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Abstract

The cobordism ring: the prospective of characteristic classes.
Benedetta Andina

After providing su�cient preliminaries to make this thesis accessible to
any graduate student, it clearly highlights how both the oriented and un-
oriented cobordism rings can be studied using characteristic classes, which
are usually easily computable. To demonstrate this relationship in the un-
oriented case (as presented by Pontrjagin and Thom), the author unveils an
explicit structure of the unoriented cobordism ring. This structure provides
a clear classification of smooth closed manifolds.
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Introduction

In the contest of smooth closed manifolds, it is typical to wonder whether
two manifolds are di↵eormorphic. However, this problem can be unsolvable
in general. One might try to classify manifolds with a less strict equivalence
relation. This is where the concept of cobordism arises.

Two manifolds are considered cobordant if their union is the boundary of
some manifold with boundary. Using this equivalence, it is possible to create
a group of equivalence classes, and moreover it is possible to give an internal
product in order to create the cobordism ring.

In this thesis we try to understand the structure of this latter, using as a
tool some characteristic classes. In particular, we focus on Stiefel–Whitney
and Pontrjagin classes. The first ones are fundamental in the study of the
unoriented cobordism ring whereas the second are used to study the oriented
cobordism ring (this considers oriented manifolds).

We see how computing Stiefel–Whitney and Pontrjagin classes on the
tangent bundle of a manifold tells us if this manifold is a boundary or not
and also the converse implication. Indeed, by two theorems by Pontrjagin, if
a manifold is a boundary then all its Stiefel–Whitney and Pontrjagin numbers
will be zero. The converse statement is true by a theorem by Thom (in the
unoriented case) and a theorem by Wall (in the oriented case).

We finally prove Thom’s theorem. In order to do that, we study in more
depth the structure of the unoriented cobordism ring. After defining the
Thom spectrum, we see how its homology groups allow a product operation
between them, and thus theirs direct sum gives the structure of a graded
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ring. We show, using the Thom–Pontrjagin construction, that this graded
ring is isomorphic as an algebra to the cobordism ring. Using the Hurewicz
morphism we relate this ring to the homology ring of the Thom prespectrum,
that has a known structure thanks to its relation to the Grassmannian ma-
nifold. Through this process, we are able to even see the explicit generators
of the unoriented cobordism ring as a Z/2Z-algebra.

Contents

1. In the first chapter we focus on the prerequisites concerning the char-
acteristic classes we use in the thesis. First of all, we define vector
bundles and some structures on them. We then pass to the study of
the unoriented characteristic classes, the Stiefel–Whitney classes, and
we define the Stiefel–Whitney numbers of a smooth closed manifold.
We also give an example of computation of these for the projective
space. We then center our attention to oriented vector bundles and
characteristic classes constructed on them. We study the Euler class
and, in the contest of complex vector bundles, the Chern classes. These
are necessary in order to construct the Pontrjagin class.

2. In the second chapter, we finally give the definition of (unoriented and
oriented) cobordism equivalence, n-cobordism group and (unoriented
and oriented) cobordism ring. We highlight its relation with charac-
teristic classes by proving the Pontrjagin theorems (for the unoriented
and the oriented scenario) and by stating Thom and Wall’s theorem.

3. In the last chapter, we concentrate on the unoriented cobordism ring,
and we prove Thom’s theorem. In order to do so, we define the Grass-
mann manifold and the universal vector bundle on it. We then define
the Thom space of a vector bundle, and we study some properties, both
in general and in the case of the Thom space of the universal bundle,
which in particular defines the Thom spectrum. We construct the ho-
motopy ring of the Thom spectrum, and we prove its isomorphism
with the cobordism ring. Moreover, knowing the cohomology ring of
the Grassmannian, using the Thom isomorphism and some duality, we
give the structure of the homology ring of the Thom spectrum. The
last thing we use to prove Thom’s theorem is the Hurewicz homomor-
phism and its injectivity. This also gives us the exact structure of the
cobordism ring, and so we also discuss its explicit generators.
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I
Prerequisites

In this chapter we are going to give some definitions and first results about
vector bundles and characteristic classes in order to use these notions later
in the thesis. Indeed, the goal of the dissertation is to show the connection
between characteristic classes and numbers (which are numbers defined out
of characteristic classes and associated to some manifold) and the unoriented
and oriented cobordism theory.

I.1 Vector bundles

The aim of this section is to define the structure of vector bundles, together
with maps between them and ways to construct new vector bundles from
old ones. This will give us the opportunity to define various characteristic
classes of vector bundles.

Definition I.1.1. Let B be a topological space. A real vector bundle ⇠ over

B is a map ⇡ : E ! B where E = E(⇠) is a topological space and for each

b 2 B, ⇡�1(b) is a real vector space. Moreover, these objects must satisfy the

local triviality condition: for every b 2 B, there exist a neighborhood of b

U ⇢ B, a non-negative integer n and a homeomorphism h : U⇥R
n ! ⇡�1(U).

For each b 2 U,

R
n ! ⇡�1(b)

x 7! h(b, x)

3
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defines an isomorphism R
n ⇠= ⇡�1(b). The space B is called the base space, E

the total space and ⇡ the projection map of the vector bundle. Lastly, (U, h)

will be called a local coordinate system for ⇠. If we can choose U = B, then

we will call ⇠ a trivial bundle.

For b 2 B we may denote the vector space ⇡�1(b) (which is the fiber

over b) by Fb or Fb(⇠). If the dimension of every fiber is n, we will call the
vector bundle an n-dimensional vector bundle (or n-plane bundle or even
R

n
-bundle). In any case, this dimension will be locally constant.
We will define in a later section a complex vector bundle similarly, using

a complex vector space instead of a real vector space, and taking homeomor-
phisms h : U ⇥ C

n ! ⇡�1(U) for the local triviality condition.
Furthermore, we can also define the concept of a smooth vector bundle,

taking B and E as smooth manifolds, ⇡ as a smooth map and each h as a
di↵eomorphism.

Note that even though we do not require explicitly the projection ⇡ to be
surjective, the fact that for each b 2 B its fiber is a vector space implies that
this fibre must be non empty (indeed, if it is isomorphic to a 0-dimensional
vector space it consists of a single point).

Let now see some examples:

Example I.1.1. 1. We will denote by "nB the trivial Rn-bundle with base

space B, total space B ⇥ R
n and projection maps ⇡(b, x) = b;

2. The tangent bundle ⌧M of a smooth manifold M will have as the total

space the tangent manifold

DM = {(x, v)| x 2 M, v tangent to M at x} = [x2MDMx,

base space M and projection maps ⇡(x, v) = x. We denoted by DMx

the tangent space of M at x 2 M : it is the fibre of the point x. By

saying that a vector is tangent to the manifold at a point we mean that

the vector may be expressed as the velocity vector dp
dt |t=0 of some smooth

path p : (��, �) ! M , � 2 R>0, such that p(0) = x. The bundle ⌧M is

an example of a smooth vector bundle. If M has constant dimension n,

then also each DMx has dimension n, so ⌧M is an n-dimensional vector

bundle;
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3. The normal bundle ⌫ of a smooth manifold M embedded in a manifold

N has as total space

{(x, v)| x 2 M, v orthogonal to DMx},

base space M and projection maps ⇡(x, v) = x, where by v 2 N

orthogonal we mean that the standard real inner product of v with

any vector in DMx is zero. If M has constant dimension n and it is

embedded in a manifold of dimension n+q, the space of normal vectors

to a point will have dimension q, and thus ⌫ will be an q-dimensional

vector bundle;

4. Taking the real projective space Pn as base space (seen as the quotient

S
n via the equivalent relation x ⇠ �x for x 2 S

n), the canonical line

bundle is denoted by �1n. It consists of total space E ⇢ P
n⇥R

n+1, with

([x], v) 2 E where x 2 S
n, [x] = {x,�x} and v a scalar multiple of x.

The projection maps are just ⇡([x], v) = [x] and ⇡�1([x]) = {[x]} ⇥ l

where l ⇢ R
n+1 is the line containing x and �x.

We defer to [MS05] for the proofs of local triviality and the structures of

vector spaces of the fibres. In particular, the structure of the fibres is always

quite natural to describe.

Now, let ⌘ and ⇠ be two vector bundles over the same base space B.

Definition I.1.2. ⌘ is isomorphic to ⇠ (⌘ ⇠= ⇠) if there exists a homeo-

morphism f : E(⌘) ! E(⇠) such that for every b 2 B, Fb(⌘) is sent via f

isomorphically (as vector spaces, so in particular f is linear) to Fb(⇠).

We now need to define the concept of sections and nowhere dependency:

Definition I.1.3. Let ⇠ be a vector bundle with base space B. A section of

⇠ is a continuous function

s : B ! E(⇠)

that takes each b 2 B to a point in Fb(⇠). A section is nowhere zero if s(b)

is a non-zero vector of Fb(⇠) for every b 2 B.
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Remark I.1.4. Asking that s(b) is a vector of Fb(⇠) is equivalent to asking

that ⇡ � s = idB.

Moreover, notice that each vector bundle has as a canonical section which
just maps each point of the base space to the zero vector in each fibre.

Definition I.1.5. This section is called the zero section, and we will denote

it by s0.

Note that for any smooth manifold M, the zero section of its tangent
bundle and of its normal bundle are di↵eomorphic to M itself.

Since we are working with vectors in vector spaces, we need to define
some condition regarding the linear dependence/independence.

Definition I.1.6. Let {s1, . . . , sn} be sections of a vector bundle ⇠ with base

space B. These sections are nowhere dependent if the vectors s1(b), . . . , sn(b)

are linearly independent in Fb(⇠) for every b 2 B.

Obviously, if the minimal dimension of the fibres of ⇠ is some natural
number m, we can have at most m nowhere linear sections.

Remark I.1.7. The existence of nowhere dependent sections gives us a nice

characterization of trivial n-plane bundles. Indeed, given an n-dimensional

vector bundle, this is isomorphic (as a vector bundle) to the trivial bundle

if and only if there exist n nowhere dependent sections s1, . . . , sn. The first

direction is obvious since given a trivial vector bundle, we easily can find

n nowhere dependent sections, and the isomorphism will take independent

vectors to independent vectors, which will be the nowhere dependent sections

of our n-plane bundle. On the other hand, if we have nowhere dependent

sections s1, . . . , sn of ⇠ : E ! B, we can define the map

f : B ⇥ R
n !E

(b, t1, . . . , tn) 7!
nX

i=1

tisi(b)

which is linear in each fibre and will be an isomorphism thanks to [Hat17,

Lemma 1.1].
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Now that we have constructed the basic concepts to work with vector
bundles, we would like to construct and study new bundles from pre-existing
ones.

Let ⇠ be a vector bundle with projection ⇡ : E ! B. It is possible to
construct new vector bundles from ⇠.

(i) Restricting a bundle to a subset of the base space: let B ⇢ B. If we
set E = ⇡�1(B) and ⇡ = ⇡|E : E ! B, we get a vector bundle that
we will denote by ⇠|B and call the restriction of ⇠ to B. The fibres will
be the same of the original bundle (Fb(⇠) = Fb(⇠|B) for b 2 B) and the
same vector space structure of the corresponding ones in ⇠.

(ii) Induced bundles: let B0 be a topological space and f : B0 ! B any
map. We can construct the induced bundle f ⇤⇠ over B0 as the vector
bundle with total space E 0 = {(b, e) 2 B0 ⇥ E| f(b) = ⇡(e)} and
projection map

⇡1 : E
0 ! B0

(b, e) 7! b.

If we define a map f̂ : E 0 ! E as f̂(b, e) = e, we thus get a commuting
diagram

E 0 E

B0 B
f

⇡1 ⇡

f̂

.

Via f̂ , Fb(f ⇤⇠) ⇠= Ff(b)(⇠).

Observe that the bundle induced by the inclusion ◆ : B ,! B is isomorphic
to the restriction bundle.

We can generalize the construction of f̂ through the following definition:

Definition I.1.8. Let ⌘ and ⇠ be vector bundles, with total spaces E(⌘), E(⇠)

and base spaces B(⌘), B(⇠). A bundle map from ⌘ to ⇠ is a continuous linear

(i.e. linear on the fibers) function

g : E(⌘) ! E(⇠)

such that for each b 2 B(⌘), g sends isomorphically Fb(⌘) into Fb0(⇠) (as

vector spaces) for some b0 2 B(⇠).

7



Prerequisites

If we set g(b) = b0, we get a continuous function g : B(⌘) ! B(⇠). We say
that g covers g (or lies over g).

Remark I.1.9. Any isomorphism of vector bundles is a bundle map between

vector bundles with the same base space, b = b0 (i.e. g is the identity map)

and f : E(⌘) ! E(⇠) a homeomorphism (and not just continuous and linear).

Example I.1.2. If " is a trivial vector bundle, then there exists a bundle map

from " to a vector bundle with base space a point. In particular, this vector

bundle is the vector bundle with base space {p}, total space Rn and projection

map ⇡(x) = p: obviously ⇡�1(p) = R
n is a vector space and moreover, it

obviously satisfies the local triviality condition. Then, the bundle map is a

continuous function

g : B(")⇥ R
n ! R

n

with g(Fb(")) = g({b}⇥ R
n) ⇠= R

n = ⇡�1(p).

Moreover, let ⇠1, ⇠2 be a vector bundle with projection maps ⇡i : Ei ! Bi,
i = 1, 2. It is possible to construct new vector bundles from ⇠1, ⇠2.

(iii) Cartesian products: The Cartesian product ⇠1 ⇥ ⇠2 is the bundle with
total space E1 ⇥ E2, base space B1 ⇥ B2 and projection map ⇡1 ⇥ ⇡2.
The fibers are given by Fb1(⇠1)⇥ Fb2(⇠2) for each (b1, b2) 2 B1 ⇥ B2.

(iv) Whitney sums: Let B1 = B2. Consider the diagonal embedding

d : B ! B ⇥ B

b 7! (b, b)
.

The induced bundle d⇤(⇠1 ⇥ ⇠2) := ⇠1 � ⇠2 is called the Whitney sum of
⇠1 and ⇠2. Each fiber Fb(⇠1� ⇠2) is canonically isomorphic to the direct
sum of vector spaces Fb(⇠1)� Fb(⇠2).

Lastly, we want to give other two definitions in order to present another
construction:

Definition I.1.10. Let ⇠ and ⌘ be two vector bundles over the same base

space B such that the total space of ⇠ is a subset of the total space of ⌘. Then,

we say that ⇠ is a sub-bundle of ⌘ (⇠ ⇢ ⌘) if for each b 2 B, Fb(⇠) ⇢ Fb(⌘) as

vector spaces.
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Recall that an Euclidean vector space is a real vector space V with a
positive definite quadratic function µ : V ! R (which determines an inner

product v · w = 1
2(µ(v + w)� µ(v)� µ(w)), for each v, w 2 V ). Then:

Definition I.1.11. A real vector bundle ⇠, together with a continuous func-

tion µ : E(⇠) ! R, is an Euclidean vector bundle if the restriction of µ to

each fiber of ⇠ is positive definite and quadratic.

(v) Orthogonal complements: If ⌘ is an Euclidean bundle with a sub-
bundle ⇠, we can define the orthogonal complement ⇠? of ⇠ in ⌘ as
the sub-bundle with total space E(⇠?), where this is the union of all
the Fb(⇠?) = {v 2 Fb(⌘)| v · w = 0 8w 2 Fb(⇠)}. By [MS05, Theorem
3.3], ⇠? is actually a sub-bundle of ⌘ and ⌘ ⇠= ⇠ � ⇠?.

If a smooth manifold M is embedded in some real space Rd for d big enough,
then the tangent bundle of M , ⌧M is a sub-bundle of the restriction ⌧Rd |M ,
which is a trivial bundle. Moreover, the orthogonal complement of ⌧M in
⌧Rd |M is by definition the normal bundle, so we get that

⌧M � ⌫M ⇠= "d.

I.2 Stiefel–Whitney Classes

In this section we will introduce a first kind of characteristic classes, the
Stiefel–Whitney classes. We will define them without proving their existence
or their uniqueness, and we will defer the proof of that to [MS05, Chapter
8]. Moreover, we will present the Stiefel–Whitney numbers, important coho-
mology invariants. These last objects are Stiefel–Whitney classes of tangent
bundles of manifolds, and can be crucial in the study of the unoriented cobor-
dism ring. We will also define the normal Stiefel–Whitney numbers and see
their connection with (tangential) Stiefel–Whitney numbers.

Our definition of Stiefel–Whitney classes will be the following axiomatic
one.

Definition I.2.1. Let ⇠ be a vector bundle. We can define the Stiefel–

Whitney classes of ⇠ as the cohomology classes wi(⇠) 2 H i(B(⇠);Z/2Z), for

i 2 Z�0, that satisfy the following axioms:

9
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1. The 0th-class is w0(⇠) = 1 2 H0(B(⇠);Z/2Z) and wi(⇠) = 0 for i > n

if ⇠ is an n-plane bundle;

2. Naturality: If f : B(⇠) ! B(⌘) is covered by a bundle map from ⇠ to

⌘, then

wi(⇠) = f ⇤wi(⌘);

3. The Whitney product theorem: If ⇠ and ⌘ are vector bundles over the

same base space, then

wk(⇠ � ⌘) =
kX

i=0

wi(⇠)^ wk�i(⌘);

4. Non-triviality: The first Stiefel–Whitney class w1(�11), where �
1
1 is the

line bundle over P1, is non zero.

Remark I.2.2. Notice that the fourth condition excludes the case of having

every Stiefel–Whitney class wi with i > 0 equal to zero. Moreover, recalling

that H1(P1;Z/2Z) ⇠= Z/2Z, due to the non-triviality condition we get that

we must have w1(�11) ⇠= 1 (as expected since the Stiefel–Whitney classes are

unique).

Indeed, we have the following theorem, that we will not prove, which
states the existence and uniqueness of the Stiefel–Whitney classes.

Theorem I.2.3. There exists one and only one correspondence ⇠ 7! wi(⇠)

for every i � 0, which associates to each vector bundle ⇠ over a paracompact

base space B a cohomology class wi(⇠) 2 H i(B;Z/2Z) which satisfy the four

axioms of the definition above.

For the proof of the uniqueness, we defer to [MS05, Theorem 7.3], whereas
for the existence we cite the proof in [MS05, Chapter 8].

We have some straightforward consequences given by these four axioms.
In particular, thanks to the second and third axioms:

Proposition I.2.4. If ⇠ is isomorphic to ⌘, then wi(⇠) = wi(⌘) for all i 2
Z�0.

10
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Proof. Let g : E(⇠) ! E(⌘) be the isomorphism. By Remark I.1.9, we get

the map id : B(⇠) ! B(⌘). We conclude by axiom 2, wi(⇠) = id⇤ wi(⌘) =

wi(⌘).

Proposition I.2.5. If " is a trivial bundle, then wi(") = 0 for every i > 0.

Proof. It is a direct consequence of Example I.1.2 and axiom 2.

Proposition I.2.6. If " is a trivial vector bundle and ⌘ is any vector bundle,

then wi(⌘ � ") = wi(⌘) for i > 0.

Proof. For i = 0, wi(⌘ � ") = 1 = wi(⌘) by definition. For i > 0, by the

previous proposition and axiom 3

wi(⌘ � ") =
kX

i=0

wi(⌘)^ wk�i(") = wk(⌘)^ w0(") +
k�1X

i=0

wi(⌘)^ 0 =

=wk(⌘)^ w0(") = wk(⌘)^ 1 = wk(⌘),

where we also used axiom 1.

Proposition I.2.7. Let ⇠ be an Euclidean n-plane bundle with a nowhere

zero section. Then wn(⇠) = 0. More generally, if ⇠ has k nowhere linearly

dependent sections, then

wn�k+1(⇠) = · · · = wn(⇠) = 0.

Proof. If k = 1, being nowhere zero is equivalent to being nowhere dependent,

so it is enough to prove the second part of the statement. By Remark I.1.7,

there is a sub-bundle of ⇠ given by the k nowhere dependent sections. This

bundle, which we will denote ", is a trivial k-plane bundle. Thanks to I.1, ⇠

splits as a Whitney sum " � "? (where "? is an (n � k)-plane bundle). By

Proposition I.2.6,

wi(⇠) = wi("� "?) = wi("
?)

and by axiom 1, wi("?) = 0 for i > n� k. This proves our statement.

11
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We can now see how these classes can be seen as elements of the following
graded ring.

Definition I.2.8. We will denote by H
Q
(B;Z/2Z) the ring with elements

the formal series

a = a0 + a1 + a2 + . . .

with ai 2 H i(B;Z/2Z).

This is indeed a commutative ring, with the obvious sum and product
operations, where we will just need to be careful about the degrees. For
example, taking a = a0+a1+a2+ . . . , b = b0+ b1+ b2+ · · · 2 H

Q
(B;Z/2Z),

(a + b)i = ai + bi 2 H i(B;Z/2Z) and (a · b)i =
Pi

k=0 akbi�k 2 H i(B;Z/2Z).
The product is associative and commutative (since we are working modulo
2).

This ring contains a very special element:

Definition I.2.9. Let ⇠ be an n-dimensional bundle over B. We will call

total Stiefel–Whitney class of ⇠ the element

w(⇠) = 1 + w1(⇠) + w2(⇠) + · · ·+ wn(⇠) + 0 + · · · 2 H
Q
(B;Z/2Z).

Thanks to this formulation, we can now restate the Whitney product

theorem (axiom 3) as

w(⇠ � ⌘) = w(⇠)^ w(⌘). (I.1)

Note that we usually work only with finite dimensional vector bundles (i.e.
vector bundles whose fibers are all finite dimensional vector spaces), and the
only example of infinite dimensional vector bundle that we will encounter
(and thus the only case when we will need this generality about the formal
group) will be the universal bundle in Chapter 3.

Let’s now introduce the concept of Stiefel–Whitney numbers. These will
take an important role in the study of the cobordism ring: in particular, we
will see that these will be cobordism invariants.

Consider a smooth closed (i.e. compact without boundary) n-dimensional
manifold M. Since every manifold is Z/2Z-orientable and there exists a
unique Z/2Z orientation, there exists a unique fundamental class µM 2

12
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Hn(M ;Z/2Z) (for more details, check Appendix A). Moreover, the Kronecker

pairing

hv, µMi := v[M ] 2 Z/2Z

is well defined for every v 2 Hn(M ;Z/2Z).
Moreover, if we consider integers r1, . . . , rn 2 Z�0 such that

r1 + 2r2 + · · ·+ nrn = n,

we get that for any vector bundle ⇠,

w1(⇠)
r1 ^ · · ·^ wn(⇠)

rn

is an element of Hn(B(⇠);Z/2Z).
Combining these two things allows us to define the Stiefel–Whitney num-

bers:

Definition I.2.10. Given a manifold M and integers r1, . . . , rn as above, we

can define the (tangential) Stiefel–Whitney number associated to r1, . . . , rn
as

hw1(⌧M)r1 ^ · · ·^ wn(⌧M)rn , µMi := wr1
1 · · ·wrn

n [M ] 2 Z/2Z.

We will say that two di↵erent n-manifolds M,M 0 have the same Stiefel–
Whitney numbers if wr1

1 · · ·wrn
n [M ] = wr1

1 · · ·wrn
n [M 0] for every combination

of r1, . . . , rn of dimension n. Note that Stiefel–Whitney numbers are invari-
ant under di↵eomorphism. However two manifolds with the same Stiefel–
Whitney numbers are not di↵eomorphic in general.

We can also define the normal Stiefel–Whitney numbers, but to that we
first need some di↵erential topology notions.

First of all, we need to see a theorem about embeddings.

Theorem I.2.11 (Strong embedding theorem). Every compact boundaryless

smooth n-dimensional manifold M can be embedded in R
2n.

This theorem is also called the Whitney embedding theorem, and can be
found in [Ben21, Theorem 7.17].

Whilst discussing embeddings, we want to recall what an isotopy is.

Definition I.2.12. Let f, g be two embeddings X ! Y. An isotopy between

f and g is an homotopy H : X ⇥ [0; 1] ! Y between them such that for each

s 2 [0, 1], Hs = H(·, s) : X ! Y gives an embedding. The maps f and g will

be called isotopic.

13
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Note that for q large enough, any two embedding of an n-dimensional
manifold M in R

n+q are in fact isotopic. Moreover, if we consider the normal
bundle of M in R

n+q, any two embedding of an n-dimensional manifold M
in R

n+q have equivalent normal bundles (for a reference of this statement
and the relative proof, check [Lan02]). Thus the isomorphism class of the
normal bundle is uniquely defined and therefore the (isomorphism class of
the) stable normal bundle of M is defined abstractly, independently of an
embedding.

Definition I.2.13. Given a manifold M and integers r1, . . . , rn as above, we

can define the normal Stiefel–Whitney number associated to r1, . . . , rn as

hw1(⌫M)r1 ^ · · ·^ wn(⌫M)rn , µMi := wr1
1 · · ·wrn

n [⌫(M)] 2 Z/2Z,

where ⌫M is the normal bundle of M in R
n+q for q su�ciently large.

These are well-defined because, as we stated before, any two embedding
of an n-dimensional manifold M in R

n+q have equivalent normal bundles.
We can relate tangential and normal Stiefel–Whitney numbers as a con-

sequence of the following formula.

Lemma I.2.14 (Whitney duality formula). Let M be a smooth closed n-

dimensional manifold, embedded in R
n+q

for q large enough. Then

w(⌧M)^ w(⌫M) = 1.

Proof. Since the tangent bundle of any real space is trivial, for q large enough

⌧M � ⌫M ⇠= "n+q. By the product formula I.1, this implies that

w(⌧M)^ w(⌫M) = w(⌧M � ⌫M) = w("n+q),

which is 1 by Proposition I.2.5.

As a corollary, we get the following lemma.

Lemma I.2.15. Let M be a smooth closed n-dimensional manifold. Then all

its tangential Stiefel–Whitney numbers are zero if and only if all its normal

Stiefel–Whitney numbers are zero.

14
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Proof. The Whitney duality formula implies that every tangential Stiefel–

Whitney class wi(⌧M) is a polynomial with variables w1(⌫M), . . . , wq(⌫M)

and that every normal Stiefel–Whitney class wi(⌫M) is a polynomial with

variables w1(⌧M), . . . , wn(⌧M). Indeed, the formula tells us that for every

i > 0, the i-th degree part of w(⌧M) ^ w(⌫M) (which is
Pi

k=0 wk(⌧M) ^

wi�k(⌫M)) must be zero. Through an induction process over i, we get these

polynomials. This tells us that if every tangential Stiefel–Whitney number of

M is zero, then every normal Stiefel–Whitney number is zero, and conversely

if every normal Stiefel–Whitney number of M is zero, then every tangential

Stiefel–Whitney number is zero.

I.3 Stiefel–Whitney numbers of the projec-

tive space

In this section we are going to give an actual example of computation of
Stiefel–Whitney classes and numbers. In particular, we are going to study
the tangent bundle of the projective space, in order to compute its Stiefel–
Whitney numbers. This will be an important example in later chapters, since
it gives us the description of some elements of the unoriented cobordism ring.

Consider a projective space Pn. Firstly, we need to understand better the
structure of the tangent bundle ⌧Pn . In order to do so, we need the following
new construction, the Hom vector bundle. Let ⇠1 and ⇠2 be two vector bundles
with the same base space B. Given two vector spaces V1, V2, we get the vector
space Hom(V1, V2) of linear maps with domain V1 and codomain V2. We can
extend this concept also to vector bundles: Hom(⇠1, ⇠2) will be the vector
bundle over B with fibres Fb(Hom(⇠1, ⇠2)) = Hom(Fb(⇠1), Fb(⇠2)), total space
the disjoint union of these and projection map ⇡(Fb) = b. There exists a
unique canonical topology on the total space so that this is the total space of
a vector bundle with projection ⇡ and with fibres Fb by [MS05, Theorem 3.6].
The idea behind this is that we can construct local coordinates using the local
coordinates of the vector bundles we are starting with: given an open U ⇢ B
and maps h1, h2 : U ⇥ R

ni ! ⇡�1
i (U), for every b 2 B we can define the

isomorphism Hom(h1(b, ·), h2(b, ·)) : Hom(Rn1 ,Rn2) ! Hom(Fb(⇠1), Fb(⇠2)).
It can be proved that there exists a unique topology on the total space such
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that

h : U ⇥ Hom(Rn1 ,Rn2) ! Hom(Fb(⇠1), Fb(⇠2))

(b, ) 7! Hom(h1(b, ), h2(b, ))

is an homeomorphism (and thus we can choose it as local coordinate system
for this Hom bundle).

We have the following property about the Hom construction when we
work with Euclidean vector bundles.

Remark I.3.1. If ⇠ is an Euclidean vector bundle of finite dimension (i.e.

all the fibres are finite dimensional vector spaces), then ⇠ is isomorphic

to the bundle Hom(⇠, "1) where "1 is a 1-dimensional trivial bundle over

the same base space as ⇠. This vector bundle is usually called the dual

bundle of ⇠. The isomorphism is just the linear map that takes each fibre

Hom(Fb(⇠), Fb("1)) = Hom(Fb(⇠), {b} ⇥ R) ⇠= Hom(Fb(⇠),R) = Fb(⇠)_ iso-

morphically to Fb(⇠) (using the symmetric form given by the Euclidean metric

on Fb(⇠)).

We also have the following lemma that carries with it a really important
consequence on bundles over the real projective space P

n.

Lemma I.3.2. The tangent bundle of the real projective space P
n
is isomor-

phic to the bundle Hom(�1n, (�
1
n)

?).

Here, we considered �1n as a sub-bundle of the trivial bundle "n+1 over
P
n (for each x 2 P

n, its fibre Fx(�1n) is the line l 2 R
n+1 through x and �x,

which is a linear subspace of Rn+1, which is the fibre Fx("n+1)), so by [MS05,
Theorem 3.3], �1n � (�1n)

? ⇠= "n+1.
For the proof of this lemma, check [MS05, Lemma 4.4]. We use this

lemma to prove the following theorem.

Theorem I.3.3. Let ⌧Pn be the tangent bundle of P
n, and let "1 be a trivial

line bundle over P
n
. Then, the Whitney sum ⌧Pn � "1 is isomorphic to the

(n+ 1)-fold Whitney sum �1n � · · ·� �1n.

Proof. By I.3.2, we know that ⌧Pn � "1 ⇠= Hom(�1n, (�
1
n)

?)� "1.

Since "1 ⇠= Hom(�1n, �
1
n) (for each x 2 P

n, its fibre Fx(Hom(�1n, �
1
n)) is

Hom(l, l) ⇠= R
1, where l is the line containing x and �x, whereas its fibre

16
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Fx("1) is {x}⇥R
1, so these vector bundles are isomorphic) we get that ⌧Pn �

"1 ⇠= Hom(�1n, (�
1
n)

?) � Hom(�1n, �
1
n). This is isomorphic to Hom(�1n, (�

1
n)

? �
�1n). Knowing that (�1n)

? � �1n ⇠= "n+1 and that "n+1 ⇠= "1 � · · ·� "1, we get

the following chain of isomorphisms

⌧Pn � "1 ⇠= Hom(�1n, (�
1
n)

? � �1n) ⇠= Hom(�1n, "
n+1) ⇠=

⇠= Hom(�1n, "
1 � · · ·� "1) ⇠=

⇠= Hom(�1n, "
1)� · · ·� Hom(�1n, "

1).

By the Remark I.3.1 Hom(�1n, "
1) ⇠= �1n, and we get the desired result

⌧Pn � "1 ⇠= �1n � · · ·� �1n.

We can finally introduce an example of computation of Stiefel–Whitney
classes: the Stiefel–Whitney classes of the tangent bundle of real projective
space P

n.

Example I.3.1. We want to compute the total Stiefel–Whitney class w(⌧Pn).

By Proposition I.2.6, we know that w(⌧Pn) = w(⌧Pn � "1). Using Theo-

rem I.3.3, we get that ⌧Pn � "1 ⇠= �1n � · · · � �1n, and thus by Proposition

I.2.4, w(⌧Pn � "1) = w(�1n � · · · � �1n). By the product formula (axiom 3)

w(�1n � · · ·� �1n) = w(�1n) [ · · · [ w(�1n). We claim that w(�1n) = 1 + a where

a 2 H1(Pn;Z/2Z) is the non-zero element. Recall that H⇤(Pn;Z/2Z) ⇠=
Z/2Z[a]han+1i, thus

w(⌧Pn) = (1 + a)n+1 2 Z/2Z[a]

han+1i .

Now, we need to prove the claim. Since �1n is a line bundle, by axiom 1

wi(�1n) = 0 for i > 1. Thus, w(�1n) = 1+w1(�1n). To compute the first Stiefel–

Whitney class, note that the inclusion map ◆ : P
1 ! P

n is covered by a

bundle map �11 ! �1n. Thus, by naturality 2 and the non-triviality 4 we have

that

◆⇤(w1(�
1
n)) = w1(�

1
1) 6= 0

17
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and thus w1(�1n) 6= 0. Indeed, ◆⇤ : H1(Pn;Z/2Z) ! H1(P1;Z/2Z) is a linear

map, so the zero element cannot be mapped in a non zero element. Since

H1(Pn;Z/2Z) = {0, a} ⇠= Z/2Z, w1(�1n) must be the element a.

Now that we have computed the Stiefel–Whitney classes of ⌧Pn , computing
the Stiefel–Whitney numbers of Pn will be straightforward.

Example I.3.2. Using Example I.3.1, we see that w(⌧Pn) = (1 + a)n+1 =
Pn

j=0

�
n+1
j

�
aj. We need to divide in two cases now. If n is odd, n + 1 = 2k

for some k > 0. Since we are working in characteristic 2,

w(⌧Pn) = (1 + a)2k = (1 + a2)k = 1 +

✓
n+ 1

1

◆
a2 +

✓
n+ 1

2

◆
a4 + . . . .

It is clear that there will be no classes in odd degrees, so wj(⌧Pn) = 0 for j odd.

Now, let’s consider integers r1, . . . , rn 2 Z�0 such that r1+2r2+· · ·+nrn = n.

Since n is odd, there will exists an odd integer j  n such that rj 6= 0.

Therefore, w1(⌧Pn)r1 ^ · · · ^ wj(⌧Pn)rj ^ · · · ^ wn(⌧Pn)rn = w1(⌧Pn)r1 ^

· · · ^ 0 ^ · · · ^ wn(⌧Pn)rn = 0, so wr1
1 · · ·wrn

n [Pn] = 0. Therefore, every

Stiefel–Whitney number of an odd dimensional real projective space is zero.

On the other hand, if n is even, we have that some Stiefel–Whitney

are always non zero. For example, wn(⌧Pn) =
�
n+1
n

�
an = (n + 1)an and

w1(⌧Pn) =
�
n+1
1

�
a = (n+1)a, which are non zero since n+1 ⌘ 1 mod 2 and

a is the non zero element of the first cohomology group of Pn. Therefore, if we

choose rn = 1 we get the Stiefel–Whitney number w1
n[P

n] = h(n+1)an, µPni =
(n+1) ⌘ 1 mod 2 and for r1 = n, wn

1 [P
n] = h(n+1)nan, µPni = (n+1)n ⌘ 1

mod 2.

I.4 Oriented vector bundles and Euler class

In this section, we want to present the Euler class of an oriented vector
bundle. In order to do so, we first need to define the concept of orientation
of a vector bundle. The Euler class will be essential in order to define the
Chern classes, that we will see afterwards.
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Moreover, we will focus several times on orientation of the tangent bundles
and manifolds (which we will see are equivalent), so it might be important
to see the following results.

Firstly, recall the following definition:

Definition I.4.1. An orientation of a real n-dimensional vector space V is

an equivalence class of ordered bases, where the equivalence relation that

defines the class is the following:

v1, . . . , vn ⇠ v01, . . . , v
0
n () det(Avv0) > 0

where Avv0 is the transition matrix from v1, . . . , vn to v01, . . . , v
0
n (i.e. v0i =Pn

j=1 aijvj and A = (aij)i,j).

We can thus define what an oriented vector bundle is.

Definition I.4.2. An orientation on an n-plane bundle ⇠ : E
⇡�! B is a choice

of compatible orientations for each fibre Fb(⇠), where compatible means that

for each b0 2 B, there exists a trivializing chart (U, h) for ⇠ such that b0 2 U

and for every b 2 U, h|{b0}⇥Rn : {b0} ⇥ R
n

⇠=�! Fb(⇠) is orientation preserving

(Rn has its standard orientation).

Equivalently, there exist nowhere dependent sections s1, . . . , sn of ⇠|U such

that for every b 2 U, s1(b), . . . , sn(b) is an orientation basis for Fb(⇠).

In the appendix, we give the definition of orientation for a manifold.
Sometimes, we will use the following equivalent definition of orientable man-
ifold:

Definition I.4.3. A smooth n-manifold M is orientable if its tangent bundle

⌧M is orientable. An orientation on M is an orientation on ⌧M .

The two definitions are equivalent. Indeed, we have the following lemma.

Lemma I.4.4. Let M be a manifold and ⌧M be its tangent bundle. Any

orientation for ⌧M gives rise to an orientation for the underlying manifold

M and conversely any orientation for M induces an orientation on ⌧M .
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This is proved in [MS05, Lemma 11.6].
In the interest of stating and proving the following theorem, we want to

recall that, given an oriented n-plane bundle ⇠ : E
⇡�! B, for each fibre F , the

cohomology group Hn(F, F0;Z) has a canonical generator ũF . We denote by
F0 the set

F0 = F \ E0 = F \ {e 2 E| e 2 F⇡(e)(⇠) \ s0(⇡(e))} = F \ {0} ⇠= R
n \ {0},

where E0 = E\s0(B) is called the deleted total space and s0 is the zero section
Thus, Hn(F, F0;Z) ⇠= Hn(Rn,Rn \ {0};Z). This isomorphism is specified by
the orientation preserving map h that we find in the definition of oriented
bundle. A choice of generator of Hn(Rn,Rn \ {0};Z) ⇠= Z gives us a genera-
tor for every fiber and therefore Hn(F, F0;Z) possesses a canonical generator
corresponding to 1 or �1, (depending on the orientation of F , which is de-
termined by the orientation of ⇠) which we will denote ũF . Analogously, for
any commutative ring with unity R, Hn(F, F0;R) ⇠= R = h1Ri, and we will
denote the preimage of 1R by uF . This corresponds to an R-orientation of the
bundle. Analogously to the case of oriented manifolds, if a bundle is oriented
(i.e. Z-oriented) it is also R-oriented for all commutative rings with unity R.

If we take any commutative ring with unity R, the ring homomorphism
Z ! R that sends 1 to the unity of R, determines a coe�cient homomorphism

Hn(F, F0;Z) !Hn(F, F0;R)

ũF 7!uF
.

We will consider only the case R = Z or R = Z/2Z, so in the first case this
map will be the identity and in the latter, uF will be the only non-trivial
element of Hn(F, F0;Z/2Z), and the map will send kũF to 0 for k even and
to uF for k odd.

Now that we noted the importance of the class uF , we are going to see a
theorem that highlights it. Observe that if we are working with R = Z/2Z,
for each fiber F there is just one generator uF , so there is just one choice of
orientation for each fibre. Therefore, there always exists a Z/2Z-orientation
and it is unique.

Theorem I.4.5 (Thom isomorphism). Let R be a commutative ring with

unity and ⇠ : E
⇡�! B an R-oriented n-plane bundle. Then there is one and
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only class uR 2 Hn(E,E0;R) whose restriction to each fibre F is uF , i.e.

Hn(E,E0;R) !Hn(F, F0;R)

uR 7!uF

.

Moreover, for every q � 0, Hq(E;R) = Hq(E, ;;R)
^uR���! Hq+n(E,E0;R) is

an isomorphism.

For the proof of this theorem, we recommend [MS05, Chapter 10].
Observe that the last map is defined using the relative cup product ^:

Hq(E, ;;R) ⇥ Hn(E,E0;R) ! Hq+n(E,E0 [ ;;R) = Hq+n(E,E0;R), that
one might study in depth on [Mun84, Chapter 48, pages 290-291]. This
relative cup product can be seen intuitively in the following way: if ↵ 2
Hq(E;R) and � 2 Hn(E,E0;R), then ↵ ^ � is an element of Hn+q(E;R)
and since � is zero on the simplices of E0, also the cup product will be the zero
homomorphism on the simplices of E0, and thus ↵ ^ � 2 Hn+q(E,E0;R).

The theorem lets us define important objects, needed to define the Euler
class.

Definition I.4.6. We will call uR the (R-)Thom class and

� = (^ uR) � ⇡⇤ : Hq(B;R) !Hq+n(E,E0;R)

x 7!⇡⇤(x)^ uR

the (R-)Thom isomorphism.

Before continuing, please note that the map ⇡⇤ : Hq(B;R) ! Hq(E;R)
induced by the projection ⇡ : E ! B is an isomorphism, since B is iso-
morphic to s0(B) ⇢ E, and s0(B) is a deformation retract of E, where the
retraction is ⇡ itself. Therefore, the Thom isomorphism is an actual isomor-
phism, since it is the composition of two isomorphisms.

Finally we can define the Euler class. Let ⇠ : E
⇡�! B be an oriented

n-plane bundle, u 2 Hn(E,E0;Z) the associated Thom class and

� : H i(B;Z) !H i+n(E,E0;Z)

x 7!⇡⇤(x)^ u

the Thom isomorphism.
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Definition I.4.7. The Euler class of ⇠, e(⇠) 2 Hn(B;Z) is given by

e(⇠) = (⇡⇤)�1(i⇤(u)) = (⇡⇤)�1(u|E)

where i : (E, ;) ! (E,E0) is the inclusion.

Remark I.4.8. We have the following commuting diagram

e(⇠) i⇤(u) u

Hn(B;Z) Hn(E;Z) Hn(E,E0;Z)

H2n(E,E0;Z)

�
^u

i⇤⇡⇤

^u

so

�(e(⇠)) = ⇡⇤(e(⇠))^ u = i⇤(u)^ u = u^ u

and thus an equivalent definition of the Euler class is

e(⇠) = ��1(u^ u).

The Euler class possesses some nice and important properties that we
will use frequently. The first of these is its naturality with respect to bundle
maps:

Theorem I.4.9. Let f : B ! B0
be covered by a preserving bundle map of

oriented n-plane bundles ⇠ ! ⇠0. Then the Euler class of ⇠ is the pullback of

the Euler class of ⇠0

e(⇠) = f ⇤(e(⇠0)).

Remark I.4.10. This theorem implies that for a trivial n-plane bundle ⇠ (for

n > 0), e(⇠) = 0. Indeed, by Example I.1.2, there exists a vector bundle map

such that the following diagram commutes

⇠ : E(⇠) B(⇠)

⇠0 : {p}⇥ R
n {p}

f .
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In this case, since Hn({p};Z) = 0, and thus e(⇠0) = 0, we get

e(⇠) = f ⇤(e(⇠0)) = f ⇤(0) = 0.

Since we are working with oriented bundles, it shouldn’t be a surprise
that the Euler class is dependent on the orientation. Indeed, we have the
following result:

Proposition I.4.11. Let ⇠ be an oriented n-plane bundle. Let �⇠ denote ⇠

with the opposite orientation. Then

e(�⇠) = �e(⇠).

The last property that we want to highlight is the product formula.

Theorem I.4.12. Let ⇠, ⇠0 be two oriented vector bundles. Then,

e(⇠ ⇥ ⇠0) = e(⇠)⇥ e(⇠0).

If the base spaces of the two vector bundles coincide, we get that

e(⇠ � ⇠0) = e(⇠)^ e(⇠0).

Note that we have defined Euler classes only on oriented bundles. Both
for the product and the Whitney sum of oriented vector bundles, their ori-
entation is induced by the orientations of ⇠, ⇠0 in the following way: for each
fibre, the compatible orientation is just given by concatenating one orienta-
tion basis for ⇠0 to an orientation basis for ⇠.

I.5 Complex vector bundles

In this section we will give the definition of complex vector bundles, and
we will see which objects a complex vector bundle allows us to define. The
main purpose of doing this is to be able to define the Chern classes, which are
characteristic classes on complex vector bundles, and some of these properties
on complexified vector bundles will be essential in the definition of Pontrjagin
classes, which play an important role in the oriented cobordism ring.

The definition of a complex vector bundle is actually identical to the one
of a real vector bundle, having the foresight to ask the fibres to be complex
vector spaces and to substitute R

n with C
n in the local triviality condition:
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Definition I.5.1. A complex vector bundle of complex dimension n over a

base space B, which is a topological space, (or a complex n-plane bundle)

is a topological space E (which is called the total space) together with a

projection map ⇡ : E ! B such that for each b 2 B, ⇡�1(b) is a complex

vector space of complex dimension n. Furthermore, we require the complex

vector bundle to satisfy the local triviality condition: for every point b 2 B,

there must exists a neighborhood U such that ⇡�1(U) is homeomorphic to

U ⇥C
n, and this homeomorphism takes each fibre ⇡�1(b) linearly to b⇥C

n.

We can construct, just as in the case of real vector bundles, the restriction
of a vector bundle, induced bundles, Cartesian products and Whitney sums.

Just as with vector spaces, we can associate to a real vector bundle of
real dimension 2n a complex vector bundle of complex dimension n. To do
so, we need to add to the real 2n-plane bundle a complex structure.

Definition I.5.2. Let ⇠ be a real 2n-plane bundle. A complex structure is

a continuous map J : E(⇠) ! E(⇠) such that J sends each fibre into itself,

R-linearly and J(J(v)) = �v for every vector v 2 E(⇠).

In particular, once given the complex structure to the real vector bundle,
we can give to each fibre Fb(⇠) the structure of a complex vector space by
defining the multiplication for a complex number as

(x+ iy)v = xv + J(yv)

for all x+ iy 2 C and every v 2 Fb(⇠).
Conversely, once given a complex vector bundle, we can think of it as

a real vector bundle (with double dimension) just forgetting its complex
structure. This will be called the underlying real vector bundle of a complex
bundle, and it will be denoted by adding R to the subscript of the complex
vector bundle.

In both these constructions, projection maps, base spaces and total spaces
remain unchanged. The following definition will be about the orientation of
a complex vector bundle. Note that also giving an orientation to a complex
vector bundle coincide to give an orientation on the underlying real vector
bundle.

Definition I.5.3. Let ! be a complex vector bundle. Then, the canonical

preferred orientation of its underlying real vector bundle !R is given in the
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following way: once chosen a complex basis v1, . . . , vn of each fibre F of !, the

ordered basis of FR (the underlying real vector space of F ) v1, iv1, . . . , vn, ivn,

will be one of the compatible orientations.

Lemma I.5.4. The preferred orientation is well defined, i.e. it does not

depend on the choice of basis of each fibre.

Proof. First of all, consider a complex vector space V and choose a basis

v1, . . . , vn. Then, v1, iv1, . . . , vn, ivn will be a basis for the underlying real

vector space VR. This ordered basis gives the desired orientation on the

vector space. Indeed, it does not depend on the initial choice of the basis: if

we chose another basis, these two will be connected by a transition matrix

A 2 Gln(C). Since Gln(C) is path-connected, the matrix A will give us a

continuous deformation, so the two basis will give us the same orientation.

If we apply this to each fibre of !, this will give us the desired orientation

for !R.

This lemma has an important consequence, that allows us to work with
characteristic classes that require oriented vector bundles, for example the
Euler class.

Corollary I.5.5. Any complex manifold has a canonical preferred orienta-

tion.

Proof. By Definition I.4.3 a complex manifold M has an orientation if its

tangent vector bundle ⌧M has an orientation. Since ⌧M is a complex vec-

tor bundle, by the previous lemma (⌧M)R has a preferred orientation, and

therefore so does ⌧M and M.

Remark I.5.6. As we noted before, the Euler class of the underlying real

vector bundle of a complex n-plane bundle is always well defined. Thus, by

theorem I.4.12 if we have two complex bundles !,!0 over the same base space

the following formula holds:

e(!R � !0
R
) = e(!R)^ e(!0

R
).
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Thanks to the fact that !R � !0
R
and (! � !)0

R
are isomorphic as oriented

vector bundles (since the orientation basis of a Whitney sum is just the

concatenation of the orientations basis of the summands), we get that

e((! � !)0
R
) = e(!R)^ e(!0

R
).

In the same way one can just look at a complex bundle as a real bundle,
given any real bundle we can actually complexify it. To do so, we have to
complexify each fibre. Given a real vector space V , its complexification is
the complex vector bundle V ⌦R C.

Definition I.5.7. Let ⇠ be a real n-plane bundle. Then, we call its complex-

ification ⇠ ⌦C the complex n-plane bundle constructed taking for each fibre

F of ⇠ the complex vector space F ⌦ C over the same base space.

This procedure duplicates the real dimension of the vector bundle. In-
deed, when we take the underlying real vector bundle of ⇠⌦C, it will become
a real vector bundle of dimension 2n. The structure will remain unchanged,
but if we start with fibres like F , we will end up with fibres F ⌦ C; this is
canonically isomorphic to F �F. Indeed, if z = x+ iy 2 F ⌦C with x, y 2 F,
it is easy to see that F ⌦ C = F � iF. Therefore, canonically,

(⇠ ⌦ C)R ⇠= ⇠ � ⇠.

The complex structure on ⇠ ⌦ C corresponds to

J(x, y) = (�y, x)

on ⇠ � ⇠.
The last thing we want to define in this section is the notion of conjugate

bundle. We will see how some characteristic classes over this vector bundle
are in strict relationship with the ones over the vector bundle we started
with.

Definition I.5.8. Let ! be a complex n-plane bundle. Its conjugate vector

bundle ! is the complex n-plane bundle with the same underlying real vector

bundle (!R = !R), but with opposite complex structure: if f : E(!) ! E(!)

is the identity map, then for every � 2 C and for every v 2 E(!) we have

f(�v) = �v.

26



Prerequisites

Two results we can already see using the conjugate bundle are the fol-
lowing.

Lemma I.5.9. Let ⇠ be a real n-plane bundle. Then

⇠ ⌦ C ⇠= ⇠ ⌦ C

as complex vector bundles.

Proof. We want to show that this isomorphism is not just an isomorphism as

real vector bundles (we already have that (⇠⌦C)R ⇠= (⇠ ⌦ C)R by definition of

conjugation), but an isomorphism of complex vector bundles, and therefore,

we want to show that there is a isomorphism that sends the complex structure

of the first to the second. Let f be the map

f : E(⇠ ⌦ C) !E(⇠ ⌦ C) = E(⇠ ⌦ C)

x+ iy 7!x� iy
.

This is obviously invertible (its inverse is itself). Moreover, we can prove

that f is R-linear and it satisfy f(i(x+ iy)) = �if(x+ iy):

• f(x1+ iy1+x2+ iy2) = x1+x2� i(y1+ y2) = f(x1+ iy1)+ f(x2+ iy2);

• f(k(x+ iy)) = kx� iky = k(x� iy) = kf(x+ iy) for every k 2 R;

• f(i(x+ iy)) = f(�y + ix) = �y � ix = �i(x� iy) = �if(x+ iy).

This is enough to show that f(�(x+ iy)) = �(x+ iy) for every � 2 C.

Lemma I.5.10. Let ! be a complex vector bundle. Then we have a canonical

isomorphism between the complexification of the underlying real vector bundle

of ! and the Whitney sum between ! and !:

!R ⌦ C ⇠= ! � !.

This lemma is proven in [MS05, Lemma 15.4].
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I.6 Chern Classes

The goal of this section is to define the Chern classes. These classes will be
defined for complex vector bundles. However, as we saw in the last chapter,
we can create complex vector bundles from real ones, and since this is fun-
damental for the definition of Pontrjagin classes, we will focus on those at
the end of this section.

Let ! : E
⇡�! B be a complex n-plane bundle. Recall that the deleted

total space is E0 = {e 2 E| e 6= s0(⇡(e)), e 2 F⇡(e)(!)}. We can construct
an (n � 1)-plane bundle !0 over E0 in the following way: each point v in
E0 is given by a fibre F of ! (the fibre F⇡(v)(!)) together with a non zero
vector v 2 F . We can associate to each of this point the (n� 1)-vector space
F/hviC, where we indicate by hviC the 1-dimensional subspace spanned by v
(which is non zero so it spans a line). This will give us a fibre of !0. Doing
this for each v 2 E0, we will define each fibre of !0.

Before defining the Chern class, we must present the Gysin sequence and
show that it is exact. let ⇠ : E

⇡�! B be a real oriented n-plane bundle. Then
we have an exact Gysin sequence

· · · ! H i�n(B)
^e��! H i(B)

⇡⇤
0�! H i(E0)

 �! H i�n+1(B) ! . . .

where we are omitting integer coe�cients.

Proof. By the long exact sequence of the pair (E,E0) we get

· · · ! H i(E,E0)
p�! H i(E)

◆�! H i(E0)
��! H i+1(E,E0) ! . . . .

Recall from Definition I.4.6, that we have the Thom isomorphism

^ u � ⇡⇤ : H i�n(B;Z) !H i(E,E0;Z)

x 7!⇡⇤(x)^ u
.

Moreover, by definition of ⇡0, ⇡⇤
0 = (⇡�◆)⇤ = ◆⇤�⇡⇤. Lastly, by definition of the

Euler class, e(⇠) = (⇡⇤)�1(i⇤(u)) = (⇡⇤)�1(u|E), so by naturality of the cup

product ^ u|E � ⇡⇤ = ⇡⇤ ^ e(⇠) (indeed, for any x 2 H i�n(B;Z), ⇡⇤(x ^

e(⇠)) = ⇡⇤(x) ^ ⇡⇤(e(⇠)) = ⇡⇤(x) ^ u|E). Hence, we have the following
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commuting diagram

. . . // H i(E,E0)
p
// H i(E) ◆

// H i(E0)
�
// H i+1(E,E0) // . . .

H i�n(E)

^u

OO

^u|E

88

H i�n(B)

⇡⇤

OO

^e(⇠)
// H i(B)

⇡⇤

OO

⇡⇤
0

CC

H i�n+1(B)
✏✏

OO

which gives us the desired sequence fixing  = (^ u � ⇡⇤)�1 � �.

Now, for the purpose of defining Chern classes, we need to take a real
oriented 2n-plane bundle E

⇡�! B and we get the exact Gysin sequence

· · · ! H i�2n(B)
^e��! H i(B)

⇡⇤
0�! H i(E0)

 �! H i�2n+1(B) ! . . .

where we are omitting the integer coe�cients.
For i < 2n�1, H i�2n(B;Z) = H i�2n+1(B;Z) = 0 (since i�2n, i�2n+1 <

0) and thus, since the Gysin sequence is exact,

H i(B;Z) ⇠= H i(E0;Z).

Thanks to all of this, we can now define a new characteristic class by
induction on the dimension n of the complex plane bundle.

Definition I.6.1. Let ! be a complex n-plane bundle. Its i-th Chern class,

denoted by ci(!) 2 H2i(B;Z), is defined by induction on the complex dimen-

sion of ! in the following way:

• for i = 0, c0 ⌘ 1;

• for i < n (and so i  2i < 2n� 1 for n > 0 since we are working with

integer numbers) we define ci(!) as

ci(!) = (⇡⇤
0)

�1(ci(!0))

where since !0 is an (n�1)-plane bundle, by inductive hypothesis ci(!0)

is defined;
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• for i = n ci(!) = e(!R) (which we recall to be well defined since ! is a

complex bundle);

• for i > n, ci(!) = 0.

Note that we need to work by induction just from n = 2. Indeed, for ! a

0-dimensional vector bundle, by the last assumption we get i > 0, ci(!) = 0.

For ! a 1-dimensional vector bundle, we will have c0(!) = 1, c1(!) = e(!R)

and ci(!) = 0 for i > 2. The base case of our induction will be n = 2, and

here ci(!0) will be defined as in the latter case, since !0 will be a 1-plane

bundle. Moreover, we want to observe that !0 was defined as a bundle over

E0, so ci(!0) 2 H2i(E0;Z), so ci(!) = (⇡⇤
0)

�1(ci(!0)) 2 H2i(B;Z) as we want.

We will define the total Chern class of an n-plane bundle ! as the sum

c(!) = 1 + c1(!) + · · ·+ cn(!) 2 H
Q
(B;Z).

As for other classes, also the Chern class possesses really useful properties,
namely the naturality, the triviality and a product formula. Let’s state them
in a rigorous way.

Theorem I.6.2. Let f : B ! B0
be a map covered by a bundle map ! ! !0

between complex n-plane bundles. Then

c(!) = f ⇤(c(!0)).

This implies that if there exists an isomorphism of vector bundles between
! and !0, c(!) = c(!0).

Theorem I.6.3. If ! is a complex vector bundle and "k is a trivial complex

k-plane bundle, over the same base space as !, then

c(! � "k) = c(!).

Theorem I.6.4. If !,� are two complex vector bundles over the same para-

compact base space, then

c(! � �) = c(!)^ c(�).
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Here by paracompact topological space X we mean an Hausdor↵ space
such that for every open cover {Ui}i2I ofX there exists an open cover {Vj}j2J
such that:

• for every j 2 J, there exists an i(j) 2 I such that Vj ⇢ Ui(j) (i.e. {Vj}j
is a refinement of {Ui}i);

• If x 2 X, then {j| x 2 Vj} is finite (i.e. {Vj}j is a locally finite open
cover).

In general, we will use compact spaces, and compactness implies paracom-
pactness.

Other than these nice properties, we have other properties due to the fact
that we are working with complex vector bundles, and so conjugate bundles
are defined.

Lemma I.6.5. Let ! be an n-plane bundle. Then the k-th Chern class of its

conjugate bundle is ck(!) = (�1)kck(!) and thus the total Chern class can

be written as

c(!) = 1� c1(!) + · · ·+ (�1)ncn(!).

Finally, we can see that combining this lemma with Lemma I.5.9 (and
Theorem I.6.2), we get the following result:

1 + c1(⇠ ⌦ C) + · · ·+ cn(⇠ ⌦ C) =c(⇠ ⌦ C) =

=c(⇠ ⌦ C) =

=1� c1(⇠ ⌦ C) + · · ·+ (�1)ncn(⇠ ⌦ C).

Corollary I.6.6. Every odd Chern class c1(⇠ ⌦C), c3(⇠ ⌦C), . . . is of order

two.

Note that for ⇠ a real plane bundle, its complexification is a complex
plane bundle, so its Chern class is well defined.

I.7 Pontrjagin Classes

Now that we have defined the Chern class and the complexification of a
real vector bundle, it is possible to give the definition of Pontrjagin classes
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and some first few properties. Moreover, in this section we will define the
Pontrjagin numbers, which we will see in the next chapter play an important
role in cobordism theory.

As we saw in Corollary I.6.6, the odd Chern of classes of the complexifica-
tion of a real plane bundle are of order 2. We will define the Pontrjagin classes
as characteristic classes deriving from the even Chern classes (we forget the
odd classes).

Definition I.7.1. Let ⇠ be a real n-plane bundle with base space B. Its i-th

Pontrjagin class is the cohomology class

pi(⇠) = (�1)ic2i(⇠ ⌦ C) 2 H4i(B;Z).

We will call the total Pontrjagin class of ⇠ the sum

p(⇠) = 1 + p1(⇠) + · · ·+ pbn
2 c(⇠) 2 H

Q
(B;Z).

Thanks to the fact that the definition of Pontrjagin classes is so closely
related to Chern classes, Pontrjagin classes inherit some of Chern classes
properties.

Lemma I.7.2. Pontrjagin classes are natural with respect to bundle maps.

Furthermore, if "k is the trivial real bundle and ⇠ is a real vector bundle

over the same base space, then

p(⇠ � "k) = p(⇠).

We would like to also have a product formula as in the previous charac-
teristic classes we have studied. Unfortunately, we only have the following.

Theorem I.7.3. Let ⇠ and ⌘ be two real plane bundles over the same base

space. Then we have

p(⇠ � ⌘) ⌘ p(⇠)^ p(⌘)

modulo elements of order 2 (or equivalently, 2(p(⇠ � ⌘)� p(⇠)^ p(⌘)) = 0).

Proof. First of all, note that we have the isomorphism (⇠ � ⌘) ⌦ C ⇠= (⇠ ⌦
C)� (⌘ ⌦ C), thus

ci((⇠ � ⌘)⌦ C) = ci((⇠ ⌦ C)� (⌘ ⌦ C)) =
X

k+l=i

ck((⇠ ⌦ C)^ cl((⌘ ⌦ C))
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by Theorems I.6.2 and I.6.4.

Since the odd Chern classes are of order 2, we can start working modulo

elements of order 2 and ignore them:

pi(⇠ � ⌘) ⌘(�1)ic2i((⇠ � ⌘)⌦ C) ⌘
X

k+l=i

(�1)k+lc2k(⇠ ⌦ C)^ c2l(⌘ ⌦ C) =

⌘
X

k+l=i

(�1)kc2k(⇠ ⌦ C)^ (�1)lc2l(⌘ ⌦ C) =

⌘
X

k+l=i

pk(⇠)^ pl(⌘).

Hence, if we compute the total Pontrjagin class we get

p(⇠ � ⌘) ⌘ p(⇠)^ p(⌘) mod 2

as we wanted.

A useful consequence of this theorem is the next corollary.

Corollary I.7.4. Let ! be a complex n-plane bundle. Then the Chern classes

c1(!), . . . , cn(!) determine the Pontrjagin classes p1(!R), . . . , pn(!R) by the

formula

1� p1(!R) + p2(!R)� · · ·+ (�1)npn(!R) = c(!)^ c(!)

and dividing by grades we get

pk(!R) =ck(!)
2 � 2ck�1(!)^ ck+1(!) + · · ·+ (�1)k+12c1(!)^ c2k�1(!)+

+ (�1)k2c2k(!)
.

Proof. By Lemma I.5.10, we have that !R ⌦ C ⇠= ! � !. Therefore,

pi(!R) = (�1)ic2i(!R ⌦ C) = (�1)ic2i(! � !)

that by Theorem I.6.4 is equal to

pi(!R) = (�1)i
X

k+l=2i

ck(!)^ cl(!).
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Thanks to Lemma I.6.5, we also have that

pi(!R) = (�1)i
X

k+l=2i

ck(!)^ (�1)lcl(!)

as we wanted.

Now, computing the product of sums in

c(!)^ c(!) =

 
nX

i=0

ci(!)

!
^

 
nX

i=0

(�1)ici(!)

!

we see that this is equal to

nX

i=0

(�1)i · pi(!R) =
nX

i=0

(�1)i · (�1)i
X

k+l=2i

ck(!)^ (�1)lcl(!) =

=
nX

i=0

X

k+l=2i

ck(!)^ (�1)lcl(!).

In special cases, computing Pontrjagin classes can be even easier than
this. One example would be the corollary to this lemma:

Lemma I.7.5. Let ⇠ be a real n-plane bundle. Then (⇠ ⌦ C)R (which is a

real 2n-plane bundle) is isomorphic to ⇠� ⇠. This isomorphism preserves the

orientation if
n(n�1)

2 is even, and reverses it if
n(n�1)

2 is odd.

Corollary I.7.6. If ⇠ is a real oriented 2k-plane bundle, then

pk(⇠) = e(⇠)^ e(⇠).

Proof. We just need to show that

pk(⇠) = (�1)kc2k(⇠ ⌦ C) = (�1)ke(⇠ ⌦ C) = (�1)k(�1)
2k(2k�1)

2 e(⇠ � ⇠) =

= (�1)2k
2
e(⇠)^ e(⇠) = e(⇠)^ e(⇠)

where we used the definition of Pontrjagin classes and of the top Chern class,

Proposition I.4.11 together with the last lemma and Theorem I.4.12.
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Lastly, as we did for Stiefel–Whitney numbers, we are going to introduce
also Pontrjagin numbers. In order to do so, we firstly need to give the
definition of partitions.

Definition I.7.7. Let k be a non-negative integer. A partition of k is an

unordered sequence I = i1, . . . , ir with ij > 0 for every j = 1, . . . , r and

k = i1 + · · ·+ ir.

We will now define the Pontrjagin numbers over compact 4n-manifolds:

Definition I.7.8. LetM be a 4n-dimensional smooth compact oriented man-

ifold. Let I = i1, . . . , ir be a partition of n. The I-th Pontrjagin number is

pI [M ] = pi1···ir [M ] = hpi1(⌧M)^ · · ·^ pir(⌧M), µ4ni,

where ⌧M denotes the tangent bundle of M and µ4n the fundamental ho-

mology class of M . As a convention pI [M ] = 0 for I not a partition of

n.

Note that, if p(n) indicates the number of partitions of n, a complex
4n-manifold has p(n) Pontrjagin numbers.

Remark I.7.9. Looking at Pontrjagin numbers we also can learn whether a

manifold M4n possesses reverse orientation di↵eomorphisms. Indeed, since

Pontrjagin classes don’t depend on the orientation (they are invariant under

any di↵eomorphism), if we reverse the orientation of M, for every partition

I = i1, . . . , ir pi1(⌧M) ^ · · · ^ pir(⌧M) = pi1(�⌧M) ^ · · · ^ pir(�⌧M).

On the other hand, changing orientation sends µ4n to �µ4n (by definition of

fundamental homology class). Hence, pI [M4n] changes sign, and thus if there

exists a partition I of n such that its Pontrjagin number is di↵erent from 0,

M can’t have any reverse orientation di↵eomorphism.

To show this last statement, we will prove a more general statement.

Let M,N be two 4n-dimensional smooth compact oriented manifolds and let

f : M ! N a di↵eomorphism such that f⇤(µ4n) = ⌫4n, where µ4n, ⌫4n are

the fundamental homology classes of M and N respectively. Now, denote by

µ⇤
4n, ⌫

⇤
4n be the fundamental cohomology classes. Since f⇤(µ4n) = ⌫4n, we also
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have f ⇤(⌫⇤4n) = µ⇤
4n. Then, once chosen a partition I = i1, . . . , ir, pi1(⌧N) ^

· · · ^ pir(⌧N) 2 H4n(N4n;Z) = h⌫⇤4ni so pi1(⌧N) ^ · · · ^ pir(⌧N) = P⌫⇤4n.

Hence by naturality of Pontrjagin classes,

pi1(⌧M)^ · · ·^ pir(⌧M) = f ⇤(pi1(⌧N)^ · · ·^ pir(⌧N)) = f ⇤(P⌫⇤4n) =

= Pf ⇤(⌫⇤4n) = Pµ⇤
4n.

Since hµ⇤
4n, µ4ni = h⌫⇤4n, ⌫4ni = 1

pI [M ] = pI [N ] = P.

Now, if we take N to be the manifold M with reverse orientation, so

N = �M, ⌫4n = �µ4n and ⌫⇤4n = �µ⇤
4n. Moreover, f ⇤(�µ⇤

4n) = µ⇤
4n and if

pi1(⌧�M)^ · · ·^ pir(⌧�M) = P (�µ⇤
4n)

f ⇤(pi1(⌧�M)^ · · ·^ pir(⌧�M)) = Pf ⇤(�µ⇤
4n) = Pµ⇤

4n

but on the other hand, by naturality

pi1(⌧M)^ · · ·^ pir(⌧M) = f ⇤(pi1(⌧�M)^ · · ·^ pir(⌧�M))

and by invariance of Pontrjagin classes under any di↵eomorphism,

pi1(⌧M)^ · · ·^ pir(⌧M) = P (�µ⇤
4n),

so if P 6= 0, this leads to a contradiction.
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The cobordism ring

In this chapter, we are going to define the unoriented and the oriented cobor-
dism ring and see some first results that principally make use of Stiefel–
Whitney and Pontrjagin numbers. These results are due to Pontrjagin, Thom
and Wall. We will prove the Pontrjagin theorems in this chapter, whereas
we postpone a discussion about the proof of Thom’s theorem on the third
chapter.

One of the main purposes in studying the cobordism relation is to classify
closed manifolds, instead of dividing them up to di↵eomorphism (which is a
stronger relation).

II.1 Manifolds with boundary and the cobor-

dism ring

In this section, we are going to see how to generalize the concept of a manifold
to a manifold with boundary, and we are going to finally define cobordism
classes and the cobordism ring.

As we can imagine any manifold as locally R
n, we can do the same

with manifolds with boundary, which will be locally identified with H
n =

{(x1, . . . , xn) 2 R
n| x1 � 0} (with the relative topology). We can see this

formally in the following definition.

Definition II.1.1. Let X be a second countable Hausdor↵ space. It is called

a smooth n-dimensional manifold with boundary if it has a smooth structure
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on it. A smooth structure is a family of pairs {(Ui,�i)}i2I where Ui is an

open set of X and �i is a homeomorphism of Ui onto an open subset of Hn

such that:

• {Ui}i2I is an open cover of X;

• For every i, j 2 I, where Ui \ Uj 6= ;, the homeomorphisms �i � ��1
j :

�j(Ui \ Uj) ! �i(Ui \ Uj) and �j � ��1
i : �i(Ui \ Uj) ! �j(Ui \ Uj) are

smooth maps between open sets of Hn;

• the family {(Ui,�i)}i2I is maximal (i.e. it contains all the possible

(Ui,�i) satisfying the first two conditions).

In contrast to a general manifold, the points of a manifold with boundary
are of di↵erent type. As suggested by the name, there will be points on the
boundary, that will correspond to the points of Hn with x1 = 0.

Definition II.1.2. Let X be a manifold with boundary. We say that x 2
X in an interior point of X if there exists a local parameterization �i :

Ui ! H
n where �i(Ui) is an open of Rn (rather than of Hn), i.e. �i(Ui) \

{(0, x2 . . . , xn) 2 H
n} = ;. We will denote by X̊ the set of all the interior

points. The points that are not interior points will be called boundary points,

and the boundary will be denoted by @X.

There are two remarks to be made here. Firstly, we need to observe that
the set of all the interior points is an open set (since it is the union of all
the open neighborhoods of the interior points), and a smooth n-dimensional
manifold in X by definition. Secondly, the boundary is a smooth (n � 1)-
dimensional manifold, and since it is the complement of an open set, it will
be closed in X.

We can also state an important theorem, that describes the boundary
of a paracompact manifold with boundary. Since we will make use only of
compact manifolds, this theorem will always hold for us (because compact
implies paracompact).

Theorem II.1.3 (Collar neighborhood theorem). Let X be a smooth para-

compact manifold with boundary. Then there exists an open neighborhood of

the boundary @X in X which is di↵eomorphic to @X ⇥ [0, 1).
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An important consequence of this theorem is highlighted in the following
remark.

Remark II.1.4. This theorem implies that we have an homotopy equivalence

between X and X̊. Indeed, let V be the collar neighborhood given by the

theorem. We have that V \ X̊ ⇠= @X ⇥ (0, 1), since V \ X̊ = V \ @X and

@X ⇥ (0, 1) = @X ⇥ [0, 1) \ @(@X ⇥ [0, 1)) = @X ⇥ [0, 1) \ (@X ⇥ {0}). It is
easy to prove that both @X⇥ [0, 1) and @X⇥ (0, 1) are homotopy equivalent

to @X ⇥ [0.5, 1), and thus are homotopy equivalent to each other.

Therefore, we have

V \ X̊ ⇠= @X ⇥ (0, 1) ⇠ @X ⇥ [0, 1) ⇠= V.

Thus, we can define the homotopy equivalence between X and X̊ as the

homotopy V \ X̊ ⇠ V extended by the identity outside V .

As we did in the previous chapter, without using the classical definition
of orientation of a manifold we will use the following equivalent definition:
a smooth n-manifold M is orientable if its tangent bundle ⌧M is orientable.
An orientation on M is an orientation on ⌧M . It is possible to see the corre-
spondent definition, that uses also fundamental classes when the manifolds
are compact, in the appendix A.

To give the definition this way, we first need to understand how it is
defined the tangent bundle of a manifold with boundary and how this restricts
to the boundary. The tangent bundle of a manifold with boundary X is still
an n-plane bundle defined as in Example I.1.1. We just need to pay attention
at the boundary points: the tangent manifold on a boundary point x 2 @X,
DXx, has an (n� 1)-submanifold, consisting of the tangent manifold of the
boundary D(@X)x. We have that DXx \D(@X)x can be divided into vectors
“into” and “out of” X. We say that a vector v 2 DXx \D(@X)x points into
X if v is the velocity vector dp

dt |t=0 of a smooth path p : [0; ") ! X with
p(0) = x, and that v 2 DXx \ D(@X)x points out of X if v is the velocity
vector of a smooth path p : (�"; 0] ! X with p(0) = x.

We want to define an orientation on @X once given an orientation on X.
To do so, we need to see how the orientation on ⌧X induces an orientation
on ⌧X |@X .

Let x be a point on the boundary. By the convention we will be using,
once given an orientation for ⌧X at x with representative basis {v1, . . . , vn}
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where the vector v1 points “out of” X and the other vectors v2, . . . , vn are
tangent to @X, {v2, . . . , vn} will represent the desired induced orientation
basis of D(@X)x. Thus, we will have

⌧X |@X ⇠= ⌧@X � "1

where "1 will be the trivial line bundle of “out of” X vectors.
Even though we mainly just need to use this definition of orientation, in

the following section we will consider compact oriented manifolds and we will
use their fundamental classes. If a manifold without boundary is compact,
it is orientable if and only if it has a fundamental class. Regarding this, let’s
present the following proposition.

Proposition II.1.5. Let X be a compact and R-oriented manifold with

boundary. Let µ@X be the fundamental class of @X given by the induced R-

orientation on @X. Then there exists a unique generator µX 2 Hn(X, @X;R)

such that @n(µX) = µ@X .

For the proof of this proposition, we refer to the appendix A.1.6.
We will call this element µX the R-fundamental class of X determined

by the R-orientation of X.
Before going on with the definition of the cobordism relation, since we

have defined the induced orientation on the boundary, we can finally give an
easy example of manifold with boundary.

Example II.1.1. Given an smooth oriented n-dimensional manifoldM , then

M⇥[0, 1] is a smooth (n+1)-dimensional manifold with boundaryMt(�M),

where we denote by (�M) the manifold M with opposite orientation.

Now that we have the definition of manifolds with boundary, we can study
this boundary. As we already stated, the boundary will be a manifold of one
dimension less than the manifold. We can classify the possible boundaries
by an equivalence relation called the cobordism equivalence. To define the
classes of this relation, we need to first see if we need to work on an unoriented
or an oriented environment.

Firstly, let’s see what the unoriented definition is:

Definition II.1.6. Let M1,M2 be two n-dimensional manifolds, which are

also smooth and closed (i.e. compact without boundary). Then we say that
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they belong to the same unoriented cobordism class if and only if M1 tM2

is the boundary of a smooth compact (n+ 1)-dimensional manifold.

However, if our manifold is also oriented, usually we can get more in-
formation: for example, we can define Chern and Pontrjagin numbers. In
particular, the latter ones play an important role in the study of cobordism
classes. Therefore, we want to define also the notion of oriented cobordism
classes.

Definition II.1.7. Let M1,M2 two smooth compact oriented n-dimensional

manifolds. We say that they are oriented cobordant, or equivalently that

they belong to the same oriented cobordism class, if there exists a smooth

compact oriented (n + 1)-dimensional manifold with boundary X such that

its boundary @X with its induced orientation is di↵eomorphic to M1t(�M2)

(via a orientation preserving di↵eomorphism).

Note that we denoted by �M2 the manifold M2 with opposite orientation.
It is easy to see that if we forget the orientation on all these manifolds, we

get back the definition of unoriented cobordism classes. For this reason, the
majority of the definitions that will follow will be about oriented manifolds.
For instance, we could give also the definition of an unoriented cobordism
ring, but that would be redundant, since we can just forget the orientation.

In all these definitions, we talked about equivalence classes. Indeed, the
cobordism relation is an equivalence relation:

Lemma II.1.8. Oriented cobordism is an equivalence relation, i.e. it is

reflexive, symmetric and transitive.

Proof. Let M1,M2,M3 be any three smooth compact oriented n-dimensional

manifolds, and letX, Y be smooth compact oriented manifold with boundary.

• Reflexivity: We have that M1 is cobordant to itself. Indeed, we have

that M t (�M) is the boundary of M ⇥ [0, 1], as we saw in Example

II.1.1.

• Symmetry: Suppose M1,M2 are such that M1t (�M2) ⇠= @X. Then, if

we invert each orientation, it is easy to see that (�M1)+M2
⇠= @(�X).
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• Transitivity: Suppose M1,M2,M3 are such that M1t(�M2) ⇠= @X and

M2 t (�M3) ⇠= @Y . Using the Theorem II.1.3,we get that M2 has a

neighborhood in X di↵eomorphic to M2 ⇥ (�1, 0] and a neighborhood

in Y di↵eomorphic to M2 ⇥ [0, 1). We can glue them on M2, and get

that M1t (�M3) ⇠= @(X [Y ). Indeed, all the points of M2 won’t be on

the on the boundary (they will be internal points of X [Y, for example

choosing U ⇥ (�1, 1) as a neighborhood, where U is a neighborhood of

in M2). Note that the orientation in this way agrees.

We can now see how we can collect all these classes and give this set the
structure of a group.

Let ⌦n denote the set of all the oriented cobordism classes of smooth
closed n-dimensional manifolds. If we take the disjoint union t as an op-
eration between classes, it becomes an abelian group. Indeed, if [M ], [M 0]
are two cobordism classes, then M t M 0 is an n-dimensional manifold, so
[M t M 0] 2 ⌦n. Moreover, it is well defined: let M1 ⇠ M̃1 and M2 ⇠ M̃2.
If M1 t (�M̃1) = @X and M2 t (�M̃2) = @Y for some manifolds X, Y, then
(M1 tM2) t �(M̃1 t M̃2) = (M1 t (�M̃1)) t (M2 t (�M̃2)) = @X t @Y =
@(X t Y ). The zero element is the class of the empty set [;] (the empty set
is an n-manifold for any n � 0, since any x 2 ; satisfies the conditions):
M t ; = M = ; t M, so obviously [M t ;] = [M ] = [; t M ]. It is abelian
since M tM 0 = M 0 tM, and the inverse of [M ] is [�M ] (indeed, M t �M
is the boundary of M ⇥ [0, 1], so [M t �M ] = [;]).

One might wonder if we can connect these groups varying n 2 Z�0. In-
terestingly, using the Cartesian product

⌦m ⇥ ⌦n !⌦m+n

(Mm
1 ,Mn

2 ) 7!Mm
1 ⇥Mn

2

we get an associative bilinear (with the respect to the disjoint union) product
operation. This is well defined since Mm

1 ⇥Mn
2 2 ⌦m+n and if [M̃m

1 ] = [Mm
1 ]

and [M̃n
2 ] = [Mn

2 ], where M
m
1 t (�M̃m

1 ) bounds X and Mn
2 t (�M̃n

2 ) bounds
Y , then (Mm

1 ⇥Mn
2 )t�(M̃m

1 ⇥M̃n
2 ) boundsX⇥@Y t@X⇥Y, so [Mm

1 ⇥Mn
2 ] =

[M̃m
1 ⇥M̃n

2 ]. The unit element of this operation is the 0-dimensional manifold
with a single point. Indeed, if M 2 ⌦m, [M ⇥ {pt}] = [M ] 2 ⌦0+m.
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With this operation, we get that the sequence

⌦⇤ = (⌦0,⌦1,⌦2, . . . ) =
M

i

⌦i

gets the structure of a graded ring.
Moreover, for any two manifolds Mm

1 ,Mn
2 , we have

Mm
1 ⇥Mn

2
⇠= (�1)mnMn

2 ⇥Mm
1

since the orientation of Mm
1 ⇥ Mn

2 is the concatenation of the basis of Mm
1

followed by the one of Mn
2 , and to pass to the orientation of Mn

2 ⇥Mm
1 (which

is the concatenation of the basis of Mn
2 followed by the one of Mm

1 ), we need
a permutation of the basis of sign (�1)mn. Thus, ⌦⇤ is also commutative in
the graded sense.

Forgetting the orientation of the manifolds, we get the unoriented cobor-
dism ring, that we will denote by

N⇤ = (N0,N1,N2, . . . ) =
M

i

Ni.

In this case, if M in an m-dimensional manifold, [M ] = [�M ] since M tM
is the boundary of M ⇥ [0, 1] (where we are not considering orientations
anywhere). Thus, since we also have that [�M ] is the inverse of [M ], we
get that Nm is a Z/2Z-vector space for every m and the ring N⇤ has the
structure of a graded Z/2Z-algebra.

II.2 Pontrjagin Theorems

We have some theorems by Pontrjagin that give us necessary conditions for a
manifold to be null cobordant. These two theorems involve Stiefel–Whitney
and Pontrjagin numbers, that we constructed in the first chapter.

The first one uses only Stiefel–Whitney numbers, that are defined inde-
pendently from the orientability of the manifold, so we won’t require the
manifold to be oriented.

Theorem II.2.1 (Pontrjagin). Let M be a closed smooth n-dimensional

manifold. Let X be a smooth compact (n + 1)-dimensional manifold with

boundary M. Then, the Stiefel–Whitney numbers of M are all zero.
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Proof. First of all, denote by µX the fundamental class of the pair (X,M)

given by Proposition II.1.5 and by µM the fundamental class of M induced

by the Z/2Z-orientation of X. They exist since X,M are compact and every

compact manifold is Z/2Z-orientable. By Proposition II.1.5, we have that

@(µX) = µM .

Moreover, by definition of the Kronecker pairing (h[f ], [c]i = f(c) for [f ]

a singular i-coycle and [c] and i-cycle) and of the connecting homomorphism

in singular homology (f(@c) = (�f)(c) for [f ] a singular i-cocycle and [c] an

(i+ 1)-cycle), we have that

hv, µMi = hv, @µXi = h�v, µMi 2 Z/2Z (II.1)

for every v 2 Hn(M ;Z/2Z).

Now, let ⌧X be the tangent bundle of X and ⌧X |M = ◆⇤⌧X its restriction

to M (where ◆ : M ,! X is the inclusion map). Let ⌧M be the tangent bundle

of M (seen as a sub-bundle of ⌧X). We have

⌧X |M ⇠= ⌧M � "1,

where "1 is the trivial line bundle. Thus, by Proposition I.2.6, we have that

the Stiefel–Whitney classes of ⌧X |M are the same as the Stiefel–Whitney

classes of ⌧M

◆⇤(wi(⌧X)) = wi(◆
⇤⌧X) = wi(⌧X |M) = wi(⌧M) (II.2)

for every i � 0, thanks to axiom 2.

Taking the long exact sequence of the pair (X,M) in cohomology

H i(X;Z/2Z)
◆⇤�! H i(M,Z/2Z)

�i�! H i+1(X,M ;Z/2Z)

we get that �i � ◆⇤ = 0 for every i � 0. Therefore, by the equation II.2, we

get that �i(wi(⌧M)) = 0 for every i � 0, and for every r1, . . . , rn 2 Z�0 such
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that r1 + 2r2 . . . nrn = n,

�n (w1(⌧M)r1 ^ · · ·^ wn(⌧M)rn) =�1 (w1(⌧M)r1)^ w2(⌧M)r2 ^ · · ·^
^ wn(⌧M)rn ± · · · ± w1(⌧M)r1 ^ · · ·^
^ wn�1(⌧M)rn�1 ^ �n (wn(⌧M)rn) =

=0± · · · ± 0 = 0

To conclude, let’s compute the Stiefel–Whitney numbers of M, using this

and the equation above II.1

wr1
1 · · ·wrn

n [M ] =hw1(⌧M)r1 ^ · · ·^ wn(⌧M)rn , µMi =
=h�(w1(⌧X)

r1 ^ · · ·^ wn(⌧X)
rn), µXi =

=h0, µXi = 0.

Note that ifM is the boundary of X, thenMt; = @X, soM is cobordant
to the empty set, so [M ] is the zero element of Nn.

An example where we can see that this theorem holds is the following:

Example II.2.1. If M is a closed smooth n-dimensional manifold, then

M t M is the boundary of the cylinder M ⇥ [0, 1]. If we compute any

Stiefel–Whitney class of M tM , we see that this is zero (since !I [M tM ] =

!I [M ] + !I [M ] = 2!I [M ] ⌘ 0 2 Z/2Z), so every Stiefel–Whitney number of

M tM is zero.

Moreover, in the last chapter we also computed the Stiefel–Whitney num-
bers of the projective space in the Example I.3.2.

Example II.2.2. Considering the projective space P
n, we can see that if n

is odd, all its Stiefel–Whitney numbers will be zero, and therefore by the

theorem II.2.1 P
n will be an unoriented boundary (for example, P1 ⇠= S

1 is

the boundary of the disk D2). On the other hand, if n is even, Pn will never

be a boundary, because some of its Stiefel–Whitney numbers will always be

di↵erent from zero.
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It has been proven by Thom that the condition given by the theorem is
not only a necessary condition but a su�cient condition. Indeed, we have
that

Theorem II.2.2 (Thom). Let M be a closed smooth n-dimensional manifold.

If all the Stiefel–Whitney numbers of M are zero, then M is the boundary of

some smooth compact (n+ 1)-dimensional manifold with boundary.

The aim of next chapter will be to study the structure of the unoriented
cobordism ring, in order to prove this theorem.

These two theorems give rise to a result which is really interesting when
computing the unoriented cobordism ring.

Corollary II.2.3. Let M1,M2 be two closed smooth n-dimensional mani-

folds. They belong to the same unoriented cobordism class if and only if their

Stiefel–Whitney numbers are equal.

Proof. We have that !r1
1 · · ·!rn

n [M1tM2] = !r1
1 · · ·!rn

n [M1]+!
r1
1 · · ·!rn

n [M2].

This is zero if and only if !r1
1 · · ·!rn

n [M1] = !r1
1 · · ·!rn

n [M2] (since these num-

bers are in Z/2Z). Thus, by theorems II.2.1 and II.2.2, we get the desired

result.

We have a second theorem by Thom, now involving Pontrjagin numbers
(and therefore oriented manifolds).

Theorem II.2.4 (Pontrjagin). Let M be a closed smooth oriented manifold

of dimension 4n. Let X be a smooth compact oriented (4n+ 1)-dimensional

manifold with boundary M. Then, the Pontrjagin numbers of M are all zero.

The proof is really similar to the one of Theorem II.2.1. We are going to
highlight only the crucial passages.

Proof. First of all, denote by µX 2 H4n+1(X,M ;Z) the fundamental class

of the pair (X,M) given by Proposition II.1.5 and by µM 2 H4n(M ;Z) the

fundamental class of M induced by the orientation of X. They exists since

X,M are compact and Z-orientable. Using the morphism given by the long

exact sequence of the pair (X,M) with coe�cients in Z, we get @(µX) = µM ,

once again by Proposition II.1.5.
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We have that

hv, µMi = hv, @µXi = h�v, µMi 2 Z (II.3)

for every v 2 Hn(M ;Z).

As for the other proof, we have

⌧X |M ⇠= ⌧M � "1,

and thus by Lemma I.7.2, we have that the Pontrjagin classes of ⌧X |M are

the same as the Pontrjagin classes of ⌧M

◆⇤(pi(⌧X)) = pi(◆
⇤⌧X) = pi(⌧X |M) = pi(⌧M) (II.4)

for every i � 0.

Taking the long exact sequence of the pair (X,M) in cohomology we get

that � � ◆⇤ = 0. Therefore, by the equation II.4, we get that �i(pi(⌧M)) = 0

for every i � 0, and for every partition I = i1, . . . , ir of n,

� (pi1(⌧M)^ · · ·^ pir(⌧M)) =� (pi1(⌧M))^ pi2(⌧M)^ · · · pir(⌧M)

± · · · ± pi1(⌧M)^ · · · pir�1(⌧M)^

^ � (pir(⌧M)) = 0± · · · ± 0 = 0

To conclude, let’s compute the Pontrjagin numbers of M, using this and

the equation above II.3

pI [M ] =h(pi1(⌧M)^ · · ·^ pir(⌧M)) , µMi =
=h� (pi1(⌧M)^ · · ·^ pir(⌧M)) , µXi =
=h0, µXi = 0.

As before, we want to give an example and a corollary to the Pontrjagin
theorem in the oriented case. These are due to the fact that for M1,M2 two
closed smooth oriented 4n-dimensional manifolds,

pI [M1 tM2] = pI [M1] + pI [M2] (II.5)

for any I partition of n.
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Example II.2.3. If M is a closed smooth oriented 4n-dimensional manifold,

then M t (�M) is the boundary of the cylinder M ⇥ [0, 1]. If we compute

any Pontrjagin number of M t(�M), we see that this is zero by the equation

above. We see that this agrees with Theorem II.2.4.

Corollary II.2.5. Let M1,M2 be two closed smooth oriented 4n-dimensional

manifolds. If they belong to the same oriented cobordism class then their

Pontrjagin numbers are equal.

The proof is quite easy and similar to the one of Corollary II.2.3:

Proof. Let [M ] = [M̃ ]. Then there exist a manifold X such that @X =

Mt(�M̃). By Theorem II.2.4, 0 = pI(@X) = pI(Mt(�M̃)) = pI [M ]�pI [M̃ ]

for every partition I of n. Hence, pI [M ] = pI [M̃ ].

Lastly, we want to show a last corollary, which once again is a consequence
of equation II.5.

Corollary II.2.6. Let M is a closed smooth oriented 4n-dimensional man-

ifold. For any partition I of n, the map

⌦4n !Z

[M ] 7!pI [M ]

is a group homomorphism.

Proof. We already have equation II.5. We still need to prove that it is well

defied and the zero of ⌦4n is mapped to the zero of Z. It is well defined by

Corollary II.2.5 and the unit is mapped to the unit since pI [;] = 0 for every

partition I of n.

As for the unoriented case, we also have that the converse implication
of Theorem II.2.4 is true. This really powerful result, due to Wall, is the
following.

Theorem II.2.7 (Wall). Let M is a closed smooth oriented 4n-dimensional

manifold. It is an oriented boundary if and only if all its Stiefel–Whitney

and all its Pontrjagin numbers are zero.
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We will not prove this theorem, and we will defer to [Wal60] for the proof.
This theorem highlights also that if a 4n-dimensional manifold is ori-

ented and is an unoriented manifold (and thus by Theorem II.2.2 its Stiefel–
Whitney numbers are all zero), then it is also an oriented boundary if and
only if all its Pontrjagin numbers are zero.
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III
Thom’s theorem on Stiefel–Whitney classes

The aim of this chapter is to study the structure of the unoriented cobordism
ring. We can relate it to homotopy theory, in order to then prove the Theorem
II.2.2. To do so, we will need to construct the universal bundle (and before
that the Grassmannian manifold) and see how to construct the Thom space
of a vector bundle. Once we have done that, we will construct the Thom
spectrum, give its homotopy groups a bilinear product and show that this
homotopy ring is isomorphic to the cobordism ring. We will then study the
homotopy ring of this Thom spectrum, using the Thom isomorphism and
the Steenrod algebra, in order to get more information about the unoriented
cobordism ring itself. This procedure will give us the tools to prove the
Thom’s theorem. Lastly, since this process clearly gives us the structure of
the unoriented cobordism ring, we will be able to give explicit generators of
it.

III.1 The Grassmannian and the canonical

bundle

In this section we will define the Grassmannian manifold and we will con-
struct over it the universal vector bundle. Its universality will be fundamental
in order to study any other vector bundle over a paracompact vector space.
We will then construct some maps that will help us define an H-space struc-
ture on the colimit of the Grassmannians. This structure will allow us to
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define a ring structure for the homology groups of this colimit. This section
is filled with prerequisites we will need in this chapter.

Definition III.1.1. The subset of the n-fold product R
n+k ⇥ · · · ⇥ R

n+k

which consists of linearly independent n-tuples of Rn+k, is an open subset of

this Cartesian product which is called the Stiefel manifold and is denoted by

Vn(Rn+k).

The topology of this manifold is just the relative topology as subsets
of Rn+k ⇥ · · · ⇥ R

n+k. This manifold was defined just in order to give the
following set a natural topology.

Definition III.1.2. The (n, k)-Grassmannian (or Grassmann manifold) is

the collection of all the n-dimensional vector subspaces of Rn+k. It is denoted

by Gn(Rn+k).

Usually we omit (n, k) when the context is clear.
If n = 1, G1(R1+k) is exactly the projective space P

k.
We have a natural map q : Vn(Rn+k) ! G(Rn+k), which take an element

of the domain to the n-dimensional subspace of Rn+k that the vectors span.
We can give G(Rn+k) the quotient topology with the respect to this map.

With this topology, it can be proven that the Grassmannian has the
following properties.

Lemma III.1.3. The topological space Gn(Rn+k) is a compact topological

manifold of dimension nk. Moreover, the correspondence

Gn(R
n+k) !Gk(R

n+k)

X 7!X?

where X?
is the orthogonal k-plane of X in R

n+k, is a homeomorphism.

For the proof of this lemma, please check [MS05, Lemma 5.1]. Moreover,
we can give Gn(Rn+k) a finite CW-complex structure, as stated in [MS05,
Thorem 6.4].

We can also extend the definition of the Grassmannian to the infinite
Grassmannian. To do so, consider the infinite dimensional vector space

R
1 = {(x1, x2, x3, . . . )| 9i such that xj = 0 for j > i}.
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Fixing k > 0, we can identify the set of all the vectors in R
1 of the form

(x1, . . . , xk, 0, 0, . . . ) with R
k. Therefore we have the following chain of inclu-

sions
R

1 ⇢ R
2 ⇢ R

3 ⇢ . . .

and their union gives us R1.

Definition III.1.4. The infinite Grassmannian Gn = Gn(R1) is the set

of all the n-dimensional subspaces of R1, with weak topology given by the

sequence of inclusions

Gn(R
n) ⇢ Gn(R

n+1) ⇢ Gn(R
n+2) ⇢ . . .

(i.e. U is an open set of Gn if and only if U \Gn(Rn+k) is open in Gn(Rn+k)

for every k � 0). Here Gn is the infinite union [kGn(Rn+k).

As for the finite case, if n = 1, then G1 is the infinite dimensional real
projective space P

1 (defined as the direct limit of P1 ⇢ P
2 ⇢ P

3 ⇢ . . . ).
Furthermore, also Gn is a (infinite) CW-complex, by [MS05, Theorem

6.4].
It can be proven that the Grassmannian is a paracompact space. To do

so, we need to use the following theorem, by Morita.

Theorem III.1.5 (Morita). Let X be a regular topological space (i.e. for

every point p 2 X and every closed set C ⇢ X, p 62 C, there exist open sets

U, V ⇢ X such that U \ V = ;, p 2 U and C ⇢ V ). Suppose that X is a

countable union of compact subsets. Then X is paracompact.

The result we are interested in is a corollary of this.

Corollary III.1.6. The infinite Grassmannian Gn is a paracompact space.

Now that we have defined the Grassmann manifold, we can define a vector
bundle over it. Additionally, we will see the reason why this is called the
universal bundle.

Let E be the topological space E = {(X, v) 2 Gn(Rn+k)⇥R
n+k| v 2 X}

(topologised as a subset of Gn(Rn+k) ⇥ R
n+k). Then we have an n-plane

bundle over Gn(Rn+k) that we will call the canonical vector bundle with
total space E and projection map ⇡(X, v) = X. For every X 2 Gn(Rn+k),
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its fibre ⇡�1(X) will be isomorphic to the subspace X itself, which is an
n-dimensional vector space. We will denote this vector bundle by �nk or
�n(Rn+k).

If n = 1, we get back the canonical line bundle over P1 = G1(R1+k) seen
in Example I.1.1.

On the other hand, if n = 1, as before E = {(X, v) 2 Gn ⇥R
1| v 2 X}

(topologised as a subset of the Cartesian product) gives the total space of an
n-dimensional vector bundle �n over Gn, with projection map ⇡(X, v) = v.
We will call this bundle the universal bundle.

The following theorem shows why this bundle is called “universal”.

Theorem III.1.7. Given any n-plane bundle ⇠ over a paracompact base

space, we get a bundle map ⇠ ! �n.

This map (or sometimes the map induced on the base spaces B(⇠) !
B(�n) = Gn) will be called a classifying map for the bundle ⇠. This map will
be unique up to homotopy. Furthermore, observe that since this is a bundle
map, ⇠ will be the pullback of �n under this classifying map.

The theorem is really useful since most of the typical topological spaces
are paracompact. Indeed, by Morita’s theorem every metric space is para-
compact and by Corollary III.1.6 the Grassmannian is paracompact.

The last two things we want to study in this section will be the following
two constructions. We will need it in order to create useful maps between
Thom spaces.

Consider an isomorphism of vector spaces R
1 � R ⇠= R

1. This implies
that we have an homeomorphism Gn = Gn(R1) ⇠= Gn(R1 � R) (whose
homotopy class is independent of the choice of isomorphism) that allows us
to define a map

◆n : Gn ! Gn+1

X 7! X � R
.

This map is covered by a bundle map �n�"1 ! �n+1, where "1 is a trivial line
bundle over Gn, by Theorem III.1.7. Moreover, we can also easily compute
any characteristic class on these bundles: if c is any of the characteristic
classes we defined in Chapter I, then it satisfies naturality and triviality, and
so

c(�n) = c(�n � "1) = ◆⇤nc(�
n+1).
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Another essential use that we can make of these natural inclusion maps is to
define the direct limit given by the sequence of inclusions

G1
◆1�! G2

◆2�! G3
◆3�! . . .

that will give us the topological space

BO = [qGq,

with the weak topology. This space becomes really useful in our study since
we can study its cohomology and homology groups (with coe�cients in Z/2Z)
very clearly. Later in this chapter, we will give to �iH i(BO;Z/2Z) a graded
ring structure, and in the following chapters we will relate this to the homol-
ogy ring of the Thom spectrum, thanks to the Thom isomorphism.

The other construction we want to introduce uses an isomorphism R
1 ⇠=

R
1 � R

1. From this isomorphism of vector spaces, we get the homeomor-
phism Gm+n = Gm+n(R1) ⇠= Gm+n(R1 � R

1) (note that the homotopy
class of this homeomorphism is independent of the choice of isomorphism
R

1 ⇠= R
1 � R

1). From this we can construct a map

pm,n : Gm ⇥Gn !Gm+n(R
1 � R

1) = Gm+n

(X, Y ) 7!X � Y
.

We have that this map is covered by a bundle map �m ⇥ �n ! �m+n, thanks
to Theorem III.1.7, since �m⇥�n has fibres of dimension m+n and it is over
Gm ⇥Gn which is paracompact (since it is product of paracompact spaces).
As for ◆n, we can compute the characteristic classes of �m ⇥ �n as

p⇤m,n(c(�
m+n)) = c(�m ⇥ �n)

by naturality of the characteristic classes, since p⇤m,n(�
m+n) = �m ⇥ �n.

Using these two kind of maps, we can define an H-space structure on
BO. Recall that an H-space X is a space with a continuous multiplication
map M : X ⇥ X ! X and an “identity” element e 2 X such that M(·, e)
and M(e, ·) are homotopic to the identity map with base point e. Let’s see
the H-space structure of BO : by passage to colimits over m and n, the
maps pm,n induce a multiplication map � : BO ⇥ BO ! BO, that takes
two linear subspaces to its direct sum. The identity element is obviously
the 0-dimensional space {0}. It is clear that with this map �, BO, {0} is an
H-space.
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Following [Hat17, Section 3.C], we get that H⇤(BO;Z/2Z) is a Hopf
algebra (so it’s a graded Z/2Z-algebra) and we can define a product operation
between the homology groups (the Pontrjagin product) in order to get a
graded Z/2Z-algebra structure on H⇤(BO;Z/2Z). We are going to explain
it more clearly in the following paragraphs.

In particular, the passage to colimits of the following result will be fun-
damental.

Theorem III.1.8. The cohomology ring H⇤(Gq;Z/2Z) is a polynomial alge-

bra over Z/2Z freely generated by Stiefel–Whitney classes w1(�q), . . . , wq(�q).

For details about this theorem, check [MS05, Chapter 7]. In particular,
we can consider the Stiefel–Whitney classes w1, . . . , wq to be elements of
H⇤(Gq;Z/2Z).

From this we get that

H⇤(BO;Z/2Z) = Z/2Z[wi|i � 1] (III.1)

as an algebra. The coalgebra structure given by the Hopf algebra structure
of H⇤(BO;Z/2Z) will be defined by the following coproduct

 : H⇤(BO;Z/2Z) ! H⇤(BO;Z/2Z)⌦H⇤(BO;Z/2Z).

If we consider the maps pm,n defined before, we have that p⇤m,n(wk(�m+n)) =
wk(�m⇥�n) 2 H⇤(Gm⇥Gn). Since we are working with coe�cients in a field
and the Grassmannian is a CW-complex, Künneth theorem holds and thus

H⇤(Gm ⇥Gn) ⇠= H⇤(Gm)⌦H⇤(Gn)

wk(�
m ⇥ �n) ⇠=

X

i+j=k

wi(�
m)⌦ wj(�

n).

This clarifies that the coalgebra structure can just be defined as

 (wk) =
X

i+j=k

wi ⌦ wj.

This coalgebra structure, together with equation III.1, tells us that the
ring H⇤(BO;Z/2Z) is a Z/2Z-algebra with one generator for each dimension
by duality. In order to give explicitly these generators, take into consider-
ation the inclusion map i : P1 = G1 ,! BO. Then i⇤ : Hj(P1;Z/2Z) !
Hj(BO;Z/2Z) is injective, and if we take xj 2 Hj(P1;Z/2Z) ⇠= Z/2Z the
non-zero element, i⇤(xj) := bj is a generator of H⇤(BO;Z/2Z) or degree j.
Thus, we have the following result.
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Theorem III.1.9. The homology ring H⇤(BO;Z/2Z) is the polynomial al-

gebra Z/2Z[bi|i � 1].

III.2 Thom spaces

In this section we will construct the Thom space of a vector bundle (we
will give multiple constructions). We will see di↵erent properties connected
to this space, for example how it relates to the Thom isomorphism and its
possible CW-structure. Afterwards, we will investigate on the Thom space
of the universal bundle and from this, we will give the tools to construct the
Thom spectrum and the homotopy ring of the Thom spectrum, which will
be essential in our study of the unoriented cobordism theory. In the next
chapter we will see that this latter object is isomorphic to the unoriented
cobordism ring.

Let ⇠ be a k-plane bundle with an Euclidean metric. Denote by A (or
sometimes A⇠) the set {e 2 E(⇠)| |e| � 1}, where E(⇠) is the total space of
⇠ and |e| is the inner product e · e.

Definition III.2.1. The Thom space of ⇠ is the quotient T (⇠) = E(⇠)/A.

The space A will be contracted to the preferred base point t0 2 T (⇠), which

we will often call the point at infinity. Sometimes, we will denote this by

t0(B(⇠)).

We have that the space T (⇠) \ {t0} is isomorphic to E(⇠) \ A = {e 2
E(⇠)| |e| < 1}.

In case the base space of ⇠, B = B(⇠) is compact, we can construct the
Thom space in the following equivalent way.

Remark III.2.2. If B is compact, T (⇠) is the one point compactification of

E(⇠). This is equivalent to compactifying each fibre (making them spheres

with base points the points at infinity) and then identifying all the points at

infinity.

In order to see that this is equivalent to the definition we have already
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given, we can consider the di↵eomorphism

' : E(⇠) \ A !E(⇠)

e 7! ep
1� |e|2

.

This is a well defined map since for every e, |e| < 1 and thus
p

1� |e|2 6= 0,

it is smooth and has as inverse the smooth map

'�1 : E(⇠) !E(⇠) \ A

e 7! ep
1 + |e|2

,

which is smooth since it is composition of smooth functions and
p
1 + |e|2 6= 0

for every e 2 E(⇠).

Therefore, we have that the di↵eomorphism ' induces an homeomorphism

between T (⇠) and E(⇠) [1 : every point of T (⇠) \ {t0} ⇠= E(⇠) \ A will be

taken di↵eomorphically by ' to a point of E(⇠), whereas t0 will be mapped

to 1.

Note that in the case of B not compact, this T (⇠) is not the one point com-
pactification of E(⇠) (consider for example the 1-dimensional trivial bundle
over R1). However, we can still think of T (⇠) as the one point identification
of the spheres coming from the one point compactification of the fibers. If
the bases space is discrete, this is a bouquet of sphere.

Another essential theorem by Thom is the one about Thom’s isomorphism
I.4.5. This can easily be used to compute the Z/2Z-cohomology groups of
the Thom space. First of all, note that we are always working with pos-
itive degrees, so the reduced cohomology groups coincide with unreduced
cohomology groups. We have the following.

Lemma III.2.3. Let ⇠ : E ! B be a k-plane bundle. Then there is a

canonical isomorphism

�i : H i(B;Z/2Z) ! H̃k+i(T (⇠);Z/2Z)

for all i � 0.
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Proof. We have that B can be embedded in E \ A ⇠= T (⇠) \ t0 as the zero

section of ⇠. Define by T0 the quotient E0/A (where E0 is the deleted total

space, i.e. the total space without the zero section). This T0 is contractible

(because if B is discrete it is homeomorphic to a bouquet of spheres each

without a point, if not with the same argument we get that it is contractible).

Thus, Hk+i(T0, t0;Z/2Z) = 0 and using the long exact sequence of the triple

(T (⇠), T0, t0), we get that Hk+i(T (⇠), T0;Z/2Z) ⇠= Hk+i(T (⇠), t0;Z/2Z) for

each k, i. By an excision argument, we have that Hk+i(T (⇠), T0;Z/2Z) ⇠=
Hk+i(E,E0;Z/2Z). Since each vector bundle is Z/2Z-orientable, we have

the Thom isomorphism

H i(B;Z/2Z) ! H i+k(E,E0;Z/2Z)

x 7! ⇡⇤(x)^ µ

where µ 2 Hk(E,E0;Z/2Z) is the Z/2Z-Thom class (that since we are work-

ing with the ring Z/2Z, it is equivalent to the fundamental class, because the

orientation is unique).

Composing all these isomorphisms, we get

H i(B;Z/2Z) ⇠= Hk+i(T (⇠), t0;Z/2Z) = H̃k+i(T (⇠);Z/2Z).

Sometimes, with an abuse of notation, we will write this isomorphism as
x 7! ⇡⇤(x)^ µ too.

Recall that since in this case we are working with cohomology groups
with coe�cients in a field, these are finite dimensional vector spaces, with
duals the correspondent homology groups. In particular, we have a dual map
to this Thom isomorphism:

�i : H̃k+i(T (⇠);Z/2Z) ! Hi(B;Z/2Z).

It has the following explicit formulation:

a 7! ⇡⇤(µ_ a).

Indeed, since the reduced homology of a quotient A/B is the reduced ho-
mology of the pair (A,B) and the reduced homology is equivalent to the
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unreduced homology for positive degrees, we can see the homology of the
Thom space of a vector bundle ⇠ T (⇠) = D(⇠)/S(⇠) as the homology of the
pair (D(⇠), S(⇠)). Moreover, recall that we have a relative cap product

_: Hq(D(⇠), S(⇠);Z/2Z)⌦Hn+q(D(⇠), S(⇠);Z/2Z) ! Hn(D(⇠);Z/2Z)

coming from the classic cap product and the universal property of the quo-
tient. With another abuse of notation consider the source of ⇡ to be D(⇠).

Since proving that �i is the dual of �i is equivalent to proving that �i is
the dual of �i, we want to compute the dual of �i, (�i)⇤ and show that it is
�i.

(�i)
⇤ : H i(B;Z/2Z) ! H̃k+i(T (⇠);Z/2Z)

↵ 7! (�i)
⇤(↵)

where

(�i)
⇤(↵)(a) = ↵(�i(a)) = ↵(⇡⇤(µ_ a)) = ⇡⇤(↵)(µ_ a) = (⇡⇤(↵)^ µ)(a).

Here we used the relation between cup and cap product �(� _ c) = (� ^
�)(c). Since �i is an isomorphism, also �i is an isomorphism.

Now consider the Thom space of the universal bundle. We can give it the
structure of a CW-complex.

Lemma III.2.4. Let ⇠ be a vector bundle over a base space B which is a

CW-complex. Then its Thom space T (⇠) is a CW-complex.

The proof of this theorem can be found at [MS05, Lemma 18.1]. The
lemma and its proof also prove that ifB is a finite CW-complex then also T (⇠)
is finite, and if B is infinite dimensional, also T (⇠) is an infinite dimensional
CW-complex.

This implies that for every n, k � 0, the Thom space T (�nk ) is a finite
CW-complex. Moreover, for n = 1, also the Thom space of the universal
bundle has the structure of an infinite CW-complex. Thanks to the filtration
Gn(Rn) ⇢ Gn(Rn+1) ⇢ Gn(Rn+2) ⇢ . . . , the total spaces of the canonical
bundles on these base spaces will give us a fibration

E(�nn) ⇢ E(�nn+1) ⇢ E(�nn+2) ⇢ . . . .

Quotienting in order to get the Thom spaces gives us

T (�nn) ⇢ T (�nn+1) ⇢ T (�nn+2) ⇢ . . . .
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This fibration gives us the CW-skeleton structure of

T (�n) = [k�0T (�
n
n+k).

Another useful result, that helps us imagine the Thom space more clearly,
is given by the following lemma.

Lemma III.2.5. There is an homotopy equivalence between the infinite di-

mensional real projective space (which is the first Grassmannian) and the

Thom space of the universal line bundle

j : P1 = G1 ! T (�1).

Proof. First of all, note that T (�1) = D(�1)/S(�1). We can describe S(�1)

in an easier way: it is the subset of E(�1) = {(l, v) 2 G1 ⇥ R
1| v 2 l} with

elements of length 1. This length can be defined as |(l, v)| = |v| (where |v| is
the canonical length in R

1). This is isomorphic to S
1, which is contractible.

Thus, D(�1)/S(�1) is the quotient of D(�1) by a contractible subspace, and

thus is equivalent to D(�1). Hence, T (�1) is homotopy equivalent to D(�1).

Since P1 is homotopic equivalent to the zero section of �1, there’s an homo-

topy equivalence P
1 ! D(�1). Therefore, P1 j⇠ T (�1).

This following remark is fundamental in order to create maps between
Thom spaces from bundle maps. Combining this with Theorem III.1.7,
will give us maps between Thom spaces of vector bundles over paracompact
spaces and Thom spaces of the universal vector bundle.

Remark III.2.6. Note that every bundle map between Euclidean vector bun-

dles f : ⌘ ! ⇠ induces a map between their Thom spaces T (f) : T (⌘) ! T (⇠).

Indeed, we can dilate the Euclidean metric on the second vector bundle ⇠

(this doesn’t change the topology of its Thom space) in a way such that every

|f(v)| � 1 if |v| � 1. Considering the diagram

E(⌘) E(⇠)

T (⌘) T (⇠)

q⌘ q⇠

f

T (f)
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and the isomorphism q⌘ : T (⌘) \ t0(⌘) ⇠= E(⌘) \ A⌘, we can define T (f) as

T (f) : T (⌘) ! T (⇠)

t0(⌘) 7! t0(⇠)

v 7! q⇠(f(q
�1
⌘ (v)))

.

We have added the condition |f(v)| � 1 if |v| � 1 in order to make the

diagram above commutative.

Note that these maps are such that for each q-plane bundle ⇡⇠ : E ! B

with B a paracompact space, the following diagram commutes

H̃n+q(T (⇠);Z/2Z) H̃n+q(T (�q);Z/2Z)

H̃n(B;Z/2Z) H̃n(Gq;Z/2Z)

T (f)⇤

�n

f⇤

�n

for f : B ! Gq a classifying map, by definition of �n and cap product

properties.

We will use these induced maps multiple times in the next section, in the
proof of Thom’s theorem.

Now, since we want to describe the relation between the Stiefel–Whitney
classes numbers and N⇤, we would like to describe this last one as something
that’s more familiar. In order to do so in the next section, we need construct
a prespectrum (of which we will compute the homotopy group), built thanks
to the association between Thom spaces and reduced suspensions.

For any Euclidean vector bundle ⇠, we have an homeomorphism

T (⇠ � "1) ⇠= ⌃T (⇠), (III.2)

where ⌃ indicates the reduced suspension.
Indeed, if D is the disk D(⇠) = E(⇠) \ A = {e 2 E(⇠)| |e| < 1}, then

the disk of vectors of length < 1 of ⇠ � "1 is homeomorphic to D ⇥ [�1; 1].
Now, their Thom spaces will be respectively homeomorphic to D/@D and
D⇥ [�1; 1]/(D⇥{�1; 1}[@D⇥ [�1; 1]) (because contracting A is equivalent
to contracting the boundary of D and D ⇥ [�1; 1] respectively). Now, the
latter one is homeomorphic to

(D/@D ⇥ [�1; 1])/(D/@D ⇥ {�1; 1} [ @D/@D ⇥ [�1; 1]),
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which is (T (⇠)⇥ [�1; 1])/(T (⇠)⇥ {�1; 1}) [ t0 ⇥ [�1; 1]) that is the reduced
suspension of T (⇠).

We can give an easy example of this construction.

Example III.2.1. For example, if we take ⇠ = "1 over a point, its Thom

space will be a sphere S
1, and the suspension of an S

1 is a 2 dimensional

sphere S
2. On the other hand, "1 � "1 ⇠= "2, and the Thom space of "2 is an

S
2, as we wanted.

This gives us all the tools to construct maps ⌃T (�q) ! T (�q+1). Indeed,
we have that �q � "1 is an (n+1)-vector bundle over the paracompact space
Gn. By Theorem III.1.7, we get a bundle map �q�"1 ! �n+1, which gives us
a map between the Thom spaces T (�q � "1) ! T (�n+1). By the homeomor-
phism T (�q � "1) ⇠= ⌃T (�q), we get the desired map �q : ⌃T (�q) ! T (�q+1).

Definition III.2.7. A prespectrum is a sequence of based spaces {Tn}n�0

and based maps �n : ⌃Tn ! Tn+1.

It is clear that the spaces T (�q) and the maps �q constitute a prespectrum,
that we will call Thom spectrum and will denote by TO. By convention, T (�0)
is isomorphic to S

0 (we have that E(�0) ⇠= {(0, 0)} 2 G0 ⇥ R
1, so its one

point compactification is a set of two isolated points, as S0).
We can define the homotopy group of a prespectrum as:

Definition III.2.8. The n-homotopy group of a prespectrum T = {Tq}q is

the direct limit

⇡n(T ) = colim ⇡n+q(Tq),

where the colimit is taken over the maps

⇡n+q(Tq)
⌃�! ⇡n+q+1(⌃Tq)

�q⇤��! ⇡n+q+1(Tq+1).

Now that we have defined ⇡n(TO), we want to give

⇡⇤(TO) = (⇡0(TO), ⇡1(TO), ⇡2(TO), . . . )

a ring structure.
We are going to need another kind of maps between Thom spaces of the

universal bundle, in this case maps that will allow us to connect Thom spaces
of di↵erent degrees from TO.
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First of all, we need the following fact: for any ⇠, ⌘ two vector bundles,
we have the following homeomorphism

T (⇠ ⇥ ⌘) ⇠= T (⇠) ^ T (⌘). (III.3)

Indeed, we have that if X and Y are two compact topological spaces, then
X ^ Y is the one point compactification of (X \ {x0}) ⇥ (Y \ {y0}), where
x0 2 X and y0 2 Y are any points ([Bre93, page 199]). In our case T (⇠), T (⌘)
are compact (they are the one point compactification of E(⇠), E(⌘)), so T (⇠)^
T (⌘) is the one point compactification of (T (⇠)\{t0(⇠)})⇥ (T (⌘)\{t0(⌘)}) ⇠=
E(⇠)⇥ E(⌘). This is the total space of the product ⇠ ⇥ ⌘, and its one point
compactification is the Thom space T (⇠ ⇥ ⌘), so we get our claim.

Thus we get an homeomorphism

T (�m ⇥ �n) ⇠= T (�m) ^ T (�n).

From the bundle map �m ⇥ �n ! �m+n we get a map between Thom spaces
T (�m ⇥ �n) ! T (�m+n). We can define maps �m,n as the composition

�m,n : T (�m) ^ T (�n) ⇠= T (�m ⇥ �n) ! T (�m+n).

Before going on, recall some other properties of the smash product. For
any pointed topological spaces X, Y, Z we have the following natural (base-
point preserving) homeomorphisms:

• (unity) X ⇠= S
0 ^X.

• (commutativity) X ^ Y ⇠= Y ^X.

• (associativity) (X ^ Y ) ^ Z ⇠= X ^ (Y ^ Z).

• ⌃X ⇠= S
1 ^X.

• S
m ^ S

n ⇠= S
m+n.

We can now define the concept of a ring prespectrum, see that TO is an
example of this and show how this implies that ⇡⇤(TO) is a commutative
graded ring.
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Definition III.2.9. Let T = {Tn, �n}n be a prespectrum. Then it is a ring

prespectrum if there are maps ⌘ : S0 ! T0 and �m,n : Tm ^ Tn ! Tm+n such

that the following three diagrams are commutative up to homotopy:

Tm ^ ⌃Tn Tm ^ Tn+1

⌃(Tm ^ Tn) ⌃Tm+n Tm+n+1

(⌃Tm) ^ Tn Tm+1 ^ Tn

id^�n

�m,n+1

�m+n

⌃�m,n

=

(�1)n

�m^id

�m+1,n

, (III.4)

S
0 ^ Tn T0 ^ Tn

Tn

�0,n

⌘^id

⇠=
(III.5)

and

Tn ^ T0 Tn ^ S
0

Tn

�n,0

id^⌘

⇠=
. (III.6)

If the following diagram is commutative up to homotopy, we say that T is a

associative ring prespectrum:

Tm ^ Tn ^ Tp Tm+n ^ Tp

Tm ^ Tn+p Tm+n+p

�m+n,p

�m,n+p

�m,n^id

id^�n+p . (III.7)

If the following diagram is commutative up to homotopy for equivalences

(�1)mn : Tm+n ! Tm+n that suspend (�1)mn on ⌃Tm+n, we say that T is a

commutative ring prespectrum:

Tm ^ Tn Tn ^ Tm

Tm+n Tm+n

 

�n,m�m,n

(�1)mn

. (III.8)
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For more details on this definition, we recommend [May99, Chapter 25.2].
We have the following essential lemma that let us define the ring structure

of ⇡⇤(T ) for a ring prespectrum T.

Lemma III.2.10. Let T be an associative ring prespectrum. Then ⇡⇤(T )

has the structure of a graded ring. If T is also commutative than also ⇡⇤(T )

is graded commutative.

Proof. For the addition operation we just need to prove that there exists a

commutative sum inside ⇡n(T ). Let [f ], [g] 2 ⇡n(T ). For q > 0 su�ciently

large, [f ], [g] 2 ⇡n+q(Tq). Then [f ] + [g] 2 ⇡n(T ) is just the colimit of the

element [f ⇤g] 2 ⇡n+q(Tq). This is commutative since the ⇡n+q is commutative

for n+ q > 1.

For the graded multiplication, we will use the maps �m,n. Let [f ] 2 ⇡m(T )

and [g] 2 ⇡n(T ). Then, for q, r > 0 su�ciently large, [f ] 2 ⇡m+q(Tq) and

[g] 2 ⇡n+r(Tr). Thus f : Sm+q ! Tq and g : Sn+r ! Tr. We can define the

multiplication

· : ⇡m(T )⇥ ⇡n(T ) !⇡m+n(T )

([f ], [g]) 7![f ] · [g]

as the colimit of the composition

[f ] · [g] : Sm+n+q+r ⇠= S
m+q ^ S

n+r f^g��! Tq ^ Tr
�q+r��! Tq+r.

We have that this map is well defined by the first diagram III.4, that is has

a left and right unit by III.5 and III.6 (that is ⌘ 2 ⇡0(T ), that is the limit of

⌘^idTq), and it is associative by the commutativity of diagram III.7. The fact

that these diagrams commute just up to homotopy does not matter since we

are working with homotopy groups. For example, the right unity is proven

using the diagram

[f ] · [⌘] : S
0 ^ S

m+q T0 ^ Tq Tq

S
0 ^ Tq

�0,q⌘^f

id^f ⌘^id ⇠=
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which is commutative up to homotopy, and shows us that [f ]·[⌘] ⇠ id^f ⇠= f.

If the ring prespectrum is also commutative, by the last diagram III.8 we

get that · is also a commutative operation. Indeed, the following diagram

shows that [g] · [f ] ⇠ (�1)qr � ([f ] · [g]):

[f ] · [g] : S
m+n+q+r

S
m+q ^ S

n+r Tq ^ Tr Tq+r

[g] · [f ] : S
m+n+q+r

S
n+r ^ S

m+q Tr ^ Tq Tq+r

=

⇠=

⇠=

⇠=

f^g

g^f

 

�q,r

�r,q

(�1)qr

Now that we have this result, to prove that ⇡⇤(TO) has a commuta-
tive graded ring structure, we just need to show that TO is an associative
commutative ring prespectrum. To do so, we need to show that the di-
agrams above are satisfied by TO, together with the maps �m,n that we
have previously defined and some maps ⌘ and (�1)mn. The latter ones,
(�1)mn : T (�m+n) ! T (�m+n) are the maps induced by the bundle maps
�m+n ! �m+n, which cover the interchange isomorphisms R

m+n ! R
m+n.

The map ⌘ is just the isomorphism T (�0) ⇠= S
0. It is easy to see that using

these maps all the diagrams above commute up to homotopy so TO is a
commutative associative ring prespectrum, and so ⇡⇤(TO) is a commutative
graded ring.

III.3 The structure of the unoriented cobor-

dism ring

We finally have all the tools to study the relation between N⇤ and ⇡⇤(TO).
These two are isomorphic as Z/2Z-algebras.

In order to prove so, let’s first prove the following theorem concerning
just the groups Nn and ⇡n(TO).

Theorem III.3.1 (Thom). For a su�ciently large q, we have that Nn is

isomorphic to ⇡n+q(T (�q)), and therefore

Nn
⇠= ⇡n(TO).
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The base point of the space T (�q) is t0, so whenever we write ⇡n+q(T (�q))
instead of ⇡n+q(T (�q), t0) we are implying that the base point is the point at
infinity.

In the proof of this theorem we are going to use some results from di↵eren-
tial topology. We are going to state what we need from di↵erential topology
before starting the proof of Theorem III.3.1.

First of all, we need to see two theorems about embeddings, one that we
have already cited in Chapter I, I.2.11 and the other about manifolds with
boundary.

Theorem III.3.2 (Strong embedding theorem). Every compact boundaryless

smooth n-dimensional manifold M can be embedded in R
2n.

Theorem III.3.3 (Whitney embedding theorem with boundary). Let X be

an n-dimensional manifold with boundary. Then there exists an embedding

◆ : X ! R
2n+1

such that ◆(@X) ⇢ @H2n+1 ⇠= R
2n

and ◆(X̊) ⇢ H̊
2n+1 ⇠= R

2n+1.

For a reference for this theorem, check [Hir76, Theorem 1.4.3].
Another useful theorem is the tubular neighborhood theorem. Let’s first

write what a tubular neighborhood actually is. We will give both the defi-
nition and the theorem only in the case of submanifolds of some R

m, even
though it can be extended to submanifolds of any manifold.

Definition III.3.4. A tubular neighborhood of a submanifold M ⇢ R
m con-

sists of the vector bundle ⌫ : E(⌫)
⇡�! M (defined in Example I.1.1) and an

open embedding � : E(⌫) ,! R
m extending the di↵eomorphism of the zero

section Z = s0(M) onto M (i.e. �(x, 0) = id(x) = x for every x 2 Z).

It is possible we will refer also to �(E(⌫)) ⇢ R
m as tubular neighborhood.

Note that this is an open neighborhood of M .

Theorem III.3.5 (Tubular neighborhood theorem). If M is a submanifold

of R
m

without boundary, then there exists a tubular neighborhood of M in

R
m.

For a proof of this theorem, the reader might look at [Muk15, Theorem
7.1.5]. Note that if we take di↵erent embeddings of M in R

n+m, for m large
enough, the total spaces of the normal bundles will be isotopic (for a reference
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of this statement and the relative proof, check [Lan02]) and any two tubular
neighborhoods will be isotopic (for a reference of this statement and the
relative proof, check [Hir76, Chapter 4, Theorem 5.3]).

We also have a version of this theorem for manifolds with boundary.

Theorem III.3.6. Let M,V be two manifolds with boundary, such that M ⇢
V is a neat submanifold. Then every tubular neighborhood of @M in @V is

the intersection with @V of a tubular neighborhood for M in V.

For a proof of this theorem, check [Hir76, Chapter 4, Theorem 6.4].
Another classical result from di↵erential topology is the Whitney approx-

imation theorem for continuous maps.

Lemma III.3.7. Let M,N be manifolds and let f : M ! N be a continuous

map. Then f is homotopic to smooth maps.

A proof of this lemma can be found in [Hir76, Chapter 5, Lemma 1.5].
The last results we will use in this proof are coming from transversality

theory.
The first important theorem is Sard’s theorem. It can be really useful to

compute dimensions.

Theorem III.3.8 (Sard). Let f : M ! N be a smooth map between mani-

folds and let C(f) be the set of all the critical points of f in M . Then, the

set f(C(f)) has measure zero.

A proof can be found in [Muk15, Theorem 2.3.5].
Sard’s theorem is quite fundamental to di↵erential topology because it is

the base of transversality theory. We won’t go deep in the study of it, but
we will need the basic definition and a first important theorem.

Definition III.3.9. Let M be an n-dimensional manifold with (possibly

empty) boundary @M and let N be an n-dimensional manifold without

boundary. Let Z be a proper closed r-submanifold of N. If f : M ! N

is a smooth map, then we say that f is transverse to Z (denoted as f t Z)

if

• for every x 2 M such that f(x) 2 Z

DNy = DZy + dxf(DMx);
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• if @M 6= ; for every x 2 @M such that f(x) 2 Z

DNy = DZy + dx@f(D@Mx),

where we denoted by @f the restriction of f to @M.

Theorem III.3.10 (First basic transversality Theorem). With the same no-

tation as above, if f t Z, then (f�1(Z), @f�1(Z)) is a proper submanifold of

(M, @M). Moreover,

dimM � dim f�1(Z) = dimN � dimZ.

For a proof, we suggest to check [Ben21, Theorem 8.2]. We also have the
following.

Theorem III.3.11 (Second basic transversality Theorem). With the same

notation as above, the set of smooth maps transverse to a set Z is open and

dense in the space of maps between M and N.

For a reference to this statement, check [Ben21, Theorem 8.5].
We finally can start the proof of Thom’s theorem.

Proof of Theorem III.3.1. We want to define an homomorphism ↵ : Nn !
⇡n+q(T (�q)) and an homomorphism � : ⇡n+q(T (�q)) ! Nn for any n, and

show that � is invertible and ↵ is the right inverse for �. From this, we get

our thesis.

Let M be an n-dimensional smooth manifold (and so [M ] 2 Nn). For q

su�ciently large, we can embed it in R
n+q (by the Whitney Theorem I.2.11

q = n is su�cient).

Let ⌫ be the normal bundle of M in R
n+q. We have that this is a q-

plane bundle (since q is the codimension of M in R
n+q). We have that M

is di↵eomorphic to the zero section of ⌫. As a result of Theorem III.3.5 the

embedding of M in R
n+q extends to an embedding � of E(⌫) onto an open

neighborhood U = �(E(⌫)) which we call the tubular neighborhood of M in

R
n+q.
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This tubular neighborhood defines uniquely a map t : Sn+q ! T (⌫) in

the following way. Consider Sn+q as the one point compactification of Rn+q

and remember that since we are working with an embedding (and thus with

an injective map) U ⇠= E(⌫). Then the map t is defined as

t : Sn+q �! T (⌫),

where t|U ⌘ ��1 and t|Sn+q\U ⌘ t0. This construction is called the Thom–

Pontrjagin construction. Note that sometimes we will denote this map t as

tM , where M is the manifold we are working with.

Any two tubular neighborhoods of a manifold are isotopic, as we recalled

from [Hir76, Chapter 4, Theorem 5.3]. Thus, if we choose a di↵erent embed-

ding, we still get the same homotopy class as t. The maps t and t̂ resulting

from these di↵erent tubular neighborhoods will be homotopic (via the isotopy

between the tubular neighborhoods), so [t] = [t̂].

Furthermore, we know that since M is a compact manifold, and therefore

it is paracompact. This implies, by Theorem III.1.7, that we have a bundle

map f : ⌫ ! �q, since ⌫ is a q-plane bundle over M. Since a bundle map

induces a map on the Thom spaces, we thus get a map T (f) : T (⌫) ! T (�q).

Composing the maps t and T (f), we get a map T (f) � t : Sn+q ! T (�q). The

map ↵ will be defined as ↵([M ]) = [T (f) � t] 2 ⇡n+q(T (�q)). We still need to

prove that this map is well defined and it is an homomorphism.

In order to prove that it is well defined, we have to show that cobordant

manifolds induce homotopic maps Sn+q ! ⇡n+q(T (�q)). Let M t M̃ be the

boundary of an (n + 1)-manifold X (so [M ] = [M̃ ]). For a large enough

q, we can embed X in R
n+q ⇥ [0, 1], in a way such that M and M̃ will be

embedded in R
n+q⇥{0, 1}. The normal bundle of X ⌫(X) in R

n+q⇥ [0, 1] is a

q-plane bundle (because the codimension of X in R
n+q⇥ [0, 1] is q). Thus, by

Theorem III.1.7, we have a bundle map f : ⌫(X) ! �q. Note that ⌫(X)|M =

⌫(M) and ⌫(X)|M̃ = ⌫(M̃) and thus A⌫(M), A⌫(M̃) ⇢ A⌫(X). This implies

that T (⌫(M)), T (⌫(M̃)) ⇢ T (⌫(X)). Therefore, f |⌫(M) : ⌫(M) ! �q, f |M̃ :

⌫(M̃) ! �q and T (f |⌫(M)) = T (f)|T (⌫(M)) : T (⌫(M)) ! T (�q), T (f |M̃) =
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T (f)|T (⌫(M̃)) : T (⌫(M̃)) ! T (�q). Lastly, if UX is the tubular neighborhood

of X, observe that UX \R
n+q ⇥ {0} gives a tubular neighborhood of M and

similarly UX \ R
n+q ⇥ {1} gives a tubular neighborhood of M̃ . Since the

one point compactification of Rn+q ⇥ [0, 1] is S
n+q⇥[0,1]
s0⇥[0,1] , we can see R

n+q ⇥
[0, 1] (and UX) as a subset of this, and define a relative Thom-Pontrjagin

construction map tX : S
n+q⇥[0,1]
s0⇥[0,1] ! T (⌫(X)) as we did before. Since the one

point compactification of the two copies of Rn+q will be S
n+q ⇢ S

n+q⇥[0,1]
s0⇥[0,1]

the restriction of tX : S
n+q⇥[0,1]
s0⇥[0,1] ! T (⌫(X)) to these S

n+q gives two maps

tM , tM̃ . Therefore, ↵([M ]) = [T (f)|T (⌫(M)) � tM ] 2 ⇡n+q(T (�q)) and ↵([M̃ ]) =

[T (f)|T (⌫(M̃)) � tM̃ ] 2 ⇡n+q(T (�q)). These two elements are the same, since

T (f)|T (⌫(M)) � tM and T (f)|T (⌫(M̃)) � tM̃ are homotopic, via tX .

We can now prove that ↵ is an homomorphism. Let M,N be two n-

dimensional manifolds. We want to show that [M ] t [N ] 7! ↵([M ] t [N ]) =

↵([M ])⇤↵([N ]). To show this, observe that we can embed M and N and their

tubular neighborhoods disjointly in R
n+q for q large enough. In particular,

UM \ UN = ;, so tM(UN) = t0(M) and tN(UM) = t0(N). Via the classifying

maps fM and fN , we will get that both these points at infinity will be mapped

in the point at infinity of T (�q). This, which is the base point of ⇡n+q(T (�q)),

is therefore the only point of intersection of the paths ↵([M ]) and ↵([N ]). We

can repeat the same argument for [MtN ] : since they are disjoint, the normal

bundle of this union will be the union of the normal bundle, and similarly

the classifying map and the map tMtN will be defined componentwise. Thus,

↵([M ] t [N ]) = ↵([M ]) ⇤ ↵([N ]).

Now we can finally define the map �. Let [g] 2 ⇡n+q(T (�q)). Since Sn+q is

compact and g is continuous, g(Sn+q) ⇢ T (�q) will be a compact subset. Since

compact subsets in CW-complexes must be contained in finite dimensional

subcomplexes, and since by Proposition III.2.4 the Thom space T (�q) is a

CW-complex, there must exists an r � 0 such that g(Sn+q) ⇢ T (�qr ).

We can deform the map g to an homotopic map g̃ by Lemma III.3.7 and

Theorem III.3.11 (so [g] = [g̃]) which is smooth on the restriction of g to the

71



Thom’s theorem on Stiefel–Whitney classes

set

g�1(T (�qr ) \ {1}) ⇠= g�1(E(�qr )) ⇢ S
n+q

and transverse to the zero section of �qr Z ⇠= B(�qr ) = Gq(Rr+q). We have

that the set g̃�1(Z) = g̃�1(Gq(Rr+q)) is smooth (since it is the inverse image

of a smooth manifold over a smooth map) and it is compact (since g̃ is a

continuous map and Gq(Rr+q) is a closed manifold in T (�qr )). Moreover, by

Theorem III.3.10, it is a proper submanifold of Sn+q and it has no boundary

since @g̃�1(Gq(Rr+q)) ⇢ @Sn+q = ;. Thanks the same theorem, we also have

that

dim g̃�1(E(�qr ))� dim g̃�1(Gq(R
r+q)) = dimE(�qr )� dimGq(R

r+q)

and thus

dim g̃�1(Gq(R
r+q)) = dim g̃�1(E(�qr ))� dimE(�qr ) + dimGq(R

r+q).

We can compute these dimensions: dimGq(Rr+q) = (r + q)q by Lemma

III.1.3. The dimension of E(�qr ) = {(X, v) 2 Gq(Rr+q) ⇥ R
r+q|v 2 X)} is

the dimension of Gq(Rr+q) ⇥ R
q, which is (r + q)q + q. Lastly, by Sard’s

theorem III.3.8, since C(f) = {1} has dimension zero, dim g̃�1(E(�qr )) =

dim g�1(T (�qr )) = dim S
n+q = n+ q. Therefore

dim g̃�1(Gq(R
r+q)) = n+ q � (r + q)q � q + (r + q)q = n.

In conclusion, g̃�1(Gq(Rr+q)) is a smooth closed n-dimensional manifold,

so [g̃�1(Gq(Rr+q))] 2 Nn. We define �([g]) = [g̃�1(Gq(Rr+q))]. Note that

g̃�1(Gq(Rr+q)) is embedded in R
n+q = S

n+q \ 1 since the point at infinity

of Sn+q is mapped to the point at infinity of T (�q) and Gq(Rr+q) doesn’t

contain it, so its preimage will be completely contained in R
n+q.

Now that we have given a definition for the map �, we need to prove

that it is well-defined. Let g1 and g2 be two homotopic maps. We want

to show that �([g1]) ⇠ �[g2] 2 Nn. Let H be the homotopy between them.

Then, we can approximateH with a homotopic map H̃ by Lemma III.3.7 and
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Theorem III.3.11, a smooth map on H�1(T (�qr ) \ {1}) which is transverse

to Z = Gq(Rr+q). Then, by the same argument as before H̃�1(Gq(Rr+q)) is

a smooth compact (n + 1)-dimensional manifold. We can take g̃1 = H̃(·, 0)
and g̃2 = H̃(·, 1) (they are homotopic to g1, g2, smooth and transverse to

Z), so �([g1]) = g̃�1
1 (Gq(Rr+q)) and �([g2]) = g̃�1

2 (Gq(Rr+q)). By Theorem

III.3.10, @H̃�1(Gq(Rr+q)) is a proper subset of @(Sn+q⇥ [0, 1]) = S
n+q⇥{0, 1}

(and since the preimage of H already has a boundary, also the preimage of

H̃ must have a boundary), and thus @H̃�1(Gq(Rr+q)) = g̃�1
1 (Gq(Rr+q)) t

g̃�1
2 (Gq(Rr+q)) = �([g1])t�([g2]), so �([g1]) ⇠ �([g2]) in Nn. Hence, � is well

defined.

Our next goal is to prove that � : ⇡n+q(T (�q)) ! Nn is an homo-

morphism. Let f, g 2 ⇡n+q(T (�q)). We want to show that �([f ⇤ g]) =

�([f ]) t �([g]) = [f̃�1(Gq(Rr+q))] t [g̃�1(Gq(Rr+q))]. We have that apply-

ing f ⇤ g to S
n+q is the same thing as applying f to the closed northern

hemisphere and g to the closed southern hemisphere, and then crushing

the equator. We can perturb the sphere in order to send the equator to

t0(�q). This way the only common point in the images of f and g would be

the point at infinity, and thus [f̃�1(Gq(Rr+q))] and [g̃�1(Gq(Rr+q))] are be

disjoint (they don’t contain the preimage of the point at infinity). Hence,

�([f ⇤ g]) = [f̃�1(Gq(Rr+q))] t [g̃�1(Gq(Rr+q))] as we wanted.

To complete the proof, we want to show that � is the inverse of ↵. Since

we are working within the category of abelian groups, it is enough to show

that � is an isomorphism (and thus that it is surjective and injective) and

that ↵ is its right inverse (since it is invertible, the left and right inverses will

exist and coincide).

Let’s start by showing that the map is surjective. Let M be a manifold

embedded in R
n+q. We can choose the classifying map f for ⌫(M) to make

T (f)� t smooth and transverse to the zero section of �q Z. Moreover we have

that (T (f)� t)�1(Z) = M since T (f)�1(Z) is the zero section of ⌫(M) s0(M)

and t�1(s0(M)) is M. Thus, �([T (f)� t]) = [M ]. This proves the surjectivity.

From this argument we also prove the claim that ↵ is the right inverse of
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�: for any [M ] 2 Nn

[M ] = [(T (f) � t)�1(Z)] = �([T (f) � t]) = �(↵([M ])),

so we get

idNn = � � ↵.

To conclude the whole proof, we just need to show that � is injective.

Let g : S
n+q ! T (�qr ) ⇢ ker(�), so equivalently, �([g]) = [;] 2 Nn (i.e.

g̃�1(Gq(Rr+q)) is a boundary). We want to show that [g] = [constt0 ], so

that g is null-homotopic. We have that g̃�1(E(�qr )) is smooth and transverse

to Gq(Rr+q) by construction. By assumption, g̃�1(Gq(Rr+q)) := M is a

boundary of some X.

The inclusion M ,! S
n+q extends to an inclusion X ,! Dn+q+1 for q

large enough (by Theorem III.3.3 q = n is enough). We can assume that

U = g̃�1(T (�qr ) \ {1}) ⇢ S
n+q is a tubular neighborhood of M (so U ⇠=

E(⌫(M))) and that g̃ : U ! E(�qr ) is a bundle map. By the relative tubular

neighborhood Theorem III.3.6, the tubular neighborhood U of M can be

extended to a tubular neighborhood W in Dn+q+1 and g̃ extends to a bundle

map h̃ : W ⇠= E(⌫(X)) ! E(�qr ). Compactifying h̃ gives us a map

h : Dn+q+1 ! T (�qr )

W
⇠�! E(�qr )

Dn+q+1 \W 7! t0(�
q
r )

.

Therefore, g̃ can be extended to the map h : Dn+q+1 ! T (�q) and thus g

(which is homotopic to g̃) is null-homotopic.

This concludes our proof.

To complete Thom’s theorem, we actually have the following additional
result.

Theorem III.3.12 (Thom). We have that N⇤ and ⇡⇤(TO) are isomorphic

as Z/2Z-algebras.
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Proof. We want to show that the isomorphism ↵ respects the graded ring

structure. In particular, we have to show that for any m,n, the following

diagram commutes

Nm ⇥Nn ⇡m(TO)⇥ ⇡n(TO)

Nm+n ⇡m+n(TO)

⇥

↵

·

↵⇥↵

Let M be an m-dimensional manifold embedded in R
m+q with tubular neigh-

borhood U ⇠= E(⌫M) and N an n-dimensional manifold embedded in R
n+r

with tubular neighborhood V ⇠= E(⌫N). We have that M ⇥ N can be em-

bedded in R
m+n+q+r with tubular neighborhood U ⇥ V ⇠= E(⌫M)⇥E(⌫N) =

E(⌫M ⇥ ⌫N) ⇠= E(⌫M⇥N). Let the Pontrjagin–Thom construction for M be

tM : S
m+q ! T (⌫M) and tN : S

n+r ! T (⌫N) be the Pontrjagin–Thom

construction for N . Moreover, let T (fM) : T (⌫M) ! T (�q) and T (fN) :

T (⌫N) ! T (�r) be induced by the classifying maps ⌫M ! �q and ⌫N ! �r.

Then, ↵([M ]) = [T (fM) � tM ] and ↵([N ]) = [T (fN) � tN ]. Thus,

·((↵⇥ ↵)([M ], [N ])) = ↵([M ]]) · ↵([N ]) = [T (fM) � tM ] · [T (fN) � tN ]

is the composition

S
m+n+q+r ⇠= S

m+q ^ S
n+r (T (fM )�tM )^(T (fN )�tN )��������������! T (�q) ^ T (�r)

�q,r��! T (�q+r)

and since (T (fM)�tM)^(T (fN)�tN) = (T (fM)^T (fN))�(tM ^tN), ↵([M ]]) ·
↵([N ]) is the homotopy class of the composition

S
m+q ^ S

n+r tM^tN����! T (⌫M) ^ T (⌫N)
T (fM )^T (fN )��������! T (�q) ^ T (�r)

�q,r��! T (�q+r).

We need to show that this is homotopy equivalent to ↵([M ]⇥ [N ]) = ↵([M⇥
N ]). First of all, let’s study tM^tN . Let [(x, y)] 2 S

m+q^S
n+r. Then if x 62 U,

tM(x) = t0(⌫M), so [(tM(x), tN(y))] = [(t0(⌫M), tN(y))] = [(t0(⌫M), t0(⌫N))]

which is the point at infinity of T (⌫M) ^ T (⌫N) ⇠= T (⌫M ⇥ ⌫N) ⇠= T (⌫M⇥N).

Similarly, if y 62 V, [(tM(x), tN(y))] = t0(⌫M⇥N). For (x, y) 2 U ⇥ V, tM(x) 6=
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t0(⌫M) and tN(y) 6= t0(⌫N) so tM ^ tN remains an isomorphism here. In

particular, (tM ^ tN)|U⇥V : U ⇥ V
⇠=�! E(⌫M)⇥ E(⌫N) ⇠= E(⌫M⇥N), so up to

isomorphisms tM ^ tN is the Pontrjagin–Thom construction for M ⇥N .

For the classifying map, note that we have a bundle map fM ⇥ fN : ⌫M ⇥
⌫N ! �q ⇥ �r and a classifying map g : �q ⇥ �r ! �q+r. Thus, the classifying

map that we will use for M⇥N will be T (g�(fM ⇥ tN)) = T (g)�T (fM ⇥ tN).

This way, the following diagram will commute up to homotopy

T (⌫M) ^ T (⌫N) T (�q) ^ T (�r)

T (⌫M ⇥ ⌫N) T (�q ⇥ �r)

T (⌫M⇥N) T (�q+r)

T (fM )^T (fN )

⇠=

=

T (fM⇥fN )

⇠=

T (g)

T (g)�T (fM⇥tN )

.

Note that the vertical composition on the right is the map �q,r by definition.

In conclusion, we have that

↵([M ⇥N ]) = [T (g) �T (fM ⇥ tN) � tM ^ tN ] = [�q,r �T (�q)^T (�r) � tM ^ tN ]

as we wanted.

Proving these result allows us to shift the problem to a problem in homo-
topy theory, that in general might be just as di�cult, but in our particular
case lets us complete our study, as we will show in the next sections.

III.4 The structure of the homotopy ring of

the Thom spectrum

We saw how the cobordism ringN⇤ is isomorphic as a Z/2Z-algebra to the ho-
motopy ring of the Thom spectrum ⇡⇤(TO). This result is quite useful since
we can study in depth the structure of ⇡⇤(TO). In particular, we will define
in a next section the injective Hurewicz map h : ⇡⇤(TO) ! H⇤(TO;Z/2Z)
and we will use it to study the image of ⇡⇤(TO) in H⇤(TO;Z/2Z). Thus, in
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this section our goal will be to investigate the structure of H⇤(TO;Z/2Z).
We will do that using the Thom isomorphism between the Grassmannian
and the Thom space of the universal bundle, and its passage to colimits.

In order to do so, let’s start by defining the homology and cohomology
group of a prespectrum. As we did for the homotopy group of a prespectrum
T = {Tq}q, the homology of T with coe�cients in Z/2Z

Hn(T ;Z/2Z) = colim H̃n+q(Tq;Z/2Z),

where the colimit is taken over the maps

H̃n+q(Tq;Z/2Z)
⌃⇤�! H̃n+q+1(⌃Tq;Z/2Z)

�q⇤��! H̃n+q+1(Tq+1;Z/2Z)

and the cohomology of T with coe�cients in Z/2Z is

Hn(T ;Z/2Z) = lim H̃n+q(Tq;Z/2Z),

where the limit is taken over the maps

H̃n+q+1(Tq+1;Z/2Z)
�q⇤��! H̃n+q+1(⌃Tq;Z/2Z)

⌃�1

��! H̃n+q(Tq;Z/2Z).

Note that Hn(T ;Z/2Z) and Hn(T ;Z/2Z) are finite dimensional Z/2Z-vector
spaces, one the dual of the other (because for each q Hn+q(Tq;Z/2Z) and
Hn+q(Tq;Z/2Z) are dual finite dimensional Z/2Z-vector spaces).

We have that the Thom isomorphisms

�q : Hn(Gq;Z/2Z) !H̃n+q(T (�q);Z/2Z)

pass to limits and thus we get a stable Thom isomorphism

� : Hn(BO;Z/2Z) ! Hn(TO;Z/2Z)

by [May99, Section 3, Chapter 25]. Taking the dual map of �q we get the
maps

�q : H̃n+q(T (�
q);Z/2Z) ! Hn(Gq;Z/2Z)

that similarly pass to colimits in order to get the stable Thom isomorphism

� : Hn(TO;Z/2Z) ! Hn(BO;Z/2Z).

The Z/2Z-algebra structure is preserved by the Thom isomorphism, as shown
in [May99, Section 3, Chapter 25] so we get that
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Proposition III.4.1. The Thom isomorphism

� : H⇤(TO;Z/2Z) ! H⇤(BO;Z/2Z)

is an isomorphism of Z/2Z-algebras.

Where the structure of graded commutative Z/2Z-algebra for the ho-
mology ring H⇤(BO;Z/2Z) is given by the H-structure of BO, whereas for
H⇤(TO;Z/2Z) is given by the passage to colimits of the maps �m,n⇤.

A simple corollary coming from this proposition and Theorem III.1.9
(H⇤(BO;Z/2Z) ⇠= Z/2Z[bj|j � 1]) is the following.

Corollary III.4.2. Let aj 2 Hj(TO;Z/2Z) be the image of ��1(bj). Then

H⇤(TO;Z/2Z) is the polynomial algebra Z/2Z[aj|j � 1].

Since the maps �n are stable, and the diagrams

Hn(G1;Z/2Z) Hn+1(T (�1);Z/2Z)

Hn(BO;Z/2Z) Hn(TO;Z/2Z)

i⇤

�n

�n

,

where the second vertical map is the colimit map, commute for every n � 0..
Thus, the elements ai come from H⇤(T (�1)).

Moreover, recall from Lemma III.2.5 that we have an homotopy equiv-
alence j : P1 ! T (�1). Thus Hi(T (�1);Z/2Z) ⇠= Hi(P1;Z/2Z) ⇠= {0, xi}
for every i. Since j⇤ is an isomorphism, it will take generators to generators.
From these two results, we get the following.

Corollary III.4.3. For i � 0, j⇤(xi+1) maps to ai in H⇤(TO;Z/2Z), where

a0 = 1.

In particular, a0 = 1 because a0 is the image under the colimit map of
the non-zero element of H1(T (�1);Z/2Z).

III.5 The Steenrod algebra

In order to understand completely the relation between the homotopy ring
⇡⇤(TO) and the homology ring H⇤(TO;Z/2Z) we need to study the Steenrod
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operations and the Steenrod algebra. Indeed, the algebrasH⇤(TO;Z/2Z) and
H⇤(TO;Z/2Z) are built from ⇡⇤(TO) and Steenrod operations.

Let’s recall the definition of these two objects. The Steenrod squares are
a family of natural homomorphisms Sqi : Hn(X;Z/2Z) ! Hn+i(X;Z/2Z)
where i � 0 and X is a topological space. The Sqi satisfies:

• Sq0 = id;

• For x 2 Hn(X;Z/2Z), Sqn(x) = x^ x;

• For x 2 Hn(X;Z/2Z) and i > n, Sqi(x) = 0;

• (Cartan formula) Sqk(x^ y) =
P

i+j=k Sq
i(x)^ Sqj(y).

Since these cohomology operations are natural and stable, we get that they
pass to limits to define natural operations

Sqi : Hn(TO;Z/2Z) ! Hn+i(TO;Z/2Z).

Note that this passage to limits does not preserve all the axioms above.
Consider the Z/2Z-algebra freely generated by all the Steenrod squares

Sq1, Sq2, Sq3, . . . . The Steenrod algebra A is the quotient of this algebra by
the Adem relations: for i, j > 0 and i < 2j, the Steenrod squares satisfy

Sqi � Sqj =
b i

2cX

k=0

✓
j � k � 1

i� 2k

◆
Sqi+j�k � Sqk .

The Steenrod algebra has as a basis the operations SqI = Sqi1 � · · · � Sqik

with I = (i1, . . . , ik) such that ij � 2ij+1 for 1  j < k.
Moreover, other than having the structure of an algebra, thanks to the

composition

A⌦A !A
Sqi ⌦ Sqj 7! Sqi � Sqj

,

and thanks to the Cartan formula we also get a coproduct

 : A !A⌦A

Sqk 7!
X

i+j=k

Sqi ⌦ Sqj,
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and thus A has a dual vector space A⇤ (with canonical basis the dual one to
the one we have described). This A⇤ will be a commutative

We can explicitly see the structure of this algebra using the following
theorem.

Theorem III.5.1. For r � 1, let Ir = (2r�1, 2r�2, . . . , 2, 1). Define ⇠r to

be the basis element of A⇤ dual to SqIr . Then A⇤ is the polynomial algebra

Z/2Z[⇠r|r � 1].

The reason why these elements are so important will be highlighted soon.
In the meantime, we have the following lemma, whose proof is pretty

straightforward.

Lemma III.5.2. For any space X and any prespectra T , H⇤(X;Z/2Z) and

H⇤(T ;Z/2Z) have a natural structure of A-modules.

Consider the A-module structure maps

A⌦H⇤(X;Z/2Z) ! H⇤(X;Z/2Z) and A⌦H⇤(T ;Z/2Z) ! H⇤(T ;Z/2Z)

for spaces X and prespectra T. These maps dualize to give A⇤-comodule
structure maps

� : H⇤(X;Z/2Z) ! A⇤ ⌦H⇤(X;Z/2Z)

and
� : H⇤(T ;Z/2Z) ! A⇤ ⌦H⇤(T ;Z/2Z).

If T is an associative ring prespectrum, this latter coaction � is an homo-
morphism of algebras.

In order to get back to the study of H⇤(TO;Z/2Z) ⇠= H⇤(BO;Z/2Z), we
will use the homotopy equivalence i : P1 ,! TO from Lemma III.2.5, so
let’s dissect the coaction � for X = P

1. To do so, we first need to see the
A-module structure of H⇤(P1;Z/2Z) ⇠= Z/2Z[↵].

Lemma III.5.3. In H⇤(P1;Z/2Z), we have that SqIr(↵) = ↵2r
for r � 1

and SqI(↵) = 0 for all other basis elements of A.

Dualizing this lemma gives us the following result, that uses that also P
1

is an H-space, and thus by [Hat17, Section 3.C] its homology groups have a
bilinear product.
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Lemma III.5.4. If we rewrite the coaction � : H⇤(P1;Z/2Z) ! A⇤ ⌦
H⇤(P1;Z/2Z) as �(xi) =

P
j ai,j ⌦ xj, then

ai,1 =

8
<

:
⇠r if i = 2r for some r � 1,

0 otherwise.

Moreover, note that ai,i = 1, dualizing Sq0(↵i) = ↵i.
We can finally describe H⇤(TO;Z/2Z) in terms of A⇤ with the following

theorem.

Theorem III.5.5. Let N⇤ be the algebra defined abstractly by

N⇤ = Z/2Z[ui|i > 1 and i 6= 2r � 1]

where ui has degree i. Define a homomorphism of algebras f by

f : H⇤(TO;Z/2Z) �!N⇤

ai 7�!

8
<

:
ui if i is not of the form 2r � 1,

0 if i = 2r � 1.

Then the composite

g : H⇤(TO;Z/2Z)
��! A⇤ ⌦H⇤(TO;Z/2Z)

id⌦f���! A⇤ ⌦N⇤

is an isomorphism of both A-modules and Z/2Z-algebras.

Proof. Since both � and f are both A-comodules and Z/2Z-algebras mor-

phisms, also g is a map of both A-comodules and Z/2Z-algebras morphisms.

We want to prove that this is also an isomorphism. Since the domain and

the target have the same cardinality (they are both Z/2Z-algebras with one

generator per degree, ai for H⇤(TO;Z/2Z) and

8
<

:
(1⌦ ui) for i 6= 2r � 1

(⇠r ⌦ 1) for i = 2r � 1
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for A⇤⌦N⇤), it is enough to show that generators are mapped to generators.

Thanks to the last lemma, we know the image of � for the infinite projective

space, and combining this with the fact that ai = j⇤(xi+1) by Corollary

III.4.3, we get that

�(ai) = �(j⇤(xi+1)) = j⇤(�(xi+1)) =

=

8
<

:
⇠r ⌦ j⇤(x1) + 1⌦ j⇤(xi+1) +

P
j 6=1,i+1 ai,j ⌦ j⇤(xj) for i = 2r � 1

1⌦ j⇤(xi+1) +
P

j 6=1,i+1 ai,j ⌦ j⇤(xj) for i 6= 2r � 1

=

8
<

:
⇠r ⌦ 1 + 1⌦ ai +

P
j 6=1,i+1 ai,j ⌦ aj�1 for i = 2r � 1

1⌦ ai +
P

j 6=1,i+1 ai,j ⌦ aj�1 for i 6= 2r � 1
.

We can ignore the terms that are decomposable in A⇤ ⌦H⇤(TO;Z/2Z), and

we find

�(ai) =

8
<

:
⇠r ⌦ 1 + 1⌦ a2r�1 for i = 2r � 1

1⌦ ai for i 6= 2r � 1
.

When we apply id⌦f to these elements, we get

(id⌦f)(�(ai)) =

8
<

:
⇠r ⌦ f(1) + 1⌦ f(a2r�1)) for i = 2r � 1

1⌦ f(ai) for i 6= 2r � 1
=

=

8
<

:
⇠r ⌦ 1 + 1⌦ 0 for i = 2r � 1

1⌦ ui for i 6= 2r � 1
.

where f(1) = 1 since f is a morphism of algebras, as we wanted.

We will show that this composition g actually helps us understand the
structure of ⇡⇤(TO) as we wanted. Indeed, if we see N⇤ as a subalgebra
of A⇤ ⌦ N⇤ (by considering its isomorphic algebra Z/2Z ⌦ N⇤ ⇢ A⇤ ⌦ N⇤),
it can be proven that g � h (where h is the Hurewicz injective morphism
h : ⇡⇤(TO) ! H⇤(TO;Z/2Z)), maps ⇡⇤(TO) to Z/2Z ⌦ N⇤. We have the
following theorem, that helps us close the understanding of the structure of
N⇤.

Theorem III.5.6. h : ⇡⇤(TO) ! H⇤(TO;Z/2Z) is a monomorphism and

g � h maps ⇡⇤(TO) isomorphically onto N⇤.
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III.6 Hurewicz homomorphism

In this section we will just discuss Theorem III.5.6. Before doing that, we
need to actually define the Hurewicz homomorphism for prespectra.

The Hurewicz homomorphisms ⇡n+q(T (�q)) ! H̃n+q(T (�q);Z/2Z) are
defined in the following way. Consider the canonical generator un+q 2
Hn+k(Sn+k;Z/2Z). Then the image of an homotopy class [f ] 2 ⇡n+q(T (�q))
will be the element f⇤(un+q) 2 Hn+q(TO;Z/2Z). Note that this is well de-
fined because if f̂ : Sn+k ! T (�q) is homotopic to f, then f⇤ ⌘ f̂⇤.

These maps pass to colimits since the following diagram commutes

⇡n+q(T (�q)) ⇡n+q+1(⌃T (�q)) ⇡n+q+1(T (�q+1))

H̃n+q(T (�q);Z) H̃n+q+1(⌃T (�q);Z) H̃n+q+1(T (�q+1);Z)

⌃

⌃⇤

�q⇤

�q⇤

,

where the vertical maps are Hurewicz homomorphisms, to give a stable
Hurewicz homomorphism ⇡n(TO) ! Hn(TO;Z). Since TO is an associa-
tive and commutative ring prespectrum, h : ⇡⇤(TO) ! H⇤(TO;Z/2Z) is a
well defined map between graded commutative rings.

Theorem III.6.1. The homomorphism h : ⇡⇤(TO) ! H⇤(TO;Z/2Z) is a

monomorphism and g � h maps ⇡⇤(TO) isomorphically onto N⇤.

For the idea of the proof of this theorem, it can be checked [May99,
Chapter 25, section 6].

However, we can see that the image of g � h is actually in Z/2Z ⌦ N⇤.
Indeed, the image of � � h is given by the following lemma.

Lemma III.6.2. For [�] 2 ⇡⇤(TO), �(h([�])) = 1 ⌦ h([�]) ⇢ Z/2Z ⌦
H⇤(TO;Z/2Z).

Thus, (g � h)([�]) = (id⌦f) � (�(h([�]))) = (id⌦f)(1 ⌦ h([�])) = 1 ⌦
f(h([�])) 2 Z/2Z⌦N⇤.

The idea of the proof of this lemma is that since all the Steenrod squares
of any sphere are zero, checking on the generators the dual map to � �h, this
would be zero on all the elements of A⌦N of the form SqI ⌦1, and it can be
di↵erent to zero only on the generators 1⌦ni (where ni is some generator of
the dual of N⇤). Taking the dual gives our result.
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III.7 Thom’s theorem proof

We can finally see the proof of Thom’s theorem that we stated in Chapter
II, II.2.2.

Theorem III.7.1 (Thom). Let M be a closed smooth n-dimensional mani-

fold. If all the Stiefel–Whitney numbers of M are zero, then M is the bound-

ary of some smooth compact (n+ 1)-dimensional manifold with boundary.

We are actually going to prove the following equivalent statement.

Theorem III.7.2. Let M be a closed smooth n-dimensional manifold. If all

the normal Stiefel–Whitney numbers of M are zero, then M is the boundary

of some smooth compact (n+ 1)-dimensional manifold with boundary.

Indeed, by Lemma I.2.15, we get that all the normal Stiefel–Whitney
numbers are zero if and only if all the normal Stiefel–Whitney numbers are
zero.

To prove this theorem, we are going to focus on the diagram

Hn(BO)⌦Nn Hn(BO)⌦ ⇡⇤(TO) Hn(BO)⌦Hn(TO)

Z/2Z Hn(BO)⌦Hn(BO)

id⌦↵ id⌦h

id⌦�

h·,·i

# ,

where we are implying Z/2Z coe�cients in all the cohomology and homology
groups, and we are denoting by # the map that assigns to each polynomia in
the Stiefel–Whitney classes and each manifold their Stiefel–Whitney number.
Indeed, all the Stiefel–Whitney classes of the canonical bundles are elements
of H⇤(BO;Z/2Z), thanks to the inclusions

Z/2Z[w1(�
q), . . . , wq(�

q)] ⇠= H⇤(Gq;Z/2Z) ! H⇤(BO;Z/2Z).

Thus also the polynomia with variables the Stiefel–Whitney classes are ele-
ments of the cohomology ring of BO. Moreover, once given an n-dimensional
manifold M , its normal bundle ⌫M is unique up to isotopy (for an embedding
M ⇢ R

n+q with q su�ciently large) and the classifying map f : ⌫ ! �q is
also unique up to homotopy, thus

f ⇤(w1(�
n)r1 ^ · · ·^ wn(�

n)rn) =f ⇤(w1(�
n))r1 ^ · · ·^ f ⇤(wn(�

n))rn =

=w1(⌫M)r1 ^ · · ·^ wn(⌫M)rn .
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is unique. Adding the fact that also M ’s Z/2Z-fundamental class is unique,
we can see that the map

# : Hn(BO)⌦Nn !Z/2Z

wr1
1 (�q)^ · · ·^ wrn

n (�q)⌦ [M ] 7!wr1
1 · · ·wrn

n [⌫(M)]

is clearly well-defined.
If we manage to show that the diagram above commutes, this will prove

the Theorem III.7.2. Indeed, if we assume that every Stiefel–Whitney number
of M is zero, then for each element w of Hn(BO;Z/2Z) #(w ⌦ [M ]) = 0.
But since we are assuming the diagram commutes, this means that for every
w

hw,�(h(↵([M ])))i = 0.

Since this pairing is the evaluation pairing of dual vector spaces, this implies
that �(h(↵([M ]))) must be zero. But we have proved that � and ↵ are
isomorphisms, and h is a monomorphism, so we have that [M ] must be the
zero element of Nn, and so M is a boundary.

We just need to show the commutativity now. Let M be a smooth closed
n-dimensional manifold. Let ↵([M ]) = [T (f) � t] where t : Sn+q ! T (⌫M)
and T (f) : T (⌫M) ! T (�q) for q large enough. In the section about Thom
spaces we saw that we have the following commutative diagram in homology:

H̃n+q(Sn+q;Z/2Z) H̃n+q(T (⌫M);Z/2Z) H̃n+q(T (�q);Z/2Z)

H̃n(M ;Z/2Z) H̃n(Gq;Z/2Z)

t⇤ T (f)⇤

�

f⇤

� .

Thus if we denote by un+q the fundamental class in the reduced homology
H̃n+q(Sn+q;Z/2Z),

f⇤ � � � t⇤(un+q) = � � T (f)⇤ � t⇤(un+q) = � � (T (f) � t)⇤(un+q) =

= � � h([T (f) � t]) = � � h � ↵([M ]),

by definition of h and of ↵.
We claim that z = (� � t⇤)(un+q) 2 H̃n(M ;Z/2Z) is the fundamental

class. Then, for w 2 H⇤(BO;Z/2Z):

w#[M ] =hw(⌫M), zi = hf ⇤w(�q), (� � t⇤)(un+q)i =
=hw(�q), (f⇤ � � � t⇤)(un+q)i =
=hw(�q),� � h � ↵([M ])i
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as we wanted.
To conclude, we just need to prove the claim. To do so, we just need to

show that z is mapped to the generator of Hn(M,M \ {x};Z/2Z) ⇠= Z/2Z
by the map induced by the inclusion, for each point x 2 M .

As we did in the section about the Thom space, we can see the homology
of a quotient as the homology of the pair, and in particular the homology the
Thom space T (⌫) = D(⌫)/S(⌫) as the homology of the pair (D(⌫), S(⌫)).
There we saw that the Thom isomorphism in homology is defined by the
explicit formula

� : Hi+q(D(⌫), S(⌫);Z/2Z) ! Hi(M ;Z/2Z)

a 7! ⇡⇤(µ_ a)
,

where µ 2 Hq(D(⌫), S(⌫);Z/2Z) is the fundamental class and ⇡ is the pro-
jection map of ⌫.

Take x 2 M , and a neighborhood of this point U
 ⇠= R

n. Denote by B(U)
the preimage of the unit ball  �1(Dn) and by S(U) the preimage of the unit
sphere  �1(Sn�1). Moreover, denote by V the space B(U)\S(U). Since B(U)
is di↵eomorphic to a contractible space, it is contractible itself, so ⌫|B(U) is
trivial. This implies that E(⌫|B(U)) ⇠= B(U)⇥R

q andD(⌫|B(U)) ⇠= B(U)⇥Dq.
We can compute the boundary of this space

@(B(U)⇥Dq) = (@B(U)⇥Dq) [ (B(U)⇥ @Dq) =
⇠= (S(U)⇥Dq) [ (B(U)⇥ S

q�1)
.

An then consider the homotopy equivalence

t̂ : Sn+q ! B(U)⇥Dq

@(B(U)⇥Dq)
⇠= S

n+q

that sends the restriction of the tubular neighborhood W to B(U) isomor-
phically to D(⌫|B(U)) = B(U)⇥Dq and everything else will be crashed into
S
n+q \W to the boundary of B(U)⇥Dq.
Denote by t the Pontrjagin-Thom construction for ⌫. Similarly to what

we did for the map t̂, this map will take W isomorphically to D(⌫), and
everything will be contracted.

We need to define some other maps. Denote by µ̂ the fundamental class
of Hq(D(⌫|B(U)), S(⌫|B(U));Z/2Z), by ⇡̂⇤ the Künneth isomorphism

Hn(B(U)⇥Dq, S(U)⇥Dq;Z/2Z) ! Hn(B(U), S(U);Z/2Z)
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and by �̂ the map a 7! p̂⇤(µ̂ _ a). Analogously, denote by ⇡̃ the homotopy
equivalence (D(⌫), D(⌫M\V )) ! (M,M \ V ) and by �̃ the map a 7! p̃⇤(µ_
a). In this case, we are using the relative cap product

Hi+q(D(⌫), S(⌫) [D(⌫|M\V ))⌦Hq(D(⌫), S(⌫)) ! Hi(D(⌫), D(⌫|M\V )).

Observe that in particular, �̂ is the inverse of the suspension isomorphism
Hn(Sn;Z/2Z) ! Hn+q(Sn+q;Z/2Z).

We have the commutative diagram

H̃n+q(Sn+q)

t⇤

✏✏

t̂⇤
// Hn+q(B(U)⇥Dq, @(B(U)⇥Dq))

✏✏

�̂
// Hn(B(U), S(U))

⇠=
✏✏

Hn+q(D(⌫), S(⌫) [D(⌫|M\V ))
�̃
// Hn(M,M \ V )

⇠=
✏✏

Hn+q(D(⌫), S(⌫))

44

�
// Hn(M) // Hn(M,M \ {x})

where the non named maps are inclusions and where we omitted the coe�-
cients in Z/2Z. The composition on the top is an isomorphism by the discus-
sion above (t is an homotopy equivalence and �̂ is an isomorphism), and so
the image of the generator un+q 2 H̃n+q(Sn+q) via those maps and the vertical
maps on the right (which are excisions isomorphisms) will be a generator too.
Since the diagram is commutative, this generator of Hn(M,M \ {x};Z/2Z)
is also the image of z = � � t⇤(un+q) 2 Hn(M ;Z/2Z) under the inclusion
Hn(M ;Z/2Z) ! Hn(M,M \ {x};Z/2Z), as we wanted. This proves our
claim.

III.8 Generators of the unoriented cobordism

ring

We have that Theorem III.5.6 proves howN⇤ is isomorphic as a Z/2Z-algebra
to N⇤ = Z/2Z[ui|i > 1 and i 6= 2r � 1] where ui has degree i, by Thom’s
theorem III.3.12. The interesting thing is that these generators are actually
known for the unoriented cobordism ring. In order to find these generators,
we use Thom’s theorem on Stiefel–Whitney classes. Indeed, a manifold is a
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boundary if and only if all its Stiefel–Whitney numbers are zero. Therefore,
if any closed smooth n-dimensional manifold has at least one Stiefel–Whitney
di↵erent from 0, its cobordism class will not be the zero element of the n-th
cobordism group Nn, and thus it can be taken as the generator un.

In particular, recall that we have computed the Stiefel–Whitney of the
projective space in Chapter I, section I.3. In Example I.3.2 we saw that for
n odd each Stiefel–Whitney number of Pn is zero, and thus [Pn] = [;] 2 Nn.
However, the Stiefel–Whitney numbers of Pn are not all zero for n even, and
so [Pn] 2 Nn is the generator un of order n in N⇤.

For n odd, since this n is not of the form 2r�1, we can rewrite this as n =
2p(2q+1)�1 = 2p+1q+2p�1 for some p, q > 0. These p, q satisfy the inequal-
ity 2p+1q > 2p > 0. Now, consider any m,n > 0 integers such that m < n. We
can define the hypersurface Hn,m ⇢ P

n ⇥ P
m = {([x0, . . . , xn], [y0, . . . , yn]) 2

P
n⇥P

m} as the zero locus of the homogeneous polynomial x0y0+ · · ·+xmym.
This hypersurface has dimension m + n � 1. We are going to take as gen-
erator un the element [H2p+1q,2p ] 2 N2p+1q+2p�1 = Nn. This is a manifold
since it is a projective variety (its atlas is composed of the neighborhoods
Ui ⇥ Uj = {([x0, . . . , xn], [y0, . . . , yn]) 2 P

n ⇥ P
m| xi 6= 0 and yj 6= 0} and

maps ([x0, . . . , xn], [y0, . . . , yn]) 7!
⇣h

x1
xi
, . . . , xn

xi
], [y1yj , . . . ,

ym
yj

i⌘
). it is an easy

exercise in algebraic geometry to see that this is smooth and closed. The com-
putation of its last Stiefel–Whitney number can be found in [Sto68, pages
79-80]. We see that

wn[H2p+1q,2p ] = �
✓
2p(2q + 1)

2p

◆

and since this is a binomial mod 2, if 2p(2q+1) =
P

i ni2i = 2p+
P

i>p ni2i

✓
2p(2q + 1)

2p

◆
=

✓
np

1

◆Y

i 6=p

✓
ki
0

◆
mod 2 =

✓
np

1

◆
mod 2 =

✓
1

1

◆
mod 2

= 1 6= 0

and since this is not zero, H2p+1q,2p is not a boundary, so its class is a generator
of Nn.
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A
Appendix

The aim of this appendix is to give some details that are usually studied in
a course about manifolds, but since are essential for this thesis we want to
collect them in an appendix.

A.1 Manifolds and orientations

In this section we would like to recall the definition of smooth manifold, give
the classical definition of orientability and orientation of a manifold without
and with boundary and give some proprieties related to these topics.

Let’s start by recalling the definition of smooth manifold.

Definition A.1.1. Let X be a second countable Hausdor↵ space. It is

called a smooth n-dimensional manifold without boundary if it has a smooth

structure on it. A smooth structure is a family of pairs {(Ui,�i)}i2I where

Ui is an open set of X and �i is a homeomorphism of Ui onto an open subset

of Rn such that:

• {Ui}i2I is an open cover of X;

• For every i, j 2 I, where Ui \ Uj 6= ;, the homeomorphisms �i � ��1
j :

�j(Ui \ Uj) ! �i(Ui \ Uj) and �j � ��1
i : �i(Ui \ Uj) ! �j(Ui \ Uj) are

smooth maps between open sets of Rn;
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• the family {(Ui,�i)}i2I is maximal (i.e. it contains all the possible

(Ui,�i) satisfying the first two conditions).

Even though we focus more on the unoriented cobordism theory, we often
generalize to oriented manifolds and oriented vector bundles, so we would like
to recall the definition of oriented manifold.

In order to do that, fix a commutative ring R and let M be an n-
dimensional manifold.

First of all, recall that for any x 2 M ,

Hk(M,M \ {x};R) ⇠=

(
R if k = n

0 else
.

Definition A.1.2. A local R-orientation of x 2 M is the choice of a gener-

ator µx 2 Hn(M,M \ {x};R) ⇠= R.

An R-orientation is the choice of a local orientation µx 2 Hn(M,M \
{x};R) at every x 2 M such that at every x there exists a compact neigh-

borhood K and an element µ 2 Hn(M,M \ K;R) such that µ restricts to

µy 2 Hn(M,M \ {y};R) for every y 2 K.

We say that a manifold is R-orientable if there exists (at least) one R-
orientation, but we don’t choose one.

We are mainly interested in the cases were R = Z/2Z or R = Z. We have
the following properties regarding these rings:

• Every manifold is Z/2Z-orientable (because there is a unique local
Z/2Z-orientation);

• if a manifold is Z-orientable, then it is R-orientable for all rings R.
This orientation is induced by the canonical maps Z ! R that sends 1
to a generator of R.

The latter property gives us the reason why we usually call a manifold that
is Z-orientable just orientable.

We also need the following classical theorem, which allows us to define
the fundamental class.

Theorem A.1.3. Let M be an n-dimensional manifold together with an R-

orientation {µx 2 Hn(M,M \ {x};R)}x2M . Then there exists, for every
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compact K ⇢ M , a unique µ 2 Hn(M,M \ K;R) restricting to µx for all

x 2 K.

In particular, if M is compact, we can choose M to be K and µ 2
Hn(M ;R) = Hn(M,M \ M ;R) is called the fundamental class of M , and
is often denoted by [M ] or µM .

Now that we have seen some orientation theory about manifolds without
boundaries, we want to focus on manifolds with boundary. As we did in
Chapter I, we have used the definition of orientation of a manifold induced
by the orientation of its tangent bundle. If we have an oriented manifold
with boundary X, we have presented a definition of induced orientation of
its boundary @X using the induced orientation of its tangent bundle.

In this appendix, we are going to stick to a definition more on the line of
the classical orientation definition (with fundamental classes in the case of
compact manifolds).

Definition A.1.4. A manifold with boundary X is R-orientable if X̊ is

R-orientable and an R-orientation on X is an R-orientation on X̊.

It is obvious that if we are working with a manifold without boundary,
X = X̊, so this definition applies in general.

Since the set @X is a submanifold of X, we want to see if an orientation
on X induces an orientation on its boundary. We have the following result
about this.

Proposition A.1.5. If X is R-oriented, this orientation induces an R-

orientation on @X.

Before starting the proof, recall that the Remark II.1.4 tells us that X ⇠
X̊.

Proof. Let n be the dimension of X. Take any x 2 @X and let U be a chart of

X that contains x. Without loss of generality (by taking a refinement of the

atlas) U is homeomorphic toHn. In the same way, V := @U = U\@X ⇠= R
n�1

and U \ V = Ů ⇠= R
n. Let y be any point in Ů . We have that

Hn(X̊, X̊\Ů ;R) ⇠= Hn(X̊, X̊\{y};R) ⇠= Hn(X,X\{y};R) ⇠= Hn(X,X\Ů ;R)
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where the first and the third isomorphism are due to the fact that Ů is

contractible and the one in the middle comes from the fact that X ⇠ X̊ and

similarly X \ {y} ⇠ X̊ \ {y}.
Now consider the long exact sequence of the triple (X,X \ Ů , X \ U)

Hn(X,X \ U) ! Hn(X,X \ Ů)
@�! Hn�1(X \ Ů , X \ U) ! Hn�1(X,X \ U)

where we omitted the coe�cients in R. We have that the connecting homo-

morphism @ is an isomorphism, since H⇤(X,X \ U ;R) ⇠= 0. Indeed, we have

that X ⇠ X \ U (the proof is analogous to the one of X ⇠ X̊) and thus

H⇤(X,X \ U ;R) ⇠= H⇤(X,X;R) ⇠= 0.

Moreover, since X \ U = (X \ Ů) \ V and V ⇠= R
n�1 is contractible

(without loss of generality we can contract it to x 2 @X \ U = V ),

Hn�1(X \ Ů , X \ U ;R) ⇠= Hn�1(X \ Ů , (X \ Ů) \ {x};R).

Furthermore, we get another isomorphism using excision. Consider X̊ \
Ů ⇢ (X \ Ů) \ {x} ⇢ X \ Ů . We have that these sets satisfy the conditions

to use the excision theorem cl(X̊ \ Ů) = X \ U = int((X \ Ů) \ {x}). Thus,
since @X = (X \ Ů) \ (X̊ \ Ů) and @X \ {x} = ((X \ Ů) \ {x}) \ (X̊ \ Ů), we

have

Hn�1(X \ Ů , (X \ Ů) \ {x};R) ⇠= Hn�1(@X, @X \ {x};R).

Lastly, since V is contractible and V ⇢ @X,

Hn�1(@X, @X \ {x};R) ⇠= Hn�1(@X, @X \ V ;R).

Now that we have shown that

Hn(X̊, X̊ \ Ů ;R) ⇠= Hn�1(@X, @X \ V ;R)

it is clear that an R-orientation on X (which is an R-orientation on X̊) gives

us an R-orientation on @X.
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Let X be compact. We get that if the hypothesis above are satisfied,
the orientation on X induces the choice of a generator µ@X of Hn�1(@X;R):
indeed, since @X in an (n � 1)-orientable manifold (without boundary), an
orientation gives us a fundamental class in the classical way. We could wonder
whether there exists a generator of Hn(X, @X;R) such that @n(µX) = µ@X
where @n : Hn(X, @X;R) ! Hn�1(@X;R) is the n-th connecting morphism
of the long exact sequence of the pair (X, @X). The following result answers
this question.

Proposition A.1.6. Let X be a compact and R-oriented manifold with

boundary. Let µ@X be the fundamental class of @X given by the induced R-

orientation on @X. Then there exists a unique generator µX 2 Hn(X, @X;R)

such that @n(µX) = µ@X .

Proof. First of all, since X is a manifold with boundary, Hn(X;R) = 0.

Looking at the long exact sequence coming from the pair (X, @X)

0 = Hn(X;R) ! Hn(X, @X;R)
@�! Hn�1(@X;R) ! Hn�1(X;R) ! . . .

by exactness we get that the connecting homomorphism @ is injective.

Let V be the open collar neighborhood of @X coming from Theorem II.1.3

and denote by Y the set X \ V . We have that Y is closed in X (and thus

compact in X, since X is compact) and it is a deformation retraction of X̊.

Thanks to this and the homotopy equivalence between X and X̊, we get the

following chain of isomorphisms:

Hn(X̊, X̊ \ Y ;R) ⇠= Hn(X,X \ Y ;R) ⇠= Hn(X,X \ X̊;R) = Hn(X, @X;R).

Hence, since Y is compact in X, it is also compact in X̊, and thus the R-

orientation on X̊ determines a fundamental class µ̃ 2 Hn(X̊, X̊ \ Y ;R). Let

µX 2 Hn(X, @X;R) be the image of µ̃ under the isomorphisms above. This

is clearly a fundamental class in the tipical way: µX 2 Hn(X,X \ X̊;R)

restricts to a generator of Hn(X,X \ {y};R) for every y 2 X̊, thanks to the
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commuting diagram below

Hn(X̊, X̊ \ Y ;R) Hn(X,X \ X̊;R)

Hn(X̊, X̊ \ {y};R) Hn(X,X \ {y};R)

⇠=

⇠=

where the vertical map on the left is the map coming from the definition of

an R-orientation, that sends µ̃ to a generator.

Using the isomorphisms from the proof of Proposition A.1.5, we get that

for every x 2 @X, @µX restricts to the generator of Hn�1(@X, @X \ {x};R)

given by the induced R-orientation, and thus @µX = µ@X .
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