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Abstract

The Design and Implementation of a Query Platform and Simulation Tool for the
Analysis of UML State Machines through Declarative Modeling

Zohreh Mehrafrooz Mayvan

Among the various aspects of the UML, a state machine is part of the specification used

to model the dynamic behavior of systems. In developing complex systems, state machines

can be deployed to capture use cases and thus contribute towards requirements validation.

During testing, a state machine can contribute towards requirements verification. In our

proposal, we treat a state machine as a directed mathematical graph and transform it into a

declarative model that is implemented as a database of clauses using Prolog. To tackle the

complexity of composite states, we propose an algorithm for flattening the representation

of a state machine. This model transformation occurs behind the scenes and provides the

same semantic model at a lower level of abstraction. The initial and flattened declarative

models provide the factbase on which we build a set of rules to study the behavior, the

complexity and the structure of a state machine.

Furthermore, we treat the machine’s flattened model as a platform over which we

simulate the machine’s behavior given a scenario. We support the simulation process with

a tool that we developed. The tool is implemented in Java using the Java Prolog Library

(JPL) that provides an interface between the two technologies. Our simulator reads in a

scenario and proceeds to generate the machine’s behavior including its state at discrete time

steps as output. We demonstrate the process through a case study.
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Chapter 1

Introduction

1.1 Introduction to the research and expected benefits

The Unified Modeling Language (UML) is an industrial de facto standard that supports the

modeling of software processes and artifacts. Among the various aspects of the UML, a state

machine is part of the specification used to model the dynamic behavior of components,

ranging from the very small (e.g. a single complex object) to the very large (e.g. a use

case).

In this thesis we focus on the deployment of state machines used to model use cases, thus

providing a detailed description of how the entire system under development is expected

to behave given a certain scenario of family of related success and failure scenarios. An

overview of top-level UML activity diagram is presented in figure 1.1. Our goal is to

transform the state machine into a representation that can be automatically examined and

queried. More specifically, once a use case is transformed into a state machine, we want our

model and its query system to examine both its observable behavior as well as its quality

attributes. These two aspects of the study roughly correspond to the machine’s (and by

extension the use case’s) functional and non-functional requirements.

On the former, we want to be able to see, for example, whether and under what

conditions the machine can terminate, or the conditions under which the machine can

reach a certain state etc. On the latter, we view the machine as a directed mathematical

graph, and so by examining properties as well as by applying measures on the graph, we

expect to be able to draw conclusions on the machine’s quality attributes.

We will map the state machine (its mathematical model and its visual counterpart,

1



the state transition diagram as supported by the UML) into a declarative model and thus

represent the machine as a database of clauses (facts). We will extend the database with

a set of rules. The expected benefit from this approach is to assist developers during

requirements validation to use rules and execute queries in order to be able eventually to

answer the key question of requirements validation: “Are we building the right product?”.

We will extend our tool to allow developers define a scenario which can then serve as

input to the machine through simulating its behavior. The simulation will demonstrate how

a machine behaves under a given sequence of events that the system receives by producing

an output composed of the reaction of the system to these events in terms of a) modification

of system state (the set of global variables held by the machine) and b) execution of actions

expected. In the case of the latter, we are also examining whether a system action upholds

its associated invariant at two levels: First, at the level of its current state, and second,

at the top-most level of the machine. The expected benefit from this approach is to assist

developers run various what-if scenarios and examine the behavior of their system under

development.

Figure 1.1: Overview of top-level UML activity diagram.

1.2 Overview of the approach

We provide an overview of our approach in figure 1.2. Our system produces an initial and a

flattened declarative representation of a state machine which form the factbase for a query

system. Furthermore, the flattened model provides the factbase for our simulator. The

simulator additionally reads data from an imperative model produced earlier and walks

over a scenario in order to produce an output in two parts: a) the behavior of the state

machine as a sequence of discrete timed events and b) a snapshot of its state along a discrete

time. The output can be visualized for easier analysis.
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Figure 1.2: UML activity diagram of our approach.

1.3 Our contributions

In this study, we define a declarative representation of a state machine, and construct a

platform to analyze the machine through queries and simulation. Our simulator is developed

as a imperative model. Deploying both declarative and imperative models to study and

analyze state machines is a novelty in the literature. The objective is to assist in the

validation of system requirements captured by the machine and the methodology entails

the study of quality attributes, behavior and well-formedness of the machine as well as

simulation.

Deploying a declarative representation is one of our main contributions in this thesis.

Declarative modeling is a powerful and intuitive way to represent state machines, offering

numerous advantages in terms of maintainability, scalability, and analysis. In fact,

declarative representation expresses the behavior and transitions of the state machine
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using logical clauses and rules. This model can be implemented in Prolog, which provides

capabilities like pattern matching and backtracking, making it well-suited for modeling

complex behavior in state machines [1].

We propose an algorithm to flatten the declarative model in Prolog, introducing ϵ-

transition and supporting various event and action types through related clauses for events

and actions in the initial declarative model. Our flattened declarative model gives the

flexibility to incorporate complex UML features and defines the correct sequence of actions

in transitions.

The key contribution of this thesis is developing a tool to simulate the behavior of

the system and generate outputs that aid in requirements validation and verification, as

well as analyzing the behavior of the system. Furthermore, this research simulates the

state machine which is deployed to capture use cases and contribute towards requirements

validation. In fact, state machines can be used as a tool to validate the requirements against

real-world scenarios and ensure that all necessary behaviors and conditions are accounted

for. Our tool can help in ensuring that the system requirements are complete, consistent,

and accurately captured by modeling different use cases.

Additionally, during testing, state machines can contribute towards requirements

verification. This means that the state machine model can be used as a reference to verify

whether the system implementation meets the specified requirements or not. By comparing

the actual system behavior against the expected behavior defined by the state machine, it

is possible to verify if the system behaves as intended and fulfills the specified requirements.

Last but not least, we address contract considerations including state invariants and

pre/post-conditions of actions in our declarative model, and then we can assert them during

the simulation.

1.4 Organization of the rest of the thesis

This thesis is structured as follows: In Chapter 2, we present an overview of the

mathematical specification of state machines. A review on related works is presented in

Chapter 3. In Chapter 4, we introduce our case study, and in Chapter 5, we describe

the framework that provides a model transformation of a state machine into an initial

declarative representation. Also, in this chapter, an algorithm is introduced to flatten the

4



initial declarative representation of state machines into a flattened model at a lower level

of abstraction. In Chapter 6, we deploy our two declarative models (initial and flattened)

as factbases in order to build a query system, by defining rules that can study the various

aspects of a state machine. Moreover, In this research, we considered contracts as state

invariants and pre/post-coditions of actions, which is presented in Chapter 7. In Chapter 8,

we describe our developed tool for simulating the behavior of state machines, including the

architecture of it. In Chapter 9, we demonstrate result of our approach on the case study.
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Chapter 2

Background

2.1 From Harel’s statecharts to UML state machines

Originally introduced by Gill (1962) [2] and later proposed by Harel in 1984 [3] as a

significant extension over traditional (deterministic) finite state machines, a statechart is a

formalism to model the dynamic behavior of a component at any level of abstraction like

e.g. an object, a system unit, a use case, or the entire system itself. The Unified Modeling

Language adopted Harel’s statecharts in its specification and extended them (see Figure

2.1). A state transition diagram is the visual counterpart of a state machine. This study is

on the extended statechart model which is part of the OMG UML specification1, referred

to in the literature as UML state machine (or UML statechart) and referred to throughout

the thesis simply as state machine.

UML 2.5.1[4] provides numerous complex features, such as composite and nested states;

entry and exit pseudostates; entry, exit, and do state behaviours; implicit region completion

transition. This leads into a complex behaviorial analysis. We simplify the machine by

converting it into a modified EFSM, as specified in the subsequent section. Moreover, the

standard UML does not allow ϵ-transitions. An ϵ-transition is a transition whose event and

guard are empty. It is important to recognize that empty transitions are only permissible

in pseudostates, such as entry and exit points, as well as during region completion, such as

when a do action is completed or when reaching a final substate.
1https://www.omg.org/spec/UML/2.5.1/PDF
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Figure 2.1: A family tree of state machines and the UML state machine.

2.1.1 Modified EFSM

The EFSM is formally defined using a 7-tuple [5]. Our definition of EFSMs uses 7-tuple as

well, with a slight modification on the inputs of the transition (see Figure 2.2). An EFSM

M is defined using a 7-tuple (Q, Σ1, Σ2, q0, V, Γ, Λ), where

• Q is a finite set of states,

• Σ1 = {ei}, is a non-empty finite set of events,

• Σ2 = {ai}, is a finite set of actions,

• q0 ∈ Q is the starting state,

• V = {vi} is a finite set of mutable global variables,

• Γ = {gi} is a finite set of guards,

• Λ = {λi : q
e[g]/a−−−→ q′}, is a finite set of deterministic transitions defined on Q×

◦
Σ1×

◦
Γ →

Q ×
◦

Σ2, where
◦

Σ1 = {ϵ} ∪ Σ1,
◦
Γ = {ϵ} ∪ Γ,

◦
Σ2 = {ϵ} ∪ Σ2, ϵ denotes null, q, q′ ∈ Q,

and e ∈
◦

Σ1, g ∈
◦
Γ, and a ∈

◦
Σ2 are all bindable string literals.

A bindable expression is a well-formed expression in string literal format that consists of

literal values and keys. “tCurrent >= tThreshold” and “echo(’Configuring mode’);” are

examples of bindable string for a guard and an actions, respectively. The guard uses two

7



variables: “tCurrent” and “tThreshold”, and the action represents a method invocation

“echo()”. A guarded ϵ-transition is represented by λ : q
e[g]/a−−−→ q′ where e = ϵ. In case g = ϵ,

the transition is referred to as ϵ-transition. In order for Λ to be deterministic, for every

state q ∈ Q, at most one possible transition must exist. In other words, ∀q∀λi : q
ei[gi]/a−−−−→ q′,

the satisfiability of (ei, gi) must be exclusive. While this property holds for all EFSMs, we

enforce the following restrictions:

1. If state q has an outgoing ϵ-transitions, no other outgoing transitions are allowed on

the state q.

2. If state q has an outgoing guarded ϵ-transitions, only other guarded ϵ-transitions are

allowed on the state. Let {gi} be the set of all guards for all guarded ϵ-transitions on

state q. i) ∪gi = True; ii) ∀i∀j ̸= i (¬(gi ∧ gj)).

Figure 2.2: our modified EFSM.
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Chapter 3

Related work

Statecharts are a widely-used notation for representing the executable behavior of complex

reactive event-based systems, and they are a part of the UML standard. They are commonly

used in industry for real-time systems and embedded systems development, and they are

supported by various commercial tools, such as IBM Rational Rhapsody, The Mathworks

Stateflow, itemis Yakindu Statechart Tools, IAR Systems visualSTATE, and QuantumLeaps

QM [6]. These tools typically offer features like statechart visualization, modification, and

simulation, as well as code generation from statechart models. The more advanced tools

may also provide support for model debugging and verification [6]. Considering this wide

varaiety of statecharts features and their applications, we go through its related works in

this chapter.

Using Prolog for defining declarative representation of state machines provides a simple

and concise way to represent the various elements of a state machine such as states and

transitions. State machines can have complex and branching behavior, which may make

it challenging to verify that all possible paths have been tested. Prolog’s capabilities like

pattern matching and backtracking make it well-suited for modeling the behavior of complex

systems [1].

Declarative model can be extended by introducing some Prolog rules to study the

behavior, complexity, and design of the underlying state machine. Using Prolog facts and

rules for modeling UML diagrams has been considered in many researches. Sheng et al. [7]

present a Prolog-based consistency checking for UML class diagram and object diagram.

They formalize the elements of a model and then convert the model into Prolog facts.
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Consistency rules are also defined in Prolog, along with interfaces that enable querying of

properties, elements, and submodels of the model. Khai et al. [8] propose an Prolog-based

approach for consistency checking of class and sequence diagrams. Consistency checking

rules as well as UML models are represented in Prolog. The reasoning engine of Prolog is

then utilized to automatically identify any inconsistencies in the models.

State machines are widely utilized in the field of software testing, which involves

evaluating an application’s performance and quality to verify that it meets the requirements

specified prior to its development. Hashim and Dawood [9] conducted a review of test case

generation methods that use UML statecharts. They found that most of the reviewed

papers converted the UML statechart diagram into an intermediate model, such as a graph

or a table, which was then used to generate test cases using different algorithms. Chen

and Lin [10] emphasize the growing interest in software testing methods which utilize UML

models. Their test case generation strategy improves the test efficiency and guarantees high

test coverage and accuracy.

Aktaş and Ovatman [11] introduce UML statechart anti-patterns which may occur

during software development process. These problematic design practices have the potential

to cause adverse effects throughout the software development life cycle. The anti-patterns

they considered are cross-level transitions, missing events, generic state names, unreachable

states, cascaded conditions, isolated states, and complex statechart diagrams.

Using declarative model, static behaviour of system can be studied, and requirements

can be tested. However, statecharts are a widely-used notation for representing the dynamic

and executable behavior of complex reactive event-based systems [6]. This highlights the

significance of having tools for visualizing, modifying, and simulating statechart models.

Mens et al. [12] introduce a technique to improve statechart design. The proposed method

comes with specialized tools, including a modular Python library called Sismic [6]. It is an

open-source Python library for statechart interpretation that supports various techniques

such as test-driven development, behavior-driven development, design by contract, and

property statecharts to facilitate the testing and validation process.

Van Mierlo and Vangheluwe [13] present an approach for modeling, simulating, testing,

and deploying statecharts. In their approach, they utilize Yakindu to model their case

study. The state of the system can be altered when a transition is triggered by an event or

timeout, as well as a condition related to system’s variable values. Executing a transition
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leads to the execution of an action that can modify the system’s variable values or raise an

event.

Balasubramanian et al. [14] introduce Polyglot, a comprehensive framework for

analyzing models described using multiple statechart formalisms. Their approach involves

translating statechart models into Java and analyzing them using pluggable semantics for

different variants. The translation process captures the structure of the statechart model,

while behavior is defined in separate Java modules. They also provide an implementation of

their framework and present a case study where interacting components are modeled using

different statechart formalisms.

Modeling state machines with nested composite states and flattening the model is a

challenging task. One major issue in this context is the potential occurrence of unwanted

non-determinism [13]. This scenario can arise when a state in a state machine has an

outgoing transition that is triggered by the same event as an outgoing transition defined

on one of its parent states, resulting in non-determinism. For addressing this problem, two

potential solutions have been proposed in the literature: either the outermost transition

can be chosen or the innermost transition can be chosen [15, 13, 16].

E. V. and Samuel [17] describe a technique to transform hierarchical, concurrent, and

history states into Java code using a design pattern-based methodology. They provide

an approach to implementing composite states with parallel regions in an object-oriented

manner. They demonstrate that their approach generates less complex code and produces

promising outcomes when compared to alternative tools.

A wide variety of testing techniques and associated tools is available for developing

source code in programming languages. These techniques include test-driven development

(TDD), behaviour-driven development (BDD), and design by contract (DbC) [6]. Mens

et al. [18] emphassize the point that it is poorly understood how such techniques can be

used for testing and validating executable statechart models. Indeed, designing statecharts

and their interaction with the environment can be quite complex and error-prone, partly

because of the statechart formalism itself, and partly because of the complex behaviour that

these statecharts are modelling. They suggest a solution to tackle this issue by introducing

a technique to improve statechart design. Their proposed method incorporates a statechart

interpreter and additional libraries that facilitate the testing and validation of executable

statecharts. These techniques, such as TDD, BDD, DbC, and property statecharts,
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help monitor behavioral properties during statechart execution and detect any violations.

Moreover, they mention that several companies are using their tool successfully, particularly

for model-in-the-loop testing and simulations, as well as for supporting workflows and

business processes. Sismic is also being used for executing and validating concurrent

distributed statecharts.

Software testing is the process of evaluating the quality and performance of an

application to ensure that it satisfies the requirements established prior to development.

Test case generation is a critical phase of software testing. As the size and complexity of a

software system grow, generating efficient and effective test cases becomes more challenging.

Jin and Lano [19] conducted a systematic literature review on the topic of Generating Test

Cases from UML Diagrams. In contrast to source code level testing, design level testing

can begin testing before implementation. Therefore, generating test cases from the design

level is an important area of research. UML diagrams can represent various aspects of

a system, including structural and behavioral components. Despite being incomplete and

ambiguous at times, UML diagrams provide crucial information for test case design and

serve as guidance for automatic test case creation. Therefore, utilizing UML to design test

cases is a significant and challenging topic in Model-Based Testing.

They presents the findings of a comprehensive systematic literature review focused on

generating test cases using UML diagrams. After applying selection and exclusion criteria,

62 primary studies were chosen from a pool of 443 publications that spanned from 1999 to

2019. The review primarily examined the model type, intermediate format, and coverage

criteria. Based on the review points, five research questions were formulated, and five

assessment questions were used to evaluate the quality of the selected primary studies. Of

the 22 studies reviewed, State diagram for UML model was used in 22 of them [19].

Hashim and Dawood [9] conducted a review of test case generation methods that use

UML statecharts. This study utilized content analysis to examine 24 primary studies in

this domain. The review focused on various aspects, including the input model used, the

method or algorithm applied, any intermediate model, coverage criteria achieved, and the

mode of evaluation performed on the proposed method. They concluded that the majority

of the reviewed papers converted the UML statechart diagram into another representation,

such as a graph or a table (intermediate model), which were later used to derive test cases

by applying various algorithms, such as GA, DFS, BFS, or other customized algorithms.
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They also noted that there is still room for further research in this domain, as the existing

work still has claims to reach an optimal way in their test case generation approach.

Murthy et al [20] proposed a new approach for UML Statechart based test generation.

They introduced Test Ready UML Statechart models that can be used by testers during

the testing phases just as the conventional UML Statecharts are used during the design and

development phases. They provided a detailed description of the Test Ready Statechart

models, including the modifications required for the statechart semantics, the guidelines

for creating Test Ready Statechart models, and a mapping algorithm for generating test

cases from the Test Ready models. They also compared their approach with other

UML Statechart based testing methods and provided experimental results to show the

effectiveness of their approach.

Test Ready UML Statechart models are designed to provide the necessary information

for a test generator to generate test scripts automatically. Test scenarios are created as

instances of paths in the model, and the event generation capability captures different

variations or characteristics of events. This approach aims to enable testers to generate test

cases from the UML statechart models in a more efficient and effective way, reducing the

time and effort required for test case generation. The Test Ready UML Statechart model

is intended to be used during the testing phase, just as conventional UML statecharts are

used during the design and development phases [20].

Test Ready UML Statechart model provides the necessary information for a test

generator to automatically generate test scripts, which could potentially save a lot of time

and effort in the testing phase. This methodology has been effective in modeling commercial

applications and GUI systems. They mentions that their methodology evolves in the future,

especially it can be applied to state diagrams with nested states and concurrency [20].

Use of pre- and post-contracts for each state is considered by Decan and Mens [6]. In fact,

Sismic’s statechart interpreter has a useful capability which is automatically checking for

contract violations and unwanted behaviors during runtime. Sismic’s statechart interpreter

performs checks at various stages: preconditions are verified before entering a state and

before processing a transition, postconditions are verified after exiting a state and after

processing a transition, and invariants are checked for active states at the end of each

macrostep. Transition invariants serve as both preconditions and postconditions. In our

research, we focus on checking invariants for every state as well as pre- and post-conditions
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of each action done. a detailed description of our approach regarding contract considerations

in state machines is provided in Chapter 7 of this research.

Mens et al.[12] propose a comprehensive approach to enhance statechart design by

incorporating contracts, preconditions, and postconditions. Contracts are used to define

the expected behavior and constraints of the statechart model, while preconditions and

postconditions specify the conditions that must be met before and after the execution

of states and transitions. By monitoring contracts and properties at runtime using the

Sismic tool, violations can be detected, ensuring the quality and reliability of the statechart

models. This method provides valuable techniques for testing and validating statechart

designs, addressing the complexities and potential errors associated with reactive event-

based systems.

Sekerinski[21] proposes a method for statically verifying the design expressed by a

statechart, aiming to increase confidence in the design and complement validation through

testing. The approach involves supplementing a statechart with state invariants, which

are conditions attached to individual states that specify what must hold in a state

configuration. These invariants are not meant for execution but allow for consistency

checking beyond structural well-formedness. The paper presents an algorithm that generates

"local" verification conditions based on the locality of state invariants. By decomposing

potentially large invariants into smaller parts, which are in visual proximity to affected

transitions, complex invariants become more comprehensible. The approach offers a way to

specify correctness conditions for statecharts and makes verification easier.
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Chapter 4

Introducing the case study: alarm

system

We define an alarm system that monitors the temperature as a case study in this thesis.

The alarm system is presented in Fig. 4.1. This case study is designed in a way that

it comprehensively covers as many features of UML state machines as possible. Initially

the system would be idle, and from idle it can be activated, or shut off. If activated, it

goes to active which is a composite state. Once activated, the system enters a configuring

mode. In configuring, there is an internal transition for setting the temperature threshold

(tThreshold) by which tThreshold can be set as many times as the user wants. After

setting tThreshold, provided that its value is in the valid range, system goes to reading.

Otherwise, another internal transition in configuring may trigger. It is assumed that there

is a possibility for the user to skip configuring (if tThreshold is not null) and enter a reading

state. Under certain conditions, the system can go to emergency as a nested composite

state. State emergency has nested final state by which the emergency region will conclude

and the system goes to reading. The UML state machine features covered in this case study

are summarized in Table 4.1.
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shut-off

Alarm activate

deactivate

X

error

reset

skip configuring
[tThreshold != null]

reading

when (tCurrent >= tThreshold) / Send Notification

reset

configuring

Entry:  Echo ‘Configuring Mode’
Exit: Echo ‘Exit Configuring Mode’

set tThreshold / Double Beep

done[tThreshold <= tCurrent]

/  Generate Error

skip configuring

active

Entry: Green LED ON
Exit:    Green LED OFF

done

set

Do:  Slow blinking
red led

cancel / Long Beep
X

when [inactivity > 2m] /
beep

[tThreshold > 
tCurrent]

emergency

activated

Do:  Make Siren Sound
Exit:  Echo ‘Exit Emergency’

after(2m)

Figure 4.1: Case study: alarm.
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Table 4.1: Case study coverage.

UML Feature Coverage in case study

composite state active, emergency (nested)
entry behaviour considered for both simple and composite states in active,

configuring
exit behaviour considered for both simple and composite states in active,

configuring, emergency
do behaviour considered for both simple and composite states in reading,

emergency
entry point pseudostate “skip configuring” event in idle
exit point pseudostate when “inactivity > 2m” event in configuring
final state (nested) in emergency region
internal transition “set tThreshold” event in configuring
call event “shut-off”, “activate”, “deactivate”, “skip configuring”, “reset”

in the highest level of FSM; “done”, “set”, “cancel”, “reset” in
active

set event “set tThreshold” in configuring
time event “after 2m” in emergency region
completion event it is covered for both cases. Case 1 is completion of do behaviours

in the model. Case 2 is conclusion of emergency region
timeout event “inactivity > 2m” in active region
change event “when [tCurrent > tThreshold]” in active region
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Chapter 5

Model transformation to a

declarative representation

5.1 Introduction

We model the entire state machine as a cyclic directed multigraph where the elements in

the tuple representation of the state machine map to an ordered pair that represents the

equivalent graph, namely Graph(G) = (V, A), where V is a set of nodes, and A is a set of

ordered pairs of nodes called (directed) edges. We map the graph’s elements into a set of

clauses (facts) that is maintained in a declarative model (factbase).

Various textual representations of UML diagrams may be found in the literature [22].

While UML is a graphical language, elements of a UML diagram may be represented in a

textual format. We use Prolog to represent the elements of a state diagram as Prolog facts.

5.2 Why Prolog

Utilizing Prolog to establish a declarative representation of state machines offers an simple

and powerful method to depict the diverse constituents of a state machine, encompassing

states and transitions. State machines often encompass intricate and diverging behavior,

introducing complexity in ensuring exhaustive testing of all conceivable paths. Prolog’s

functionalities such as pattern matching and backtracking render it particularly apt for

simulating the intricate behavior of complex systems.

Furthermore, Prolog offers the valuable assets of a query engine and a query interface,
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which play a pivotal role in streamlining the process of flattening a state machine. This

technology enables us to seamlessly navigate the intricacies of state machines by formulating

and executing queries that extract essential information about states and transitions.

Additionally, Prolog’s declarative nature provides the flexibility to expand the model’s

capabilities. By introducing custom Prolog rules, we gain the ability to delve into the

study of behavioral patterns, complexity analysis, and overall design intricacies inherent in

the underlying state machine. This strategic incorporation of Prolog not only facilitates

our immediate goals but also lays a solid foundation for comprehensive exploration and

understanding of the state machine’s behavior and structure.

5.3 Declarative representation of the state machine: initial

model

In transformation from state machine elements to declarative representation, composite

states are defined using superstate/2; initial and final inner-states are represented using

initial/1 and final/1; entry pseudostates are represented using entry_pseudostate/2

whose second argument is the target inner-state within the super state; exit pseudostates are

represented using exit_pseudostate/2 whose second argument is the superstate itself; entry,

exit, and do state behaviours are represented using onentry_action/2, onexit_action/2,

and do_action/2, respectively; and lastly, the internal transitions are represented using

internal_transition/4. Note that an internal transition is similar to a reflexive transition

with the exception that the entry / exit behaviors are not fired.

Table 5.1 shows all clause structures deployed to produce a model transformation from

the visual representation of the UML state machine into a declarative representation.
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Table 5.1: Clause signatures of the initial state machine.

FACT DESCRIPTION
state/1 state(?Name) implies that ?Name is a state.
alias/2 state(?Name, ?Alias) implies that ?Alias is a new name for

?Name.
initial/1 initial_state(?Name) implies that ?Name is the initial state of

the state machine.
final/1 final(?Name) implies that ?Name is the exit (final) state of the

state machine.
entry_pseudostate/2 entry_pseudostate(?Entry, ?Substate) implies that

?Substate is the target inner-state whose superstate is already
defined by superstate(?Superstate, ?Substate).

exit_pseudostate/2 exit_pseudostate(?Exit, ?Superstate) implies that ?Exit is
an exit state within the superstate ?Superstate.

superstate/2 superstate(?Superstate, ?Substate) implies that
?Superstate is a composite state with ?Substate being a
nested state.

onentry_action/2 onentry_action(?Name, ?Action) implies that ?Name defines
?Action as an entry behavior.

onexit_action/2 onexit_action(?Name, ?Action) implies that ?Name defines
?Action as an exit behavior.

do_action/2 do_action(?Name, ?Proc) implies that ?Name defines ?Proc as a
do behavior.

transition/5 transition(?Source, ?Destination, ?Event, ?Guard,
?Action) indicates that while the system is in state ?Source,
should ?Event occur and with ?Guard being true, the system
performs a transition to state ?Destination while performing
?Action. All elements of the triple (?Event, ?Guard, ?Action)
are optional, and the absence of an element is codified as nil.

internal_transition/4internal_transition(?State, ?Event, ?Guard, ?Action)
indicates that while the system is in ?State, should ?Event occur
and with ?Guard being true, the system performs ?Action. In
the triple (?Event, ?Guard, ?Action), only ?Guard is optional,
the absence of which is codified as nil.

event/2 event(?Type, ?Argument) indicates an event where ?Type shows
event type and ?Argument is a literal.

action/2 action(?Type, ?Argument) indicates an action where ?Type
shows action type and ?Argument is a literal.

proc/1 proc(?Procedure) implies that ?Procedure is a do behaviour.

20



Discussion - Representing transitions: In this example, a transition over a change

event such as

reading
when (T_current >= T_threshold) / sendNotification()−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ emergency

is codified by transition/5 as

transition(

reading,

emergency,

event(when, ’T_current >=T_threshold’),

nil,

’sendNotification();’

).

5.3.1 Modeling events

In the declarative model, we model an event as event/2. The UML specification includes

four types of events: call, signal, time and change. We support all these types, and

we introduce three more event types: inactivity, update and completion. We provide a

description of all these types below:

call: A call event in a finite state machine represents an external event that triggers a state

transition. We model a call event as event(call, ?Argument), where ?Argument is

an external event.

signal: A signal event is triggered by an internal or external clock and it indicates a specific

time for triggering a transition. We model a signal event as event(at, ?Argument),

where ?Argument represents the time.

time: When the source state has been active for a specified length of time, the guard

(if present) is evaluated, and a transition occurs if the guard is true. If no guard

is present, a transition occurs automatically. In our model, we have this event as

event(after, ?Argument) which make use of the ?Argument variable to represent

time that should be passed.
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change: This event is triggered by a condition which is constantly evaluated. We model

this event as event(when, ?Argument), where ?Argument is a condition that will

trigger a transition once true.

inactivity: The system is expected to be inactive over a given amount of time. In our

model, we have this event as event(timeout, ?Argument) which make use of the

?Argument variable to represent time that system should be inactive.

update: Updates the value of a variable or attribute, which may subsequently trigger

a transition if the new value satisfies the conditions for the transition. It makes

use of keyword set as event(set, ?Argument, where ?Argument is a new variable

assignment.

completion: A completion event can occur in two cases: when a region concludes and

there is an outgoing transition without any associated event, or when there is a do

behavior with an outgoing transition without any event. We model a completion

event as event(completed, ?State), where ?State is the name of the current state

or region.

5.3.2 Capturing actions

We classify actions into Exec, and Log. This classification provides us with a way to manage

each action type differently, allowing for greater flexibility in the model. This classification

is particularly useful when we need to flatten the model, as it allows us to easily identify and

apply appropriate processing to each type. In our declarative model we introduce action/2

to codify actions.

The case study illustrates actions that are executed by the script engine (e.g. invoking

the echo() method) as well as actions that are logged in the system (e.g. Green LED OFF).

Note that a do action is a process that is started when the machine enters a state, and may

be stopped (upon normal termination) or aborted (triggered by a final event).

5.4 Flattened representation of UML state machines

We provide a flattened representation of a state machine which can be processed by our

tool support. This model transformation would occur behind the scenes, and provide the
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same semantical model at a lower level of abstraction, the same way a program (written and

debugged by a developer at the level of source code) is transformed into bytecode (or other

intermediate representation) to be processed by a compiler and other tools. The flattened

representation is also maintained in a declarative model (as a database). Some of the facts

of the initial model dropped in the flattened representation since they are covered differently

after processing. So, the flattened model is presented using less number of facts (see Table

5.2).

5.4.1 The flattening process

In a complex UML machine, various sequences of actions may be triggered based on the

transition. Take the transition from idle to active, for example. While the transition

itself does not define any action, we observe that upon triggering the activate event, the

on-entry action of active state should execute before the machine goes to configuring. A

more complex example would be the transition from active to idle. While the system is in

activated substate, by which the following sequence of actions are executed: aborting ‘Make

Siren Sound’ process, executing echo(‘Exit Emergency’), and logging ‘Green LED OFF’.

The behavioral analysis of the UML state machine is achieved by converting the state

machine into a flattened EFSM machine by chaining the subsequent actions using ϵ-

transitions. The flattening algorithm is implemented in multiple passes and steps, that

incrementally modifies the facts and eliminates the complex UML features: composite

states, pseudostates, state behaviours, and internal transitions, one-by-one, resulting an

equivalent machine with less complex features until the resulting machine is flattened.

Finally, the resulting machine is minimized by reducing the number of states and combining

equivalent transitions.

The outline of the Flattening algorithm is given in the following. The algorithm is

implemented in 4 + 1 passes. We use Prolog queries as selectors to process the input

database. The output of each pass and step will be used as the input to the consequent

step or phase. Pass 0 involves pre-processing that handles completion events as well as

setting up the placeholders for chains of actions. To support chain of actions, all transition

actions are converted into action lists. During the final pass, they will be converted into

separate transitions. Pass 1 resolves the pseudostates and entry behaviours. Do behaviors

are expanded here as well. Pass 2 performs full top-to-bottom full state resolution, by which
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top-level states are removed and their exit behaviours are handled. The exit behaviours

for non-composite states as well as the internal transitions are resolved in this pass as well.

Pass 3 involves post-processing, in which a) stop logs for do processes are resolved, and b)

compound actions are converted into separate transitions. The stop event logs are produced

in two phases: book-marked in Pass 1, Step 1-V, and resolved in Pass 3, Step 2. In Pass 4,

the resulting EFSM is minimized.

Procedure flatten

Input: The UML machine in Prolog.

Output: The EFSM machine in Prolog.

Pass 0: Pre-processing

• Step 1: Convert implied region-completion events:

Change all transition(S, T, nil, G, A) where state(S) or superstate(_, S) to

transition(S, T, event(completed, S), G, A).

• Step 2: Convert all actions to action list:

Rewrite all transition(S, T, E, G, A) where A ̸= nil as transition(S, T, E, G,

[A]). Rewrite all transition(S, T, E, G, nil) as transition(S, T, E, G, []).

Pass 1: Processing pseudostates, entry behaviors, and do behaviors

• Step 1: Resolving do behaviors:

i) For

each do_action(S, proc(P)), obtain onentry_action(S, EL), onexit_action(S,

XL). Default EL, XL to nil, if not available.

ii) Remove do_action(S, _).

iii) Append action(log, "START ’<P>’") to EL and insert action(log, "ABORT

’<P>’") to XL.

iv) Update onentry_action(S, EL) and onexit_action(S, XL) with the new values.

v) For every transition(S, _, event(completed, S), _, A), insert action(log,

"STOP ’<P>’") to A.
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• Step 2: Resolving entry / exit pseudo states:

i) Replace every entry_pseudostate(S, T) with transition(S, T, nil, nil, [])

and superstate(P, S) where superstate(P, T).

ii) Replace all exit_pseudostate(S, P) to superstate(P, S).

• Step 3: Resolving entry behaviors:

Starting from top to bottom, find onentry_action(S, A). The iteration order may be

obtained by querying state S in toptobottom(L), member(S, L) where toptobottom/1

is defined as follows:

toptobottom(L) :- toplevel(TL), expand(TL, L).

toplevel(L) :- findall(S, state(S), L).

children(S, L) :- findall(C, superstate(S, C), L).

expand([S], [S]) :- not(superstate(S, _)), !.

expand([H], [H|L]) :- children(H, L2), expand(L2, L), !.

expand([H|T], [H|L]) :- children(H, CL), append(T, CL, L2), expand(L2, L).

isexternal(Sfrom, Sto) :- not(descendentof(Sto, Sfrom)).

descendentof(S, C) :- superstate(S, C), !.

descendentof(S, C) :- superstate(S, X), descendentof(X, C), !.

i) Remove onentry_action(S, A).

ii) For each incoming transition from an external state X to S: transition(X, S, _,

_, L) where isexternal(X, S), append A to L.

iii) For each incoming transition from an external state X to a sub-state B

of S: transition(X, B, _, _, L) where isexternal(X, S), descendentof(S, B),

append A to L.

iv) If state(S) and initial(S), add state(PS); change initial(S) to initial(PS),

and add transition(PS, S, nil, nil, A).

Pass 2: Full State Resolution

• Step 1: Resolving composite states:

For each composite state P where state(P), superstate(P, _) do the following; repeat
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until no more composite state exists (including the newly created top-level states in

(iii)-(c)).

i) Obtain the list of immediate sub-states of P into L: findall(S, superstate(P,

S), L).

Obtain the exit behavior of the super state onexit_action(P, EA), default EA to

nil, if not available.

ii) Change all incoming transitions to the super-state, to the initial sub-state:

Replace every transition(_, P, _, _, _) with transition(_, I, _, _, _)

where initial(I), superstate(P, I); remove initial(I).

iii) For each sub-state S where not(final(S)) repeat the following:

a) Inherit all outgoing nil-transitions from the super-state, if the child state

does not contain a nil-transition:

For every transition(P, T, E, G, A), add transition(S, T, E, G, A), if

not(exists(transition(S, _, nil, _, _))).

b) For every outgoing non-nil transition from the state S to a state that is not

in L, including the above (a), insert EA to the transition action, if not nil:

For all transition(S, T, E, G, A) where E ̸= nil and not(member(T, L)),

insert EA to A, if EA ̸= nil.

c) Move the sub-state to the top level:

Replace superstate(P, S) with state(S).

iv) Process the internal final state, if applicable (Inherit the completed event and

override it as nil):

Find final(F) where superstate(P, F); Remove both superstate(P, F) and

final(F); Add state(F); For all transition(P, T, event(completed, P), G,

A)), add transition(S, T, nil, G, A)) (insert EA to A, if EA ̸= nil).

v) Remove the composite state, its action, and all outgoing transitions:

Remove state(P), onexit_action(P, _), transition(F, _, _, _, _).

• Step 2: Resolving the remaining exit behaviors:

For each onexit_action(S, EA), find transition(S, T, E, G, L); insert EA to L and

replace it in the transition.
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• Step 3: Convert every internal transition to a regular self transition:

Replace internal_transition(S, E, G, A) with transition(S, S, E, G, A).

Pass 3: Post-Processing

• Step 1: Resolving STOP notifications:

For all transition(S, T, G, E, AL) where member(action(log, "STOP ’<P>’"),

AL), remove action(log, "STOP ’<P>’"); replace action(log, "ABORT ’<P>’") with

action(log, "STOP ’<P>’").

• Step 2: Resolving compound actions:

For all transition(S, T, E, G, [H|T]), where length(T, L), L > 0, create interme-

diary SI, replace the transition with transition(S, SI, E, G, H) and transition(SI,

T, nil, nil, [T]). Resolve transition(SI, T, nil, nil, [T]), recursively.

Replace all transition(S, T, E, G, []) with transition(S, T, E, G, nil).

Pass 4: State Reduction / Minimization

Merge all nil-transitions with common target state, guard, and action:

For each transition(S, T, E, G, A):

• Find all transition(S2, T, E, G, A) where S2 ̸= S and not(initial(S2)).

• Replace all transition(X, S2, E2, G2, A2) with transition(X, S, E2, G2, A2).

• Remove all state(S2) and transition(S2, T, E, G, A).

Repeat until no more transitions can merge.

Having produced a flattened model, we now produce a model transformation into a

declarative representation, by deploying the clause structures shown in Table 5.2. The

output of this algorithm can be found in Chapter 9 Section 9.1, which is applied to our case

study.

5.4.2 An example of the order of actions in the flattened model

In this section, an example is provided to show the order of actions executed in the

flattened model. Consider the state machine of our case study (Figure 5.1) when the
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Table 5.2: Clause signatures of the flattened state machine.

FACT DESCRIPTION
state/1 state(?Name) implies that ?Name is a state.
alias/2 state(?Name, ?Alias) implies that ?Alias is a new name for ?Name.
initial/1 initial_state(?Name) implies that ?Name is the initial state of the state

machine.
final/1 final(?Name) implies that ?Name is the exit (final) state of the state

machine.
transition/5 transition(?Source, ?Destination, ?Event, ?Guard, ?Action) in-

dicates that while the system is in state ?Source, should ?Event occur
and with ?Guard being true, the system performs a transition to state
?Destination while performing ?Action. All elements of the triple
(?Event, ?Guard, ?Action) are optional, and the absence of an element
is codified as nil.

currect state is activated. Upon event deactivated, system goes from active to idle.

For this transition, we expect a sequence of actions as illusterated in Figure 5.1, considering

activated is a nested state in emergency which also is a nested state of active. First the

do of emergenct will be aborted. Next, exit behavior of emergency and active will be

executed. Finally, the entry behavior of idle is executed.

Here is a sequence of transitions in the flattened model which will happen automatically

after each other to produce this required sequence of actions which is needed as the result

of transition specified in Figure 5.1 from active to idle in the state machine when current

state is the nested state actived; while deactivate event occurs.

transition(activated, s21, event(call, deactivate), nil, action(log, "ABORT ’Make

Siren Sound’")).

transition(s21, s22, nil, nil, action(exec, "echo(’Exit Emergency’);")).

transition(s22, pre_idle, nil, nil, action(log, "Green LED OFF")).

transition(pre_idle, idle, nil, nil, action(log, "System Startup")).

5.4.3 More examples of the flattening procedure

In this section, some example of different steps in the flatten procedure is provided to

elaborate more on our flatenning process.
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Figure 5.1: A transition and its corresponding order of actions.

An example of Pass 1 - step 1

In step 1 of Pass 1, for processing do behavior of reading, the following facts will be

removed from the initial model:

do_action(reading, proc(’Slow blinking red LED’))

onentry_action(reading, [])

onexit_action(reading, [])

As the result of this step, the following facts is added to the flattened model:

onentry_action(reading, [action(log, ’START SlowblinkingredLED’)])
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onexit_action(reading, [action(log, ’ABORT SlowblinkingredLED’)])

An example of Pass 1 - step 3

In step 3 of Pass 1, for processing entry behavior of active, the following facts will be

removed from the initial model:

onentry_action(active, action(log, ’Green LED ON’))

transition(idle, active, event(call, activate), nil, [])

transition(error, active, event(call, reset), nil, [])

transition(idle, active_skip_config_entry, event(call, ’skip configuring’),nil,[])

As the result of this step, the following facts is added to the flattened model:

transition(idle, active, event(call, activate), nil, [action(log, ’Green LED

ON’)])

transition(error, active, event(call, reset), nil, [action(log, ’Green LED ON’)])

transition(idle, active_skip_config_entry, event(call, ’skip configuring’), nil,

[action(log, ’Green LED ON’)])
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Chapter 6

Building a declarative query

platform

6.1 Introduction

We view the state machine as a graph, where states correspond to nodes and transitions

correspond to edges. Given this view, we can study properties of graphs to see how they

reflect to state machines. The objective here is to identify graph properties which we expect

to have them in state machines.

6.2 Executing queries on the declarative database

With the declarative model as is, we can execute simple ground queries that can give us

some basic knowledge of the machine such as “Is there a transition from state idle to state

configuring?”

? transition(idle, configuring, _, _, _).

Yes.

We can also execute non-ground queries such as “Under what conditions, if any, would

the state machine perform a transition to the emergency state?” This would entail capturing

any and all state-event-guard triples that can cause such a transition.
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? transition(State, emergency, event(_,Event), Guard, _).

Event = "tCurrent >= tThreshold",

Guard = null,

State = reading

6.3 Extending the declarative model with rules

We can extend the declarative model by introducing rules. We can identify three types

of rules: (1) Rules that reason about the behavior of the state machine by examining

the traversal of the underlying graph under various different conditions, (2) Rules that

reason about the quality attributes of the state machine by examining the properties and

measurements of the underlying directed graph. We argue that the two types of rules

roughly correspond to the state machine’s functional and non-functional requirements.

Finally, (3) Rules that succeed by studying characteristics of the graph that correspond

to the design of the state machine.

6.3.1 Studying behavior

In this section, we define some rules to study the observable behavior of the machine, such

as the exposed interface of the machine seen as a black box, as well as small what-if scenarios

such as how the machine reacts given certain conditions.

Exposed interface: The call and set events correspond to messages sent to the system

and they collectively constitute the exposed interface of the system. The following rule

succeeds by collecting any and all such events:
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%% get_interface/1: Succeeds by returning the exposed interface of the SM

%% as a collection of call and set events.

%% Consults: Initial model.

get_interface(Interface) :-

findall(Event,

(transition(_, _, event(call, Event), _, _) ;

transition(_, _, event(set, Event), _, _)),

EventList),

list_to_set(EventList, Interface).

Legal events at a given state: Given the system exposed interface, it is important to

note that not all events can be acted upon unconditionally. An event can be accepted based

on the system’s current state. It will be acted upon provided the associated guard (if one

is present) evaluates to true.

%% is_legal(?State, ?Event).

%% Succeeds if ?Event is legal under ?State.

is_legal(State, Event) :-

transition(State, _, event(_, Event), _, _);

internal_transition(State, event(_, Event), _, _).

In the case study we have the following:

? is_legal(reading, Event).

Event = disable

6.3.2 Studying complexity

We study properties and measurement of a mathematical directed graph, and provide rules

for properties and measurements which are applicable for state machines. These rules will

provide information about complexity of state machines. Some of these rules are as follows.
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6.3.2.1 Directionality

A graph is directed (as opposed to undirected) if its edges have a direction. Related to this

is the notion of mixed graph in which some edegs may be directed and some may not be

directed. Directionality is present in state machines, as each transition, by definition, has

a direction from a source to a target state. Additionally, a state machine cannot be viewed

as a mixed graph.

6.3.2.2 Rooted

A rooted graph is one where there is a path from one node, qualified as the root, to every

other node in the graph. In a state machine, we expect this property to be present as there

would have to be a path from the initial state to every other state in the machine.

6.3.2.3 Connectivity

A walk is a sequence of nodes which we obtain while traversing a graph (allowing both nodes

and edges to be revisited). The definition leaves space for a walk to be an infinite sequence.

A walk can be open or closed. A trail (or path) is an open walk where all edges are distinct.

A closed trail is a circuit (or cycle) and a simple circuit is one where that repeats only the

first and last node. In the presence of cycles, a graph is called cyclic (as opposed to acyclic).

A simple path is a trail where all nodes are distinct. Note that there is some discrepancy

in the literature. Not all authors identify path with trail, thus distinguishing between path

and simple path as shown in Table 6.1.

In the context of state machines, of interest to us would be paths and simple paths.

A simple path can demonstrate reachability from a source state to a destination state.

Additionally, a path from the initial state to the final state can indicate a scenario where

the machine can function and conclude. In fact, the number of paths between the start and

final states would indicate the number of different scenarios where the machine can achieve

termination. We refer to these paths as legal trajectories. Furthermore, a state machine

should have no restrictions on cycles as it would normally perform transitions between

states.
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Repeated edge Repeated node Starts and
ends at
same node

Walk [open] Allowed Allowed No

Walk [closed] Allowed Allowed Yes

Trail (Path) No Allowed No

Simple Path No No No

Closed trail (Circuit, Cycle) No Allowed Yes

Simple Circuit No First and last only Yes

Table 6.1: Types of graph walks and paths in traversing a graph.

There are two distinct aspects of connectivity in a directed graph: A directed graph

is (a) weakly connected if there is an undirected path between any pair of vertices, or (b)

strongly connected if there is a directed path between every pair of vertices.

From the definition we see that strong connectivity is not present in state machines as

there would exist at least one state (the exit state, at the top-level machine and possibly

exit states in substates) from which there is no transition to any other state. On the other

hand, weak connectivity would be a property of state machines as we expect that there

exists no isolated state, i.e. a state with an in-degree or out-degree of zero.

6.3.2.4 Completeness

A graph is complete if there exists an edge between each pair of nodes. However, this

property does not necessarily need to be present in a state machine.

6.3.2.5 Simplicity

A simple graph is one where a pair or adjacent nodes is connected by only one edge.

Additionally, there is no edge that connects a node to itself. If either condition is not met,

then the graph is called a multigraph. A directed graph is a multigraph if there is more than

one edge between two nodes, pointing to the same direction. We expect the multighraph

property to be present in a state machine as there may be more than one transition from a

source to a destination state.
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6.3.3 Measurements

Measurements in graphs can be global or nodal. Global measurements refer to global

properties of the graph and consist of a single number for any given graph. Nodal

measurements refer to properties of the nodes and consist of a number for each node for

any given graph.

6.3.3.1 Order of graph

This measurement refers to the number of nodes in a graph. In the context of state machines,

we believe that the initial model may not give us an accurate picture due to the presence of

composite states. The flattened model would be more accurate for this measurement. For

the initial model the rule is shown below:

%% order/1: Succeeds by returning the order of the machine

%% Consults: Initial model.

order(N) :-

findall(

State,

(state(State); superstate(_, State)),

StateList

),

list_to_set(StateList, States),

length(States, N).

For the flattened model the rule is shown below:

%% order/1: Succeeds by returning the order of the machine

%% Consults: Flattened model.

order(N):-

findall(S,

state(S),

Length),

length(Length, N).
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6.3.3.2 Number of nil transitions

The number of nil transitions in a flattened model can be a measure of the complexity of

a state machine. The following rule succeeds by returning the number of nil transitions:

%% order/1: Succeeds by returning the number of nil transitions

%% Consults: Flattened model.

nil_transition(N) :-

findall(

Nilevents,

(transition(_, _, Nilevents, _, _), Nilevents=nil),

Transitions

),

length(Transitions, N).

6.3.3.3 Size (or length) of graph

This measurement refers to the number of edges in a graph. In the context of state machines,

we believe that the initial model may not give us an accurate picture due to the fact

that in the presence of composite states, their nested states inherit the transitions of their

superstate. The flattened model would be more accurate for this measurement.

%% size/1: Succeeds by returning the size of the machine

%% Consults: Flattened model.

size(N):-

findall(S,

transition(S,_,_,_,_),

Length),

length(Length, N).
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6.3.3.4 Degrees

The notion of degree of a node refers to the number of edges that are incident on that node.

In a directed graph, this notion splits into in-degree and out-degree. A regular graph is one

where each node has the same degree. Additionally, an isolated node is one with degree

zero (not including self-loops).

As nested states inherit the transitions of their superstates, the out-degree of a nested

state would include any and all outgoing transitions of all superstates. The nested final

state is an exception here as there is only one transition by the superstate once the nested

final state is reached. In the case of in-degree, the same rule applies.

In a state machine, we cannot have an isolated state. Additionally, we expect the start

(initial) state to have a positive out-degree. We would also expect the exit (final) state to

have (a) a positive in-degree and (b) be a sink (i.e. having a zero out-degree). A state

machine need not necessarily correspond to a regular graph.

6.3.4 Studying the design of the state machine

In this section, we define rules to study the design of the state machine and find cases such

as dead ends, conflicts, or inconsistencies among state machine’s elements. In fact, we can

study the design of the state machine considering the following issues that may arise in the

design of a state machine.

• Dead ends and infinite loops.

• Internal transition without an action.

• Multiple change events originating from the same state.

• Non mutually exclusive guards originating from the same state.

• The absence of a do behavior in the presence of an external transition with no event.

• As the previous item for a composite state, with the absense of an exit substate.

Dead ends: We are interested in finding out if the machine can enter a state from which

the final state is not reachable. Rule dead_end/0 succeeds by obtaining a non-empty list

of states from each of which there is no path to state final.
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path(X, Y) :- path(X, Y, [X]).

path(X, Y, V) :- transition(X, Y, _, _, _), \+ member(Y, V).

path(X, Y, V) :- transition(X, Z, _, _, _),

\+ member(Z, V), path(Z, Y, [Z|V]).

dead_end :-

findall(

State,

\+path(State, final),

L),

L \= [].
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Chapter 7

Contract considerations

7.1 Overview

The UML specification distinguishes between behavioral and protocol state machines, where

the latter is a specialization of the former, allowing developers to introduce (a) assertions

over events in transitions and (b) an invariant to each state.

We propose an extension to the behavioral model, with (a) assertions on actions and

(b) the inclusion of invariant properties at two levels: (1) At a global level (i.e. an invariant

property of the top-most level state machine that must be observed by all individual states)

and (2) An invariant property present in a state (transitive into any and all of its nested

states, if present).

7.2 Assertions on actions

In a state machine, actions can be present (a) within a state as internal behavior (Entry, Do,

Exit) and (b) over a transition. For the latter, we case we have three cases: (1) A transition

from one state to another, (2) A recursive transition and (3) An internal transition. An

action would be associated with a pair of assertions (pre-condition and post-condition). As

the theory suggests, for a triple {P} A {Q} where A denotes an action, P denotes the pre-

condition and Q denotes the post-condition. This approach enriches a transition λ which is

now defined as follows:
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λ ∈ Λ : q
e [g] / {P} a {Q}−−−−−−−−−−−→ q′

Note that in the absence of either assertion, one assumes that the assertion is true,

which is the same assumption that we make in the absence of a guard on a transition. We

must make a distinction here between the guard and the pre-condition to an action: On

one hand, the guard determines the eligibility of a transition to take place upon occurrence

of an event, or the completion of the region of the source state q. On the other hand, the

pre-condition determines the eligibility of an action to execute while the transition is in

effect.

The expected benefits from this approach are (a) to explicitly distinguish between

benefits and obligations between the two parties (an actor and the system under

development) and (b) to assign blame in the case of a contract failure. The triple above

would read as follows: “If the actor can ensure the pre-condition, then upon termination of

the action, the system guarantees the post-condition.”

Actions are also present in scenarios. Here, a developer who prepares a scenario may

intentionally want to inject a condition which should lead to failure and they would expect

that the contract system will catch it while at the same time assigning proper blame.

7.2.0.1 Orthogonality of actions

In the presence of more than one action (either on a transition or as part of state behavior),

we need to examine whether the order of action execution is important. In cases where the

order is important, we must enforce ordering. In such a case, we refer to these actions as

non-orthogonal, as opposed to orthogonal actions where their order of execution would not

have any effect on the requirements.

7.2.1 Global and state invariant properties

The invariant property of the state machine should be expected to hold in all states. We call

this the global invariant. In addition, each state can have its own invariant property. The

global invariant is conjoined with that of all its states. The same applies to the invariant

of a composite state: it is conjoined with the invariant of each of its nested states, etc.
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7.3 Event and action processing

In this section, we consider cases of event and action processing for different types of

transitions (recursive, internal and external) in the presence of contracts. We should note

that when do_behavior is aborted, its post-condition will not be evaluated since upon

termination of the action, the system guarantees the post-condition.

Scenario 1: Recursive transition: For the triple event[guard]/action on a recursive

transition λ over a state S, the system exits and re-enters S. Thus, we have the following

upon reception of event while guard is evaluated true:

Figure 7.1: Recursive transition.

abort do_behavior

evaluate S.invariant + global invariant

evaluate exit_behavior.pre-condition

execute exit_behavior

evaluate exit_behavior.post-condition

evaluate global Invariant

evaluate action.pre-condition

execute action

evaluate action.post-condition

evaluate global invariant

evaluate entry_behavior.pre-condition

execute entry_behavior

evaluate entry_behavior.post-condition

evaluate S.invariant + global invariant

evaluate do_behavior.pre-condition

execute do_behavior

evaluate S.invariant + global invariant
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Scenario 2: Internal transition: For the triple event[guard]/action on an internal

transition λ over a state S, the system does not exit and re-enter state S. Thus, we have the

following upon reception of event:

Figure 7.2: Internal transition.

abort do_behavior

evaluate S.invariant + global invariant

evaluate action.pre-condition

execute action

evaluate action.post-condition

evaluate S.invariant + global invariant

evaluate do_behavior.pre-condition

execute do_behavior

evaluate S.invariant + global invariant

Scenario 3.1: External transition in the presence of event: For the triple

event[guard]/action on a transition λ from a source state S to a destination state D,

we have the following upon reception of event while guard is evaluated true, assuming

that both S and D include their own state behavior:

Figure 7.3: External transition in the presence of event.
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abort S.do_behavior

evaluate S.invariant + global invariant

evaluate S.exit_behavior.pre-condition

execute S.exit_behavior

evaluate S.exit_behavior.post-condition

evaluate global invariant

evaluate action.pre-condition

execute action

evaluate action.post-condition

evaluate global invariant

evaluate D.entry_behavior.pre-condition

execute D.entry_behavior

evaluate D.entry_behavior.post-condition

evaluate D.invariant + global invariant

evaluate D.do_behavior.pre-condition

execute D.do_behavior

evaluate D.invariant + global invariant

Scenario 3.2: External transition with completion event: If the guard evaluates to

false, then that would be a badly formed model. In the absence of a guard, the transition

would occur immediately upon the completion of the S.do_behavior. In the absence

of S.do_behavior, then this would be a badly formed model as nothing can trigger a

completion event. Note that in the case of S being a composite state, it would be necessary

to have an final substate to trigger a completion event (unless there is a do behavior). So, we

have completion event either under completion of S.do_behavior or concluding the S.region

in case S is a composite state. We have the following upon reception of completion event

while guard is evaluated true:
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Figure 7.4: External transition with completion event.

evaluate S.do_vehavior.post-condition

evaluate S.invariant + global invariant

evaluate S.exit_behavior.pre-condition

execute S.exit_behavior

evaluate S.exit_behavior.post-condition

evaluate global invariant

evaluate action.pre-condition

execute action

evaluate action.post-condition

evaluate global invariant

evaluate D.entry_behavior.pre-condition

execute D.entry_behavior

evaluate D.entry_behavior.post-condition

evaluate D.invariant + global invariant

evaluate D.do_behavior.pre-condition

execute D.do_behavior

evaluate D.invariant + global invariant

Scenario 3.3: External transition with change event: We have the following upon

guard becomes true which raise a change event:

Figure 7.5: External transition with change event.
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abort S.do_behavior

evaluate S.invariant + global invariant

evaluate S.exit_behavior.pre-condition

execute S.exit_behavior

evaluate S.exit_behavior.post-condition

evaluate global invariant

evaluate action.pre-condition

execute action

evaluate action.post-condition

evaluate global invariant

evaluate D.entry_behavior.pre-condition

execute D.entry_behavior

evaluate D.entry_behavior.post-condition

evaluate D.invariant + global invariant

evaluate D.do_behavior.pre-condition

execute D.do_behavior

evaluate D.invariant + global invariant

7.4 Incorporating contracts in the declarative model

As we disscussed in the overview of this section, we can cover two types of contracts including

action assertions and state invariant. In this section, we present some facts to incorporate

these assertions in our declarative model. These assertions can be validated later through

simulation.

We use assert/2 to define an invariant for each state as well as global invariants of

the state machine. Clause assert/2 is defined as assert(?State, ?Invariant) which

implies ?Invariant is an invariant for state ?State ,and this invariants must hold true

while system is in state ?State. For example, we can define the following facts in our case

study.

assert(globalSM, “tThreshold>= 0”).

assert(reading, “tThreshold!=null”).
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assert(emergency, “tThreshold<=tCurrent”).

Furthermore, for defining pre/post-conditions for actions, we can change our clause

for actions from action/2 to action/4 in order to incorporate actions assertions.

The clause action/4 can be defined as action(?Type, ?Name, ?Pre-condotion,

?Post-condition) in which ?Type shows the type of the action, ?Name shows the action,

?Pre-condotion and ?Post-condition as their names suggest are pre- and post-conditions

of the action. For example in our case study, we can define the following fact for the action

of the internal transition of configuring.

action(exec, "generateError();", "tThreshold!=0", "tThreshold=40").
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Chapter 8

Simulating machine behavior

8.1 Conceptual overview

The query system provides a level of analysis that is complemented with a simulation of the

machine. We extend the query system we describe in the Chapter 6 in order to be able to

simulate the behavior of a state machine. The main idea behind a simulation is to study the

complete behavior of the machine under a sequence of events that occur in its environment.

This sequence of events is captured by a scenario. At the highest level of abstraction,

and given a scenario, the simulation would be performed as Read-Evaluate-Execute Cycle,

described from the point of view of a simulator.

8.1.1 Initialization and persistence of state

The simulator must initialize its own state to correspond to the initial state of the machine,

captured by the values of all of the machine’s (global) variables. Additionally the simulator

must make sure that its state is synchronized with that of the machine, i.e. any change of

state in the machine should be reflected in the simulator.

The simulator needs to access the machine’s state (1) in order to initialize its own state,

(2) in order to perform a change of state (initiated by an action during a transition) and

(3) in order to observe any change of state in the machine. Operations (1) and (3) are Read

operations, where operation (2) is a Write operation. To support persistence, we realize that

we need to introduce an imperative model that will hold the machine’s state. Moreover, an

additional component is introduced that will serve as the interface between the declarative
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and imperative models.

8.1.2 Global variables

The system keeps track of its operating environment through maintaining certain variables

(e.g. temperature). We refer to these as environment variables, denoted by Ve. Environment

variables are read-only. Note that the simulator (which lies outside the boundary of the

system) is free to modify these variables for the sake of simulation. On the other hand,

the system maintains variables for aspects that can be fully controlled by the system (e.g.

setting the temperature threshold). We refer to these as controlled variables, denoted by

Vc. The two sets are disjoint and they collectively make up the set of all global variables

that are handled by the system, i.e. Ve ∩ Vc = ∅, and Ve ∪ Vc = V .

8.1.3 Structure of a scenario

A scenario is a sequence of commands consisting of three types of tags: EVENT, EXECUTE,

and TIME. EVENT tags can be of type call, set, or completion, and must trigger

the corresponding transition in the simulator. EXECUTE tags contain expressions that

modify variable values during simulation, and may trigger a transition. TIME tags can

be either after or at, and update the global time variables ’duration’ and ’absoluteTime’

if applicable. Any time tag may trigger a timed-transitions or not. A timed-transition is

defined as a transition that its event type is after or at. After any TIME tag, the simulator

will keep time information while it proceeds to the next command in the scenario.

8.1.4 The Read-Evaluate-Execute cycle

In UML, it is assumed that a state machine processes one event at a time and finishes all

the consequences of that event before processing another event [22]. At the highest level

of abstraction, and given a scenario, the simulation would be performed using a Read-

Evaluate-Execute Cycle. When a command in a scenario is EVENT e, where e ∈ Σ1, given

the current state and the event, the simulator would construct a transition query and

consult the declarative model. We query the database and find all transitions λi ∈ Λ with

event e. The result of the query is a set of λi, associated with tuples {(q, g, a)i} where

q ∈ Q is the target state, g ∈ Λ is a guard, and a ∈ Σ2 is an action. Each tuple is also

associated with a set of vi ⊂ V , containing all variables used in gi and ai. The query is
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successful only if one transition is possible. This is achieved by instantiating all variables in

vi and evaluating gi. Upon success, a single transition is fired. The simulator consequently

checks if any additional transitions can be triggered, following the most recent transition.

The process continues until no further possible transition is applicable. We can show this

cycle as follow:

(set current state to initial state)

while (scenario not exhausted)

do

(read line)

(transform line into declarative query)

if (evaluate query) {

(execute query)

(obtain results)

}

else Error

end

Given a state-event pair, the first thing the system needs to do is event validation: Is

this a legal event, given the current state? If this is indeed the case (i.e. there exists at

least one transition in the declarative model with this state-event pair), then the second

thing the system needs to do is to search for a transition that it can potentially perform.

It is important to note that there will be at most one such transition, and we can identify

the following cases:

1. Single transition, guard is absent: The transition is performed.

2. Single transition, guard is present: The guard will be evaluated and, if true, the

transition will be performed.

3. Multiple transitions: We need either at most one transition where a guard is absent

and all other guards are false, or at most one guard being true. Otherwise, the

declarative model corresponds to a badly formed state machine. The different cases

to consider are tabulated below:
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EXAMPLE WHAT TO DO

transition(?S, ?D, ?E, nil, ?A); Perform a transition to ?D

transition(?S, ?D, ?E, nil, ?A); Model is badly formed.

transition(?S, ?D, ?E, nil, ?A); Generate an error

transition(?S, ?D, ?E, nil, ?A); ?G is expected to be False.

transition(?S, ?D, ?E, ?G, ?A); Perform a transition to ?D

transition(?S, ?Di, ?E, ?Gi, ?A); ?Gi is True and ?Gj is False.

transition(?S, ?Dj, ?E, ?Gj, ?A); Perform a transition to ?Di

transition(?S, ?Di, ?E, ?Gi, ?A); Both ?Gi ?Gj are True.

transition(?S, ?Dj, ?E, ?Gj, ?A); Model is badly formed. Generate an error.

transition(?S, ?Di, ?E, ?Gi, ?A); None of ?Gi ?Gj are True.

transition(?S, ?Dj, ?E, ?Gj, ?A); No transition performed.

8.2 Unveiling system behavior and process flows

In this section, we provide a clear and concise depiction of the sequential steps and decision

points involved in our algorithm’s execution of our tool.

8.2.1 Switch-case command processing

In our system, command processing involves handling sequences of commands that consist

of three types of tags: EVENT, EXECUTE, and TIME. A scenario is composed of these tags,

each serving a specific purpose in driving the simulation.

The EVENT tag, which can be of type call, set, or completion, plays a crucial role

in triggering the corresponding transition within the simulator. When an EVENT tag is

encountered, the switch-case paradigm is leveraged to efficiently handle the different event

types and initiate the appropriate transitions.

The EXECUTE tags, on the other hand, contain expressions that modify variable values

during the simulation. These tags provide flexibility in altering the state of variables within

the system, potentially triggering transitions based on the updated values. The execution

of EXECUTE tags ensures the efficient modification of variable values and integration with

the simulation flow.

Additionally, the TIME tags serve to update global time variables, namely duration and
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absoluteTime, if applicable. These tags can be either after or at, providing flexibility in

specifying timing constraints within the scenario. Whether triggering timed-transitions or

not, the system check FTransitions enabling the effective handling of TIME tags. Also, it

ensurs accurate tracking of time-related information while progressing to the next command

in the scenario.

8.2.2 FTransitions

In our system, transitions play a key role in driving the behavior and flow. After

any transition occurs, there is a possibility of triggering additional transitions known as

Following-Transitions (FTransitions). These FTransitions are mainly a result of the action

sequence associated with the source state’s onexit action, transition action, and destination

state’s onentry action (when a transition is fired) taking into account any inherited actions

from super states. Furthermore, the state do-behavior is another reason that may trigger a

FTransition.

To handle these action sequences effectively, our flattening algorithm breaks them down

and assigns nil-transitions (or ϵ-transitions are transitions whose event and guard are

empty) to individual actions, considering their specific order. This process ensures that

each action within the sequence is properly accounted for and executed accordingly in a

seperate transition.

Another triggering mechanism for FTransitions is the when event type (see Section 5.3.1).

After each transition, the system checks for when events to determine if the event argument

evaluates to true, thereby triggering the corresponding FTransitions if the condition is

met. By considering both the action sequences and when events, our system dynamically

determines and triggers the appropriate FTransitions, facilitating a comprehensive and

flexible system behavior.

8.3 Simulator architecture

To perform a simulation, we need to provide storage of all variables (machine and

environment) while keepping track of any changes. We also need to provide storage and

keep track of the machine’s current state. To support these requirements, we provide an

imperative model. Our simulator as a imperative model is developed in Java. It uses JPL
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which is a Prolog/Java interface. The simulator reads each scenario line and defines a

query considering the current state of the state machine. Then it consults the declarative

model (factbase in Prolog) to run the query through JPL. Furthermore, we use Javascript

for defining and maintaining system variables, direct manipulation of variables in actions,

evaluating events, guards, and executing actions which is done by GraalVM JavaScript

engine.

The architecture of the simulator will be desceribed in terms of its static and its dynamic

models which are presented respectively in section 8.3.1 and section 8.3.2 .

8.3.1 Static model

The static model focuses on capturing the structural aspects of the system architecture.

It provides a comprehensive view of the system’s organization, including its components,

relationships, and dependencies. In this section, we employ two key UML diagrams, namely

the component diagram and the class diagram, to describe and illustrate the static model

of our simulator. Visually representing components, classes and their relationships through

these diagrams helps us understand the overall organization and composition of the system.

8.3.1.1 The UML component diagram

A visual representation of the components that make up our simulator and how they interact

with each other is presented in figure 8.1. It depicts the high-level structure and relationships

between components in the system. As the component diagram shows, the main component

is the Simulator which contains Scenario Executer, Imperative Model, JPL Mediator, and

Script Handler. This component (Simulator) has dependency to other components which

are Declarative Model, JPL, GraalVM Javascript Engine, Scenario, and Output components.

Below is a concise description of the components depicted in the component diagram.

Simulator: This object runs the simulation logic. It receives three input arguments

including declarative model, system state, and a scenario for simulation. It initialize

the system state, consult declarative model, and then read the scenario line by line.

In a loop, it parses and executes every scenario line, and records the result in some

output files. Also, it contains the System State which is a collection of (global)
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Figure 8.1: The simulator UML component diagram.

variables, defined and initialized in a Javascript file. They are shared among the

different functions in the system, and can be modified during the simulation.

Declarative model: comprised of Prolog facts and rules.

Scenario: A sequence of events occurring in the simulation which represents the simulated

interaction with the state machine and it is comprised by events or statements (that

modify global variables).

JPL: This component is an interface between the simulator in java and declarative model

in Prolog. It runs a query and returns transitions which may be triggered under each

event or special condition of the system.

GraalVM JavaScript Engine: This component is used by the simulator to evaluate

scripts like guards, state’s invariants, pre- and post-conditions.

Outputs: This component contains different elements generated by the simulator. It

include an output which shows what will happen in each time, a snapshot of the

system state, an error log as well as a discrete timed output shows the duration and

absolute time information if applicable.
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8.3.1.2 The UML class diagram

The UML class diagram for the simulator is shown in figure 8.2. It provides a high-level view

of the system’s architecture, highlighting the essential classes, their attributes, methods, and

relationships between classes. It serves as a blueprint for our system implementation and

ensures adherence to the intended design.

Figure 8.2: The UML class diagram.

8.3.2 Dynamic model

The dynamic model delves into the behavioral aspects of the system, focusing on the

interactions and actions that occur during runtime. In this section, we provide an overview

of the system’s dynamic behavior through the use of several sequence diagrams. These

Sequence diagrams illustrate the flow of messages and method calls exchanged between
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objects, showcasing the dynamic interactions within the system in response to specific events

based on input which is a scenario.

8.3.2.1 The UML sequence diagram

In order to depict the sequential order of interactions between the model key objects, we

utilize a UML sequence diagram. The diagram illustrates the interactions among various

high-level objects involved in the system. These objects encompass a Simulator executer

implemented in Java, JPLMediator by which simulator consults the declarative model

(Prolog facts and rules), ScriptHandler which evaluate guards, actions, and set new values

for variable, a Scenario defined as a text file containing a sequence of events that occur

during the simulation, and Output generated by the system. Figure 8.3 shows the interaction

between these highest level objects.

The system’s overall sequence diagram for the successful scenario is depicted in figure 8.3.

The outer loop in the sequence diagram illustrates the Read-Evaluate-Execute cycle and

the inner loop mostly covers ϵ-transitions in our flattened model. However, the system’s

behavior varies based on the commands specified in the scenario line. Therefore, in the

upcoming sections, we present sequence diagrams illustrating the system’s behavior in

different situations.

8.3.2.2 Visualizing the EVENT tag

Sequence diagram in figure 8.4 shows both seccess and failure scenarios when scenario

line is an EVENT type. After evaluating queried transitions based on current state and

event(command of the related scenario line), system checks the number of transitions which

their guard is evaluated as true. if the number of true transitions is one, it shows a "success

senario", and the corresponding transition will trigger. In this case, system performs action

sequence of the triggered transition and then log the result in the output file. Also, system

goes from source state to destination state of the transition and the current state will be

updated.

After this transition, some following transitions (FTransitions) may trigger. These

FTransitions mostly are due to the action sequence of source state onexit action, transition

action, and destination state onentry action. The other reason for triggering the

FTransitions is due to when event type. If the number of true transitions is zero, or the
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Figure 8.3: The simulator UML sequence diagram.
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Figure 8.4: The UML sequence diagram for success and failure scenarios for an EVENT tag.

number of transitions is greater than one, it shows a "failure scenario" in which system

throws an error and log that in the log file.

8.3.3 Visualizing the FTransitions

As explained in section 8.2.2, in FTransitions, system run a query and its related transition

until no more transition triggers. In processing of every line of the scenario (after any

tag), the last step is checking FTransitions. In this section, the sequence diagram for the

FTranstions is presented which is illustrated in figure 8.5.

8.3.4 Visualizing the Execute tag

The EXECUTE tag is utilized to modify environmental variables within the system, allowing

for the simulation of specific conditions and the analysis of system behavior. Following

each EXECUTE command, the system examines the possibility of triggering any transitions
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Figure 8.5: The UML sequence diagram for FTransition loop.

through the FTransition loop. Figure 8.6 illustrates the corresponding sequence diagram

for this tag, showcasing the dynamic flow of the system during the execution phase.

Figure 8.6: The UML sequence diagram for success and failure scenarios for an EXECUTE
tag.

8.3.5 Visualizing the TIME tag

Following the occurrence of any TIME tag within the scenario, the system proceeds to update

the global time variables, namely duration and absoluteTime if applicable. Subsequently,

it evaluates whether any timed-transitions, characterized by an event type of AFTER and
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AT, are triggered. Finally, the system proceeds to check for any potential FTransitions,

ensuring comprehensive examination of the dynamic behavior. The sequence diagram for

this situation is illustrated in figure 8.7.

Figure 8.7: The UML sequence diagram for success and failure scenarios for a TIME tag.

8.4 Implementation

8.4.1 Environment

We use SWI-Prolog for representing the declarative model as facts and rules in Prolog. For

simulation, we need the persistence of states; however, declarative model does not have this

property. On the other hand, We could use Prolog features and define variables in Prolog

and achieve some sort of persistency. But, complexity of this approach is too much.

We implement the imperative model in Java for simulating state machines. Prolog has

the JPL component which is a Prolog/Java interface and can be used to connect declarative

model in Prolog to imperative model in Java. Using the imperative model in Java gives more
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capabilities to our model. We can save a history of model variables in a file and organize

it more, something that we cannot do in a declarative model in Prolog. Furthermore, we

use Javascript for defining and maintaining system variables. Evaluation of events, guards,

states’s invariants, and pre-/post-conditions of actions will be done by JavaScript engine

(GraalVM) through the imperative model in Java.

8.4.2 JPL: A Prolog/Java interface

JPL is a set of Java classes and C functions providing a bidirectional interface between Java

and Prolog. JPL uses the Java Native Interface (JNI) to connect to a Prolog engine through

the Prolog Foreign Language Interface (FLI). JPL is not a pure Java implementation of

Prolog; it makes extensive use of native implementations of Prolog on supported platforms.

JPL has been integrated into the full SWI-Prolog distribution starting with version 5.4.x

[23]. The Java API comprises public Java classes which support [23]:

• constructing Java representations of Prolog terms and queries.

• calling queries within SWI-Prolog engines.

• retrieving (as Java representations of Prolog terms) any bindings created by a call.

Also, the Prolog API comprises Prolog library predicates which support [23]:

• creating instances (objects) of Java classes (built-in and user-defined).

• calling methods of Java objects (and static methods of classes), perhaps returning

values or object references.

• getting and setting the values of fields of Java objects and classes.

8.4.3 GraalVM JavaScript engine

GraalVM’s JavaScript engine is a Java application that works on any Java 8+

implementation. The javax.script.ScriptEngine implementation is used in our tool.

GraalVM provides an ECMAScript-compliant runtime to execute JavaScript and Node.js

applications. It is fully standard compliant, execute applications with high performance,

and provide all benefits from the GraalVM stack, including language interoperability and
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common tooling [24]. In our tool, We use a javaScript Engine for evaluatin scripts in events,

guards and actions.
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Chapter 9

Results of simulation

In this chapter, we present the results of modeling, simulation, and studying the behavior

of our case study introduced in Chapter 4, which is a state machine of the alarm system.

9.1 The initial and flattened declarative models

Fig. 9.1 illustrates a declarative representation of our case study written in Prolog. This is

the initial model which serves as the input for our flattening algorithm. Fig. 9.2 illustrates

the output of the flattening algorithm applied on the declarative model in Fig. 9.1, resulting

in 17 states and 28 transitions.
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% level 1

state(idle).

state(active).

state(error).

state(final).

initial(idle).

final(final).

alias(final, ’’).

entry_pseudostate(active_skip_config_entry, reading). % active super-state is implied

exit_pseudostate(active_exit, active). % the out transition may be guarded

transition(idle, active, event(call, activate), nil, nil).

transition(idle, active_skip_config_entry, event(call, ’skip configuring’)), nil, nil).

trasition(error, active, event(call, reset), nil, nil).

transition(active, idle, event(call, deactivate), nil, nil).

transition(idle, final, event(call, shutoff), nil, nil).

transition(active_exit, error, nil, nil, nil).

% level 2

superstate(active, configuring).

superstate(active, reading).

superstate(active, emergency).

initial(configuring).

onentry_action(active, action(log, "Green LED ON")).

onexit_action(active, action(log, "Green LED OFF")).

onentry_action(configuring, action(exec, "echo(’Configuring mode’);")).

onexit_action(configuring, action(exec, "echo(’Exit configuring mode’);")).

do_action(reading, proc(’Slow blinking red LED’)).

transition(configuring, reading, event(call, cancel), nil, action(exec, "longBeep();")).

transition(configuring, active_exit, event(timeout, "2:00"), nil, action(exec, "beep();")).

transition(reading, emergency, event(when, "tCurrent >= tThreshold"),

nil, action(exec, "sendNotification();")).

transition(reading, configuring, event(call, set), nil, nil).

transition(emergency, reading, event(call, reset), nil, nil).

transition(emergency, reading, nil, nil, nil). % completed emergency

transition(configuring, reading, event(call, done), "tThreshold > tCurrent", nil, nil).

internal_transition(configuring, event(set, tThreshold), nil, action(exec, "doubleBeep();")).

internal_transition(configuring, event(call, done),

"tThreshold <= tCurrent", action(exec, "generateError();")).

% level 3

do_action(emergency, proc(’Make Siren Sound’)).

onexit_action(emergency, action(exec,"echo(’Exit Emergency’);")).

superstate(emergency, activated).

superstate(emergency, efinal).

initial(activated).

final(efinal).

alias(efinal, ’’).

transition(activated, efinal, event(after, "2:00"), nil, nil, nil).

1

Figure 9.1: Initial model.
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state(active_skip_config_entry).

state(idle). state(error).

state(final). state(pre_configuring).

state(configuring). state(reading).

state(active_exit). state(activated).

state(efinal). state(s2).

state(s3). state(s61).

state(s71). state(s81).

state(s91). state(s92).

initial(idle). final(final).

transition(idle, final, event(call, shutoff), nil, nil).

transition(idle, active_skip_config_entry, event(call, ’skip configuring’), nil,

action(log, "Green LED ON")).

transition(idle, pre_configuring, event(call, activate), nil, action(log, "Green LED ON")).

transition(error, pre_configuring, event(call, reset), nil, action(log, "Green LED ON")).

transition(configuring, configuring, event(set, tThreshold), nil,

action(exec, "doubleBeep();")).

transition(configuring, configuring, event(call, done), "tThreshold <= tCurrent",

action(exec, "generateError();")).

transition(configuring, s2, event(call, deactivate), nil,

action(exec, "echo(’Exit configuring mode’);")).

transition(configuring, s3, event(after, ’2:00’), nil,

action(exec, "echo(’Exit configuring mode’);")).

transition(configuring, s81, event(call, cancel), nil,

action(exec, "echo(’Exit configuring mode’);")).

transition(configuring, active_skip_config_entry, event(call, done),

"tThreshold > tCurrent", nil, action(exec, "echo(’Exit configuring mode’);")).

transition(reading, s91, event(when, "tCurrent >= tThreshold"), nil,

action(log, "ABORT ’Slow blinking red LED’")).

transition(reading, s2, event(call, deactivate), nil,

action(log, "ABORT ’Slow blinking red LED’")).

transition(reading, pre_configuring, event(call, set), nil,

action(log, "ABORT ’Slow blinking red LED’")).

transition(activated, efinal, event(after, "2:00"), nil, nil).

transition(activated, s61, event(call, reset), nil,

action(log, "ABORT ’Make Siren Sound’")).

transition(activated, s71, event(call, deactivate), nil, action(log, "ABORT ’Make Siren Sound’")).

transition(activated, s61, event(completed, emergency), nil, action(log, "STOP ’Make Siren Sound’")).

transition(active_exit, error, nil, nil, action(log, "Green LED OFF")).

transition(pre_configuring, configuring, nil, nil, action(exec, "echo(’Configuring mode’);")).

transition(active_skip_config_entry, reading, nil, nil, action(log, "START ’Slow blinking red LED’")).

transition(efinal, s61, nil, nil, action(log, "STOP ’Make Siren Sound’")).

transition(s2, idle, nil, nil, action(log, "Green LED OFF")).

transition(s3, active_exit, nil, nil, action(exec, "beep();")).

transition(s91, s92, nil, nil, action(exec, "sendNotification();")).

transition(s92, activated, nil, nil, action(log, "START ’Make Siren Sound’")).

transition(s61, active_skip_config_entry, nil, nil, action(exec,"echo(’Exit Emergency’);")).

transition(s81, active_skip_config_entry, nil, action(exec, "longBeep();")).

transition(s71, s2, nil, nil, action(exec,"echo(’Exit Emergency’);")).

2

Figure 9.2: Flattened model.

9.1.1 Comparison the complexity of two declarative models

Having the initial and flattened declarative models of our case study, we can compare these

two models in terms of complexity. This comparison may include comparing the number of
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states and nested states or number of transitions in each model. The result of comparison

for the case study is summarized in Table 9.1.

Table 9.1: Complexity comparison of initial and flattened model for the case study.

MEASURE INITIAL MODEL FLATTENED MODEL
number of states and substates 9 18
number of nested states 5 0
number of internal initial states 2 0
number of transitions 16 29
number of internal transitions 2 0
number of entry pseudo states 1 0
number of exit pseudo states 1 0
number of entry behavior 2 0
number of do behavior 2 0
number of exit behavior 3 0
number of guards 2 2
number of actions 10 26
number of nil transitions 2 11
number of levels 3 1

9.2 Simulation scenarios

We can define any sequences of EVENT, EXECUTE, and TIME tags as scenarios and study the

behavior of the alarm system under each scenario. Each line of scenario consists of a tag

and the associated command. After running each scenario, the simulator will generate three

files including system behavior as discrete timed events, a snapshot of system state in each

time step, and system time information.

Line numbers in the scenario help us track the output generated by the simulator

processing the command of each scenario line. Each line in the output includes the discrete

time id, followed by the scenario line number, the output type, and its corresponding

arguments. Using the output, we can analyze the behaviour of the system including sequence

of states or actions performed by the system. Also, it can highlight any potential flaws in

the design of the state machine.
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9.2.1 Output of the simulation: scenario 1

The first scenario is shown in Fig.9.3. The outputs of simulation this scenario as scenario 1

in presented in Fig.9.4, Fig.9.5, and Fig.9.6. The line number of commands in the scenario

allows us to track the output of each command in the output files.

After simulation this scenario, outputs are as expected according to the state machine.

System starts from idle state, goes to configuring which is a substate of active, then it

has a transition to error, goes back to configuring, goes to reading, activated, idle,

and final. Transitions to intermediate states (produced in flattening process) show the

sequence by which actions are executed including on_entry, on_exit, do_behaviour, and

transition actions.

In time information output (Fig.9.6), the last column shows the duration in each time_id

based on the ISO 8601 duration format. In this format, the letter “P” stands for “Period.”

Following the “P” designator, it can specify the duration using a combination of time

elements like “H” for hours, “M” for minutes, and “S” for seconds.

% LINE COMMAND ARG 

1 EVENT call activate 

2 EVENT set tThreshold=30 

3 AFTER '3:00' 

4 EVENT call reset 

5 EXECUTE tCurrent=20 

6 EVENT call done 

7 EXECUTE tCurrent=40 

8 EVENT call deactivate 

9 EVENT call shutoff 

 

Figure 9.3: Scenario 1.

67



% TIME,LINE,TYPE,ARGS 

1,1,EVENT,call,activate 

1,1,transition,pre_configuring 

1,1,action,"Green LED ON" 

1,1,transition,configuring 

1,1,action,"EXEC echo('Configuring mode');" 

2,2,EVENT,set,tThreshold=30" 

2,2,transition,configuring 

2,2,action,"EXEC doubleBeep();" 

3,3,transition,s3 

3,3,action,"EXEC echo('Exit configuring mode');" 

3,3,transition,active_exit 

3,3,action,"EXEC beep();" 

3,3,transition,error 

3,3,action,"Green LED OFF" 

4,4,EVENT,call,reset 

4,4,transition,pre_configuring 

4,4,action,"Green LED ON" 

4,4,transition,configuring 

4,4,action,"EXEC echo('Configuring mode');" 

5,5,EXECUTE,"tCurrent=20" 

6,6,EVENT,call,done 

6,6,transition,active_skip_config_entry 

6,6,action,"EXEC echo('Exit configuring mode');" 

6,6,transition,reading 

6,6,action,"START 'Slow blinking red LED'" 

7,7,EXECUTE,"tCurrent=40" 

8,7,transition,s91 

8,7,action,"ABORT 'Slow blinking red LED'" 

8,7,transition,s92 

8,7,action,"EXEC sendNotification();" 

8,7,transition,activated 

8,7,action,"START 'Make Siren Sound'" 

9,8,EVENT,call,deactivate 

9,8,transition,s71 

9,8,action,"ABORT 'Make Siren Sound'" 

9,8,transition,s2 

9,8,action,"EXEC echo('Exit Emergency');" 

9,8,transition,idle 

9,8,action,"Green LED OFF" 

10,9,EVENT,call,shutoff 

10,9,transition,final 

10,9,action,nil 

Figure 9.4: Scenario 1: discrete timed output of system events.
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% TIME,tThreshold,tCurrent  

1,30,5 

2,30,5 

3,30,5 

4,30,5 

5,30,5 

6,30,20 

7,30,20 

8,30,40 

9,30,40 

10,30,40 

Figure 9.5: Scenario 1: discrete timed snapshot.

% TIME,absoluteTime,duration 

1,null,PT0S 

2,null,PT0S 

3,null,PT3M 

4,null,PT3M 

5,null,PT0S 

6,null,PT0S 

7,null,PT0S 

8,null,PT0S 

9,null,PT0S 

10,null,PT0S 

Figure 9.6: Scenario 1: discrete timed system time information.

9.2.2 Output of the simulation: scenario 2

The second scenario is shown in Fig.9.7. The outputs of simulating this scenario as scenario

2 is presented in, Fig.9.10, and Fig.9.11. Running this scenario, the simulator identifies

it as an Exceptional Condition which triggers one of the error conditions handled in

implementation of the tool in Java program. The exception is shown in Fig.9.8. It is

related to line 13 of scenario 2, which is a call event, but no transition is triggered, causing

this exception.

Looking into the state machine, we come to the conclusion that the machine correctly

captures what requirements specify. By line 10 of scenario 2, the machine goes into

activated substate of emergency because tCurrent>=tThreshold. After that, there are

two consequtive events in the scenario (reset and set) to bring the machine to configuring

state. However, this expected sequence of transitions will not happen since the system goes

back to emergency from reading. The reason is that in reading, the machine first will

check when transition condition which is true and fires this transition.
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This scenario can serve as an example which shows requirements of the system are not

defined completely. In this specific case, we can modify the design of the state machine

by modifying requirements to define an action for changing the tThreshold before entering

reading or changing the transition from emergency to configuring instead of reading.

% LINE COMMAND ARG 

1 EVENT call 'skip configuring' 

2 EXECUTE tCurrent=0 

3 AT '10:00' 

4 EXECUTE tCurrent=50 

5 EVENT call reset 

6 AT '11:00' 

7 EXECUTE tCurrent=40 

8 EVENT call reset 

9 AFTER '3:00' 

10 EXECUTE tCurrent=30 

11 EVENT call reset 

12 EVENT call set 

13 EVENT call deactivate 

14 EVENT call shutoff 

 Figure 9.7: Scenario 2.

Figure 9.8: Discovery of a compliance requirement gap by simulating the state machine.
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% TIME,LINE,TYPE,ARGS  

1,1,EVENT,call,"skip configuring" 

1,1,transition,active_skip_config_entry 

1,1,action,"Green LED ON" 

1,1,transition,reading 

1,1,action,"START 'Slow blinking red LED'" 

2,2,EXECUTE,"tCurrent=0" 

3,4,EXECUTE,"tCurrent=50" 

4,4,transition,s91 

4,4,action,"ABORT 'Slow blinking red LED'" 

4,4,transition,s92 

4,4,action,"EXEC sendNotification();" 

4,4,transition,activated 

4,4,action,"START 'Make Siren Sound'" 

5,5,EVENT,call,reset 

5,5,transition,s61 

5,5,action,"ABORT 'Make Siren Sound'" 

5,5,transition,active_skip_config_entry 

5,5,action,"EXEC echo('Exit Emergency');" 

5,5,transition,reading 

5,5,action,"START 'Slow blinking red LED'" 

6,5,transition,s91 

6,5,action,"ABORT 'Slow blinking red LED'" 

6,5,transition,s92 

6,5,action,"EXEC sendNotification();" 

6,5,transition,activated 

6,5,action,"START 'Make Siren Sound'" 

7,7,EXECUTE,"tCurrent=40" 

8,8,EVENT,call,reset 

8,8,transition,s61 

8,8,action,"ABORT 'Make Siren Sound'" 

8,8,transition,active_skip_config_entry 

8,8,action,"EXEC echo('Exit Emergency');" 

8,8,transition,reading 

8,8,action,"START 'Slow blinking red LED'" 

9,8,transition,s91 

9,8,action,"ABORT 'Slow blinking red LED'" 

9,8,transition,s92 

9,8,action,"EXEC sendNotification();" 

9,8,transition,activated 

9,8,action,"START 'Make Siren Sound'" 

10,9,transition,efinal 

10,9,action,nil 

10,9,transition,s61 

10,9,action,"STOP 'Make Siren Sound'" 

10,9,transition,active_skip_config_entry 

10,9,action,"EXEC echo('Exit Emergency');" 

10,9,transition,reading 

10,9,action,"START 'Slow blinking red LED'" 

11,9,transition,s91 

11,9,action,"ABORT 'Slow blinking red LED'" 

11,9,transition,s92 

11,9,action,"EXEC sendNotification();" 

11,9,transition,activated 

11,9,action,"START 'Make Siren Sound'" 

12,10,EXECUTE,"tCurrent=30" 

13,11,EVENT,call,reset 

13,11,transition,s61 

13,11,action,"ABORT 'Make Siren Sound'" 

13,11,transition,active_skip_config_entry 

13,11,action,"EXEC echo('Exit Emergency');" 

13,11,transition,reading 

13,11,action,"START 'Slow blinking red LED'" 

14,11,transition,s91 

14,11,action,"ABORT 'Slow blinking red LED'" 

14,11,transition,s92 

14,11,action,"EXEC sendNotification();" 

14,11,transition,activated 

14,11,action,"START 'Make Siren Sound'" 

15,13,EVENT,call,set 

Figure 9.9: Scenario 2: discrete timed output of system events.
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% TIME,tThreshold,tCurrent 

1,10,5 

2,10,5 

3,10,0 

4,10,50 

5,10,50 

6,10,50 

7,10,50 

8,10,40 

9,10,40 

10,10,40 

11,10,40 

12,10,40 

13,10,30 

14,10,30 

 

Figure 9.10: Scenario 2: discrete timed snapshot.

% TIME,absoluteTime,duration  

1,null,PT0S 

2,null,PT0S 

3,10:00,PT0S 

4,10:00,PT0S 

5,null,PT0S 

6,null,PT0S 

7,11:00,PT0S 

8,null,PT0S 

9,null,PT0S 

10,null,PT3M 

11,null,PT3M 

12,null,PT3M 

13,null,PT0S 

14,null,PT0S 

 

Figure 9.11: Scenario 2: discrete timed system time information.

9.2.3 Output of the simulation: scenario 3

The third scenario is shown in Fig.9.12. This scenario is somehow similar to scenario 2;

but, we updated tCurrent value before entering to reading, and as a result system will not

come back to emergency again.

Line 5 of this scenario demonstrates region completion of emergency, which triggers the

transition from emergency to reading with no event. Since emergency has a do_behavior,

we expect that completing its do_behavior yields the same result. We changed line 5

to "EVENT completed emergency" and observed the same outputs, thereby verifying the

correct behavior of the simulator. The outputs of simulating this scenario as scenario 3 is
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presented in Fig.9.13, Fig.9.14, and Fig.9.15.

% LINE COMMAND ARG 

1 EVENT call activate 

2 EVENT call cancel 

3 EXECUTE tCurrent=35 

4 EXECUTE tCurrent=25 

5 AFTER '2:00' 

6 EVENT call deactivate 

7 EVENT call shutoff 

 

Figure 9.12: Scenario 3.

% TIME,LINE,TYPE,ARGS 

1,1,EVENT,call,activate 

1,1,transition,pre_configuring 

1,1,action,"Green LED ON" 

1,1,transition,configuring 

1,1,action,"EXEC echo('Configuring mode');" 

2,2,EVENT,call,cancel 

2,2,transition,s81 

2,2,action,"EXEC echo('Configuring mode');" 

2,2,transition,active_skip_config_entry 

2,2,action,"EXEC longBeep();" 

2,2,transition,reading 

2,2,action,"START 'Slow blinking red LED'" 

3,3,EXECUTE,"tCurrent=35" 

4,3,transition,s91 

4,3,action,"ABORT 'Slow blinking red LED'" 

4,3,transition,s92 

4,3,action,"EXEC sendNotification();" 

4,3,transition,activated 

4,3,action,"START 'Make Siren Sound'" 

5,4,EXECUTE,"tCurrent =25" 

6,5,transition,efinal 

6,5,action,nil 

6,5,transition,s61 

6,5,action,"STOP 'Make Siren Sound'" 

6,5,transition,active_skip_config_entry 

6,5,action,"EXEC echo('Exit Emergency');" 

6,5,transition,reading 

6,5,action,"START 'Slow blinking red LED'" 

7,6,EVENT,call,deactivate 

7,6,transition,s2 

7,6,action,"ABORT 'Slow blinking red LED'" 

7,6,transition,idle 

7,6,action,"Green LED OFF" 

8,7,EVENT,call,shutoff 

8,7,transition,final 

8,7,action,nil 

Figure 9.13: Scenario 3: discrete timed output of system events.
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% TIME,tThreshold,tCurrent 

1,30,5 

2,30,5 

3,30,5 

4,30,35 

5,30,35 

6,30,25 

7,30,25 

8,30,25 

Figure 9.14: Scenario 3: discrete timed snapshot.

% TIME,absoluteTime,duration  

1,null,PT0S 

2,null,PT0S 

3,null,PT0S 

4,null,PT0S 

5,null,PT0S 

6,null,PT2M 

7,null,PT2M 

8,null,PT0S 

 

Figure 9.15: Scenario 3: discrete timed system time information.

9.3 Visualizing the results

In this section, we visualize the results of simulating scenarios and show the model of

behavior for each scenario. This diagram shows the current state of the state machine as

well as state of the system in each time id.

The model of behavior of the system under scenario 1 through 3 is presented in Fig.9.16,

Fig.9.17, and Fig.9.18 respectively.

timeId: 
State:

tThreshold:
tCurrent: 

0
idle
30
5 

1
configuring

30
5 

2
configuring

30
5 

3
error

30
5 

4
configuring

30
5 

5
configuring

30
5 

6
reading

30
20 

7
reading

30
20 

8
activated

30
40 

10
final
30
40 

9
idle
30
40 

Figure 9.16: Scenario 1: model of behavior.
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timeId: 
State:

tThreshold:
tCurrent: 

0
idle
10
5 

1
reading

10
5

2
reading

10
5 

3
reading

10
0

4
activated

10
50 

5
reading

10
50

6
activated

10
50 

7
activated

10
40

8
reading

10
40

10
reading

10
40 

9
activated

10
40 

14
activated

10
30

13
reading

10
40

12
activated

10
40 

11
activated

10
40 

15
activated

10
30

Figure 9.17: Scenario 2: model of behavior.

timeId: 
State:

tThreshold:
tCurrent: 

0
idle
30
5 

1
configuring

30
5

2
reading

30
5 

3
reading

30
0

4
activated

30
35 

5
activated

30
35 

6
reading

30
25

7
idle
30
25

8
final
30
25

Figure 9.18: Scenario 3: model of behavior.
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Chapter 10

Conclusions and future work

10.1 Conclusions

State machines are widely used to model the dynamic behavior of systems, and in this

thesis, we propose transforming these state machines into a database of clauses in Prolog,

enabling a declarative representation. We introduced an algorithm to flatten the UML

state machine and convert it into an extended finite state machine. Our algorithm supports

major UML 2.5.1 features including single and composite states; exit and entry pseudostates;

state behaviors including entry, do, and exit; in addition to the UML events including call,

signal, time, change, as well as three newley introduced events namely inactivity, update,

and completion. We used a modified version of the extended finite state machine to support

guarded and unguarded ϵ-transitions that are required for handling complex sequences of

actions and notifications in a non-flattened model.

Both initial and flattened models provides a factbase that serves as a foundation for

analyzing the behavior, complexity, and structure of the state machine. Therefore, the

declarative model is extended by building a query system as Prolog rules by which we can

study properties and the behaviour of a state machine.

In order to study the dynamic behaviour of a state machine under different scenarios

which may happen to the system, we developed a simulator. To support simulation, we

developed a tool in Java using the Java Prolog Library (JPL) and JavaScript Engine. This

tool takes a given scenario as input and generates the machine’s behavior at discrete time

steps as output. The simulation process allows the study of the state machine’s behavior

under different conditions and helps identify potential flaws in its design.

76



We present a case study of an alarm system to demonstrate the effectiveness of our

approach. We successfully apply the flattening algorithm and simulate the behavior of

the state machine under three different scenarios, showcasing the power and utility of our

proposed modeling and simulation tool. After study the case study, we can conclude this

research as the following points:

• Using Prolog facts and rules has been used in literature for modeling UML diagrams

and consistency checking. In this research, we used prolog for modeling state machine

and proposed our declarative model which is a novelty compared to literature which

studied other UML diagrams. Our both declarative model (initial and flattened) are

used in our querying platform and also as a facbase for our simulator tool. Prolog gives

us capabilities like pattern matching/backtracking and good engine to use selectors

for high level queries.

• This thesis provides a powerful tool for analyzing the two aspects of the state machines

(imperative analysis as well as the declarative analysis).

• The output of the query platform and simulation can be used for requirement

validation and verification providing feedback for developers and stakeholders of the

system.

• Our approach is limited and the search space is not discrete (there are infinite number

of scenarios and with regards to the continuous nature of the variables, it would be

impossible to find all possible success/fail cases). Therefore, the simulator may be

used as a test environment in the same way that a test engine is used to validate test

cases.

• We visualize the outputs of the simulation as the models of behavior. Visualization

of models of behavior would be nice and provides a good representaion of the state of

the system during the simulation.

10.2 Future work

The results of the simulation can be used to analyze the behaviour of the machines. Our

discrete timed output can be used to run some temporal logic queries which can be done
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as a future work. Also, as another potential area for future work, the simulator can be

extended to incorporate contract considerations for state invariants, as well as pre- and

post-conditions for actions. Furthermore, our model can be extended to include additioanl

UML features like History pseudostate and orthogonal regions.

In this research, we treated timeout event type as after in our simulation that makes

sense since we define and have control over the sequence of events in scenarios. However,

the simulation model can be extended to distinguish between timeout and after event

types. a timeout event shows that system is idle for the specified time; in contrast, after

points out to passing the specified time.
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