and

formats is a crucial aspect of making the annotation tool useful and effective.

Scalibility Large-scale data handling is important in data annotation because it enables users to

annotate vast amounts of data efficiently. The ability to handle large-scale data is critical for orga-

nizations to process large amounts of data, in the fields of natural language processing. Annotation

tools that are unable to handle large-scale data may be inefficient and slow, requiring excessive
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amounts of time and resources to complete the annotation process. By contrast, tools that are de-

signed to handle large-scale data can process data quickly and accurately, reducing the time and

resources required for annotation tasks. The ability to handle large-scale data also enables orga-

nizations to annotate a greater volume of data, providing more comprehensive insights into their

data and enabling more informed decision-making. Large-scale data handling is therefore a critical

factor in the effectiveness and efficiency of data annotation tools.

Interoperability: Interoperability allows a platform to seamlessly integrate with existing workflows

within an organization. This ensures that the annotation process can be smoothly incorporated into

existing workflows, reducing the need for manual intervention and reducing the risk of errors. The

integration of the annotation platform with existing workflows and tools also allows for the seam-

less exchange of data and annotations, enabling organizations to leverage their existing tools and

data to improve the accuracy and efficiency of their annotations. Additionally, workflow integration

interoperability helps organizations to reduce the time and resources required for annotation tasks,

by automating repetitive tasks and reducing the need for manual data entry. The ability to integrate

the annotation platform with existing workflows and tools also allows organizations to leverage their

existing data and infrastructure, making it easier and more cost-effective to implement an annotation

platform. The availability of APIs can potentially facilitate easy integration of the tool into exist-

ing data annotation platforms, thus enabling automation and streamlining of the annotation process.

Free services, on the other hand, reduce the cost barrier for users and increase accessibility, thereby

promoting the adoption and utilization of the tool.

4.3 Comparison of systems and tools

A comparison of different existing tools and systems has been presented in Table 4.1. The

table provided offers a comprehensive comparison of different existing tools and systems based

on various features crucial for efficient data annotation. For the comparison, we considered some

common tools like Doccano (Nakayama et al., 2018), Label Studio (Tkachenko et al., 2020-2022),

Light Tag (Perry, 2021), Prodigy (Prodigy, 2017), Label Sleuth (Shnarch et al., 2022), Potato (Pei

et al., 2022), and Small-Text (SchrÈoder et al., 2023). The systems that provide the given features
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Table 4.1: Table of comparison for different existing tools and systems based on various features

Systems Doccano

(Nakayama,

Kubo,

Kamura,

Taniguchi,

& Liang,

2018)

Label

Studio

(Tkachenko

et al.,

2020-

2022)

Light Tag

(Perry,

2021)

Prodigy

(Prodigy,

2017)

Label

Sleuth

(Shnarch

et al.,

2022)

Potato

Pei et al.

(2022)

Small-

Text

(SchrÈoder

et al.,

2023)

Features

Active

Learning

✓ ✓ ✓ ✓ ✓

Machine

Learning

Capabilities

Few-shot

Learning

✓ ✓ ✓

Iterative

fine-tuning

✓ ✓ ✓ ✓ ✓ ✓

Label

Suggestions

✓ ✓ ✓ ✓ ✓ ✓

User

Experience

Data

Insights

& annotator

performance

✓ ✓ ✓ ✓

Seamless

Extensibility

✓ ✓ ✓ ✓ ✓ ✓ ✓

Versatility ✓ ✓ ✓

Workflow

Integration

Scalability ✓ ✓ ✓

Interoperability ✓ ✓ ✓
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are marked for those particular features and red marks signify that the feature exists but in a paid

version for commercial use of the tool. Also, some of the features are not directly included in the

tools but the system may provide a way for the user to integrate the feature. However, we will

consider features that are directly provided by the systems in the table of comparison 4.1.

Among the mentioned systems, Doccano is a useful tool that possess several valuable features.

It supports label suggestions, data and annotator performance insights, extensibility for adding new

functionalities, and is scalable. However, it lacks certain key features like active learning for data

sampling and Few-shot learning, which can enhance data annotations’ efficiency. On the other hand,

Label Studio1 shows great potential and offers most of the desired features. It includes active learn-

ing capabilities, Few-shot learning, label suggestions, and performance insights, making it a robust

platform for data annotation but it’s important to note that these advanced features are only available

in the paid enterprise version, which may require consideration based on specific project require-

ments and budget. Although, LightTag2 offers an array of features in its free version, including

iterative fine-tuning which allows progressive refinement of models for more accurate annotations,

it only provides other desirable features such as label suggestions, insights on data and annotator

performance, and seamless extensibility only in a paid version. Prodigy3 is another annotation tool

that provides active learning, few-shot learning and iterative fine-tuning. It also provides insights

on data and annotator performance but it is not free or open-source to use. Among the listed fea-

tures, Label Sleuth supports features like active learning, iterative fine-tuning, label suggestions,

and extensibility but lacks many other key features. Also, it does not provide support for different

text-based tasks. Similarly, Potato is a portable text annotation tool that allows active learning, label

suggestions, extensibility and versatility but it does not provide a holistic tool inclusive of all proper-

ties. Other tools like Small-text exhibit Active Learning, Few-shot learning and iterative fine-tuning

capabilities. It also provides label suggestions, extensibility, and subtle workflow integration but it

only works for text classification tasks.

Considering the features presented in the table, it becomes evident that each system possesses a

unique set of capabilities. However, the ideal annotation tool should encompass all these features to

1https://labelstud.io/guide/label studio compare.html
2https://www.lighttag.io/features
3https://prodi.gy/features/large-language-models
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provide a holistic and powerful solution. The need for a comprehensive tool that can seamlessly in-

tegrate mentioned machine learning capabilities, user experience and workflow integration becomes

apparent. Most of these tools like Label Studio are growing and progressing really fast and some

of them provide a good deal of features in the form of an academic program where you can use

extended features for non-commercial purposes. Overall, it was observed that the enterprise version

of Label Studio possesses most of the properties and it is well-suited for various tasks. However,

to offer users a more personalized experience and access to additional features like diverse active

learning techniques and insights on data and user performance, we can develop a tool that provides

flexibility, efficiency, and adaptability. By doing so, organizations can enhance their data annotation

processes and achieve superior model performance while optimizing resource utilization.

4.4 Summary

To summarize this chapter, we provide the reader with a comprehensive comparative framework,

evaluating existing text annotation tools based on specific criteria essential for a robust text anno-

tation platform. By carefully examining the essential features required in a text annotation system,

we provided valuable insights into why these functionalities are required and how they contribute to

building a powerful and reliable system. Through a critical analysis of the strengths and weaknesses

of the current tools in the field, we identified potential areas of improvement and highlighted the

challenges faced in the annotation process. By harnessing the collective power of these functional-

ities, we aim to provide a direction towards a holistic system for text annotation which would not

only address the limitations of existing tools but also streamline the annotation workflow, saving

valuable time and effort for researchers catering to diverse user needs. In conclusion, this chapter

sets the stage for the development of a state-of-the-art text annotation platform that meets the dy-

namic demands of modern natural language applications. By leveraging the insights gained from

our comparative analysis, we can offer users a powerful platform for text annotations, addressing

the shortcomings of existing tools and enhancing the overall annotation process.
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Chapter 5

Towards efficient text annotation:

System Architecture and Evaluation

5.1 Overview

In the previous chapter, we talked about a comprehensive framework including the existing text

annotation systems and their key features. We will now move towards an efficient approach to

text annotation leveraging various trending concepts. In this chapter, we will discuss the system

architecture of the approach to an efficient text annotation platform, key components of the system,

its design, and the development process that was followed. Text annotation plays a vital role in

various natural language processing tasks, enabling machines to understand and interpret human

language effectively. Therefore, we will also explore various different natural language-based tasks

and use cases validating the system’s power and versatility. Also, we will evaluate the system

performance and show the adequacy of concepts we used in the system like active learning and

few-shot learning. We will present how it has been instrumental in various tasks like the task of

Question Understanding in a question-answering system which will be discussed in detail in the

coming sections, and other tasks like Named Entity Recognition, Sentiment Analysis, Question

Classification, etc. The main aim of this chapter is to provide insights into how we can improve the

process of text annotation for enabling more sophisticated AI systems.
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data points for further annotation. After annotating the selected data points, they are used to fine-

tune the model using a few-shot learning technique. The third module in this system architecture

deals with model training and model inference. It supports various language models that can be

fine-tuned as per the user’s need. The system also utilizes pre-trained models which are trained on a

large corpus of unsupervised text data and can be fine-tuned on the user’s data, while other models

are trained from scratch on the user’s data. The system also supports a Few-shot fine-tuning mode

where we can perform few-shot fine-tuning of sentence transformers by changing a few parameters

in the system settings. This module enables the system to support different types of model archi-

tectures such as CNN, CNN BiLSTM CRF, and models like SetFit, and BERT. Moreover, it has

the ability to work with a human-in-the-loop approach, where the model’s predictions are reviewed

and corrected by human annotators, before being sent to the model to be fine-tuned to improve the

quality and accuracy of the predictions in the next iteration.

As shown the Figure 5.1, the user’s first touch point is via a nice interface that is inspired by

the open-source tool for annotations called Doccano (Nakayama et al., 2018). As the user gives an

input to the system, it is directly taken to the data module where it pre-processes the data to make

it ready for further steps. Its accepts input in multiple different formats. Depending on the amount

of data that is initially labeled, the system keeps a record of data in the form of two sets, labeled

and unlabeled. The labeled set could be retrieved from the pre-provided set of labeled data by the

user, or if the user has no labeled data to begin with then we can use a zero-shot learning-based

extension of the system that will ask the user for a template-based prompt related to the underlying

task and data, and get the initial set ready. It will also take care of the data that the human-in-the-

loop labels in an iteration updating the two sets of data before model fine-tuning in every iteration.

We further pass the data to the next module which deals with model fine-tuning and inference. In

this module, the labeled set of data is utilized for the process of model fine-tuning, and the unlabeled

set is used to make predictions for the data selection and labeling process. The user can choose the

model they want to use and they can also choose whether they want to perform standard fine-tuning

or a few-shot learning-based fine-tuning. After fine-tuning, the updated model is used to generate

predictions on the unlabeled set of data. These predictions are further given to the active learning

data selection module which ranks the data points based on various active learning techniques and
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selects a set of points to be labeled by the human expert. The user can choose the active learning

technique that they want to deploy and the selected data points are presented back to the oracle who

is the human-in-the-loop annotating the given data. The oracle receives this set of data points along

with label suggestions and they can decide if the label suggestions are good or if they need any

changes. The platform allows the oracle to make the required changes and move further with this

process of annotating data in iterations. The updated labeled data is then fed back into the system

and the cycle continues, leading to an accurate model with a reduced data labeling cost.

5.3 System Design and Key Concepts

To embark on this approach, it is crucial to develop a text annotation platform that optimizes

the annotation process and maximizes the utilization of labeled data. In this section, we present

the design of the efficient text annotation approach. This approach incorporates three key concepts:

Active learning-based sample selection, Few-shot learning, and guided annotations with iterative

model training based on the response from the human-in-the-loop. We will also discuss the signifi-

cance of each of these aspects and their role. Let’s discuss each of these concepts in detail:

(1) Active Learning: Active learning techniques play a vital role in reducing labeling efforts by

selectively choosing instances for annotation that are most informative for model improve-

ment. Instead of annotating all the unlabeled instances, active learning comes into play by

selecting a subset of instances that the model finds uncertain or challenging. The process of

active learning starts with an initial set of labeled data, which is used to train an initial model.

The trained model is then used to make predictions on the remaining unlabeled pool of data

which are analyzed, ranked, and selected based on the active learning techniques. By focusing

on these instances, active learning aims to acquire new annotations strategically, maximizing

the impact of each annotation on model performance. Annotating the instances that are most

informative or difficult for the model to understand can help improve its accuracy and gener-

alization capabilities. The integration of active learning within our text annotation platform

brings significant benefits. Firstly, it reduces the annotation burden by significantly reducing
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the number of instances that need to be labeled. Instead of annotating the entire dataset, anno-

tators can focus their efforts on the instances that are most valuable for improving the model’s

performance. Secondly, active learning enables a feedback loop between the annotators and

the model. As annotators label new instances, the updated labeled data is incorporated into

the training process, allowing the model to further refine its predictions. This iterative process

of annotation and model improvement can lead to a virtuous cycle, where the model becomes

more accurate with each round of annotation. The platform is designed in such a way that the

user can move between data points to be labeled and these data points are always presented

to the user in an active learning-based order. The user is always presented with the next best

data point as they go further with the annotation process. The user can choose the active

learning technique they want to use and some of the selection techniques that are supported

by the system are the Uncertainty approach, Least Confidence, Core-set approach, Margin

Sampling, Maximum Normalized Log Probabilities (Shen et al., 2017), Deep Bayesian active

learning, and random selection. Some of the challenges of this approach were regarding the

adaptation of new labels in between the annotation process and the cold-start problem in case

the user has a small or no set of data, to begin with. These challenges brought us to choose

our next important aspect of the system which is few-shot learning.

(2) Few-Shot Learning: Few-shot learning allows models to generalize from a small number of

labeled examples to perform well on the given tasks. The text annotation platform leverages

Few-shot learning models to provide model adaptability to newly added information and to

address the cold-start problem. It also helped in the guidance for the annotation process which

essentially provides annotation suggestions to the oracle to maximize model performance

with minimal labeling efforts. One approach to utilizing few-shot learning models in guiding

the AL process involves fine-tuning a Few-shot learning model like SetFit (Tunstall et al.,

2022) on a small set of labeled data. This training captures task-specific knowledge and

enables the model to adapt quickly to new tasks with a small or no initial set of labels. Using

the few-shot learning model, the platform identifies instances that are more likely to benefit

the active learning process. This approach effectively selects instances that maximize the
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model’s performance with minimal labeling efforts. Another approach to address the common

problem of cold start is to leverage zero-shot learning techniques (Sanh et al., 2022). Utilizing

zero-shot learning can address the challenge of cold start by enabling the model to make

predictions on unseen classes without prior training. It enables the model to make predictions

on classes or tasks it has not been explicitly trained on. This approach leverages pre-existing

knowledge and semantic relationships to generalize to new categories. By incorporating zero-

shot learning, the system becomes more adaptable and capable of handling new and unseen

data. So, the system is designed in such a way that even if we start with a very small amount

of data, the model will be able to adapt.

(3) Guided annotations with iterative model training: The proposed technique uses sugges-

tions from the model that is fine-tuned over iterations. Annotating large data sets can be

challenging and more prone to errors and bias. However, following this technique of pro-

viding label suggestions can be really useful for training accurate and robust models. The

platform aims to streamline the annotation process, providing intuitive tools and workflows

that enable annotators to annotate large volumes of data efficiently. Model training and guided

annotations are integral to the efficient annotation process. The platform incorporates model

training to develop accurate and robust models that can perform complex text-based tasks. By

training models on labeled data, the platform empowers the models with task-specific knowl-

edge and enhances their ability to understand and interpret the text. The facilitation of guided

annotations not only helps annotators provide context-specific guidance and suggestions dur-

ing the annotation process but also enables a cycle of human feedback for tricky scenarios

like dealing with newly added labels. This guidance comes from pre-trained models, which

are fine-tuned and improved over iterations. Guided annotations help annotators work more

efficiently and consistently by leveraging the knowledge encoded in the models. The system

by design provides the user with a choice to let the user enable this auto-labeling mode if they

want. The suggestions can be received from a pre-trained model with standard fine-tuning or

few-shot learning-based fine-tuning. The user can also choose the model and the settings they

want to utilize in order to get these suggestions and start this iterative process.
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To summarize, we adopt an iterative training strategy combining active learning and few-shot

learning, leveraging the model’s confidence and performance gain to select instances for labeling

and then using this labeled set for fine-tuning the models. This iterative process progressively im-

proves the model’s performance while minimizing labeling efforts and computational requirements.

It allows the human expert in the loop to make decisions based on the suggested labels by the

system, and correct the existing labels accordingly. By combining these concepts, the platform op-

timizes the annotation process by incorporating a streamlined annotation workflow increasing the

annotation consistency with efficient resource allocation, and maximized utilization of labeled data.

5.4 Evaluations

In this section, we will discuss various use cases that demonstrate the effectiveness and versa-

tility of our text annotation approach. By leveraging this methodology, we can extract meaningful

information from textual data. Through the process of annotating text, we empower machine learn-

ing models to understand and interpret unstructured textual information more accurately. The use

cases presented here show a wide range of applications where text annotation plays a pivotal role.

We will look into diverse domains such as sentiment analysis, named entity recognition, text clas-

sification, question-answering types, and text generation. Each of these use cases highlights the

significance of utilizing a text annotation approach to enhance and optimize the learning process.

By examining these use cases, we aim to shed light on the potential of text annotation in address-

ing real-world challenges and providing solutions across different industries. Moreover, we unravel

the correlation between active learning and few-shot learning techniques, which further amplifies

the effectiveness of the annotation process. In the subsequent sections, we will explore each use

case in detail, studying various tasks and datasets we used for these tasks 7.1. We will also discuss

various annotation strategies and their performance. By examining these use cases, we hope to pro-

vide a comprehensive understanding of the wide-ranging capabilities and advantages that this text

annotation approach offers.

In the field of text classification, the role of a high-quality text annotation platform cannot be

overstated when it comes to training accurate and reliable machine learning models. The various
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tasks that we will present include sentiment analysis using customer review data (X. Ding, Liu, &

Yu, 2008), adverse drug reaction classification (Gurulingappa et al., 2012), expected answer pre-

diction (Kwok, Grunfeld, Dinstl, & Chan, 2000), Toxicity classification using Toxic Conversation

data1 where toxicity is defined as anything rude, disrespectful or otherwise, spam detection using

Enron dataset (Metsis, Androutsopoulos, & Paliouras, 2006), etc. By leveraging an efficient text

annotation platform, we were able to streamline the annotation process, resulting in faster and more

accurate labeling of large datasets. The platform allowed us to define annotation guidelines, create

annotation tasks, and manage the annotation process effectively. In our experiments, we explored

the benefits of incorporating active learning and few-shot learning techniques within these text clas-

sification tasks. Active learning, for instance, played a significant role in our experiments. By

actively selecting the most informative samples for annotation, we were able to reduce annotation

efforts while maintaining high-quality training data. This iterative process of selecting the most

valuable samples for annotation allowed us to optimize the annotation process and achieve better

results. We initiated our experiments by utilizing the efficient text annotation platform for various

text classification tasks, starting with sentiment analysis. Additionally, we applied the platform to

tasks such as adverse drug reaction classification, expected answer prediction, multi-class text clas-

sification, and document classification. We also utilize the datasets employed in setfit (Tunstall et

al., 2022) to conduct experiments on Enron spam detection, Twitter complaints, etc. Using the plat-

form, a diverse range of texts can be annotated including product reviews, social media posts, and

customer feedback, to build a sentiment analysis model capable of accurately gauging sentiment

across different domains.

In addition to the task of text classification, the text annotation platform also proved valuable

in Sequence Labelling tasks like named entity recognition. Named entity recognition focuses on

identifying and classifying entities within a given text, including names of people, organizations,

locations, and more. Leveraging the annotation capabilities of the platform, we were able to annotate

a significant dataset to train a named entity recognition model. The process involved annotating the

dataset with specific labels to mark the boundaries and types of named entities present in the text.

This annotation process, enabled by the text annotation platform, played a crucial role in generating

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
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high-quality training data for the named entity recognition model. The annotated dataset served as

a foundation for training the model to accurately identify and classify named entities in new texts.

By leveraging the labeled data, the model could learn patterns and characteristics associated with

different types of named entities, thereby improving its ability to accurately identify and classify

entities in unseen text. One of the ways to Few-shot Learning can be integrated with active learning

for the sequence labeling task of recognizing and classifying named entities in text using only a

few labeled examples per entity class could be using NNShot and StructShot techniques (Yang

& Katiyar, 2020a). NNShot is a simple token-level nearest neighbor classification system that

computes a similarity score between a token in a test example and all tokens in a support set, and

assigns the token a tag corresponding to the most similar token in the support set. STRUCTSHOT

is an extension of NNShot that models label dependencies with a simple Viterbi decoder. This

could particularly be useful in scenarios where new entity types emerge or when there is a need for

immediate support for emerging entity types without retraining and redeploying the named entity

model.

Let’s explore six different use cases for text annotation, each highlighting a specific task and its

practical applications as shown in Table 7.1. For each use case, we will provide an overview of the

task, mention data set used with the number of queries and describe the experimental settings with

results. Furthermore, we will discuss the results and compare the performance of the active learning

based normal fine-tuning with experiments incorporating Few-shot learning-based fine-tuning in

each iteration, which will allow us to maximize the efficiency of utilizing limited labeled data.

Table 5.1: Table presenting different tasks and data sets in text annotation used in experiments

Task Dataset Size Annotation Type

1. Question Understanding LCQuAD, QALD-9 1700 Text Generation

2. Question Classification TrecQA 5.5k Multi-class

3. Named Entity Recognition CONLL-03 14k Sequence Labelling

4. Sentiment Analysis Customer Review 30k Binary Classification

5. Spam Detection Enron Spam 33k Binary Classification

6. Toxicity Classification Toxic Conversation 1.75M Binary Classification
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5.4.1 Question Understanding in KGQAn system

Let us discuss our first use case where we used the approach mentioned above as the underly-

ing concept in the context of text generation. This use case was part of a research project called

KGQAn (Omar, Dhall, Kalnis, & Mansour, 2023) which is ºA Universal Question-Answering Plat-

form for Knowledge Graphsº that we published in Proceedings of the ACM on Management of

Data and the 2023 ACM SIGMOD/PODS Conference. The proposed text annotation approach

plays a crucial role in this use case for annotating over 1700 questions for question understanding

in KGQAn. KGQAn proposed a novel approach that eliminates the need for tailoring the question-

answering system to each individual Knowledge Graph. It acts as an intermediary between users

and any available Knowledge Graph, and it consists of three main modules of question under-

standing, just-in-time linking, and answer-type filtering. The question understanding approach in

KGQAn is structured as a text generation task, extracting abstract triple patterns from natural lan-

guage questions. In the question understanding approach of KGQAn, we undergo a comprehensive

training process using a sequence-to-sequence (Seq2Seq) (Sutskever, Vinyals, & Le, 2014) model,

exposing it to a diverse range of questions. This training ensures that KGQAn becomes adept at

comprehending various question types and generating accurate responses. Generating coherent and

contextually relevant text required a well-annotated dataset that covered a wide range of topics,

styles, and genres. The proof-of-concept text annotation platform facilitated efficient annotation

of a large corpus of text, enabling the creation of a diverse training data set. This diverse training

data significantly enhanced the language model’s ability to generate high-quality annotations. The

annotation process employed in KGQAn is highly tailored to this individual use case and hence

necessitates expert knowledge. The formalization of question understanding as a text-generation

task and the meticulous annotation process using the proposed system ensured KGQAn’s accurate

delivery of results and valuable responses to a wide range of user queries. To further understand and

read how each module affected the question-answering technique followed in KGQAn, please refer

to this published work (Omar et al., 2023)

To illustrate the annotation process in more detail, let’s consider an example from the actual an-

notated dataset. The questions used in KGQAn were sourced from two well-established benchmark
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category to which the answer belongs (e.g., place, person, organization) and a variable ID that serves

as a unique identifier for each variable in a given query. This variable ID plays a crucial role in iden-

tifying and tracking the unknowns throughout the annotation process. By incorporating these steps

and providing comprehensive information for the unknowns, we ensure that the annotation captures

all necessary details for effective question answering. This structured annotation approach enhances

the KGQAn system’s ability to understand the question and generate accurate responses, even for

queries involving multiple unknown variables. After following the steps mentioned, we receive the

annotation for the mentioned question as follows:

{"id": "794",

"text": "Name the origin of Henry Cluney ?",

"triples": [{

"Entity1": {

"value": "Henry Cluney",

"type": "named entity" },

"Entity2": {

"value": "Name",

"type": "variable",

"ans_type": "string",

"class": "place",

"var_id": 1 },

"Predicate": "origin"}]

}

In this annotation, we have Entity1 which represents the named entity ºHenry Cluneyº in the

question, Entity2 which represents the variable ºNameº referring to the unknown whose answer

needs to be retrieved, and a predicate that represents the relationship or property being queried,

ºoriginº. Entity2 has additional information such as answer type (a string in this case), class (indi-

cating the semantic type which is place in this case), and variable id (providing a unique identifier).

By annotating the question with triples and storing the resulting annotations in JSON files, we create
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a structured representation that captures the essential information needed for the KGQAn system.

These annotations serve as valuable training data for the question-understanding module of the sys-

tem, enabling it to understand and generate accurate responses to similar questions. We use parts of

these annotations and fine-tune the Sequence2Sequence model.

In the experiment, we used the BART model (M. Lewis et al., 2019) with a batch size of 4 for 5

epochs while sampling 10% of data in every iteration for 10 iterations. The results of the experiment

are presented in Figure 5.2 which are the average of five runs. We sampled data points based on

the model’s confidence using an uncertainty-based active learning technique. The uncertainty active

learning technique played a pivotal role in this annotation process as the annotation effort required

was significantly reduced while maintaining the quality of the training data. It allowed for the

iterative selection of the most informative samples for annotation. We were able to perform better

using the similar amount of data as shown in the Figure.

5.4.2 Question Classification

The task of Question Classification is to assign a specific category or class label to a given

question. The main goal of this task is to automatically classify questions into predefined categories,

enabling efficient organization and retrieval of information. Question Classification can be really

useful in various applications, such as information retrieval systems, question-answering systems,

and chatbots, as it helps in understanding the user’s query and providing relevant responses or

information. The Text REtrieval Conference (TREC) Question Classification dataset is a widely

used data set for the task of question classification. It comprises a training set with 5500 labeled

questions and a test set containing 500 questions. The dataset includes 6 coarse class labels and 50

fine class labels, enabling fine-grained categorization of the questions. On average, each sentence

in the dataset has a length of 10 words, and the vocabulary size is 8700. We used a CNN model and

5 different active learning techniques in the experiment. All values in Figure 5.3 are the average of

five runs. This configuration achieved convergence at 45% of the training data using the Bayesian

Active Learning by Disagreement with Monte Carlo Dropout (BALD). The experiment shows the

effect of the active learning process in successfully reducing the amount of labeled data required to

achieve convergence.
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platform. Key components of the system, its design, and the development process are thoroughly

discussed. We explore various natural language-based tasks and use cases to validate the system’s

power and versatility. These tasks include Question Understanding in a question-answering system,

Named Entity Recognition, Sentiment Analysis, and Question Classification, among others. In con-

clusion, the techniques discussed in this study can be applied effectively to a wide range of tasks

and data distributions. Specifically, the SetFit experiment, which leverages few-shot learning-based

transformer fine-tuning, demonstrates the benefits of combining few-shot learning with active learn-

ing when dealing with a limited initial dataset. Additionally, it is important to note that there is no

one-size-fits-all active learning technique that outperforms all others; the effectiveness of each tech-

nique varies depending on the nature of the task at hand. Therefore, it is crucial to carefully choose

the active learning strategy based on the specific characteristics and requirements of the problem

being addressed. The main goal of this chapter is to provide valuable insights into enhancing the

text annotation process. By streamlining and improving this crucial aspect, the groundwork is laid

for the development of more advanced and capable AI systems that can effectively process and un-

derstand natural language data. Through the development of a text annotation platform for active

learning and few-shot learning, we were able to address various annotation needs for tasks like ques-

tion answering, text generation, named entity recognition, sentiment analysis, etc. By incorporating

active learning techniques, we achieved efficient annotation of large datasets while maintaining

high-quality training data. The versatility of the platform opens doors to countless other use cases

and paves the way for future work.
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Chapter 6

Conclusion and Future Work

In this thesis, we learned that the process of text annotation can be formidable and is quite criti-

cal for many natural language processing tasks. Our exploration presents various features desirable

for a text annotation platform in the form of a comprehensive comparative framework over various

existing tools. This exploration of various techniques and existing tools also revealed that there are

many shortcomings in the existing techniques, and there is a lack of a holistic platform that can

be used to mitigate the annotation challenge. To address this gap, we proposed a comprehensive

approach that consists of three main components: Active Learning based efficient text selection,

Few-shot Learning, and assisted annotations with iterative model training. By integrating these

elements, we hope to empower researchers and practitioners to tackle the challenges of text annota-

tion efficiently and effectively. To demonstrate the practicality and effectiveness of our annotation

approach, we tried using it for a task that was part of a Question Answering platform, which was

subsequently published in SIGMOD record 2023 (Omar et al., 2023). The results obtained from this

real-world use case further validate the utility and potential of this annotation approach in addressing

complex and challenging natural language processing tasks. As we continue to refine and expand

our approach, we envision its broader application across a wide range of natural language process-

ing domains, contributing to the advancement of text annotation methodologies and enriching the

landscape of AI-driven applications. This motivated us to use the approach further to multiple other

natural language processing tasks across diverse domains. Through these experiments, this research

work aimed to provide the reader with insights into the approach’s adaptability and robustness.
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Nevertheless, text annotation remains a complex and ever-evolving field, and further research and

improvements are warranted to continue advancing its capabilities. As the future of text annotation

is envisioned, we envisage the development of unified platforms that would seamlessly integrate

various trending concepts like active learning and few-shot learning. Such platforms would serve as

powerful resources, empowering researchers to unlock the full potential of text annotation.

There are several exciting avenues for future research and development in this research work.

Let’s outline some key directions that can further enhance the capabilities and applications for text

annotation in terms of the different concepts we saw in this thesis. One interesting direction could

be to incorporate Data Shapely values (Ghorbani & Zou, 2019) into the text annotation process as

it could potentially offer a comprehensive understanding of the individual data point importance in

shaping the predictions of the model. The annotations’ prioritization and resource reallocation can

be improved by focusing on the most influential data points and quantifying each data point’s im-

pact. One such collaboration was successfully presented in an Active Data Shapely work (Ghorbani,

Zou, & Esteva, 2022) which introduces a filtering layer in batch active learning by pre-selecting the

highest-value points from an unlabeled dataset. Another good direction for the nature of the task

in hand could be to harness reinforcement learning with a human-in-the-loop. It has tremendous

potential as it allows an interactive loop between human annotators and the model, enabling ac-

tive collaboration and continuous improvement. This work can further be expanded by making it

compatible with existing novel tool kits like speech brain (Ravanelli et al., 2021) making it a multi-

modal approach for tasks involving Speech, Images, Videos, and other kinds of data as it would

unlock new opportunities for understanding complex real-world scenarios.

In summary, this work aims to contribute to the evolving field of text annotation and is com-

mitted to further bringing innovation in this domain. As the field progresses, the emergence of

novel techniques and comprehensive platforms will propel text annotation to new heights, making

a lasting impact in the field of natural language processing and beyond.
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Chapter 7

Appendix

7.1 Courses

Course Course code Semester Grade

DISTRIBUTED SYSTEM DESIGN COMP-6231 Winter 2021 A

ADV. PROG. PRACTICES SOEN-6441 Winter 2021 A-

FOUNDATIONS/SEMANTIC WEB COMP-6531 Fall 2021 A+

BIG DATA ANALYTICS SOEN-6111 Winter 2022 A+

7.2 Publications

7.2.1 Journal and Conferences

Reham Omar, Ishika Dhall, Panos Kalnis, Essam Mansour: A Universal Question-Answering

Platform for Knowledge Graphs. Proc. of the ACM on Management of Data, V1 (SIGMOD 2023)

7.2.2 Demos

Reham Omar, Ishika Dhall, Nadia Sheikh, Essam Mansour. A Knowledge Graph Question-

Answering Platform Trained Independently of the Graph. International Semantic Web Conference

(ISWC 2021). https://ceur-ws.org/Vol-2980/paper312.pdf
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