
On Zero-Shot Multi-Speaker Text-to-Speech Using Deep Learning

Pradnya Kandarkar

A Thesis
in

The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at

Concordia University
Montreal, Quebec, Canada

July 2023

© Pradnya Kandarkar, 2023

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By : Pradnya Kandarkar
Entitled : On Zero-Shot Multi-Speaker Text-to-Speech Using Deep Learning

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final Examining Committee:

Chair
Dr. Ching Yee Suen

Examiner
Dr. Eugene Belilovsky

Thesis Supervisor
Dr. Mirco Ravanelli

Approved by
Dr. Leila Kosseim, Graduate Program Director

2023
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

On Zero-Shot Multi-Speaker Text-to-Speech Using Deep Learning

Pradnya Kandarkar

This thesis explores various aspects of zero-shot multi-speaker text-to-speech (TTS)
synthesis using deep learning to create an effective system. A deep learning model for
zero-shot multi-speaker TTS uses text and speaker identity as input to generate the re-
spective output speech without fine-tuning for speakers not seen during training. The
experiments consider a system with three main components: a speaker encoder network,
a mel-spectrogram prediction network, and a vocoder network. A speaker encoder net-
work captures the speaker identity in a fixed-sized speaker embedding. This speaker
embedding is injected into a mel-spectrogram prediction network at one or more loca-
tions to generate a mel-spectrogram conditioned on the text and the speaker embedding.
Finally, a vocoder network converts the mel-spectrogram into a waveform. All three com-
ponents are trained separately. The speech synthesis aspects explored in the experiments
include the speaker embedding injection method, speaker encoder network, speaker em-
bedding injection location, and mel-spectrogram prediction network for the TTS system.
The FiLM method from the visual reasoning field is adapted for the first time to inject
speaker embeddings into the TTS workflow and compared against traditional methods.
The significance of speaker embeddings is highlighted by comparing two well-established
speaker embedding models. New combinations of speaker embedding injection locations
are explored for two mel-spectrogram prediction networks. The best-performing model
generates speech with naturalness ranging from fair to good, exhibits more than moder-
ate speaker similarity, and shows potential for improvement. Additionally, the zero-shot
multi-speaker TTS system is enhanced to generate fictitious voices.

iii

Acknowledgments

I want to take a moment to express my sincere gratitude to everyone who has con-
tributed to this work.

Above all, I extend my profound appreciation to my thesis supervisor, Dr. Mirco
Ravanelli, for giving me the opportunity to study this captivating field. Throughout my
academic journey, Dr. Ravanelli has been incredibly generous with his time, helping me
grasp new concepts, engaging in critical analysis of ideas, and shaping the trajectory of
this research. His expertise, guidance, and drive for innovation continue to motivate and
inspire me.

I am also thankful to Dr. Cem Subakan for sharing his extensive knowledge and
providing invaluable insights that helped improve the quality of this work at various
stages.

I want to acknowledge the support and encouragement of my friends and fellow lab
members, whose stimulating discussions greatly contributed to the development of this
work.

I thank my family for being my source of strength.

Lastly, I wish to express my gratitude to all the participants in the user study conducted
for this work, for contributing their time and effort to this research.

Thank you all!

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 What is TTS? . 1
1.2 Applications . 1
1.3 Historical Notes . 1

1.3.1 Concatenative Synthesis (1980s - Early 2000s) 2
1.3.2 Statistical Parametric Speech Synthesis (2000s - 2010s) 2
1.3.3 Neural TTS (Late 2010s - Present) 2

1.4 Recent Progress . 3
1.4.1 End-to-End TTS Models . 3
1.4.2 Further Advancements in TTS . 4
1.4.3 Towards Zero-Shot Multi-Speaker TTS 4

1.5 Contribution . 6
1.6 Thesis Outline . 7

2 Zero-Shot Multi-Speaker TTS 8
2.1 Workflow for Zero-shot Multi-speaker TTS 8

2.1.1 Training Workflow . 8
2.1.2 Inference Workflow . 9

2.2 Text Preprocessing . 10
2.3 Mel-Spectrogram . 11
2.4 Speaker Encoder . 13

2.4.1 X-Vector . 14
2.4.2 ECAPA-TDNN . 15

2.5 Additional Feature Extraction . 16
2.5.1 Duration . 16
2.5.2 Pitch . 17
2.5.3 Energy . 17

2.6 Mel-Spectrogram Prediction Network . 18
2.6.1 Tacotron2 . 18
2.6.2 FastSpeech2 . 20

2.7 Speaker Embedding Injection . 24
2.7.1 Average . 24
2.7.2 Concatenate . 24
2.7.3 FiLM . 25

2.8 Vocoder . 26
2.8.1 HiFi-GAN . 26

2.9 Random Speaker Generator . 27

3 Experimental Setup 28
3.1 Datasets . 28

3.1.1 LJSpeech . 28
3.1.2 VCTK . 28
3.1.3 LibriTTS . 28

v

3.1.4 VoxCeleb . 29
3.2 Zero-Shot Multi-Speaker TTS Experiments 29

3.2.1 Baseline . 29
3.2.2 Comparing Speaker Embedding Injection Methods 30
3.2.3 Comparing Speaker Embedding Models 30
3.2.4 Comparing Speaker Embedding Injection Locations 30
3.2.5 Comparing the Best Model with YourTTS 31
3.2.6 Random Speaker Generation . 31

4 Experiment Results 32
4.1 Evaluation Metrics . 32

4.1.1 Objective Evaluation Metric . 32
4.1.2 Subjective Evaluation Metrics . 32

4.2 Evaluation Data . 33
4.2.1 Considerations for Evaluation Dataset Construction 33
4.2.2 LibriTTS Evaluation Dataset . 34
4.2.3 VCTK Evaluation Dataset . 34

4.3 Results . 35
4.3.1 Baseline . 35
4.3.2 Comparing Speaker Embedding Injection Methods 36
4.3.3 Comparing Speaker Embedding Models 36
4.3.4 Comparing Speaker Embedding Injection Locations 39
4.3.5 Comparing the Best Model with YourTTS for VCTK 41
4.3.6 Random Speaker Generation . 42

5 Conclusion 44

References 45

A Phoneme Set 49

B Evaluation Speaker Sets 50

C Audio Parameters 51

D Configuration Details for the Silent Phoneme Predictor 52

E Important Training Hyperparameters for the Best Model Configuration 53
E.1 Optimization Hyperparameters . 53
E.2 Architecture Modifications for Injecting Speaker Embeddings 53

vi

List of Figures

1 Text-to-Speech - The Core Idea . 1
2 A High-Level View of Zero-Shot Multi-Speaker TTS 4
3 Training Workflow for Zero-Shot Multi-Speaker TTS 8
4 Inference Workflow for Zero-Shot Multi-Speaker TTS with a Reference

Waveform . 9
5 Inference Workflow of Zero-Shot Multi-Speaker TTS Modified with a Ran-

dom Speaker Generator . 10
6 Grapheme-to-Phoneme Conversion Example 10
7 Waveform Example . 11
8 Spectrogram to Mel-Spectrogram Conversion Example 12
9 Mel-Spectrogram for Same Text with Different Speakers 13
10 X-Vector Architecture . 14
11 ECAPA-TDNN Architecture [1] . 15
12 MFA Durations for LJSpeech Utterance, LJ001-0002 16
13 Example of Pitch Variations for a Waveform 17
14 Multi-Speaker Tacotron2 with Numbered Speaker Embedding Injection

Locations . 19
15 Multi-Speaker FastSpeech2 with Numbered Speaker Embedding Injection

Locations . 21
16 MFA Phoneme Durations Highlighting the Silent Period in LJSpeech Ut-

terance, LJ001-0054 . 22
17 Multi-Speaker FastSpeech2 with Silent Phoneme Predictor 23
18 Speaker Embedding Injection with FiLM (Feature-wise Linear Modulation) 25
19 HiFi-GAN - High-Level View . 27
20 Speaker Embedding Cosine Similarity (SECS) Computation 32
21 PCA Visualization for Seen Speaker Examples in LibriTTS Evaluation

Data Using X-Vector and ECAPA-TDNN Models 38
22 PCA Visualization for Unseen Speaker Examples in LibriTTS Evaluation

Data Using X-Vector and ECAPA-TDNN Models 39

vii

List of Tables

1 Dimensions for FiLM Layers . 26
2 LibriTTS Data Used for Training and Validation in the Experiments . . 29
3 Mean Opinion Score (MOS) - Mapping between Numerical Rating and

Speech Naturalness . 33
4 Similarity Mean Opinion Score (Sim-MOS) - Mapping between Numerical

Rating and Speaker Similarity . 33
5 LibriTTS SECS Scores for Baseline . 35
6 LibriTTS SECS Scores Comparing Speaker Embedding Injection Methods 36
7 LibriTTS SECS Scores Comparing Speaker Embedding Models 37
8 LibriTTS SECS Comparing Speaker Embedding Injection Locations for

Tacotron2 . 40
9 LibriTTS SECS Comparing Speaker Embedding Injection Locations for

FastSpeech2 . 40
10 Best LibriTTS SECS for Tacotron2 and FastSpeech2 41
11 Comparing Zero-Shot Multi-Speaker Tacotron2 with YourTTS using VCTK

Evaluation Dataset . 42
12 MOS for Random Speaker Generation Using VCTK Evaluation Data . . 42
13 Phoneme Set Used for the Experiments 49
14 Evaluation Speaker Set for LibriTTS . 50
15 Evaluation Speaker Set for VCTK Sourced from YourTTS [2] 50
16 Parameter Values for Mel-Spectrogram Computation Using Torchaudio . 51
17 Parameter Values for Pitch Computation Using Torchaudio 51

viii

1 Introduction

1.1 What is TTS?

Text-to-Speech (TTS) technology takes written text as input and produces its corre-
sponding spoken speech in the output, as shown in Figure 1.

Figure 1: Text-to-Speech - The Core Idea

Text-to-Speech"Mary had a little lamb."

Output WaveformInput text

TTS systems aim to imitate the way humans speak. The input text is processed
using one or more models or algorithms to produce the output speech. An ideal TTS
system should generate natural-sounding and expressive speech with a clear voice and
pronunciation.

1.2 Applications

TTS technology has a multitude of potential applications, including:

1. Accessibility: Written content can be made accessible for individuals with visual
impairments using TTS

2. Navigation systems: TTS is useful in providing directions to users while driving

3. Digital assistants: TTS can be used to equip digital assistants with a voice as they
interact with and assist users in day-to-day tasks through spoken responses

4. Audiobooks: Expressive spoken versions of books or other written text can be
created using TTS

5. Enhancing media production: A TTS system that can produce or adapt to differ-
ent voices can be used to provide unique voices to characters in animated media,
audiobooks, video games

6. Data augmentation for speech processing tasks: A multi-speaker TTS can be effec-
tive in data augmentation for speech processing tasks with low resources [3, 4]

7. Educational applications: Multilingual TTS technology with the ability to switch
languages can be used for educational purposes, e.g., learning new languages

1.3 Historical Notes

Decades of research involving various approaches have contributed to the state-of-the-
art TTS technology [5, 6].

1

1.3.1 Concatenative Synthesis (1980s - Early 2000s)

In earlier work, researchers explored variations of concatenative synthesis with unit
selection [5, 7]. This approach relied on maintaining a database of small units of pre-
recorded speech segments and combining them to create the desired waveform. The
challenges of producing natural-sounding speech with this approach involve selecting the
most appropriate units to form the final waveform and the boundary artifacts introduced
when combining different speech segments. Additionally, it is limited by the available
pre-recorded units in the dataset. Using pre-recorded samples implies predefined voices,
styles, expressions, etc. Covering a broader range of these factors requires more memory,
and creating a dataset that encompasses all the variations of these factors is not practical.

1.3.2 Statistical Parametric Speech Synthesis (2000s - 2010s)

Eventually, statistical parametric speech synthesis became the prevalent approach [5, 8].
Directly learning a mapping between text and speech is a difficult. Thus, the TTS prob-
lem is decomposed into multiple stages. The overall speech synthesis process involves first
generating a sequence of speech features and then using a vocoder to produce the final
speech waveform based on the intermediate speech features. Earlier work in statistical
parametric speech synthesis focused on using Hidden Markov Models (HMMs) to gener-
ate the sequence of speech features. This approach attempts to learn data properties by
optimizing model parameter values. Storing model parameter values requires significantly
less memory than creating a dataset to maximize the coverage of speech variations. Ad-
ditionally, statistical parametric speech synthesis models can be modified to change the
voice, language, etc. The advantages introduced by this approach are its lesser memory
requirements compared to the concatenative approach and its adaptability. Despite the
advantages, earlier statistical parametric models were unable to synthesize speech that
matched the naturalness and clarity of human speech.

1.3.3 Neural TTS (Late 2010s - Present)

Over time, deep neural networks have been adapted in statistical parametric speech
synthesis to map input text to intermediate speech features [6, 9, 10, 11] and produce the
final waveform using these features [12, 13].

One such model, WaveNet [12], was introduced as a generative vocoder. It produced
waveforms that completed with human speech by utilizing intermediate speech and lin-
guistic features. However, creating the input features for WaveNet required substantial
domain expertise.

Meanwhile, Tacotron [9] presented a sequence-to-sequence architecture designed to
map input text to magnitude spectrograms as intermediate features using a single neural
network. This approach simplified the speech synthesis workflow by replacing intermedi-
ate linguistic and acoustic features with a spectrogram produced using a single network.
However, Tacotron employed the Griffin-Lim algorithm as the vocoder to convert the
spectrograms to waveforms. The waveforms generated with this approach contained ar-
tifacts, and the audio quality did not match that achieved with neural network-based
vocoders like WaveNet.

2

Later, Tacotron2 [6] proposed a completely neural approach to speech synthesis, using
the strengths of Tacotron and WaveNet. Tacotron2 uses an autoregressive recurrent
sequence-to-sequence architecture to map the input text to a mel-spectrogram serving as
the intermediate feature representation. This mel-spectrogram is used as the input to a
modified WaveNet, which generates the final waveform.

Nowadays, a two-stage neural TTS architecture is a standard approach for TTS. It con-
tains a mel-spectrogram prediction network followed by a neural network-based vocoder.
This entirely neural approach produces high-quality speech that sounds natural.

1.4 Recent Progress

Advances in deep learning continuously contribute to the evolution of the TTS field.

1.4.1 End-to-End TTS Models

TTS models based on transformers [14], such as FastSpeech2 [15] and TransformerTTS
[16], emerged to produce the mel-spectrogram in the two-stage TTS systems. FastSpeech2
is a non-autoregressive model designed for faster generation of high-quality speech com-
pared to its autoregressive counterparts. TransformerTTS is another non-autoregressive
model developed to improve the training and inference efficiency and modeling long-term
dependencies.

Diffusion is another generative deep learning technology adapted for speech synthesis.
Diff-TTS [17] utilized denoising diffusion for speech synthesis. The denoising diffusion
framework used in Diff-TTS consists of two processes: the forward diffusion process and
the reverse process. In the forward process, Gaussian noise is gradually added to the mel-
spectrogram until it is transformed into pure Gaussian noise. This process is predefined
and is assumed to be independent of the input text. On the other hand, the reverse
process is dependent on the input text. It starts from the Gaussian noise distribution
and gradually removes noise to recover a mel-spectrogram corresponding to the given
input text. The reverse process is the process learned during training.

Meanwhile, HiFi-GAN [18] is a vocoder created using a Generative Adversarial Net-
work (GAN) for efficient speech synthesis with high quality. It contains a generator
and a discriminator in an adversarial training setup. The generator is trained to con-
vert mel-spectrograms into high-quality synthesized speech that is indistinguishable from
real speech. The discriminator is trained to distinguish between real and synthesized
speech. After training, the generator is used for speech synthesis while the discriminator
is discarded.

Conditional Variational Autoencoder with adversarial learning was used to combine the
two stages of the TTS pipeline and create a single model that maps input text directly to
the output waveform without using an intermediate feature representation, such as mel-
spectrogram [19]. The authors of [19] named the approach Variational Inference with
adversarial learning for end-to-end Text-to-Speech (VITS).

3

1.4.2 Further Advancements in TTS

Although the above advances can be used to generate high-quality speech, they can be
extended with additional input to explore other aspects of TTS to enhance the capabilities
and usefulness of TTS technology.

Effectively conveying emotions in a synthesized speech to make it more expressive has
been a topic of interest for many decades. EmoDiff [20] is a recent diffusion-based TTS
model that uses a soft label guiding technique for intensity controllable emotional TTS.

Multilingual TTS is another area being explored with the possibility of code-switching,
i.e., changing the language of synthesized speech for some parts while maintaining the
same voice [21]. This can enable using TTS technology to assist people in their preferred
language or even aid them in learning a language.

There has also been a steady interest in multi-speaker TTS, which has promising versa-
tile applications such as media production and data augmentation for speech-based tasks.
Earlier multi-speaker TTS technology was limited to generating voices with the speaker
identities available during training [22]. Zero-shot multi-speaker TTS, which is the focus
of this work, further enhances the capabilities of TTS by allowing speech synthesis with
the voices of unseen speakers without the need for specific training data for each indi-
vidual. YourTTS [2] is a notable model that extends the VITS [19] model and combines
multilingual and zero-shot multi-speaker TTS.

1.4.3 Towards Zero-Shot Multi-Speaker TTS

A zero-shot multi-speaker TTS system can use the speaker identity captured from a few
seconds of audio to generate speech with the voice characteristics of that speaker for any
given text [2, 23, 24, 25]. Figure 2 illustrates a high-level view of zero-shot multi-speaker
TTS.

Figure 2: A High-Level View of Zero-Shot Multi-Speaker TTS

Zero-Shot
Multi-Speaker

Text-to-Speech

"Mary had a little lamb."

Output Waveform
with Speaker Characteristics of

the Reference Speech

Input text

Variable Length
Reference Speech

for a Speaker

An effective zero-shot multi-speaker TTS system is advantageous in low-resource
setups because it does not require fine-tuning for speakers not seen during training.

4

The text-to-speech synthesis field is making gradual progress towards effective zero-shot
multi-speaker TTS systems. A common approach is to adapt a single-speaker TTS sys-
tem to add speaker encoding capabilities using an external speaker embedding model
[2, 23, 24, 25].

There are a few considerations when adding speaker encoding capabilities to TTS that
can influence the outcome, including good speaker identity representation, the method
used to incorporate speaker identity, and the location(s) where speaker identity informa-
tion is added to the TTS model.

Adequately capturing speaker identity is important for zero-shot multi-speaker TTS.
Various deep neural network-based speaker embedding models have been studied so far.
Cooper et al. [24] studied the effect of the time-delay neural network [26] (TDNN)-based
X-Vector [27] and Learnable Dictionary Encoding (LDE)-based speaker embeddings on
the speaker similarity and naturalness of synthesized speech using an adapted version of
Tacotron [9]. Xue et al. [25] proposed using ECAPA-TDNN [1], a model introducing
enhancements to and outperforming other TDNN-based models for speaker verification
on the VoxCeleb data. They used a pretrained ECAPA-TDNN model to extract speaker
embeddings and FastSpeech2 to synthesize mel-spectrograms conditioned on the input
text and speaker embeddings.

Along with obtaining good speaker representation using embeddings, how they are
utilized is also important. A zero-shot multi-speaker TTS system can have speaker em-
beddings injected at one or more locations. Cooper et al. [24] try combinations of
concatenating the speaker embeddings at different stages of an adapted Tacotron model.
The best configuration observed in their experiments is concatenating the speaker embed-
ding with the Tacotron encoder output and decoder prenet. Xue et al. [25] add speaker
embeddings to the encoder output of the FastSpeech2 model. They do not test injecting
speaker embeddings in multiple locations. YourTTS [2] is a single-stage zero-shot multi-
speaker TTS model with speaker embeddings added in numerous places of the model.
However, they do not provide an ablation study to show the contribution of injecting
speaker embeddings in more than one place. It is worth noting that this criterion may
be model-specific. Jia et al. [23] mention that passing speaker embeddings to the atten-
tion layer of Tacotron2 was sufficient to achieve convergence for the multi-speaker model.
They do not report results with varying combinations of speaker embedding injection
locations.

How speaker embeddings are injected into the TTS workflow can also affect the out-
come. Concatenation and addition (or averaging) are traditional approaches when con-
ditioning a TTS system on the input text and speaker embeddings. There is room to ex-
plore more effective speaker embedding injection methods. In recent developments, Yoon
et al. [28] propose a sophisticated Speaker-Conditional Convolutional Neural Network
(SC-CNN) which predicts convolution kernels from speaker embeddings and uses them
to apply 1D convolutions to phoneme sequences for speaker conditioning. Meanwhile,
Feature-wise Linear Modulation (FiLM) [29] is a general-purpose conditioning method
for neural networks introduced in the context of visual reasoning. It can be adapted for
zero-shot multi-speaker TTS.

5

Vocoder is the last piece of the TTS pipeline, relevant for two-stage systems. It is pos-
sible for zero-shot multi-speaker TTS systems to use a pretrained vocoder network, such
as WaveNet [12] and HiFi-GAN [18], without any explicit modifications to incorporate
speaker identity information [23, 24, 25].

Finally, a relatively unexplored area is extending the zero-shot multi-speaker TTS
system to generate fictitious speaker voices. Conditioning the TTS model on data points
randomly sampled from a continuous speaker embedding space can be used to generate
random, unseen voices. Jia et al. [23] use uniformly sampled points from the surface of
the unit hypersphere for this purpose.

1.5 Contribution

This work studies and contributes to various factors influencing the output of a zero-
shot multi-speaker TTS system as mentioned below.

1. FiLM method, a general-purpose conditioning method adapted from computer vi-
sion, is used for the first time to inject speaker embeddings into the TTS workflow,
and it is compared against the traditional methods of averaging and concatenating

2. X-Vector and ECAPA-TDNN speaker embedding models are used to highlight the
importance of speaker encoders using Tacotron2 as the base TTS model extended
for zero-shot multi-speaker TTS

3. FastSpeech2 architecture is enhanced with an additional component to improve the
pace of the synthesized speech at inference time

4. The effectiveness of injecting speaker embeddings into one or more locations is
examined for Tacotron2 and FastSpeech2

5. Lastly, a Gaussian Mixture Model (GMM) is used to model the distribution of
speaker embeddings in an attempt to make the embedding space more continuous.
This allows to randomly sample speaker embeddings from the GMM and generate
speech with fictitious voices extending the capabilities of the zero-shot multi-speaker
TTS model.

The performance of the best model configuration obtained from the experiments is com-
pared against that of the YourTTS model, which has achieved state-of-the-art (SOTA)
performance on the VCTK dataset for zero-shot multi-speaker TTS [2].

Additionally, this work aims to contribute to the SpeechBrain project [30] - an open-
source conversational artificial intelligence toolkit built on PyTorch. This comprehensive
toolkit covers various aspects of conversational AI, such as voice activity detection, speech
enhancement, keyword spotting, speech recognition, spoken language understanding, di-
alogue, and text-to-speech. The SpeechBrain project aims to foster open research by
providing pretrained models, training recipes, and training logs. The experiments con-
ducted for this work use SpeechBrain for implementation. The code developed in this
work is publicly available to the community through SpeechBrain to promote transparent
and reproducible research in this field.

6

1.6 Thesis Outline

In Chapter 2, an overview of zero-shot multi-speaker TTS is provided, encompassing
the speech synthesis pipeline and the various components employed in the experiments.
Chapter 3 delves into the experimental setup, detailing the datasets utilized and the
systematic approach taken to investigate the different facets of zero-shot multi-speaker
TTS systems. The findings obtained from the experiments are presented and analyzed
in Chapter 4. Finally, Chapter 5 offers concluding remarks based on the results.

7

2 Zero-Shot Multi-Speaker TTS

There are three main, independently trained components used for the zero-shot multi-
speaker TTS experiments in this work:

1. A speaker encoder to capture the speaker identity from an input waveform using a
fixed-sized speaker embedding

2. A mel-spectrogram prediction network that uses input text and speaker embedding
to synthesize the output mel-spectrogram

3. A vocoder to convert the mel-spectrogram into the final output waveform

This chapter explains the workflow for zero-shot multi-speaker TTS, followed by com-
ponent details.

2.1 Workflow for Zero-shot Multi-speaker TTS

The zero-shot multi-speaker TTS workflow at training and inference time can vary to
some degree depending on the component models. Section 2.1.1 explains the training
workflow used in this work, and Section 2.1.2 highlights the changes to the workflow at
inference time.

2.1.1 Training Workflow

Figure 3: Training Workflow for Zero-Shot Multi-Speaker TTS

Mel-
Spectrogram

Prediction
Network

Vocoder

"Mary had a little lamb."

Mel-Spectrogram
Output Waveform

Input Text

Text
Preprocessing

(if required)

Speaker Encoder

Additional Feature
Extraction

(if required)

Corresponding Waveform
Speaker Embedding

Duration information,
Pitch,

Energy

Training Input Training Output

Input Text or Phonemes

Figure 3 illustrates the training workflow for zero-shot multi-speaker TTS. The follow-
ing key considerations are noteworthy:

1. The speaker embeddings are generated using an external, pretrained speaker en-
coder

2. The vocoder that converts a mel-spectrogram into the final waveform can be used
without injecting speaker embeddings into it. Thus, a pretrained vocoder is used.
Section 4.3.1 reports results supporting this.

8

3. Additional feature extraction is an optional step depending on the mel-spectrogram
prediction network

As pretrained speaker encoder and vocoder models are employed, the primary focus
of training lies in the mel-spectrogram prediction network. It is trained to effectively
utilize input text and speaker embeddings to predict the mel-spectrogram.

Training a mel-spectrogram prediction network requires transcribed speech data (text-
utterance pairs). The target utterance (waveform) is processed to get the target mel-
spectrogram. The input text may go through some preprocessing, such as grapheme-to-
phoneme conversion. The target waveform is also used to compute a speaker embedding
input using a speaker encoder. During training, the model learns to map the input
text and speaker embedding to the target mel-spectrogram. Some models may require
additional features during training, such as duration information for speech segments,
pitch, and energy, which can be computed using the input text and the corresponding
target waveform. The model learns to predict these additional features during training.

2.1.2 Inference Workflow

At inference time, along with input text, a speaker embedding computed for a reference
waveform is used as the input to the TTS system, as shown in Figure 4. The preprocessed
input text and speaker embedding are used to predict any additional features required
by the mel-spectrogram prediction network while generating the final mel-spectrogram.

Figure 4: Inference Workflow for Zero-Shot Multi-Speaker TTS with a Reference Wave-
form

Mel-
Spectrogram

Prediction
Network

Vocoder

"Mary had a little lamb."

Mel-Spectrogram Output Waveform

Input Text

Text
Preprocessing

(if required) Input Text or
Phonemes

Speaker Embedding
Speaker Encoder

Reference Waveform

The speaker encoder can be replaced with a random speaker generator to generate
fictitious speaker voices. It samples random speaker identities from a speaker embedding
space. Figure 5 shows the workflow of the TTS system in this case.

9

Figure 5: Inference Workflow of Zero-Shot Multi-Speaker TTS Modified with a Random
Speaker Generator

Mel-
Spectrogram

Prediction
Network

Vocoder

"Mary had a little lamb."

Mel-Spectrogram Output Waveform

Input Text

Text
Preprocessing

(if required)

Speaker Embedding
Random Speaker

Generator

Input Text or
Phonemes

The following sections discuss the building blocks of the zero-shot multi-speaker TTS
workflows described above.

2.2 Text Preprocessing

The main focus of text preprocessing in a TTS system can be converting input sen-
tences to their phonetic transcription, also known as grapheme-to-phoneme conversion.
A grapheme is the smallest unit in a writing system. Similarly, a phoneme is the smallest
unit of speech. This step is not mandatory, and text can be used as input without convert-
ing it to a phoneme sequence. However, phonetic transcription is advantageous because
it reduces the gap between input and output. A phonetic transcription represents how
different words are pronounced when spoken. Sometimes, especially in English, words
with similar spellings may have different pronunciations (e.g., “cough” and “dough”). In
this case, using phonemes instead of graphemes can help improve the pronunciation of
the synthesized speech. It also helps in the case of silent letters (e.g., “queue”).

The experiments for this work use the SoundChoice [31] grapheme-to-phoneme (G2P)
model. Using the SoundChoice G2P model is a beneficial because it is trained to improve
disambiguation when pronouncing identically spelled words. It operates on the sentence
level rather than the word level, allowing it to use sentence context. The SoundChoice
G2P model accepts input text (grapheme sequence), removes punctuation, and produces
the corresponding output phoneme sequence. Figure 6 shows an example.

Figure 6: Grapheme-to-Phoneme Conversion Example

"Example". IH-G-Z-AE-M-P-AH-LGrapheme-to-
Phoneme

10

The output phoneme set used by SoundChoice G2P contains phonemes from ARPA-
BET without stress indicators and a word separator token. ARPABET is a phonetic
alphabet. It provides the building blocks of phonetic transcription. It represents each
phoneme with 1 or 2 characters and a digit between 0 and 2 to indicate the stress used
during pronunciation. Appendix A provides the entire set of phoneme tokens used in this
work.

2.3 Mel-Spectrogram

The mel-spectrogram is a well-established way of representing speech signals [6, 18, 23,
24, 25]. Mel-spectrograms are fundamental in multi-speaker TTS because they provide a
compressed representation of raw waveforms and encompass speaker information.

A speech signal is a non-periodic signal composed of a large number of single-frequency
waveforms. This large number of frequency components results in speech signals having
a very high dimensionality. Humans can perceive sounds with frequencies ranging from
around 20 Hz to 20000 Hz. A speech signal with a sample rate of 22050 Hz contains
22050 samples per second. Figure 7 shows an example of a waveform with a sample rate
of 22050 Hz.

Figure 7: Waveform Example

A spectrogram is a way to obtain a compressed representation of high-dimensional
speech signals. It shifts the focus of speech representation from the time domain to the

11

frequency domain. A spectrogram uses a heatmap to show how the amplitudes of different
frequency components of an audio signal change over time. It is obtained by processing
the speech signal in overlapping windows of fixed size and hop length. A spectrogram
frame is generated for every hop.

The spectrogram representation can be compressed further while retaining useful in-
formation. The human perception of the speech frequency spectrum is not linear. We
are better at distinguishing between frequencies on the lower end of the spectrum than
between frequencies on the higher end of the spectrum. The Mel scale is a perceptual
scale of pitches designed to mimic the human auditory system’s response to different
frequencies. The Mel scale focuses more on the lower end of the frequency spectrum than
the higher end. A mel-spectrogram is derived from a spectrogram by filtering and aver-
aging the frequency axis using the Mel scale, providing a more accurate representation
of speech perception by the human auditory system.

Figure 8 shows an example of a spectrogram-to-mel-spectrogram transformation by
applying mel-filters to the frequency axis of the spectrogram. The colour dimension
represents the variations in amplitude values of frequencies.

Figure 8: Spectrogram to Mel-Spectrogram Conversion Example

Mel-Scale

Mel-Filters

Figure 9 contains mel-spectrograms for the following two utterances selected from the
AudioMNIST dataset [32]: “0 01 0.wav”, “0 02 0.wav”. Each utterance is for a different
speaker and the same text, “zero”. Some structural similarity can be seen between the
two mel-spectrograms because of the same text condition. However, it is clear that the
two mel-spectrograms are distinct. This verifies that mel-spectrograms are subject to the
speaker.

12

Figure 9: Mel-Spectrogram for Same Text with Different Speakers

Dataset: AudioMNIST
Utterance ID: 0_01_0.wav

Utterance Text: "zero"

Dataset: AudioMNIST
Utterance ID: 0_02_0.wav

Utterance Text: "zero"

For the experiments in this work, mel-spectrograms are used in three different networks:

1. As input features for the speaker encoder model

2. As target values for the mel-spectrogram prediction model

3. As input features for the vocoder model

In all cases, mel-spectrograms are computed using torchaudio [33] with 80 mel chan-
nels (filters) and the sample rate for the model under consideration. Appendix C provides
the parameter setup used to compute the mel-spectrograms with torchaudio.

2.4 Speaker Encoder

The speaker encoder captures the speaker identity from a variable-length audio wave-
form as a fixed-sized embedding. An ideal speaker encoder is robust against potential
noise and words present in the input audio. The speaker encoders used for the experiments
are trained separately on a discriminative speaker identification task using untranscribed
speech data, with data augmentation including adding noise and reverberation to im-
prove their robustness. Mel-spectrograms computed from the initial waveforms are used
as the input features. The architecture used for training the models consists of a speaker
encoder followed by a classifier. After training, the speaker classifier is discarded, and
only the speaker encoder is used for zero-shot multi-speaker TTS.

X-Vector [27] and ECAPA-TDNN [1] are the models used to compute the speaker
embeddings. These models are good choices for the speaker encoder component be-
cause of their excellent performance on speaker discriminative tasks [27, 1] and successful
demonstrations of adopting discriminative speaker embedding models from prior works
in zero-shot multi-speaker TTS [23, 24, 25].

13

2.4.1 X-Vector

The X-Vector architecture, shown in Figure 10, first extracts speaker representations
at the frame level and aggregates them to operate at the segment level for speaker iden-
tification. The X-Vector workflow is as follows:

1. TDNN (Time Delay Neural Network) layers are used on feature frames of variable-
length utterances.

2. The frame-level representations obtained are aggregated using statistics pooling to
get segment-wide information. The statistics pooling layer accepts the output of
the final frame-level layer as input and computes the mean and standard deviation
along the time axis. The mean and standard deviations are concatenated, and the
result is used as input for the segment-level layers.

3. Finally, linear transformations along with a final softmax layer are used to classify
the speaker.

After training, the output of the first linear layer after statistical pooling is used as the
fixed-size speaker embedding. The X-Vector speaker embedding used for the experiments
has 512 dimensions.

Figure 10: X-Vector Architecture

...

...

...

Statistics Pooling

...

...

Input Waveform

Mel-Spectrogram

Frame-Level Layers

Segment-Level Layers

Softmax

Speaker ID

Frame-Level Features

Mean Standard Deviation

Mean Standard Deviation

Concatenate

Statstics Pooling

Time Axis

Time Axis

14

2.4.2 ECAPA-TDNN

The ECAPA-TDNN architecture, shown in Figure 11, uses a workflow similar to the X-
Vector architecture. However, it introduces the following enhancements over the TDNN-
based architecture:

1. It introduces 1-Dimensional Squeeze-Excitation (SE) Res2Blocks in the initial frame-
level layers to increase the temporal context. In order to achieve this, frame-level
features are rescaled based on the global-level properties of the utterance.

2. It aggregates features at different levels of the model to leverage hierarchical features
learned at various levels of complexity.

3. Finally, it uses attentive statistic pooling [34] for each channel. Attentive statistic
pooling computes the weighted mean and standard deviation for each time step, as
not every time step is equally important. The weights of different time steps are
computed using an attention mechanism. The channel-specific frame attention used
in ECAPA-TDNN allows the network to focus on different frames when computing
statistics for different channels.

The output of the linear transformation applied after the attentive statistics pooling is
used as the speaker embedding. ECAPA-TDNN uses Additive Angular Margin (AAM)-
softmax [35, 36] as the training objective. The ECAPA-TDNN speaker embedding size
used for the experiments is 192.

Figure 11: ECAPA-TDNN Architecture [1]

BN = Batch Normalization
k = Kernel Size
d = Dilation Spacing for Conv1D
C = Channel Dimension
T = Time Dimension
FC = Fully Connected Layer
AAM-Softmax = Additive Angular Margin-Softmax
S = Number of Training Speakers

15

2.5 Additional Feature Extraction

Without considering the multi-speaker setup, TTS is a one-to-many problem. The same
text spoken by a speaker at different instances may produce different mel-spectrograms
due to various factors, including the duration of speech segments, pitch, and volume.
While some models try to learn the intricate details implicitly, others try to use additional
information, such as duration, pitch, and energy, that can affect the outcome of a TTS
system.

This work considers two models for mel-spectrogram prediction: Tacotron2 [6] and
FastSpeech2 [15]. Tacotron2 does not require any additional features. FastSpeech2 au-
thors suggest that when using only text as input to predict the target mel-spectrograms,
there is a big gap between input and output. FastSppech2 considers additional input
features, such as the duration of pronunciation for a speech segment, pitch, and energy,
to reduce the gap between input and output. During training, the target speech wave-
form is used to extract the additional features, and at the same time, separate predictor
modules learn to predict these features. At inference time, the predicted values are used.

The following subsections for duration, pitch, and energy introduce the additional
features used for FastSpeech2.

2.5.1 Duration

The duration information for the target speech is derived using the Montreal Forced
Aligner (MFA) [37].

Figure 12: MFA Durations for LJSpeech Utterance, LJ001-0002

Figure 12 provides a visual representation of the durations extracted by MFA for ut-
terance LJ001-0002 from the LJSpeech dataset. MFA generates durations at both the
word and phoneme levels. This work uses phoneme durations. In Figure 12, the high-
lighted segment corresponds to the phoneme ”B,” displaying its start and end times in
seconds above. These temporal values are then processed to obtain the starting and end-
ing frame numbers in the mel-spectrogram for the respective phoneme. Consequently,

16

in the experiments, the duration of a phoneme in an utterance refers to the number of
frames that correspond to the phoneme within the mel-spectrogram. It is worth noting
that the phonemes produced by MFA contain stress indicators, which are removed before
being used in the experiments. This is done to be aligned with the phoneme set used by
SoundChoice G2P in other experiments and at inference time.

2.5.2 Pitch

Pitch is another factor that contributes to speech variations. It represents how high
or low the voice sounds. The prosody of a speech is influenced by how pitch changes
throughout the speech. Torchaudio’s Kaldi Pitch feature is used to extract pitch in-
formation from the target speech waveform. Figure 13 shows an example of how the
pitch information varies over time for a waveform. The pitch computation process used
in this work ensures that each mel-spectrogram frame has a corresponding pitch value.
Appendix C provides the parameter setup used for pitch computation with torchaudio.

Figure 13: Example of Pitch Variations for a Waveform

Waveform is depicted in the background in Grey colour
Text used for the waveform: "Pitch example."

2.5.3 Energy

Energy affects the volume or loudness of speech. Higher energy values correspond to
louder sounds, while lower energy values indicate softer sounds. It corresponds to the
frame-level magnitude of mel-spectrograms. The energy computation process used in
this work ensures that each mel-spectrogram frame has an associated energy value. For
a mel-spectrogram frame, energy is computed as the L2-norm of the magnitude values of
the frame. This is followed by mix-max normalization for energy values across all frames.

17

2.6 Mel-Spectrogram Prediction Network

The mel-spectrogram prediction network is a primary candidate for incorporating
speaker encoding capabilities into a TTS system. It accepts a text or phoneme sequence
as input and generates a mel-spectrogram representing its corresponding speech. As
shown in Figure 9 on page 13, the content of a mel-spectrogram is subject to the speaker.
With only text as input, the model does not have a structured way to add speaker-specific
details to the mel-spectrogram. For a single-speaker TTS system, the standard approach
is to train the model using the voice of only one speaker, and the speaker’s voice charac-
teristics are captured implicitly. The multi-speaker TTS models examined for this work
are trained on text-utterance pairs for multiple speakers. In this case, it becomes imper-
ative to provide speaker identity as input along with the input text. It is required for
the model to learn how to map an input text with different speaker identities to different
mel-spectrograms.

When injecting speaker identity into a mel-spectrogram prediction model, the range of
choices depends on the model architecture. Two models are studied here: Tacotron2 [6]
and FastSpeech2 [15].

2.6.1 Tacotron2

Tacotron2 is an autoregressive TTS model. It generates the mel-spectrogram one frame
at a time. This subsection introduces the Tacotron2 architecture along with possible
speaker embedding injection locations. Additionally, fundamental details about training
Tacotron2 are provided.

Architecture

Figure 14 illustrates a modified Tacotron2 model architecture, including speaker em-
bedding injection. The original Tacotron2 architecture consists of the following main
components: an encoder, an attention network, a decoder, and a postnet.

1. The encoder is responsible for converting a character or phoneme sequence into a
hidden feature representation, which is learned as fixed-size embeddings. It consists
of convolution layers followed by bidirectional LSTM.

2. The attention network accepts the output of the encoder as input. It summarizes
the entire encoded sequence into a fixed-length context vector. This context vector
is used for each decoding step.

3. The decoder operates as an autoregressive RNN, utilizing the encoded input se-
quence to predict the mel-spectrogram one frame at a time. The input at each time
step is first passed through a prenet before being decoded. In addition to predict-
ing the mel-spectrogram, the decoder also predicts a ”stop token” that indicates
whether the output sequence generation is complete. This ”stop token” is particu-
larly useful during inference, as it enables the model to dynamically stop producing
the output when mel-spectrogram generation is complete.

4. The mel-spectrogram generated by the decoder goes through a postnet, which pre-
dicts a residual to add to the decoded mel-spectrogram to improve the overall
reconstruction.

18

Figure 14: Multi-Speaker Tacotron2 with Numbered Speaker Embedding Injection Loca-
tions

Location
Sensitive
Attention

Token
Embedding

3 Conv
Layers

Bidirectional
LSTM

Input
Phoneme

Tokens

2 LSTM
Layers

2 Layer Pre-
Net

Linear
Projection

Linear
Projection

Stop Token

5 Conv Layer
Post-Net

HiFiGAN
Vocoder

Waveform
Samples

3

4

2

1

Speaker
Embedding

Speaker
Embedding

Model

Ground Truth
Waveform

Tacotron2 - Mel-Spectrogram Prediction Network

Speaker Embedding Injection Locations

Given this architecture, there are a few potential locations for speaker embedding
injection, as shown with numbered dotted lines in Figure 14. The following choices are
explored:

1. Encoder output: One evident choice, also used by Jia et al. [23], is the encoder
output before it is passed to the attention layer.

2. Encoder input: Speaker embeddings are combined with the input phoneme token
embeddings before being passed through the entire Tacotron2 network.

3. Decoder prenet: Speaker embeddings are injected into the decoder input for every
time step.

4. Postnet: Speaker embeddings are injected into the postnet input.

Training Tacotron2

The objective function for the Tacotron2 implementation in this work consists of the
following components:

19

1. Mel-spectrogram loss: Mean Squared Error (MSE) is used for comparing the pre-
dicted and ground truth mel-spectrograms. MSE is computed for the mel-spectrogram
generated before and after the postnet and summed.

2. Stop token loss: Binary Cross Entropy (BCE) is used for the ”stop token” predic-
tion.

3. Attention loss: Guided Attention Loss is used to force the attention matrices to be
near-diagonal. This is particularly beneficial for sequence-to-sequence models like
Tacotron2, where the output sequence is expected to be closely correlated with the
input sequence.

During training, Tacotron2 employs teacher forcing for the decoder. It utilizes the
correct values from the ground truth target mel-spectrograms instead of predicted values
from previous time steps. However, during inference, when the target values are unknown,
the model relies on predictions from previous time steps to generate the mel-spectrograms.

2.6.2 FastSpeech2

FastSpeech2 is one of the non-autoregressive TTS models that enjoy the benefits of
faster mel-spectrogram generation. This subsection presents the original FastSpeech2
architecture, now extended to support speaker encoding, and explores various speaker
embedding injection locations. Additionally, a new component is introduced to further
improve the pace and naturalness of speech synthesis with FastSpeech2. Finally, essential
training details for FastSpeech2 are provided.

Architecture

Figure 15 shows the FastSpeech2 architecture used for the experiments, with poten-
tial speaker embedding injection locations indicated using dotted lines. For Figure 15,
subfigure a) depicts the overall architecture, and subfigure b) shows a more detailed view
of the variance adaptor module. Without considering the multi-speaker aspect, the Fast-
Speech2 model has the following main components: an encoder, a variance adaptor, a
decoder, and a postnet.

1. The encoder is based on multiple feed-forward transformer blocks, which contain
a self-attention layer followed by a 2-layer 1D-convolution network. The encoder
maps an input phoneme embedding sequence to its latent representation.

2. The encoder output is passed through the variance adapter module to augment
the latent representations with variance information such as duration, pitch, and
energy. Figure 15 - subfigure b) shows the workflow of the variance adaptor com-
ponent. The variance adaptor has three different modules: a duration predictor, a
pitch predictor, and an energy predictor. The duration predictor uses the ground
truth phoneme durations extracted using MFA as the training target. It accepts
a sequence of phoneme latent representations as input and learns to predict the
phoneme durations. However, when training FastSpeech2, the predicted phoneme
durations are discarded. The ground truth phoneme durations are combined with
the phoneme latent representations. The output is passed to the next predictor
module in the variance adapter. The pitch and energy predictor modules follow

20

the same approach for adding information to the latent representation. The model
structure for the duration, pitch, and energy predictors is similar. It consists of a
2-layer 1D-convolutional network with ReLU activation, followed by layer normal-
ization and a dropout layer, and a linear layer at the end to project the hidden
states into the output sequence.

3. The modified latent representations are passed through the mel-spectrogram de-
coder to construct the mel-spectrogram. The decoder has the same feed-forward
Transformer block-based structure as the encoder.

4. Similar to Tacotron2, the postnet accepts the decoded mel-spectrogram and pre-
dicts a residual to add to the decoded mel-spectrogram to improve the overall
reconstruction.

Figure 15: Multi-Speaker FastSpeech2 with Numbered Speaker Embedding Injection
Locations

Mel-Spectrogram
Decoder

Variance Adaptor

Encoder

Phoneme Embedding

Input Phoneme

Positional Encoding

Positional Encoding

1

2

3

4

Speaker Embedding

Speaker Embedding
Model

Ground Truth
Waveform

PostNet

HiFiGAN Vocoder

Waveform Samples

Mel Spectrogram

Mel-Spectrogram Prediction Network

Energy

Energy Predictor

Pitch

Pitch Predictor

Duration

Duration Predictor

FastSpeech2
Encoder Output

Length Regulator
(Upsample)

FastSpeech2 Variance
Adaptor Output

2

2

2

Speaker Embedding

b) FastSpeech2 - Variance Adaptora) FastSpeech2 - Overall Architecture

Speaker Embedding Injection Locations

Figure 15 indicates the following speaker embedding injection locations for FastSpeech
using dotted lines:

21

1. Encoder input: Speaker embeddings injected into the input to the encoder

2. Variance adaptor components: Speaker embeddings injected into the duration pre-
dictor, pitch predictor, and energy predictor inputs

3. Decoder input: Speaker embeddings injected into the decoder input

4. Postnet input: Speaker embeddings injected into the postnet input

Additional Component to Improve Speech Synthesis

In addition to the modifications necessary for integrating speaker embeddings, the
FastSpeech2 architecture employed in this work uses an extra component called the silent
phoneme predictor. This component is useful for effectively incorporating silent periods
within speech, including pauses that occur during speaking. The significance of this
supplementary component becomes evident when examining an input phoneme sequence
alongside its corresponding target waveform. Figure 16 illustrates the phoneme dura-
tions extracted using MFA for utterance LJ001-0054 from the LJSpeech dataset. The
highlighted section in Figure 16 represents a silent period, indicating the pause taken
during the spoken utterance. Such pauses or silent periods play a crucial role in the
naturalness of speech. To represent these silent periods in the audio, MFA utilizes silent
phoneme tokens within the phoneme sequences. However, it is important to note that
this information is only available during training, as the target speech waveform is not
available during inference. Consequently, the silent phoneme tokens cannot be extracted
using MFA in the inference phase.

Figure 16: MFA Phoneme Durations Highlighting the Silent Period in LJSpeech Utter-
ance, LJ001-0054

To address this challenge, a novel silent phoneme predictor component is introduced,
which takes a phoneme sequence without silent phoneme tokens as input and predicts
the appropriate positions for inserting silent phoneme tokens. Additionally, information
about word boundaries is provided using a “last phoneme” flag, which indicates whether a
phoneme is the last phoneme in the phonetic transcription of a word or not. The purpose

22

of this additional input is to avoid the insertion of silent phonemes at unexpected places,
such as in the middle of the phonetic transcription of a word.

The silent phoneme predictor first processes the input sequence using an encoder with
the same architecture as the FastSpeech2 encoder. However, it employs masked attention
to mask future elements. The encoder output is then passed through a linear layer and
sigmoid activation to estimate the probability of inserting a silent phoneme after each
phoneme in the input sequence. Figure 17 illustrates the connection between the silent
phoneme predictor and the original FastSpeech2 network, along with the architecture of
the silent phoneme predictor. Appendix D provides more details about the configuration
of the silent phoneme predictor.

Figure 17: Multi-Speaker FastSpeech2 with Silent Phoneme Predictor

FastSpeech2

Phoneme Sequence
With Silent Phoneme

Tokens

Speaker Embedding

Speaker Embedding
Model

Ground Truth
Waveform

HiFiGAN Vocoder

Waveform Samples

Mel Spectrogram

Silent Phoneme
Predictor

Phoneme Sequence
Without Silent

Phoneme Tokens

Linear

Encoder

Phoneme Embedding

Input Phoneme

Positional Encoding

Last Phoneme Flag

Sigmoid

Probability of
Inserting a Silent

Phoneme After the
Input Phoneme

a) FastSpeech2 Architecture Extended with the Silent Phoneme Predictor b) Architecture of the Silent Phoneme Predictor

Training FastSpeech2

During training, the silent phoneme predictor and the main FastSpeech2 network are
jointly trained using the same dataset. The input phoneme sequence for training the
silent phoneme predictor is constructed by excluding the silent phoneme tokens from the
phoneme sequence extracted using MFA for duration information. The original phoneme
sequence from MFA-extracted durations serves as the target value for the silent phoneme
predictor. In the joint training process, the ground truth phoneme sequences from MFA-
extracted durations are utilized as input for FastSpeech2. During inference, the input text
is first converted into a phoneme sequence using SoundChoice G2P. This sequence does
not contain silent phoneme tokens. It is subsequently passed through the silent phoneme
predictor, which inserts the silent phoneme tokens at appropriate positions. The resulting
phoneme sequence is then used as the input for the main FastSpeech2 network.

23

The objective function for the joint training of FastSpeech2 and the silent phoneme
predictor implementation used in this work consists of the following components:

1. Mel-spectrogram loss: Mean Squared Error (MSE) is used for comparing the pre-
dicted and ground truth mel-spectrograms. MSE is computed for the mel-spectrogram
generated before and after the postnet, similar to the Tacotron2 training objective.

2. SSIM loss: Structural Similarity Index Measure (SSIM) loss is defined as (1 −
SSIM). SSIM is used to measure the similarity between two images [38]. In this
work, it is computed between the target and predicted mel-spectrograms.

3. Duration loss: MSE is computed using the predicted and target durations extracted
using MFA.

4. Pitch loss: MSE is computed using the predicted and target pitch values.

5. Energy loss: MSE is computed using the predicted and target energy values.

6. Silent phoneme loss: Binary Cross Entropy (BCE) is used for the silent phoneme
prediction.

2.7 Speaker Embedding Injection

The method of integrating speaker identity information into the TTS system can also
influence the outcome. Three approaches are considered here. Averaging and concate-
nating are traditional approaches for speaker embedding injection. FiLM (Feature-wise
Linear Modulation) [29] is a general-purpose conditioning method introduced for the vi-
sual reasoning field. FiLM is designed to adaptively modulate the workflow of a neural
network computation based on a conditioning input. This work adapts the FiLM method
to inject speaker embeddings into the TTS workflow and compares its effectiveness with
the traditional approaches of averaging and concatenating.

The following subsections discuss each of the three speaker embedding injection meth-
ods.

2.7.1 Average

A speaker embedding is averaged with the hidden representation of every time step
in a sequence. In order to support different speaker embedding models, speaker embed-
dings are resized using a linear transformation and repeated to match the dimensionality
expected by the hidden representation.

2.7.2 Concatenate

A speaker embedding is concatenated with the hidden representation of every time step
in a sequence. A linear transformation is applied to the concatenated vector to match
the expected dimensionality of the next component.

24

2.7.3 FiLM

FiLM (Feature-wise Linear Modulation) layers affect the outcome of neural network
computations by passing intermediate features through a simple, feature-wise affine trans-
formation based on conditioning information. In the context of this work, FiLM allows
linear transformations over an input speaker embedding to influence the TTS process of
mapping the input phoneme sequence to the output mel-spectrogram.

Considering Fi,t,d as the d dimensional intermediate features of the TTS network for ith
input phoneme sequence with t time steps and si,e as its corresponding speaker embedding
with e dimensions, the FilM [29] method involves the following steps.

First, functions h and g are applied to input speaker embedding si,e to produce output
γi,d and βi,d.

γi,d = hd(si,e)

βi,d = gd(si,e)

γi,d and βi,d are repeated t times along the time step dimension to obtain γi,t,d and
βi,t,d. This output is then used to modify the intermediate features at every time step
using a feature-wise affine transformation.

FiLM(Fi,t,d|γi,t,d, βi,t,d) = γi,t,dFi,t,d + βi,t,d

The Hadamard product is used for multiplying γi,t,d and Fi,t,d.

Figure 18: Speaker Embedding Injection with FiLM (Feature-wise Linear Modulation)

film_shared:
Linear Layer + ReLU

film_h: Linear Layer film_g: Linear Layer

Intermediate TTS Features FiLM-ed Features

Speaker Embedding

Repeat Along The
Time Axis

Repeat Along The
Time Axis

25

The original work [29] includes the following information regarding FiLM and the
functions h and g. They can be any function, such as neural networks. It is advantageous
to share parameters between these functions for learning efficiency. The network to which
the modulation is applied using the FiLM layer is referred to as the FiLM-ed network.
Considering this information, Figure 18 illustrates how the FiLM method is used to inject
speaker embeddings into the TTS system.

As shown in Figure 18, functions f and g share the “film shared” layer. Function h con-
sists of the “film shared” and “film h” layers. Function g contains the “film shared” and
“film g” layers. Similar to the average and concatenation methods, the multiplication
and addition operations are performed for every time step. The FiLM method imple-
mentation allows adaptively manipulating the TTS workflow by scaling the intermediate
features up or down, negating them, thresholding them (with ReLU), etc., by applying
scaling factors and offsets learned from the speaker embedding input. The same scaling
factors and offsets are used for every time step to provide consistent speaker information
throughout the sequence, which is important for maintaining the speaker identity across
the generated speech.

Table 1 lists the input and output dimensions of the layers used for FiLM where e is
the size of the speaker embeddings and d is the size of the intermediate features of the
TTS network.

Table 1: Dimensions for FiLM Layers

Layer Name Description Input Size Output Size
film shared Linear Layer + ReLU e (e + d)/2
film h Linear Layer (e + d)/2 d
film g Linear Layer (e + d)/2 d

2.8 Vocoder

Vocoder is the second stage model in a two-stage TTS system and converts intermediate
representations, such as mel-spectrograms, into waveforms. Training a vocoder does not
require transcribed data. However, for the experiments in this work, the transcribed TTS
dataset used for training a mel-spectrogram network is also used for its corresponding
vocoder training.

Pretrained HiFi-GAN [18] models are used as the vocoder for all experiments.

2.8.1 HiFi-GAN

HiFi-GAN has a Generative Adversarial Network (GAN) architecture, and it is de-
signed to synthesize waveforms from mel-spectrograms.

26

Figure 19: HiFi-GAN - High-Level View

Generator

Mel-Spectrogram Synthesized Speech

Real Speech

Discriminator
(Real or Synthesized

Speech?)

Trained to Synthesize Speech Indistinguishable From Real Speech

Generator
Loss

Discriminator
Loss

Trained to Distinguish
Real Speech From Synthesized Speech

Figure 19 depicts a high-level view of HiFi-GAN. It contains two main components: a
generator and a discriminator. The generator is responsible for producing high-quality
audio comparable to real, ground truth audio. The goal of the discriminator is to dis-
tinguish between real speech and speech synthesized by the generator. They are trained
adversarially. After training, the generator is used to convert mel-spectrograms into audio
waveforms. The original HiFi-GAN [18] work demonstrates the generalization capability
of HiFi-GAN to convert mel-spectrograms of unseen speakers into their corresponding
waveforms. Zero-shot multi-speaker TTS is possible without injecting speaker embed-
dings into the HiFi-GAN architecture [25]. The HiFi-GAN model architecture used in
the experiments does not have a separate input for speaker identity. Section 4.3.1 reports
results supporting this decision.

2.9 Random Speaker Generator

The zero-shot multi-speaker TTS system is enhanced using a random speaker generator
module, utilizing a Gaussian Mixture Model (GMM) to create a more continuous speaker
embedding space. The GMM is trained on speaker embeddings extracted from a subset of
the LibriTTS dataset, allowing it to learn the underlying structure of speaker embeddings.
At TTS inference time, a random speaker embedding is sampled from this space. The
randomly sampled speaker embedding is used as input along with some text to generate
speech with fictitious speaker voices.

27

3 Experimental Setup

3.1 Datasets

All datasets are used for the experiments are publicly available: LJSpeech [39], Lib-
riTTS [40], VCTK [41], VoxCeleb [42].

3.1.1 LJSpeech

LJSpeech is a single-speaker TTS dataset consisting of 13,100 text-utterance pairs in
English. LJSpeech has approximately 24 hours of speech data at a sample rate of 22050
Hz and a maximum utterance duration of 10.10 seconds. For the experiments, LJSpeech
is divided into 90% training and 10% validation data.

3.1.2 VCTK

VCTK is a multi-speaker TTS dataset. It has around 41.6 hours of speech with text-
utterance pairs for 109 speakers. It is a high-quality dataset with a sample rate of 48
kHz. Following YourTTS [2], data for the following speaker IDs are reserved as test data:
225, 234, 238, 245, 248, 261, 294, 302, 326, 335, and 347. The remaining dataset is used
for training and validation. All utterances were downsampled to the sample rate of 22050
Hz.

Any experiment involving performance comparison with the YourTTS model matches
the sample rate and the data split of the YourTTS model.

3.1.3 LibriTTS

LibriTTS is also a multi-speaker TTS dataset containing about 585 hours of English
speech with transcription for 2456 speakers. It uses a sample rate of 24 kHz. The dataset
has “clean” subsets that contain utterances with a higher signal-to-noise ratio (SNR). It
also has “other” subsets that contain utterances with low SNR. Unless specified otherwise,
the experiments use the following train, validation, and test splits:

1. Train: train-clean-100 and train-clean-360

2. Validation: dev-clean

3. Test: Data for 10 speakers (5 male, 5 female speakers) from test-clean

All utterances were downsampled to a sample rate of 22050 Hz. Utterances with a
duration greater than 10.10 seconds were excluded for training efficiency. In this work,
32 is the maximum batch size possible for training a zero-shot multi-speaker Tacotron2
model (with around 28.6 million trainable parameters) on the LibriTTS data mentioned
above, including all utterances, using a single NVIDIA A100 GPU. The training time
taken per epoch for this setup is approximately 3.85 hours. Excluding utterances with
durations greater than 10.10 seconds allows increasing the batch size to 64. As a result,
around 84% of the original number of utterances are used for training, and the time taken
per epoch with this new setup is reduced to around 52.35 minutes. Details about the
resultant LibriTTS data used for the experiments are provided in Table 2.

28

Table 2: LibriTTS Data Used for Training and Validation in the Experiments

LibriTTS
Subset

Total
Duration
(Hours)

Reduced
Duration
(Hours)

Total
Number
of
Samples

Reduced
Number
of
Samples

% of
Samples
Used

train-clean-100 53.78 33.07 33,236 28,049 84.39
train-clean-360 191.29 115.26 116,500 97,405 83.60
dev-clean 8.97 5.93 5,736 4,964 86.54

It is important to acknowledge that while the VCTK dataset provides high-quality
data, it is limited in terms of the number of speakers (109). As highlighted by the authors
of YourTTS [2], zero-shot multi-speaker TTS models trained solely on VCTK struggle
to generalize effectively to unseen speakers with significantly different voice characteris-
tics. In contrast, the LibriTTS dataset, derived from LibriSpeech, has a larger number
of speakers and draws its data from audiobooks, resulting in potential variations in in-
tonation and speaking style even within the same speaker’s utterances. This diversity
encompasses a wider range of speaker characteristics found within the LibriTTS dataset.
Consequently, the majority of the experiments conducted in this study make use of the
LibriTTS dataset due to its enhanced speaker variety and characteristics.

3.1.4 VoxCeleb

The VoxCeleb dataset is used to train the speaker encoder models. It has two subsets:
VoxCeleb1 and VoxCeleb2. Together, they contain untranscribed speech at a 16 kHz
sample rate for 7000+ speakers, 1 million+ utterances, and 2000+ hours. After combining
VoxCeleb1 and VoxCeleb2, the speaker encoder models were trained on data for 7205
speakers. VoxCeleb1 test data is used for selecting the best model.

3.2 Zero-Shot Multi-Speaker TTS Experiments

A step-wise approach is followed to explore various aspects of zero-shot multi-speaker
TTS. At every step, possible implementation approaches for an aspect are compared, and
the best one is selected before moving on to the next step.

3.2.1 Baseline

The baseline model has the following configuration:

1. Mel-spectrogram prediction model: Tacotron2

2. Speaker embedding model: ECAPA-TDNN

3. Speaker embedding injection method: Average

4. Speaker embedding injection location: Speaker embeddings averaged with the out-
put of the Tacotron2 encoder before being passed to the attention layer

29

5. Dataset: LibriTTS with splits: train (train-clean-100, train-clean-360), validation
(dev-clean)

6. Sample rate for the mel-spectrogram prediction model: 22050 Hz

7. Sample rate for the speaker embedding model: 16000 Hz

Following prior work [2], transfer learning is used to accelerate learning. First, a model
is trained using LJSpeech for 91,500 steps. This model is used as the starting point for
multi-speaker training using the LibriTTS dataset for 294,000 steps. This approach is
used for all multi-speaker training experiments, unless specified otherwise.

3.2.2 Comparing Speaker Embedding Injection Methods

This step examines the impact of three speaker embedding injection methods: average,
concatenation, and FiLM. The rest of the configuration is the same as the baseline.

3.2.3 Comparing Speaker Embedding Models

The best model from the previous step is used to compare the performance with the
X-Vector and ECAPA-TDNN speaker embedding models.

3.2.4 Comparing Speaker Embedding Injection Locations

The potential locations for injecting speaker embeddings in a mel-spectrogram predic-
tion model vary with the model architecture. This step has two stages. The first stage
is model-specific and evaluates injecting speaker embeddings at one or more locations
for a particular model. Two models for mel-spectrogram prediction are considered here:
Tacotron2 and FastSpeech2. The second stage compares the observations for the two
models.

For Tacotron2, the following combinations of injection locations are tried, as shown in
figure 14:

1. Base: Speaker embeddings injected into the output of the Tacotron2 encoder before
being passed to the attention layer.

2. DecPrenet: Base + Speaker embeddings injected into the input to the decoder
prenet

3. EncDec: DecPrenet + Speaker embeddings injected into the encoder input

4. All: EncDec + Speaker embeddings injected into the postnet input

For FastSpeech2, the following combinations of injection locations are tried, as shown
in figure 15:

1. Base: Speaker embeddings injected into the input to the encoder

2. Preds: Base + Speaker embeddings injected into the duration, pitch, and energy
predictor inputs

30

3. Dec: Preds + Speaker embeddings injected into the decoder input

4. All: Dec + Speaker embeddings injected into the postnet input

5. BasePost: Base + Speaker embeddings injected into the postnet input

3.2.5 Comparing the Best Model with YourTTS

The performance of the best model configuration obtained from the previous step is
compared with that of YourTTS, which achieved state-of-the-art performance for zero-
shot multi-speaker TTS on the VCTK dataset.

3.2.6 Random Speaker Generation

A GMM is trained to model the speaker embedding distribution and make the speaker
embedding space more continuous. Random speaker embeddings are sampled using this
GMM to generate new fictitious voices. The speaker embeddings used to train the GMM
are computed for the LibriTTS dev-clean dataset using the best speaker encoder model
from previous experiments.

Appendix E provides details about important training hyperparameters for the best
zero-shot multi-speaker model configuration obtained from the experiments.

31

4 Experiment Results

This section discusses the evaluation metrics, evaluation data, and results of the zero-
shot multi-speaker TTS experiments.

4.1 Evaluation Metrics

The naturalness of speech and speaker similarity between the ground truth and syn-
thesized speech are important qualities when evaluating a zero-shot multi-speaker TTS
system. Following prior work [2, 24], the experiment results are examined using objective
and subjective metrics. Speaker Embedding Cosine Similarity (SECS) is the objective
metric used to evaluate and compare speaker similarity at various stages, along with
informal listening tests to verify the intelligibility of the speech. The best configura-
tion achieved from these experiments is evaluated using the Mean Opinion Score (MOS)
obtained from conducting listening tests for naturalness and speaker similarity.

4.1.1 Objective Evaluation Metric

Speaker Embedding Cosine Similarity (SECS) is a standard measure for speaker simi-
larity. It is defined as follows:

cosine similarity(X1, X2) =
X1 ·X2

||X1|| · ||X2||
The cosine similarity scale runs from -1 to 1, with a higher value indicating higher

similarity between X1 and X2.

For objective evaluation of experiments, speaker embeddings are extracted for ground
truth and synthesized speech. Cosine similarity is computed using an ECAPA-TDNN
speaker encoder. Figure 20 shows the SECS computation workflow for the experiments.
Since the evaluation speaker encoder is used on the final synthesized audio, it is not
biased towards the speaker encoder used to extract speaker embeddings when training
the TTS system.

Figure 20: Speaker Embedding Cosine Similarity (SECS) Computation

TTS

"Mary had a little lamb."

Synthesized Speech

Input Text

Text
Preprocessing

Experiment
Speaker Encoder

Phonemes

Speaker Embedding

Ground Truth

Evaluation
Speaker Encoder SECS

Reference Speech

4.1.2 Subjective Evaluation Metrics

Subjective listening tests involving 21 participants are conducted to obtain the Mean
Opinion Score (MOS) regarding the naturalness of synthesized speech and its speaker

32

similarity towards the ground truth. For the results presented, the term “MOS” refers to
the naturalness score, and “Sim-MOS” refers to the speaker similarity score. As used in
prior work [2, 23, 24], the values for the scores range from 1 to 5 and are explained using
Table 3 and Table 4. All subjective scores are reported with a 95% confidence interval.

Table 3: Mean Opinion Score (MOS) - Mapping between Numerical Rating and Speech
Naturalness

Numerical Rating Speech Naturalness
5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

Table 4: Similarity Mean Opinion Score (Sim-MOS) - Mapping between Numerical Rating
and Speaker Similarity

Numerical Rating Speaker Similarity
5 Extremely similar
4 Very similar
3 Moderately similar
2 Slightly similar
1 Not at all similar

4.2 Evaluation Data

This section discusses the factors considered while constructing the evaluation datasets
and the two evaluation datasets used for the experiments.

4.2.1 Considerations for Evaluation Dataset Construction

A productive zero-shot multi-speaker TTS system should be able to perform well under
the following conditions:

1. Seen speaker, unseen text

2. Unseen speaker, unseen text

Evaluating a model for these two conditions is a way to ensure that it generalizes
well to unseen speakers and text without forgetting the speaker identities it has seen
during training. The LibriTTS evaluation dataset, described below, is used for this pur-
pose where applicable. When selecting the best model at every stage of the experiments,
Speaker Embedding Cosine Similarity (SECS) scores are computed for these two condi-
tions and their average, and the following priority order is used to select the best model:

33

1. Best average score

2. Best score for seen speakers, unseen text

3. Best score for unseen speakers, unseen text

Additionally, the performance of the best model obtained from the experiments is
compared against that of the YourTTS model on the VCTK dataset. YourTTS has
achieved state-of-the-art performance for zero-shot multi-speaker TTS on the VCTK
dataset [2]. The VCTK test data from YourTTS experiments is used for this comparison.
This data has samples only for the “unseen speaker, unseen text” condition.

The sample rate of the audio in both datasets is matched with the sample rate of the
TTS experiment being evaluated to be as fair as possible during evaluation.

4.2.2 LibriTTS Evaluation Dataset

The LibriTTS evaluation dataset has a total of 100 text-utterance pairs as ground truth
data. It has two subsets for the two evaluation conditions discussed in Section 4.2.1:

1. Seen speakers, unseen text

2. Unseen speakers, unseen text

During training, utterances with a duration greater than 10.10 seconds were excluded
for training efficiency. Random speakers and their text-utterance pairs are sampled from
this excluded data to construct evaluation data for the “seen speaker, unseen text” con-
dition.

For the “unseen speaker, unseen text” condition, speaker data from the LibriTTS test-
clean subset is used.

The subset for each condition has data for 5 male and 5 female speakers. For every
speaker, a reference utterance is used to compute the reference speaker embedding, and
5 other text-utterance pairs are used as the ground truth. The reference speaker em-
bedding is used as the input along with the text from ground truth text-utterance pairs
to synthesize speech for a particular speaker identity. This synthesized speech is then
evaluated against the corresponding ground truth utterance.

4.2.3 VCTK Evaluation Dataset

The VCTK evaluation dataset is constructed using VCTK test data from YourTTS,
and it has data only for the “unseen speaker, unseen text” condition. It has data for 11
speakers (4 male, 7 female) representing different accents available in the VCTK dataset.
The speaker IDs reserved for the evaluation dataset are 225, 234, 238, 245, 248, 261, 294,
302, 326, 335, and 347. Similar to the LibriTTS evaluation dataset, for every speaker,
a reference utterance is used to compute the reference speaker embedding, and 5 other
text-utterance pairs are used as the ground truth for SECS computation. Out of the
5 text-utterance pairs available for every speaker, 2 pairs are used for both MOS and
Sim-MOS computation.

34

Appendix B lists more details about the speaker data used for constructing LibriTTS
and VCTK evaluation datasets.

4.3 Results

The following subsections present results for a step-by-step examination of different
factors of zero-shot multi-speaker TTS. Next, a comparison is made between the best
model and YourTTS. Finally, an evaluation is conducted to assess the naturalness of
speech using randomly generated speaker identities.

4.3.1 Baseline

Table 5: LibriTTS SECS Scores for Baseline

Experiment Seen Speaker,
Unseen Text

Unseen Speaker,
Unseen Text

Average

Ground Truth Waveform 1.000 1.000 1.000
Ground Truth
Mel-Spectrogram + Vocoder

0.985 0.984 0.984

Baseline 0.466 0.403 0.434

Table 5 compares the LibriTTS SECS (Speaker Embedding Cosine Similarity) scores
for ground truth waveform, ground truth mel-spectrogram with vocoder, and the baseline
for the zero-shot multi-speaker TTS experiments.

The first row of Table 5 contains cosine similarity scores of ground truth waveforms
with respect to themselves. Predictably, these cosine similarity scores have the highest
possible value of 1.

The second row of Table 5 contains the LibriTTS SECS scores for ground truth mel-
spectrogram with a vocoder. For this, mel-spectrograms are computed for the ground
truth waveform and passed through a vocoder to reconstruct the waveform. The recon-
structed waveforms have a very high cosine similarity score with respect to the ground
truth waveform. An informal listening test confirms that the reconstructed waveforms
sound natural and very similar to the ground truth ones. Thus, speaker embeddings are
not injected into the HiFi-GAN vocoder used in the experiments. This observation aligns
with the findings of HiFi-GAN regarding the generalization capability of HiFi-GAN for
unseen speakers [18].

The final row of Table 5 presents the LibriTTS SECS scores for the baseline model,
where ECAPA-TDNN speaker embeddings are averaged with the Tacotron2 encoder out-
put before passing it to the attention layer. Notably, the cosine similarity scores are
higher for seen speakers compared to unseen speakers. This discrepancy is reasonable,
as the model has been trained on numerous examples from seen speakers, allowing it to
develop a stronger familiarity with their characteristics. It is expected that the model’s

35

performance on seen speakers will be better than that on unseen speakers across the
experiment results discussed in this work.

The findings from an informal listening test support these observations. The synthe-
sized voices of seen speakers exhibit greater consistency, while those of unseen speakers
display more variation across different utterances. Occasionally, there are voice modula-
tions observed even within the same utterance. However, it is important to note that the
LibriTTS corpus, derived from reading audiobooks, inherently includes voice modulation
within utterances as speakers try to effectively convey different parts of the spoken text
during storytelling. Overall, the model strives to produce intelligible speech, and there
are no instances of completely unintelligible output, such as noise, during the evaluation.

4.3.2 Comparing Speaker Embedding Injection Methods

Table 6: LibriTTS SECS Scores Comparing Speaker Embedding Injection Methods

Experiment -
Injection Method

Seen Speaker,
Unseen Text

Unseen Speaker,
Unseen Text

Average

Average (Baseline) 0.466 0.403 0.434
Concatenation 0.487 0.428 0.458
FiLM 0.503 0.424 0.463

The LibriTTS SECS scores in Table 6 demonstrate that the FiLM method outperforms
the traditional ways of averaging and concatenating the speaker embeddings to inject
them into the TTS system. Even though concatenating speaker embedding provides an
SECS score better than that of FiLM for unseen speakers, its average score is lower than
that of FiLM, and its score for seen speakers is worse compared to FiLM. The FiLM
method is selected here considering the speaker similarity metric because it shows better
generalization without forgetting the speaker identities seen during training, as discussed
in 4.2.1. The better performance of FiLM could be attributed to the adaptive modulation
capability it brings to the zero-shot multi-speaker TTS.

All experiments from this point on use FiLM as the injection method.

4.3.3 Comparing Speaker Embedding Models

To compare the speaker embedding models, Tacotron2 is combined with both the
X-Vector and ECAPA-TDNN speaker embedding models. The independently trained
X-Vector model achieves an error rate of 2.51% on the VoxCeleb1 test data, while the
independently trained ECAPA-TDNN model achieves an error rate of 1.58% on the same
dataset.

36

Table 7: LibriTTS SECS Scores Comparing Speaker Embedding Models

Experiment -
Embedding Model

Seen Speaker,
Unseen Text

Unseen Speaker,
Unseen Text

Average

X-Vector 0.378 0.260 0.319
ECAPA-TDNN 0.503 0.424 0.463

Based on the results of LibriTTS SECS (Speaker Encoding Similarity) presented in
Table 7, it is evident that ECAPA-TDNN speaker embeddings surpass X-Vector speaker
embeddings by a substantial margin. This can be attributed to the advancements intro-
duced by the ECAPA-TDNN model over the TDNN architecture. The change in perfor-
mance when changing only the speaker embedding model highlights the importance of
good speaker embeddings in zero-shot multi-speaker TTS.

The effectiveness of the speaker encoding models can be further understood by exam-
ining the organization of speaker embeddings in the speaker embedding space. A good
speaker encoder clusters embeddings from the utterances of the same speaker together
while ensuring that embeddings from different speakers are separated into distinct clus-
ters. Principal Component Analysis (PCA) visualization is used to illustrate this in Figure
21 and Figure 22. Figure 21 presents a comparison of the speaker embeddings extracted
from the seen speakers of the LibriTTS evaluation dataset using both the X-Vector and
ECAPA-TDNN speaker embedding models. Similarly, Figure 22 offers a comparison for
the subset of unseen speakers from the LibriTTS evaluation dataset. In the visualiza-
tions, ECAPA-TDNN model exhibits superior capability in capturing speaker identities
compared to the X-Vector model. These observations align with the error rates achieved
by the models on the VoxCeleb1 test data and the LibriTTS SECS scores provided in
Table 7.

The results of this comparison step are consistent with the recent findings of Xue et
al. [25] where ECAPA-TDNN performed better than X-Vector in the context of multi-
speaker TTS using FastSpeech2 as the mel-spectrogram prediction network.

All experiments after this step use ECAPA-TDNN embeddings.

37

Figure 21: PCA Visualization for Seen Speaker Examples in LibriTTS Evaluation Data
Using X-Vector and ECAPA-TDNN Models

PCA for ECAPA-TDNN Embeddings Extracted for Seen Speakers Subset in the LibriTTS Evaluation Dataset

PCA for X-Vector Embeddings Extracted for Seen Speakers Subset in the LibriTTS Evaluation Dataset

38

Figure 22: PCA Visualization for Unseen Speaker Examples in LibriTTS Evaluation Data
Using X-Vector and ECAPA-TDNN Models

PCA for ECAPA-TDNN Embeddings Extracted for Unseen Speakers Subset in the LibriTTS Evaluation Dataset

PCA for X-Vector Embeddings Extracted for Unseen Speakers Subset in the LibriTTS Evaluation Dataset

4.3.4 Comparing Speaker Embedding Injection Locations

Two mel-spectrogram prediction models are used for this step: Tacotron2 and Fast-
Speech2. First, a model-specific comparison is performed to determine the best possible
configuration of speaker embedding injection locations for that model. Afterward, the
observations for Tacotron2 and FastSpeech2 are compared.

39

Table 8: LibriTTS SECS Comparing Speaker Embedding Injection Locations for
Tacotron2

Experiment -
Injection Locations
for Tacotron2

Seen Speaker,
Unseen Text

Unseen Speaker,
Unseen Text

Average

Base 0.503 0.424 0.463
DecPrenet 0.459 0.372 0.416
EncDec 0.424 0.325 0.374
All 0.399 0.352 0.376

Table 8 shows the LibriTTS SECS scores for different speaker embedding injection
location configurations for Tacotron2. The base case (Table 8, first row) provides the best
performance. In the base case, speaker embeddings are injected in only one location; the
FiLM method is used to inject the speaker embeddings into the output of the Tacotron2
encoder before being passed to the attention layer. Every row following the first row
of Table 8 refers to an experiment where one additional location is used for speaker
embedding injection. It can be seen that using additional locations for speaker embedding
injection results in a performance decrease. When comparing the “EncDec” and “All”
experiments, the average performance seems to improve with the additional injection
location. However, it should be noted that, in this case, there is an increase in the unseen
speaker performance at the expense of a decrease in the seen speaker performance on a
similar scale. This is not desirable. Thus, no other combinations of speaker embedding
injection locations with the base case are tried. Due to the overall negative impact seen
after using locations other than the base case location, experiments using only those
locations are not tried.

These results conform to the work of Jia et al. [23] where it is mentioned that injecting
embeddings only into the input to the attention layer of Tacotron2 is sufficient to converge
for different speakers, in contrast to the multi-location injection approach used in Deep
Voice 2 [22]. However, Jia et al. [23] do not provide any studies comparing the effects of
using one or more speaker embedding injection locations.

Table 9: LibriTTS SECS Comparing Speaker Embedding Injection Locations for Fast-
Speech2

Experiment -
Injection Locations
for FastSpeech2

Seen Speaker,
Unseen Text

Unseen Speaker,
Unseen Text

Average

Base 0.287 0.248 0.268
Preds 0.285 0.249 0.267
Dec 0.226 0.183 0.204
All 0.224 0.190 0.207
BasePost 0.283 0.249 0.266

40

The LibriTTS SECS scores noted in Table 9 for FastSpeech2 show that the experiment
with the best average generalization without forgetting the speaker identities seen during
training is the base case. In the base case, the speaker embeddings are injected only into
the input to the encoder. The results for FastSpeech2 follow a trend similar to the one
observed for Tacotron2 in Table 8.

For both models considered for this step, injecting speaker embeddings in only one
place resulted in the best performance. However, this aspect may be model-specific, as
Cooper et al. [24] conducted a similar study for an adapted version of the Tacotron model
and found that injecting speaker embeddings into the encoder output and decoder prenet
input resulted in the best outcome. In recent developments, YourTTS [2] achieved state-
of-the-art results for zero-shot multi-speaker TTS on the VCTK dataset with a model
architecture where speaker embeddings are injected into numerous locations.

Table 10: Best LibriTTS SECS for Tacotron2 and FastSpeech2

Experiment - Model Seen Speaker,
Unseen Text

Unseen Speaker,
Unseen Text

Average

Tacotron2 - Base 0.503 0.424 0.463
FastSpeech2 - Base 0.287 0.248 0.268

Finally, Table 10 lists the best LibriTTS SECS scores achieved with multi-speaker
Tacotron2 and FastSpeech2. It should be noted that this comparison is performed after
training both models for the same number of epochs. It is not unexpected for different
models to require different amounts of training for the same task on the same dataset.
Thus, the performance of FastSpeech2 may improve with more training. Another factor
to consider is the model capacity. Perhaps increasing the model capacity by changing
the number of layers and their dimensionality could help improve the performance of
both Tacotron2 and FastSpeech2. In this step, Tacotron2 is selected because of its higher
scores.

The best model configuration from all the steps so far consists of ECAPA-TDNN
embeddings injected into the Tacotron2 model using the FiLM method. This model
configuration is referred to as zero-shot multi-speaker Tacotron2 from this point on.
Appendix E provides important details about the training hyperparameters for the zero-
shot multi-speaker Tacotron2 model.

4.3.5 Comparing the Best Model with YourTTS for VCTK

The performance of the zero-shot multi-speaker Tacotron2 model is compared to that of
the YourTTS model, which achieved state-of-the-art performance for the VCTK dataset
for zero-shot multi-speaker TTS [2]. A pretrained YourTTS model checkpoint trained on
the VCTK dataset is used to generate the evaluation samples for YourTTS. YourTTS uses
a sample rate of 16000 Hz. In order to be compatible with these YourTTS training factors,
the zero-shot multi-speaker Tacotron2 model is trained on the VCTK dataset using the
same data split and sample rate as YourTTS. The training is carried out for 2,644,040

41

steps to further improve the performance of the zero-shot multi-speaker Tacotron2 model
(compared to the 294,000 training steps for the previous experiments). Informal listening
tests were carried out throughout training to ensure the output quality was improving
with an increasing number of steps.

Table 11: Comparing Zero-Shot Multi-Speaker Tacotron2 with YourTTS using VCTK
Evaluation Dataset

Experiment SECS MOS Sim-MOS
Ground Truth 1.000 3.91±0.14 NA
Zero-Shot Multi-Speaker Tacotron2 0.378 3.46±0.10 3.25±0.18
YourTTS 0.498 3.89±0.12 3.66±0.16

Table 11 shows that zero-shot multi-speaker Tacotron2 does not match the performance
of YourTTS in terms of speech naturalness and speaker similarity. The speech naturalness
expressed by subjective MOS results is the highest for the ground truth, closely followed
by YourTTS. The objective SECS and subjective Sim-MOS results for speaker similarity
complement each other in establishing YourTTS as the better model.

Closely observing the architectures of the two models being compared shows that
the zero-shot multi-speaker Tacotron2 model has approximately 28.6 million parame-
ters, while the number of parameters used for YourTTS is around 86.6 million. This
indicates a greater capacity available for YourTTS, which could be a contributing fac-
tor to its superior performance. Increasing the capacity of the Tacotron2 by modifying
the model architecture and increasing the dimensionality could potentially lead to better
performance. Another factor to note here is the amount of training. The multi-speaker
Tacotron2 model used for this comparison is trained for 2,644,040 steps. Further training
the model could improve its performance in terms of pronunciation clarity, pace, robotic
voice, etc., leading to the generation of natural speech with greater speaker similarity.
Additionally, as shown in Table 7, the speaker embedding model can also make a dif-
ference for the speaker similarity of the generated speech. YourTTS uses the H/ASP
model [43] as the speaker encoder, while the zero-shot multi-speaker Tacotron2 model
uses ECAPA-TDNN speaker encoder. This is another aspect to consider when trying
to understand the performance difference. Overall this examination indicates that even
though the current configuration of zero-shot multi-speaker Tacotron2 does not meet the
performance of the YourTTS model, there is potential for improvement.

4.3.6 Random Speaker Generation

Table 12: MOS for Random Speaker Generation Using VCTK Evaluation Data

Speaker Type MOS
Real Speaker 3.46±0.10
Fictitious Speaker 3.45±0.18

42

Table 12 shows subjective naturalness MOS results for speech synthesized for real and
fictitious speakers. The zero-shot multi-speaker Tacotron2 model is used to generate
speech in both cases. For real speakers, samples available for MOS computation from the
VCTK evaluation dataset are used to compute speaker embeddings. For fictitious speak-
ers, a GMM is trained to model the distribution of ECAPA-TDNN speaker embeddings
computed using the LibriTTS dev-clean dataset. The resultant speaker embedding space
is used to sample random data points. The naturalness of the speech generated for ficti-
tious speakers is comparable to that of real speakers. This promising result suggests that
the zero-shot multi-speaker TTS system has the potential to successfully generate speech
with realistic fictitious speaker voices using this approach. As the model’s performance
improves in terms of naturalness for real speakers, a corresponding enhancement in its
performance for fictitious speakers can be expected.

43

5 Conclusion

In conclusion, this thesis comprehensively examines various aspects of zero-shot multi-
speaker TTS to establish an effective system. The results underscore the significance
of the speaker embedding injection method while adapting the FiLM method for zero-
shot multi-speaker TTS. While the FiLM method currently employs simple linear trans-
formations, future work could explore more sophisticated neural networks to enhance
the model’s performance. Furthermore, the study highlights the crucial role of high-
performing speaker embeddings by demonstrating the impact of different speaker em-
bedding models on the system’s performance. Although injecting embeddings in a single
location yields the best results in the models investigated here, outperforming any com-
bination of multiple injection locations, it is important to note that this aspect may be
sensitive to the model architecture. While the best-performing model obtained from the
experiments does not reach the state-of-the-art in its current stage, there is potential for
improvement by exploring variations of capacity, the amount of training, and speaker
embeddings. Finally, the random speaker generator module successfully extends the ca-
pabilities of the zero-shot multi-speaker system to generate fictitious voices. While this
thesis provides some valuable insights into zero-shot multi-speaker TTS, there are un-
explored pathways that could lead to future advancements in the field. For instance,
improving the objective functions by incorporating a term for speaker consistency and
exploring controllable factors to modulate generated voices can significantly enhance the
system. In fact, the knowledge gained from this study on the multi-speaker aspect can
be applied to other facets of TTS, such as emotion, accent, and style, paving the way
towards expressive TTS.

44

References

[1] B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-tdnn: Emphasized chan-
nel attention, propagation and aggregation in tdnn based speaker verification,” arXiv
preprint arXiv:2005.07143, 2020.

[2] E. Casanova, J. Weber, C. D. Shulby, A. C. Junior, E. Gölge, and M. A. Ponti,
“Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice conversion for
everyone,” in International Conference on Machine Learning. PMLR, 2022, pp.
2709–2720.

[3] E. Casanova, C. Shulby, A. Korolev, A. C. Junior, A. d. S. Soares, S. Alúısio,
and M. A. Ponti, “Asr data augmentation in low-resource settings using cross-
lingual multi-speaker tts and cross-lingual voice conversion,” arXiv preprint
arXiv:2204.00618, 2022.

[4] S. Ueno, M. Mimura, S. Sakai, and T. Kawahara, “Multi-speaker sequence-to-
sequence speech synthesis for data augmentation in acoustic-to-word speech recog-
nition,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019, pp. 6161–6165.

[5] P. Taylor, Text-to-Speech Synthesis, 1st ed. USA: Cambridge University Press, 2009.

[6] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang,
Y. Wang, R. Skerrv-Ryan et al., “Natural tts synthesis by conditioning wavenet on
mel spectrogram predictions,” in 2018 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE, 2018, pp. 4779–4783.

[7] A. J. Hunt and A. W. Black, “Unit selection in a concatenative speech synthesis
system using a large speech database,” in 1996 IEEE international conference on
acoustics, speech, and signal processing conference proceedings, vol. 1. IEEE, 1996,
pp. 373–376.

[8] A. W. Black, H. Zen, and K. Tokuda, “Statistical parametric speech synthesis,” in
2007 IEEE International Conference on Acoustics, Speech and Signal Processing-
ICASSP’07, vol. 4. IEEE, 2007, pp. IV–1229.

[9] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang,
Y. Xiao, Z. Chen, S. Bengio et al., “Tacotron: Towards end-to-end speech synthesis,”
arXiv preprint arXiv:1703.10135, 2017.

[10] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan, S. Narang, J. Raiman,
and J. Miller, “Deep voice 3: Scaling text-to-speech with convolutional sequence
learning,” arXiv preprint arXiv:1710.07654, 2017.

[11] Y. Lee, J. Shin, and K. Jung, “Bidirectional variational inference for non-
autoregressive text-to-speech,” in International conference on learning representa-
tions, 2022.

[12] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw
audio,” arXiv preprint arXiv:1609.03499, 2016.

45

[13] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based generative net-
work for speech synthesis,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 3617–3621.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[15] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Fastspeech 2:
Fast and high-quality end-to-end text to speech,” arXiv preprint arXiv:2006.04558,
2020.

[16] N. Li, S. Liu, Y. Liu, S. Zhao, and M. Liu, “Neural speech synthesis with transformer
network,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 6706–6713.

[17] M. Jeong, H. Kim, S. J. Cheon, B. J. Choi, and N. S. Kim, “Diff-tts: A denoising
diffusion model for text-to-speech,” arXiv preprint arXiv:2104.01409, 2021.

[18] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks for efficient
and high fidelity speech synthesis,” Advances in Neural Information Processing Sys-
tems, vol. 33, pp. 17 022–17 033, 2020.

[19] J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder with adversar-
ial learning for end-to-end text-to-speech,” in International Conference on Machine
Learning. PMLR, 2021, pp. 5530–5540.

[20] Y. Guo, C. Du, X. Chen, and K. Yu, “Emodiff: Intensity controllable emotional
text-to-speech with soft-label guidance,” in ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp.
1–5.

[21] T. Nekvinda and O. Dušek, “One model, many languages: Meta-learning for multi-
lingual text-to-speech,” arXiv preprint arXiv:2008.00768, 2020.

[22] A. Gibiansky, S. Arik, G. Diamos, J. Miller, K. Peng, W. Ping, J. Raiman, and
Y. Zhou, “Deep voice 2: Multi-speaker neural text-to-speech,” Advances in neural
information processing systems, vol. 30, 2017.

[23] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen, R. Pang,
I. Lopez Moreno, Y. Wu et al., “Transfer learning from speaker verification to
multispeaker text-to-speech synthesis,” Advances in neural information processing
systems, vol. 31, 2018.

[24] E. Cooper, C.-I. Lai, Y. Yasuda, F. Fang, X. Wang, N. Chen, and J. Yamagishi,
“Zero-shot multi-speaker text-to-speech with state-of-the-art neural speaker embed-
dings,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 6184–6188.

[25] J. Xue, Y. Deng, Y. Han, Y. Li, J. Sun, and J. Liang, “Ecapa-tdnn for multi-speaker
text-to-speech synthesis,” in 2022 13th International Symposium on Chinese Spoken
Language Processing (ISCSLP). IEEE, 2022, pp. 230–234.

46

[26] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network architecture
for efficient modeling of long temporal contexts,” in Sixteenth annual conference of
the international speech communication association, 2015.

[27] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-vectors:
Robust dnn embeddings for speaker recognition,” in 2018 IEEE international con-
ference on acoustics, speech and signal processing (ICASSP). IEEE, 2018, pp.
5329–5333.

[28] H. Yoon, C. Kim, S. Um, H.-W. Yoon, and H.-G. Kang, “Sc-cnn: Effective speaker
conditioning method for zero-shot multi-speaker text-to-speech systems,” IEEE Sig-
nal Processing Letters, 2023.

[29] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film: Visual
reasoning with a general conditioning layer,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 32, no. 1, 2018.

[30] M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell, L. Lugosch, C. Sub-
akan, N. Dawalatabad, A. Heba, J. Zhong, J.-C. Chou, S.-L. Yeh, S.-W. Fu, C.-F.
Liao, E. Rastorgueva, F. Grondin, W. Aris, H. Na, Y. Gao, R. D. Mori, and Y. Ben-
gio, “SpeechBrain: A general-purpose speech toolkit,” 2021, arXiv:2106.04624.

[31] A. Ploujnikov and M. Ravanelli, “Soundchoice: Grapheme-to-phoneme models with
semantic disambiguation,” arXiv preprint arXiv:2207.13703, 2022.

[32] S. Becker, M. Ackermann, S. Lapuschkin, K.-R. Müller, and W. Samek, “Interpreting
and explaining deep neural networks for classification of audio signals,” CoRR, vol.
abs/1807.03418, 2018.

[33] Y.-Y. Yang, M. Hira, Z. Ni, A. Chourdia, A. Astafurov, C. Chen, C.-F. Yeh,
C. Puhrsch, D. Pollack, D. Genzel, D. Greenberg, E. Z. Yang, J. Lian, J. Mahadeokar,
J. Hwang, J. Chen, P. Goldsborough, P. Roy, S. Narenthiran, S. Watanabe, S. Chin-
tala, V. Quenneville-Bélair, and Y. Shi, “Torchaudio: Building blocks for audio and
speech processing,” arXiv preprint arXiv:2110.15018, 2021.

[34] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics pooling for deep
speaker embedding,” arXiv preprint arXiv:1803.10963, 2018.

[35] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss
for deep face recognition,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 4690–4699.

[36] X. Xiang, S. Wang, H. Huang, Y. Qian, and K. Yu, “Margin matters: Towards
more discriminative deep neural network embeddings for speaker recognition,” in
2019 Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference (APSIPA ASC). IEEE, 2019, pp. 1652–1656.

[37] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Sonderegger, “Montreal
Forced Aligner: Trainable Text-Speech Alignment Using Kaldi,” in Proc. Interspeech
2017, 2017, pp. 498–502.

47

[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE transactions on image processing,
vol. 13, no. 4, pp. 600–612, 2004.

[39] K. Ito and L. Johnson, “The lj speech dataset,” https://keithito.com/
LJ-Speech-Dataset/, 2017.

[40] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu,
“Libritts: A corpus derived from librispeech for text-to-speech,” arXiv preprint
arXiv:1904.02882, 2019.

[41] C. Veaux, J. Yamagishi, and K. MacDonald, “CSTR VCTK Corpus: English multi-
speaker corpus for CSTR voice cloning toolkit (version 0.92),” 2019.

[42] A. Nagrani, J. S. Chung, W. Xie, and A. Zisserman, “Voxceleb: Large-scale speaker
verification in the wild,” Computer Science and Language, 2019.

[43] H. S. Heo, B.-J. Lee, J. Huh, and J. S. Chung, “Clova baseline system for the voxceleb
speaker recognition challenge 2020,” arXiv preprint arXiv:2009.14153, 2020.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

48

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

A Phoneme Set

Following is the set of phoneme tokens used for the experiments in this work:

Table 13: Phoneme Set Used for the Experiments

Common Phonemes Tokens
AA AE AH AO
AW AY B CH
D DH EH ER
EY F G HH
IH IY JH K
L M N NG
OW OY P R
S SH T TH
UH UW V W
Y Z ZH

SoundChoice G2P Specific Tokens
‘ ’ - Space token to separate words

FastSpeech2 Specific Tokens
spn - Silent phoneme token to represent silent periods in an utterance

49

B Evaluation Speaker Sets

Table 14: Evaluation Speaker Set for LibriTTS

Speaker Type
(Seen/Unseen)

Gender Speaker
ID

Seen Female 2836
Seen Female 5163
Seen Female 6818
Seen Female 8312
Seen Female 8465
Seen Male 60
Seen Male 374
Seen Male 460
Seen Male 2952
Seen Male 8770
Unseen Female 121
Unseen Female 237
Unseen Female 1580
Unseen Female 1995
Unseen Female 2961
Unseen Male 260
Unseen Male 908
Unseen Male 1089
Unseen Male 1188
Unseen Male 2300

Table 15: Evaluation Speaker Set for VCTK Sourced from YourTTS [2]

Speaker Type
(Seen/Unseen)

Gender Speaker
ID

Unseen Female p225
Unseen Female p234
Unseen Female p238
Unseen Female p248
Unseen Female p261
Unseen Female p294
Unseen Female p335
Unseen Male p245
Unseen Male p302
Unseen Male p326
Unseen Male p347

50

C Audio Parameters

This section provides the parameter values used for computing mel-spectrogram and
pitch using torchaudio. For any parameters expected by torchaudio but not mentioned
here, default torchaudio values are used.

Table 16: Parameter Values for Mel-Spectrogram Computation Using Torchaudio

Parameter Value
Sample Rate Experiment Sample Rate

(22050 Hz or 16000 Hz)
Hop Length 256
Window Size 1024
Size of FFT 1024
Number of Mel Filterbanks 80
Minimum Frequency 0.0
Maximum Frequency 8000.0
Power 1
Normalized False
Norm “slaney”
Mel Scale “slaney”

Table 17: Parameter Values for Pitch Computation Using Torchaudio

Parameter Value
Sample Rate Experiment Sample Rate

(22050 Hz or 16000 Hz)
Frame Length (in milliseconds) (Size of FFT/Sample Rate)∗1000
Frame Shift (in milliseconds) (Hop Length /Sample Rate)∗1000
Minimum F0 to search for (Hz) 65
Maximum F0 to search for (Hz) 2093

51

D Configuration Details for the Silent Phoneme Pre-

dictor

The silent phoneme predictor, introduced to enhance the speech synthesis of Fast-
Speech2, processes an input sequence using an encoder based on multiple feed-forward
transformer blocks, followed by a linear layer and sigmoid activation.

The encoder architecture of the silent phoneme predictor is the same as the FastSpeech2
encoder, with the exception of masked attention being used to mask future elements.
The encoder contains 4 feed-forward transformer blocks. Each block contains a multi-
headed self-attention layer followed by a 2-layer 1D-convolution network. The number
of attention heads is 2. The dimension of phoneme embedding and the hidden size of
self-attention are set to 256. The first convolution layer uses a kernel size of 9, an input
size of 256, and an output size of 1024. The second convolution layer uses kernel size 1,
input size 1024, and output size 256. The linear layer maps input of size 256 to output
of size 1.

52

E Important Training Hyperparameters for the Best

Model Configuration

This section provides important training hyperparameters for the best model configura-
tion. It is the zero-shot multi-speaker Tacotron2 model with ECAPA-TDNN embeddings
injected using the FiLM method.

E.1 Optimization Hyperparameters

A batch size of 64 is used to train the model on an NVIDIA A100 GPU.

An initial learning rate of 0.001 is used to train the model on the single-speaker
LJSpeech dataset. When fine-tuning the checkpoint obtained from the single-speaker
training using a multi-speaker dataset, the initial learning rate is reduced to 0.0001. An
interval scheduler is used for learning rate annealing in both cases. The interval sched-
uler changes the learning rate to specific values after a predefined number of steps. For
single-speaker training, the learning rate values change to 0.0005, 0.0003, and 0.0001 after
6000, 8000, and 10000 steps. For multi-speaker training, the learning rate values change
to 0.00005, 0.00003, and 0.00001 after 6000, 8000, and 10000 steps.

The optimizer used for training is Adam [44] with a weight decay of 0.000006.

E.2 Architecture Modifications for Injecting Speaker Embed-
dings

The original Tacotron2 [6] architecture implemented with SpeechBrain [30] is used
with minimal modifications to inject the speaker embeddings using the FiLM method.
The ECAPA-TDNN speaker embeddings with size 192 are used with the zero-shot multi-
speaker Tacotron2 model. After applying FiLM transformations as shown in Section
2.7.3, this size becomes 512 to match the size of the Tacotron2 encoder output (512)
where the speaker embeddings are injected.

53

	List of Figures
	List of Tables
	Introduction
	What is TTS?
	Applications
	Historical Notes
	Concatenative Synthesis (1980s - Early 2000s)
	Statistical Parametric Speech Synthesis (2000s - 2010s)
	Neural TTS (Late 2010s - Present)

	Recent Progress
	End-to-End TTS Models
	Further Advancements in TTS
	Towards Zero-Shot Multi-Speaker TTS

	Contribution
	Thesis Outline

	Zero-Shot Multi-Speaker TTS
	Workflow for Zero-shot Multi-speaker TTS
	Training Workflow
	Inference Workflow

	Text Preprocessing
	Mel-Spectrogram
	Speaker Encoder
	X-Vector
	ECAPA-TDNN

	Additional Feature Extraction
	Duration
	Pitch
	Energy

	Mel-Spectrogram Prediction Network
	Tacotron2
	FastSpeech2

	Speaker Embedding Injection
	Average
	Concatenate
	FiLM

	Vocoder
	HiFi-GAN

	Random Speaker Generator

	Experimental Setup
	Datasets
	LJSpeech
	VCTK
	LibriTTS
	VoxCeleb

	Zero-Shot Multi-Speaker TTS Experiments
	Baseline
	Comparing Speaker Embedding Injection Methods
	Comparing Speaker Embedding Models
	Comparing Speaker Embedding Injection Locations
	Comparing the Best Model with YourTTS
	Random Speaker Generation

	Experiment Results
	Evaluation Metrics
	Objective Evaluation Metric
	Subjective Evaluation Metrics

	Evaluation Data
	Considerations for Evaluation Dataset Construction
	LibriTTS Evaluation Dataset
	VCTK Evaluation Dataset

	Results
	Baseline
	Comparing Speaker Embedding Injection Methods
	Comparing Speaker Embedding Models
	Comparing Speaker Embedding Injection Locations
	Comparing the Best Model with YourTTS for VCTK
	Random Speaker Generation

	Conclusion
	References
	Phoneme Set
	Evaluation Speaker Sets
	Audio Parameters
	Configuration Details for the Silent Phoneme Predictor
	Important Training Hyperparameters for the Best Model Configuration
	Optimization Hyperparameters
	Architecture Modifications for Injecting Speaker Embeddings

