
 

 

 

Natural Disasters and Agricultural Commodity Prices: 

Global Evidence 

 

 

 

Shairy Henein 

 

 

A Thesis 

in 

The Department Of 

Finance 

 

 

 

 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of 

Master of Science (Finance) 

 

at Concordia University 

Montreal, Québec, Canada 

 

 

 

 

 

August 2023 

 

©Shairy Henein, 2023 

 

 



 

 

 

School of Graduate Studies 

 

This is to certify that the thesis is prepared 

By:            Shairy Henein 

Entitled:   Natural Disasters and Agricultural Commodity Prices: Global Evidence 

and submitted in partial fulfillment of the requirements for the degree of 

 

Master of Science (Finance) 

 

complies with the regulations of the University and meets the accepted standards with respect 

to originality and quality.  

Signed by the final examining committee: 

Chair 

Dr. Erkan Yönder 

                             Examiner 

Dr. Frederick Davis 

                                                                    Examiner 

Dr. Siaf Ullah 

                                                                                 Thesis Supervisor 

Dr. Thomas Walker 

      Thesis Supervisor 

 

Approved by 

       Graduate Program Director 

Dr. Nilanjan Basu 

Dr. Anne-Marie Croteau, Associate Dean of John Molson School of Business 

  



 

 

 

Natural Disasters and Agricultural Commodity Prices: Global Evidence 

Shairy Henein 

 

Abstract 

 

Using the prices of seven agricultural commodities over the period from 1980 to 2019, this 

study employs both an event study and GARCH modelling to capture whether and how natural 

disasters occurring in the main production centres of certain agricultural commodities affect 

their returns and price volatilities. 

 

In a first step, we examine how natural disasters affect the prices and volatilities of the affected 

commodities. In a second step, we employ a series of ordinary least squares (OLS) regressions 

to examine what factors (e.g., disaster, commodity, and country characteristics) affect the 

abnormal return and abnormal volatility. Our study thus provides important insights for traders, 

hedgers, producers, and purchasers of agricultural commodities who are concerned about the 

rising risk of climate-induced events and how they may affect the agricultural commodity 

markets. 
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Introduction 

 

In recent years, we have seen an increase in the frequency and severity of natural disasters all 

over the world (Rahmstorf & Coumou, 2011; Francis & Vavrus, 2012; Bourdeau-Brien & 

Kryzanowski, 2017). These natural disasters have caused property and agricultural losses, 

amounting to an annual average of +18 billion US dollars over the last 25 years (Bourdeau-

Brien & Kryzanowski, 2017). 

 

Additionally, the prices and price fluctuations of agricultural commodities have witnessed 

recently severe changes, with negative economic impacts (Zhang et al., 2020). As the climate 

continues to change, the number and intensity of natural disasters will increase; leaving 

agriculture directly exposed to and dependant on environmental natural factors (Mechler et al., 

2010). 

 

Like other financial assets, agricultural commodity markets are information-driven (Milonas, 

1987). Information is important for capital allocation in markets, and the timely reactions by 

market participants to information is what makes a market efficient (Fama, 1970). Thus, a 

speedy and accurate price adjustment to information is the main feature of an efficient market. 

Quick dissemination of data in markets induce trading, leading to price determination, i.e., a 

new equilibrium price decided by supply and demand forces. 

 

Information includes the factors that market participants consider as signals carrying pieces of 

information that is important to them, as buyers and sellers, in reaching the equilibrium price. 

Many studies have been conducted to determine what financial markets constitute as signals, 

how market participants interpret them, and how they react to them. Studies have also been 

conducted to measure how different financial markets react to the same signal. Likewise, 

studies were performed to measure the impact of different events, in terms of magnitude and 

direction, including regulations (imposing new regulations or changing already existing ones), 

risk factors, climate change, and natural disasters. 

 

Natural disasters have different effects on different economies. Breiling (2021) discusses the 

losses and damages caused by natural disasters, including agrarian losses and rural value 

chains. He finds that the impact of natural disasters on agricultural activity-led economies is 
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particularly pronounced since they are, in effect, climate-dependent income systems. Breiling 

also discusses the heavy toll that natural disasters have imposed in rural areas, particularly in 

low-income countries, coupled with their poor reporting capacities, which makes quantifying 

the losses quite difficult. He notes that it remains difficult to gauge the impact of environmental 

hazards and natural risks, particularly with the expected increase in their frequency and 

intensity. 

 

This paper adds to this literature by studying the impact of natural disasters on a set of 

agricultural commodities, by measuring their abnormal price returns and volatility around the 

occurrence of these natural disasters. Next, this paper investigates whether certain factors 

exacerbate or mitigate the abnormal returns and variance of these commodities in response to 

natural disasters. 

 

The findings of this study are meaningful to market participants because it suggests that short-

term natural disasters do not impact commodity prices as per the economic intuition. Markets 

seem to pay more attention to and care more about long-term natural disasters. It may also be 

the case that disaster information takes longer to be incorporated in prices; or maybe markets 

have already anticipated these disasters; however, their impact was not as bad as expected. 

Another explanation is that the agriculture sector has already increased crops production in 

previous years because of existing demand, thus the reaction is not pronounced when natural 

disasters occur. 

 

Literature Review 

 

Over the past few decades, regulators and researchers alike have started to gradually recognise 

the threats of environmental and climate change to the stability of our financial system1. The 

Bank of England identifies these environmental risks as physical risks and transition risks. 

Physical risks result mainly from weather events (for instance, droughts, floods, and hurricanes, 

among others). These environmental risks significantly increase the financial value at risk by 

destroying real assets such as buildings and important infrastructure. At the same time, 

transition risks are the risks that arise from regulatory environmental policies that eventually 

 
1 https://www.bankofengland.co.uk/prudential-regulation/publication/2022/june/the-bank-of-englands-climate-

related-financial-disclosure-2022 
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entail a substantial reallocation of capital from the concerned industries (oil and car 

manufacturing industries, for example). These risks impose significant and systemic threats to 

financial stability, as well as macroeconomic conditions. 

 

Environmental and climate risks have been linked to human activities. Nordhaus (1977), 

among the first economists to study climate change as an economic problem, has identified 

agriculture and energy as the main economic activities that most affect the natural environment. 

Moreover, some recent natural events are depicted as human-driven, including a number of 

China’s heatwaves and droughts in 2013, as well as the UK’s extreme rainfall and flooding in 

20142. 

 

On the other hand, the economics, finance, and accounting literature includes many recent 

studies on the role of natural events in these areas, in an effort to better understand and measure 

their impact. Stroebel and Wurgler (2021) use surveys to identify top climate risks to businesses 

and investors, showing that regulatory risk is the most impactful climate risk over the next five 

years, while physical risks take over as the most disconcerting risk factors over the subsequent 

25 years. Using 6,759 natural disasters in 104 countries from the International Emergency 

Events Database (EM-DAT) and the daily stock price returns for 31 major stock indices from 

2001 to 2019, Pagnottoni et al. (2022) study the effects of five types of natural disasters 

(biological, climatological, geophysical, hydrological, and meteorological disasters) on the 

stock markets. They use event study methodology in their research and document 

heterogeneous market responses to natural disasters that depend on the type of the disaster. 

 

Studying climate and environmental factors that investors consider in the financial markets, 

Krueger et al. (2020) show that investors include climate risks in their portfolio decisions 

because of those risks’ implications. When trying to price climate risk, Bolton and Kacperczyk 

(2021) find that investors ask for a carbon premium. Relatedly, Hsu, Li, and Tsou (2019) show 

that investors demand a pollution premium for environment carbon risks. Bansal et al. (2016) 

use capital market data and find that there is a positive risk premium for global warming that -

notably- rises with higher temperatures. Conversely, a number of studies support the view that 

the financial markets misprice environmental and climate risks (see Daniel, Litterman, & 

Wagner, 2016; Kumar, Xin & Zhang, 2019). 

 
2 Ibid. 
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Campiglio et al. (2019) report that environmental physical risks, such as hurricanes and 

droughts, have a negative impact on financial assets, mainly through lower returns and higher 

non-performing loans. Weitzman (2013) discusses the degree to which an investment hedges 

against catastrophic damages arising from bad-tail events, as natural disasters are linked to 

extreme structural uncertainties. In addition, uncertainty also arises from environment-related 

regulations that are often coupled with heterogeneous impacts. 

 

Vo et al. (2019) study the impact of oil and agricultural commodity prices, showing that oil 

prices impact agricultural commodity prices to the extent that oil price movements may explain 

changes in agricultural commodity prices and volatility. Conversely, Cabrera and Schulz 

(2016) investigate the linkage between the prices and price volatility of agricultural 

commodities and oil in Germany and find opposing results. Employing event study 

methodology, they find that concerns over agricultural commodity price volatility being 

impacted by energy are rather unjustified. 

 

Zhang et al. (2009) also examine price and volatility transmissions and spillover effects 

between oil prices and a group of commodities including corn and soybean in the USA using 

a GARCH model. They find no spillover from oil prices to corn and soybean volatility, but 

they find that volatility transmits from the agricultural sector to the oil sector. On the contrary, 

Trujillo-Barrera et al. (2011) use a GARCH model and document volatility spillovers from oil 

to corn in the USA, particularly during times of oil market turbulence. More recently, Hung 

(2021) finds that there is significant heterogeneity in the response of agriculture commodities 

to information spillovers from oil prices pre and post the COVID-19 pandemic. 

 

Further, the UN (2020) reports farming activity problems because of COVID-19. Dev (2020) 

reports that the unavailability of labour in India interrupted the wheat harvest and Ethiopia 

suffered from the non-availability of agriculture inputs. Likewise, Pu and Zhong (2020) 

examine the impact that COVID-19 pandemic had on China’s agricultural sector and the 

impacts of the corresponding policies that were put in place. Among these factors, movement 

restrictions are documented to have impacted labour inputs, leading to delays in crop planting, 

which in turn stopped the natural agricultural growth cycle. Such delays in crop planting, 
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beyond the right time for each relevant crop, can result in reduced crops, and harvests and to 

losses that subsequently cause lower farming investment in the following season. 

 

Developed countries suffered from different problems, like overstocking of agricultural 

products in the USA and Canada, which required dumping or destroying crops (Weersink et 

al., 2020). Furthermore, Hadachek et al. (2023) report that the Russia-Ukraine conflict is an 

extreme shock that is causing disruptions to food supply chains worldwide and is eliciting 

authorities’ reactions and changes in regulations. These reactions and regulations also play a 

role, exerting an impact on agricultural activities worldwide, as evidenced in the literature. 

 

In addition, Brás, Jägermeyr, and Seixas (2019) discuss the impact of extreme weather disasters 

on a number of crops, showing substantial effects particularly because of droughts and heat 

waves. The crops most affected are soybean (due to floods), and cocoa which is affected by 

both droughts and heat waves. At the same time, coffee prices exhibit gains after cold waves, 

because of lower supplies, but tend to suffer steady losses in subsequent years. Also, as soybean 

is a common substitute of both wheat and corn, any variability to its production and hence 

prices, affects the supply chains of the other agricultural commodities as well. 

 

Most recently, Apergis and Rezitis (2003) study volatility spillovers across the prices of 

agricultural inputs and outputs using GARCH models. They find that the prices of agricultural 

outputs fluctuate more than the prices of agricultural inputs. Amann et al. (2013) study the 

impact of speculation and causal relationships between the spot markets of wheat, corn, rice, 

and soybean on the one hand and commodity futures on the other. They find no empirical 

evidence that speculation drives price changes in agricultural commodities. 

 

Studying rationality in commodity markets, Allen et al. (1994) find that rationality is violated, 

as the prices of 15 agricultural commodity seem to reverse in the aftermath of substantial 

events. They suggest that the non-instantaneous adjustment of prices as new information hits 

the market may point to violation of rationality in the short term, as traders in commodity 

markets incline to overreact to substantial events. 

 

Bourdeau-Brien and Kryzanowski (2017) use event study methodology and GARCH models 

for the conditional variance, and they find that natural disasters have a significant impact on 



 

 

6 

 

stock returns in areas hit by those disasters and for two to three months after the natural disaster. 

Similarly, Chen (2021) employs event studies and examines futures prices of seven agricultural 

commodities during the China-US trade war, documenting a significant impact of this event on 

China’s agricultural commodities. 

 

Chatzopoulos et al. (2020) use agroclimatic extremes within a multi-economic simulation 

scenario analysis, to find that climate extreme events have an economic impact. They add that 

agricultural commodities show asymmetry in the direction of the agrometeorological shocks. 

Yang (2008), however, finds that the stronger the storms, the higher the economic damages 

and the greater the deaths toll. Yang uses EM-DAT database to obtain meteorological, damages 

and fatalities data from 1970 to 2002. 

 

Some studies match the damage incurred with different asset classes, such as Mechler et al. 

(2010) that find that droughts and heat shocks mainly impact agricultural commodities. 

Likewise, Lesk et al. (2016) document that heat-driven natural disasters (namely, droughts and 

heat waves) have led to losses ranging of 9%-10% of local production (1200-1800 million 

tonnes) between 1964 and 2007 of wheat, corn, and rice. Hochrainer (2009) assesses the impact 

of natural disasters on economies, finding that the size of the shock is an important factor in 

determining the size of the negative impacts of natural disasters. A country’s macroeconomic 

status also plays a part. 

 

Using four natural disasters from EM-DAT, Fomby et al. (2013) find that the impact of natural 

disasters is greater in developing countries compared to their impact in developed countries, 

and that the response differs depending on the type of the natural disaster. The stronger impact 

on developing countries, with smaller economies, compared to developed economies have been 

documented in the literature (Rasmussen, 2004; Noy, 2009). Likewise, Raddatz (2009) 

estimates the long-term and short-term impact of climatic disasters, and he finds that small 

economies are more vulnerable to some types of natural disasters. Cantelmo et al. (2023) echo 

this finding and add that the frequency and severity of natural disasters impact the growth of 

disaster-prone countries. 

 

Fomby et al. (2013) also find that major drought episodes cause higher volatility of growth of 

agricultural sectors, as they cause huge drops in the event year, which turn into high growth in 
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the next year. On the other hand, they find that floods have a positive impact on agricultural 

growth in developing countries in the year following the flood, but not the year of the event 

itself. This suggests that floods impact land productivity in the event year, so the harvest in the 

following year (year 1) is positively affected. In addition, moderate storms also show a positive 

impact on agricultural growth, but only in the second year after the event. Such a delayed effect 

indicates a supply chain mechanism, similar to the supply chain mechanism of floods. In other 

words, floods positively impact agriculture through influencing water provision and soil quality 

in the event year, which takes time to materialize into higher agricultural growth in the 

following harvests. 

 

Adding to this literature, Cuaresma et al. (2008) find that studying cross-country and panel 

regression shows that the level of the natural disasters, or degree of catastrophic risk, has an 

impact on spillovers between developed (industrialised) and developing economies. 

Industrialised countries enjoy some benefits from natural disasters, as they upgrade their capital 

in the aftermath of the natural disasters. Developing countries suffer the consequences, as they 

lack the capacity for such an upgrade that leads to long-run growth. Skidmore and Toya (2002) 

also find positive correlation between higher frequency of natural disasters and macroeconomic 

growth, due to productivity gains and human capital accumulation. 

 

In line with this, Coulibaly et al. (2020) study the impacts of natural disasters on agricultural 

activities in Africa over 26 years and find that poor African countries are significantly more 

affected by natural disasters than middle-income countries. Additionally, they find that 

temperature is the main climatic factor negatively impacting agriculture in African countries 

studied in both the short and long runs, while droughts are the main natural disaster impacting 

agrarian production in the short run. 

 

Karali, Ye, and Ramirez (2019) discuss the concept that the relationship between an asset’s 

return and its variance/volatility can be a proxy for that asset’s risk, as the direction of this 

relationship remains controversial in the finance literature due to the conflicting and/or mixed 

results. To explain this, the time-varying risk premium suggests that there is a positive 

relationship between return and variance, while both the hypothesis of the volatility feedback 

and that of leverage effects may explain the negative relationship. However, the volatility 
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feedback hypothesis states that as volatility changes so does expected return, while the leverage 

hypothesis states that shocks to returns lead to changes in conditional volatility. 

 

Further, these authors conclude that there is a possibility that the causality direction between 

return and volatility/variance may vary with the nature of the event, which influences the event 

response in terms of duration and peak. Further, their results show that the market responds to 

different events differently, as the market absorbs the information and the uncertainty. Market 

response can take time to evolve, and can last for weeks or months, in the aftermath of the 

natural disaster. 

 

Iqbal et al. (2022) highlight that high volatility in markets, together with financial contagion, 

may have caused a hike in shock transmission and connectedness, in different commodity 

markets. They study the extreme spillovers among the volatility of many commodities, 

including agricultural, energy and metal commodities, from 2008 to 2020. Volatility exhibited 

higher intensity during the periods of extreme events compared to non-event periods. In 

particular, agricultural commodities showed higher volatility connectedness during COVID-

19 pandemic time, suggesting that markets had highly speculative expectations while fearing 

recessions. 

 

Hypothesis Development 

 

This study analyses the impact of natural disasters on top agricultural commodity producing 

countries, considering the direction and magnitude of both price returns and volatility. Some 

of the agricultural commodities chosen within the sample data are characterized by being 

produced in a fewer number of countries. Accordingly, when a natural disaster occurs in this 

region, it may have an impact on the price returns of the commodity, as well as the price 

volatility, given the limited spatial range accommodating the related agricultural activities and 

production. 

 

The global impact of natural disasters leads to disruption in agricultural activities either directly 

(loss of land or machinery or human capital necessary to perform the labour) or indirectly 

(losses to general infrastructure or related sectors necessary for any steps of the agricultural 

process). Accordingly, the natural disasters directly related to agriculture, as identified in the 
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respective literature, are studied herein to measure their impact on the agricultural commodities 

performance around said natural disasters. 

 

The first part of the study examines the price return and volatility of the specified agricultural 

commodities around the time the specified natural disasters occur. If natural disasters exert an 

impact on agricultural production of the said commodities, markets will consider this as 

information or signal; and will thus react to this signal. This will translate into a change in 

prices, which can be captured in both price returns and price volatility or either. This first part 

of the study hypothesises that natural disasters cause agricultural losses that impact prices 

upwardly. 

 

Further, due to the uncertainty related to the impact of natural disasters generally and on 

agriculture in particular, the expectations are that this uncertainty may be translated into price 

volatility. As market participants assimilate this signal and reflect it into their buy/sell 

decisions, whether using fundamental or technical analysis, the uncertainty is hypothesised to 

manifest in volatility. Accordingly, the next step is to measure price volatility of the specified 

agricultural commodities around the natural disasters’ dates in comparison to their historical 

average performance. 

 

Data 

 

We start by extracting the prices of seven agricultural commodities: cocoa, coffee, corn, rice, 

soybean, sugar, and wheat from Bloomberg. The historical prices start as of 1960 for cocoa, 

corn, soybean, and wheat, 1961 for sugar, August 1972 for coffee, and December 1988 for rice, 

continuing till the present. We compute returns for each of the seven commodities. 

 

As we use the market model in the event study, we choose an agricultural commodity market 

index. Accordingly, we obtain from Bloomberg the historical prices of Bloomberg Agriculture 

Subindex Total, which tracks the performance of agricultural commodity prices (coffee, corn, 

cotton, soybean, soybean oil, sugar, and wheat). The historical data of the index prices also 

spans from 1960 to 2023. Next, we compute the index returns. 
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From the FAOSTAT, the database of the FAO (the United Nation’s Food and Agriculture 

Organisation), we obtain the historical data of agricultural production, as value in tonnes, for 

all countries producing the seven commodities from 1960 till 2023. To identify the main 

producing countries, we compute each country’s annual share of the global production of each 

respective agricultural commodity over the sample data time horizon as: 

countryit_production/aggregate_productiont. 

 

Next, we rank countries by annual share in aggregated annual production of each agricultural 

commodity, identifying the ten largest country-producer of each agricultural commodity 

separately, per year. Notably, the share of the top ten largest producing countries of each 

commodity is +75% on average of the world’s production of each respective commodity per 

annum, reaching in some years +95% of the world’s production. 

 

The available information about natural disasters varies greatly; in regard to their definitions, 

types, and coverage in different data sources, with losses reported being unreliable for some 

time post the natural disaster (Smith & Katz, 2013). However, many studies use the EM-DAT 

database, as it includes casualties and economic losses as reported by respective countries, to 

study the impact of environmental natural disasters on economic variables (Dell et al., 2014). 

 

EM-DAT is a global database maintained by the Centre for Research on the Epidemiology of 

Disasters (CRED) at the School of Public Health of the Université Catholique de Louvain in 

Brussels. It includes both natural and technological disasters, with data on the occurrence and 

effects of +21,000 disasters worldwide, from 1900 to the present. The database has 

geographical, temporal, human and economic information on disasters at the country level. The 

criteria of including disasters in the EM-DAT is having at least ≥10 dead people, or ≥100 

affected people or a country declaring a state of emergency, or a call for international 

assistance. EM-DAT collects information from various institutions around the world, including 

UN agencies, governments, the International Federation of Red Cross, and Red Crescent 

Societies. 

 

EM-DAT initially divides the disasters into two main groups (Disaster Group), natural and 

technological disasters. Under this classification, the disasters are then distinguished by sub-

groups and types, with Disaster Sub-group including 6 sub-groups: biological, geophysical, 
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climatological, hydrological, meteorological, and extra-terrestrial disasters and Disaster Type, 

the main disaster type, such as drought, flood, and storm. 

 

In line with a number of studies referenced in the Literature Review, we use EM-DAT records 

for disasters for matching natural disasters for the event study -i.e., the event- per date and 

country. We obtain from EM-DAT this data for the main countries producing the seven 

agricultural commodities that we have already identified in the previous step, through their 

annual share in the respective global production. 

 

EM-DAT has 14,188 natural disasters from 1980 to early 2023, and we identify 8636 natural 

disasters that have hit the main producing countries over that period. Next, we identify the 

disasters under natural disasters subgroups of climatological, meteorological, and hydrological. 

Then, we choose the disasters type that impacts agriculture, namely drought, extreme 

temperature, flood, landslide, storm, and wildfire. We exclude earthquake, epidemic, insect 

infestation, mass movement, and volcanic activity, as they are not directly related to 

environmental disasters impacting agriculture. 

 

Next, we exclude the events that have missing data, in either the dates or the damages. Due to 

a huge variation in damages, adjusted by inflation (measured by CPI), we next identify the 

natural disasters with CPI-adjusted damages (in US dollars 000s) above the median. Damages 

include direct damages, such as losses in infrastructure, housing, and agricultural crops 

(Cavallo & Noy, 2010). Additionally, we exclude the events that persisted for long periods of 

time -years in some cases. This follows the event study methodology, which is a short-horizon 

study showing the responses to a certain event in a short-lived manner (Fama, 1998; Kothari 

& Warner, 2007). Droughts constitute most long-term disasters in the sample data, in addition 

to riverine floods, and wildfires (under Disasters Subtype). For example, a drought in Canada 

lasted from January 1984 until March 1985; Australia saw a three-year drought from 1992 to 

December 1995; a drought in Spain occurred over 1990-1995; and more recently, the USA 

suffered a two-year drought from 2000 until 2002. After excluding these long episodes of 

natural disasters, 686 events remain. 

 

Table 1 summarises the natural disasters’ impact on the top producing countries from 190-

2019, measured by EM-DAT data of total damages (CPI-adjusted) in US dollars, total death 
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occurrences and total number of affected persons. Total damages grossed US$573.7 billion, 

while there have been 612.4 million affected persons and almost 52 thousand dead persons 

over these four decades. 

 

***Insert Table 1 about here*** 

 

Table 2 displays the distribution of natural disasters by type over the four decades from 1980 

to 2019. In particular, the years 1993 and 1982 have the highest frequency of events within the 

sample data, with 31 and 30 natural disasters, respectively. Of the 686 events included in this 

study, 494 are storms and 149 are floods. Figure 1 depicts the frequency of natural disasters 

occurrences over the sample period. 

 

***Insert Table 2 about here*** 

 

***Insert Figure 1 about here*** 

 

In addition, Table 3 shows the distribution of the natural disasters by country. The Philippines 

is the country most suffering of natural disasters, at 124 events over 1980 - 2019, followed by 

China (117 natural disasters), the USA (112), then at a distance India (36), Viet Nam (34), and 

Japan and Australia (29 each). 

 

***Insert Table 3 about here*** 

  

Table 4 shows the distribution of the impact of the natural disasters on countries that are the 

main producers of the selected agricultural commodities. The country most hit by natural 

disasters as measured by total damages, adjusted by CPI over the study horizon, is the USA 

with total damages of US$265 billion. In respect to the country suffering the highest number 

of affected persons, China ranks first with 372 million persons. The Philippines comes first 

with almost 18 thousand death casualties, followed by China, and India. 

 

***Insert Table 4 about here*** 
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First, the breakdown of damages by top producing country over the period 1980-2019 shows 

that the USA suffers from the maximum total damages followed by China, Japan, and India. 

Geographical breakdown sheds light on the impact of natural disasters and the different 

responses to them. Because natural disasters are considered as regional geographical natural 

phenomenon, it is quite crucial to assess their spatial impact (Shibusawa & Matsushima, 2022). 

It has been suggested in the literature that different weather events cause different impacts, and 

damages that are economic losses in US dollars (the sum of losses to property and corps) reflect 

regional vulnerability to those environmental disasters (Zhou et al., 2020). 

 

 As per the number of total death occurrences, El Salvador ranks first, followed by the 

Philippines that is closely followed by Guatemala, India, Bangladesh, Russia, and at almost 

equal shares, Brazil, China, and Viet Nam. Notably, China comes first by total number of 

affected persons, followed by the Philippines, then India. This is in line with a number of 

studies that have shown that natural disasters have a more severe impact on developing 

countries due to their lack of the capacity to capitalise on any benefits, and as such as only 

suffer the consequences (see Rasmussen, 2004; Cuaresma et al., 2008; Raddatz, 2009; Noy, 

2009; Fomby et al., 2013; & Cantelmo et al., 2023). 

 

Concerning the four decades over which the sample data spans, years 2012 and 1992 witnessed 

the peak levels of damages in USD caused by natural disasters. The 1990-1999 decade 

witnessed the highest damages, at US$172.5 billion, followed by the 2010-2019 decade at 

US$154.5 billion. From 2000-2009, natural disasters caused damages at US$118.3 billion, 

while the 1980-1989 decade witnessed losses worth US$113.1 billion. 

 

On the other hand, 2013 has witnessed the highest death casualties, while the 1980-1989 decade 

has the highest rate of death casualties resulting from natural disasters over the study period. 

In respect to total affected persons, the years 1989 and 1995 have the highest rate. 

 

Storms are shown to have the severest impact as measured by both damages in US dollars and 

total number of death fatalities, followed at distance by floods. However, in the case of the total 

affected persons, floods narrowly come first, followed by storms at heel. 
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It is noteworthy that towards the end of 2019, China started reporting COVID-19 cases before 

its spread to the rest of the world. Eventually, the World Health Organisation (WHO) declared 

the Coronavirus a global pandemic on 11 March 2020. The COVID-19 pandemic is an 

international disruption to agriculture, global food supply chain, and global food security 

(FAO, 2020). The UN Sustainable Development Group (2020) documents that many countries 

have suffered from farming activity problems as a result. The unavailability of labour in India 

has interrupted the harvest of wheat (Dev, 2020), while Ethiopia suffered from the 

unavailability of agriculture inputs. In contrast, overstocking of agricultural products in the 

developed countries, such as the USA and Canada, has caused dumping or destroying 

(Weersink et al., 2020). 

 

In China as well, Pu and Zhong (2020) identify the impact that the COVID-19 pandemic and 

the policies implemented as a result had on the country’s agriculture sector. They show that 

movements and traffic restrictions to have impacted labour inputs, which have led to a delay 

in crop plantation, which in turn have slowed nature’s growth cycle of agriculture. Such a delay 

in crop plantation can result in reduced crops, while such harvest losses can lead to lower 

farming investment in the following season. 

 

In addition, Hadachek et al. (2023) state that the Russia-Ukraine conflict is acting as an extreme 

shock, disrupting food supply chains worldwide and eliciting authorities’ reactions and 

influencing changes in regulations. These reactions and regulations also play a role, exerting 

an impact on agricultural activities worldwide, as evidenced in the literature. 

 

Accordingly, and to ensure that this study does not coincide with the COVID-19 pandemic or 

any later major events such as the Russia-Ukraine war, and that the results are not impacted by 

them, this study covers till the end of 2019. Accordingly, 600 natural disasters remain in the 

sample data, ranging between the years 1980 and 2019. 

 

Lastly, for the control variables in the ordinary least squares (OLS) regression, we obtain 

country level data of GDP per capita and foreign exchange rate of domestic currency vis-à-vis 

the US dollar from the IMF databases of WEO (International Monetary Fund’s World 

Economic Outlook, 2013a) and IFS (International Monetary Fund’s International Financial 
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Statistics), in order. We compute the percentage change in the exchange rate of each top 

producer-country’s respective national currency per the US dollar. 

 

Methodology 

 

To study agricultural commodity performance, in terms of returns and return volatility, we 

follow Bourdeau-Brien and Kryzanowski (2017), employing the event study methodology for 

abnormal returns and GARCH (generalized autoregressive conditional heteroskedastic) model 

for the conditional variance. Next, we employ the ordinary least squares (OLS) regression, to 

study the nature of the abnormal return and abnormal volatility to identify the factors behind 

fluctuations in returns and volatility of agricultural commodities in their respective main 

producer countries around the time of the natural disasters. Likewise, this follows Karali et al. 

(2018), who study the changes in oil returns and volatilities around groups of events, employing 

the GARCH model for volatility estimates, then the OLS regression for further inspection. 

 

Event Study Methodology 

 

We follow the event study procedure, as described by MacKinlay (1997), to identify the events 

of interest and the period over which the prices concerned are examined, i.e., the event 

window(s). MacKinlay’s work builds on the 1969 study by Fama, Fisher, Jensen, and Roll, 

who introduced the event study methodology to measure market reaction to information (Fama, 

1998). As per the literature, this methodology is for short-term studies (Kothari and Warner, 

2007), as it measures asset returns’ direct reaction to a certain event, which is in line with 

market efficiency hypothesis (Fama, 1998). 

 

Fama (1970) stipulates that for a market to be informationally efficient, it necessitates that 

assets prices would reflect all available information at all times. In other words, the market 

interprets any given event as information and reacts to it in a timely manner. Hence, assets 

prices move, with prices signalling to investors resource allocation opportunities, because the 

competition among market participants leads naturally to informational efficiency. Information 

is treated as a signal, and market act and react to this signal; otherwise, market prices will be 

mispriced, leading the market to consequently trade this asset till prices reach an equilibrium 
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where the mispricing disappears. Thus, market efficiency results from competition forces that 

push forward, till the signal is fully incorporated in prices. 

 

Binder (1998) adds that a variety of events can be employed in event studies, extending the 

understanding of the event beyond a corporate announcement. Binder asserts that an event 

study is a standard method to measure price reaction to some announcement or event. This 

supports Kothari and Warner (2007) who describe the event as clustered at a particular date, 

no matter what its nature is. Recent studies have used environmental and climatic events to 

measure economic and financial variables’ reaction to them, in an effort to understand the 

magnitude, direction and causality between them. 

 

In addition, MacKinlay (1997) explains measuring the impact of an event requires measuring 

the abnormal return (AR). The abnormal return is the actual ex-post return during the event 

window minus the normal return during time of the event window. Further, the normal return 

is defined as the expected return without conditioning on the event. He describes the statistical 

expression as: for a firm i and an event date t, the abnormal return is: 

ARit = Rit, - E(Rit|Xt); 

where ARit, Rit,, and E(Rit|Xt) are the abnormal, actual, and normal returns, respectively over 

the time period t. Xt is the conditioning information for the normal return model. 

 

Following MacKinlay (1997), we employ the market model, with Xt as the market return (the 

constant mean model is also another common method used). The market model assumes a 

stable linear relation between the market return and the security return. Further, Kothari and 

Warner (2007) show that the event study focuses on mean of abnormal returns’ distribution, to 

studying whether asset prices have responded to a certain event and if the alternative hypothesis 

predict the sign of the average effect. 

 

The specifications of the market model to measure the expected excess normal return Rit of an 

asset i at a certain day t are: 

 

𝑅𝑖𝑡 = ∝  + 𝛽𝑖𝑅𝑚𝑡 + 𝜀𝑖𝑡                                                      (1) 
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where: bi is the slope coefficient linking returns for each commodity i to the returns for the 

market index, and Rmt is the market index returns at time t (event time). 

 

The abnormal return (ARit) is statistically the amount deducted from the estimated normal 

return and the actual observed return. The abnormal return of an asset at a given event window, 

following Kothari and Warner (2007) is: 

 

𝐴𝑅𝑖𝑡 =  ∑ 𝑒𝑖𝑡𝑖=1                                                           (2) 

     

 

where, t is the event day and e is the residual or excess return. eit is calculated as: 

 

𝐴𝑅𝑖𝑡 = 𝑅𝑖𝑡 − (𝛽0 + 𝛽1 ∗ 𝑅𝑚𝑡)                                                    (3) 

where, ARit is the abnormal return of an agricultural commodity i at the day t when the natural 

disaster hit, b0 + bi are the estimated coefficients, and Rmt is the market return, which is the 

Bloomberg Agriculture Subindex Total for agricultural commodities. 

 

Further, we calculate the average abnormal returns (AARs) for commodity i impacted by the 

all the natural disaster events within the sample data that hit all the identified top producing 

countries of that one commodity: 

 

𝐴𝐴𝑅𝑡 =  
1

𝑁
 ∑ 𝐴𝑅𝑖𝑡

𝑁
𝑖=1                                                    (4) 

 

where, N is the number of commodity returns, t is the event day. 

 

Next, we calculate the cumulative abnormal returns (CARs), which is the summation of the 

abnormal returns over the period of time studied. Following Kothari and Warner (2007) 

definition of the statistical model for CAR calculation: 

 

𝐶𝐴𝑅𝑖𝑡 =  ∑ 𝐴𝑅𝑖𝑡
𝑡1
𝑡2

                                                    (5) 

(where, the event window is ∈ 𝑡1, 𝑡2) 
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Likewise, we compute the cumulative average abnormal returns (CAARs), which is the sum 

of average abnormal returns. 

 

𝐶𝐴𝐴𝑅𝑡 =  
1

𝑁
 ∑ 𝐶𝐴𝑅𝑖𝑡

𝑁
𝑖=1                                                    (6) 

 

The CAR method tests the null hypothesis that abnormal performance is equal to zero (Kothari 

& Warner, 2007), whereas the event study test is a joint test of whether abnormal returns are 

zero and whether the assumed model of expected returns is correct. 

 

Following MacKinlay (1997), we define the estimation window, which is the period prior to 

the event. Day 0 is the event day, i.e., it is the day on which the natural disaster occurred, and 

it is excluded from the estimation period. This is to avoid the impact of the event itself on the 

model parameter estimates of the commodities’ normal performance, measured by their 

returns. Accordingly, the event itself was divided into an estimation window of 250 days 

ending 30 days before the event. 

 

Following Obi et al. (2023), we choose the total event window to be [-15,+15], with several 

other event windows to measure the impact of natural disasters on agricultural commodity 

returns over different time periods. The event windows are [-10,+10], [-7,+7], [-3, +3], [-1, +1], 

[-3, -1], [-1, 0], [0, +1], and [0, +3]. 

 

GARCH Model 

 

Following Obi et al. (2023) and Truong and Friday (2021), who argue for including a volatility 

model to the conventional event study methodology, to account for volatility and asymmetries 

in asset returns around the event day, we employ also the GARCH model to calculate the 

abnormal variance of returns within the event window time, with day 0 being the event day of 

the natural disaster occurrence. 

 

Some studies define volatility as the variation (in both amplitude and frequency) of changes in 

commodity price around their means (Huchet-Bourdon, 2011). The volatility of agricultural 

commodity prices has been studied in the literature, with causes including oil prices 

fluctuations, inflation levels worldwide, exchange rate of the US dollar, and climate change, 
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among others. However, volatility remains one important factor impacting agricultural 

commodity prices. 

 

Milonas (1987) states that commodity cash markets adequately reflect all existing information, 

while the prices do not show the same volatility as futures contracts do because of nearing 

maturity or daily trading limits. In addition, he argues for agricultural commodity markets to 

have non-stationary volatilities He discusses the year effect, which is a specific year variability 

in prices that reflects crops shortage or abundance that may result from exogenous shocks, 

leading to new price equilibrium as the market reacts to this year-specific variability. Due to 

their non-consistent nature, markets cannot predict these shocks; however, they recognize the 

higher prices volatility as these events occur. 

 

Bollerslev (1986) introduces the generalized autoregressive conditional heteroskedasticity or 

GARCH model, as a natural generalization of the autoregressive conditional heteroskedastic 

(ARCH) model introduced by Engle (1982). The GARCH model computes the current 

conditional variance, taking into consideration past conditional variances. The model allows 

for more flexible lag structure (Bollerslev, 1986) and conditional variance changes over time 

(being a function of prior errors). Accordingly, we use GARCH (1,1) to estimate the conditional 

variance of each commodity returns, and following the GARCH model assumptions, returns 

variance is expected to change over time, and so does volatility. We use the prices of the same 

commodities employed in the event study, with daily frequency in US dollars, obtained from 

Bloomberg. 

 

Figure 2 shows the computed conditional volatilities of the seven agricultural commodities, as 

per GARCH model: 

 

𝜎2 =  𝜔 + 𝛼1𝜀𝑡−1
2 +  𝛽1𝜎𝑡−1

2                                                (7) 

 

each separately, over the span of the study. Sugar demonstrates the highest one-year volatility 

in 1983, followed by wheat in 1996 (highest volatility spikes). Cocoa, coffee, and soybean 

show, however, the utmost fluctuations over the span from 1980 to 2019. 

 

***Insert Figure 2 about here*** 
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After estimating the conditional volatility for each agricultural commodity over the sample 

time horizon, we measure abnormal variance, using 16,539 observations (simply as 𝑌𝑡 =  𝜇 +

𝜀𝑡), and employing the mean-adjusted model (following Brown & Warner, 1980): 

 

𝐴𝑉𝑖𝑡 =  𝐶𝑉𝑖𝑡 − 
1

31
 ∑  𝐶𝑉𝑖𝑡 −30

𝑡=−60                                                      (8) 

 

where, AVit is the abnormal volatility of returns, for each commodity in the sample data 

impacted by the natural disaster i at time t, whereas CVit is the estimated conditional volatility 

by the GARCH model for each commodity in the sample data impacted by the natural disaster 

i at time t. 

 

Next, to compute the cumulative abnormal variance (CAV), we follow the same statistical 

method used to compute CARs: 

 

𝐶𝐴𝑉𝑖𝑡 =  ∑ 𝐴𝑉𝑖𝑡
𝑡
𝑡=1                                                      (9) 

 

To compute the average cumulative abnormal variance (CAV): 

 

𝐶𝐴𝐴𝑉𝑡 =  
1

𝑁
 ∑ 𝐶𝐴𝑉𝑖𝑡

𝑁
𝑖=1                                                       (10) 

 

It is worth noting that we perform the tests of event study and the GARCH model separately 

for each agricultural commodity. Given the nature of the different natural disasters studied 

herein this study, it is expected that the agricultural commodities may have different reactions 

in terms of returns and returns volatility to these events. Accordingly, separate tests were 

conducted for the total event window [-15,+15], and the other event windows to measure the 

impact of natural disasters on agricultural commodity performance around the event date. The 

event windows are [-10,+10], [-7,+7], [-3,+3], [-1,+1], [-3,-1], [-1,0], [0,+1], and [0,+3] as 

performed to compute CARs. 
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OLS Regression 

 

In the next part of this research, we study the factors underlying the cumulative abnormal 

returns and cumulative abnormal variance, in terms of direction and magnitude. To achieve 

this, we employ a series of ordinary least squares regressions, as: 

 

𝐶𝐴𝑅𝑡1,𝑡2,𝑖𝑗 = 

∝  +  𝛽1 𝑃𝑟𝑖𝑐𝑒. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑖 + 𝛽2 𝑇𝑜𝑡. 𝐷𝑎𝑚𝑎𝑔𝑒𝑠𝑗  

+ 𝛽3 𝐷𝑒𝑎𝑡ℎ𝑠𝑗  + 𝛽4 𝑇𝑜𝑡. 𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝑗 +  𝛽5 𝑃𝑟𝑜𝑑. 𝑆ℎ𝑎𝑟𝑒𝑖 

+ 𝛽6 𝐺𝐷𝑃. 𝐶𝑎𝑝𝑖𝑡𝑎𝑘 +  𝛽7 𝐹𝑋. 𝑅𝑎𝑡𝑒. 𝐶ℎ𝑎𝑛𝑔𝑒𝑘 

+ ∑ 𝛽7+ℎ

6

ℎ=1

 𝐴𝑔. 𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦ℎ +  ∑ 𝛽13+𝑚

3

𝑚=1

 𝑁𝑎𝑡. 𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟. 𝑇𝑦𝑝𝑒𝑚  

+ 𝜀𝑖𝑗𝑡1,𝑡2  

(11) 

where: 

 

CARt1,t2,ij is the cumulative abnormal return over the event window (through day t1 and day 

t2), using the return of Bloomberg Agriculture Subindex Total as the index market return, 

for commodity i and disaster j. 

 

Price.Increasei is a measure of demand pressure for an agricultural commodity, assumed as a 

factor that may have driven abnormal returns, and as such included as factor to be tested. 

It is computed as: 

 

𝑃𝑟𝑖𝑐𝑒. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑖  =  

1
30   ∑   𝑃𝑟𝑖𝑐𝑒𝑖𝑡 −   

1
500 

  ∑   𝑃𝑟𝑖𝑐𝑒𝑖𝑡
𝑡−61
𝑗=𝑡−560

𝑡=−31
𝑗=𝑡−60

1
500 

  ∑   𝑃𝑟𝑖𝑐𝑒𝑖𝑡
𝑡−61
𝑗=𝑡−560

 

                           (12) 

 

where, Priceit is the price of commodity i at time t, as it measures the change in each 

commodity price over the past two years of trading, i.e., before the event occurrence at 

time t. Economically, higher demand on a certain commodity equates to higher prices of 
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that commodity. Natural disasters may disrupt farming and agriculture; accordingly, 

demand may play a part in higher abnormal returns. 

 

It is worthy to note that another measure has also been employed in untabulated tests and 

results. The other proxy was the moving average of a commodity price returns over the past 

three years. However, as Price.Increasei is a better proxy as a measure of changes in prices 

over time, the moving average factor was not used. 

 

Extracted from the EM-Dat database, the next three variables are included as proxy to the 

severity of natural disasters impacting the prices of the agricultural commodities: 

 

Tot.Damagesj is the natural log of the total damages, adjusted by CPI inflation, in 000s US 

dollar in producing countries hit by natural disasters. 

 

Deathsj is the number of death casualties resulting from the natural disasters. 

 

Tot.Affectedj is the natural log of the number of affected persons, impacted by the natural 

disasters. 

 

Production.Sharei is each producing country lag share (in %) of a given agricultural product, 

i.e., of the year before the event, as it is documented that current’s year agricultural 

production is impacted by the level of last year activity. 

 

GDPCapitak is the natural log of each affected country k GDP per capita (gross domestic 

product), as a measure of purchasing power that impact results. 

 

FX.Rate.Changek is the foreign exchange rate of domestic currency -of affected country k- 

against the US dollar. 

 

The results of Nazlioglu and Soytas (2012) support that a weaker dollar positively affects 

agricultural commodity prices, contradictory to some previous studies. Likewise, Abbott et al. 

(2008) find that because commodities are priced in the US dollar though countries purchase 

them in local currencies, higher oil prices feed into current account deficit, leading to a lower 



 

 

23 

 

local currency value. Accordingly, we add the change in foreign exchange rate of domestic 

currency against the US dollar as an explanatory variable in the OLS regression. 

 

Ag.Commodityh is a dummy variable for the agricultural commodities within the sample data, 

namely, coffee, corn, rice, soybean, sugar, and wheat, with cocoa being excluded. 

 

Nat.Disaster.Typem is a dummy variable for the natural disaster by type that are included in the 

study, namely, storm, extreme temperature, landslide and, wildfire, with flood being 

excluded. In addition to being an excluded category, flood is colinear with storm type. 

 

Next, we extend model (11) to examine the factors that may have impacted the cumulative 

abnormal return volatility of the agriculture commodities included in the sample data. We run 

the OLS regression with return volatility as the dependent variable: 

 

 

𝐶𝐴𝑉𝑡1,𝑡2,𝑖𝑗 = 

∝  +  𝛽1 𝑃𝑟𝑖𝑐𝑒. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑖 + 𝛽2 𝑇𝑜𝑡. 𝐷𝑎𝑚𝑎𝑔𝑒𝑠𝑗  

+ 𝛽3 𝐷𝑒𝑎𝑡ℎ𝑠𝑗  + 𝛽4 𝑇𝑜𝑡. 𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑𝑗 +  𝛽5 𝑃𝑟𝑜𝑑. 𝑆ℎ𝑎𝑟𝑒𝑖 

+ 𝛽6 𝐺𝐷𝑃. 𝐶𝑎𝑝𝑖𝑡𝑎𝑘 +  𝛽7 𝐹𝑋. 𝑅𝑎𝑡𝑒. 𝐶ℎ𝑎𝑛𝑔𝑒𝑘 

+ ∑ 𝛽7+ℎ

6

ℎ=1

 𝐴𝑔. 𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦ℎ +  ∑ 𝛽13+𝑚

3

𝑚=1

 𝑁𝑎𝑡. 𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟. 𝑇𝑦𝑝𝑒𝑚  

+ 𝜀𝑖𝑗𝑡1,𝑡2  

(13) 

 

where: 

CAVt1,t2,ij is the cumulative abnormal volatility over the event window (through day t1 and day 

t2), using CARCH conditional volatility, for commodity i and disaster j. 

 

All independent variables are the same as specified and defined in the OLS regression test for 

the CARs. 
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Results 

 

Table 5 exhibits the main producing countries within the sample data. Of the 46 countries, four 

countries produce six out of the seven agricultural commodities covered in this study: Russia, 

Brazil, India, and Indonesia. Mexico and China produce five agricultural commodities each, 

while the USA and Argentina produce four agricultural commodities each. Five countries 

produce three agricultural commodities each: Canada, the Philippines, Pakistan, Colombia and 

Ukraine. Eight countries produce two agricultural commodities each, while twenty-four 

countries produce only one agricultural commodity each. 

 

***Insert Table 5 about here*** 

 

This geographical concentration of agricultural production per producing country enhances 

production efficiency as regions play to their comparative advantages, which generates the 

efficiency gains (Sexton, 2009; Hadachek et al., 2023). Table 4 shows the main producing 

countries of each agricultural commodity studied herein, whose shares have demonstrated 

some variation over years, albeit remaining as a main producer of the respective commodity 

(or commodities in case of a multiple-commodity producer country). Notably, this historical 

concentration is expected to continue, as technology and the use of big data further progress 

worldwide. Technology-based precision farming, which is currently widespread in developed 

economies, is projected to extend to other economies (Senthilvadivu et al., 2016). 

 

In addition, this geographical concentration may inevitably mean that once a natural disaster 

occurs in an agricultural country, there may be repercussions on the performance of the number 

of commodities this country is producing. Furthermore, given that the majority of these 

countries are emerging or developing countries as per the IMF classification (IMF WEO 

database, 2023b), data dissemination and information processing are still developing (Mtega, 

2012; Msoffe & Ngulube, 2016). This may feed into the international commodity markets as 

well, leading to information asymmetry, and may explain agricultural commodities’ uneven 

performance and behaviour in reaction to external shocks, including natural disasters. 

 

Further, Table 6 shows the top producing countries for each agricultural commodity, based on 

the FAO statistics. The data shows the geographical distribution of agricultural production, 
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highlighting specific concentrations, namely that, only Asian countries are top producers of 

rice. Wheat, on the other hand, is produced almost on all continents, with a wide global 

geographical distribution. 

 

***Insert Table 6 about here*** 

 

The results of the event study, showing the impact of the natural disasters on the agricultural 

commodities in the sample data, are displayed in Tables 6 to 12. Each table shows the estimated 

CARs (%) and abnormal variance, along with the p-values showing significance, for each 

commodity separately, over several event windows. 

 

Table 7 displays the analysis of the impact of natural disasters on cocoa prices, with no 

statistically significant results for any of the CARs (%) in any event window. This may be 

attributed to the fact that most producing countries are heavily impacted by drought. However, 

since most drought episodes largely persist over multiple days and up to several years, 58 

drought incidents were excluded from the sample data. 

 

***Insert Table 7 about here*** 

 

Table 8 reports the CARs (%) of coffee, with no statistically significant results at any 

significance level. Boarding towards significance is the event window of [-15, +15], with CAR 

of 0.123 or 12.3%. However, untabulated results show significant results in the 14th, 13th, 12th, 

11th, and 9th day before the events, along with 12th, 13th, and 14th day after the event, at 0.1 

significance level. This may suggest that the dominating type of natural disaster plays a role in 

shaping the market’s reaction. Storms constitute 81% of the natural disasters hitting the coffee-

producing countries. Particularly, scientist consider storms to be the most devastating natural 

disaster (Sanyal & Lu, 2004), along with being predictable as scientists use satellite images in 

the post-disaster assessment and can produce highly predictive maps of vulnerable areas to 

floods (Gillespie et al., 2007). In addition, their level of devastation may explain the market’s 

reaction almost two weeks after the storm, as damages are estimated, and impact is quantified. 

 

***Insert Table 8 about here*** 
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Table 9 covers the results of the event study on corn prices, which also shows no significant 

results in any tabulated results. Untabulated results show only two days, -9 and -7, with 

significant results, at 0.1 significance level. As it is the case with coffee, corn-producing 

countries within the sample data are mostly hit by storms (at 75% of total events). 

 

***Insert Table 9 about here*** 

 

Table 10 displays statistically significant cumulative abnormal returns for rice, namely, during 

the [-3, +3] event window, at 1% significance level (specifically a p-value of 0.008), with a 

positive coefficient of 0.884. Likewise, the event window [-1, +1] shows significant CARs of 

0.656% at 1% significance level. CARs of the event window [-3, -1] are significant at 5%, with 

coefficient of 0.5%, while CARs of the event window [-1, 0] are statistically significant at 10%. 

Finally, the event window [0, +1] shows significant results, at 1% level, with CAR of 0.6%. 

These results may suggest that spatial and geographical characteristics of producing countries 

play a part in explaining the statistically significant results at different event windows. Given 

that rice is strictly produced in Asian countries that are predominantly hit by storms and floods 

(97.5% within the sample data), information asymmetry and the type of natural disasters may 

be substantial underlying factors. 

 

***Insert Table 10 about here*** 

 

The CARs of soybean are reported in Table 11. Window [0, +1] has the only statistically 

significant results at 5%, suggesting that corn’s main producing countries suffer from 

significant and negative repercussions a day after being hit by natural disasters, with a 

cumulative market-model estimated abnormal return of -0.4%. This result may show that 

market participants react to natural disasters hitting soybean producing countries one day after 

the occurrence of the events. Soybean main producing countries are geographically varied, and 

therefore, experience a number of different natural disasters. A number of developed countries 

are among the top producers of soybean, including the USA and Canada, and that maybe behind 

the market’s post-event reaction, as the market reacts to losses reported and not the uncertainty 

prior the event due to the availability of better meteorological models and weather stations. 

 

***Insert Table 11 about here*** 
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Table 12 shows the CARs (%) for sugar, without any statistically significant results at any 

reported event window (nor in the untabulated results). Like soybean, sugar producing 

countries are geographically widespread throughout Asia, Australia, Latin America, and North 

America, with storms and floods being the main environmental disasters type affecting these 

countries, with wildfires also playing a role (with substantial total damages in some events, 

such as the case of the 1983 Australia wildfire reaching US$1.175 billion). This spatial 

heterogeneity alleviates the impact of natural disasters, as markets have substitute production 

centres. Thus, markets may not consider natural disasters hitting this production centres as 

signals or information to react to or they may react to them but not in a collective or panicking 

manner. 

 

***Insert Table 12 about here*** 

 

Lastly, wheat CARs are reported in Table 13, where no statistically significant results are 

reported at any significance level. Also, these results may reflect the spatial heterogeneity of 

top producing countries, along with the developed economy status of half of them allowing 

better information transfer channels permitting markets to react normally being well-informed 

and in a timely framework. 

 

***Insert Table 13 about here*** 

 

As for GARCH-estimated price volatilities, Table 7 displays the analysis of the impact of 

natural disasters on the volatility of cocoa prices, showing statistically significant cumulative 

abnormal variance (CAVs) at 0.1 significance level with 0.053, on the 15th day after the natural 

disasters hit the main producing countries. This result suggests that price volatility of cocoa 

peaks in the aftermath of natural disasters hitting its main country producers, with a cumulative 

mean-adjusted abnormal variance of 0.006 or 0.6%. 

 

Coffee, on the other hand, exhibits statistically significant results across all reported windows 

for cumulative abnormal variance; all at 1% significance level, as seen in Table 8. Cumulative 

abnormal variance reported 0.022 with p-value of 0.000 for the event window [-15, +15], 0.017 

with p-value of 0.000 for the event window [-10, +10], 0.013 with p-value of 0.000 for event 
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window [-7, +7], 0.007 with p-value of 0.000 for event window [-3, +3], 0.003 with p-value of 

0.000 for event window [-1, +1], and 0.002 with p-value 0.002 for event window [-3, -1]. On 

the event day itself, cumulative abnormal variance reports 0.002, with p-value of 0.002, 

remaining at the same level in the day after the event with a p-value of 0.001, doubling to 0.004 

with a p-value of 0.000 three days after the event. 

 

Notably, these results may suggest that the market reacts to new arriving information -natural 

disasters in this case- in line with the efficient market hypothesis (EMH), and these reactions 

lead to higher volatility due to increased frequency of reactions as more pieces of news arrive. 

This is in line with the results of Serrão (2015), who uses ARCH model to measure investors’ 

decisions on agricultural commodities price volatility. However, Serrão explains that these 

results show leverage effect (volatility is more impacted by negative information), and he 

attributes this to the Prospect Theory, where negative information leads to higher volatility. 

 

Table 9 exhibits cumulative abnormal variance of corn, with statistically significant results for 

all event windows except the event day (day 0). Cumulative abnormal variance reported 0.019 

with p-value of 0.000 for day +15, 0.012 with p-value of 0.000 for day +10, 0.008 with p-value 

of 0.000 for day +7, 0.004 with p-value of 0.000 for day +3, 0.001 with p-value of 0.041 for 

day +1, and 0.001 with p-value 0.014 for day -1, 0.001 with p-value of 0.080 for day +1 and 

0.002 with p-value of 0.000 for day +3. 

 

Such volatility around the event day for corn prices is in line with Diffenbaugh et al. (2012), 

who show that corn prices in the USA exhibit higher volatility in reaction to near environmental 

shocks more than they do towards other factors. However, Wright (2011) mentions the 

storability and substitutability of grains as other factors that highly impact corn price volatility, 

as demand increase on corn to produce biofuels. Thus, oil prices are also considered as a factor 

impacting corn price volatility, as oil prices feed into the demand on corn to produce biofuels. 

Accordingly, corn prices are vulnerable to environmental hazards, due to the numerous factors 

impacting its demand and supply. 

 

Cumulative abnormal variance of rice is reported in Table 10, with statistically significant 

results for all event windows, all at 1% significance level. With p-value of 0.000: the volatility 

coefficient is 0.044 for day +15, 0.029 for day +10, 0.021 for day +7, 0.010 for day +3, 0.004 
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for day +1, 0.004 for day -1, 0.003 for day 0, 0.003 for day +1 and 0.006 for day +3. These 

results suggest higher volatility of rice prices across all days around the natural disaster 

occurrence. 

 

Timmer (2008) mentions that among the drivers behind high variance of supply of and demand 

for rice, as per the drivers’ predictability, are weather factors on the supply side and exchange 

rates on the demand side. Given that rice is mostly produced in Asia, environmental hazards 

highly shocks prices. Timmer also mentions that since the rice market is concentrated, and 

since it does not have direct substitutions and due to its importance for Asian consumption, rice 

prices are complicated. In particular, due to rice importance in Asian dietary system, rice 

witnesses price panics, leading to higher sensitivity of its prices and higher volatility. 

 

Likewise, soybean cumulative abnormal variance, as shown in Table 11, display statistically 

significant results for all event windows, at 1% significance level. Similar to rice, with p-value 

of 0.000 across all windows, the volatility coefficient of soybean reports 0.039 for day +15, 

0.026 for day +10, 0.018 for day +7, 0.009 for day +3, 0.003 for day +1, 0.004 for day -1, 0.002 

for day 0, 0.002 for day +1 and 0.005 for day +3. The results show high volatility of soybean 

prices throughout all event windows around the occurrence of natural disasters. 

 

Gilbert and Morgan (2010) associate high grain prices with higher volatility. Haile et al. (2016) 

display that specifically soybean, along with corn, have the largest production reactions in 

response to changes in its domestic prices. This research has also found a negative correlation 

between wheat prices and soybean production, which leads soybean prices to change reflecting 

supply changes, as well as its price volatility to increase. This study finds that increasing 

international wheat prices cause farmers to decrease land for soybean planting and production, 

inducing price and price volatility responses. Timmer (2008) specifies droughts to have caused 

wheat prices to soar, leading farmers to shift acreage of soybean and corn, leading to higher 

price sensitivity and increasing volatility of soybean prices. 

 

Table 12 shows cumulative abnormal variance of sugar prices. Day +15 exhibits statistically 

significant result of 0.008, at 1% significance level, while days +10 and +7 show significant 

result with a coefficient of 0.005 each at 5% significance level. Lastly, day +3 reports a 

significant result of 0.002 at a significance level of 5%. This volatility in days prior and post 
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natural disasters in sugar producing countries may suggest that markets take time to measure 

the expected impacts of natural disasters on sugar and in relation to its substitutes. Sugar prices 

are highly volatile, particularly resulting from climatic events (Carpio, 2019). Exchange rates 

also highly impact sugar prices. 

 

Cumulative abnormal variance of wheat is demonstrated in Table 13, showing no statistically 

significant results for any reported event windows, at any level of significance. Although wheat 

has shown some volatility spikes, having no significant results may suggest that markets pay a 

great attention to information about wheat, due to its global importance, and this scrutiny does 

not allow much space for huge price fluctuations around the event dates. Volatility spillovers, 

from international to local markets and vice versa, is documented to increase on disruptions of 

wheat supply, while wheat self-sufficiency cools price volatility spillover from international 

markets to local markets (Tanaka, 2019). 

 

Next, to analyse the factors impacting the cumulative abnormal returns and cumulative 

abnormal variance of the seven agricultural commodities studied herein, Table 14 presents the 

descriptive statistics of the variables (dependant and independent) employed in the OLS 

regression. CARs show a minimum of -25.8% and a maximum of 16.5% over 1066 

observations, with a mean of -0.059%. 

 

***Insert Table 14 about here*** 

 

Table 15 shows the correlation matrix, displaying Pearson correlation coefficients and 

significance levels. All variables included in the OLS regression are not highly correlated, with 

the exception of storms and floods (-87.2%). Thus, the flood variable was excluded from the 

OLS regression, as the fifth dummy variable of natural disaster types (the excluded category), 

to prevent multicollinearity and ill-fit model. 

 

***Insert Table 15 about here*** 

 

Table 16 presents the OLS regression results, with CARs (%) as the dependant variable, to 

identify the factors impacting CARs across different event windows. As shown, price increase 
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that is the proxy for demand pressure, is statistically significant following a natural disaster in 

a producing country. This is true for the [-1,+1] and [+1,+3] windows3. 

 

However, the sign of this coefficient is negative, indicating that demand pressure mitigates 

abnormal returns caused by a natural disaster. This negative sign is quite unexpected, as it 

contradicts common economic intuition. We expected demand pressure to exacerbate the 

abnormal returns upon the occurrence of a natural disaster, given the economic dynamic of 

demand and supply. 

 

On the level of the agricultural commodities themselves, only the coefficient of the dummy 

variable of coffee is significant and negative, in the day before the event hits. As per the type 

of natural disasters, storm’s coefficient on the event day was statistically significant at 5% 

significance level. With a negative coefficient, it suggests that the stronger the impact of storm, 

the lower the CARs. GDP per capita is also a statistically significant factor behind CARs 

movements, on the day after the event and three days after the event; albeit having a negative 

coefficient, indicating a negative relationship between the CARs and the GDP per capita. This 

may suggest that as the purchasing power grows, demand on grains decline while demand on 

other higher-end food commodities increases, such as livestock and processed food. This 

finding is in line with previous research, such as Hawkes et al. (2017). 

 

***Insert Table 16 about here*** 

 

The results of the OLS regression including cumulative abnormal variance as the dependent 

variable are exhibited in Table 17. Price increase is positive and significant on the day after the 

event, meaning higher demand on the agricultural commodities. This exerts pressures on prices, 

and hence volatility increases. As price increase variable is a proxy for demand pressure on the 

 
3 In untabulated results, we exclude the USA and Japan from the sample data as they are the two countries mostly 

impacted by natural disasters in terms of damages. This may have allowed a bias in the OLS regression of CARs 

and CAVs. However, we find that Price.Increase variable is statistically significant at some event windows, 

namely [+1,+3], at 1% significant level, when we regress CARs. In case of CAVs, the main independent variable 

is not statistically significant at any event window, while Wildfire (control variable) remain statistically significant 

across all event windows. 

It is worthy mentioning that the USA and Japan do not produce both cocoa and coffee, while the USA is not rice-

producing country. As such, results are not much impacted by excluding the two countries. 
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agricultural commodities, this suggests that demand on these commodities add to their price 

volatility, given the pressure it exerts as prices fluctuate to finally reach the new price equilibria 

in response to natural disasters hitting the producing countries. 

 

***Insert Table 17 about here*** 

 

In addition, the dummy variable for wildfire is statistically significant across all event windows, 

at 5% significance level. With negative coefficients, the results may suggest that the more 

frequent and the stronger the wildfire events, the lower the CAVs. This may be explained by 

the fact that wildfires are not that impactful to agriculture, as natural wildfires that are the 

outcome of natural environmental cycles, of rainfall, dryness, and lightning, are mostly 

common in forests, for example in Canada. On the other hand, human-driven fires, whether 

accidental or intentional, are common in areas, such as Africa, Asia, and South America, where 

humans use controlled fires to manage and clear farmlands and natural vegetation to enable 

agriculture activities.4 

 

Furthermore, the change in foreign exchange rate of domestic currencies vis-à-vis the US dollar 

is statistically significant at 5% significance level, in the day before the event. The negative 

sign suggests that foreign exchange of domestic currency against the US dollar increases, the 

abnormal volatility declines. Agricultural commodities are traded in the US dollar, thus 

stronger local currencies would mean lower exports of these commodities. 

  

 
4 NASA Earth Observatory: https://earthobservatory.nasa.gov/global-maps/MOD14A1_M_FIRE 
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Conclusion 

 

This study examines how natural disasters, impact the prices and price volatilities of seven 

agricultural commodities when they occur in their respective main agricultural production 

centres: cocoa, coffee, corn, rice, soybean, sugar, and wheat. Natural disasters spanning over a 

period from 1980 to 2019 were employed to measure their impact, in terms of abnormal return 

and abnormal variance. 

 

This study uses event study and GARCH modelling, followed by series of ordinary least 

squares (OLS) regressions to examine the underlying factors impacting agricultural 

commodities’ abnormal return and abnormal volatility. 

 

We find statistically significant results in our event studies on rice and soybeans, when 

examining abnormal returns. Similarly, cumulative abnormal variances are statistically 

significant for cocoa, coffee, corn, rice, sugar, and soybean in different event windows. Wheat 

does not display any statistically significant results across any event window, neither for 

cumulative abnormal returns nor for cumulative abnormal variance. This suggests that markets 

react to the news about different agriculture commodities differently, because of the 

commodity importance to certain nations, substitutability, storability, and geographical 

concentration of production. 

 

Furthermore, we find that demand pressure feeds into agricultural commodities price abnormal 

returns and volatility across some event windows. However, the direction of the contribution 

to abnormal returns of this variable is unexpected. It may be explained that short-term natural 

disasters do not impact commodity prices as per the economic intuition. Markets seem to care 

more about long-term natural disasters, or maybe disaster information takes longer to be 

incorporated in prices. Or markets may have already anticipated these disasters; however, their 

impact was not as bad as expected. 

 

These results may follow the economic intuition, because as commodity prices increase, 

substitutes consumption increases as well, alleviating the demand pressure on the initial 

commodity. Further, prices revert to their mean (mean-reversion theory), accordingly, prices 
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move but do not generate demand pressure, as commodity price returns and price volatility 

eventually revert to their historical mean. 

 

Finally, there are a number of limitations to this study. The commodity literature regarding 

variable causality and direction of causality reports some mixed results. Thus, this study may 

be exposed to some omitted variables or reverse causality effects. In addition, some natural 

disaster events included in the event study may have raised the noise level in the analysis of 

both cumulative abnormal returns and cumulative abnormal variance. Adding a threshold 

(above-median damages) was employed to reduce the number of events to address this 

weakness. 

 

Also, given the nature and specifications of the event study methodology as introduced and 

described by Fama, Fisher, Jensen, and Roll (1969), Fama (1970 and 1998), and detailed by 

MacKinlay (1997), Binder (1998) and Kothari and Warner (2007), one important natural 

disaster type, droughts, was excluded from this study. Drought incidents generally last over 

long periods of time and, thus, cannot be measured in short-window event studies. Accordingly, 

further research needs to study these weather episodes given their importance to and impact on 

agriculture. In addition, some countries impose policies and regulations to protect their 

agriculture sector and industries (some developed countries for instance), accordingly, that 

impacts crops production and market reactions. As such, these results cannot be generalised, 

as markets are not only impacted by demand and supply forces. 
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Table 1: Natural Disasters Distribution by Impact, 1980-2019 

Year Type of Disaster 
Total 

Deaths 

Total Affected 

(million persons) 

Total Damages, CPI-

Adjusted (billion US$) 

1980 
Flood 246 0.739 1.467 

Storm 155 1.608 3.819 

1981 
Storm 905 1.073 3.439 

Flood 2,584 17.533 4.388 

1982 

Storm 1,754 6.528 7.523 

Flood 1,486 0.121 1.700 

Landslide 0  0.004 2.123 

1983 

Flood 271 0.052 0.606 

Storm 798 1.684 13.429 

Wildfire 75 0.011 1.763 

1984 
Storm 3,319 5.850 8.259 

Flood 36 0.754 1.140 

1985 

Flood 372 1.014 0.703 

Storm 270 2.604 10.378 

Extreme temperature 225 0 0.392 

1986 
Flood 145 0.368 1.212 

Storm 430 8.549 10.825 

1987 

Flood 2,297 29.735 1.664 

Storm 1,382 3.266 12.098 

Wildfire 0  0.153 0.258 

1988 
Storm 1,156 6.725 2.108 

Flood 640 10.601 5.163 

1989 

Storm 2,710 39.610 21.184 

Landslide 6 0.012 0.001 

Flood 2,044 100.270 6.598 

1990 

Storm 1,675 8.589 11.953 

Flood 8 0 1.735 

Extreme temperature 0  0 0.090 

1991 

Landslide 50 0 0.001 

Storm 628 5.606 23.847 

Flood 24 0.437 4.477 

1992 

Storm 227 0.343 58.057 

Landslide 124 0.039 0.851 

Flood 232 0.002 1.978 

Wildfire   0.001 0.365 

1993 

Storm 1,033 12.720 12.808 

Flood 48 0.688 1.235 

Landslide 56 0.000 0.425 

1994 

Flood 121 0.943 0.668 

Storm 443 10.010 2.339 

Wildfire 4 0.026 0.300 

Extreme temperature 0  0 0.938 

1995 

Flood 1,559 114.574 13.103 

Storm 2,213 3.740 2.988 

Landslide 40 0.014 0.009 

1996 
Storm 692 1.400 1.807 

Flood 700 1.478 2.109 

1997 

Storm 40 0.000 1.827 

Wildfire 2 0.001 0.017 

Extreme temperature 87 0 0.007 

Flood 110 0.900 2.049 

1998 

Wildfire 2 0.013 0.074 

Flood 755 1.982 2.569 

Storm 1,280 17.371 12.637 

1999 
Flood 87 0.049 0.651 

Storm 376 1.584 14.234 
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Landslide 11 0.0003 0.019 

Wildfire 0  0.0001 0.162 

2000 

Storm 188 1.935 2.510 

Flood 93 1.114 0.563 

Landslide 14 0.000 0.004 

2001 

Storm 465 22.302 5.594 

Flood 301 9.050 1.777 

Landslide 19 0.010 0.099 

2002 

Storm 195 1.246 7.954 

Flood 165 6.341 0.883 

Wildfire 0  0.003 0.369 

2003 
Flood 87 0.218 0.231 

Storm 114 9.652 1.446 

2004 
Storm 384 6.441 43.486 

Flood 1 0.000 0.007 

2005 

Storm 312 28.385 30.503 

Flood 0  0 0.004 

Landslide 143 0 0.007 

2006 
Landslide 1,126 0.006 0.003 

Storm 13 0.001 0.145 

2007 Storm 90 1.011 10.940 

2008 
Storm 359 4.418 12.479 

Flood 121 4.611 0.199 

2009 Storm 184 2.351 0.874 

2010 

Landslide 74 0.078 0.695 

Storm 220 3.365 4.959 

Flood 285 9.146 0.764 

2011 
Storm 167 4.194 2.940 

Flood 273 3.744 1.976 

2012 
Storm 2,142 13.454 71.140 

Flood 183 0.036 0.767 

2013 
Storm 7,463 16.988 15.129 

Flood 5 0.004 0.003 

2014 

Storm 206 9.745 10.163 

Landslide 125 0 0.072 

Wildfire 2 0 0.031 

Flood 0  0.007 0.159 

2015 
Storm 202 2.402 10.096 

Flood 19 0.048 1.484 

2016 
Storm 262 1.929 7.445 

Flood 268 1.929 7.567 

2017 

Storm 76 0.124 8.056 

Landslide 63 0.001 0.016 

Flood 61 0.022 0.486 

2018 
Landslide 12 0 0.00004 

Storm 300 6.510 4.347 

2019 Storm 85 20.168 13.429 
 

Flood 27 0.001 0.052 

 Total 51,920 612.421 573.687 

Natural disasters data is obtained from EM-DAT database, over the period 1980-2019 for the natural 

disasters impacting agriculture. Total Deaths is the total number of deaths is the number of casualties 

resulting from the natural disasters per year in top agricultural commodity producing countries. Total 

Affected is the number of people, in million, affected by the natural disasters per year in top agricultural 

commodity producing countries. Total Damages, CPI-Adjusted is the total damage in billion US 

dollar resulting from natural disasters per year for all top agricultural commodity producing countries. 
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Table 2: Natural Disasters Distribution by Type, 1980-2019 

 Disaster Type 

Total 
Year 

Extreme 

temperature 
Flood Landslide Storm Wildfire 

1980 0 3 0 8 0 11 

1981 0 5 0 10 0 15 

1982 0 6 1 23 0 30 

1983 0 4 0 7 2 13 

1984 0 3 0 13 0 16 

1985 1 6 0 9 0 16 

1986 0 8 0 14 0 22 

1987 0 7 1 16 1 25 

1988 0 5 0 10 0 15 

1989 0 2 1 14 0 17 

1990 1 2 0 15 0 18 

1991 0 4 1 15 0 20 

1992 0 4 3 10 2 19 

1993 0 6 1 24 0 31 

1994 1 9 0 14 2 26 

1995 0 7 1 11 0 19 

1996 0 2 0 7 0 9 

1997 1 4 0 7 2 14 

1998 0 7 0 14 3 24 

1999 0 5 1 14 1 21 

2000 0 8 1 19 0 28 

2001 0 7 1 18 0 26 

2002 0 2 0 19 3 24 

2003 0 5 0 9 0 14 

2004 0 2 0 14 0 16 

2005 0 1 1 12 0 14 

2006 0 0 1 2 0 3 

2007 0 0 0 7 0 7 

2008 0 6 0 15 0 21 

2009 0 0 0 8 0 8 

2010 0 3 3 12 0 18 

2011 0 4 0 8 0 12 

2012 0 2 0 20 0 22 

2013 0 1 0 13 0 14 

2014 0 1 2 6 1 10 

2015 0 2 0 15 0 17 

2016 0 1 0 10 0 11 

2017 0 3 2 12 0 17 

2018 0 1 1 14 0 16 

2019 0 1 0 6 0 7 

Total 4 149 22 494 17 686 

Natural disasters data is obtained from EM-DAT database, over the period 1980-2019 for the 

natural disasters impacting agriculture, and hence agricultural commodities. 
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Table 3: Distribution of Natural Disasters by Country, 1980-2019 

Country Disaster Type Number Total 

Argentina 
Flood 3 

8 Storm 4 

Wildfire 1 

Australia 
Flood 5 

29 Storm 20 

Wildfire 4 

Bangladesh 
Flood 2 

8 
Storm 6 

Bolivia 

  

Flood 3 
4 

Landslide 1 

Brazil 

  

  

  

Extreme temperature 1 

7 
Flood 3 

Storm 2 
Wildfire 1 

Canada 
Flood 7 

15 
Storm 8 

China 
Flood 20 

117 Landslide 3 
Storm 94 

Colombia 
Flood 1 

3 Landslide 1 

Storm 1 

Costa Rica 
Flood 1 

3 
Storm 2 

Cuba Storm 7 7 

Dominican Republic 
Flood 1 

7 
Storm 6 

Ecuador Flood 1 1 

El Salvador 
Flood 1 

2 
Storm 1 

Ethiopia Landslide 1 1 

France 
Flood 2 

8 Landslide 1 

Storm 5 

Germany 
Flood 1 

10 Storm 8 

Storm 1 

Guatemala 
Flood 2 

4 Landslide 1 

Storm 1 

Honduras 
Flood 2 

4 
Storm 2 

India 

Extreme temperature 1 

36 
Flood 9 
Landslide 1 

Storm 25 

Indonesia 
Flood 9 

14 Landslide 4 

Storm 1 

Italy 
Flood 6 

9 Landslide 2 

Storm 1 

Japan 
Flood 2 

29 Landslide 2 
Storm 25 

Kazakhstan Storm 1 1 

Malaysia Flood 1 1 
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Mexico 
Extreme temperature 1 

18 Flood 3 

Storm 14 

Myanmar 
Flood 1 

4 
Storm 3 

Nigeria 
Flood 2 

3 
Storm 1 

Pakistan Landslide 1 1 

Papua New Guinea 
Flood 2 

3 
Storm 1 

Peru Flood 1 1 

Philippines 
Flood 14 

124 Landslide 2 
Storm 108 

Romania Storm 1 1 

Russia 
Flood 5 

13 Landslide 1 

Storm 7 

South Africa 
Flood 2 

8 
Storm 6 

Thailand 
Flood 14 

19 
Storm 5 

Turkey 
Flood 2 

3 
Storm 1 

Ukraine 
Flood 1 

3 
Storm 2 

UK 
Flood 3 

8 
Storm 5 

USA 

Extreme temperature 1 

112 
Flood 13 

Landslide 1 
Storm 87 

Wildfire 10 
Uruguay Storm 1 1 

Viet Nam 
Flood 3 

34 
Storm 31 

Yugoslavia 
Flood 1 

2 
Wildfire 1 

Grand Total 686 

Natural disasters data is obtained from EM-DAT database, over the period 1980-2019 for the 

natural disasters impacting agriculture, and hence agricultural commodities. Data of main 
countries producing the selected agricultural commodities and their production share are 

obtained from FAOSTAT database. The FAOSTAT reports the annual production of 

agricultural commodities in tonnes, for each country. Production is over the period from 1980 
to 2019. 
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Table 4: Distribution of Natural Disasters Impact by Country 

1980-2019 

Country Total Deaths 
Total Affected 

(million persons) 

Total Damages, CPI-

Adjusted (billion US$) 

Argentina 51 6.003 3.336 

Australia 122 0.312 9.116 

Bangladesh 762 4.827 2.932 

Bolivia 49 0.001 0.834 

Brazil 385 3.043 3.775 

Canada 29 0.008 4.699 

China 9,187 372.352 82.112 

Colombia 26 0.100 0.124 

Costa Rica 79 0.628 0.522 

Cuba 44 6.621 7.589 

Dominican Republic 31 0.150 0.038 

El Salvador 500 0.068 0.849 

France 73 0.002 7.216 

Germany 44 0.000 17.146 

Guatemala 1,057 0.177 2.317 

Honduras 194 0.187 0.602 

India 5,349 63.715 29.546 

Indonesia 127 0.017 0.177 

Italy 78 0.008 7.487 

Japan 246 0.313 53.887 

Malaysia 11 0.025 0.031 

Mexico 673 0.768 8.635 

Myanmar 68 0.620 0.248 

Papua New Guinea 2 0.038 0.076 

Philippines 17,961 77.307 24.651 

Russia 172 0.071 5.062 

South Africa 20 0.000 1.176 

Thailand 317 10.271 1.408 

Turkey 0 0.000 0.716 

UK 67 0.048 8.904 

Ukraine 4 0.006 0.204 

USA 790 8.612 265.041 

Viet Nam 1,851 2.982 5.259 

Natural disasters data is obtained from EM-DAT database, over the period 1980-2019 for the 

natural disasters impacting agriculture. Total Deaths is the total number of deaths is the number of 

casualties resulting from the natural disasters per year in top agricultural commodity producing 

countries. Total Affected is the number of people, in million, affected by the natural disasters per 

year in top agricultural commodity producing countries. Total Damages, CPI-Adjusted is the total 

damage in billion US dollar resulting from natural disasters per year for all top agricultural 

commodity producing countries. Data of main countries producing the selected agricultural 

commodities and their production share are obtained from FAOSTAT database. The FAOSTAT 

reports the annual production of agricultural commodities in tonnes, for each country. Production 

is over the period from 1980 to 2019. 
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Table 5: Countries Producing Multiple Agriculture Commodities 

Country of Production 
Number of produced 

Commodities 

Russia 6 

Brazil 6 

India 6 

Indonesia 6 

  
China 5 

Mexico 5 

  
USA 4 

Argentina 4 

  
Ukraine 3 

Philippines 3 

Pakistan 3 

Colombia 3 

Canada 3 

  
Ethiopia 2 

Thailand 2 

Peru 2 

Guatemala 2 

France 2 

Côte d’Ivoire 2 

Australia 2 

Viet Nam 2 

Data of agricultural commodities production is obtained from 

FAOSTAT database. The FAOSTAT reports the annual production of 

agricultural commodities in tonnes, for each country. Production is over 
the period from 1980 to 2019. 
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Table 6: Agriculture Commodities Production per Country 

Cocoa Coffee Corn Rice Soybean Sugar Cane Wheat 

Brazil Brazil Argentina Bangladesh Argentina Argentina Argentina 

Cameron Burundi Brazil Brazil Bolivia Australia Australia 

Colombia Cameroon Canada China Brazil Brazil Canada 

Côte d’Ivoire Colombia China India Canada China China 

Dominican Republic Costa Rica France Indonesia China Colombia France 

Ecuador Côte d’Ivoire India Japan India Cuba Germany 

Ghana Ecuador Indonesia Myanmar Indonesia Guatemala India 

Indonesia El Salvador Italy Pakistan Italy India Kazakhstan 

Malaysia Ethiopia Mexico Philippines Mexico Indonesia Pakistan 

Mexico Guatemala Romania Thailand Paraguay Mexico Russia 

Nigeria Honduras Russia Viet Nam Russia Pakistan Turkey 

Papua New Guinea India South Africa  Ukraine Philippines Ukraine 

Peru Indonesia Ukraine  Uruguay Thailand UK 

Togo Mexico USA  USA USA USA 

 Peru Former Yugoslavia     

 Philippines      

 Uganda      

 Viet Nam      

Data of agricultural commodities production is obtained from FAOSTAT database. The FAOSTAT reports the annual production of 
agricultural commodities in tonnes, for each country. Production is over the period from 1980 to 2019. Russia data includes the data of the 

former USSR, up till its dissolution in on 31st December 1991. Germany data includes Eastern Germany data, up till Germany reunification 

at the end of 1990. 
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Table 7: Impact of Natural Disasters on Cocoa Prices 

Event Windows 
CAR % 

(p-value) 

Abnormal Variance 

(p-value) 

[-15, +15] 
2.087 

(0.271) 

0.006 * 

(0.053) 

[-10, +10] 
0.949 

(0.544) 

0.001 

(0.718) 

[-7, +7] 
0.247 

(0.852) 

0.001 

(0.755) 

[-3, +3] 
0.082 

(0.928) 

0.001 

(0.505) 

[-1, +1] 
-0.219 

(0.713) 

0.001 

(0.571) 

   

[-3, -1] 
0.100 

(0.819) 

0.000 

(0.987) 

[-1, 0] 
0.100 

(0.917) 

0.000 

(0.654) 

[0, +1] 
0.600 

(0.266) 

0.000 

(0.605) 

[0, +3] 
0.100 

(0.929) 

0.001 

(0.411) 

The symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, 

respectively. P-values are presented in parentheses. Significant results are set in bold. The table 
shows the impact of agriculture-related natural disasters hitting main top country producers on the 

price of rice for event windows: before, during, and after the event (day 0). Day 0 is the day of the 

event listed in EM-DAT database. CAR (%) is the cumulative abnormal return at the end of the 
event window (the summation of abnormal return from the first day in event window to the end 

day). Events included are the natural disasters in the top country-producers, with total damages are 

> Median, and N = 29 (natural disasters). Abnormal variance is cumulative abnormal GARCH 

volatility at the end of the event window (the summation of abnormal volatility from the first day 

in the event window to the end day). 
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Table 8: Impact of Natural Disasters on Coffee Prices 

Event Windows 
CAR % 

(p-value) 

Abnormal Variance 

(p-value) 

[-15, +15] 
1.673 

(0.123) 

0.022 *** 

(0.000) 

[-10, +10] 
0.283 

(0.752) 

0.017 *** 

(0.000) 

[-7, +7] 
-0.009 

(0.990) 

0.013 *** 

(0.000) 

[-3, +3] 
0.175 

(0.734) 

0.007 *** 

(0.000) 

[-1, +1] 
-0.282 

(0.403) 

0.003 *** 

(0.000) 

   

[-3, -1] 
-0.300 

(0.365) 

0.002 *** 

(0.002) 

[-1, 0] 
-0.300 

(0.239) 

0.002 *** 

(0.002) 

[0, +1] 
-0.200 

(0.502) 

0.002 *** 

(0.001) 

[0, +3] 
0.500 

(0.228) 

0.004 *** 

(0.000) 

The symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

P-values are presented in parentheses. Significant results are set in bold. The table shows the impact 

of agriculture-related natural disasters hitting main top country producers on the price of rice for event 
windows: before, during, and after the event (day 0). Day 0 is the day of the event listed in EM-DAT 

database. CAR (%) is the cumulative abnormal return at the end of the event window (the summation 

of abnormal return from first day in event window to the end day). Events included are the natural 
disasters in the top country-producers, with total damages are > Median, and N = 126 (natural 

disasters). Abnormal variance is cumulative abnormal GARCH volatility at the end of the event 
window (the summation of abnormal volatility from the first day in the event window to the end day). 
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Table 9: Impact of Natural Disasters on Corn Prices 

Event Windows 
CAR % 

(p-value) 

Abnormal Variance 

(p-value) 

[-15, +15] 
0.330 

(0.596) 

0.019 *** 

(0.000) 

[-10, +10] 
0.200 

(0.696) 

0.012 *** 

(0.000) 

[-7, +7] 
0.283 

(0.510) 

0.008 *** 

(0.000) 

[-3, +3] 
-0.070 

(0.811) 

0.004 *** 

(0.000) 

[-1, +1] 
-0.179 

(0.352) 

0.001 ** 

(0.041) 

   

[-3, -1] 
0.100 

(0.466) 

0.001 ** 

(0.014) 

[-1, 0] 
-0.100 

(0.378) 

0.001 

(0.207) 

[0, +1] 
-0.200 

(0.132) 

0.001 * 

(0.080) 

[0, +3] 
-0.200 

(0.344) 

0.002 *** 

(0.000) 

The symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

P-values are presented in parentheses. Significant results are set in bold. The table shows the impact of 
agriculture-related natural disasters hitting main top country producers on the price of rice for event 

windows: before, during, and after the event (day 0). Day 0 is the day of the event listed in EM-DAT 

database. CAR (%) is the cumulative abnormal return at the end of the event window (the summation 
of abnormal return from first day in event window to the end day). Events included are the natural 

disasters in the top country-producers, with total damages are > Median, and N = 186 (natural disasters). 

Abnormal variance is cumulative abnormal GARCH volatility at the end of the event window (the 

summation of abnormal volatility from the first day in the event window to the end day). 
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Table 10: Impact of Natural Disasters on Rice Prices 

Event Windows 
CAR % 

(p-value) 

Abnormal Variance 

(p-value) 

[-15, +15] 
0.813 

(0.243) 

0.044 *** 

(0.000) 

[-10, +10] 
0.499 

(0.386) 

0.029 *** 

(0.000) 

[-7, +7] 
0.289 

(0.551) 

0.021 *** 

(0.000) 

[-3, +3] 
0.884 *** 

(0.008) 

0.010 *** 

(0.000) 

[-1, +1] 
0.656 *** 

(0.002) 

0.004 *** 

(0.000) 

   

[-3, -1] 
0.500 ** 

(0.011) 

0.004 *** 

(0.000) 

[-1, 0] 
0.300 * 

(0.072) 

0.003 *** 

(0.000) 

[0, +1] 
0.600 *** 

(0.001) 

0.003 *** 

(0.000) 

[0, +3] 
0.300 

(0.200) 

0.006 *** 

(0.000) 

The symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 
P-values are presented in parentheses. Significant results are set in bold. The table shows the impact of 

agriculture-related natural disasters hitting main top country producers on the price of rice for event 

windows: before, during, and after the event (day 0). Day 0 is the day of the event listed in EM-DAT 
database. CAR (%) is the cumulative abnormal return at the end of the event window (the summation 

of abnormal return from first day in event window to the end day). Events included are the natural 

disasters in the top country-producers, with total damages are > Median, and N = 196 (natural disasters). 
Abnormal variance is cumulative abnormal GARCH volatility at the end of the event window (the 

summation of abnormal volatility from the first day in the event window to the end day). 
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Table 11: Impact of Natural Disasters on Soybean Prices 

Event Windows 
CAR % 

(p-value) 

Abnormal Variance 

(p-value) 

[-15, +15] 
-0.012 

(0.983) 

0.039 *** 

(0.000) 

[-10, +10] 
0.154 

(0.743) 

0.026 *** 

(0.000) 

[-7, +7] 
-0.093 

(0.815) 

0.018 *** 

(0.000) 

[-3, +3] 
0.002 

(0.993) 

0.009 *** 

(0.000) 

[-1, +1] 
-0.180 

(0.312) 

0.003 *** 

(0.000) 

   

[-3, -1] 
0.200 

(0.336) 

0.004 *** 

(0.000) 

[-1, 0] 
0.000 

(0.948) 

0.002 *** 

(0.000) 

[0, +1] 
-0.400 ** 

(0.011) 

0.002 *** 

(0.000) 

[0, +3] 
-0.200 

(0.410) 

0.005 *** 

(0.000) 

The symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. P-
values are presented in parentheses. Significant results are set in bold. The table shows the impact of 

agriculture-related natural disasters hitting main top country producers on the price of rice for event 

windows: before, during, and after the event (day 0). Day 0 is the day of the event listed in EM-DAT 
database. CAR (%) is the cumulative abnormal return at the end of the event window (the summation of 

abnormal return from first day in event window to the end day). Events included are the natural disasters 

in the top country-producers, with total damages are > Median, and N = 180 (natural disasters). Abnormal 
variance is cumulative abnormal GARCH volatility at the end of the event window (the summation of 

abnormal volatility from the first day in the event window to the end day). 
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Table 12: Impact of Natural Disasters on Sugar Prices 

Event Windows 
CAR % 

(p-value) 

Abnormal Variance 

(p-value) 

[-15, +15] 
0.874 

(0.338) 

0.008 *** 

(0.003) 

[-10, +10] 
0.846 

(0.260) 

0.005 ** 

(0.014) 

[-7, +7] 
0.42 

(0.509) 

0.005 ** 

(0.013) 

[-3, +3] 
0.542 

(0.211) 

0.002 

(0.117) 

[-1, +1] 
0.015 

(0.957) 

0.001 

(0.139) 

   

[-3, -1] 
0.100 

(0.689) 

0.000 

(0.956) 

[-1, 0] 
-0.100 

(0.668) 

0.001 

(0.272) 

[0, +1] 
-0.100 

(0.638 

0.001 

(0.161) 

[0, +3] 
0.300 

(0.374) 

0.002 ** 

(0.034) 

The symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. P-

values are presented in parentheses. Significant results are set in bold. The table shows the impact of 

agriculture-related natural disasters hitting main top country producers on the price of rice for event 
windows: before, during, and after the event (day 0). Day 0 is the day of the event listed in EM-DAT 

database. CAR (%) is the cumulative abnormal return at the end of the event window (the summation of 

abnormal return from first day in event window to the end day). Events included are the natural disasters 
in the top country-producers, with total damages are > Median, and N = 240 (natural disasters). Abnormal 

variance is cumulative abnormal GARCH volatility at the end of the event window (the summation of 

abnormal volatility from the first day in the event window to the end day). 
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Table 13: Impact of Natural Disasters on Wheat Prices 

Event Windows 
CAR % 

(p-value) 

Abnormal Variance 

(p-value) 

[-15, +15] 
1.055 

(0.343) 

-0.002 

(0.410) 

[-10, +10] 
0.584 

(0.522) 

-0.001 

(0.528) 

[-7, +7] 
0.262 

(0.734) 

-0.001 

(0.476) 

[-3, +3] 
-0.180 

(0.735) 

-0.001 

(0.489) 

[-1, +1] 
-0.148 

(0.670) 

0.000 

(0.516) 

   

[-3, -1] 
-0.300 

(0.458) 

0.000 

(0.741) 

[-1, 0] 
-0.100 

(0.735) 

0.000 

(0.791) 

[0, +1] 
0.100 

(0.732) 

0.000 

(0.458) 

[0, +3] 
0.200 

(0.540) 

-0.001 

(0.252) 

The symbols ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively. 

P-values are presented in parentheses. Significant results are set in bold. The table shows the impact of 
agriculture-related natural disasters hitting main top country producers on the price of rice for event 

windows: before, during, and after the event (day 0). Day 0 is the day of the event listed in EM-DAT 

database. CAR (%) is the cumulative abnormal return at the end of the event window (the summation 
of abnormal return from first day in event window to the end day). Events included are the natural 

disasters in the top country-producers, with total damages are > Median, and N = 182 (natural disasters). 
Abnormal variance is cumulative abnormal GARCH volatility at the end of the event window (the 

summation of abnormal volatility from the first day in the event window to the end day). 
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Table 14: Descriptive Statistics 

  N Minimum Maximum Mean Std. Deviation 

CARs (%) 1066 -25.801 16.517 -0.059 3.019 

Price.Increase 1089 -0.625 1.925 0.022 0.246 

Tot.Deaths 913 1 7,354 139 491.954 

Tot.Affected (Ln) 801 0 18.556 11.436 3.349 

Tot.Damages (Ln) 1089 10.029 17.970 13.214 1.310 

GDP.Capita (Ln) 1079 4.815 10.943 8.231 1.651 

Prod.Share 1084 0.005 10.873 1.790 3.332 

FX.Rate.Change 1089 -0.245 9.592 0.207 0.983 

CAR (%) is the cumulative abnormal return at the end of the event window and is the summation of abnormal returns 

at day 0. Price.Increase measures demand pressure on the agriculture commodities in the two years prior to the natural 

disaster. Tot.Damages (Ln) is the natural log of the net CPI-adjusted value of damages caused by a natural disaster in 

US$. Tot.Deaths is number of the people that passed away because of a natural disaster. Tot.Affected (Ln) is the 

natural log of the of the number of people affected by a natural disaster in a country. All three control variables are 

downloaded from EM-DAT database. GDP.Capita (Ln) is the natural log of the gross domestic product per capita of 

the affected country; GDP per capita is downloaded from the IMF WEO database. Prod.Share is the production share 

of a producing country of a certain commodity in the year before the natural disaster. FX.Rate.Change is the change 

in the foreign exchange rate of the domestic currency of a producing country against the US$ over the year of the 

occurrence of the nature disaster and the year before; FX rates are downloaded from the IMF IFS database. 
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Table 15: Correlation Matrix 

 
CARs% 

Price. 

Increase 
Tot.Deaths 

Tot. 

Affected 

Tot. 

Damages 
Cocoa Coffee Corn Rice Soybean Sugar Wheat Storm Flood Wildfire Landslide 

GDP. 

Capita 

Prod. 

Share 

FX.Rate. 

Change 

CARs% 1                                     

Price.Increase -0.012 1                                   

Tot.Deaths 0.059 -.0340 1                                 

Tot.Affected (Ln) 0.049 0.017 0.285** 1                               

Tot.Damages (Ln) -0.006 0.047 0.199** .0246** 1                             

Cocoa 0.006 -0.038 -0.032 -0.053 -0.129** 1                           

Coffee -0.032 -0.048 0.072* 0.065 -0.240** -0.060* 1                         

Corn -0.013 0.029 -0.033 -0.029 0.110** -0.075* -0.164** 1                       

Rice 0.055 0.025 0.015 0.044 -0.086** -0.066* -0.143** -0.180** 1                     

Soybean 0.011 0.039 -0.028 -0.020 0.107** -0.073* -0.160** -0.201** -0.175** 1                   

Sugar -0.011 -0.032 0.031 0.004 -0.009 -0.088** -0.192** -0.241** -0.211** -0.235** 1                 

Wheat -0.011 0.001 -0.041 -0.043 0.134** -0.074* -0.162** -0.203** -0.178** -0.198** -0.238** 1               

Storm -0.084** 0.009 -0.070* 0.060 0.043 -0.050 0.025 -0.036 0.048 -0.036 0.025 0.000 1             

Flood 0.083** -0.001 0.079* 0.027 -0.013 0.043 -0.017 0.027 -0.036 0.024 -0.025 0.006 -0.872** 1           

Wildfire 0.024 -0.024 -0.021 -0.153** -0.106** 0.010 -0.039 0.022 -0.046 0.009 0.015 0.024 -0.301** -0.074* 1         

Landslide 0.025 -0.025 -0.017 -0.104** 0.029 -0.015 -0.001 0.012 0.023 0.042 -0.024 -0.041 -0.172** -0.042 -0.015 1       

GDP.Capita (Ln) -0.053 0.072* -0.186** -0.485** 0.177** -0.007 -0.256** 0.086** -0.117** 0.069* 0.036 0.135** 0.057 -0.105** 0.141** 0.018 1     

Prod.Share 0.015 -0.015 0.117** -0.040 -0.148** 0.052 0.140** -0.076* -0.015 -0.107** 0.139** -0.102** -0.040 -0.014 0.106** 0.080** 0.087** 1   

FX.Rate. Change 0.027 0.024 0.030 0.034 0.004 0.162** 0.046 0.001 -0.042 0.002 -0.009 -0.064* -0.243** 0.176** 0.021 -0.020 -0.063* -0.046 1 

The table reports Pearson correlation coefficients between the variables used in the OLS regressions. The symbols *, **, and *** denote statistical significance at the 0.1, 0.05, and 0.01 level, respectively. P-values are reported below the correlation coefficients. 

CAR (%) is the cumulative abnormal return at the end of the event window and is the summation of abnormal returns, at day 0. Price Increase measures demand pressure on the agriculture commodities in the two years prior to the natural disaster. Tot.Damage 

is the natural log of the net CPI-adjusted value of damages caused by a natural disaster in US$. Tot.Deaths is number of the people that passed away because of a natural disaster. Tot.Affected is the natural log of the of the number of people affected by a natural 

disaster in a country. All three control variables are downloaded from EM-DAT database. Cocoa, Coffee, Corn, Rice, Soybean, Sugar, and Wheat are dummy variables for the agriculture commodities included, with values downloaded from Bloomberg. Storm, 

Flood, Extreme Temperature and Wildfire are dummy variables for natural disasters included, as reported by EM-DAT. GDPCapita is the natural log of the gross domestic product per capita of the affected country; GDP per capita is downloaded from the IMF 

WEO database. Prod.Share is the production share of a producing country of a certain commodity in the year before the natural disaster. FX.Rate.Change is the change in the foreign exchange rate of the domestic currency of a producing country against the US$ 

over the year of the occurrence of the nature disaster and the year before; FX rates are downloaded from the IMF IFS database. 
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Table 16: OLS Regression of Cumulative Abnormal Return (CAR) 

Event Window 

CAR% CAR% CAR% CAR% CAR% 

[-3, -1] [-1, +1] [-1,0] [0, +1] [+1, +3] 

Price.Increase 
-0.586 

(0.318) 

-1.115 ** 

(0.035) 

-0.138 

(0.764) 

-0.417 

(0.216) 

-2.331 *** 

(0.000) 

Tot.Deaths 
0.0001 

(0.764) 

0.0001 

(0.698) 

0.0002 

(0.300) 

-0.000003 

(0.985) 

-0.0001 

(0.644) 

Tot.Affected (Ln) 
-0.015 

(0.782) 

0.042 

(0.389) 

0.035 

(0.408) 

0.014 

(0.652) 

-0.032 

(0.505) 

Tot.Damages (Ln) 
-0.142 

(0.276) 

0.075 

(0.525) 

0.005 

(0.964) 

0.087 

(0.245) 

-0.093 

(0. 417) 

Coffee 
-1.631 * 

(0.096) 

-0.908 

(0.302) 

-0.748 

(0.329) 

-0.126 

(0.822) 

-0.276 

(0.749) 

Corn 
-0.734 

(0.460) 

-0.320 

(0.720) 

-0.531 

(0.496) 

-0.189 

(0.740) 

0.154 

(0.861) 

Rice 
-0.462 

(0.638) 

0.476 

(0.590) 

0.016 

(0.983) 

0.441 

(0.435) 

-0.142 

(0.870) 

Soybean 
-0.751 

(0.451) 

-0.460 

(0.607) 

-0.431 

(0.580) 

-0.196 

(0.731) 

-0.078 

(0.929) 

Sugar 
-0.669 

(0.487) 

-0.322 

(0.710) 

-0.545 

(0.471) 

-0.243 

(0.661) 

-0.015 

(0.986) 

Wheat 
-0.856 

(0.394) 

-0.037 

(0.967) 

-0.303 

(0.700) 

0.141 

(0.807) 

0.210 

(0.812) 

Storm 
-0.274 

(0.482) 

-0.563 

(0.109) 

-0.603 ** 

(0.049) 

-0.057 

(0.800) 

-0.187 

(0.586) 

Wildfire 
-0.990 

(0.519) 

-0.613 

(0.657) 

-0.102 

(0.933) 

-0.312 

(0.724) 

-1.612 

(0.233) 

Landslide 
1.143 

(0.452) 

1.869 

(0.171) 

0.882 

(0.459) 

1.454 * 

(0.096) 

0.573 

(0.668) 

GDP.Capita (Ln) 
-0.080 

(0.502) 

-0.224 ** 

(0.037) 

-0.125 

(0.183) 

-0.150 ** 

(0.028) 

-0.192 * 

(0.069) 

Prod.Share 
-0.037 

(0.447) 

-0.025 

(0.569) 

-0.017 

(0.656) 

0.013 

(0.634) 

-0.068 

(0.115) 

FX.Rate.Change 
0.243 

(0.127) 

-0.059 

(0.678) 

-0.127 

(0.309) 

-0.054 

(0.622) 

0.074 

(0.595) 

(Constant) 
3.621 

(0.048) 

3.040 

(0.660) 

1.383 

(0.335) 

0.224 

(0.831) 

3.398 

(0.035) 

The symbols *, **, and *** denote statistical significance at the 0.1, 0.05, and 0.01 level, respectively. P-values are reported below 

the correlation coefficients. CAR (%) is the cumulative abnormal return at the end of the event window and is the summation of 

abnormal returns. Price.Increase (%) measures demand pressure on the agriculture commodities in the two years prior to the natural 

disaster. Tot.Damage (Ln) is the natural log of the net CPI-adjusted value of damages caused by a natural disaster in US$. 

Tot.Deaths is number of the people that passed away because of a natural disaster. Tot.Affected (Ln) is the natural log of the of the 

number of people affected by a natural disaster in a country. All three control variables are downloaded from EM-DAT database. 

Cocoa, Coffee, Corn, Rice, Soybean, Sugar, and Wheat are dummy variables for the agriculture commodities included, with values 

downloaded from Bloomberg. Storm, Flood, Extreme Temperature and Wildfire are dummy variables for natural disasters 

included, as reported by EM-DAT. GDPCapita (Ln) is the natural log of the gross domestic product per capita of the affected 

country; GDP per capita is downloaded from the IMF WEO database. Prod.Share is the production share of a producing country of 

a certain commodity in the year before the natural disaster. FX.Rate.Change is the change in the foreign exchange rate of the 

domestic currency of a producing country against the US$ over the year of the occurrence of the nature disaster and the year before; 

FX rates are downloaded from the IMF IFS database. 
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Table 17: OLS Regression of Cumulative Abnormal Variance (CAV) 

Event Window 
CAV% CAV% CAV% CAV% CAV% 

[-3, -1] [-1, +1] [-1,0] [0, +1] [+1, +3] 

Price.Increase 
0.094 

(0.230) 

0.392 * 

(0.095) 

0.254 

(0.105) 

0.273 * 

(0.089) 

0.340 

(0.190) 

Tot.Deaths 
-0.0001 

(0.184) 

-0.0002 

(0.169) 

-0.0001 

(0.185) 

-0.0001 

(0.165) 

-0.0001 

(0.238) 

Tot.Affected (Ln) 
0.007 

(0.354) 

0.014 

(0.516) 

0.006 

(0.690) 

0.012 

(0.412) 

0.028 

(0.248) 

Tot.Damages (Ln) 
0.016 

(0.363) 

0.069 

(0.184) 

0.054 

(0.123) 

0.046 

(0.195) 

0.037 

(0.522) 

Coffee 
-0.030 

(0.820) 

0.045 

(0.909) 

0.016 

(0.950) 

0.023 

(0.932) 

0.123 

(0.776) 

Corn 
-0.049 

(0.709) 

-0.217 

(0.585) 

-0.179 

(0.500) 

-0.134 

(0.623 

0.002 

(0.997) 

Rice 
-0.072 

(0.581) 

-0.214 

(0.586) 

-0.156 

(0.552) 

-0.145 

(0.588) 

-0.139 

(0.749) 

Soybean 
0.031 

(0.816) 

0.049 

(0.903) 

0.004 

(0.989) 

0.039 

(0.886) 

0.187 

(0.670) 

Sugar 
-0.092 

(0.474) 

-0.167 

(0.666) 

-0.123 

(0.632) 

-0.112 

(0.670) 

-0.115 

(0.786) 

Wheat 
-0.065 

(0.625) 

-0.226 

(0.574) 

-0.161 

(0.547) 

-0.155 

(0.572) 

-0.169 

(0.703) 

Storm 
-0.008 

(0.879) 

-0.006 

(0.969) 

-0.003 

(0.980) 

-0.006 

(0.952) 

0.034 

(0.844) 

Wildfire 
-0.501** 

(0.014) 

-1.451 ** 

(0.019) 

-0.959 ** 

(0.019) 

-0.974 ** 

(0.020) 

-1.447 ** 

(0.033) 

Landslide 
0.107 

(0.596) 

0.042 

(0.945) 

0.091 

(0.822) 

-0.027 

(0.948) 

0.038 

(0.954) 

GDP.Capita (Ln) 
0.002 

(0.921) 

-0.020 

(0.680) 

-0.024 

(0.448) 

-0.010 

(0.757) 

0.044 

(0.403) 

Prod.Share 
-0.009 

(0.177) 

-0.013 

(0.503) 

-0.011 

(0.382) 

0.008 

(528) 

-0.004 

(0.854) 

FX.Rate.Change 
-0.050 ** 

(0.018) 

-0.082 

(0.198) 

-0.062 

(0.141) 

-0.044 

(0.307) 

-0.006 

(0.934) 

(Constant) 
-0.200 

(0.412) 

-0.615 

(0.402) 

-0.376 

(0.441) 

-0.459 

(0.359) 

-0.923 

(0.253) 

The symbols *, **, and *** denote statistical significance at the 0.1, 0.05, and 0.01 level, respectively. P-values are reported below 

the correlation coefficients. CAV (%) is the cumulative abnormal volatility at the end of the event window and is the summation 

of abnormal returns. Price.Increase (%) measures demand pressure on the agriculture commodities in the two years prior to the 
natural disaster. Tot.Damage (Ln) is the natural log of the net CPI-adjusted value of damages caused by a natural disaster in US$. 

Tot.Deaths is number of the people that passed away because of a natural disaster. Tot.Affected (Ln) is the natural log of the of 

the number of people affected by a natural disaster in a country. All three control variables are downloaded from EM-DAT 
database. Cocoa, Coffee, Corn, Rice, Soybean, Sugar, and Wheat are dummy variables for the agriculture commodities included, 

with values downloaded from Bloomberg. Storm, Flood, Extreme Temperature and Wildfire are dummy variables for natural 

disasters included, as reported by EM-DAT. GDPCapita (Ln) is the natural log of the gross domestic product per capita of the 
affected country; GDP per capita is downloaded from the IMF WEO database. Prod.Share is the production share of a producing 

country of a certain commodity in the year before the natural disaster. FX.Rate.Change is the change in the foreign exchange rate 

of the domestic currency of a producing country against the US$ over the year of the occurrence of the nature disaster and the year 
before; FX rates are downloaded from the IMF IFS database. 
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Figure 1: Selected Natural Disasters Frequency, 1980 - 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Daily Conditional Volatility - Agricultural Commodities 
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