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ABSTRACT

On Bézier Curves and Surfaces

Brandon Lazarus

The Bézier curve is a continuous parametric curve that is used in numerous ap-

plications, such as automobile design and road design. I begin by surveying the

fundamental properties of the Bézier curve and provide a variety of examples and

calculations. I also survey, but more succinctly, the notion of the Bézier surface,

which also has numerous applications in computer-aided design software, such as air-

craft design. I end by presenting the special types of points that a cubic Bézier curve

(with four control points) can have. The configuration of planar control points that

I present can be used by computer engineers to produce various shapes with respect

to the necessary design requirements and to minimize fluctuations of the curve itself.
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2 Bézier Curves 5
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2.3 Example of a quartic Bézier curve, where r⃗(t) = (1+4t−12t3+7t4, 2−

4t+ 12t2 − 4t3 − 4t4), t ∈ (0, 1). . . . . . . . . . . . . . . . . . . . . . 7
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4.4 Example of a Bézier curve with one inflection point, where r⃗(t) =

(3t
2
− t3

2
, 1 + 3t2 − 4t3), t ∈ (0, 1). . . . . . . . . . . . . . . . . . . . . 79
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4.6 Example of a Bézier curve with an arch, where r⃗(t) = (−5t3 + 9t2 −

3t, 5t3 − 6t2 + 1), t ∈ (0, 1). . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Distribution of the three types of special points of the λ, µ plane of a
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Chapter 1

Introduction

In geometry, there are a variety of curves with wonderful properties that are em-

ployed in real-world applications. Certain geometric curves tend to be increasingly

difficult to compute mathematically and require a high level of mathematical knowl-

edge to manipulate in order to acquire significant information of their geometry, such

as determining the area of the curve as well as its curvature. Furthermore, these

curves can have many singularities, discontinuities and fluctuations that are not de-

sirable in many real-world applications, such as creating the complex bodywork of

an aircraft, or automobile, or designing a race track. These constructions are exam-

ples of designs that require curves that are smooth, hardly fluctuate and are locally

controllable. For example, an automotive designer utilizing a computer-aided design

software must use a type of curve that preserves smoothness when manipulating the

endpoints of the curve and this remains unchanged under rigid transformations of the

Cartesian plane.

Mathematically, these properties are called endpoint interpolation and affine in-

variance, which sparks the discussion of which curve is optimal for this situation.

Pierre Bézier, a mathematician and engineer who worked for Renault from 1933 to

1975 as a tool designer and then as a managing staff director for technical devel-
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opment, spent many years of his life focusing his research on computer numerical

control and mathematical modelling. His goal was to develop a parametric curve

with polynomial components that could aid in the construction of the bodywork of

Renault automobiles and that can be easily used by anyone in computer-aided design

and computer graphics. This curve is called nowadays Bézier curve, which is a con-

tinuous parametric curve with polynomial components with respect to the parameter

t ∈ [0, 1] and that is fully dependent on the quantity of planar control points. For

example, a quadratic Bézier curve will have three control points and the components

x(t), y(t) will have parametric equations of maximal degree two.

A Bézier curve with many control points will have components represented by

parametric equations that have a very high degree, which therefore entails many

difficult computations, particularly when computing the cusps of a high degree Bézier

curve by finding the roots of the derivative of its parametric form. Therefore, the curve

should be universally used with the lowest degree possible without degenerating into

a straight line (n > 1). Furthermore, the shape of the Bézier curve is fully dictated

by a set of (n − 2) control points on the Cartesian plane, in which the curve always

commences at the first control point and terminates at the last control point. These

control points form the control polygon of the Bézier curve and, generally, altering

the shape of the polygon changes the shape of the curve. The control polygon must

encompass the curve and will always fluctuate more than the curve itself, the latter

called the variation diminishing property. This property will be especially significant

throughout the study of the Bézier curve and its special types of points, which include

the cusps, the self-intersection points and the inflection points. If the curve has a loop

or an inflection point, then the curve will have a greater amount of fluctuations even

if the curve will satisfy the variation diminishing property.

Furthermore, the idea that a curve is interpolated by n-planar control points can

be extended to surfaces, also known as Bézier surfaces. These surfaces are interpolated
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by a grid of control points, which can be thought of as m-control points in the

horizontal direction and n-control points in the vertical direction. These control

points interpolate smooth, regular surfaces in R3 and can be used to create many

nice, smooth shapes on CAD programs. Though, as the equation of a Bézier surface

is dependent on the quantity of control points on the grid, the surface when the

degree (m× n) is increased will lead to higher-degree polynomials. This can lead to

difficult computations when calculating the Gaussian curvature, mean curvature and

principle curvatures of the Bézier surface as well as calculating the first and second

fundamental forms of the surface.

In this thesis, I survey the basic properties of a Bézier curve of degree n and

investigate the length of a Bézier curve and its curvature. Next, I discuss some

properties of a Bézier surface of degree m × n as well as its curvatures and the first

and second fundamental forms of the surface. I end by presenting special types of

points that a cubic Bézier curve can have with respect to a set of four control points

{(P0, P1, P2, P3)} = {(0, 1), (λ, 1), (1, µ), (1, 0)} for λ, µ ∈ R2. These special points

include a cusp, a self-intersection point and a maximum of two inflection points.

Finally, I show how the λ, µ plane is split up depending on whether the cubic Bézier

curve with control points {(P0, P1, P2, P3)} = {(0, 1), (λ, 1), (1, µ), (1, 0)} has a cusp,

a self-intersection point, one real inflection point, two real inflection points or none

of these points. In my exposition, I am closely following the text An Integrated

Introduction to Computer Graphics and Geometric Modeling by Ronald Goldman [2],

and Computational Geometry - Curve and Surface Modeling by Su Bu-qing and Liu

Ding-yuan [1]. I am closely following the text by Ronald Goldman when discussing

the fundamentals of Bézier curves and surfaces and I am closely following the text by

Su-Bu-qing and Liu Ding-yuan when discussing the geometric properties of the cubic

Bézier curve and its special types of points. For the discussion of the special points,

I chose the method of the paper, [4]
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As I overview Bézier curves and surfaces, I provide some examples, calculations

and remarks addressing some of their properties. Specifically, I give the curvature

for a Bézier curve of degree n, the first and second fundamental forms for the m× n

Bézier surface and I give the details of the proof of a theorem in [1, 4] that describes

which values (λ, µ) ∈ R2 correspond to a cusp, a self-intersection point, up to two

real inflection points or none of these points for a cubic Bézier curve.
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Chapter 2

Bézier Curves

A Bézier curve is a continuous parametric curve, denoted r⃗(t) = (x(t), y(t)), which

interpolates a fixed integer number, greater than two, of control points on the Carte-

sian plane. These control points, form a polygon, called the control polygon, which

form the segments P0P1,P1P2, ...,Pn−1Pn. The Bézier curve follows the shape of the

control polygon due to the convex hull property and, moreover, the curve follows its

control points smoothly. Furthermore, the Bézier curve is inscribed inside the con-

vex hull of its control polygon at all times and can be scaled, however preferable, by

changing the location of its control points.

Examples of Bézier curves of degrees one (n = 1, two control points), two (n = 2,

three control points) and four (n = 4, five control points) are shown below:

Definition 2.1. Control Points: A Bézier curve is a planar curve in parametric form

defined by a set of n + 1 (n ≥ 0) control points denoted Pi, i = 0, 1, 2, . . . , n in the

plane R2. These points are called control points of the Bézier curve.

Definition 2.2. Bernstein Polynomials: [2] Let i = 0, 1, 2, . . . , n. We call the i-th

Bernstein polynomial of degree n ∈ N the polynomial Bi,n(t) =
n!

i!(n−i)!
· (1− t)n−i · ti,

viewed as a function of t, where t ∈ [0, 1].
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Figure 2.1: Example of a linear Bézier curve, where r⃗(t) = (1 + t, 2− t), t ∈ (0, 1).

Figure 2.2: Example of a quadratic Bézier curve, where r⃗(t) = (3−2t, 2t2−2t+2), t ∈
(0, 1).
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Figure 2.3: Example of a quartic Bézier curve, where r⃗(t) = (1 + 4t− 12t3 + 7t4, 2−
4t+ 12t2 − 4t3 − 4t4), t ∈ (0, 1).
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Below, we list the properties of Bernstein polynomials:

a. Non-Negativity: ∀t ∈ [0, 1], Bi,n(t) ≥ 0, i = 0, 1, 2, . . . , n.

b. Symmetry: ∀t ∈ [0, 1], Bn−i,n(1− t) = Bi,n(t), i = 0, 1, 2, . . . , n.

c. Partition of unity: Utilizing the binomial expansion, ∀t ∈ [0, 1],
∑n

i=0 Bi,n(t) =

((1− t) + t)n = 1, i = 0, 1, 2 . . . , n, while note that for t = 0 or t = 1 we have,

Bi,n(0) = δi,0 =


1, i = 0

0, i ̸= 0

(2.1)

Bi,n(1) = δi,n =


1, i = n

0, i ̸= n.

(2.2)

d. Differentiation:
dBi,n(t)

dt
= n[Bi−1,n−1(t) − Bi,n−1(t)], for any t ∈ (0, 1). For

i = 0, 1, 2, . . . , n−1, the first derivative
dBi,n(t)

dt
is called the ith hodograph of the

Bézier curve. For a fixed Bézier curve, one can select any i = 0, 1, 2, . . . , n− 1.

The Bernstein polynomial, also called the blending function, can also be repre-

sented in a normalized form. This form is useful for t-values on any finite interval

a ≤ t ≤ b, which is represented below.

Remark 2.1. Let a ≤ t ≤ b, a, b ∈ R. Then, the normalized Bernstein Polynomial

is defined as Bi,n(t) =
n!

i!(n−i)!
· (b− t)n−i · (t−a)i

(b−a)n
, ∀i = 0, 1, 2, . . . , n.

Definition 2.3. The Bézier curve in parametric form is defined ∀t ∈ [0, 1] by the

position vector r⃗(t) =
∑n

i=0 PiBi,n(t), i = 0, 1, 2 . . . n, where

a. r(t) is a point lying on the plane ∀t ∈ [0, 1];
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b. n is the degree of the Bézier curve;

c. Bi,n(t) is the i-th Bernstein polynomial, i = 0, 1, 2 . . . n, ∀t ∈ [0, 1];

d. Pi is the i-th control point of the Bézier curve, i = 0, 1, 2 . . . n, given by its two

Cartesian coordinates.

Remark 2.2. In view of the linear independence of the Bernstein Polynomials, note

that they form a basis of functions for a Bézier curve due to the fact that the Bézier

curve is generated by them.

Higher-order derivatives of the Bézier curve are required to gain knowledge re-

volving around the characteristics of the curve, including its curvature, which will

be discussed in great detail throught this text. To add, higher-order derivatives are

needed when joining two smooth Bézier curves of degree n and to detect any cusps

or inflection points for a given curve of degree n.

Lemma 2.1. Higher order derivatives of the Bézier curve may be computed recur-

rently as shown below:

Set Ri = n∆Pi = n(Pi+1 − Pi), i = 0, 1, ..., n.

∴ r⃗ ′(t) = d
dt
r⃗(t) =

∑n−1
i=0 RiBi,n−1(t).

∆Ri = n(∆Pi+1−∆Pi) = n(Pi+2−Pi+1) = n(Pi+2−Pi+1−Pi+1+Pi) = n(Pi+2−

2Pi+1 + Pi).

∴ r⃗ ′′(t) = d2r⃗(t)
dt2

= (n− 1)
∑n−2

i=0 Bi,n−2(Ri+1 − Ri) = n(n− 1)
∑n−2

i=0 Bi,n−2(Pi+2 −

2Pi+1 + Pi).

∆∆Ri = ∆(Ri+1 −Ri) = (Ri+2 −Ri+1 −Ri+1 +Ri) = (Ri+2 − 2Ri+1 +Ri).

∴ ∆∆Ri = n(∆Pi+2 − 2∆Pi+1 +∆Pi) = n(Pi+3 − 3(Pi+2 − Pi+1)− Pi).

9



∴ r⃗ ′′′(t) = d3r⃗(t)
dt3

= n(n− 1)(n− 2)
∑n−3

i=0 Bi,n−3(t)(Pi+3 − 3(Pi+2 − Pi+1)− Pi).

The control points corresponding to the kth derivative of the Bézier curve are

∆k−1Ri = n∆k−1Pi, i = 0, 1 . . . , n.

Continuing this procedure, it can be shown below:

r⃗(k)(t) = dk r⃗(t)
dtk

= n(n − 1)(n − 2)(n − 3) · ... · (n − k + 1)
∑n−k

i=0 Bi,n−k(t)∆
k−1Pi,

where k ∈ N+ and the degree of the resulting polynomial is equal to n− k.

A crucial property of the Bézier curve is that it commences at the first control

point and terminates at the last control point, which allows control over the location

of the start and the end of the curve, particularly useful in computer programming.

This is denoted as the interpolation property, which is stated below.

Lemma 2.2. The Bézier curve has the endpoint interpolation property, such that

r⃗(0) = P0 & r⃗(1) = Pn.

Proof. For this proof, one must show the third property of Definition 2.2.

Recall that Bi,n(t) =
(
n
i

)
· ti · (1− t)n−i, t ∈ [0, 1] & i = 0, 1, 2, . . . , n

At t = 0, Bi,n(0) =
(
n
i

)
· 0i · 1n−i =

(
n
i

)
· 0i.

At i ̸= 0, Bi,n(0) =
(
n
i

)
· 0i = 0.
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Note that Bi,n(0) depends on the value of i. The value for i = 0 is chosen by

continuity: limt→0+
(
n
0

)
· t0 = limt→0+ t0 = 1.

∴ Bi,n(0) =


1, i = 0

0, i ̸= 0.

∴ r⃗(0) =
∑n

i=0 PiBi,n(0) = P0B0,n(0)+P1B1,n(0)+...+Pn−1Bn−1,n(0)+PnBn,n(0) =

P0 · 1 + P1 · 0 + ...+ Pn · 0 = P0

Similarly, for t = 1 and i = n, limt→1−
(
n
n

)
· (1− t)0 = limt→1−(1− t)0 = 1.

At t = 1, Bi,n(1) =
(
n
i

)
· 1i · 0n−i =

(
n
i

)
· 0n−i

At i ̸= n, Bi,n(1) =
(
n
i

)
· 0n−i = 0.

∴ Bi,n(1) =


1, i = n

0, i ̸= n.

∴ r⃗(1) =
∑n

i=0 PiBi,n(1) = P0B0,n(1)+P1B1,n(1)+...+Pn−1Bn−1,n(1)+PnBn,n(1) =

0 + 0 + ...+ 0 + Pn · 1 = Pn.

To complement the smoothness of a Bézier curve of degree n, the curve must

be tangent to the first and last segments of the control polygon. This condition is

denoted as the tangential property. This allows for the curve to be smooth on both

ends, which gives the curve a desirable ”curved” appearance and makes concatenation
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of Bézier curves produce a new (smooth) Bézier curve.

Lemma 2.3. Let P0 and P1 be two control points creating a line segment denoted

P0P1. Then P0P1 is tangent to the Bézier curve at the control point P0.

Proof. Utilizing the derivative of the normalized Bernstein Polynomial of Remark 2.1,

assume t = 0.

∴ r⃗ ′(0) = n
b−a

·
∑n−1

i=0 Bi,n−1(0) ·(Pi+1−Pi) and Bi,n−1(0) =
(n−1)!

i!·(n−i−1)!
·(b)n−i−1 · (−a)i

(b−a)n−1 .

At i = 0, r⃗ ′(0) = n
b−a

· B0,n−1(0) · (P1 − P0) and at n = 1, B0,0(0) = 1.

⇒ r⃗ ′(0) = 1
b−a

· (B0,0(0)) · (P1 − P0) =
1

b−a
· (P1 − P0).

By inspection, 1
b−a

= m ∈ R. This results in r′(0) = m · (P1 − P0), concluding

that the tangent vector at t = 0 is in the direction of m · (P1 − P0).

Lemma 2.4. Let Pn−1 and Pn be two control points creating a line segment denoted

Pn−1Pn. Then Pn−1Pn is tangent to the Bézier curve at control point Pn.

Proof. Referring to the proof above, let t = 1.

∴ r⃗ ′(1) = n
b−a

·
∑n−1

i=0 Bi,n−1(1) · (Pi+1 − Pi) and Bi,n−1(1) =
(n−1)!

i!·(n−i−1)!
· (b − 1)n−i−1 ·

(1−a)i

(b−a)n−1 .

At i = n− 1, r′(1) = n
b−a

· Bn−1,n−1(1) · (Pn − Pn−1). Bn−1,n−1 =
(1−a)n−1

(b−a)n−1 = (1−a)
(b−a)n−1 .
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⇒ r⃗ ′(1) = n
b−a

· 1−a
(b−a)n−1 · (Pn − Pn−1).

By inspection, n
b−a

· 1−a
(b−a)n−1 = m ∈ R. This results in r′(1) = m · (Pn − Pn−1),

concluding that the tangent vector at t = 1 is in the direction of m · (Pn − Pn−1).

Proposition 2.1. The Bézier curve always lies within the convex hull of its control

points.

Proof. All points on the Bézier curve have the form
∑n

i=0 aibi = a0b0 + a1b1 + ... +

an−1bn−1 + anbn, where ai = Bi,n(t), for some t, and bi = Pi.

∴ By partition of unity,
∑n

i=0 ai ≡ 1.

∴ Utilizing the non-negativity property, ai ≥ 0 ⇒
∑n

i=0 ai ≥ 0 on the interval

0 ≤ Bi,n(t) ≤ 1, ∀t ∈ [0, 1].

Remark 2.3. The Bézier curve is a continuous, smooth curve. The curve has end-

points P0,Pn and its shape is determined by points (P1,P2,...,Pn−1). Changing the

order of the control points will guarantee a change in the shape of curve. An example

is shown below:

Example 2.1. Let n=3 with control points (P0, P1, P2, P3).

13



Therefore, r⃗(t) =
∑3

i=0 PiBi,n(t) = P0B0,n(t)+P1B1,n(t)+P2B2,n(t)+P3B3,n(t), where

Bn,i =
n!

i!·(n−i)!
· ti · tn−i so that:

B0,3 =
(
3
0

)
· t0 · (1− t)3 = (1− t)3

B1,3 =
(
3
1

)
· t1 · (1− t)2 = 3 · t · (1− t)2

B2,3 =
(
3
2

)
· t2 · (1− t)1 = 3 · t2 · (1− t)

B3,3 =
(
3
3

)
· t3 · (1− t)0 = t3.

Let r⃗1(t) be the parametric form of a Bézier curve with control points (P0, P1, P2, P3)

and let r⃗2(t) be the parametric form of a Bézier curve with control points (P0, P1, P3, P2).

∴ r⃗1(t) = P0 · (1 − t)3 + 3P1 · t(1 − t)2 + 3P2 · t2(1 − t) + P3 · t3 & r⃗2(t) =

P0 · (1− t)3 + 3P1 · t(1− t)2 + P2 · t3 + 3P3 · t2(1− t).

Let (P0, P1, P2, P3) = ((2, 0), (2, 2), (5, 2), (7, 1)) and let t = 1.

∴ r⃗1(1) = (2, 0) · (0)3 + 3(2, 2) · (0)2 + (5, 2)(0) + (7, 1) & r⃗2(1) = (2, 0) · (0)3 +

3(2, 2) · (0)2 + (7, 1) · (0) + (5, 2).

∴ r⃗1(1) = (7, 1) and r⃗2(1) = (5, 2).

∴ r⃗1(1) & r⃗2(1) give different points (r1 ̸= r2), which conveys the fact that altering

the order of the control points will ultimately alter the shape of the Bézier curve. To

note, we have used De Casteljau’s algorithm, which will be discussed throughout the

study of the Bézier curve.

Definition 2.4. Invariance under Affine Transformations: Any given points located

on the Bézier curve will remain on the curve under any affine transformation, which
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includes rotations, translations, shearing, bending & reflections. In other words, the

curve will preserve its shape under any transformation (x, y) 7→ ax+ by + c, for any

fixed a, b, c ∈ R.

Let A be any given affine transformation, Pi = (xi, yi) be any control point on the

Bézier curve & let Bi,n(t) be the Bernstein Polynomial.

Then, one can mathematically represent invariance under the affine transforma-

tion A as the equality below for a Bézier curve of degree n:

A(r⃗(t)) = A(
n∑

i=0

PiBi,n(t)) =
n∑

i=0

A(Pi)Bi,n(t). (2.3)

Proof. Let the affine transformation A : R2 −→ R2 be given as A(x, y) = (a1x+a2y+

a3, b1x+ b2y + b3), with ai, bi ∈ R, i = 1, 2, 3 and (x, y) ∈ R2.

Throughout this proof, one must use property three from Definition 2.2, which

states:

n∑
i=0

Bi,n(t) = 1. (2.4)

Then,

A(r⃗(t)) = (a1
∑n

i=0 xiBi,n(t) + a2
∑n

i=0 yiBi,n(t) + a3, b1
∑n

i=0 xiBi,n(t)+

b2
∑n

i=0 yiBi,n(t) + b3)
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= (a1
∑n

i=0 xiBi,n(t) + a2
∑n

i=0 yiBi,n(t) + a3
∑n

i=0 Bi,n(t), b1
∑n

i=0 xiBi,n(t)+

b2
∑n

i=0 yiBi,n(t) + b3
∑n

i=0 Bi,n(t)

= (
∑n

i=0(a1xi + a2yi + a3)Bi,n(t),
∑n

i=0(b1xi + b2yi + b3)Bi,n(t))

=
∑n

i=0(a1xi + a2yi + a3, b1xi + b2yi + b3)Bi,n(t)

=
∑n

i=0 A(Pi)Bi,n(t).

Remark 2.4. Assume two Bézier curves of degree (n − 1) ∈ N have control points

(P0, P1, ..., Pn−1, Pn) & (Q0.Q1, ..., Qn−1, Qn). To join the two smooth and continuous

Bézier curves, one must refer to property four from Definition 2.2 shown below:

d

dt
r⃗(t) = n

n−1∑
i=0

(n− 1)!

i!(n− i− 1)!
ti(1− t)n−i−1(Pi+1 − Pi). (2.5)

Utilizing property three from Definition 2.2 with a modification:

Bi,n−1(0) =


1, i = 0

0, i ̸= 0

Bi,n−1(1) =


1, i = n− 1

0, i ̸= n− 1.

As well, one must refer to Lemma 2.1 to compute higher order derivatives and to

obtain a general expression for Bi,n−k(0) & Bi,n−k(1), where k ∈ Z+ is the order of

the derivative of the Bézier curve. These expressions are shown below:
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Bi,n−k(0) =


1 i = 0

0 i ̸= 0

Bi,n−k(1) =


1 i = n− k

0 i ̸= n− k.

Let r⃗1(t) =
∑n

i=0 PiBi,n(t) & r⃗2(t) =
∑n

i=0 QiBi,n(t). Utilizing these position vec-

tors, one must compute r
(k)
1 (t) & r

(k)
2 (t) at t = 0 & t = 1 and then set r

(k)
1 (0) = r

(k)
2 (1).

The derivative of orders k = 0, 1, 2, 3 are shown below:

k = 0 : r⃗1(0) = r⃗2(1) ⇒
∑n

i=0 PiBi,n(0) =
∑n

i=0 QiBi,n(1) ⇒ P0 = Qn,

k = 1 : r⃗ ′
1(0) = r⃗ ′

2(1) ⇒
∑n−1

i=0 n(Pi+1−Pi)Bi,n−1(0) =
∑n−1

i=0 n(Qi+1−Qi)Bi,n−1(1) ⇒

P1 − P0 = Qn −Qn−1.

Utilizing k = 0: P1 −Qn = Qn −Qn−1 ⇒ P1 = 2Qn −Qn−1,

k = 2 : r⃗ ′′
1(0) = r⃗ ′′

2(1) ⇒
∑n−2

i=0 n(n−1)(Pi+2−2Pi+1+Pi)Bi,n−2(0) =
∑n−2

i=0 n(n−

1)(Qi+2 − 2Qi+1 +Qi)Bi,n−2(1) ⇒ P2 − 2P1 + P0 = Qn − 2Qn−1 +Qn−2.

Utilizing k = 1 & k = 0: P2−2(2Qn−Qn−1)+Qn = Qn−2Qn−1+Qn−2 ⇒

P2 = 4Qn − 4Qn−1 +Qn−2 = 4(Qn −Qn−1) +Qn−2,

k = 3 : r⃗ ′′′
1 (0) = r⃗ ′′′

2 (1) ⇒
∑n−3

i=0 n(n − 1)(n − 2)(Pi+3 − 3(Pi+2 − Pi+1) −

P0)Bi,n−3(0) =
∑n−3

i=0 n(n− 1)(n− 2)(Qi+3 − 3(Qi+2 −Qi+1)−Q0)Bi,n−3(1) ⇒ P3 −

3(P2 − P1)− P0 = Qn − 3(Qn−1 −Qn−2)−Qn−3.
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Utilizing k = 0, k = 1 & k = 2: P3−3(4(Qn−Qn−1)−2Qn+Qn−1)−Qn =

Qn − 3(Qn−1 − Qn−2) − Qn−3 ⇒ P3 = 8Qn − 12Qn−1 + 3Qn−2 − Qn−3 = 4(2Qn −

3Qn−1) + 3Qn−2 −Qn−3.

One can compute up derivatives to the nth order using this algorithm, but it will

be a tedious process.

Lemma 2.5. Let a Bézier curve of degree n ∈ N, n ≥ 2, have (n+ 1) control points

{P0, P1, ..., Pn−1, Pn}. One may increase the degree of the Bézier curve to (n + 1)

without altering the shape of the Bézier curve by determining a new set of control

points {R0, R1, ..., Rn, Rn+1}. By maintaining an identical Bézier curve, one must set

P0 = R0 & Pn = Rn+1. The set of control points {R1, ..., Rn−1, Rn} may be computed

utilizing the recursive formula below for i ∈ [1, n] :

Ri =

(
i

n+ 1

)
Pi−1 +

(
1− i

n+ 1

)
Pi. (2.6)

By inspection, this formula represents the ith control point Ri as the linear combi-

nation of the control points Pi−1 & Pi due to the fact that Ri has the following form

for two points of a set S:

∀λ∈[0,1] ∧ ∀x1,x2∈S y = λx1 + (1− λ)x2. (2.7)

As degree elevation corresponds to i data points, one can consider this represen-

tation as a piecewise-linear interpolation. This definition will be quite useful when

discussing the Variation Diminishing Property, which is a significant property of the

Bézier curve.

Remark 2.5. The Bézier curve can be considered as a limit curve of the degree
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elevation of control polygons (γ1, γ2, ..., γn−1, γn). This implies that the control poly-

gons created by recursively performing the process of degree elevation to control points

{P0, P1, ..., Pn−1, Pn} converge uniformly to the initial Bézier curve, denoted B. This

convergence is stated below:

lim
i→∞

γi = B. (2.8)

Remark 2.6. To preserve the shape of the Bézier curve when the degree of the curve

is increased by one, one must use the fact that (1− t) + t = 1. Then, multiplying the

position vector r⃗(t) by the factor (1 − t) + t will increase the degree of the curve by

one. A short example is provided below:

Example 2.2. A Bézier curve of degree one and degree two are shown below:

r⃗1(t) = (1− t)P0 + tP1. (2.9)

r⃗2(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2. (2.10)

Multiplying (2.9) by the factor (1− t) + t yields the equation below:

(1− t)r⃗1(t) + tr⃗1(t) = (1− t)2P0 + t(1− t)P1 + t(1− t)P0 + t2P1. (2.11)

Then, grouping (2.11) in terms of (2.10) will yield:

(1− t)r⃗1(t) + tr⃗1(t) = (1− t)2P0 + t(1− t)(P0 + P1) + t2P1.

Then,

(1− t)r⃗1(t) + tr⃗1(t) = (1− t)2P0 + 2t(1− t)(
P0

2
+

P1

2
) + t2P1.

Therefore, P0 = R0,
P0

2
+ P1

2
= R1 and P1 = R2. This is identical to using the
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recursive formula (2.6) for the values i = 1, 2 and n = 1.

It can be observed that Bézier curves can be represented as a combination of their

control points as well as functions solely dependent on t, denoted Bi,n(t). Though,

there are other forms of the curve that can be discussed. Obviously, the degree

of Bi,n(t) depends on the degree of the Bézier curve, which allows for complicated

polynomials of higher degrees. One can write these polynomials Bi,n(t) as symmetric

polynomials, in which Bi,n(t) is a function of many variables Bi,n(t1, t2, ..., tn) with

a maximum degree of one (linearity). Let us view several properties of this notion

below, denoted as the ”polar form” or ”blossoming” of polynomial, which deals with

homogenizing polynomials in the following definition.

Definition 2.5. Let P (t) be our polynomial of degree n in which P (t) = c0 + c1t +

c2t
2 + ... + cnt

n, n ∈ N & ci ∈ R. Then, one can convert P (t) into the blossoming

polynomial p(t1, t2, ..., tn) with the following properties:

a. Symmetry: Any permutation of p(t1,t2,...,tn) does not alter the polynomial.

For example, p(t1,t2)=t1t2=t2t1 or p(t1,t2,t3)=t1t2t3=t2t1t3=t3t1t2=t3t2t1.

b. Diagonal: Let t1=t2=...=tn=t, n ∈ N. ∴ p(t, t, ..., t) = P (t).

c. Multi-affine: Let p(⃗tN) := p(t1, t2, ..., λts+(1−λ)tv, . . . , tn), for any s, v such

that 1 ≤ s, v ≤ n and for any λ ∈ [0, 1].

∴ p(⃗tN)=p(t1, t2, ..., λts, ..., tn)+p(t1, t2, ..., (1−λ)tv, ..., tn) = λp(t1, t2, ..., ts, ..., tn)+

(1− λ)p(t1, t2, ..., tv, ..., tn).

The polynomial p in the variables (t1, . . . , tn) is called the blossom of the poly-

nomial P (t).

Remark 2.7. Let P (t) = c0 + c1t + c2t
2 + ... + ckt

k + ... + cnt
n be a polynomial of

degree n ∈ N such that k ∈ Z+ ≤ n. To compute the blossom p(t1, ..., tn) of each
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monomial of P (t), which will be denoted m{k,n}(t), one can utilize the formula below:

m{k,n}(t1, ..., tn) = p(t1, ..., tn) =

(
n

k

)−1 ∑
j⊂{1,...,n}

∏
j={i1,...,ik}

tj. (2.12)

Example 2.3. Let {n, k} = {3, 2}. In other words, this is identical to P (t) =

c0 + c1t+ c2t
2 + c3t

3 and selecting the monomial m{3,2}(t) = t2. Utilizing the formula

above to blossom a polynomial of degree k ≤ n, one obtains the computations below:

m{3,2}(t1, t2, t3) = p(t1, t2, t3) =

(
3

2

)−1 ∑
j⊂{1,2,3}

∏
j={i1,i2}

tj,

m{3,2}(t1, t2, t3) = p(t1, t2, t3) =
1

3

∑
j⊂{1,2,3}

ti1ti2 ,

m{3,2}(t1, t2, t3) = p(t1, t2, t3) =
1

3
(t1t2 + t1t3 + t2t3).

One can show that this is the correct blossom of t2 for P (t) = c0+ c1t+ c2t
2+ c3t

3

by utilizing the properties of Definition 2.5, shown below:

Symmetry: Any permutation of the blossom p(t1, t2, t3) will not alter the expres-

sion 1
3
(t1t2 + t1t3 + t2t3). This can be immediately observed by the reader.

Diagonal: Let t1 = t2 = t3 = t. Therefore p(t, t, t) = 1
3
(t · t+ t · t+ t · t) = t2.
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Multi-affine: Let λ ∈ [0, 1] and u, v ∈ R be two arbitrary variables. Therefore, one

must show that p(λu + (1 − λ)v, t2, t3) = λp(u, t2, t3) + (1 − λ)p(v, t2, t3). The brief

proof of the multi-affine property of the blossom is provided below:

p(λu+ (1− λ)v, t2, t3) =
(λu+(1−λ)v)t2+(λu+(1−λ)v)t3+λ(t2t3)+(1−λ)(t2t3)

3

p(λu+ (1− λ)v, t2, t3) =
λ(ut2+ut3+t2t3)+(1−λ)(vt2+vt3+t2t3)

3

p(λu+ (1− λ)v, t2, t3) = λ (ut2+ut3+t2t3)
3

+ (1− λ) (vt2+vt3+t2t3)
3

p(λu+ (1− λ)v, t2, t3) = λp(u, t2, t3) + (1− λ)p(v, t2, t3).

Proposition 2.2. [2] [Subdivision] Let a Bézier curve of degree n defined on t ∈ [a, b]

be given. Then, one can represent its control points {P0, P1, . . . , Pn} as the values

of the blossomed polynomials p(t1, t2, ..., tj−1, tj, tj+1, ..., tn−1, tn) at specific points as

indicated by the i-functions below for i = 0, 1, 2, . . . , n:

Pi(j) =


a, if (j + i) ≤ n

b, if (j + i) > n.

In other words, for an nth degree Bézier curve, the control points Pi can be given by:

P0 = p(a, a, a, ..., a, a) P1 = p(a, a, a, ..., a, b) P2 = p(a, a, a, ..., a, b, b) P3 =

p(a, a, a, ..., a, b, b, b)

. . .

Pn−3 = p(a, a, a, b, ..., b, b) Pn−2 = p(a, a, b, , ..., b, b) Pn−1 = p(a, b, b, ..., b, b, b) Pn =

p(b, b, b, ..., b, b).
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Example 2.4. A brief example of applying Proposition 2.2 is by selecting any closed

compact interval [a, b]. Let a = 1, b = 2 and let the Bézier curve be of degree four

(n+ 1 = 4 ⇒ n = 3). Then, the control points will have the form below:

P0 = (1, 1, 1) P1 = (1, 1, 2) P2 = (1, 2, 2) P3 = (2, 2, 2).

Remark 2.8. Bézier curves are defined on a closed interval t ∈ [a, b]. We have grad-

ually commenced our discussion of De Casteljau’s algorithm by showing an example

on an interval t ∈ [a, b]. For example, throughout integral calculus, it was observed

that an integral of a function f(x) over the domain a ≤ t ≤ b can be separated into

the addition of two integrals of f(x) over the domains a ≤ t ≤ c and c ≤ t ≤ b, c ∈ R.

Prior to introducing an example on Bézier subdivision, introducing some prerequisites

and the notion of affine combinations is mandatory.

Utilizing our endpoints a ∈ R & b ∈ R as well as c ∈ R, we may use the following

formula to compute the blossom p(t1, t2, ..., tn−1, c) ∈ R :

Pc(t) = p(t1, t2, ..., tn−1, c) =
(b− c)p(t1, t2, ..., tn−1, a) + (c− a)p(t1, t2, ..., tn−1, b)

b− a
.

(2.13)

Definition 2.6. Affine combinations of polynomials are linear combinations of poly-

nomials pi such that its coefficients sum up to one:

23



p =
n∑

i=1

αipi = α1p1 + α2p2 + ...+ αn−1pn−1 + αnpn

such that
n∑

i=1

αi = 1.

Remark 2.9. With regards to Definition 2.6, ∀αi ∈ [0, 1], p is a convex combination

of the points {p1, p2, ..., pn−1, pn}.

Example 2.5. Let a Bézier curve of degree four (n = 4) take on the values a = 0 &

b = 3 such that t ∈ [0, 3] with the following ”polar” control points:

p(0, 0, 0, 0), p(0, 0, 0, 3), p(0, 0, 3, 3), p(0, 3, 3, 3) & p(3, 3, 3, 3).

As previously mentioned, these blossoms were obtained by utilizing the piece-wise

form stated in Proposition 2.2.

The Bézier subdivision problem will be represented as:

• p(0, 0, 0, 0), p(0, 0, 0, t), p(0, 0, t, t), p(0, t, t, t) & p(t, t, t, t) for t ≥ 0, a = 0

& c = t.

• p(t, t, t, t), p(t, t, t, 3), p(t, t, 3, 3), p(t, 3, 3, 3) & p(3, 3, 3, 3) for t ≤ 3, c = t

& b = 3.
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Utilizing the three axioms of blossoming polynomials, an affine combination of

control points with the domain 0 ≤ t ≤ 3 must be represented as a linear combination

with coefficients (1 − c−a
b−a

) = (1 − t
3
) & c−a

b−a
= t

3
. Note that the goal is to obtain the

control point p(t, t, t, t) = P (t).

A picture of this situation is provided below:

Figure 2.4: Subdivision problem of a Bézier curve of degree n = 4, t ∈ [0, 3].

The combinations of Figure 2.4 are shown below:

• (1− t
3
)p(0, 0, 0, 0)+ t

3
p(0, 0, 0, 3) = p(0, 0, 0, 0)+p(0, 0, 0, t) = p(0, 0, 0, t)

• (1− t
3
)p(0, 0, 0, 3)+ t

3
p(0, 0, 3, 3) = p(0, 0, 0, 3−t)+p(0, 0, t, t) = p(0, 0, t, 3)

• (1 − t
3
)p(0, 0, 3, 3) + t

3
p(0, 3, 3, 3) = p(0, 0, 3 − t, 3 − t) + p(0, t, t, t) =

p(0, t, 3, 3)
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• (1− t
3
)p(0, 3, 3, 3) + t

3
p(3, 3, 3, 3) = p(0, 3− t, 3− t, 3− t) + p(t, t, t, t) =

p(t, 3, 3, 3).

Now, the affine combinations of the control points above with coefficients (1 − t
3
)

& t
3
will be:

• (1 − t
3
)p(0, 0, 0, t) + t

3
p(0, 0, t, 3) = p(0, 0, 0, t − t2

3
) + p(0, 0, t

2

3
, t) =

p(0, 0, 0, t− t2

3
) + p(0, 0, t, t

2

3
) = p(0, 0, t, t)

• (1 − t
3
)p(0, 0, t, 3) + t

3
p(0, t, 3, 3) = p(0, 0, t − t2

3
, 3 − t) + p(0, t

2

3
, t, t) =

p(0, 0, t− t2

3
, 3− t) + p(0, t, t

2

3
, t) = p(0, t, t, 3)

• (1− t
3
)p(0, t, 3, 3)+ t

3
p(t, 3, 3, 3) = p(0, t− t2

3
, 3− t, 3− t)+ p( t

2

3
, t, t, t) =

p(0, t− t2

3
, 3− t, 3− t) + p( t

2

3
, t, t, t) = p(t, t, 3, 3).

Continuing the algorithm, two control points will be computed with respect to polar

value t:

• (1− t
3
)p(0, 0, t, t) + t

3
p(0, t, t, 3) = p(0, 0, t− t2

3
, t− t2

3
) + p(0, t

2

3
, t

2

3
, t) =

p(0, 0, t− t2

3
, t− t2

3
) + p(0, t, t

2

3
, t

2

3
) = p(0, t, t, t)

• (1− t
3
)p(0, t, t, 3)+ t

3
p(t, t, 3, 3) = p(0, t− t2

3
, t− t2

3
, 3− t)+p( t

2

3
, t

2

3
, t, t) =

p(0, t− t2

3
, t− t2

3
, 3− t) + p(t, t

2

3
, t

2

3
, t) = p(t, t, t, 3).
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Finally, one control point will be obtained:

• (1− t
3
)p(0, t, t, t)+ t

3
p(t, t, t, 3) = p(0, t− t2

3
, t− t2

3
, t− t2

3
)+p( t

2

3
, t

2

3
, t

2

3
, t) =

p(0, t− t2

3
, t− t2

3
, t− t2

3
) + p(t, t

2

3
, t

2

3
, t

2

3
) = p(t, t, t, t) = P (t).

Lemma 2.6. Recall from Definition 2.5 that P (t) = c0 + c1t+ c2t
2 + ...+ ckt

k + ...+

cnt
n, n ∈ N, k ∈ Z+, k ≤ n & ci ∈ R.

Recall the Taylor series of an infinitely differentiable real function f(x) is for-

mally the infinite sum at a point of the interior of the domain denoted x0 in terms of

derivatives of f(x) at x0 as follows:

f(x) =
∑∞

k=0
f (k)(x0)

k!
(x−x0)

k = f(x0)+f ′(x0)(x−x0)+
f ′′(x0)(x−x0)2

2
+ f ′′′(x0)(x−x0)3

6

+...+
∑∞

k
f (k)(x0)(x−x0)k

k!
.

The Maclaurin series is simply the Taylor series at the particular point x0 = 0.

This formula is stated below:

f(x) =
∑∞

k=0
f (k)0)
k!

xk = f(0) + xf ′(0) + x2f ′′(0)
2

+ x3f ′′′(0)
6

+ ...+
∑∞

k
xkf (k)(0)

k!
.

Utilizing the Maclaurin theorem in terms of the Maclaurin series above, we have:

P (t) = P (0)+tP ′(0)+ t2P ′′(0)
2

+...+ tkP (k)(0)
k!

+ tk+1P (k+1)(0)
(k+1)!

+...+ tn−1P (n−1)(0)
(n−1)!

+ tnP (n)(0)
n!

.

Comparing the Maclaurin theorem and the P (t) from Definition 2.5, one observes

that ck =
P (k)(0)

k!
.
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As well, one may write ck in terms of the blossom p(0, 0, ..., 0, γ, γ, ..., γ), where

γ = (1, 0) is a vector & p(0, 0, ..., 0, γ, γ, ..., γ) = ck

(nk)
. Note that there are (n− k) zero

terms & k γ-terms.

Remark 2.10. The dual function Pk = p(0, 0, .., 0, 1, 1, , .., 1), where Pk contains

(n − k) zeros and k ones. This dual function can also be denoted as the kth control

point of the Bézier curve.

Lemma 2.7. The polar form of the polynomial P (t + h) can be represented as the

formula below for t ∈ R, n ∈ N, (n− k) t-terms, k 1-terms & n (t+ h)-terms:

P (t+ h) = p(t+ h, ..., t+ h) =
∑n

k=0

(
n
k

)
p(t, ..., t, 1, ..., 1)hk.

A proof by utilizing the properties in Definition 2.5 will convey that the formula

above holds for ∀n ∈ N.

Proof. Using the properties from Definition 2.5, one can identify a pattern as one

continuously decomposes the blossom p(t + h, ..., t + h) n times. Several decomposi-

tions are shown below:

First decomposition:

p(t+ h, ..., t+ h) = p(t, t+ h, ..., t+ h) + p(h, t+ h, ..., t+ h)

= p(t, t, t+ h, ..., t+ h) + p(t, h, t+ h, ..., t+ h)
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+p(h, t, t+ h, ..., t+ h) + p(h, h, t+ h, ..., t+ h)

= p(t, t, t+ h, ..., t+ h) + 2p(h, t, t+ h, ..., t+ h)

+p(h, h, t+ h, ..., t+ h)

=
(
2
0

)
p(t, t, t+ h, ..., t+ h) +

(
2
1

)
p(h, t, t+ h, ..., t+ h)

+
(
2
2

)
p(h, h, t+ h, ..., t+ h).

Second decomposition:

p(t+ h, ..., t+ h) = p(t, t, t, t+ h, ..., t+ h) + p(t, t, h, t+ h..., t+ h)

+2[p(h, t, t, t+ h, ..., t+ h) + p(h, t, h, t+ h, ..., t+ h)]

+p(h, h, t, t+ h, ..., t+ h) + p(h, h, h, t+ h, ..., t+ h)

= p(t, t, t, t+ h, ..., t+ h) + 3p(t, t, h, t+ h, ..., t+ h)

+3p(h, h, t, t+ h, ..., t+ h) + p(h, h, h, t+ h, ..., t+ h)

=
(
3
0

)
p(t, t, t, t+ h, ..., t+ h) +

(
3
1

)
p(t, t, h, t+ h, ..., t+ h)

+
(
3
2

)
p(h, h, t, t+ h, ..., t+ h) +

(
3
3

)
p(h, h, h, t+ h, ..., t+ h).
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Third decomposition:

p(t+ h, ..., t+ h) = p(t, t, t, t, t+ h, ..., t+ h) + p(t, t, t, h, t+ h..., t+ h)

+3[p(t, t, h, t, t+ h, ..., t+ h) + p(t, t, h, h, t+ h, ..., t+ h)]

+3[p(h, h, t, t, t+ h, ..., t+ h) + p(h, h, t, h, t+ h, ..., t+ h)]

+p(h, h, h, t, t+ h, ..., t+ h) + p(h, h, h, h, t+ h, ..., t+ h)

= p(t, t, t, t, t+ h, ..., t+ h) + 4p(t, t, t, h, t+ h..., t+ h)

+6p(t, t, h, h, t+ h, ..., t+ h) + 4p(h, h, h, t, t+ h, ..., t+ h)

+p(h, h, h, h, t+ h, ..., t+ h)

=
(
4
0

)
p(t, t, t, t, t+ h, ..., t+ h) +

(
4
1

)
p(t, t, t, h, t+ h..., t+ h)

+
(
4
2

)
p(t, t, h, h, t+ h, ..., t+ h) +

(
4
3

)
p(h, h, h, t, t+ h, ..., t+ h)

+
(
4
4

)
p(h, h, h, h, t+ h, ..., t+ h).

One can decompose the blossom n times, but that will be a tedious process. A

pattern can be established, which is shown below for m ∈ Z+, (m − k) t-terms, k

h-terms and (n−m) (t+ h)-terms:
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m∑
k=0

(
m

k

)
p(t, ..., t, h, ..., h, t+h, ..., t+h) =

m∑
k=0

(
m

k

)
p(t, ..., t, 1, ..., 1, t+h, ..., t+h)hk.

Setting m = n, one immediately obtains the formula in Lemma 2.7 which is pro-

vided below for (n− k) t-terms, k h-terms and zero (t+ h)-terms:

P (t+ h) =
n∑

k=0

(
n

k

)
p(t, ..., t, h, ..., h) =

n∑
k=0

(
n

k

)
p(t, ..., t, 1, ..., 1)hk.

Remark 2.11. The kth derivative of the polynomial P (t) is computed as

P (k)(t) = k!
(
n
k

)
p(t, t, ..., t, 1, 1, ..., 1) = n!

(n−k)!
p(t, t, ..., t, 1, 1, ..., 1), where there are

(n− k) t-terms & k 1-terms.

Proof. A formula that will be particularly useful throughout this proof is stated below:

P (t+ h) =
n∑

k=0

P (k)(t)

k!
hk, t ∈ [0, 1] & h ∈ R is arbitrary infinitesimal. (2.14)

To briefly show that the formula above holds, one must utilize equation (2.14) in

terms of the polynomial P (x) of degree n. This formula is shown below:

P (x) =
n∑

k=0

P (k)(x0)

k!
(x− x0)

k.

Let x0 = t and x = t+ h. Then, one obtains the desired formula below:

31



P (t+ h) =
n∑

k=0

P (k)(t)

k!
(t+ h− t)k =

n∑
k=0

P (k)(t)

k!
hk. (2.15)

Utilizing property two of Definition 2.5, one obtains below:

P (t + h) = p(t + h, t + h, ..., t + h), where p(t + h) is the polar form of P (t + h)

with n-elements.

Another formula is provided below for (n− k) t-terms & k 1-terms:

P (t+ h) =
n∑

k=0

(
n

k

)
p(t, ..., t, 1, ..., 1)hk. (2.16)

The formula above greatly resembles the binomial expansion of (t+1 · h)n, which

is provided below: ∑n
k=0

(
n
k

)
tn−k1khk =

∑n
k=0

(
n
k

)
tn−khk.

Comparing the equations (2.15) and (2.16), one obtains the following equalities:

P (t)+hP ′(t)+h2 P
′′(t)
2!

+...+hn Pn(t)
n!

=
(
n
0

)
p(t, .., t)+

(
n
1

)
p(t, ..., t, 1)h+

(
n
2

)
p(t, ..., t, 1, 1)+

...+
(
n
n

)
p(1, ..., 1)hn,

32





P (t) = 0!
(
n
0

)
p(t, ..., t)

P ′(t) = 1!
(
n
1

)
np(t, ..., t, 1)

P ′′(t) = 2!
(
n
2

)
p(t, ..., t, 1, 1)

...

P (n−1)(t) = (n− 1)!
(

n
n−1

)
p(t, 1, ..., 1)

P (n)(t) = n!
(
n
n

)
p(1, ..., 1).

One can notice that a pattern determined from the equalities above and the kth

derivative for k ≥ 0. The kth derivative of the blossom P (t) is provided below for

(n− k) t-terms and k 1-terms:

P (k)(t) = k!

(
n

k

)
p(t, ..., t, 1, ..., 1).

Remark 2.12. Variation Diminishing Property: Consider a discrete set of con-

trol points {P0, P1, ..., Pn}. Denote their convex hull by γ and the Bézier curve asso-

ciated to them by B. Let L denote a line which may intersect B at some point(s).

Bézier curves have the very useful Variation Diminishing Property which says that L

intersects B at most as many times as L intersects γ.

The Variation Diminishing property shows that any Bézier curve of any degree

does not fluctuate very much while it is smoother than its control polygon. Further-

more, the idea of proving that Bézier curves have the Variation Diminishing Property

is to show that the recursive equation (2.6) implies the point-wise limit (2.8). How-

ever, the proof is difficult and its difficulty is too elevated for this text.
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Remark 2.13. The discrete set of control points may not always lie on the Bézier

curve.

Definition 2.7. Arc-length: The distance between two points on any given curve C ∈

Rn. A formula of the arc-length function will be provided below for a parametrization

of C such that r⃗(t) = (x1(t), x2(t), ..., xn(t)) with once differentiable components, the

starting value of t = t0 = a lying on C & t ∈ [a, b] is an arbitrary variable:

S(t) =

∫ t

a

∥r⃗ ′(u)∥ du =

∫ t

a

√
(
dx1

du
)2 + (

dx2

du
)2 + ...+ (

dxn

du
)2 du. (2.17)

Example 2.6. Providing a simple example of the utilization of the arc-length func-

tion (2.17), one can derive the arc-length of a semi-circle of radius ℓ and centered at

the origin below:

The equation of a semi-circle centered at the origin is x2+y2 = ℓ2 for x1(t) = x(t),

x2(t) = y(t) & t ∈ [0, π].

In polar coordinates, one can represent this equation as r⃗(t) = (ℓcos(t), ℓsin(t)), t ∈

[0, π] below:

∴ r⃗ ′(t) = (−ℓsin(t), ℓcos(t)).

The norm of r⃗ ′(t) above is calculated below:

∥r⃗ ′(t)∥ =
√

(−ℓsin(t))2 + (ℓcos(t))2

=
√
(ℓ2(sin(t))2 + ℓ2(cos(t))2
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=
√

ℓ2((sin(t))2 + (cos(t))2)

=
√
ℓ2

= ℓ.

Then, S(t) =
∫ t

0
ℓ du = uℓ

∣∣∣t
0
= tℓ− (0)ℓ = tℓ.

Furthermore, the length of the semi-circle is S(b) = S(π) = πℓ.

Definition 2.8. Curvature: Let r⃗ : I −→ Rn be a twice differentiable regular curve

parametrized by arc-length (i.e. ∥r⃗ ′(s)∥ = 1) in R3. The curvature of this curve at

a point, denoted κ(s), describes the rate of change in which the curve changes direc-

tion at the point r⃗(s). Additionally, one can describe this measurement as the rate at

which the velocity vector is turning.

For a parametrization by arclength of the position vector with twice differentiable

components, one can derive several key formulae which are listed below:

Unit Tangent V ector = T⃗ (s) = r⃗ ′(s),

Unit Normal V ector = N⃗(s) =
T⃗ ′(s)

∥T⃗ ′(s)∥
,

Curvature = κ(s) = ∥dT⃗ (s)
ds

∥.

Let r⃗ : J −→ Rn be a twice differentiable regular curve in Rn (i.e. ∥r⃗ ′(t)∥ ̸= 0)

not necessarily parametrized by arc-lengh. As previously defined, let curvature of this

curve be denoted κ(t).
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For a parametrization of the position vector with twice differentiable components,

one can derive several key formulae which are listed below:

Unit Tangent Vector = T⃗ (t) = r⃗ ′(t)
∥r⃗ ′(t)∥ , r⃗(t) differentiable for t ∈ [0, 1] & r⃗ ′(t) ̸= 0⃗,

Unit Normal Vector = N⃗(t) = T⃗ ′(t)

∥T⃗ ′(t)∥
, T⃗ (t) differentiable for t ∈ [0, 1] & T⃗ ′(t) ̸= 0⃗,

Curvature = κ(t) = ∥dT⃗ (t)
dt

∥ · 1

∥r⃗ ′(t)∥
.

Remark 2.14. The curvature, denoted κ, can also be represented as the formula

below for a regular and twice differentiable curve parameterized by r⃗(t) ⊂ Rn where

n = 2, 3 :

κ =
∥r⃗ ′(t)× r⃗ ′′(t)∥

∥r⃗ ′(t)∥3
. (2.18)

Definition 2.9. The curvature κ can also be represented in terms of the unit tangent

vector T⃗ (t). The curvature of a regular curve is the l2 norm of the second derivative

of the parametrization r⃗(t) from Definition 2.7 and an arc-length parameter denoted

s, which is shown below for s = s(t):

κ(s) = ∥d2r⃗(s(t))
ds2

∥.

A simple proof will show that this is equivalent to the formula below:

κ(s) = ∥dT⃗ (s)
ds

∥.
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Proof. By the Fundamental Theorem of Calculus and the Arc-Length function in

Definition 2.7, d
dt
S(t) = ∥r⃗ ′(t)∥ > 0.

Utilizing the chain rule, d
ds
(dr⃗(s(t))

ds
) = d

ds
(dr⃗(s(t))

dt
· dt
ds
) = d

ds
(dr⃗(s(t))

dt
· (ds

dt
)−1).

Utilizing d
dt
S(t), the above expressions equate to d

ds
(dr⃗(s(t))

dt
· 1
∥r⃗ ′(s(t))∥) =

d
ds
( r⃗ ′(s(t))
∥r⃗ ′(s(t))∥) =

d
ds
T⃗ (s(t)).

Then,

κ(s) = ∥d
2r⃗(s)

ds2
∥ = ∥dT⃗ (s)

ds
∥.

Lemma 2.8. T⃗ ′(s) and T⃗ (s) are orthogonal vectors parameterized by the arc-length

parameter s, in other words, ⟨T⃗ ′(s) , T⃗ (s)⟩ = 0, implies that ∥T⃗ ′(s)×T⃗ (s)∥ = ∥T⃗ ′(s)∥

for s = S(t).

Proof. A quick proof of the left-hand side is immediate, which is shown below:

∥T⃗ (s)∥ = 1 as T⃗ (s) is a unitary vector ⇐⇒ ∥T⃗ (s)∥2 = ⟨T⃗ (s) , T⃗ (s)⟩ = 1,

d
dt
∥T⃗ (S(t))∥2 = d

dt
⟨T⃗ (S(t)) , T⃗ (S(t))⟩

= ⟨T⃗ ′(S(t)) , T⃗ (S(t))⟩+ ⟨T⃗ (S(t)) , T⃗ ′(S(t))⟩

= ⟨T⃗ ′(S(t)) , T⃗ (S(t))⟩+ ⟨T⃗ ′(S(t)) , T⃗ (S(t))⟩,

d
dt
∥T⃗ (S(t))∥2 = ⟨2T⃗ ′(S(t)) , T⃗ (S(t))⟩ = 2⟨T⃗ ′(S(t)) , T⃗ (S(t))⟩ = d

dt
(1) = 0,

∴ ⟨T⃗ ′(S(t)) , T⃗ (S(t))⟩ = 0 =⇒ T⃗ ′(S(t)) & T⃗ (S(t)) are orthogonal vectors =⇒
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The angle between these two vectors equals θ = π
2
rad.

For the right-hand side of the lemma, one must utilize the trigonometric formula

involving the cross product between two vectors for θ ∈ [0, 2π], shown below:

∥T⃗ ′(S(t))× T⃗ (S(t))∥ = ∥T⃗ ′(S(t))∥ · ∥T⃗ (S(t))∥ · sin(θ).

For θ = π
2
, the proof is finished and the formula above reduces to the equality

below:

∥T⃗ ′(S(t))× T⃗ (S(t))∥ = ∥T⃗ ′(S(t))∥ · ∥T⃗ (S(t))∥ = ∥T⃗ ′(S(t))∥.

Remark 2.15. Proof of the formula κ in Remark 2.14.

Proof. Utilizing the formula from Definition 2.9 and setting S ′(t) = ∥r⃗ ′(t)∥, one

obtains the formula below:

κ(t) =
∥T⃗ ′(t)∥
∥r⃗ ′(t)∥

.

One must also utilize the formula of the unit tangent vector not in terms of arc-

length from Definition 2.8 to commence the proof, also shown below:

T⃗ (t) =
r⃗ ′(t)

∥r⃗ ′(t)∥
.

The formula above can be written as r⃗ ′(t) = T⃗ (t)·∥r⃗ ′(t)∥ =⇒ r⃗ ′(t) = T⃗ (t)·S ′(t).

∴ Differentiating the above formula by the product rule yields the equality below:
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r⃗ ′′(t) = T⃗ ′(t) · S ′(t) + T⃗ (t) · S ′′(t),

and, thus,

r⃗ ′(t)× r⃗ ′′(t) = [T⃗ (t) · S ′(t)]× [T⃗ ′(t) · S ′(t) + T⃗ (t) · S ′′(t)],

r⃗ ′(t)× r⃗ ′′(t) = [T⃗ ′(t) · S ′(t) + T⃗ ′(t) · S ′(t)] + [T⃗ (t) · S ′(t) + T⃗ (t) · S ′′(t)],

r⃗ ′(t)× r⃗ ′′(t) = (S ′(t))2 · [T⃗ (t)× T⃗ ′(t)] + S ′(t) · S ′′(t) · [T⃗ (t)× T⃗ (t)].

Recall that for any vector a⃗ ∈ Rn, a⃗× a⃗ = 0⃗

=⇒ r⃗ ′(t)× r⃗ ′′(t) = (S ′(t))2 ·[T⃗ (t)×T⃗ ′(t)]+S ′(t)·S ′′(t)·0⃗ = (S ′(t))2 ·[T⃗ (t)×T⃗ ′(t)].

Taking the l2 norm above, one yields the equality below:

∥r⃗ ′(t)× r⃗ ′′(t)∥ = ∥(S ′(t))2 · [T⃗ (t)× T⃗ ′(t)]∥ = (S ′(t))2 · ∥T⃗ (t)× T⃗ ′(t)∥,

S ′(t) = ∥r⃗ ′(t)∥ ∈ R =⇒ ∥S ′(t)∥ = S ′(t).

∴ Utilizing Lemma 2.8 yields the following result below:

∥r⃗ ′(t)× r⃗ ′′(t)∥ = (S ′(t))2 · ∥T⃗ (t)× T⃗ ′(t)∥ = (S ′(t))2 · ∥T⃗ ′(t)∥,

∴ ∥T⃗ ′(t)∥ = ∥r⃗ ′(t)×r⃗ ′′(t)∥
(S′(t))2

= ∥r⃗ ′(t)×r⃗ ′′(t)∥
∥r⃗ ′(t)∥2 .
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Utilizing the formula from Definition 2.9 yields the desired formula below:

κ =
∥T⃗ ′(t)∥
∥r⃗ ′(t)∥

=
∥r⃗ ′(t)× r⃗ ′′(t)∥

∥r⃗ ′(t)∥3
.

Theorem 2.1. The curvature of a quadratic (degree two) Bézier curve with control

points (P0, P1, P2) is κ(t) = ∥(P2−P1)×(P0−P1)∥
[(1−t)2∥P1−P0∥2+2t(1−t)⟨P1−P0 ,P2−P1⟩+t2∥P2−P1∥2]

9
2
.

Proof. The numerator, which will be denoted N1 and the denominator, which will

be denoted N2 of the general formula κ will be calculated separately. A degree two

Bézier curve will yield the following position vector r⃗(t) below:

r⃗(t) =
∑2

i=0 PiBi,2(t) = P0B0,2(t)+P1B1,2+P2B2,2 = P0(1−t)2+2P1t(1−t)+P2t
2,

= P0(1−t)2+P1t(1−t)+P1t(1−t)+P2t
2 = (1−t)[P0(1−t)+P1t]+t[P1(1−t)+P2t].

Note that r⃗(t) is constructed in the form above to simply the expression later on

in the proof when utilizing inner products as well as cross products.

r⃗ ′(t) = d
dt
r⃗(t) = −[P0(1−t)+P1t]+(1−t)[−P0+P1]+[P1(1−t)+P2t]+t[−P1+P2],

r⃗ ′(t) = −2P0(1− t) + 2P1(1− t)− 2P1t+ 2P2t = 2(1− t)[P1 − P0] + 2t[P2 − P1],

⃗r′′(t) = d2

dt2
⃗r′′(t) = −2[P1 − P0] + 2[P2 − P1] = 2[P2 − 2P1 + P0],

40



N1 = ∥(2(1− t)[P1 − P0] + 2t[P2 − P1])× (2[P2 − 2P1 + P0])∥,

N1 = ∥(2(1− t)[P1 − P0]× 2[P2 − 2P1 + P0]) + (2t[P2 − P1]× 2[P2 − 2P1 + P0])∥,

N1 = ∥4((1− t)[P1 − P0]× [P2 − 2P1 + P0]) + 4(t[P1 − P0]× [P2 − 2P1 + P0])∥,

N1 = ∥4(1− t)([P1 − P0]× [P2 − 2P1 + P0]) + 4t([P1 − P0]× [P2 − 2P1 + P0])∥,

N1 = ∥4(1− t)([P1 − P0]× [(P2 − P1) + (P0 − P1)]) + 4t([P1 − P0]×,

[(P2 − P1) + (P0 − P1)])∥,

N1 = ∥4(1− t)[(P1 − P0)× (P2 − P1)] + 4t[(P2 − P1)× (P0 − P1)]∥,

N1 = ∥−4(1− t)[(P2 − P1)× (P1 − P0)] + 4t[(P2 − P1)× (P0 − P1)]∥,

N1 = ∥4(1− t)[(P2 − P1)× (P0 − P1)] + 4t[(P2 − P1)× (P0 − P1)]∥,

N1 = ∥4[(P2 − P1)× (P0 − P1)]∥,

∥r⃗ ′(t)∥ = (∥r⃗ ′(t)∥2) 3
2 = ⟨2(1− t)[P1−P0]+2t[P2−P1] , 2(1− t)[P1−P0]+2t[P2−

P1]⟩
3
2 ,

∥r⃗ ′(t)∥ = (4(1− t)2∥P1 − P0∥2 + 8t(1− t)⟨P1 − P0 , P2 − P1⟩+ 4t2∥P2 − P1∥2)
3
2 ,

N2 = (4(1− t)2∥P1 − P0∥2 + 8t(1− t)⟨P1 − P0 , P2 − P1⟩+ 4t2∥P2 − P1∥2)
9
2 .

∴ κ = N1

N2
gives the desired result.
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Note that N1 can also be written as the following expression below:

N1 = 4∥(P2 × P0)− (P2 × P1)− (P1 × P0)∥.

One can use the same technique as above to find the curvature of a Bézier curve

of degree n ≥ 3. Though, it is guaranteed that this process will be especially tedious

due to the fact that long polynomials will require manipulation. Therefore, one must

express this curvature in terms of an n-degree Bézier curve.

Remark 2.16. To write the formula for the curvature, denoted by κ, of an n-degree

Bézier curve, one must recall the first-order and second-order derivatives of the posi-

tion vector r⃗(t). These derivatives are shown below:

d

dt
r⃗(t) = r⃗ ′(t) = n

n−1∑
i=0

Bn−1,i(t)(Pi+1 − Pi)

d2

dt2
r⃗(t) = r⃗ ′′(t) = n(n− 1)

n−2∑
i=0

Bn−2,i(t)(Pi+2 − 2Pi+1 + Pi).

As previously discussed in Lemma 2.1, the nth-order derivative of the position

vector of the Bézier curve, denoted r⃗(t), is dependent on the nth order derivative of

the Berstein polynomial, denoted Bi,n(t).

Utilizing the formula κ(t) in Remark 2.14, one can represent the curvature of a

regular Bézier curve of order two or three (n = 2, 3) in terms of the sums above.

This is particularly useful if one desires to compute the curvature of a Bézier curve

of a higher degree. Following the same strategy, we can infer the following general

formula for the curvature of a Bézier curve of order n at each point r⃗(t) on the curve:
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Proposition 2.3. The formula of the curvature of a Bézier curve of order n at the

point r⃗(t) of the curve is:

κ(t) =
∥
∑n−1

i=0

∑n−2
j=0,j ̸=i n

2(n− 1)Bn−1,i(t)Bn−2,j(t)[(Pi+1 − Pi)× (Pj+2 − 2Pj+1 + Pj)]∥
∥
∑n−1

i=0 nBi,n(t)(Pi+1 − Pi)∥3
.

Proof. The proof follows from direct computation as described above.
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Chapter 3

Bézier Surfaces

The properties above discuss the intricacies as well as the properties of Bézier

curves of degree n. Though, the properties of the Bézier surface, which is defined as

the Cartesian product of the Bernstein polynomials of two orthogonal Bézier curves,

have yet to be considered. This surface is denoted as a Tensor-Product Surface.

So far, the previous properties and their proofs follow from the study of the po-

sition vector of a univariate Bézier curve, defined as r⃗(t) =
∑n

i=0 PiBi,n(t) of degree

n and depending on the parameter t ∈ [0, 1]. We now consider an extension of these

properties for Bézier surfaces in R3. We start with the following defintion.

Definition 3.1. Consider the points Pi,j = (xi,j, yi,j, zi,j) in R3

Pi,j = {(P0,0, P0,1, . . . , P0,n+1), (P1,0, P1,1, ..., P1,n+1), ..., (Pm+1,0, Pm+1,1, . . . , Pm+1,n+1)},

0 ≤ i ≤ m+1, 0 ≤ j ≤ n+1, which we will call control points. Introducing a bivariate

position vector with two variables (u, v) ∈ [0, 1]× [0, 1] of degree m× n, we define the
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Bézier surface as the image of the position vector r⃗(u, v):

r⃗(u, v) =
m∑
i=0

n∑
j=0

Pi,jBi,m(u)Bj,n(v). (3.1)

Figure 3.1: Example of a 2 × 3 Bézier surface, where r⃗(u, v) = (2uv2, 2v(u + 1)(1 −
v), 2v(2v + uv + 1)), u ∈ (0, 1) and v ∈ (0, 1).

Note that the components of the vector r⃗ : D → R3 are polynomials in two vari-

ables defined on D = [0, 1] × [0, 1] ⊂ R2. Usually, the domain of a Bézier surface of

degree m×n is the unit square, though D can be any rectangle [a, b]× [c, d], a ≤ b &

c ≤ d. Furthermore, one can select control points such that the surface represented
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by r⃗(u, v) has no cusps nor self-intersections.

Definition 3.2. Isoparametric curves of a surface: Let (u, v) be surface parameters

in which u = u0 ∈ [0, 1] and v = v0 ∈ [0, 1]. Isoparametric curves are obtained when

one of the two surface parameters are left constant while the other varies between

[0, 1].

Therefore, u and v are images of vertical and, respectively, horizontal lines on the

surface. This leads to the following remark below.

Remark 3.1. Isoparametric curves provide a relationship between Bézier curves and

Bézier surfaces. A Bézier surface patch can be transformed into two Bézier curves

utilizing the isoparametric curves below:

r⃗(u0, v) =
∑m

i=0

∑n
j=0 Pi,jBi,m(u0)Bj,n(v). Grouping the terms inside the sum, one

can set aj =
∑m

i=0 Pi,jBi,m(u0). ∴ r⃗(u0, v) =
∑n

j=0 ajBj,n(v).

r⃗(u, v0) =
∑m

i=0

∑n
j=0 Pi,jBi,m(u)Bj,n(v0). Like above, one can set bi =

∑n
j=0 Pi,jBj,n(v0).

∴ r⃗(u, v0) =
∑m

i=0 biBi,m(u).

Remark 3.2. Noticing the position vector for the tensor product of two Bézier curves,

one can deduce the following properties below:

• The Bézier surface (or patch) is contained in the convex hull of its extreme

points (control points).

• The Bézier sub-patch interpolates four points.

• The tangent plane at any control point interpolates the given control point as

well as two neighboring points.
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Definition 3.3. Tangent plane: A plane which is orthogonal to the normal vector at

any point of the surface if the normal vector exists. The tangent plane to a surface

consists of all tangent lines to any point r⃗(u, v) lying on the surface.

Formulae for determining the tangent plane at any given point r⃗(u, v) for the

parametric form r⃗(u, v) = (x(u, v), y(u, v), z(u, v)) are given below for a point P =

r⃗(u0, v0) ∈ R3 :

r⃗u(u, v) = (∂x(u,v)
∂u

, ∂y(u,v)
∂u

, ∂z(u,v)
∂u

)

r⃗v(u, v) = (∂x(u,v)
∂v

, ∂y(u,v)
∂v

, ∂z(u,v)
∂v

)

N⃗(u, v) = r⃗u(u,v)×r⃗v(u,v)
∥r⃗u(u,v)×r⃗v(u,v)∥

Tangent plane: ⟨r⃗(u, v)− r⃗(u0, v0), N⃗(u0, v0)⟩ = 0.

Note that N⃗(u, v) denotes the unit normal at any given point r⃗(u, v). To add, the

vectors r⃗u & r⃗v are tangent to the surface patch at the point r⃗(u, v). The collection of

all tangent vectors at a point of the surface is called the tangent plane of the surface

at that point.

Remark 3.3. A Bézier surface of degree m× n is smooth almost everywhere except

at isolated points.

Definition 3.4. First Fundamental Form induced by R3 : Let M be a regular surface

patch parameterized by the curve r⃗ = r⃗(u, v) ⊂ R3, in other words, r⃗ : R2 −→ R3.

Furthermore, let A be a point and A′ be a point infinitesimally close to A, in which

A and A′ are points in the tangent space TpM of M for p = r⃗(u, v) ∈ M . Also,
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let du and dv be chosen directions of a Bézier surface patch. Therefore, the First

Fundamental Form measures the distances along paths of the surface patch. One can

express the differential of r⃗ as the equality below for u ∈ [0, 2π] and v ∈ [0, 2π] :

dr⃗ = ∂r⃗
∂u
du+ ∂r⃗

∂v
dv = r⃗udu+ r⃗vdv.

The differential above corresponds to the speed of the curve r⃗(u, v) by taking the

dot product of A = dr⃗ & A′ = dr⃗T , shown below:

AA′ = dr⃗dr⃗T = ⟨dr⃗, dr⃗⟩ = ⟨r⃗udu + r⃗vdv, r⃗udu + r⃗vdv⟩ = ∥r⃗u∥2du2 + 2r⃗u ·

r⃗vdudv + ∥r⃗v∥2dv2.

Let AA′ = ds2, E = ∥r⃗u∥2, F = r⃗u · r⃗v, G = ∥r⃗v∥2. This reduces to the equality

below, which is the First Fundamental Form of a surface in terms of the arc-length

parameter s giving norms of vectors in the tangent plane, hence length of curves on

the surface:

ds2 = Edu2 + 2Fdudv +Gdv2.

In matrix form, the First Fundamental Form, also known as the intrinsic metric,

can be written in the quadratic form below:

ds2 = x⃗TAx⃗ =

(
du dv

)E F

F G


du

dv

.

Remark 3.4. The First Fundamental Form can be represented as the following in-

ner product with respect to (v⃗1, v⃗2) ∈ TpM shown below for v⃗1 = v⃗2 and any point

p= r(u, v) ∈ M :
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Ip(v⃗1, v⃗2) = ⟨v⃗1, v⃗2⟩.

Remark 3.5. Matrix A is a positive definite & symmetric matrix. In other words,(
du dv

)E F

F G


du

dv

 is strictly positive.

Lemma 3.1. The formula ds2 is consistent with the definition of the length of a curve

on the surface γ(t) = r⃗(u(t), v(t)), t ∈ [0, 1].

Proof. The derivative of the Arc-Length formula in Definition 2.7 is dS(t)
dt

= ∥r⃗ ′(t)∥.

Furthermore, one must use the differential of r⃗ from Definition 3.4, which is

dr⃗ = r⃗udu+ r⃗vdv.

Utilizing the equalities above, one obtains the following below:

∥dr⃗
dt
∥ = ∥r⃗u du

dt
+ r⃗v

dv
dt
∥

∥dr⃗
dt
∥ =

√
(r⃗u

du
dt

+ r⃗v
dv
dt
) · (r⃗u du

dt
+ r⃗v

dv
dt
)

∥dr⃗
dt
∥dt =

√
⟨r⃗u, r⃗u⟩du2 + 2⟨r⃗u, r⃗v⟩dudv + ⟨r⃗v, r⃗v⟩dv2dt

∥dr⃗∥ =
√

E(γ(t))du2 + 2F (γ(t))dudv +G(γ(t))dv2, where (E,F,G) are the coef-

ficients of the First Fundamental Form.

This implies that dS(t) =
√
E(γ(t))du2 + 2F (γ(t))dudv +G(γ(t))dv2.
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Then, setting s = S(t), ds =
√
E(γ(t))du2 + 2F (γ(t))dudv +G(γ(t))dv2.

∴ ds2 = Edu2 + 2Fdudv +Gdv2, completing the proof.

Remark 3.6. The First Fundamental Form is altered when the surface patch in

Definition 3.4, is altered.

Example 3.1. Determine the First Fundamental Form of the unit sphere parameter-

ized by r⃗(u, v) = (cos(u) cos(v), cos(u) sin(v), sin(u)), u ∈ [−π
2
, π
2
] and v ∈ [0, 2π].

Taking partial derivatives, one obtains the expressions below:

r⃗u = (− sin(u) cos(v),− sin(u) sin(v), cos(u))

r⃗v = (− cos(u) sin(v), cos(u) cos(v), 0).

Calculating the coefficients of the First Fundamental Form, one obtains the ex-

pressions below:

E = ∥r⃗u∥2 = sin2(u) cos2(v) + sin2(u)sin2(v) + cos2(u) = sin2(u) +

cos2(u) = 1

F = r⃗u · r⃗v = sin(u) cos(v) cos(u) sin(v)− sin(u) cos(v) cos(u) sin(v) = 0

G = ∥r⃗v∥2 = cos2(u) sin2(v) cos2(u) cos2(v) = cos2(u).

∴ The First Fundamental Form of r⃗ is shown below:
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Figure 3.2: Unit sphere, where r⃗(u, v) = (cos(u) cos(v), cos(u) sin(v), sin(u)), u ∈
[−π

2
, π
2
] and v ∈ [0, 2π].
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ds2 = du2 + cos2(u)dv2.

Lemma 3.2. Utilizing Lemma 2.1, one can evaluate the first-order partial derivatives

of the multivariate formula (3.1) provided in Definition 3.1, shown below:

r⃗u(u, v) =
∑m−1

i=0

∑n
j=0 n(Pi+1,j − Pi,j)Bi,m−1(u)Bj,n(v)

r⃗v(u, v) =
∑m

i=0

∑n−1
j=0 n(Pi,j+1 − Pi,j)Bi,m(u)Bj,n−1(v).

Calculating the coefficients of the First Fundamental Form will require four in-

dices, in other words, i ̸= k ∧ j ̸= l for i, j, k, l ∈ N ∪ {0}. These dot products, given

in Definition 3.1, are generalized below:

E = n2
∑m−1,n,m−1,n

i=0,j=0,k=0,l=0 Bi,m−1(u)Bk,m−1(u)Bj,n(v)Bl,n(v)⟨Pi+1,j−Pi,j, Pk+1,l−Pk,l⟩

F = n2
∑m−1,n,m,n−1

i=0,j=0,k=0,l=0 Bi,m−1(u)Bk,m(u)Bj,n(v)Bl,n−1(v)⟨Pi+1,j−Pi,j, Pk,l+1−Pk,l⟩

G = n2
∑m,n−1,m,n−1

i=0,j=0,k=0,l=0 Bi,m(u)Bk,m(u)Bj,n−1(v)Bl,n−1(v)⟨Pi+1,j−Pi,j, Pk+1,l−Pk,l⟩.

Remark 3.7. Utilizing the coefficients above, one can generalize the First Funda-

mental Form in terms of the arc-length parameter s of an m×n Bézier surface patch.

This is shown below:

ds2 = n2[
∑m−1,n,m−1,n

i=0,j=0,k=0,l=0 Bi,m−1(u)Bk,m−1(u)Bj,n(v)Bl,n(v)⟨Pi+1,j − Pi,j, Pk+1,l −

Pk,l⟩du2

+ 2
∑m−1,n,m,n−1

i=0,j=0,k=0,l=0 Bi,m−1(u)Bk,m(u)Bj,n(v)Bl,n−1(v)⟨Pi+1,j−Pi,j, Pk,l+1−Pk,l⟩dudv
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+
∑m,n−1,m,n−1

i=0,j=0,k=0,l=0 Bi,m(u)Bk,m(u)Bj,n−1(v)Bl,n−1(v)⟨Pi+1,j−Pi,j, Pk+1,l−Pk,l⟩dv2].

Definition 3.5. Regular Surface: Let M ⊂ R3 be a surface parameterized by the

curve r⃗ : R2 −→ R3. This surface is called a regular surface if and only if r⃗u× r⃗v ̸= 0⃗

exists.

Definition 3.6. Orientable Surface: Let M ⊂ R3 be a regular surface. M is said to

be orientable if it allows a smooth differentiable field of unit normal vectors globally

defined on the entire surface.

Definition 3.7. Gauss Map: Let p = r⃗(u, v) ∈ M be an arbitrary point of an ori-

entable surface M and let ±N⃗p(r(u, v)) be the two possible directions of the unit

normal vectors at the given point, in which the formula N⃗(u, v) is described in Defi-

nition 3.3. The map N : M −→ S2, N(p) = Np, where S2 is the unit sphere in R3, is

called the Gauss Map of M .

Definition 3.8. Weingarten Map: Let M be an orientable surface and let N be the

Gauss Map defined above. Furthermore, let p = r⃗(u, v) ∈ M be an arbitrary point.

The linear map Wp : TpM −→ TpM , such that Wp = −dNp, is called the Weingarten

Map. This is also the negative differential of the Gauss map.

Definition 3.9. Second Fundamental Form: In terms of the Weingarten map of

Definition 3.8, the inner product below gives the Second Fundamental Form for vector

v⃗1,2 ∈ TpM and a point p = r⃗(u, v) ∈ M :

IIp(v⃗1, v⃗2) = ⟨Wp(v⃗1), v⃗2⟩ = −⟨DNp(v⃗1), v⃗2⟩. (3.2)
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The Second Fundamental Form describes how curved the surface is.

Utilizing the inner product (3.2), one can determine the coefficients of the Second

Fundamental Form in the quadratic form II = edu2 + 2fdudv + gdv2. These coeffi-

cients are shown below in terms of the Weingarten map:

e = −⟨DNp(r⃗u), r⃗u⟩ = ⟨N⃗ , r⃗uu⟩

f = −⟨DNp(r⃗u), r⃗v⟩ = ⟨N⃗ , r⃗uv⟩

g = −⟨DNp(r⃗v), r⃗v⟩ = ⟨N⃗ , r⃗vv⟩.

In matrix form, the Second Fundamental Form can be written in the quadratic

form below:

II(u, v) = x⃗TAx⃗ =

(
du dv

)e f

f g


du

dv

.

Example 3.2. Determine the Second Fundamental Form of the unit sphere parame-

terized by r⃗(u, v) = (cos(u) cos(v), cos(u) sin(v), sin(u)), u ∈ [−π
2
, π
2
] & v ∈ [0, 2π].

Taking partial derivatives, one obtains the expressions below:

r⃗u = (− sin(u) cos(v),− sin(u) sin(v), cos(u))

r⃗v = (− cos(u) sin(v), cos(u) cos(v), 0).
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First, one must calculate r⃗u × r⃗v, which is shown below:

det


î ĵ k̂

− sin(u) cos(v) − sin(u) sin(v) cos(u)

− cos(u) sin(v) cos(u) cos(v) 0

= − cos2(u) cos(v)̂i−cos2(u) sin(v)̂j−

cos(u) sin(u)k̂.

Calculating ∥r⃗u × r⃗v∥, one obtains:

√
cos4(u) cos2(v) + cos4(u) sin2(v) + cos2(u) sin2(u) = | cos(u)|

√
cos2(u) + sin2(u) =

cos(u).

∴ Combining the above expressions will give the following result:

N⃗(u, v) = − cos(u) cos(v)̂i− cos(u) sin(v)̂j− sin(u)k̂.

Calculating the second order partial derivatives will yield the equalities below:

r⃗uu = −(cos(u) cos(v), cos(u) sin(v), sin(u))

r⃗uv = r⃗vu = (sin(u) sin(v),− sin(u) cos(v), 0)

r⃗vv = −(cos(u) cos(v), cos(u) sin(v), 0).

Finally, calculating coefficients (e, f, g) will give the results below:

e = N⃗ · r⃗uu = cos2(u) cos2(v)+cos2(u) sin2(v)+sin2(u) = cos2(u)+sin2(u) = 1 = E
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f = N⃗ · r⃗uv = − cos(u) cos(v) sin(u) sin(v) + sin(u) cos(u) sin(v) cos(v) = 0 = F

g = N⃗ · r⃗vv = cos2(u) cos2(v) + cos2(u) sin2(v) = cos2(u) = G.

∴ The Second Fundamental Form is shown below:

II(u, v) = du2 + cos2(u)dv2.

Lemma 3.3. Utilizing Lemma 2.1, one can evaluate the second-order partial deriva-

tives of the multivariate formula in Definition 3.1, shown below:

r⃗uu(u, v) =
m−2∑
i=0

n∑
j=0

n(n− 1)(Pi+2.j − 2Pi+1,j + Pi,j)Bi,m−2(u)Bj,n(v)

r⃗uv(u, v) =
m−1∑
i=0

n−1∑
j=0

n2(Pi+1,j+1 − Pi+1,j − Pi,j+1 + Pi,j)Bi,m−1(u)Bj,n−1(v)

r⃗vv(u, v) =
m∑
i=0

n−2∑
j=0

n(n− 1)(Pi,j+2 − 2Pi,j+1 + Pi.j)Bi,m(u)Bj,n−2(v).

Let the unit normal vector denoted N⃗ , defined in Definition 3.3, the first-order

partial derivatives r⃗u, r⃗v and the coefficients of the First Fundamental Form (E,F,G)

described in Lemma 3.2. One can utilize the definition of the cross product of r⃗u &

r⃗v, shown below:

r⃗u × r⃗v = det(r⃗u, r⃗v) =


î ĵ k̂

r⃗u1 r⃗u2 r⃗u3

r⃗v1 r⃗v2 r⃗v3

 . (3.3)
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Furthermore, one can utilize the following equation below for θ ∈ (0, 2π], where θ

is the angle between the vectors r⃗u & r⃗v :

∥r⃗u × r⃗v∥ = ∥r⃗u∥ · ∥r⃗v∥ · sin(θ). (3.4)

The cross product formula in terms of equation (3.4) can be simplified as the

equation below in terms of coefficients E,F,G for θ ∈ (0, 2π]:

∥r⃗u × r⃗v∥ =
√
E ·G · sin(θ). (3.5)

Utilizing equations (3.3), (3.4) and (3.5), the unit normal vector, denoted N⃗ , can

be written as the following equation below:

N⃗ = 1√
E·G·sin(θ) · det


î ĵ k̂

r⃗u1 r⃗u2 r⃗u3

r⃗v1 r⃗v2 r⃗v3

.

One can also write N⃗ more formally in terms of four indices. In other words,

i ̸= k ∧ j ̸= l for i, j, k, l ∈ N ∪ {0}. This formula is shown below:

N⃗ =

∑m−1,n
i=0,j=0(Pi+1,j − Pi,j)Bi,m−1(u)Bj,n(v)×

∑m,n−1
k=0,l=0(Pi,j+1 − Pi,j)Bi,m(u)Bj,n−1(v)

∥
∑m−1,n

i=0,j=0(Pi+1,j − Pi,j)Bi,m−1(u)Bj,n(v)×
∑m,n−1

k=0,l=0(Pi,j+1 − Pi,j)Bi,m(u)Bj,n−1(v)∥
.

Lemma 3.4. Calculating the coefficients of the Second Fundamental Form will require

an additional two indices, in other words, p ̸= q for p, q ∈ N∪{0}. These dot products,

given in Definition 3.9, are generalized below:
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e = n(n− 1)

m−2,n∑
p=0,q=0

Bp,m−2(u)Bq,n(v)⟨N⃗ , Pp+2,q − 2Pp+1,q + Pp,q⟩

f = n2

m−1,n−1∑
p=0,q=0

Bp,m−1(u)Bq,n−1(v)⟨N⃗ , Pp+1,q+1 − Pp+1,q − Pp,q+1 + Pp,q⟩

g = n(n− 1)

m,n−2∑
p=0,q=0

Bp,m(u)Bq,n−2(v)⟨N⃗ , Pp,q+2 − 2Pp,q+1 + Pp,q⟩.

Theorem 3.1. Utilizing the coefficients of Lemma 3.4, one can generalize the Second

Fundamental Form in terms of N⃗ of an (m× n) Bézier surface patch as follows:

II(u, v) = n[(n− 1)
∑m−2,n

p=0,q=0 Bp,m−2(u)Bq,n(v)⟨N⃗ , Pp+2,q − 2Pp+1,q + Pp,q⟩du2

+2n
∑m−1,n−1

p=0,q=0 Bp,m−1(u)Bq,n−1(v)⟨N⃗ , Pp+1,q+1−Pp+1,q−Pp,q+1+Pp,q⟩dudv

+(n− 1)
∑m,n−2

p=0,q=0 Bp,m(u)Bq,n−2(v)⟨N⃗ , Pp,q+2 − 2Pp,q+1 + Pp,q⟩dv2].

Remark 3.8. It is tedious to generalize the fomulae Gaussian Curvature, Mean Cur-

vature and the Principal Curvatures of an m×n Bézier surface due to the lengthiness

of the formulas and the large degrees of the polynomials being worked with. Therefore,

one can give the general formulas of these curvatures by taking a limited number of

control points in the u direction and the v direction.

Remark 3.9. The Weingarten map, defined in Definition 3.8, can also be represented

below in matrix form in terms of coefficients a, b, c, d:

Wp =

a b

c d

 =

E F

F G


−1 e f

f g

 = I−1II. (3.6)
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Multiplying the matrices on the right-hand side of equation (3.6), one will obtain

the coefficients a, b, c, d in terms of the coefficients of the First and Second Funda-

mental Forms shown below:

a =
Ge− Ff

EG− F 2

b =
Gf − Fg

EG− F 2

c =
Ef − Fe

EG− F 2

d =
Eg − Ff

EG− F 2
.

Definition 3.10. Gaussian Curvature: Let κp denote the Gaussian curvature of a

Bézier surface at an arbitrary point p = r(u, v) ∈ M . One can write κp in terms of

Wp in Remark 3.9, which is shown below:

κp = det(Wp) =
det (II)
det (I)

=
eg − f 2

EG− F 2
.

Definition 3.11. Mean Curvature: Let Hp denote the Mean curvature of a Bézier

surface at an arbitrary point p = r⃗(u, v) ∈ M . One can write Hp in terms of Wp in

Remark 3.9, which is shown below:

Hp =
1

2
trace(Wp) =

1

2

Ge+ Eg − 2Ff

EG− F 2
.
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Definition 3.12. Principal Curvatures: Let (λ1, λ2) denote the minimum and max-

imum principal curvatures, respectively, of a Bézier surface. One can find λ1, λ2 as

the eigenvalues of Wp in Remark 3.9, where I denotes the identity 2× 2 matrix:

det(Wp − λI) = 0. (3.7)

Referring to equation (3.7), the result will provide the eigenvalues λ1,2 = (λ1, λ2) of

the Weingarten matrix in terms of the coefficients (E,F,G) & (e, f, g), shown below

for λ1 = min(λ1, λ2) & λ2 = max(λ1, λ2) :

λ2
1,2 −

Ge− 2Ff + Eg

EG− F 2
λ1,2 +

(Ge− Ff)(Eg − Ff)− (Gf − Fg)(Ef − Fe)

(EG− F 2)2
= 0.

In terms of κp and Hp defined in Definition 3.10 and Definition 3.11, respectively,

the equation above can be written in the form below:

λ2
1,2 − 2Hpλ1,2 + κp = 0. (3.8)

The principles curvatures λ1,2 = (λ1, λ2), which are roots of equation (3.8), are

presented below:

λ1 = Hp −
√
H2

p − κp

λ2 = Hp +
√
H2

p − κp.

Remark 3.10. The Gaussian Curvature, denoted κp, can be represented as the prod-

uct of λ1 & λ2.
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Remark 3.11. The Mean Curvature, denoted Hp, can be represented as the average

of λ1 & λ2.

Example 3.3. Determine the Gaussian Curvature, the Mean Curvature and the Prin-

ciple Curvatures of the unit sphere parameterized by

r⃗(u, v) = (cos(u) cos(v), cos(u) sin(v), sin(u)), u ∈ [−π
2
, π
2
] & v ∈ [0, 2π].

From the worked examples above, one notices that the coefficients of the First

Fundamental Form and the Second Fundamental Form are equivalent, in other words,

e = E, f = F, g = G. This gives the following Weingarten map provided in Remark

3.9 below:

Wp =

 EG−F 2

EG−F 2
GF−FG
EG−F 2

EF−FE
EG−F 2

EG−F 2

EG−F 2

 =

1 0

0 1

.

As stated in Definition 3.10, the Weingarten map above will provide the Gaussian

Curvature of the unit sphere, shown below:

κp = det(Wp) = (1)(1)− (0)(0) = 1.

The Mean Curvature of the unit sphere is also shown below in terms of the Wein-

garten map above:

Hp =
1
2
trace

1 0

0 1

 = 1
2
(1 + 1) = 1.

The principal curvatures, provided in Definition 3.12, can now be solved by solving

the quadratic equation in terms of κp & Hp below:
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λ2
1,2 − 2Hpλ1,2 + κp = λ2

1,2 − 2λ1,2 + 1 = 0. (3.9)

Solving the quadratic equation (3.9) will give the roots, denoted as the principle

curvatures, shown below:

λ1 = λ2 = 1.

One can utilize Remarks 3.10 & 3.11 to check that κp, Hp & λ1,2 are correct.

Example 3.4. Let (P0,0, P1,0, P0,1, P1,1) ∈ R3 be the set of non-planar control points

of a (2 × 2) Bézier surface patch, in other words, i = 0, 1 and j = 0, 1 and z ̸= 0.

Compute the First and Second Fundamental Forms, the Gaussian Curvature, the

Mean Curvature and the Principal Curvatures of this surface patch by utilizing the

control points listed below:

P0,0 = (2, 1, 1)

P0,1 = (2, 3, 1)

P1,0 = (1, 1, 2)

P1,1 = (1, 3, 3). (3.10)

The Tensor-Product formula described in Definition 3.1 for an m×n Bézier surface

is shown below for i = 0, 1 & j = 0, 1 :

r⃗(u, v) =
1∑

i=0

Bi,1(u)
1∑

j=0

Pi,jBj,1(v)

r⃗(u, v) = P0,0B0,1(u)B0,1(v)+P0,1B0,1(u)B1,1(v)+P1,0B1,1(u)B0,1(v)+P1,1B1,1(u)B1,1(v)
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r⃗(u, v) = (1− u)(1− v)P0,0 + v(1− u)P0,1 + u(1− v)P1,0 + uvP1,1.

Using the set of non-planar control points of (3.10), one can represent the Tensor-

Product formula as the vector r⃗(u, v) below:

r⃗(u, v) = (2− u, 1 + 2v, 1 + u+ uv).

Figure 3.3: Example of a 2×2 Bézier surface, where r⃗(u, v) = (2−u, 1+2v, 1+u+uv),
u ∈ (0, 1) and v ∈ (0, 1).

63



In order to compute the First Fundamental Form of the Bézier surface patch,

the first-order derivatives of the vector r⃗(u, v) must be evaluated. These vectors are

provided below:

r⃗u = (−1, 0, v + 1)

r⃗v = (0, 2, u).

One can now determine the First Fundamental Form with the first-order deriva-

tives listed above. The necessary computations are shown below:

E = ∥r⃗u∥2 = v2 + 2v + 2

F = r⃗u
T r⃗v = uv + u

G = ∥r⃗v∥2 = 4 + u2

∴ The First Fundamental Form is ds2 = I(u, v) = (v2 + 2v + 2)du2 + 2u(v +

1)dudv + (4 + u2)dv2.

The cross-product, its L2 norm and the unit normal vector N⃗(u, v) of the (2× 2)

Bézier surface patch are shown below:

r⃗u × r⃗v = det


î ĵ k̂

−1 0 v + 1

0 2 u

 = −2(v + 1)̂i+ uĵ− 2k̂
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∥r⃗u × r⃗v∥ =
√

4(v + 1)2 + u2 + 4 =
√
4v2 + 8v + u2 + 8

∴ N⃗(u, v) = (−2(v+1),u,−2)√
4v2+8v+u2+8

.

In order to compute the Second Fundamental Form of the Bézier surface patch,

the second-order derivatives of the vector r⃗(u, v) must be evaluated. These vectors are

provided below:

r⃗uu = (0, 0, 0)

r⃗uv = r⃗vu = (0, 0, 1)

r⃗vv = (0, 0, 0).

One can now determine the Second Fundamental Form with the second-order

derivatives and the unit normal vector listed above. The necessary computations are

shown below:

e = N⃗T r⃗uu = 0

f = N⃗T r⃗uv =
−2√

4v2+8v+u2+8

g = N⃗T r⃗vv = 0.

∴ The Second Fundamental Form is II(u, v) = −4√
4v2+8v+u2+8

dudv.

The matrix representations of I(u, v) and II(u, v), denoted AI and AII, respectively,
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and their determinants, are provided below:

AI =

v2 + 2v + 2 u(v + 1)

u(v + 1) 4 + u2



det(AI) = u2 + 4v2 + 8v + 8

AII =

 0 −4√
4v2+8v+u2+8

−4√
4v2+8v+u2+8

0



det(AII) =
−16

4v2+8v+u2+8
.

To determine the coefficients of the Weingarten map, one must determine the in-

verses of AI. This matrix is provided below:

A−1
I = 1

u2+4v2+8v+8

 4 + u2 −u(v + 1)

−u(v + 1) v2 + 2v + 2

.

The coefficients of the Weingarten map, given in Remark 3.9, are provided below

for the (2× 2) Bézier surface patch:

Wp =

a b

c d

 = 1
u2+4v2+8v+8

 4 + u2 −u(v + 1)

−u(v + 1) v2 + 2v + 2


 0 −4√

4v2+8v+u2+8

−4√
4v2+8v+u2+8

0



a =
4u(v + 1)

(4v2 + 8v + u2 + 8)
3
2
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b =
−4(4 + u2)

(4v2 + 8v + u2 + 8)
3
2

c =
−4(v2 + 2v + 2)

(4v2 + 8v + u2 + 8)
3
2

d =
4u(v + 1)

(4v2 + 8v + u2 + 8)
3
2

.

The Gaussian Curvature κp, provided in Definition 3.10 is given below by utilizing

the determinants above:

κp = det(Wp) =
−16

(4v2+8v+u2+8)2
< 0.

The Mean Curvature Hp, provided in Definition 3.11, is given below by utilizing

the Weingarten map above:

Hp =
1
2
trace(Wp) =

4u(v+1)

(4v2+8v+u2+8)
3
2
.

The Principal Curvatures (λ1, λ2), provided in Definition 3.12, are evaluated below

by utilizing κp and Hp above and the quadratic formula:

λ2
1,2 − 2Hpλ1,2 +Kp = 0

λ2
1,2 −

8u(v+1)

(4v2+8v+u2+8)
3
2
λ1,2 − 16

(4v2+8v+u2+8)2
= 0.

λ1,2 =
8u(v+1)±

√
64u2v2+128u2v+128u2+256v2+512v+512

2(4v2+8v+u2+8)
3
2

λ1,2 =
4[u(v+1)±

√
(v2+2v+2)(u2+4)]

(4v2+8v+u2+8)
3
2
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λ1 =
4[u(v+1)−

√
(v2+2v+2)(u2+4)]

(4v2+8v+u2+8)
3
2

and λ2 =
4[u(v+1)+

√
(v2+2v+2)(u2+4)]

(4v2+8v+u2+8)
3
2

.

Note that κp is strictly negative, therefore the signs of λ1 and λ2 must be opposite

for (u, v) ∈ [0, 1], which is the case above. Furthermore, the reader can check that the

Principal Curvatures obtained above are correct by Remark 3.10 and Remark 3.11, in

other words, κp = λ1λ2 and Hp =
λ1+λ2

2
.
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Chapter 4

Singularities of Cubic Bézier

Curves

Recall the position vector of a cubic Bézier curve r⃗ : [0, 1] → R2 with four control

points {P0, P1, P2, P3} as below:

r⃗(t) =
3∑

i=0

PiBi,3(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3. (4.1)

Lemma 4.1. The formulas to convert the derivatives of a parametric curve r⃗(t) =

(x(t), y(t)) ⊂ R2, for t into some open interval, into the derivatives of the curve as a

function y = f(x) are:

dy

dx
=

(dy
dt
)

(dx
dt
)

d2y

dx2
=

d
dt
( dy
dx
)

(dx
dt
)
.

Remark 4.1. We determine the first and second derivative of the parametric curve

of equation (4.1) as shown below:
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r⃗ ′(t) = −3(1− t)2P0 + 3(3t− 1)(t− 1)P1 + 3t(2− 3t)P2 + 3t2P3

r⃗ ′′(t) = 6(1− t)P0 + 6(3t− 2)P1 + 6(1− 3t)P2 + 6tP3.

Thus, using dy
dx
, the first derivative of the cubic Bézier curve as a function of x

can be expressed below as the quotient of its parametric equations by taking P0 =

(x0, y0), P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3):

y′(t)

x′(t)
=

−(1− t)2y0 + (3t− 1)(t− 1)y1 + t(2− 3t)y2 + t2y3
−(1− t)2x0 + (3t− 1)(t− 1)x1 + t(2− 3t)x2 + t2x3

. (4.2)

Definition 4.1. Cusp: A cusp, also denoted as a sharp corner or a turning point,

is a singularity in which the tangent changes direction. This occurs when
dx

dt
= 0

at some particular value of t∗. If
dy

dt
̸= 0 at that same value of t∗, the graph has

a vertical tangent at that point. For a cubic Bézier curve, if the cusp occurs at t∗,

the derivative function of the position vector will have an infinite discontinuity at the

point t∗ as in one of the cases described below, and the curve has a vertical tangent

a. limt→t∗−
y′(t)
x′(t)

= +∞ & limt→t∗+
y′(t)
x′(t)

= −∞

b. limt→t∗−
y′(t)
x′(t)

= −∞ & limt→t∗+
y′(t)
x′(t)

= +∞.

If both
dx

dt
and

dy

dt
are zero at some value of t, then the cubic Bézier curve has a

cusp if, besides the previous possible limits, we have

lim
t→t∗−

y′(t)

x′(t)
= lim

t→t∗+

y′(t)

x′(t)
= L ∈ R

and the curve has a tangent of slope L at that point.
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Remark 4.2. The value t∗ ∈ (0, 1) is determined by evaluating when condition below

holds for some t ∈ (0, 1) :

∥r⃗ ′(t)∥2 = r⃗ ′(t)T r⃗ ′(t) = 0, (4.3)

or reduced to the condition below for some t ∈ (0, 1) :

r⃗ ′(t) = 0⃗, (4.4)

after which one needs to evaluate the limit.

An example of a cubic Bézier curve with a cusp at t∗ = 1
2
is provided below:

Remark 4.3. For any set of four control points, the resulting cubic Bézier curve can

only have at most one cusp.

Example 4.1. Let {P0, P1, P2, P3} = {(0, 0), (1, 1), (0, 1), (1, 0)}. Therefore, using

equation (4.1) and Definition 4.1, the Bézier curve and its first derivative can be

represented as the position vector r⃗(t) = (x(t), y(t)) below:

r⃗(t) = (4t3 − 6t2 + 3t, 3t− 3t2) (4.5)

r⃗ ′(t) = 3(4t2 − 4t+ 1, 1− 2t). (4.6)

Now, as r⃗ ′(t) ̸= 0⃗, one can solve equation (4.4) to determine the roots of the

equation (4.6). This is shown below :

(4t2 − 4t+ 1, 1− 2t) = 0⃗,


4t2 − 4t+ 1 = (2t− 1)2 = 0

1− 2t = 0.
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Both the quadratic equation and the linear equation above give the solution t∗ = 1
2
,

where we will show that the curve r⃗(t) has a cusp. Plugging t∗ into equation (4.5),

one obtains the point r⃗(1
2
) = (x(1

2
), y(1

2
)) = (1

2
, 3
4
).

Furthermore, the limit as t approaches to the cusp point from the right and the

left of dy
dx

shows that there is an infinite discontinuity. This is observed below using

Lemma 4.1, dy
dx

and equation (4.6):

dy
dx

= 1−2t
4t2−4t+1

= −1
2t−1

, ∀t∈(0, 1
2
)∪( 1

2
,1).

Then,

lim
t→ 1

2

−
dy
dx

= lim
t→ 1

2

−
−1
2t−1

= +∞ & lim
t→ 1

2

+
dy
dx

= lim
t→ 1

2

+
−1
2t−1

= −∞.

Therefore, as r⃗(t) is a function (any vertical line intersects the curve at one point

only), then there is an infinite discontinuity for dy
dx

at the point (1
2
, 3
4
) corresponding

to the value t∗ = 1
2
. The curve and its corresponding non-convex control polygon are

shown below:

Figure 4.1: Example of a Bézier curve with a cusp, where r⃗(t) = (4t3−6t2+3t, 3t−3t2),
t ∈ (0, 1).
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Another example of a cubic Bézier curve with a cusp at t∗ = 3
7
is provided below:

Example 4.2. Let {P0, P1, P2, P3} = {(0, 1), (3, 1), (1, 8
5
), (1, 0)}. Therefore, using

equation (4.1) and Definition 4.1, the Bézier curve and its first derivative can be

represented as the position vector r⃗(t) = (x(t), y(t)) below:

r⃗(t) = (7t3 − 15t2 + 9t, 1 +
9t2

5
− 14t3

5
) (4.7)

r⃗ ′(t) = (21t2 − 30t+ 9,
18t

5
− 42t2

5
). (4.8)

Now, as r⃗ ′(t) ̸= 0⃗, one can solve equation (4.4) to determine the roots of the

equation (4.8). This is shown below :

(21t2 − 30t+ 9, 18t
5
− 42t2

5
) = 0⃗,


21t2 − 30t+ 9 = 3(7t2 − 10t+ 3) = 3(1− t)(3− 7t) = 0

18t
5
− 42t2

5
= t(18

5
− 42t

5
) = 0.

The first quadratic equation gives the solutions t = 1, t∗ = 3
7
and the second

quadratic equation gives the solutions t = 0, t∗ = 3
7
. We will dismiss the solutions

t = 0 and t = 1 due to these parametric values not being part of the domain of the

cubic curve. If we would allow these parametric values as part of the domain, then

r⃗(0) and r⃗(1) will equate to P0 and P3, respectively, which cannot occur. Now, we

will show that the curve r⃗(t) has a cusp. Plugging t∗ into equation (4.7), one obtains

the point r⃗(3
7
) = (x(3

7
), y(3

7
)) = (81

49
, 272
245

).

Furthermore, the limit as t approaches to the cusp point from the right is equiv-

alent to the limit as t approaches to the cusp point from the left of dy
dx

and is finite.

This is observed below using Lemma 4.1, dy
dx

and equation (4.8) :
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dy
dx

=
18t
5

− 42t2

5

21t2−30t+9
= 2t

5(1−t)
, ∀t∈(0, 3

7
)∪( 3

7
,1).

Then,

lim
t→ 3

7

−
dy
dx

= lim
t→ 3

7

−
2t

5(1−t)
= 3

10
& lim

t→ 3
7

+
dy
dx

= lim
t→ 3

7

+
2t

5(1−t)
= 3

10
.

Therefore, the curve r⃗(t) has a cusp at the point (81
49
, 272
245

) corresponding to the

value t∗ = 3
7
. The curve (in red) and its corresponding non-convex control polygon

(in blue) are shown below:

Figure 4.2: Example of a Bézier curve with a cusp, where r⃗(t) = (7t3 − 15t2 + 9t, 1 +
9t2

5
− 14t3

5
), t ∈ (0, 1).

Definition 4.2. Loop: Let t1, t2 ∈ (0, 1) be two parametric values such that t1 ̸=

t2 and t1 < t2. These two values correspond to the self-intersection point of the

parametric equations x = x(t) & y = y(t) if and only if t1, t2 satisfy the simultaneous

conditions below:


x(t1)− x(t2) = 0

y(t1)− y(t2) = 0.

(4.9)

If a Bézier curve with the above data satisfies equations (4.9), then the curve has

a loop.
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Remark 4.4. For any set of four control points, the resulting cubic Bézier curve can

have at most one loop. As previously discussed, this loop will correspond to the two

values t1, t2 ∈ (0, 1) giving the same point on the curve.

An example of a cubic Bézier curve with a loop, self-intersecting at the values

t1, t2 = {−2
29
(3
√
3− 7), 2

29
(3
√
3 + 7)}, is shown below:

Example 4.3. Let {P0, P1, P2, P3} = {(0, 1), (4, 1), (1, 3), (1, 0)}. Therefore, using

equation (4.1), r⃗(t) can be written as the position vector below:

r⃗(t) = (12t− 21t2 + 10t3, 1 + 6t2 − 7t3). (4.10)

Next, using equations (4.9) and (4.10), one obtains the system below:


−12(t2 − t1) + 21(t22 − t21)− 10(t32 − t31) = 0

7(t32 − t31)− 6(t22 − t21) = 0.

Dividing each equation by the trivial solution t2 − t1 = 0 and using elementary

algebra to factor to cubic and quadratic expressions, the simplified system of equations

is provided below:


21(t2 + t1)− 10(t22 + t1t2 + t21) = 12

7(t22 + t1t2 + t21)− 6(t2 + t1) = 0.

(4.11)

Solving equations (4.11) using substitution will give the following equations below:
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t22 + t1t2 + t21 =

24
29

t2 + t1 =
28
29
.

(4.12)

Then, isolating the linear equation of equation (4.12) for t1 or t2 and then using

the quadratic formula gives the pair of solutions (t1, t2) = (−2
29
(3
√
3 − 7), 2

29
(3
√
3 +

7)). These solutions correspond to the point r⃗(14±6
√
3

29
) = (x(14+6

√
3

29
), y(14−6

√
3

29
)) =

(28952
24389

, 26325
24389

). Therefore, the Bézier curve defined by the position vector r⃗(t) has a

loop. The curve (in red) and its corresponding non-convex control polygon (in blue)

are shown below:

Figure 4.3: Example of a Bézier curve with a loop, where r⃗(t) = (12t−21t2+10t3, 1+
6t2 − 7t3), t ∈ (0, 1).

Definition 4.3. Inflection Point: An inflection point, denoted (x0, y0) ∈ R2, is a

point on a curve in which the curvature changes sign and, thus, is a simple (or odd-

order) root of the second derivative function d2y
dx2 .

Remark 4.5. Note that equation d2y
dx2 = 0 at a point (x(t0), y(t0)) is equivalent
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to r⃗ ′(t0) × r⃗ ′′(t0) = 0⃗ as r⃗ ′(t) × r⃗ ′′(t) = (0, 0, x′(t)y′′(t) − y′(t)x′′(t)) and d2y
dx2 =

x′(t)y′′(t)−y′(t)x′′(t)
(x′(t))3

.

At inflection points, the curvature is zero and the sign of the second derivative

d2y
dx2 changes. Therefore, the possible inflection points for a parametric curve r⃗(t) =

(x(t), y(t)) can be determined by solving for t0 the root of the equation r⃗ ′(t) ̸= 0⃗ :

r⃗ ′(t)× r⃗ ′′(t) = 0⃗. (4.13)

Then one has to study the sign change of the last coordinate of the vector r⃗ ′(t)×

r⃗ ′′(t) around the root t0.

Remark 4.6. Regarding a cubic Bézier curve with four control points, there can be

a maximum of two inflection points for t ∈ (0, 1). The number of inflection points is

dependent on the location of these control points. This will be proved later in Theorem

4.1.

An example of a cubic curve with one inflection point at the value t = 2−
√
3 ∈

(0, 1) is shown below:

Example 4.4. Let {P0, P1, P2, P3} = {(0, 1), (1
2
, 1), (1, 2), (1, 0)}. Therefore, using

equations (4.1) and (4.13), the position vector and the first and second order deriva-

tives of r⃗(t) can be written as the vectors below:

r⃗(t) = (
3t

2
− t3

2
, 1 + 3t2 − 4t3). (4.14)

r⃗ ′(t) =
3

2
(1− t2, 4t− 8t2). (4.15)

r⃗ ′′(t) = −3(t, 8t− 2). (4.16)

Then, the cross product of the first and second order derivatives of r⃗(t) is provided

below:
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r⃗ ′(t)× r⃗ ′′(t) = −9
2
· det


î ĵ k̂

1− t2 4t− 8t2 0

t 8t− 2 0

 = −9
2
(0, 0,−2(t2 − 4t+ 1)).

Solving equation (4.13) for the formula above is equivalent to solving the quadratic

equation below:

t2 − 4t+ 1 = 0. (4.17)

The solutions to equation (4.17) are t = 2±
√
3. Though, as 2 +

√
3 /∈ [0, 1], one

must select t = 2−
√
3. Therefore, r⃗(t) has only one inflection point. The location of

this inflection point is determined using equation (4.14) at t = 2−
√
3, which gives the

point r⃗(2−
√
3) = (6

√
3−10, 48

√
3−82). The curve and its corresponding non-convex

control polygon are shown below:

An example of a cubic curve with two inflection points at the value t = 5
11
−

√
3

11
∈

(0, 1) and t = 5
11

+
√
3

11
∈ (0, 1) is shown below:

Example 4.5. Let {P0, P1, P2, P3} = {(0, 1), (2, 1), (1, 3
2
), (1, 0)}. Therefore, using

equations (4.1) and (4.13), the position vector and the first and second order deriva-

tives of r⃗(t) can be written as the vectors below:

r⃗(t) = (4t3 − 9t2 + 6t,−5

2
t3 +

3

2
t2 + 1). (4.18)

r⃗ ′(t) = 3(4t2 − 6t+ 2, t− 5

2
t2). (4.19)

r⃗ ′′(t) = 3(8t− 6, 1− 5t). (4.20)

Then, the cross product of the first and second order derivatives of r⃗(t) is provided

below:
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Figure 4.4: Example of a Bézier curve with one inflection point, where r⃗(t) = (3t
2
−

t3

2
, 1 + 3t2 − 4t3), t ∈ (0, 1).
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r⃗ ′(t)× r⃗ ′′(t) = 9 · det


î ĵ k̂

4t2 − 6t+ 2 t− 5
2
t2 0

8t− 6 1− 5t 0

 = 9(0, 0, 11t2 − 10t+ 2).

Solving equation (4.13) for the formula above is equivalent to solving the quadratic

equation below:

11t2 − 10t+ 2 = 0. (4.21)

The solutions to equation (4.21) are t = 5
11

±
√
3

11
∈ (0, 1). Therefore, r⃗(t) has two

inflection points. The location of these inflection points are determined using equation

(4.18) at t = 5
11
−

√
3

11
and t = 5

11
+

√
3

11
, which gives the points r⃗( 5

11
+

√
3

11
) ≈ (1.218, 0.989)

and r⃗( 5
11

−
√
3

11
) ≈ (1.093, 1.067). The curve and its corresponding non-convex control

polygon are shown below:

Figure 4.5: Example of a Bézier curve with exactly two real inflection points, where
r⃗(t) = (4t3 − 9t2 + 6t,−5

2
t3 + 3

2
t2 + 1), t ∈ (0, 1).

Remark 4.7. Many cubic Bézier curves have zero inflection points, no loop nor

cusp. Such a curve is also known as an arch. For instance, the control points
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{P0, P1, P2, P3} = {(0, 1), (−1, 1), (1,−1), (1, 0)} correspond to the position vector of

a Bézier curve r⃗(t) = (−5t3 +9t2 − 3t, 5t3 − 6t2 +1) which is an arch. The curve (in

red) and its corresponding convex control polygon (in blue) are shown below:

Figure 4.6: Example of a Bézier curve with an arch, where r⃗(t) = (−5t3 + 9t2 −
3t, 5t3 − 6t2 + 1), t ∈ (0, 1).

Throughout the study of the singularities of cubic Bézier curves, one can introduce

the characteristic point R = (λ, µ) ∈ R2, for which λ and µ are solely dependent on

the location of the control points {P1, P2} = {(λ, 1), (1, µ)}. By fixing the control

points {P0, P3} = {(0, 1), (1, 0)}, one can classify the types of singularities for a cubic

Bézier curve with control points {P0, P1, P2, P3} by observing the cases below. In

other words, one can show that the (λ, µ)-Cartesian plane is split up into various

regions depending on the location of the characteristic point R. Note that the values

λ, µ cannot take on the value 0, or simultaneously 1, as the four points must be

distinct P0 ̸= P1 ̸= P2 ̸= P3.

As previously discussed, the inflection points of the cubic Bézier curve, if any,

correspond to curvature which changes sign, and in particular we have point(s) of

vanishing curvature. One should use the equation r⃗ ′(t) × r⃗ ′′(t) = 0 in Cartesian

coordinates due to less tedious computations. With respect to the parametric equa-
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tions x = x(t) and y = y(t), one must introduce the formula below to determine the

quantity of inflection points and their respective locations:

x′(t)y′′(t)− x′′(t)y′(t) = 0. (4.22)

Note that r⃗(t) = (x(t), y(t)), r⃗ ′(t) = (x′(t), y′(t)) and r⃗ ′′(t) = (x′′(t), y′′(t)).

Furthermore, the position vector of the cubic Bézier curve as well as its derivatives

corresponding to the set of control points {P0, P1, P2, P3} = {(0, 1), (λ, 1), (1, µ), (1, 0)}

are provided below:

r⃗(t) = (3t3λ− 2t3 − 6t2λ+ 3t2 + 3tλ, (1− t)(3t2µ− 2t2 + t+ 1)). (4.23)

r⃗ ′(t) = (−3(1− t)(3λt− 2t− λ),−9t2µ+ 6t2 + 6tµ− 6t). (4.24)

r⃗ ′′(t) = (18λt− 12t− 12λ+ 6, 12t− 18µt+ 6µ− 6). (4.25)

Plugging in equations (4.24) and (4.25) into equation (4.22) will give the following:

−3(1− t)(3λt− 2t− λ))(12t− 18µt+ 6µ− 6)− (18λt− 12t− 12λ+ 6)(−9t2µ+

6t2 + 6tµ− 6t) = 0.

t2(−18λ+ 54λµ− 18µ) + t(36λ− 54λµ) + (18λµ− 18λ) = 0.

Therefore, in the quadratic form, one may write this equation as the roots of the

function F (t) below:

F (t) = At2+Bt+C = t2(−18λ+54λµ−18µ)+t(36λ−54λµ)+(18λµ−18λ). (4.26)

Therefore, the discriminant function △ = B2 − 4AC and functions A, B and C

of F (t) are provided below using equation (4.26) :
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A = 18(3λµ− λ− µ)

B = 18λ(2− 3µ)

C = 18λ(µ− 1)

△ = 324λµ(4λ− 3λµ+ 4µ− 4).

(4.27)

In addition, depending on the number of inflection points on the curve, the signs

of the curvature at the endpoints t = 0 and t = 1 must be considered. Though

these endpoints are not considered in the domain of the curve, r⃗(t) will still allow

the parametric values t = 0 and t = 1 as its components are polynomials. Using

the Cartesian form to determine the curvature of the cubic Bézier curve r⃗(t), one

must solely compute the numerator (in the limiting sense) of κ(0) and κ(1), as shown

below:

F (0) = A(0)2 +B(0) + C = C. (4.28)

F (1) = A(1)2 +B(1) + C = A+B + C. (4.29)

The previous notations A,B,C,∆ and the product F (0)F (1) = AC + BC + C2

will be considered in the theorem below.

Remark 4.8. The cubic Bézier curve can either have up to two real inflection points,

a cusp point, a loop or none of these points due to the Variation Diminishing property,

2.12. Heuristically, if the cubic curve has a cusp and a loop simultaneously, then a

given line may intersect the curve more times than it will intersect its control polygon,

which would violate the Variation Diminishing property.

Remark 4.9. By the Tangential property, 2.3, the control polygon of a cubic Bézier

curve with a cusp point can never be convex. If the control polygon, with four control

83



points, is a convex quadrilateral, then this curve will never be tangent to the segments

P0P1 and P2P3, violating the Tangential property. If the curve has a loop, then the

shape of its control polygon will be identical to the control polygon of the cubic curve

with a cusp point. Then, the control polygon will only be convex in the case where the

cubic curve has no cusp, no loop nor inflection points.

Theorem 4.1. [1] [4] Let {P0, P1, P2, P3} = {(0, 1), (λ, 1), (1, µ), (1, 0)} be the control

points of a cubic Bézier curve for λ ∈ R\{0}, µ ∈ R\{0}, and λ, µ not simultaneously

equal to 1.

The following three types of special points can occur for such a Bézier curve of

degree n = 3: a cusp, denoted (t∗), a loop point, and one or two inflection points.

The existence of these points depends based on the five cases relative to A,B,C and

△ are shown below:

Cusp, no inflection points nor loops:
(A,B,C) ̸= 0

△ = 0

0 < −B
2A

< 1.

Loop, no cusp nor inflection points:
(A,B,C) ̸= 0

△ < 0

0 < −B±
√
−3△

2A
< 1.

Exactly two inflection points, no cusp nor loop:
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(A,B,C) ̸= 0

△ > 0

AC +BC + C2 > 0

0 < −B±
√
△

2A
< 1.

Exactly one inflection point, no cusps nor loops:
(A,B,C) ̸= 0

△ > 0

AC +BC + C2 < 0.

No inflection points, no cusps nor loops:

(A,B,C) ̸= 0

△ < 0

AC +BC + C2 > 0

−B±
√
−3△

2A
≤ 0 or −B±

√
−3△

2A
≥ 1.

Proof. Case 1: Cusp.

The cubic Bézier curve has a cusp, denoted t∗, for t∗ ∈ (0, 1) when t∗ is associated

with the quantities below for (A,B,C) ̸= 0:


(A,B,C) ̸= 0

t∗ = −B
2A

△ = 0.

(4.30)

To obtain the quantities of (4.30), one must use the condition r⃗ ′(t) = 0⃗ to deter-

mine the cusp of the cubic Bézier curve. The computations are shown below:
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r⃗ ′(t) = (−3(1− t)(3λt− 2t− λ),−9t2µ+ 6t2 + 6tµ− 6t) = (0, 0),


(1− t)(3λt− 2t− λ) = 0

t(3tµ− 2t− 2µ+ 2) = 0.

(4.31)

The first equation gives solutions t = 1 and 3λt − 2t − λ = 0 and the second

equation gives solutions t = 0 and 3tµ− 2t− 2µ+ 2 = 0. These solutions re-written

in terms of λ and µ of t∗ are shown below:



t = 1

t = 0

λ = 2t∗

3t∗−1

µ = 2(t∗−1)
3t∗−2

.

(4.32)

One can dismiss the first two solutions as they are not part of the domain of the

parametric value t∗. Isolating the quantities of λ and µ for t, one obtains below:


t∗ = λ

3λ−2

t∗ = 2(µ−1)
3µ−2

,

(4.33)

Then, eliminating the parameter t∗ between µ and λ of (4.33) and then using cross

multiplication, one obtains:

λ

3λ− 2
=

2(µ− 1)

3µ− 2
,

λ(3µ− 2) = 2(µ− 1)(3λ− 2),
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3µλ− 2λ = 6µλ− 4µ− 6λ+ 4. (4.34)

Then, for equation (4.34), cancelling out like-terms and placing all terms to one

side of (4.34) gives below:

3λµ− 4λ− 4µ+ 4 = 0. (4.35)

To note, one can notice that equation (4.35) is equivalent to △ = 0, which is a

hyperbola in the λ, µ plane. The standard form of the hyperbola is given below:

(λ− 4

3
)(µ− 4

3
) =

4

9
. (4.36)

Then, there is a unique root of the equation At2+Bt+C = 0 as △ = 0. Therefore,

the parametric value t∗ ∈ (0, 1) is shown below by plugging in △ = 0 into t = −B±
√
△

2A
,

the solutions of the equation At2 +Bt+ C = 0 :

t∗ =
−B

2A
=

λ(3µ− 2)

2(3λµ− λ− µ)
. (4.37)

Now, the derivative dy
dx

= y′(t)
x′(t)

in terms of the configuration {(0, 1), (λ, 1), (1, µ), (1, 0)}

is provided below:

y′(t)

x′(t)
=

t(3tµ− 2t− 2µ+ 2)

(1− t)(3λt− 2t− λ)
.

Using the quantities λ = 2t
3t−1

and µ = 2(t−1)
3t−2

from (4.28), the derivative y′(t,t∗)
x′(t,t∗)

can

be represented in the form below:

y′(t, t∗)

x′(t, t∗)
=

2t(t
(
µ−1
t∗

)
− (µ− 1))

(1− t)(λt
t∗
− λ)

,

Which can also be written as the fraction below:
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y′(t, t∗)

x′(t, t∗)
=

2t(µ− 1)( t
t∗
− 1)

λ(1− t)( t
t∗
− 1)

.

Taking the limit as t approaches t∗, one must examine the factor (t − t∗) of the

derivative y′(t,t∗)
x′(t,t∗)

. As t∗ ̸= 0, the derivative can be written below in terms of the factor

(t− t∗) :

y′(t, t∗)

x′(t, t∗)
=

2t(µ− 1)(t− t∗)

λ(1− t)(t− t∗)
.

One can notice that there is a factor (t − t∗) on both the numerator and the

denominator. When t approaches t∗, the factor (t − t∗) approaches 0. In other

words, this shows that the cusp point t∗ is a removable discontinuity of y′(t,t∗)
x′(t,t∗)

. Then,

by Definition 4.1, the cubic curve r⃗(t) can never be described as the graph of a

function y = f(x) with the configuration {(0, 1), (λ, 1), (1, µ), (1, 0)} at any cusp point

t∗ ∈ (0, 1) as x′(t, t∗) = y′(t, t∗) = 0.

Then, the limit as t approaches to the cusp point t∗ of y′(t,t∗)
x′(t,t∗)

is shown below for

λ, µ ̸= 0:

lim
t→t∗

2t(µ− 1)(t− t∗)

λ(1− t)(t− t∗)
= lim

t→t∗

2t(µ− 1)

λ(1− t)
=

2t∗(µ− 1)

λ(1− t∗)
∈ R, t∗ ̸= 0, 1.

Or,

lim
t→t∗−

2t(µ− 1)

λ(1− t)
= lim

t→t∗+

2t(µ− 1)

λ(1− t)
=

2t∗(µ− 1)

λ(1− t∗)
∈ R, t∗ ̸= 0, 1.

As the two-sided limits above exist and are finite due to λ, µ being finite, there

exists a cusp point, denoted t∗, when △ = 0 and 0 < −B
2A

< 1.
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Case 2: Loop point.

The cubic Bézier curve has a loop, also called a self-intersection point, when the

parametric values t1, t2 ∈ (0, 1), t1 < t2 are associated with the quantities below:


(A,B,C) ̸= 0

0 < −B±
√
−3△

2A
< 1

△ < 0.

(4.38)

Recall that a cubic Bézier curve has a loop for the parametric values t1, t2 ∈ (0, 1),

t1 < t2 when the conditions below are satisfied for x = x(t) and y = y(t):


x(t1)− x(t2) = 0

y(t1)− y(t2) = 0.

The computations of applying these condition to determine at which points λ, µ

correspond to a loop are provided below:


(t31 − t32)(3λ− 2) + 3(t1 − t2)

2(1− 2λ) + 3(t1 − t2)λ = 0

(t31 − t32)(2− 3µ) + 3(µ− 1)(t21 − t22) = 0,

(4.39)

Which is equivalent to the system below:


(t1 − t2)(t

2
1 + t1t2 + t22)(3λ− 2) + 3(t1 − t2)

2(1− 2λ) + 3(t1 − t2)λ = 0

(t1 − t2)(t
2
1 + t1t2 + t22)(2− 3µ) + 3(µ− 1)(t1 − t2)(t1 + t2) = 0.

(4.40)
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Reducing the equations of (4.40) by dividing them by the trivial solution t1−t2 = 0

will give the following equations:


(t21 + t1t2 + t22)(3λ− 2) + 3(t1 + t2)(1− 2λ) = −3λ

(t21 + t1t2 + t22)(2− 3µ) + 3(µ− 1)(t1 + t2) = 0.

(4.41)

One can represent (4.41) in the matrix form MX = N , shown below:

3λ− 2 3− 6λ

2− 3µ 3µ− 3


t21 + t1t2 + t22

t1 + t2

 =

−3λ

0

 . (4.42)

Using row-reduction on augmented matrix (4.42), one can determine a solution

for the system (4.41) in terms of t21+ t1t2+ t22 and t1+ t2. The row-reduction is shown

below:

 3λ− 2 3− 6λ −3λ

2− 3µ 3µ− 3 0

 ,

1

2− 3µ
R2 1 3−6λ

3λ−2
−3λ
3λ−2

1 3µ−3
2−3µ

0

 ,

R2 −R1 1 3−6λ
3λ−2

−3λ
3λ−2

0 −9λµ+3µ+3λ
(2−3µ)(3λ−2)

3λ
3λ−2

 ,
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(2− 3µ)(3λ− 2)

−9λµ+ 3µ+ 3λ
R2 1 3−6λ

3λ−2
−3λ
3λ−2

0 1 λ(2−3µ)
−3λµ+µ+λ

 ,

R1 −
3− 6λ

3λ− 2
R2 1 0 3λ−3λµ

−3λµ+µ+λ

0 1 λ(2−3µ)
−3λµ+µ+λ


t21 + t1t2 + t22

t1 + t2

 .

Then, in the matrix form MX = N , one obtains the system of equations below,

represented in terms of functions A,B,C,△:


t21 + t1t2 + t22 =

3λ(1−µ)
λ−3λµ+µ

= 3C
A

t1 + t2 =
λ(2−3µ)

−3λµ+λ+µ
= −B

A
.

(4.43)

Solving (4.43) for t1, t2 = t1,2 in terms of functions A,B,C,△, one must isolate

the second equation for either t1 or t2, which gives the equation below:

t1 =
−B

A
− t2 = −

(
B

A
+ t2

)
.

Then, plugging t1 into the first equation gives the following computations:

(
−
(
B

A
+ t2

))2

−
(
B

A
+ t2

)
t2 + t22 =

3C

A
,

t22 +
t2B

A
+

B2

A2
=

3C

A
,
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t22 +
B

A
t2 +

(
B2

A2
− 3C

A

)
= 0. (4.44)

Note that t1 = min{t1, t2} and t2 = max{t1, t2}. Using the quadratic formula to

determine the parametric values t1,2 of equation (4.44) gives the computations below:

t1,2 =

−B
A

±
√

B2

A2 − 4
(
B2

A2 − 3C
A

)
2

,

t1,2 =
−B
A

± 1
A

√
−3B2 + 12AC

2
. (4.45)

Then, equation (4.45) is represented below for t1,2 ∈ (0, 1) solely in terms of

functions A,B,C,△ for △ < 0 :

t1,2 =
−B ±

√
−3△

2A
. (4.46)

Case 3: One inflection point.

The cubic Bézier curve has one real inflection point for t ∈ (0, 1) when t is asso-

ciated with the quantities below for (A,B,C) ̸= 0:


F (0)F (1) = C(A+B + C) < 0

△ > 0.

(4.47)

Note that in terms of the quantities of (4.47), △ ̸= 0 due to the necessity that

λ ̸= 0, µ ̸= 0 or 4λ− 3λµ+ 4µ− 4 ̸= 0. If these conditions are not satisfied, then the
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cubic Bézier curve will degenerate into a straight line as plugging λ = µ = 0 into △

will give △ = 0 and taking λ = µ = 0 will give a linear (n = 1) Bézier curve of control

points {P0, P1} = {(0, 1), (1, 0)}, which is not possible. Also, if 4λ− 3λµ+4µ−4 = 0

then the cubic Bézier curve must only a have a cusp point, which cannot occur as the

curve cannot have two special types of points simultaneously. In addition, △ ≮ 0 as

the quantity −B−
√
△

2A
or the quantity −B+

√
△

2A
(depending on which of these quantities

are within the interval (0,1)) must be real.

If the cubic Bézier curve for t ∈ (0, 1) has exactly one real inflection point, then

the sign of the curvature before the inflection point and after the inflection point will

change. Therefore, one must determine the signs of the curvature at the endpoints

t = 0 and t = 1 (in the limiting sense). This will give the condition below:

κ(0)κ(1) < 0.

The quantities κ(0) and κ(1), using κ(t) = ∥r⃗ ′(t)×r⃗ ′′(t)∥
∥r⃗ ′(t)∥3 , are shown below:

κ(0) =
∥r⃗ ′(0)× r⃗ ′′(0)∥

∥r⃗ ′(0)∥3
=

C

27|λ|3
=

C

27λ2|λ|
,

κ(1) =
∥r⃗ ′(1)× r⃗ ′′(1)∥

∥r⃗ ′(1)∥3
=

A+B + C

27|µ|3
=

A+B + C

27µ2|µ|
.

Then, for there to be one inflection point on the cubic Bézier curve on t ∈ (0, 1),

either of the following cases must be satisfied:

C
27λ2|λ| < 0 and A+B+C

27µ2|µ| > 0,

C
27λ2|λ| > 0 and A+B+C

27µ2|µ| < 0.
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The denominators of the quantities κ(0) and κ(1) are strictly positive due to λ ̸= 0

and µ ̸= 0. Due to this, isolating for C and A+ B + C does not change the signs of

the inequalities above. Then, this immediately gives the reduced conditions below:

C < 0 and A+B + C > 0,

C > 0 and A+B + C < 0.

The conditions above are equivalent to equations (4.28) and (4.29), respectively.

Then, the condition above is equivalent to the condition below:

F (0)F (1) < 0.

Then, by (4.24) and (4.25), the condition above is equivalent to the condition

below:

C(A+B + C) < 0. (4.48)

Then, in terms of λ, µ, the region C(A + B + C) < 0 in standard form is shown

below in terms of the curvature κ(t):

(18λµ− 18λ)(18λµ− 18µ) = 324λµ(1− λ)(1− µ) < 0.

Which is equivalent to the condition below:

λµ(1− λ)(1− µ) < 0.

In addition, though not necessary, there exists an inflection point when A = 0

when {A = 0} ⊂ {λµ(1−λ)(1−µ) < 0}. This quantity is derived using the equation
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At2 +Bt+ C = 0 below:

(0)t2 +Bt+ C = 0,

Bt+ C = 0, (4.49)

t =
−C

B
. (4.50)

Note that when A = 0, equation (4.49) is linear.

Then, using (4.50), there exists an additional case regarding the existence of one

real inflection point on a cubic Bézier curve for t ∈ (0, 1), shown below:


A = 0

0 < −C
B

< 1.

Case 4: Two inflection points.

The cubic Bézier curve has two real inflection points for t ∈ (0, 1) when t is

associated with the quantities below for (A,B,C) ̸= 0:


0 < −B±

√
△

2A
< 1

△ > 0.

(4.51)

The quantities −B±
√
△

2A
of (4.51) are immediate when analyzing the roots of At2 +

Bt+C = 0. For the cubic Bézier curve to have two real inflection points for t ∈ (0, 1),

At2 +Bt+ C = 0 must correspond to two roots in the domain (0, 1).

The quantities of (4.51) are sufficient but can be extended in terms of the product

of (4.28) and (4.29). By definition, when the cubic Bézier curve on t ∈ (0, 1) has two

real inflection points, the curvatures at the endpoints (in the limiting sense) must have
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the same sign. The proof of how the product κ(0)κ(1) implies the product F (0)F (1)

is given in Case 3.

Then, one obtains the condition below:

C(A+B + C) = AC +BC + C2 = λµ(1− λ)(1− µ) > 0.

As discussed, the quantities −B±
√
△

2A
∈ (0, 1) implies that the cubic Bézier curve

has two inflection points for △ > 0. Then, these quantities must be analyzed when

A > 0 and A < 0.

For A > 0 :

0 <
−B ±

√
△

2A
< 1,

0 <
−B ±

√
△

2
< A. (4.52)

For A < 0 :

0 <
−B ±

√
△

2A
< 1,

A <
−B ±

√
△

2
< 0. (4.53)

Then, the quantities of (4.51) can also be represented as the following cases below:



A > 0

△ > 0

AC +BC + C2 > 0

0 < −B±
√
△

2
< A,
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A < 0

△ > 0

AC +BC + C2 > 0

A < −B±
√
△

2
< 0.

Case 5: No inflection points, no loop nor cusp (Arch).

The cubic Bézier curve has no cusp, denoted t∗, no loop, denoted t1,2 and no

inflection points for t ∈ (0, 1) when t is associated with the quantities below for

(A,B,C) ̸= 0:

(A,B,C) ̸= 0

△ < 0

AC +BC + C2 > 0

−B±
√
−3△

2A
≤ 0 or −B±

√
−3△

2A
≥ 1.

First, a cubic curve with an arch has the property F (0)F (1) = C(A+B+C) > 0

due to no inflection points being present on t ∈ (0, 1). In other words, κ(0) and κ(1)

assume the same sign.

As the cubic curve cannot have a cusp point, △ ̸= 0. Then, λ, µ cannot satisfy

the equation below:

(λ− 4

3
)(µ− 4

3
) =

4

9
.

Recall the condition F (t) = At2+Bt+C = 0, which detects the quantity and re-

spective locations of the inflection points of the cubic Bézier curve, in which A,B,C,△
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are functions of (4.27). For there to be no real inflection points on the curve for

t ∈ (0, 1), the roots of the function F (t) must not be real. These quantities are shown

below:

−B ±
√
△

2A
∈ C.

When the cubic Bézier curve is an arch, the function F (t) must either be strictly

greater than zero or strictly less than zero. In other words, the second derivative must

either be strictly positive or strictly negative. These conditions are shown below:

F (t) < 0 or F (t) > 0. (4.54)

The first-order and second-order derivatives of the function F (t) = At2 +Bt+ C

are shown below for A ̸= 0:

F ′(t) = 2At+B, (4.55)

F ′′(t) = 2A. (4.56)

The goal is to show that no real inflection points are present when (4.54) is satisfied

and when the parametric value t is outside the domain t ∈ (0, 1). The unique critical

point of F (t) is shown below for t ∈ R :

F ′(t) = 2At+B = 0,

t∗ =
−B

2A
.

Plugging t∗ into F (t) yields the computations below:
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F (t∗) = A

(
−B

2A

)2

+B

(
−B

2A

)
+ C,

F (t∗) =
B2

4A
− B2

2A
+ C,

F (t∗) =
4AC − B2

4A
,

F (t∗) = −B2 − 4AC

4A
,

F (t∗) =
−1

4A
△. (4.57)

When F (t) > 0 for all t, then F (t∗) > 0 and when F (t) < 0 for all t, then

F (t∗) < 0.

In addition, when A > 0, (4.56) is strictly positive. In other words, when A > 0,

F (t) is strictly concave up, which results in t∗ = −B
2A

being a local minimum of the

parabola F (t). Then, when A > 0, F (t) must be strictly positive, meaning that the

parabola is strictly above the t-axis. Immediately, (4.57) gives △ < 0 due to no

t-intercepts.

When A < 0, (4.56) is strictly negative. In other words, when A < 0, F (t)

is strictly concave down, which results in t∗ = −B
2A

being a local maximum of the

parabola F (t). Then, when A < 0, F (t) must be strictly negative, meaning that the

parabola is strictly below the t-axis. Immediately, (4.57) also gives △ < 0 due to no

t-intercepts.

As △ < 0, F (t) cannot have any real solutions for t ∈ R. Then, −B±
√
△

2A
∈ C.

Then, only Case 2 is satisfied, which indicates the possible presence of a self-

intersection point. For there to be no self-intersection on the domain t ∈ (0, 1), the

inequalities below must be satisfied in terms of the quantities t1,2 of Definition 4.2:
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−B ±
√
−3△

2A
≤ 0 or

−B ±
√
−3△

2A
≥ 1.

We will now consider the possible types of cubic Bézier curves based on the position

on the given values (λ, µ) as a position of a point in the (λ, µ)-plane.

Corollary 4.1. Let the control polygon of the cubic Bézier curve with control points

{P0, P1, P2, P3} = {(0, 1), (λ, 1), (1, µ), (1, 0)} as in the previous theorem be denoted

by γ. Let R = R(λ, µ) be called the characteristic point of the resulting Bézier curve.

The distribution of the special types of points of the cubic Bézier curve with con-

trol points {P0, P1, P2, P3} = {(0, 1), (λ, 1), (1, µ), (1, 0)} are given below based on the

position of R in one of the regions of the (λ, µ)-plane:



Cusp : R ∈
2⋃

i=1

C i

Loop : R ∈
3⋃

i=1

L i

One inflection point : R ∈
4⋃

i=1

O i

Two inflection points : R ∈
3⋃

i=1

T i

Arch : R ∈
4⋃

i=1

N i,

(4.58)

The regions of (4.58) are defined as follows:
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C 1 ∪ C 2 = {(λ, µ) ∈ R2 | (λ− 4
3
)(µ− 4

3
) = 4

9
\ {0 < λ < 1}}

L 1 = {(λ, µ) ∈ R2 | 3µ2 − 3µ+ λ < 0 and 4λ− 3λµ+ 4µ− 4 > 0}

L 2 = {(λ, µ) ∈ R2 | 3λ2 − 3λ+ µ < 0 and 4λ− 3λµ+ 4µ− 4 < 0}

L 3 = {(λ, µ) ∈ R2 | λ > 4
3
and 4λ− 3λµ+ 4µ− 4 < 0}

O 1 = {(λ, µ) ∈ R2 | 0 < λ ≤ 1 and µ > 1}

O 2 = {(λ, µ) ∈ R2 | λ < 0 and 0 < µ ≤ 1}

O 3 = {(λ, µ) ∈ R2 | 0 < λ ≤ 1 and µ < 0}

O 4 = {(λ, µ) ∈ R2 | λ > 1 and 0 < µ ≤ 1}

T 1 = {(λ, µ) ∈ R2 | λ < 0 and µ > 1 and 4λ− 3λµ+ 4µ− 4 < 0}

T 2 = {(λ, µ) ∈ R2 | λ > 1 and µ < 0 and 4λ− 3λµ+ 4µ− 4 < 0}

T 3 = {(λ, µ) ∈ R2 | λ > 1 and µ > 1 and 4λ− 3λµ+ 4µ− 4 > 0}

N 1 = {(λ, µ) ∈ R2 | 0 < λ < 1 and 0 < µ < 1}

N 2 = {(λ, µ) ∈ R2 | λ < 0 and µ < 0}

N 3 = {(λ, µ) ∈ R2 | 3µ2 − 3µ+ λ ≥ 0 and λ < 0 and µ > 1}

N 4 = {(λ, µ) ∈ R2 | 3λ2 − 3λ+ µ ≥ 0 and λ > 1 and µ < 0}

(4.59)

The hyperbola (λ− 4
3
)(µ− 4

3
) = 4

9
(red curves) and the parabolas 3µ2 − 3µ+λ = 0

and 3λ2 − 3λ + µ = 0 (blue curves) split the λ, µ plane in Figure 4.7 into various

regions depending on the location of the characteristic point R in terms of λ, µ in

(4.59).

Remark 4.10. The regions of (4.58) are represented by the picture below:
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Figure 4.7: Distribution of the three types of special points of the λ, µ plane of a
cubic Bézier curve with control points {(0, 1), (λ, 1), (1, µ), (1, 0)}.
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Proof. The regions are determined by the conditions of Theorem 4.1 and are made

explicit below:

Cusp point:

0 <
−B

2A
< 1,

△ = 0.

In terms of λ, µ, the quantities above become:

0 <
λ(3µ− 2)

2(3λµ− λ− µ)
< 1. (4.60)

λµ(4λ− 3λµ+ 4µ− 4) = 0.

When A > 0, (4.60) becomes:

0 < 3λµ− 2λ < 6λµ− 2λ− 2µ,

λµ(4λ− 3λµ+ 4µ− 4) = 0.

Breaking down the above chain of inequalities gives:

λ(3µ− 2) > 0,

3λµ− 2λ < 6λµ− 2λ− 2µ,

λµ(4λ− 3λµ+ 4µ− 4) = 0.

Which becomes:

λ(3µ− 2) > 0,
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µ(3λ− 2) > 0,

4λ− 3λµ+ 4µ− 4 = 0.

The two inequalities above and △ = 0 give the curve C 1, which is the upper

section of the hyperbola (λ− 4
3
)(µ− 4

3
) = 4

9
in Figure 4.7.

When A < 0, the relations (4.60) become:

0 > 3λµ− 2λ > 6λµ− 2λ− 2µ,

λµ(4λ− 3λµ+ 4µ− 4) = 0.

Breaking down the above chain of inequalities gives:

λ(3µ− 2) < 0,

6λµ− 2λ− 2µ < 3λµ− 2λ,

λµ(4λ− 3λµ+ 4µ− 4) = 0.

Which becomes:

λ(3µ− 2) < 0,

µ(3λ− 2) < 0,

4λ− 3λµ+ 4µ− 4 = 0.

The two inequalities above and △ = 0 give the curve C 2, which is the lower

section of the hyperbola (λ − 4
3
)(µ − 4

3
) = 4

9
in Figure 4.7. Note that the curve C 2

excludes the values λ, µ ∈ (0, 1).
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Self-intersection point:

0 <
−B ±

√
−3△

2A
< 1, (4.61)

△ < 0.

Breaking down (4.61) gives the following inequalities:

−B −
√
−3△

2A
> 0,

−B +
√
−3△

2A
< 1,

△ < 0.

When A > 0, the inequalities above can be written as:

0 <
√

−3△ < −B, (4.62)

0 <
√
−3△ < 2A+B. (4.63)

Using the positivity of −B and 2A+ B, another inequality is produced, which is

shown below:

2A > −B > 0.

Which can be broken down into the following inequalities:

2A > −B,

B < 0.
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Squaring both sides of (4.62) and (4.63) gives the inequalities below:

B2 > −3△ > 0,

4A2 + 4AB +B2 > −3△ > 0,

2A > −B,

B < 0,

△ < 0.

Then, replacing △ with B2 − 4AC and simplifying gives:

B2 − 3AC > 0,

A2 + AB +B2 − 3AC = A(A+B − 3C) + B2 > 0,

2A > −B,

B < 0,

△ < 0.

In terms of λ, µ, the inequalities above become:

λ2 + 3λµ2 − 3λµ > 0,

µ2 + 3µλ2 − 3λµ > 0,

6λµ− 2λ− 2µ > 3λµ− 2λ,

λ(2− 3µ) < 0,
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λµ(4λ− 3λµ+ 4µ− 4) < 0.

Which becomes:

λ(λ+ 3µ2 − 3µ) > 0,

µ(µ+ 3λ2 − 3λ) > 0,

µ(3λ− 2) > 0,

λ(3µ− 2) > 0,

λµ(4λ− 3λµ+ 4µ− 4) < 0.

The four inequalities above and △ < 0 give the region L 3 in Figure 4.7.

When A < 0, one should use the quantities below:

−B +
√
−3△

2A
> 0,

−B −
√
−3△

2A
< 1,

△ < 0.

The inequalities above can be written as:

0 <
√

−3△ < B, (4.64)

0 <
√
−3△ < −(2A+B). (4.65)

Using the positivity of B and −2A−B, another inequality is produced, which is

shown below:
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2A < −B < 0.

The latter can be broken down into the following inequalities:

2A < −B,

B > 0.

Squaring both sides of (4.64) and (4.65) gives the inequalities below:

B2 > −3△ > 0,

4A2 + 4AB +B2 > −3△ > 0,

2A < −B,

B > 0,

△ < 0.

Then, replacing △ with B2 − 4AC and simplifying gives:

B2 − 3AC > 0,

A2 + AB +B2 − 3AC = A(A+B − 3C) + B2 > 0,

2A < −B,

B > 0,

△ < 0.

In terms of λ, µ, the inequalities above become:
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λ2 + 3λµ2 − 3λµ > 0,

µ2 + 3µλ2 − 3λµ > 0,

6λµ− 2λ− 2µ < 3λµ− 2λ,

λ(2− 3µ) > 0,

λµ(4λ− 3λµ+ 4µ− 4) < 0.

These inequalities become:

λ(λ+ 3µ2 − 3µ) > 0,

µ(µ+ 3λ2 − 3λ) > 0,

µ(3λ− 2) < 0,

λ(3µ− 2) < 0,

λµ(4λ− 3λµ+ 4µ− 4) < 0.

The four inequalities above and △ < 0 give the regions L 1 and L 2 in Figure

4.7. In addition, note that L 1 is bounded by the hyperbola (λ− 4
3
)(µ− 4

3
) = 4

9
and

the parabola 3µ2 − 3µ + λ = 0. Also, the region L 2 is bounded by the hyperbola

(λ− 4
3
)(µ− 4

3
) = 4

9
and the parabola 3λ2 − 3λ+ µ = 0.

One inflection point:

C(A+B + C) < 0,

△ > 0.
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Note that the proof of the derivation of the quantities above was provided in Case

4 of Theorem 4.1. Recall that the region C(A + B + C) = 324(1 − λ)(1 − µ) < 0 is

rectangular and corresponds to regions O 1, O 2, O 3 and O 4 in Figure 4.7.

Two inflection points:

0 <
−B ±

√
△

2A
< 1,

△ > 0.

Breaking down the inequality above gives the following inequalities:

−B −
√
△

2A
> 0,

−B +
√
△

2A
< 1,

△ > 0.

When A > 0, the inequalities above can be written as:

0 <
√

△ < −B, (4.66)

0 <
√

△ < 2A+B. (4.67)

Using the positivity of −B and 2A+ B, another inequality is produced, which is

shown below:

2A > −B > 0.

This can be broken down into the following inequalities:

2A > −B,
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B < 0.

Squaring both sides of (4.66) and (4.67) gives the inequalities below:

B2 > △ > 0,

4A2 + 4AB +B2 > △ > 0,

2A > −B,

B < 0,

△ > 0.

Then, replacing △ with B2 − 4AC and simplifying gives:

AC > 0, (4.68)

A+B + C > 0,

2A > −B,

B < 0,

△ > 0.

Note that when A > 0, (4.68) reduces to C > 0.

In terms of λ, µ, the inequalities above become:

λ(µ− 1) > 0,

µ(λ− 1) > 0,

6λµ− 2λ− 2µ > 3λµ− 2λ,
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λ(2− 3µ) < 0,

λµ(4λ− 3λµ+ 4µ− 4) > 0.

This becomes:

λ(µ− 1) > 0,

µ(λ− 1) > 0,

µ(3λ− 2) > 0,

λ(3µ− 2) > 0,

λµ(4λ− 3λµ+ 4µ− 4) > 0.

The four inequalities above and △ > 0 corresponds to region T 3 in Figure 4.7.

When A < 0, one should use the quantities below:

−B +
√
△

2A
> 0,

−B −
√
△

2A
< 1,

△ > 0.

When A < 0, the inequalities above can be written as:

0 <
√

△ < B, (4.69)

0 <
√
△ < −(2A+B). (4.70)

Using the positivity of B and −(2A + B), another inequality is produced, which
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is shown below:

2A < −B < 0.

This can be broken down into the following inequalities:

2A < −B,

B > 0.

Squaring both sides of (4.69) and (4.70) gives the inequalities below:

B2 > △ > 0,

4A2 + 4AB +B2 > △ > 0,

2A < −B,

B > 0,

△ > 0.

Then, replacing △ with B2 − 4AC and simplifying gives:

AC > 0, (4.71)

A+B + C < 0,

2A < −B,

B > 0,

△ > 0.
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Note that when A < 0, (4.71) reduces to C < 0.

Then, on terms of λ, µ, the inequalities above become:

λ(µ− 1) < 0,

µ(λ− 1) < 0,

6λµ− 2λ− 2µ < 3λµ− 2λ,

λ(2− 3µ) > 0,

λµ(4λ− 3λµ+ 4µ− 4) > 0.

This becomes:

λ(µ− 1) < 0,

µ(λ− 1) < 0,

µ(3λ− 2) < 0,

λ(3µ− 2) < 0,

λµ(4λ− 3λµ+ 4µ− 4) > 0.

The four inequalities above and △ > 0 give the regions T 1 and T 2 in Figure

4.7. In addition, note that T 1 is bounded by the line µ = 1 and the hyperbola

(λ − 4
3
)(µ − 4

3
) = 4

9
. Also, the region T 2 is bounded by the line λ = 1 and the

hyperbola (λ− 4
3
)(µ− 4

3
) = 4

9
.

Also, the regions that have not been produced by any of the inequalities above

are the regions
4⋃

i=1

N i.
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