

Development of Deep Learning Techniques for Image
Retrieval

Farzad Sabahi

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

July 2023

© Farzad Sabahi, 2023

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Farzad Sabahi

Entitled: Development of Deep Learning Techniques for Image Retrieval

and submitted in partial fulfillment of the requirements for the degree of

Doctor Of Philosophy (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to originality and
quality.

Signed by the final examining committee:

 Chair
Dr. Onur Kuzgunkaya

 External Examiner
Dr. Panajotis Agathoklis

 Examiner
Dr. Chunyan Wang

 Examiner
Dr. Wei-Ping Zhu

 Examiner, External to Program
Dr. Chun-Yi Su

 Thesis Co-Supervisor
Dr. M. Omair Ahmad

 Thesis Co-Supervisor
Dr. M.N.S. Swamy

Approved by
Dr. Jun Cai, Graduate Program Director

8/23/2023
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

iii

Abstract
Development of Deep Learning Techniques for Image Retrieval

Farzad Sabahi, Ph.D.

Concordia University, 2023

Images are used in many real-world applications, ranging from personal photo repositories to

medical imaging systems. Image retrieval is a process in which the images in the database are first

ranked in terms their similarities with respect to a query image, then a certain number of the images

are retrieved from the ranked list that are most similar to the query image. The performance of an

image retrieval algorithm is measured in terms of mean average precision. There are numerous

applications of image retrieval. For example, face retrieval can help identify a person for security

purposes, medical image retrieval can help doctors make more informed medical diagnoses, and

commodity image retrieval can help customers find desired commodities. In recent years, image

retrieval has gained more popularity in view of the emergence of large-capacity storage devices

and the availability of low-cost image acquisition equipment. On the other hand, with the size and

diversity of image databases continuously growing, the task of image retrieval has become

increasingly more complex. Recent image retrieval techniques have focused on using deep

learning techniques because of their exceptional feature extraction capability. However, deep

image retrieval networks often employ very complex networks to achieve a desired performance,

thus limiting their practicability in applications with limited storage and power capacity. The

objective of this thesis is to design high-performance, low complexity deep networks for the task

of image retrieval. This objective is achieved by developing three different low-complexity

strategies for generating rich sets of discriminating features.

Spatial information contained in images is crucial for providing detailed information about the

positioning and interrelation of various elements within an image and thus, it plays an important

role in distinguishing different images. As a result, designing a network to extract features that

characterize this spatial information within an image is beneficial for the task of image retrieval.

In the light of the importance of spatial information, in our first strategy, we develop two deep

convolutional neural networks capable of extracting features with a focus on the spatial infor-

mation. For the design of the first network, multi-scale dilated convolution operations are used to

iv

extract spatial information, whereas in the design of the second network, fusion of feature maps

obtained from different hierarchical levels are employed to extract spatial information.

Textural, structural, and edge information is very important for distinguishing images, and

therefore, a network capable of extracting features characterizing this type of information about

the images could be very useful for the task of image retrieval. Hence, in our second strategy, we

develop a deep convolutional neural network that is guided to extract textural, structural, and edge

information contained in an image. Since morphological operations process the texture and struc-

ture of the objects within an image based on their geometrical properties and edges are fundamental

features of an image, we use morphological operations to guide the network in extracting textural

and structural information, and a novel pooling operation for extracting the edge information in an

image.

Most of the researchers in the area of image retrieval have focused on developing algorithms

aimed at yielding good retrieval performance at low computational complexity by outputting a list

of certain number of images ranked in a decreasing order of similarity with respect to the query

image. However, there are other researchers who have adopted a course of improving the results

of an already existing image retrieval algorithm through a process of a re-ranking technique. A re-

ranking scheme for image retrieval accesses the list of the images retrieved by an image retrieval

algorithm and re-ranks them so that the re-ranked list at the output the scheme has a mean average

precision value higher than that of the originally retrieved list.

A re-ranking scheme is an overhead to the process of image retrieval, and therefore, its com-

plexity should be as small as possible. Most of the re-ranking schemes in the literature aim to boost

the retrieval performance at the expense of a very high computational complexity. Therefore, in

our third strategy, we develop a computationally efficient re-ranking scheme for image retrieval,

whose performance is superior to that of the existing re-ranking schemes. Since image hashing

offers the dual benefits of computational efficiency and the ability to generate versatile image

representation, we adopt it in the proposed re-ranking scheme.

Extensive experiments are performed, in this thesis, using benchmark datasets, to demonstrate

the effectiveness of the proposed new strategies in designing low-complexity deep networks for

image retrieval.

v

Acknowledgments

I would like to express my profound gratitude to my PhD supervisors, Prof. M. Omair Ahmad and

Prof. M.N.S. Swamy. Their mentorship throughout the development and presentation of my re-

search, along with their unwavering support during every phase of my PhD journey, has been

invaluable. I am truly indebted to them for their continuous guidance and for availing the essential

research facilities that ensured the success of my research.

I extend my sincere appreciation to Concordia University and the Department of Electrical and

Computer Engineering. The nurturing academic environment they provided has been pivotal in

aiding me to realize my academic aspirations and achieve my research goals.

On a personal note, I want to express heartfelt gratitude to my beloved wife, Fahimeh. Her

endless support and patience are unique and immeasurable. I also owe thanks to my sister Farzaneh

for her kindness and always being available when I needed her, and I thank my kind and genius

sister, Dr. Farnaz, for her unfailing support. I would like to thank my mother-in-law, Ashraf, and

father-in-law, Gholamreza, for their boundless kindness and their help from the very first moment

that I met them. I want to thank my sister-in-law, Zahra, whose understanding and support have

helped me and my family cope with challenges. Finally, I want to express my deep love for my

daughter, Elsa. Her presence has always motivated me to push toward my goals.

I dedicate this thesis to my late mother, a paragon of strength and honesty. Her memory remains

a beacon guiding me, despite her absence. My heart aches at the lost opportunity to see her one

last time, to hold her hand, to say, "I love you, Maman".

vi

Contents

List of Figures ix

List of Tables xiii

List of Symbols xv

List of Abbreviation xix

1 Introduction 1

1.1 Overview of Image Retrieval .. 1

1.2 Importance of Image Retrieval .. 4

1.3 Brief Literature Review ... 4

1.4 Motivation and Objective .. 7

1.5 Organization of the Thesis .. 8

2 Background Material 9

2.1 Hopfield Neural Network .. 10

2.2 Image Hashing ... 11

2.3 Re-ranking ... 11

vii

2.4 Balanced Binary Search Tree .. 12

2.5 Pooling Operation ... 13

2.5.1 Average and Max Pooling 14

2.5.2 Other Pooling Methods 15

2.6 Morphological Operations ... 16

2.7 Evaluation Metric .. 17

2.8 Summary ... 18

3 Deep Image Retrieval Networks Using Residual Blocks Focusing on Spatial Information

 19

3.1 Improving Deep Features for Image Retrieval using Multi-Source Spatial Information.... 20

3.2 Development of a Deep Image Retrieval Network using Hierarchical and Multi-scale Spatial

Features ... 24

3.3 Experimental Results ... 29

3.3.1 Experimental Results of MSFRNet 29

3.3.2 Experimental Results of HMSRNet 32

3.4 Summary ... 37

4 Deep Image Retrieval Network with Guided Feature Generation 38

4.1 Max-m-Min Pooling .. 39

4.2 Proposed Residual Block .. 42

4.3 Experimental Results ... 49

4.4 Summary ... 58

5 Hashing-based Re-ranking Technique for Image Retrieval 59

5.1 RefinerHash: A New Hashing-based Re-ranking Technique for Image Retrieval 60

viii

5.1.1 Initial retrieval list 60

5.2 Experimental Results ... 75

5.3 Summary ... 79

6 Conclusion and Future Work 80

6.1 Concluding Remarks ... 80

6.2 Future Work .. 81

References 83

Appendix 93

ix

List of Figures
List of Figures
1.1 Illustration of the task of image retrieval. ...

2

1.2 Details of an image retrieval system. ... 3

2.1 Unbalanced (a) vs. balanced (b) binary search trees. .. 13

3.1 Architecture of (a) the proposed residual block, (b) the spatial feature extrac-

tion module, and (c) the hierarchical feature extraction module. Conv. denotes

the convolution. “C” is a symbol representing concatenation and summation

operations. Spatial FEM and Hierarchical FEM denote “spatial feature extrac-

tion module” and “hierarchical feature extraction module,” respectively.

21

3.2 Architecture of the proposed residual block. Conv., D.Conv. and P.Conv. rep-

resent the convolution, dilated convolution and point-wise convolution opera-

tions, respectively. ...

25

3.3 Modified variant of AlexNet architecture to employ the proposed residual

block. DW Pool. denotes depth-wise pooling. Max pooling layers are not

shown. ..

25

3.4 Design of the proposed residual block using a serial scheme. 30

x

3.5 Learning curves for two design schemes of the proposed residual block on An-

imals dataset. ...

30

3.6 Learning curves for the proposed residual block and its variants on Animals

dataset. ...

31

3.7 Precision-recall curves obtained from the proposed HMSRNet on Cifar10,

Cinic10, and Animals datasets. ...

34

3.8 Learning curves of the proposed network and the variants on Animals dataset. 36

4.1 (a) An example illustrating a pooling window of size 2×2. (b)-(e) represent

four templates of the possible locations of minimum and maximum values re-

quired for Max-m-Min pooling on this window..

40

4.2 Detailed architecture of the proposed residual block. LReLU, Conv., and

PConv. are Leaky-ReLU, convolution, and pointwise convolution, respectively.

The symbols ‘+’ and ‘-’ represent tensor addition and tensor subtraction, re-

spectively. The symbol ‘c’ represents the concatenation operation.

41

4.3 Architecture of the proposed image retrieval network. Conv., PL1, PL2, and

DW Pool., respectively, denote the feature extraction module, convolution op-

eration, first pooling layer, second pooling layer, and depth-wise pooling layer.

 ...

46

4.4 Comparison of different pooling methods on various inputs. The pooling size is

2×2 with stride=1. Max-m-Min detects fine edges that enable the network to

learn texture features effectively. ..

50

4.5 Visualization of feature map evolution through the residual block. The residual

block outputs a feature vector enriched with textural and structural information.

 ...

55

5.1 Framework of the proposed method for the initial retrieval list creation. During

the training step, the weight matrix that is used in the testing step, 𝑊𝑊𝑏𝑏, is calcu-

lated to create the initial list. The “Feature Extraction” module can be based on

xi

either low-level features or deep features. The sizes of feature vectors, 𝑓𝑓𝑏𝑏𝑁𝑁, 𝑓𝑓𝑏𝑏𝑀𝑀

and 𝑊𝑊𝑏𝑏 are 2048×1, 2048×1 and 2048×2048, respectively. The output is K im-

ages, which are stored in a set called Γ. “T” which is the super-script to the

feature vectors, is the transpose operator. ...

61

5.2 The ResNet50 architecture and the modifications made for its use as a feature

extractor. The depicted architecture shows the size of filters and the dimensions

of the outputs of convolutional modules. The notation “𝑛𝑛 × 𝑛𝑛, k” in the convo-

lutional modules denotes a filter size of 𝑛𝑛 × 𝑛𝑛 with k filters. The values at the

top of each module denotes the repetition of the corresponding module. The

values above the arrows represent the size of the output of the corresponding

module. The Classification head is removed from the pre-trained ResNet50 and

replaced with the “Feature Extraction” module. For simplicity, residual

shortcuts and activation functions are not shown. ...

62

5.3 The block weight vector. The center region includes four blocks and has a four

times greater influence on the score calculation than the blocks at the borders.

These values are found experimentally and provide the best results.

63

5.4 An overview of how a hash code is generated using DCT. Given rotated images,

the hash codes based on DCT are calculated on partitioned central regions. The

output is a hash code generated by concatenating all the hash codes calculated

for an image. All the final hash codes are used to build a tree ((𝒯𝒯ℎ). 𝐾𝐾 is the

number of images available in the initial retrieval list, 𝜃𝜃 is the image orienta-

tion, and 𝜶𝜶 is the block number. ..

68

5.5 An overview of how hash codes are generated using DWT. Given rotated im-

ages, the DWT-based hash codes are calculated on the partitioned whole image.

The hash codes are then divided into equal-length hash codes, namely 𝐿𝐿𝑖𝑖 and

𝑅𝑅𝑖𝑖. These two hash codes are used to build two different trees (𝒯𝒯𝐿𝐿 and 𝒯𝒯𝑅𝑅). Note

that 𝛹𝛹𝜃𝜃,𝛽𝛽
𝑖𝑖 is the coefficient of the LL band after the first decomposition, 𝜃𝜃 is the

xii

image orientation, 𝛽𝛽 is the block number, and 𝐾𝐾 is the number of images in the

initial retrieval list..

69

5.6 Overview of the proposed image search. Three trees are built based on hash

codes generated using DWT and DCT transformations. The final image report

is done by first reporting all the images in 𝛿𝛿123, and if the number of reported

images is not sufficient, images in the set of 𝛿𝛿12, 𝛿𝛿13, 𝛿𝛿23...................................

72

5.7 Illustration of the process of searching a subtree to generate a candidate list,

denoted as 𝛿𝛿3, using a threshold of 2 and a hash code of ℎ𝑞𝑞 = 19. The bold

path represents the search route taken to reach the desired subtree, which is

enclosed in a green box. Note that this is a simplified example, and the actual

hash codes are longer and stored in binary format, with larger trees. Addition-

ally, each node in the tree has an associated image file name, but it is not shown

here for clarity. The symbol |. | denotes the absolute value operator.

72

5.8 A Venn diagram illustrating the interrelationships among sets derived from tree

searches. Majority voting determines the similar images for a given query im-

age, with the most similar ones expected to reside in 𝛿𝛿123.

73

5.9 Comparative visualization of precision-recall curves for some query images. .. 78

xiii

List of Tables
List of Tables
3.1 mAP scores for two variants of the network. In Variant I, the proposed residual

block is excluded. In Variant II, the network includes the proposed residual

block. ...

29

3.2

Comparison of the results obtained by the network depending on whether the

proposed residual block is used. ..

30

3.3 mAP values for the serial configuration of the residual block and the proposed

residual block...

30

3.4 mAP values for the proposed block and its variants. .. 31

3.5 Performance comparison of the proposed method and other state-of-the-art

methods..

33

3.6 Performance comparison of the proposed method. ... 35

3.7 Results of ablation study. ..

35

4.1 Distribution of images for different datasets. .. 48

xiv

4.2 The network performance in terms of mAP of the proposed network and its

variants. ...

49

4.3 The network performance comparison in terms of mAP when PL1, PL2

corresponding to Average, Max, Lp, Median, and Max-m-Min pooling

operations. ...

51

4.4 Training and testing times (in seconds) of the proposed network with different

pooling operations. ..

51

4.5 Shannon entropy 𝐻𝐻(𝑒𝑒) of different pooling methods. ... 53

4.6 Impact of the size of morphological operators on the network performance in

terms of mAP. ..

54

4.7 Impact of using different fusion strategies on the performance of the network in

terms of mAP. ..

54

4.8 Comparison between the performance (in terms of mAP) of the convolutional

neural networks for image retrieval. ..

57

5.1 Performance and time complexity comparison of RefinerHash with other re-

ranking techniques. ..

74

5.2 Performance comparison in terms of mAP. .. 74

xv

List of Symbols
List of Symbols

𝒮𝒮 Spatial Feature Extraction Module

ℋ Hierarchical Feature Extraction Module

𝒞𝒞i 𝑖𝑖 − 𝑡𝑡ℎ Convolution Layer

ℐ Input Feature Tensor

𝑂𝑂 Output Feature Tensor

𝑖𝑖𝑐𝑐[𝑚𝑚, 𝑛𝑛] (𝑚𝑚,𝑛𝑛)-th Element of the 𝑐𝑐-th Channel of Input Tensor of ℐ

𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] (𝑚𝑚,𝑛𝑛)-th Element of the 𝑐𝑐-th Channel of Output Tensor of 𝑂𝑂

𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛) Index Matrix Positioned at (𝑚𝑚, 𝑛𝑛) with a Neighborhood Size of 𝑎𝑎 × 𝑏𝑏

𝒫𝒫 Pooling Function

⊕ Morphological Dilation Operation

⊝ Morphological Erosion Operation

xvi

⊙ Canonical Multiplication Operation

𝑇𝑇𝑎𝑎𝑛𝑛ℎ Hyperbolic Tangent Activation Function

𝐻𝐻 Shannon Entropy Function

𝜃𝜃 Set of Orientations for Image Rotation

𝛼𝛼 Block Number for DCT-based Hash Code Generation

𝛽𝛽 Block Number for DWT-based Hash Code Generation

𝑊𝑊𝑏𝑏 Weight Matrix of Block 𝑏𝑏

𝐵𝐵𝑏𝑏 Influence Vector for Block 𝑏𝑏

𝑓𝑓𝑏𝑏𝑁𝑁 Feature Vector of Block 𝑏𝑏 of Image 𝑁𝑁 of Training Set

𝑓𝑓𝑏𝑏𝑁𝑁 Modified version of the Feature Vector 𝑓𝑓𝑏𝑏𝑁𝑁

𝑓𝑓𝑏𝑏𝑀𝑀 Feature Vector of Block 𝑏𝑏 of Image 𝑀𝑀 of Test Set

𝑓𝑓𝑏𝑏𝑀𝑀 Modified version of the Feature Vector 𝑓𝑓𝑏𝑏𝑀𝑀

Γ Initial Retrieval List

𝐾𝐾 Number of images in the initial retrieval list Γ

0� Sequence of 128 Zeros

1� Sequence of 128 Ones

𝐴𝐴𝑏𝑏 Average of Coefficient Values for Block 𝑏𝑏

𝐼𝐼𝜃𝜃,𝛼𝛼
𝑖𝑖 Block 𝛼𝛼 of Image 𝑖𝑖 Rotated 𝜃𝜃 Degrees

𝛷𝛷𝜃𝜃,𝛼𝛼
𝑖𝑖 DCT Coefficients of Block 𝛼𝛼 of Image 𝑖𝑖 Rotated 𝜃𝜃 Degrees

xvii

𝜇𝜇𝜃𝜃,𝛼𝛼
𝑖𝑖

Average of DCT Coefficients of Block 𝛼𝛼 of Image 𝑖𝑖 , Rotated by 𝜃𝜃

Degrees

ℎ𝜃𝜃,𝛼𝛼
𝑖𝑖 Hash bit for Block 𝛼𝛼 of Image 𝑖𝑖 Rotated 𝜃𝜃 Degrees, based on DCT

𝑚𝑚𝜃𝜃
𝑖𝑖

Median of Average Values of Coefficients based on DCT for Image 𝑖𝑖

Rotated by θ Degrees

ℎ𝑖𝑖 Hash Code for Image 𝑖𝑖 based on DCT

𝛹𝛹𝜃𝜃,𝛽𝛽
𝑖𝑖 DWT Coefficient of block 𝛽𝛽 of Image 𝑖𝑖 Rotated 𝜃𝜃 Degrees

𝑚𝑚�𝜃𝜃𝑖𝑖
Median of Average Values of Coefficients based on DWT for Image 𝑖𝑖

Rotated by θ Degrees

�̂�𝜇𝜃𝜃,𝛽𝛽
𝑖𝑖

Average of DWT Coefficients of block 𝛽𝛽 of Image 𝑖𝑖 , Rotated by 𝜃𝜃

Degrees

ℎ�𝜃𝜃,𝛽𝛽
𝑖𝑖 Hash bit for block 𝛽𝛽 of Image 𝑖𝑖 Rotated 𝜃𝜃 Degrees, based on DWT

ℎ�𝑖𝑖 Hash Code for Image 𝑖𝑖, based on DWT

𝐿𝐿𝑖𝑖 Left Half of the Hash Code ℎ�𝑖𝑖

𝑅𝑅𝑖𝑖 Right Half of the Hash Code ℎ�𝑖𝑖

𝒯𝒯L Tree Constructed using 𝐿𝐿𝑖𝑖 for all 𝑖𝑖 images

𝒯𝒯ℛ Tree Constructed using 𝑅𝑅𝑖𝑖 for all 𝑖𝑖 images

𝒯𝒯h Tree Constructed using ℎ𝑖𝑖 for all 𝑖𝑖 images

Lq Left Half of the DWT-based hash Code for the Query Image

Rq Right Half of the DWT-based hash Code for the Query Image

xviii

hq DCT-based Hash Code for the Query Image

δ1 Candidate List Obtained from Searching for L𝑞𝑞 in the Tree 𝒯𝒯L

δ2 Candidate List Obtained from Searching for R𝑞𝑞 in the Tree 𝒯𝒯R

δ3 Candidate List Obtained from Searching for ℎ𝑞𝑞 in the Tree 𝒯𝒯ℎ

δ123 Intersection of δ1, δ2,and δ3

δ12 Intersection of δ1and δ2 Excluding δ123

δ13 Intersection of δ1and δ3 Excluding δ123

δ23 Intersection of δ2 and δ3 Excluding δ123

𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 Sign Function

ℓ2 Euclidean Norm

𝒪𝒪 Big-O Notation

𝑚𝑚𝑎𝑎𝑚𝑚(𝑋𝑋) Maximum Element in Pooling Window 𝑋𝑋

𝑚𝑚𝑖𝑖𝑛𝑛(𝑋𝑋) Minimum Element in Pooling Window 𝑋𝑋

𝑃𝑃(𝑘𝑘) Precision at Rank k

𝑅𝑅(𝑘𝑘) Recall at Rank k

xix

List of Abbreviations
List of Abbreviation

DL Deep Learning

CNN Deep Convolutional Neural Network

CBIR Content-based Image Retrieval

AP Average Precision

mAP Mean Average Precision

HNN Hopfield Neural Network

FLOP Floating Point Operation

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

BST Binary Search Tree

BBST Balanced Binary Search Tree

xx

PConv. pointwise convolution

𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅 Rectified Linear Unit

𝐿𝐿𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅 Leaky Rectified Linear Unit

SGD Stochastic Gradient Descent

PW Conv. Point-wise Convolution

DW Pool. Depth-wise Pooling

Conv. Convolutional Layer

𝐶𝐶𝑂𝑂𝑁𝑁𝐶𝐶𝐴𝐴𝑇𝑇 Concatenation

D.Conv. Dilated Convolution

MoF Morphological Feature Generating Residual Block

Max-m-Min Maximum minus Minimum Pooling

BHIR Block-wise Hopfield Network-based Image Retrieval

MSFR Multi-source Spatial Feature Generating Residual Block

HMSR Hierarchical and Multi-scale Spatial Feature Generating Residual Block

MorIRNet Morphological Feature generation-based Image Retrieval Network

SIFT Scale Invariant Feature Transform

DQE Discriminative Query Expansion

TXEBFSR Texture Expansion based on Feature Selection Retrieval

1

1 Introduction

Chapter 1

Introduction

1.1 Overview of Image Retrieval

"A picture is worth one thousand words." This proverb comes from Confucius - a philosopher who

lived more than 2500 years ago. Humans have often used drawings to convey information.

Throughout history, mankind often uses visual representations as a medium for information con-

vey. Evidence of this is the prehistoric cave paintings depicting the perilous hunting experiences

as well as several paintings from Pharaohs’ ritual practice wall paintings found in Egypt. Today,

we are surrounded by visual information almost everywhere. With the influence of the digital

world, a substantial amount of information is available only in digital formats, including images.

Nowadays, digital images are gaining the main visual medium across various platforms, from per-

sonal photo libraries to medical imaging. With the rise of computational power and decreasing

storage costs, Images are playing an increasingly important role in people’s daily lives. We cannot

access or make use of a large collection of images unless it is organized to allow efficient browsing,

searching, and retrieval processes. Image retrieval involves retrieving images similar to a user-

2

specified textual or pictorial object (query) from the images of a database. An illustration of the

image retrieval task in shown in Figure 1.1.

With the rapid growth of digital image repositories and the increasing demand for efficient and

accurate retrieval systems, image retrieval has emerged as a crucial research area. The task of

image retrieval has evolved significantly over the years, advancing from low-level feature-based

approaches to deep learning-based methods. Low-level feature-based image retrieval methods fo-

cus on extracting and comparing features such as color, texture, and shape from images.

In recent years, image retrieval has gained more attention in light of the emergence of applica-

tions employing computer vision and artificial intelligence techniques. Image retrieval processes

have also become more complex owing to the exponential growth of the size and diversity of image

databases resulting from the availability of low-cost digital acquisition equipment and the emer-

gence of large-scale storage devices.

A typical image retrieval method performs the task by processing the visual information con-

tained in an image and creating a feature vector based on the image content. Any subsequent query

operations take place solely within the generated feature vectors, not the raw image data. In fact,

every image in the image database, including the query image, is analyzed, and a compact repre-

sentation of it is stored as a feature vector. This feature vector acts as a unique signature for the

image that represents it during similarity matching. The key processes conducted in a typical image

Figure 1.1: Illustration of the task of image retrieval.

3

retrieval method are shown in Figure 1.2.The units shown in the figure are explained further as

follows:

• Feature extraction: This process is the core of any image retrieval method. Every image

must be transformed into numerical values (a feature vector) in order to make the visual

information understandable by a computer. The representable ability of the generated fea-

ture vectors is crucial to obtain high retrieval performance.

• Feature database: all the feature vectors are stored in the feature database. The algorithm

that is used to generate this database is the same for processing all the images, including

the query image.

• Feature matching: This step involves comparing the feature vector of the query image to

each feature vector in the feature database. A suitable similarity measurement method is

used to calculate the distance between the feature vectors.

• Sorting: During this final stage, images are ranked based on the similarity scores obtained

from the feature-matching process. The images corresponding to the feature vectors that

are closest to the query image are expected to have the highest scores and will be reported

as the top matches.

Figure 1.2: Details of an image retrieval system.

4

1.2 Importance of Image Retrieval

Image retrieval plays a vital role in a wide range of applications ranging from medical diagnostics

to e-commerce. In medical diagnostics, image retrieval systems can efficiently locate relevant

medical images, such as X-rays, from available medical image databases [1]. Similarly, the e-

commerce industry exploits image retrieval systems to offer visually similar product recommen-

dations [2]. Several online retail stores have integrated image retrieval into their platforms, facili-

tating product discovery. Given the ongoing advancements in image retrieval techniques, the scope

of its application continues to broaden across various industries. This trend necessitates more ef-

ficient and effective image retrieval methods capable of analyzing the ever-increasing volume and

complexity of image databases for real-world applications. Consequently, the study and improve-

ment of image retrieval techniques are not only relevant but crucial in our progressively digital

world.

1.3 Brief Literature Review

The quality of features extracted from images is crucial in achieving high retrieval performance.

Therefore, it is not surprising that a significant portion of research in the field of image retrieval

has been done to improve the representational capacity of the obtained feature vectors. The pro-

gression can be divided into three distinct eras, each characterized by differences in how raw pixel

values of images are transformed into feature vectors.

In the first era, the focus was on extracting global low-level features to describe the character-

istics of an image in the form of a single feature vector. An example is the Query By Image Content

(QBIC) system [3], which uses global characteristics like color and texture to represent images.

However, these global features frequently failed to discriminate between the visual contents of

different images effectively. Due to this deficiency in representation, researchers shifted their fo-

cus towards methods based on local low-level features, which was the start of the second era. In

this era, methods involve identifying salient patches within a given image and extracting the fea-

ture vector of each patch to represent the image as a combination of several such vectors [4], [5].

An example is scale-invariant feature transform (SIFT) [4] which is a method designed to extract

5

distinctive invariant features from images, which can be used to perform reliable matching be-

tween different views of an object or scene. Despite these advances, a common drawback of these

early low-level feature-based methods is their struggle with understanding high-level visual con-

tent in images [6]. As a result, traditional image retrieval systems that relied on low-level features

often underperformed due to the inherent limitations associated with low-level features [7].

The advent of deep Convolutional Neural Networks (CNNs) has initiated a new era for image

retrieval, fundamentally revolutionizing the field with their remarkable feature extraction capabil-

ities. Unlike handcrafted features, CNNs automatically learn discriminative and robust features

directly from raw pixel values, significantly outperforming the low-level-based image retrieval

methods. The strength of CNNs lies in their architecture, which consists of multiple convolutional

layers, each learning increasingly complex features from the outputs of the previous layer through

several convolution operations followed by nonlinear activation functions. The stack of several

convolutional layers forms a hierarchical structure, with low-level features (such as edges and

textures) learned in the early shallow layers and high-level features (such as objects) identified in

the deeper layers. This hierarchical feature extraction process enables CNNs to integrate critical

visual characteristics within an image into high-level features, resulting in feature sets that are

highly representative and discriminative, allowing for superior image representation and, thereby,

enhancing the retrieval performance.

Early deep learning-based techniques primarily utilized pre-trained networks to obtain features

[8]–[17]. For instance, in [8], the authors investigated the use of feature maps from the top fully

connected layer of a large CNN for image retrieval, transforming a given image into a single vec-

tor. The lack of spatial information in the fully connected layers has led to utilizing feature maps

available in the convolutional layers, as proposed in [15]. Convolutional layers contain spatial

information, which is crucial for applications where the location of objects is helpful for generating

more informative features. However, the discriminative power of these methods is inherently lim-

ited by the pre-trained deep networks from which the feature vectors are obtained. To address this

issue, some works have been developed to combine deep features and high-end low-level features.

For example, in [16], the authors proposed a technique to combine features obtained from a deep

network with and that of SIFT features in order to exploit the strengths of both types of features.

While some improvements were achieved by combining low- and high-level features, the

6

performance degraded when there is a high degree of inter-class similarity. To mitigate this issue,

in [17], the feature maps of multiple deep networks can be fused in order to improve the represen-

tational ability of the feature vectors. While these methods provide a good performance, usage of

multiple deep networks renders them resource-intensive and impractical for real-world applica-

tions. It is seen from the above discussion that the main focus of image retrieval methods using

pre-trained networks is on designing effective mechanisms to extract the best possible features.

However, the performance of these techniques is constrained by the design of the utilized pre-

trained networks, which are not specifically designed for image retrieval tasks, thereby resulting

in suboptimal performance [18]. This paves the way for designing new architectures, which may

offer more tailored solutions for image retrieval tasks.

Apart from improving representational capacity to enhance retrieval performance, another

promising research direction is to re-rank an initial retrieval list obtained from a retrieval process

in such a way that images similar to a given query image are ranked higher in the list. Some re-

ranking methods have been proposed to enhance retrieval performance [20-34]. For example, in a

query expansion method proposed in [19], a new feature vector for the query image is constructed

by averaging the feature vectors of the top-ranked images from the initial retrieval list. This revised

feature vector is then used to search the image dataset again. However, query expansion requires

performing an entirely new search, which can be particularly resource-intensive for large-scale

datasets. Using k-nearest neighbor is another technique that is used to exploit the similarity rela-

tionship between top-ranked images for re-ranking the initial retrieval results. Similarly, in [20]–

[23], the k-reciprocal nearest neighbor is used where two images are defined as k-reciprocal nearest

neighbors if both appear in each other top-k list when one image serves as the query image. Dis-

criminative Query Expansion (DQE) [24] proposes a re-ranking method based on the support vec-

tor machine model. Building upon the idea of feature-specific expansion, methods like Texture

Expansion based on Feature Selection Retrieval (TXEBFSR) [25] are proposed. This method cre-

ates a new feature vector for the query image by averaging texture features calculated on top-

ranked images to perform a new image retrieval process. Recently, a new re-ranking scheme for

image retrieval is proposed [26]. This method transforms an initial retrieval list into a correlation

matrix. This matrix is then used to train a CNN to learn the semantic relevance among the images.

After the network has learned these relationships, the images in the list are re-ranked based on

7

their relevance to the original query. However, a significant limitation of this method is its depend-

ency on the training of a CNN and the requirement for a ground-truth relevance matrix. The latter

can be particularly challenging to obtain, especially when dealing with large datasets or in scenar-

ios where the relationships between images are not well-defined or known in advance. Very re-

cently, a new re-ranking method referred to as RbQE has been proposed [27]. RbQE has two search

stages: a rapid search and a final search. In the rapid search, using feature vector of the query

images, retrieval process is done in each class and by calculating mean values of deep features of

top-ranked images from each class, a feature vector for each class is computed. In the final search,

among the computed feature vectors, the one that is most similar to the original query is used to

re-query the database. While the aforementioned re-ranking techniques demonstrate promising

performance, they suffer from high computational complexity, leading to slow and resource-inten-

sive operations and, thereby, making them impractical for real-world applications. This necessi-

tates the development of a computationally efficient re-ranking approach that effectively improves

retrieval performance.

1.4 Motivation and Objective

It is seen from the literature review in Section 1.2 that the design of efficient image retrieval meth-

ods is very crucial in many real-world computer vision applications, and the performance of any

image retrieval method largely depends on the quality of representation of the feature vectors.

Many existing image retrieval methods, although providing respectable performance, may fall

short when faced with the continuously growing size and complexity of image datasets. Moreover,

they achieve their performance at the expense of high computational complexity, making them

impractical for real-world applications. Furthermore, there is a noticeable scarcity in the design of

new deep architectures that focus on improving the representational capacity of the network. The

incorporation of crucial information for obtaining high retrieval performance for the task of image

retrieval, such as spatial and structural information, remains largely unexplored, despite the poten-

tial for these tailored architectures to significantly enhance the performance of a deep image re-

trieval network.

8

The objective of the thesis is twofold. First, we propose several novel residual blocks focusing

on extracting textural and structural information to be used in convolutional neural networks to

enhance the representational capacity of the networks for image retrieval tasks. The proposed re-

sidual blocks include various novel modules, including hierarchical spatial feature extraction,

multi-scale feature extraction, multi-source spatial feature extraction, edge feature extraction, and

morphological feature extraction. By employing these new modules in residual framework, vari-

ous deep convolutional neural networks are proposed that learn rich sets of features to enhance the

retrieval performance significantly. The second objective is to improve the retrieval performance

of an initial retrieval list through a novel re-ranking method, utilizing the speedy and proficient

nature of image hashing techniques for image representation. The proposed method aims to im-

prove the retrieval performance of an initial retrieval list with minimal computational overhead.

1.5 Organization of the Thesis

The organization of this thesis is as follows. Chapter 3 presents two designs of residual blocks

and their applications in deep convolutional neural networks in order to improve the representa-

tional capacity of the deep networks. These designs focus on the integration of spatial information

into feature maps to enhance the representational capacity of a deep convolutional neural network

for image retrieval. Chapter 4 explores the application of the idea of guided feature generation in

deep networks. The chapter proposes a new method designed to enhance the representational abil-

ity of feature vectors obtained from a deep network by guiding the network to incorporate textural

and structural information using processes such as morphological operations and edge feature ex-

traction. In addition, a new pooling operation is presented, which focuses on producing rich sets

of edge features to further improve the network learning quality. Chapter 5 proposes a novel hash-

ing-based re-ranking technique aimed at enhancing the performance of any image retrieval tech-

nique. This innovative technique explores how image hashing can be utilized to refine the initial

retrieval list, hence boosting the retrieval performance of an image retrieval method through effi-

cient post-processing of the results. Finally, in Chapter 6, the thesis concludes with a summary of

the significant findings and contributions, along with identifying potential research directions for

future investigations.

9

2 Background Material

Chapter 2

Background Material

In this chapter, we provide a brief review of background material that is useful for understanding

the work presented in this thesis. We start with a brief overview of Hopfield Neural Networks,

presenting the basic principles of this recurrent neural network architecture recognized for its as-

sociative memory capabilities. This is followed by a discussion on image hashing, a technique

used for efficient and effective image representation. Next, we present the idea of re-ranking, a

method designed to refine an initial retrieval list to improve the retrieval performance further.

Recognizing the importance of fast image search, we then review the balanced binary search tree,

a data structure designed for efficient data storage and retrieval. Further, the pooling operation in

deep convolutional neural networks is discussed, an essential process in deep networks that re-

duces dimensionality while preserving crucial information. Finally, we present an overview of

morphological operations and image processing techniques proficient in processing the images

based on their shapes and structural information.

10

2.1 Hopfield Neural Network

A Hopfield network is a specific type of recurrent neural network designed to model associative

memory. Associative memory is characterized by its ability to store and recall relationships be-

tween patterns stored within the network [28]–[30]. Due to this fundamental attribute, Hopfield

networks have been utilized in various computer vision tasks, including image retrieval [31], [32].

The goal of using Hopfield networks is to memorize 𝒫𝒫 different patterns 𝑋𝑋𝒾𝒾𝒦𝒦,𝒦𝒦 = 1, … ,𝒫𝒫 , 𝒾𝒾 =

1, … ,𝓃𝓃. Each pattern consists of 𝓃𝓃 components. The network is defined by a weight matrix, 𝒲𝒲,

an 𝓃𝓃 × 𝓃𝓃 matrix in which element 𝒲𝒲𝒾𝒾𝒾𝒾 equals the weight attached to the connection between node

𝒾𝒾 and node 𝒾𝒾 in the network. The weight matrix is computed as follows:

𝒲𝒲𝒾𝒾𝒾𝒾 =

1
𝒫𝒫
�𝑋𝑋𝒾𝒾𝒦𝒦𝑋𝑋𝒾𝒾𝒦𝒦
𝒫𝒫

𝐾𝐾=1

𝒾𝒾 = 1, … ,𝓃𝓃 , 𝒾𝒾 = 1, … ,𝓃𝓃 , 𝒲𝒲𝒾𝒾𝒾𝒾 = 𝒲𝒲𝒾𝒾𝒾𝒾

(2.1)

where 𝒫𝒫 is the number of patterns that we aim to store in the network. Given a Hopfield network

holding some patterns, the retrieval process begins by providing an initial pattern, denoted as 𝓆𝓆.

The network then retrieves the closest pattern to the initial pattern using the weight matrix, 𝒲𝒲.

The retrieval process starts by using q as the initial pattern of the network. The pattern at time 𝓉𝓉 +

1, is a function of the weight matrix multiplied by the pattern at time 𝓉𝓉 or 𝓋𝓋(𝓉𝓉), as

 𝓋𝓋𝒾𝒾(𝓉𝓉 + 1) = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 ��𝑊𝑊𝒾𝒾𝒾𝒾

𝒩𝒩

𝒾𝒾=1

𝓋𝓋𝒾𝒾(𝓉𝓉)� (2.2)

Here, 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 function is defined as

 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑚𝑚) = �1 𝑖𝑖𝑓𝑓 𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 0
−1 𝑖𝑖𝑓𝑓 𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡 < 0 (2.3)

Given 𝓋𝓋(0) = 𝓆𝓆, after all components of 𝓋𝓋(𝓉𝓉 + 1) have been calculated, 𝓋𝓋(𝓉𝓉 + 1) will be

entered into the network to obtain another pattern until the state becomes stable. The state 𝓋𝓋(𝓉𝓉) is

11

considered stable if the difference 𝓋𝓋(𝓉𝓉 + 1) −𝓋𝓋(𝓉𝓉) is less than a predetermined threshold. Upon

the completion of the stabilization process, 𝓋𝓋(𝓉𝓉) is the retrieved output.

Some image retrieval methods have been proposed that take advantage of the capabilities of

Hopfield networks. For instance, in [31], a Hopfield network is used for content-based image re-

trieval, where the network learns to identify and retrieve images that are most similar to the query

image. In [32], the Hopfield network is employed to create an initial retrieval list, and a re-ranking

technique is employed to improve the retrieval performance.

2.2 Image Hashing

Image hashing is a computational technique used in image processing to generate a concise and

unique representation, known as a hash code, for a given image. The fundamental aim of image

hashing is to formulate a compact, fixed-length binary code that embodies the visual attributes of

an image [33]–[37]. This process typically necessitates the extraction and transformation of fea-

tures of an image. These features, once transformed into a hash code, enable more efficient storage

of image data and also improve resource efficiency during any image processing process. There-

fore, by encapsulating the visual content of images into hash codes, image hashing can effectively

complement other techniques, thereby enhancing efficiency in applications such as image authen-

tication, duplication detection, and digital watermarking. For example, in [38], image hashing is

employed for image authentication, a process that seeks to verify the integrity and authenticity of

digital images. The work in [39] utilizes image hashing for copy detection to identify image du-

plication or plagiarism. Lastly, the work in [40] proposes a method incorporating image hashing

with image watermarking. This method involves transforming a digital signature into a binary hash

vector and embedding it within the transformed coefficients of the original image, thereby improv-

ing the robustness of the image authentication process.

2.3 Re-ranking

Re-ranking is a post-processing task of refining and initially ranked list of images obtained from

an image retrieval technique for a given query image, with the goal of enhancing retrieval

12

performance in an efficient manner. By employing various methods such as query expansion and

k-nearest neighbor algorithms, the re-ranking process focuses on re-arranging the retrieved images

to bring the ones most similar to the query image to the forefront of the list in order to improve the

overall retrieval performance.

One common technique utilized in re-ranking is query expansion [27], which aims to improve

the representational capacity of the feature vector of the query image by incorporating additional

information into it. This expanded query is then used to retrieve a new list of images, providing

more accurate results. This expansion is typically achieved by using techniques such as pseudo-

relevance feedback, which employs the top-ranked images from the initial retrieval as a basis for

expanding the query representation.

Another widely used approach in re-ranking is based on k-nearest neighbor algorithms [41]. In

this method, the similarity between the query image and the retrieved images is reassessed using

a suitable distance metric in order to identify the nearest neighbors. The re-ranking process reor-

ders the initial list by considering the similarities between the query and these nearest neighbors.

2.4 Balanced Binary Search Tree

One of the pillars of efficient search algorithms in computer science is the Binary Search Tree

(BST). A BST is a tree data structure in which each node contains a key and corresponding value.

A distinguishing characteristic of BSTs is that the key of any node is always larger than all keys

in its left subtree and smaller than all keys in its right subtree. This property allows BSTs to have

an average time complexity of 𝒪𝒪(log𝑛𝑛) for operations such as search [42]. However, in certain

scenarios, the absence of a height constraint can cause a BST to become skewed, which can dete-

riorate the time complexity of these operations to 𝒪𝒪(𝑛𝑛). To overcome the skewness issue of BST,

balanced binary search trees (BBST) can be used. BBSTs are a variant of BSTs that maintain

balance by ensuring that the height difference between the left and right subtrees of any node never

exceeds one [43]. This condition helps prevent the tree from becoming excessively skewed and

thus guarantees more predictable time cost and efficient operations. Figure 2.1 shows an illustra-

tive comparison, demonstrating that a search operation in a BBST would require fewer compari-

sons than in an unbalanced BST. For example, searching for the node marked as ‘7’ requires only

13

two comparisons in the BBST, whereas, in the unbalanced BST, the number of comparisons rises

to six.

Binary search trees have been used in some image processing applications. For example, in

[44], a method is proposed that utilizes Binary Search Trees for approximate nearest neighbour

searches in high-dimensional binary vectors. In [45], a geometrically motivated approach is intro-

duced that effectively compresses binary search trees for more efficient nearest-neighbor searches.

 (a) (b)

Figure 2.1: Unbalanced (a) vs. balanced (b) binary search trees.

2.5 Pooling Operation

A pooling operation can be considered as a mapping of a set of input feature maps (also called

channels) ℐ to a set of output feature maps 𝑂𝑂 given by

 𝑂𝑂 = 𝒫𝒫(ℐ)

(2.4)

where 𝒫𝒫 is the pooling operation. Let 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑛𝑛] represent the 𝑐𝑐-th two-dimensional channel of the

input feature tensor ℐ. In practice, the pooling operation consists of placing at the (𝑚𝑚,𝑛𝑛)-th posi-

tion of the 𝑐𝑐-th feature map, a window of size (𝑎𝑎 + 1, 𝑏𝑏 + 1) and performing

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = ℱ
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]

(2.5)

where 𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛) is a set of indices given by

14

 𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛) = �

𝑚𝑚,𝑛𝑛 𝑚𝑚 + 1,𝑛𝑛 ⋯ 𝑚𝑚 + 𝑎𝑎 − 1,𝑛𝑛
𝑚𝑚,𝑛𝑛 + 1 𝑚𝑚 + 1,𝑛𝑛 + 1 ⋯ 𝑚𝑚 + 𝑎𝑎 − 1,𝑛𝑛 + 1

⋮
 𝑚𝑚,𝑛𝑛 + 𝑏𝑏 − 1

⋮
𝑚𝑚 + 1,𝑛𝑛 + 𝑏𝑏 − 1 ⋮ ⋮

 ⋯ 𝑚𝑚 + 𝑎𝑎 − 1, 𝑛𝑛 + 𝑏𝑏 − 1

�

(2.6)

and ℱ is a pooling operation performed on the elements of 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑛𝑛] that fall within the window.

For example, using the summation operation as the pooling operation ℱ, Equation (2.5) becomes

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = � 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)

(2.7)

2.5.1 Average and Max Pooling

Average pooling and max pooling are two of the most common pooling operations used in convo-

lutional neural networks. Average pooling performs the pooling operation as:

 𝑜𝑜𝑐𝑐[𝑚𝑚, 𝑛𝑛] =
1
𝑎𝑎𝑏𝑏

� 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)

(2.8)

Average pooling diminishes critical information by smoothing the extreme values in the feature

maps, thus lowering the performance of a network [46].

The max pooling operation involves obtaining the maximum value for each pooling window

as follows:

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = 𝒎𝒎𝒎𝒎𝒎𝒎
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]

(2.9)

The shortcoming of max pooling is that it ignores everything but the maximum value. Therefore,

this method misses all crucial information except the most significant value, thus making it diffi-

cult to consider other informative features that exist in the input signal.

Without evaluating these methods in a network on a given dataset, it is difficult to predict

effectively whether max pooling or average pooling will yield higher performance [47]. For ex-

ample, max pooling is not robust to scenes with clutter, as it produces the maximum response at

clutter locations rather than object locations [48]. In such scenarios, average pooling is more

15

effective. The optimal choice depends on the image dataset, and one should apply both methods

to see which one provides better results. However, in addition to the greater computational require-

ments involved, investigating both pooling operations is not feasible for real-world applications,

as the data used in these applications change over time.

2.5.2 Other Pooling Methods

Some variants of average pooling and max pooling have been developed to address the abovemen-

tioned shortcomings. One variant of average pooling is Lp pooling [49]. In this pooling operation,

a weighted average of the pooling window is calculated as

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = �
1
𝑎𝑎𝑏𝑏

� (𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦])𝑝𝑝

𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛)

× 𝐺𝐺(𝑚𝑚,𝑦𝑦)�

1
𝑝𝑝

(2.10)

where 𝐺𝐺(𝑚𝑚, 𝑦𝑦) is a Gaussian kernel. Rank-based average pooling [50] is another variant of average

pooling that attempts to address the issue that standard average pooling decreases the importance

of extreme values. This method utilizes an average of the top 𝑡𝑡 highest values in the pooling win-

dow and calculates the output as follows:

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] =
1
𝑡𝑡

� 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛),𝑟𝑟(𝑥𝑥,𝑦𝑦)≤𝑡𝑡

(2.11)

where 𝑟𝑟(𝑥𝑥,𝑦𝑦) is the rank of the value located at (𝑚𝑚,𝑦𝑦) in the pooling window. However, this method

cannot be generalized effectively, as the value of 𝑡𝑡 has to be selected empirically based on the

database used.

Mixed pooling [51] is a combination of the average and max pooling operations defined by

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = 𝛼𝛼 𝐦𝐦𝐦𝐦𝐦𝐦
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] + (1 − 𝛼𝛼)

1
𝑎𝑎𝑏𝑏

� 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)

 (2.12)

where 𝛼𝛼 is an activation parameter, which for a given window is set randomly to a value of either

0 or 1, indicating the choice of using the max pooling or average pooling. The proposed method

changes the pooling regulation scheme in a stochastic manner. However, this method suffers from

16

possible overfitting, as randomness may cause unpredictable biased training. A method similar to

the mixed pooling is the stochastic pooling [47]. Stochastic pooling is less vulnerable to overfitting

because the activation parameter is chosen for each pooling layer based on a multinomial distribu-

tion. This method is superior to the mixed pooling and the 𝐿𝐿𝑝𝑝 pooling, but it suffers from a higher

computational complexity. Another variant of max pooling was introduced in [52] that applies

max pooling several times on the same pooling window but with different pooling window sizes.

The pooled features are then fused to form the final feature map. Even though this pooling method

improves the representational capacity of the generated feature maps, it adds many operations to

the pooling layer that significantly decrease the learning speed.

Another pooling operation is the spectral pooling proposed in [53], which has been shown to

outperform max pooling since it preserves more information for the same output dimensionality

by applying linear low-pass filtering. While spectral pooling offers a fast pooling operation, the

features learned by the network fail to preserve the image’s visual content effectively, as the re-

sulting feature maps are the output of a blurred version of the input.

2.6 Morphological Operations

Morphological operations are commonly employed in image processing [54]. These operations

can be used to develop methods to analyze the shape and form of the objects in images. In view of

these characteristics of morphological operations, they have been extensively used in conventional

schemes for image retrieval to extract features. They also have been used in convolutional neural

networks, but with the exception of work in [55], only in applications other than image retrieval.

For example, morphological operations have been utilized in CNN for the purpose of edge detec-

tion in [56] and for the enhancement of image super-resolution in [57]. The work in [55] is the

only work in which an image retrieval deep network has been designed in which morphological

operations have been utilized for automatic feature extraction. This network has used the basic

morphological operations of erosion and dilation. In view of the importance of morphological op-

erations, it would be worthwhile to explore the use of other morphological operations in the design

of deep networks for the task of image retrieval.

17

2.7 Evaluation Metric

Mean Average Precision (mAP) is a standard metric for evaluating the performance of image re-

trieval techniques. This metric takes into account the order of appearance of similar images in the

ranked list. The first step in calculating mAP is to compute the precision at rank 𝑘𝑘, denoted as

𝑃𝑃(𝑘𝑘). It is defined as:

 𝑃𝑃(𝑘𝑘) =
𝑇𝑇𝑃𝑃(𝑘𝑘)

𝑇𝑇𝑃𝑃(𝑘𝑘) + 𝐹𝐹𝑃𝑃(𝑘𝑘) (2.13)

where 𝑃𝑃(𝑘𝑘) is the precision until position 𝑘𝑘 in the retrieval ranked list for a given query. 𝑇𝑇𝑃𝑃(𝑘𝑘) is

number of true positives up to position 𝑘𝑘, indicating the number of similar images that have been

correctly retrieved among the top 𝑘𝑘 results. 𝐹𝐹𝑃𝑃(𝑘𝑘) is the number of false positives up to position

𝑘𝑘, indicating the number of dissimilar images that have been retrieved among the top 𝑘𝑘 results.

Building upon precision at rank 𝑘𝑘, average precision for a query 𝑞𝑞, denoted as 𝐴𝐴𝑃𝑃𝑞𝑞, is calcu-

lated as follows:

 𝐴𝐴𝑃𝑃𝑞𝑞 =
1
𝑅𝑅𝑞𝑞

�𝑃𝑃(𝑘𝑘) × 𝑆𝑆@𝑘𝑘
𝑛𝑛

𝑘𝑘=1

 (2.14)

where 𝑅𝑅𝑞𝑞 is the total number of relevant documents for query 𝑞𝑞. 𝑃𝑃(𝑘𝑘) is the precision at rank 𝑘𝑘

for query 𝑞𝑞. 𝑆𝑆@𝑘𝑘 is an indicator function that equals 1 if the item at rank 𝑘𝑘 is a similar image to

the query and 0 otherwise. 𝑛𝑛 is the total number of retrieved images for query 𝑞𝑞.

Finally, mAP is calculated as the mean of 𝐴𝐴𝑃𝑃𝑞𝑞 values across all queries as follows:

 𝑚𝑚𝐴𝐴𝑃𝑃 =
1
𝑄𝑄
�𝐴𝐴𝑃𝑃𝑞𝑞

𝑄𝑄

𝑞𝑞=1

 (2.15)

where 𝑄𝑄 is the total number of queries. The mAP score ranges from 0 to 1; a score close to 0

suggests that similar images are mostly ranked lower in the ranked list, whereas a score close to 1

indicates that similar images appear predominantly at the top of the list.

18

2.8 Summary

This chapter has reviewed two primary groups of methods for achieving high retrieval performance

in image retrieval: enhancing the representational capacity of the features in deep networks and

refining the initial retrieval list through re-ranking techniques. The review discusses the usage of

deep learning to obtain representative and discriminative features. Additionally, the chapter re-

views some processes that can be employed to enhance the representational capacity of deep net-

works. The chapter also reviews various pooling operations and highlights the importance of pool-

ing in the learning quality of the network. Regarding the re-ranking technique, the review reveals

the importance of computational efficiency. Since generating the initial retrieval list can be a re-

source-intensive task, utilizing high computationally expensive re-ranking techniques can result in

slow, resource-intensive operations, making them impractical for real-world applications. The re-

view highlights the importance of developing computationally efficient re-ranking approaches that

effectively improve retrieval performance.

19

3 Deep Image Retrieval Networks Using Residual

Blocks Focusing on Spatial Information

Chapter 3

Deep Image Retrieval Networks using

Residual Blocks Focusing on Spatial

Information

The performance of deep image retrieval networks significantly depends on the quality of the fea-

ture vectors that these networks generate. Deep convolutional neural networks are excellent at

feature extraction but may compromise a portion of the spatial information during the convolution

and pooling operations. This is because they are designed to be invariant to translations which

makes them excellent for classification tasks where the position of the object in the image is irrel-

evant to some extent. Such loss of spatial information can potentially impact the performance of a

20

deep image retrieval network, where retention of spatial information, with its ability to provide

cues about the location and interrelations of objects within an image, is crucial in obtaining highly

discriminative feature vectors. In this chapter, we develop two distinct residual blocks with a focus

on incorporating spatial information obtained from different scales and levels of abstraction in

order to enhance the representational capacity of deep convolutional neural networks for the task

of image retrieval. Two spatial information acquisition techniques, namely multi-scale spatial fea-

tures and multi-source spatial features, are developed to improve the representational capacity of

deep networks for image retrieval [58], [59].

3.1 Improving Deep Features for Image Retrieval using

Multi-Source Spatial Information

The representational quality of the generated feature vectors for images is essential for image re-

trieval models to achieve high performance. Spatial information is crucial in obtaining highly rep-

resentative feature vectors for image retrieval, and deep convolutional neural networks provide an

excellent framework to generate such features. Deep convolutional neural networks include spatial

information in the feature maps through convolutional operations. However, most available archi-

tectures cannot include adequate spatial details in the feature maps helpful for obtaining high-

performance image retrieval. Deep residual networks are deep networks capable of including use-

ful information through residual learning. This section presents a novel residual block to generate

feature maps by focusing on spatial information. The proposed residual block comprises three

modules: a spatial feature extraction module, a hierarchical feature extraction module, and a fea-

ture fusion module. The first module includes spatial information in the feature maps at different

levels of abstraction, while the second module includes spatial information using conventional

convolution hierarchy. The third model fuses the outputs of the first two modules to provide a very

rich set of feature maps.

Figure 3.1 shows the architecture of the proposed residual block. Figure 3.1(a) shows a high-

level view of the proposed residual block, which consists of two distinct feature extraction mod-

ules, one feature fusion module, and a skip connection. The figure shows that the input feature

tensor 𝒎𝒎 is passed through two parallel pathways, each of which extracts specific features from the

21

input tensor 𝒎𝒎. The upper pathway extracts spatial features, and the lower pathway extracts hier-

archical features. The feature maps 𝐕𝐕 and 𝐔𝐔 resulting from these two modules are given by

𝑽𝑽 = 𝒮𝒮(𝒎𝒎)

𝑼𝑼 = ℋ(𝒎𝒎)
(3.1)

where 𝒮𝒮(.) and ℋ(.) denote the processes of the spatial feature extraction module and the hierar-

chical feature extraction module, respectively.

 (a)

 (b)

 (c)

Figure 3.1: Architecture of (a) the proposed residual block, (b) the spatial feature extraction
module, and (c) the hierarchical feature extraction module. Conv. denotes the convolution. “C” is
a symbol representing concatenation and summation operations. Spatial FEM and Hierarchical
FEM denote “spatial feature extraction module” and “hierarchical feature extraction module,”
respectively.

22

Figure 3.1(b) shows the architecture of the spatial feature extraction module used to produce

feature tensor 𝑽𝑽. In this module, the input feature tensor 𝒎𝒎 undergoes a cascade of three sets of

convolutional operations followed by ReLU activation functions to produce feature tensors 𝒗𝒗𝑖𝑖 as

 𝒗𝒗𝑖𝑖 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝒞𝒞𝑖𝑖(𝒗𝒗𝑖𝑖−1)� 𝑖𝑖 = 1,2,3 and 𝒗𝒗0 = 𝒎𝒎 (3.2)

where 𝒞𝒞𝑖𝑖 represents the convolution operations employing 128 filters with a kernel size of 3×3.

The output feature tensor of this module is generated as

 𝑽𝑽 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝒞𝒞4 ��𝒗𝒗𝑖𝑖

3

𝑖𝑖=0

�� (3.3)

where 𝒞𝒞4 is a convolution operation with 128 filters, each with a size of 3×3.

In the hierarchical feature extraction module shown in Figure 3.1(c), the input feature tensor 𝒎𝒎

is fed into a sequence of convolution operations, each of which is followed by a ReLU activation

function. The output of this module is the feature tensor 𝑼𝑼, which is given by

 𝑼𝑼 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅 �𝒞𝒞𝑗𝑗�𝒖𝒖𝑗𝑗−1�� 𝑗𝑗 = 1,2,3 and 𝒖𝒖0 = 𝒎𝒎 (3.4)

where 𝒞𝒞𝑗𝑗 denotes the convolution operation with 128 filters with a kernel size of 3×3.

In the feature fusion module shown in Figure 3.1(a), the two feature tensors 𝑼𝑼 and 𝑽𝑽 are con-

catenated as

 𝑾𝑾 = 𝐶𝐶𝑂𝑂𝑁𝑁𝐶𝐶(𝑼𝑼,𝑽𝑽) (3.5)

where 𝐶𝐶𝑂𝑂𝑁𝑁𝐶𝐶(.) is the concatenation operation. The feature tensor 𝑾𝑾 is then passed through a

convolution operation, followed by the ReLU activation function, to produce the feature tensor 𝒁𝒁

as follows:

 𝒁𝒁 = ℱ(𝑼𝑼,𝑽𝑽) = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝒞𝒞(𝑾𝑾)� (3.6)

23

where ℱ (.) denotes the feature fusion process, and 𝒞𝒞 is the convolution operation with 128 filters

with a kernel size of 3×3. Next, the obtained feature tensor 𝒁𝒁 is added to the feature tensor 𝒎𝒎 input

to the block through a skip connection to produce the output of the block as

 𝒚𝒚 = 𝒎𝒎 + 𝒁𝒁 (3.7)

The output feature tensor 𝒚𝒚 of the residual block contains a rich set of features enhanced by

spatial features and hierarchical features that significantly enhance the representational capacity

of the network to improve the retrieval performance of the deep image retrieval network.

The deep network employing the proposed residual block is derived from standard AlexNet

[60]. Standard AlexNet contains five convolutional layers and three fully connected layers. The

first two convolutional layers are followed by max pooling layers, while the third and fourth con-

volutional layers are directly connected to the next convolutional layer. We have modified the

standard AlexNet to employ our proposed residual block and use it as a feature extractor. The

major modifications are listed below:

1. The feature tensors obtained from the fourth convolutional layer are fed to a sequence of

eight units of the proposed residual block.

2. Unlike the standard AlexNet, where the last convolutional layer is connected to a max

pooling layer, our modified version does not have a pooling layer after the last convolu-

tional layer to ensure the spatial information of the last convolutional layer remains intact.

The network employing the proposed residual block is trained as a classifier on the chosen

dataset. Depending on the dataset used for a given experiment, the size of the last fully connected

layer is changed to match the number of classes present in the dataset. This fully connected layer

later provides the probability for every image passing through the network through a SoftMax

activation function. Once the training is done, the top layers, including all the fully connected

layers and the SoftMax activation function, are removed, and the network is converted into a fea-

ture extractor. Feature extraction is performed by inputting a given image into the network and

capturing the network’s output as the corresponding feature vector for the image. Unlike most

existing deep image retrieval networks, we do not obtain feature vectors from one of the fully

connected layers since these layers distort spatial information. We refer to our proposed residual

24

block as a Multi-source Spatial Feature generating Residual block (MSFR) and the network using

the proposed MSFR as MSFRNet.

The network is trained for 200 epochs with a batch size of 32. The sizes of the datasets are

artificially expanded using the idea of data augmentation for training purposes to improve the

learning performance of the network. The utilized augmentation techniques are random rotation,

random zoom, and random brightness methods, using techniques in [61]. The network is optimized

using the stochastic gradient descent technique. The learning process starts with a learning rate of

0.01, and the decay is set to 5 × 10−6. The deep network employing the proposed residual block

is implemented using TensorFlow [62] and Keras [63]. An Intel Core i7 @3.2 GHz machine with

an Nvidia GeForce GTX 3060 GPU is used to train and test the proposed network. The metric used

is mean average precision (mAP), which is the mean value of the average precisions computed for

all query images [66].

3.2 Development of a Deep Image Retrieval Network using

Hierarchical and Multi-scale Spatial Features

Deep convolutional neural networks provide an excellent tool for obtaining highly representative

feature vectors from images which is a crucial aspect in improving the performance of image re-

trieval methods. Among various available deep architectures, residual networks have shown supe-

rior flexibility and performance over other architectures, as they can be designed to incorporate

valuable information into the feature vectors through residual learning [57]. Their superiority can

be attributed mainly to their ability to embed additional information into the feature vector through

residual learning, which can be accomplished by designing suitable operations within the block.

One operation is to include spatial information obtained at different scales and levels of abstraction

in the deep network. In this section, we develop a novel residual block to include spatial infor-

mation obtained at different abstraction levels and scales to enhance a deep network's ability to

generate very rich sets of features for image retrieval. The proposed residual block consists of three

modules: a hierarchical spatial feature extraction module focusing on spatial information at differ-

ent abstraction levels, a multi-scale feature extraction module that generates features at three dif-

ferent scales, and a feature fusion module.

25

Figure 3.2: Architecture of the proposed residual block. Conv., D.Conv. and P.Conv. represent the convolution,
dilated convolution and point-wise convolution operations, respectively.

Figure 3.3: Modified variant of AlexNet architecture to employ the proposed residual block. DW Pool. denotes
depth-wise pooling. Max pooling layers are not shown.

26

The design of the proposed residual block is shown in Figure 3.2. As the figure shows, the

proposed residual block consists of three modules: a hierarchical spatial feature extraction module,

a multi-scale feature extraction module, and a feature fusion module. The input feature tensor 𝑿𝑿 is

simultaneously fed into two feature extraction modules. In the hierarchical spatial feature extrac-

tion module, the input feature tensor 𝑿𝑿 undergoes a sequence of convolution operations, followed

by ReLU activation functions as

 𝒗𝒗𝑖𝑖 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝑊𝑊𝑖𝑖(𝒖𝒖𝑖𝑖)�, 𝑖𝑖 = 1, … ,5 and 𝒗𝒗0 = 𝑿𝑿 (3.8)

where 𝑊𝑊𝑖𝑖 represents the convolution operations, each of which has 64 filters with spatial support

of 3×3. The outcome of each of 𝒗𝒗𝑖𝑖 incorporates spatial information into the corresponding feature

tensor at different levels of abstraction. Concatenating these feature tensors, namely 𝒗𝒗𝑖𝑖, into fea-

ture tensor 𝒛𝒛 provides rich feature sets enriched by strong spatial information. The spatial infor-

mation improves the capability of the residual block to generate a rich set of feature vectors to

enhance retrieval performance.

The second module, namely the multi-scale feature extraction module, is designed to extract

features based on different scales, as the module contains dilated convolution operations performed

on different sizes of receptive fields. This process broadens the view of the convolution operation

on the input feature map to obtain different spatial information. In this module, the input feature

tensor 𝑿𝑿 undergoes three parallel coevolution operations as follows:

𝒖𝒖1 = 𝑊𝑊6(𝑿𝑿)

𝒖𝒖2 = 𝑊𝑊7(𝑿𝑿)

𝒖𝒖3 = 𝑊𝑊8(𝑿𝑿)

(3.9)

where 𝑊𝑊6 is the convolution operation employing 64 filters with a kernel size of 3×3, and 𝑊𝑊7 and

𝑊𝑊8 are dilated convolution operations, each with 64 filters with kernel size 3×3 and a dilation rate

of 2 and 3, respectively.

27

However, dilated convolution operations have a gridding artifact that degrades their perfor-

mance [57],[64]. The negative effect of the artifact is mitigated by adding the feature tensor 𝒖𝒖1,

which is not generated employing a dilated convolution operation, to the other two feature tensors

obtained from dilated convolution operations (namely, 𝒖𝒖2 and 𝒖𝒖3) to produce feature tensor 𝒖𝒖4 as

 𝒖𝒖4 = 𝑊𝑊6(𝑿𝑿)���
𝒖𝒖1

+ 𝑊𝑊7(𝑿𝑿)���
𝒖𝒖2

+ 𝑊𝑊8(𝑿𝑿)���
𝒖𝒖3

 (3.10)

Then, the feature tensor 𝒖𝒖7 is generated by fusing the feature tensors obtained from the application

of the ReLU activation function on 𝒖𝒖1 and 𝒖𝒖4 as

 𝒖𝒖7 = 𝐶𝐶𝑜𝑜𝑛𝑛𝑐𝑐 �𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅(𝒖𝒖1)�������
𝒖𝒖5

+ 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅(𝒖𝒖4)�������
𝒖𝒖6

� (3.11)

where 𝐶𝐶𝑜𝑜𝑛𝑛𝑐𝑐(.) is the concatenation operation. The feature tensor 𝒖𝒖7 is then passed through a con-

volution operation followed by a ReLU activation function to produce feature tensor 𝒔𝒔.

In the feature fusion module, the feature tensors 𝒔𝒔 and 𝒛𝒛 obtained from the two feature extrac-

tion modules are concatenated. Then, the resulting feature maps undergo a convolution operation

and a ReLU function to generate a rich set of residual feature maps of the block as

 𝒓𝒓 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅 �𝑊𝑊9�𝐶𝐶𝑜𝑜𝑛𝑛𝑐𝑐(𝒔𝒔, 𝒛𝒛)�� (3.12)

where the operation 𝑊𝑊9 represents a convolution operation using 64 filters with a kernel of size

3×3. The residual feature tensor 𝒓𝒓 is added to the feature tensor 𝑿𝑿 input into the block to produce

the block’s output 𝒀𝒀 as

 𝒀𝒀 = 𝑿𝑿 + 𝒓𝒓 (3.13)

28

We refer to the proposed residual block as the Hierarchical and Multi-scale Spatial feature

generating Residual block (HMSR), and the network employing the proposed block is called

HMSRNet.

The network architecture of the proposed deep image retrieval network is shown in Figure 3.3.

The backbone of the deep image retrieval network employing the proposed residua block is

AlexNet [60], with some modifications. The original architecture of the AlexNet consists of five

convolutional layers and three fully connected layers. The first two layers contain a sequence of

two sets of convolution operations followed by a ReLU activation function. The following (third

and fourth) convolutional layers are connected to their succeeding convolutional layers without

interleaving by any activation functions. In the original AlexNet, the following (fifth) layer con-

tains a convolution layer and a max pooling layer. However, in our proposed HMSRNet, the output

of the fourth convolutional layer is cascaded with six units of the proposed residual block, namely

HMSR, followed by the fifth convolution layer, which is directly connected to the first layer of a

group of three fully connected layers. A SoftMax activation function follows the fully connected

layers to train the model as an image classifier.

Once the network is trained, the fully connected layers and the SoftMax activation function are

removed and replaced by the feature extraction module highlighted in Figure 3.3 without further

refining the weights. The feature extraction module contains a depth-wise convolution operation

and a flattening layer. The output of the feature extraction module for a given image is the feature

vector of that image, which is used for retrieval.

The network is trained for up to 200 epochs. The best-performing network configuration is then

chosen and employed for retrieval tasks. The size of the batch utilized during the training process

is 64. Optimization is carried out using the stochastic gradient descent technique. The learning

process starts with a learning rate of 0.01, and it is decayed by the learning rate divided by the

number of epochs. The proposed HMSRNet is trained and tested on an Intel Core i7 @3.2 GHz

machine with an Nvidia GeForce GTX 3060-12GB GPU. The implementation is done using the

Keras library [63] and the TensorFlow package [62].

29

Table 3.1: Comparison between various image retrieval networks.

Network Backbone
Dataset

FLOPs*
Cifar10 Cinic10 Cifar100 Animals

CSCFM [65] ResNeXt-50 0.8351 0.7143 0.8351 0.6087 >15.3

BIMCNN [66] VGG16 0.8382 0.7343 0.8295 ̶ >15.3

DELG [67] ResNet101 0.8334 0.7482 0.8211 0.6351 >7.6

MRDL [68] VGG19 0.7782 0.7336 0.7556 0.6036 >19.6

ADFSDH [69] VGG16+VGG19 0.7933 0.7372 0.7743 ̶ >27.2

UDPH [70] VGG16 0.7754 0.5990 0.7598 0.4235 >15.3

SIRS-IR [71] Inception-ResNet-V2 0.6945 0.7343 0.6627 0.5832 >17.0

MSFRNet [58] AlexNet 0.8431 0.7487 0.8348 0.6346 9.3
BOLD, ITALIC, and underlined fonts indicate the best, second-best, and third-best performance, respectively.
* FLOPs refer to floating point operations on a scale of billions.

3.3 Experimental Results

3.3.1 Experimental Results of MSFRNet

Table 3.1 compares the results obtained from the proposed MSFRNet [58] with those obtained

from state-of-the-art deep image retrieval networks. As the table shows, our proposed MSFRNet

demonstrates the highest or second-highest accuracy for all the datasets, even though it uses

AlexNet as a relatively lightweight deep network, whereas other methods utilize complex and

heavy networks. The performance of the proposed MSFRNet demonstrates that the proposed re-

sidual block improves the performance of AlexNet such that it is comparable with the performance

of other (much more complex) networks.

30

Table 3.2: Comparison of the results obtained by the network depending on whether the proposed
residual block is used.

Dataset With Without Reduction

Cifar100 0.8348 0.7918 5.4%

Cinic10 0.7487 0.7058 6.0%

Animals 0.6346 0.6047 15.2%

Figure 3.4: Design of the proposed residual block using a serial scheme.

Figure 3.5: Learning curves for two design schemes of the proposed residual block on Animals dataset.

Table 3.3: mAP values for the serial configuration of the residual block and the proposed residual block.

Dataset Proposed Serial Scheme % Reduction

Cifar100 0.8348 0.7445 12.1

Cinic10 0.7487 0.6501 15.2

Animals 0.6346 0.5565 14.0

31

We now investigate the effectiveness of the proposed residual block by excluding it from the

MSFRNet, thus degenerating it to the standard AlexNet. The results are shown in Table 3.2. The

table clearly shows that the modified AlexNet employing the proposed residual block performs

significantly better than the standard AlexNet for all datasets.

We now study the design of the proposed residual block. As shown in Figure 3.1(a), the pro-

posed residual block contains two modules in a parallel mode. Unlike a serial scheme, this parallel

arrangement enables the modules to extract features based on their design without mutual distor-

tion if the feature tensor 𝒎𝒎 is input into two modules simultaneously. We carry out an experiment

to show the superiority of our proposed method over the serial scheme. The design of the serial

configuration of the proposed residual block model is shown in Figure 3.4. The serial residual

Figure 3.6: Learning curves for the proposed residual block and its variants on Animals dataset.

Table 3.4: mAP values for the proposed block and its variants.

Modules Variant 1 Variant 2 Variant 3 Proposed

Hierarchical Feature Extraction - 🗸🗸 - 🗸🗸

Spatial Feature Extraction 🗸🗸 - - 🗸🗸

mAP (Cifar100) 0.8045 0.7761 0.7918 0.8348

mAP (Cinic10) 0.7299 0.7087 0.7058 0.7487

mAP (Animals) 0.6243 0.6032 0.6047 0.6346
 The values in the BOLD fonts indicate the best.

32

block has a major change compared to the proposed residual block. In the block shown in Figure

3.1(a), both modules use the input feature tensor 𝒎𝒎. Differently, in the serial residual block shown

in Figure 3.4, the input of the hierarchical feature extraction module is the feature tensor 𝑽𝑽 which

is provided by the spatial feature extraction module. The learning curves are shown in Figure 3.5.

As Figure 3.5 shows, the network employing the serial residual block has significantly lower learn-

ing quality than the proposed residual block. Table 3.3 shows the mAP of the networks using the

proposed residual block and using the serial configuration of the block. The table clearly shows

that the parallel configuration (the proposed method) is superior to the serial configuration in terms

of mAP values.

We now investigate the impact of each of the two modules of the proposed residual block—

namely, the hierarchical feature extraction module and edge feature extraction module—on the

network performance individually. Three variants of the proposed residual block are formed; Var-

iant 1, Variant 2, and Variant 3. Each of these variants is formed by individually employing either

module or removing the entire residual block (Variant 3). The learning curves for the proposed

deep image retrieval network with its variants are shown in Figure 3.6. As seen from the figure,

the learning curve for the network employing the proposed residual block shows a consistent, fa-

vorable learning curve. Furthermore, the curves are close for those variants when only a hierar-

chical feature extraction module is used and no residual block is employed. The slight improve-

ment in the block with only a hierarchical feature extraction module is because of the extra con-

volution operations added to the network by the module. However, the network employing the

residual block with only the spatial feature extraction module shows an apparent improvement

gain compared to Variants 2 and 3. Results demonstrate that spatial information is the key to im-

proving the retrieval performance of a deep image retrieval network. A quantitative comparison

between the proposed residual block and its variants is shown in Table 3.4. The table confirms the

proposed network’s superior retrieval performance for all the datasets.

3.3.2 Experimental Results of HMSRNet

The performance of the proposed network is compared with that of several other conventional and

state-of-the-art deep image retrieval networks. The results are given in Table 3.5. The table shows

that HMSRNet [59] performs best in three of the four datasets while maintaining much lower

33

complexity than the others. A noteworthy observation is that the proposed HMSR residual block

allows a comparatively lightweight network like AlexNet to be comparable or superior to methods

that employ much more complex networks.

We now compare HMSRNet with our previously presented work, namely MSFRNet. Table

3.5 clearly demonstrates the significant superiority of HMSRNet. A key reason for this superiority

is the utilization of dilated convolutional operations in the multi-scale module used in the proposed

residual block. Unlike traditional convolutional operations, in which their receptive fields are lim-

ited to only capture information from immediate, neighboring pixels, utilizing dilated convolution

operations in HMSRNet enables it to generate a richer set of features, thereby significantly en-

hancing the retrieval performance.

Table 3.5: Comparison between various image retrieval networks in terms of mAP.

Network Backbone
Dataset

FLOPs*
Cifar10 Cinic10 Cifar100 Animals

CSCFM [65] ResNeXt-50 0.8351 0.7143 0.8351 0.6087 >15.3

BIMCNN [66] VGG16 0.8382 0.7343 0.8295 ̶ >15.3

DELG [67] ResNet101 0.8334 0.7482 0.8211 0.6351 >7.6

MRDL [68] VGG19 0.7782 0.7336 0.7556 0.6036 >19.6

ADFSDH [69] VGG16+VGG19 0.7933 0.7372 0.7743 ̶ >27.2

UDPH [70] VGG16 0.7754 0.5990 0.7598 0.4235 >15.3

SIRS-IR [71] Inception-ResNet-V2 0.6945 0.7343 0.6627 0.5832 >17.0

MSFRNet [58] AlexNet 0.8431 0.7487 0.8348 0.6346 9.3

HMSRNet [59] AlexNet 0.8543 0.7390 0.8507 0.6405 9.3
BOLD, ITALIC, and underlined fonts indicate the best, second-best, and third-best performance, respectively.
*FLOPs refer to floating point operations, shown here in billions (GFLOPs).

34

Figure 3.7: Precision-recall curves obtained from the proposed HMSRNet on Cifar10, Cinic10, and Animals datasets.

35

To further investigate the effectiveness of the proposed residual block, we exclude the residual

block and re-train the network before observing the performance. The results are summarized in

Table 3.6. As the table indicates, removing the proposed residual block from the retrieval network

reduces the retrieval performance by at least 2.51% for Cinic10. The performance degradation is

more severe for the network tested without the residual block on Cifar10 and Animals datasets,

which exhibited performance reductions of 6.46% and 5.53%, respectively.

Figure 3.7 presents examples of precision-recall curves generated based on the testing results

of our proposed retrieval network and several other networks on three datasets. As the figure

shows, HMSRNet demonstrates better retrieval performance than the other methods for all da-

tasets.

We now study the impact of two modules of the proposed residual block—i.e., the hierarchical

spatial feature extraction module and multi-scale feature extraction module—on the performance

by forming three distinct variants. Variant 1 is formed by including only the spatial feature

Table 3.6: Performance comparison of the proposed method.

Dataset With Without % Reduction

Cifar10 0.8643 0.7718 6.46

Cinic10 0.7382 0.6701 2.51

Animals 0.6365 0.6031 5.53

Table 3.7: Results of ablation study.

Modules Variant 1 Variant 2 Variant 3 HMSRNet

Hierarchical Spatial Feature Extraction 🗸🗸 - - 🗸🗸

Multi-scale Feature Extraction - 🗸🗸 - 🗸🗸

mAP (Cifar10) 0.8145 0.7801 0.7718 0.8643

mAP (Cinic10) 0.7283 0.6984 0.6701 0.7382

mAP (Animals) 0.6123 0.5967 0.6031 0.6365
 The values in the red fonts indicate the best.

36

extraction module. Variant 2 includes only the multi-scale feature module. Finally, Variant 3 is

formed by removing the entire residual block from the network. The results using the proposed

residual block and its three variants are summarized in Table 3.7. it is seen from the table that

removing either module from the network significantly degrades the retrieval performance. The

degradation in performance intensifies when the spatial feature extraction module is removed from

the network (Variant 2). This outcome is not surprising, as spatial information is the most im-

portant information for locating the objects in the images in order to match the content of the

images. As this module incorporates spatial information from different levels of abstraction in the

feature maps, excluding such information significantly reduces the representational capacity of the

feature vectors generated by the block. Meanwhile, the multi-scale feature extraction module pro-

duces more general features from the input feature maps than the others. Variant 3 is the worst-

performing variant, as this network relies on the non-residual network; the feature maps produced

by such a network have less spatial information than networks employing the proposed residual

block.

Figure 3.8 shows the learning curves for the above-discussed variants of the proposed residual

blocks for 200 epochs on the Animals dataset. The learning quality of the network employing the

proposed residual block is higher than that of the network employing either module individually.

Therefore, the proposed block is able to enhance the representational capacity of the feature vec-

tors.

Figure 3.8: Learning curves of the proposed network and the variants on Animals dataset.

37

3.4 Summary

In this chapter, we have proposed two novel techniques aiming to guide deep networks to generate

rich feature sets by extracting spatial information. Specifically, we have used two distinct tech-

niques to extract spatial information, namely, the multi-source spatial information extraction fea-

ture technique and the multi-scale feature extraction technique. We have developed two deep con-

volutional neural networks capable of extracting features with a focus on spatial information. The

extensive experimental results have confirmed that the new designs of residual blocks focusing on

spatial information result in high-performance, low-complexity deep networks for the task of im-

age retrieval.

38

Chapter 4

Deep Image Retrieval Network with

Guided Feature Generation
4 Deep Image Retrieval Network with Guided Feature

Generation
Textural, structural, and edge information is very important for differentiating images. As such, a

network designed to capture these specific attributes could significantly enhance the effectiveness

of image retrieval tasks. In [55], we have shown that the textural and structural information derived

from images significantly contributes to the generation of highly discriminative features. The work

presented in [55] highlights the potential of morphological operations, which are capable of

providing such information effectively to a deep network. Building upon this foundational work,

this chapter proposes a novel residual block that utilizes morphological operations and a new pool-

ing operation that emphasizes edge features. The aim is to design a deep convolutional neural

network capable of generating rich sets of features for image retrieval tasks [72].

39

4.1 Max-m-Min Pooling

Let us define a pooling operation, referred to as maximum minus minimum pooling (Max-m-Min),

as

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = 𝐦𝐦𝐦𝐦𝐦𝐦
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] − 𝐦𝐦𝐦𝐦𝐦𝐦

𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛)

𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] (4.1)

In order to illustrate this pooling operation, for the sake of simplicity, we consider a pooling win-

dow of size of 2 × 2 with its set of indices given by 𝒩𝒩2×2
(𝑚𝑚,𝑛𝑛). The output signal 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] obtained

by applying Max-m-Min pooling operation to the input signal 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑛𝑛] is

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = 𝐦𝐦𝐦𝐦𝐦𝐦
𝑥𝑥,𝑦𝑦∈𝒩𝒩2×2

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] − 𝐦𝐦𝐦𝐦𝐦𝐦

𝑥𝑥,𝑦𝑦∈𝒩𝒩2×2
(𝑚𝑚,𝑛𝑛)

𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] (4.2)

Let the values of the features in the window corresponding to these indices be 𝑖𝑖𝑐𝑐 [𝑚𝑚, 𝑛𝑛] =

{𝑎𝑎1,𝑎𝑎2, 𝑎𝑎3,𝑎𝑎4}, as shown in Figure 4.1 (a). The minimum (𝑚𝑚𝑖𝑖𝑛𝑛) and maximum (𝑚𝑚𝑎𝑎𝑚𝑚) values in

the pooling window required to calculate 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] can be found in four possible locations, as

shown in Figure 4.1 (b)-(e). Taking Figure 4.1(b) as an example (in which the maximum value is

𝑎𝑎1), the three possibilities presented below arise:

 𝑜𝑜𝑐𝑐[𝑚𝑚, 𝑛𝑛] = �
 𝐺𝐺1 = 𝑎𝑎1 − 𝑎𝑎2 𝑖𝑖𝑓𝑓 𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑎𝑎2
𝐺𝐺2 = 𝑎𝑎1 − 𝑎𝑎3 𝑖𝑖𝑓𝑓 𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑎𝑎3
𝐺𝐺3 = 𝑎𝑎1 − 𝑎𝑎4 𝑖𝑖𝑓𝑓 𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑎𝑎4

 (4.3)

where 𝐺𝐺1, 𝐺𝐺2, and 𝐺𝐺3 represent gradient approximations of two adjacent pixels located at indices

represented by 𝒩𝒩2×2
(𝑚𝑚,𝑛𝑛). The above discussion can be easily generalized to the other three scenarios

depicted in Figure 4.1(c)-(e). Note that a pooling window in an image represents a very small

neighborhood of the image in which, generally a pair of adjacent pixels does not have a significant

difference in their pixel values unless the pixel (𝑚𝑚,𝑛𝑛) is an edge pixel. Therefore, after applying

the proposed Max-m-Min pooling operation, most of the pixel values in the resulting image will

40

have very small values, and only the pixel positions on the image edge will have large pixel values.

Therefore, by applying the proposed pooling operation, one can expect the resulting image to rep-

resent an edge map of the image. It is because of this reason; one can also expect to improve the

representational capacity of the network if the proposed pooling operation is utilized.

(a)

(b) 𝑚𝑚𝑎𝑎𝑚𝑚=𝑎𝑎1 (c) 𝑚𝑚𝑎𝑎𝑚𝑚=𝑎𝑎2

(d) 𝑚𝑚𝑎𝑎𝑚𝑚=𝑎𝑎3 (e) 𝑚𝑚𝑎𝑎𝑚𝑚=𝑎𝑎4

Figure 4.1: (a) An example illustrating a pooling window of size 2×2. (b)-(e) represent four templates
of the possible locations of minimum and maximum values required for Max-m-Min pooling on this
window.

41

Figure 4.2: Detailed architecture of the proposed residual block. LReLU, Conv., and PConv. are Leaky-ReLU, convolution, and

pointwise convolution, respectively. The symbols ‘+’ and ‘-’ represent tensor addition and tensor subtraction, respectively. The

symbol ‘c’ represents the concatenation operation.

42

4.2 Proposed Residual Block

Figure 4.2 shows the architecture of the proposed residual block, which consists of three modules:

an edge feature extraction module, a morphological feature extraction module, and a feature fusion

module. In the edge feature extraction module, the feature tensor 𝑿𝑿 input into the proposed residual

block undergoes an edge feature extraction operation to obtain feature maps that consist of high-

frequency components. The edge feature extraction module consists of two groups of convolution

operations, which are interleaved with one Max-m-Min pooling layer and are encapsulated by two

Leaky-ReLU (LReLU) activation functions. Specifically, the feature tensor obtained from the

Max-m-Min pooling operation (i.e., 𝒖𝒖1) is calculated as

 𝒖𝒖1 =Max-m-Min�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶�𝐿𝐿𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅(𝑿𝑿)�� (4.4)

where 𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶 is a convolution operation with 64 filters and a kernel size of 3×3. Then, 𝒖𝒖1 undergoes

two convolution operations, followed by LReLU activation to obtain the feature tensor 𝒖𝒖2 as

 𝒖𝒖2 = 𝐿𝐿𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅 �𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶(𝒖𝒖1)�� (4.5)

Finally, the residual feature tensors 𝒖𝒖1 and 𝒖𝒖2 are added to the input tensor 𝑿𝑿 to produce the

edge feature extraction module’s output 𝒖𝒖3 given by

 𝒖𝒖3 = 𝒖𝒖1 + 𝒖𝒖2 + 𝑿𝑿 (4.6)

In the edge feature extraction module, feature maps are learned solely through conventional

convolution operations with the assistance of the proposed Max-m-Min pooling operation. Simi-

larly, in the morphological feature extraction module, feature vectors are learned through convo-

lution operations but with the guidance of nonlinear morphological operations. This guidance pro-

vides the network with rich textural and structural information; thus, the network using this resid-

ual block would learn a richer set of features.

43

In the morphological feature extraction module, the feature tensor 𝑿𝑿 first undergoes convolu-

tion operation to produce feature map 𝒗𝒗𝟏𝟏 as

 𝒗𝒗1 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶(𝑿𝑿)� (4.7)

The feature tensor 𝒗𝒗1 is then processed in parallel through two branches that consist of morpho-

logical operations to produce morphologically guided features 𝒎𝒎1 and 𝒎𝒎3. Specifically, let 𝒗𝒗1𝑘𝑘

represent the kth channel of the tensor 𝒗𝒗1, respectively. In the upper branch, the kth channel of the

feature tensor 𝒏𝒏1 resulting from the dilation operation is given by

 𝒏𝒏1𝑘𝑘[𝑚𝑚,𝑛𝑛] = �𝒗𝒗1𝑘𝑘 ⊕ 𝑏𝑏�[𝑚𝑚,𝑛𝑛] = max
(𝑥𝑥,𝑦𝑦)𝜖𝜖𝑩𝑩

𝒗𝒗1𝑘𝑘[𝑚𝑚 + 𝑚𝑚,𝑛𝑛 + 𝑦𝑦] (4.8)

where 𝑏𝑏 is the structuring element defined over a neighborhood 𝑩𝑩 of size 2×2 around [𝑚𝑚,𝑛𝑛] and

⊕ is the dilation operation. The kth channel of the feature tensor 𝒏𝒏2 resulting from the erosion

operation over the same neighborhood 𝑩𝑩 is obtained as

 𝒏𝒏2𝑘𝑘[𝑚𝑚, 𝑛𝑛] = �𝒗𝒗1𝑘𝑘 ⊝ 𝑏𝑏�[𝑚𝑚,𝑛𝑛] = min
(𝑚𝑚,𝑛𝑛)𝜖𝜖𝑩𝑩

𝒗𝒗1𝑘𝑘[𝑚𝑚 + 𝑚𝑚,𝑛𝑛 + 𝑦𝑦] (4.9)

where 𝒗𝒗1𝑘𝑘[𝑚𝑚,𝑛𝑛] is the two-dimensional signal representing the kth channel of tensor 𝒗𝒗1 at pixel

position [𝑚𝑚,𝑛𝑛] and ⊝ is the erosion operation. The kth channel of the output feature tensor 𝒎𝒎1 is

the difference between the feature tensors 𝒏𝒏1 and 𝒏𝒏2 (so-called morphological gradient operation),

and is given by

 𝒎𝒎𝟏𝟏
𝑘𝑘[𝑚𝑚,𝑛𝑛] = 𝒏𝒏1𝑘𝑘[𝑚𝑚,𝑛𝑛] − 𝒏𝒏2𝑘𝑘[𝑚𝑚,𝑛𝑛] (4.10)

To learn the features of 𝒎𝒎1, a convolution operation followed by a ReLU activation function

is carried out on the feature tensor 𝒎𝒎1, yielding 𝒗𝒗2 given by

44

 𝒗𝒗2 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶(𝒎𝒎1)�. (4.11)

The feature tensor 𝒗𝒗2 is then added to the input feature tensor 𝒗𝒗1 to obtain the first set of residual

feature maps 𝒗𝒗3 as

 𝒗𝒗3 = 𝒗𝒗1 + 𝒗𝒗2 (4.12)

In the lower branch, the feature tensor 𝑚𝑚3 is obtained by letting the feature tensor 𝒗𝒗1 to un-

dergo the erosion operation followed by the dilation operation. The tensor 𝒎𝒎3 is given by

 𝒎𝒎3
𝑘𝑘[𝑚𝑚, 𝑛𝑛] = �𝒎𝒎2

𝑘𝑘 ⊕ 𝑏𝑏�[𝑚𝑚,𝑛𝑛] = max
(𝑥𝑥,𝑦𝑦)𝜖𝜖𝑩𝑩

𝒎𝒎2
𝑘𝑘[𝑚𝑚 + 𝑚𝑚,𝑛𝑛 + 𝑦𝑦] (4.13)

where 𝒎𝒎2 is given by

 𝒎𝒎2
𝑘𝑘[𝑚𝑚,𝑛𝑛] = �𝒗𝒗1𝑘𝑘 ⊝ 𝑏𝑏�[𝑚𝑚,𝑛𝑛] = min

(𝑥𝑥,𝑦𝑦)𝜖𝜖𝑩𝑩
𝒗𝒗1𝑘𝑘[𝑚𝑚 + 𝑚𝑚,𝑛𝑛 + 𝑦𝑦) (4.14)

The tensor feature 𝒎𝒎3 is passed through a convolution operation and a ReLU activation to yield

𝒗𝒗4 as

 𝒗𝒗4 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶(𝒎𝒎3)� (4.15)

The feature tensor 𝒗𝒗4 is then added to the input feature tensor 𝒗𝒗 to generate the output feature

tensor 𝒗𝒗5 of the lower branch as

 𝒗𝒗5 = 𝒗𝒗1 + 𝒗𝒗4 (4.16)

The feature tensors 𝒗𝒗3 and 𝒗𝒗5 obtained from the two morphological branches are concatenatively

fused to obtain the final output 𝒗𝒗6 of the morphological feature extraction module as

45

 𝒗𝒗6 = 𝐶𝐶𝑂𝑂𝑁𝑁𝐶𝐶(𝒗𝒗3,𝒗𝒗5) (4.17)

where CONC is the concatenation operation. The feature tensor 𝒗𝒗6 is enriched by the strong tex-

tural and structural information provided by the morphological operations.

In the feature fusion module, the feature tensor 𝒖𝒖3 obtained from the edge feature extraction

module and that obtained from the morphological feature extraction module, namely, 𝒗𝒗6, are con-

catenated, resulting in the feature tensor 𝒔𝒔 given by

 𝒔𝒔 = 𝐶𝐶𝑂𝑂𝑁𝑁𝐶𝐶(𝒖𝒖3,𝒗𝒗6) (4.18)

The feature tensor 𝒔𝒔 then undergoes a pointwise convolution operation, followed by ReLU, to pro-

duce the residual feature tensor 𝒓𝒓 as

 𝒓𝒓 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�PConv(𝒔𝒔)� (4.19)

where PConv represents the pointwise convolution operation. Finally, the residual feature tensor

𝒓𝒓 is added to the input feature tensor 𝐗𝐗 to produce the output of the residual block, 𝒀𝒀, as

 𝒀𝒀 = 𝒓𝒓 + 𝑿𝑿 (4.20)

The features produced by the residual block are greatly enhanced by the feature extraction

capability of the edge feature extraction module employing the proposed pooling operation as well

as by the capability of the morphological feature extraction module in extracting textural and struc-

tural information guided by the morphological operations. The richness of the feature tensor 𝒀𝒀

enables the network to learn highly representational and discriminative feature maps that are crit-

ical for high-performance image retrieval.

46

Figure 4.3: Architecture of the proposed image retrieval network. Conv., PL1, PL2, and DW Pool., respectively,
denote the feature extraction module, convolution operation, first pooling layer, second pooling layer, and depth-wise
pooling layer.

47

Figure 4.3 shows the overall architecture of the proposed deep image retrieval network referred

to as MoFNet. The input to the network is images of size 224×224 denoted as 𝒳𝒳. Each image 𝒳𝒳

is passed through the first convolutional layer of the architecture, which consists of 64 filters, each

of kernel size 3×3, followed by a ReLU activation function. Then, the resulting feature maps go

through a sequence of five residual blocks, proposed in Section 4.2. The feature maps resulting

from the sequence of residual blocks are passed through a convolution layer consisting of 64 filters,

each of size 3×3, followed by a ReLU activation function. Next, the feature maps obtained from

this convolutional layer are fed to the first Max-m-Min pooling layer denoted by PL1. The feature

maps resulting from PL1 go through a sequence of two convolution operations, each followed by

a ReLU activation function, and then the resulting feature maps are passed through another Max-

m-Min pooling layer denoted by PL2.

The network architecture described so far is used for training as well as for testing. For the

purpose of training, the network described so far is supplemented by a classifier module, as shown

in Figure 4.3. The output of the second pooling layer, PL2, is fed to the classifier module, which

consists of a flattening layer, two dense layers, and a SoftMax layer. The output of the SoftMax

layer is a probability vector denoted by 𝑌𝑌𝑃𝑃 for each class of the image dataset, where each element

of the output vector represents the probability of the input belonging to that class.

Once the network has been trained, that classifier module is replaced by the module marked as

the feature representation module shown in Figure 4.3. During the testing phase, the output of the

pooling layer, the feature representation module, uses the output of the second pooling layer, PL2,

followed by a depth-wise pooling layer to form a feature vector. The feature vector is then en-

hanced using the principal component analysis to obtain the final feature vector 𝑌𝑌𝐹𝐹 of size 512

representing the features of the input image 𝒳𝒳.

We refer to the proposed residual block as Morphological Feature-generating residual block

(MoF) and the image retrieval network architecture employing the proposed MoF as MoFNet.

For training and testing the proposed retrieval network, six datasets Cifar10 [73], Cinic10 [74],

Animals [75], MS-COCO [76], ImageNet [77], and YFCC100M [78] are used. The first three da-

tasets are divided into training and testing sets with a ratio of 4:1. The images in the training set

undergo augmentation by random rotation and distortion of the aspect ratio. From each category in

48

the testing set, five images are randomly selected and used as a set of query images, and the rest of

the test images form a set, called search set, from which output images are selected corresponding

to a given query image. The COCO dataset is split into a training set consisting of 118K images, a

validation set with 5K images, and a test set with 41K images. For this dataset, following the protocol

similar to that described in [79], we use the validation set as the query set and the images in the test

set as the search set. For the ImageNet, following [79], [80], we randomly select 100 classes, use

100 images from each of these classes are used as the search set, use all the images in the validation

set as the query set, and the rest of the images in these classes is used as the training set. For the

YFCC dataset, we randomly select 100 classes. Since YFCC is very unbalanced, the selected classes

are checked to ensure that the number of images is evenly distributed in each of the selected classes.

From each class, we select 500 images as the query set and split the remaining images into search

and training sets with a ratio of 4:1. Since YFCC contains a massive number of images, the proposed

MoFNet is first trained on the ImageNet dataset and is then fine-tuned on the YFCC dataset. Table

4.1 presents the detailed allocation of images for various datasets, systematically divided into train-

ing, query, and search sets.

The proposed network is optimized by training it using the stochastic gradient descent method

with a momentum of 0.9. The learning process starts with a learning rate of 0.01, and after each

epoch, the learning rate is decayed by a factor of 5 × 10−6. We use a batch size of 64. The network

is trained on a machine with an Nvidia GeForce 3060 12 GB GPU, an Intel Core i7-6700 CPU

@3.4 GHz, and 16 GB RAM for up to 200 epochs. The proposed method is implemented using

the TensorFlow framework [62] and Keras library [63].

Table 4.1: Distribution of images for different datasets.

Dataset Number of images in
training set

Number of images in
query set

Number of images in
search set

Cifar10 48k 50 11k
Animals 1.8k 70 370
Cinic10 216k 50 53k
COCO 118k 5k 41k

ImageNet 100k 10k 50k
YFCC 16000k 50k 3950k

49

4.3 Experimental Results

As discussed in Section 4.2, our proposed residual block consists of two feature extraction mod-

ules, namely, the edge feature extraction module and the morphological feature extraction module.

To investigate the impact of each of these modules, three variants of the proposed residual block

are formed. Variant 1 is formed by removing both modules. Variant 2 is formed by removing the

edge feature extraction module from the residual blocks, whereas Variant 3 is formed by removing

the edge feature extraction module from the residual blocks.

Table 4.2 gives the results in terms of the mAP of the proposed residual block and its three

variants. It is seen from the table that removing the morphological feature extraction module results

in noticeable performance degradation (Variant 3). Removing the edge feature extraction module

(Variant 2) impacts the results, although not as strongly as excluding the morphological module.

The reason is that the morphologically guided features still contain some amount of edge infor-

mation, and therefore, the richness of the features is not heavily impacted. However, it is clear that

the highest performance is obtained by employing both modules.

Table 4.2: The network performance in terms of mAP of the proposed network and its
variants.

Dataset
mAP

Variant 1 Variant 2 Variant 3 Proposed

Cifar10 0.8201 0.8681 0.8443 0.9170

Animals 0.7273 0.7684 0.7518 0.8544

Cinic10 0.7298 0.7803 0.7657 0.8231

ImageNet 0.5549 0.6470 0.5994 0.6955

COCO 0.6282 0.7310 0.6934 0.7833
The best results are shown in BOLD font.

50

Before we study the impact of the proposed Max-m-Min pooling operation, we examine the

result of this operation by applying different pooling methods on some selected images from the

Cifar10, Cinic10, Animals, and COCO datasets and compare the results with those obtained by

applying average, max, Lp, and median pooling operations. Figure 4.4 shows the output images

resulting from using the various pooling operations. It is very clear from this figure that the pro-

posed Max-m-Min operation is the most successful in extracting the edge information of the

Figure 4.4: Comparison of different pooling methods on various inputs. The pooling size
is 2×2 with stride=1. Max-m-Min detects fine edges that enable the network to learn texture
features effectively.

51

images. Hence, we expect that the use of the proposed Max-m-Min operation should have a more

positive impact on the proposed network performance in comparison to the use of the other pooling

operations.

We now consider the impact of using the proposed Max-m-Min pooling operation on the re-

trieval performance and compare it with that obtained by employing the other four pooling opera-

tions. The results are given in Table 4.3. It is seen from this table that the proposed Max-m-Min

pooling operation provides the best network performance over all the datasets.

Table 4.3: The network performance comparison in terms of mAP when PL1, PL2 corre-
sponding to Average, Max, Lp, Median, and Max-m-Min pooling operations.

Pooling operation Cifar10 Animals Cinic10 COCO ImageNet YFCC*

Average 0.8708 0.8514 0.8143 0.7416 0.6853 0.3215

Max 0.8860 0.8514 0.8184 0.7412 0.6847 0.3210

Lp 0.8810 0.8505 0.8146 0.7292 0.6528 0.2918

Median 0.8797 0.8535 0.8170 0.7259 0.6694 0.3002

Max-m-Min 0.9170 0.8544 0.8231 0.7833 0.6955 0.3243
The best results are shown in BOLD font, and the second-best results are presented in ITALIC font.
* The network is pretrained on ImageNet and finetuned on YFCC.

Table 4.4: Training and testing times (in seconds) of the proposed network with different
pooling operations.

Pooling operation Training time* (one epoch) Testing time*

Average 68.13 0.1473

Max 67.74 0.1471

Lp 81.54 0.1485

Median 70.93 0.1470

Max-m-Min 67.96 0.1468
The best results are shown in BOLD font, and the second-best results are
presented in ITALIC font.
* The network includes the proposed residual block.

52

Table 4.4 provides the training and testing times of the proposed network employing the pro-

posed Max-m-Min pooling operations and other pooling operations for PL1 and PL2, using the

Cifar10 dataset. This table shows that the proposed network using the proposed Max-m-Min pool-

ing operation takes training time that is about the same as that taking when the average or max

pooling operations is employed. It is seen from the table that the proposed Max-m-Min pooling

operation takes less testing time than when other pooling operations are used.

Preserving discriminative information while performing pooling operations is crucial to

achieving desirable performance in a deep network. The discrimination ability of the pooled

features is dominated by diverse and salient information [50]. In max pooling, the most salient

information contributing to local features is preserved by enhancing the high-frequency com-

ponents. As a result, max pooling may be well suited for simple images in which the fore-

ground objects contain high-frequency components, such as the images in the Cifar10 dataset.

However, in complex images, such as images in the COCO dataset, foreground items with

less texture may disappear after several max pooling operations; thus, the features are more

likely to lack the foreground object’s features. Additionally, average pooling retains a wide

range of data by merging features from all parts of the image. However, average pooling may

perform poorly because salient information is constantly linked with nonsalient details. There-

fore, a pooling operation that provides a trade-off between salient and diverse information

may improve the discriminating capacity of the generated features. In light of the above dis-

cussion, Shannon entropy can be used to evaluate this trade-off in the pooling method [50]. Math-

ematically, Shannon entropy calculates the uncertainty associated with a certain value appearing

in a pooling window. Considering pooled activation 𝑜𝑜𝑐𝑐[𝑚𝑚, 𝑛𝑛] over a pooling window defined by

𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛) as a random variable 𝑬𝑬 with 𝑍𝑍 = 𝑎𝑎. 𝑏𝑏 possible values {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑍𝑍} and {𝑖𝑖1,𝑖𝑖2, … ,𝑖𝑖𝑍𝑍} as

the corresponding probabilities, the entropy 𝐻𝐻(𝑒𝑒) of a pooled activation 𝑬𝑬 is defined as

 𝐻𝐻(𝑒𝑒) = −�𝑖𝑖𝑧𝑧 𝑙𝑙𝑜𝑜𝑠𝑠2 𝑖𝑖𝑧𝑧

𝑍𝑍

𝑧𝑧=1

 (4.21)

53

Assuming a 2×2 pooling window (𝑍𝑍 = 4), the entropy of max pooling is

 𝐻𝐻(𝑒𝑒) = −(1 𝑙𝑙𝑜𝑜𝑠𝑠2 1) = 0 (4.22)

This means there is no uncertainty, as max pooling selects the strongest value; max pooling

assigns a probability of 1 to the maximum value and 0 to the others. In contrast, average pooling

is calculated by assigning equal probability to every component in the pooling window. Hence, for

average pooling, we have

 𝐻𝐻(𝑒𝑒) = −�(
1
4
𝑙𝑙𝑜𝑜𝑠𝑠2

1
4

) = 2
𝑍𝑍

𝑧𝑧=1

 (4.23)

The proposed Max-m-Min pooling operation always considers two extreme values in the pool-

ing window, namely, the maximum and minimum values. Therefore, the entropy for Max-m-Min

pooling is given by

 𝐻𝐻(𝑒𝑒) = −(
1
2
𝑙𝑙𝑜𝑜𝑠𝑠2

1
2

+
1
2
𝑙𝑙𝑜𝑜𝑠𝑠2

1
2

) = 1 (4.24)

This value is between those of the max pooling and average pooling, meaning that the Max-m-

Min pooling provides an excellent trade-off between these two pooling operations. In other words,

the proposed Max-m-Min pooling operation can effectively preserve salient features and diverse

information. The entropy values of different pooling operations are presented in Table 4.5.

Table 4.5: Shannon entropy 𝐻𝐻(𝑒𝑒) of different pooling methods.

Pooling operation 𝐻𝐻(𝑒𝑒)

Average 2

Max 0

Lp [0, 2]

Median 0, 1

Max-m-Min 1

54

Table 4.6: Impact of the size of morphological operators on the network
performance in terms of mAP.

Operator Size Animals COCO

2×2 0.8544 0.7833

3×3 0.8196 0.7228

4×4 0.8107 0.7229

5×5 0.8054 0.7298

6×6 0.8098 0.7101

7×7 0.7875 0.7043

8×8 0.7964 0.7032

9×9 0.7741 0.6856
The best results are shown in BOLD font, and the second-
best results are presented in ITALIC font.

Table 4.7: Impact of using different fusion strategies on the performance of the net-
work in terms of mAP.

Fusion method Cifar10 Animals Cinic10 COCO ImageNet YFCC

Summation 0.8754 0.8185 0.8376 0.7205 0.5911 0.2954

Concatenation 0.9170 0.8544 0.8231 0.7833 0.6955 0.3243

BOLD font indicates the best performance.

55

Figure 4.5: Visualization of feature map evolution through the residual block. The residual block
outputs a feature vector enriched with textural and structural information.

56

As mentioned in Section 4.2, using the proposed residual block enables the deep network to

learn rich sets of feature maps. In order to visually see as to how the objective of extracting a rich

set of feature maps by the proposed residual block we have isolated the 5th residual of an opera-

tional proposed network and presented it as Figure 4.5. A comparison of the typical feature maps

𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 with the map 𝑎𝑎 shows that the edge extraction module and the two branches of the

morphological module are indeed achieving their objectives in that map 𝑏𝑏 has more information

on the edges of the input image, whereas maps 𝑐𝑐 and 𝑑𝑑 have more textural and structural infor-

mation about the image. On the other hand, feature map 𝑓𝑓 has all the information contained in 𝑏𝑏,𝑐𝑐,

and 𝑑𝑑 combined together.

As previously mentioned, all the morphological operators employed to generate morphological

features use a kernel of size 2×2. We now investigate the effect of using other kernel sizes on the

network performance. The results using the Animals and COCO datasets are given in Table 4.6. It

is seen from this table that the kernel size of 2×2 provides the best performance and the kernel size

of 3×3 yields the second-best performance.

Two strategies can be used for feature fusion in deep networks, namely, summation and con-

catenation. In the proposed residual block, we utilize concatenation to fuse multiple feature ten-

sors. In Table 4.7, we provide the results of using each of the two fusion schemes. It is seen from

this table that concatenation is a better fusion strategy in comparison to the summation strategy,

regardless of the dataset used.

57

Table 4.8: Comparison between the performance (in terms of mAP) of the convolutional
neural networks for image retrieval.

Method

Net

F-Tun

Dim

Params

mAP

Cifar10 Animals Cinic10 ImageNet COCO YFCC*

Neural Code (2014) [8] V Yes 4096 138M 0.6723 0.6387 0.5485 0.6458 0.7512 0.2608

DHN (2016) [81] A Yes 64 62M 0.6210 ̶ ̶ 0.5730 0.7340 ̶

MSIR (2020) [82] V Yes 4096 138M 0.7955 0.4732 0.6163 0.5642 0.6734 0.1645

HashNet (2017) [79] V Yes 64 138M 0.7870 0.6663 0.7132 0.6955 0.7360 0.2987

DPAH (2020) [83] V Yes 64 138M ̶ ̶ ̶ 0.7138 0.7815 ̶

UDPH (2022) [70] R Yes 256 44M 0.5520 0.4843 0.4934

0.5357 0.7201 0.2814

Neural Code (2014) [8] V No 4096 138M 0.6545 0.6243 0.5154 0.5198 0.7362 0.2343

MSIR (2020) [82] V No 4096 138M 0.6643 0.4156 0.5856 0.5337 0.6748 0.1247

DHA (2019) [84] A No 64 62M 0.6990 ̶ ̶ ̶ 0.7532 ̶

UDPH (2022) [70] R No 256 44M 0.4965 0.3998 0.4112 0.5057 0.7073 0.2156

XBL (2021) [85] X No 4096 44M 0.7254 0.6629 0.6845 0.6823 0.7182 0.1858

MRDL (2021) [68] V No 4096 138M 0.6657 0.6256 0.6534 0.5963 ̶ ̶

DELG (2020) [67] R No 2048 44M 0.9046 0.6787 0.7176 0.6914 0.7525 0.3034

C-LSH (2018) [86] E n/a 2048 103M 0.6365 0.3640 0.3843 0.5963 0.6883 0.2443

TBH (2020) [87] E n/a 64 71M 0.8739 ̶ ̶ ̶ 0.7211 ̶

MorIRNet (2022) [55] E n/a 3136 85M 0.7773 0.6654 0.7168 0.6145 0.6954 0.2778

MSFRNet (Ch.3) E n/a 169 62M 0.8431 0.6346 0.7487 0.5318 0.5617 0.2224

HMSRNet (Ch.3) E n/a 169 62M 0.8643 0.6405 0.7390 0.5423 0.5901 0.2361

MoFNet (proposed) E n/a 512 64M 0.9170 0.6934 0.7317 0.6990 0.7833 0.3243

BOLD, ITALIC, and underlined fonts indicate the best, second-best, and third-best performance, respectively.

“Net” is the backbone network that is used by the corresponding method: VGG16 (V), ResNet101 (R), AlexNet (A), Xception (X), or
end-to-end (E). “F-Tun” is “Yes” when the fine-tuned network is used, “No” when the off-the-shelf network is used, and “n/a” when the
network is trained from scratch. “Dim” is the final feature vector dimension. “Params” is the number of parameters (in millions). † Eu-
clidean metric is used. Euclidean distance is used as the similarity measurement for all the datasets.

* The results are obtained using the network that is pretrained on ImageNet and fine-tuned on YFCC.

58

We now compare our proposed MoFNet with several conventional and state-of-the-art image

retrieval methods, including Neural Code [8], UDPH [70], C-LSH [86], DHA [84], TBH [87],

MorIRNet [55], DHN [81], DPAH [83], MSIR [82], XBL [85], MRDL [68], DELG [67], and

HashNet [79]. The results are reported in Table 4.8. It is clear from the table that the proposed

MoFNet gives the best performance on all the datasets except for the ImageNet dataset, where its

performance is the second-best. In particular, for the Cifar10 dataset, the proposed MoFNet gives

a performance that is significantly superior to that of all the other networks. In the case of the

YFCC dataset, which is a very challenging large-scale dataset, our proposed MoFNet exhibits the

best results, with a mAP of 0.3243. This retrieval performance is significantly higher than the

second-best result of mAP=0.3034 obtained by DELG [67]. The relatively poor performance on

this dataset by all the methods is due to the dataset size and the fact that its label distribution is not

well-balanced. It is to be noted that the higher performance of the proposed MoFNet is achieved

despite the fact that it uses a smaller number of parameters than most of the other networks. It

should also be noted that the performance of each of those networks that uses the number of pa-

rameters smaller than the proposed MoFNet is very much lower.

4.4 Summary

In this chapter, we have developed a deep convolutional neural network guided to extract the tex-

tural, structural, and edge information contained in images. Recognizing that morphological oper-

ations process, the texture and structure of objects based on their geometrical properties and that

edges represent fundamental features of an image, we have used these ideas in our network. We

have utilized morphological operations to guide the network to extract textural and structural in-

formation. Also, a novel pooling operation has been designed to extract the edge information in an

image. Extensive experimental results have confirmed the effectiveness of our proposed network,

significantly enhancing the learning quality of the deep network for image retrieval tasks.

59

Chapter 5

Hashing-based Re-ranking Technique

for Image Retrieval
5 Hashing-based Re-ranking Technique for Image Retrieval
Re-ranking is a task of refining an initially ranked list of images obtained from an image retrieval

technique for a given query image, with the goal of enhancing retrieval performance in an efficient

manner. However, existing re-ranking methods suffer from high computational complexity, lead-

ing to slow and resource-intensive operations that render them impractical for real-life applica-

tions. This necessitates the development of a computationally efficient re-ranking approach that

effectively improves retrieval performance. Image hashing is one of the techniques that has shown

promising performance along with computational efficiency for the task of image retrieval [32],

[88]. Motivated by these advantages offered by image hashing, this chapter develops a novel and

computationally efficient re-ranking method for image retrieval, utilizing the speedy and proficient

nature of image hashing techniques for image representation [89].

60

5.1 RefinerHash: A New Hashing-based Re-ranking

Technique for Image Retrieval

5.1.1 Initial Retrieval List

In order to prepare the initial retrieval list, we employ two distinct methods. The first method,

detailed later in this chapter, is based on our approach presented in [89], which utilizes A novel

Block-wise technique and a pre-trained deep network to generate the initial retrieval list. We re-

fer to this method as Block-wide Hopfield-based Image Retrieval (BHIR). The second method is

MoFNet, proposed in [72] and extensively detailed in Chapter 4. MoFNet differs as it requires a

deep network to be trained. By strategically using these methods in tandem, we aim to explore the

impact of both improving representational capacity through MoFNet and employing effective re-

ranking strategies, with the goal of maximizing the overall performance in our image retrieval

tasks.

5.1.1.1 Block-wise Hopfield-based Image Retrieval

The general framework of the initial list creation process of [89] is depicted in Figure 5.1. The

process consists of two main steps: training and testing. During the training step, we partition each

image available in the training set into 𝑏𝑏 blocks. We extract features from these blocks using deep

features using ResNet50 deep network. Using these features, we calculate weight matrices, 𝑾𝑾𝑏𝑏
𝑗𝑗 ,

for each block, which are then summed to obtain 𝑏𝑏 weight matrix sets, 𝑾𝑾𝒃𝒃. During the testing step,

these matrices are used for calculating scores for initial list creation.

61

Figure 5.1: Framework of the proposed method for the initial retrieval list creation. During the
training step, the weight matrix that is used in the testing step, 𝑾𝑾𝒃𝒃, is calculated to create the initial
list. The “Feature Extraction” module can be based on either low-level features or deep features.
The sizes of feature vectors, 𝑓𝑓𝑏𝑏𝑁𝑁, 𝑓𝑓𝑏𝑏𝑀𝑀 and 𝑾𝑾𝒃𝒃 are 2048×1, 2048×1 and 2048×2048, respectively.
The output is K images, which are stored in a set called Γ. “T” which is the super-script to the
feature vectors, is the transpose operator.

62

We utilize the ResNet50 [90] convolutional neural network, as depicted in, for feature extrac-

tion. We modify the standard structure of ResNet50 to fit our purpose. As illustrated in Figure 5.2,

the classification head of ResNet50 is replaced with a feature extraction module. Specifically, our

feature extraction module takes the output of the last convolutional layer, size 7×7×2048, and

passes it through a global max pooling layer with a window size of 7×7 and a stride of 1. The

output from this pooling layer then undergoes a flattening process, resulting in a 2048-dimensional

vector. This vector serves as our desired image representation. The choice of ResNet50 was moti-

vated by its demonstrated efficiency in extracting intricate image features and its robustness in

handling a variety of visual tasks. Additionally, using a pre-trained model allows us to capitalize

on the knowledge gained from large-scale datasets, thereby providing a strong foundation for our

feature extraction.

An example of the blocking scheme is shown in Figure 5.3. As the figure shows, the weights

are assigned based on the location of the blocks within an image, and the blocks in the central

region of the image, which contain the most informative visual information, are assigned greater

weights compared to those located along the borders. These weight values are pre-defined and

Figure 5.2: The ResNet50 architecture and the modifications made for its use as a feature extractor. The
depicted architecture shows the size of filters and the dimensions of the outputs of convolutional modules.
The notation “𝑛𝑛 × 𝑛𝑛, k” in the convolutional modules denotes a filter size of 𝑛𝑛 × 𝑛𝑛 with k filters. The
values at the top of each module denotes the repetition of the corresponding module. The values above the
arrows represent the size of the output of the corresponding module. The Classification head is removed
from the pre-trained ResNet50 and replaced with the “Feature Extraction” module. For simplicity, residual
shortcuts and activation functions are not shown.

63

determined experimentally. For our experiments, the following values are used in the block weight

vector:

𝐵𝐵 = �

𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝐵𝐵4
𝐵𝐵5
𝐵𝐵9

𝐵𝐵6 𝐵𝐵7
𝐵𝐵10 𝐵𝐵11

𝐵𝐵8
𝐵𝐵12

𝐵𝐵13 𝐵𝐵14 𝐵𝐵15 𝐵𝐵16

� = �
0.5 0.5 0.5 0.5
0.5
0.5

2.0 2.0
2.0 2.0

0.5
0.5

0.5 0.5 0.5 0.5

�

𝐵𝐵�⃗ 𝑏𝑏 = {𝐵𝐵1, … ,𝐵𝐵16}

(5.1)

Each image in the dataset is divided into b blocks. For each specific block position, we collate

the same block across all images to form a block set. For instance, block set 1 contains the first

block from all images in the dataset. For each of these block sets, we compute a distinct weight

matrix. This process is repeated across all block positions, yielding a collection of weight matrices

that uniquely correspond to each block position within the images. The first step in calculating the

desired weight matrices is to compute the weight matrices for each image in the training set:

 𝑾𝑾𝑏𝑏
𝑗𝑗 = 𝑓𝑓𝑏𝑏

𝑗𝑗𝑓𝑓𝑏𝑏
𝑗𝑗𝑇𝑇 (5.2)

where 𝑾𝑾𝑏𝑏
𝑗𝑗 is the weight matrix for the b-th block of the j-th image and 𝑓𝑓𝑏𝑏

𝑗𝑗 is the feature vector for

the b-th block of the j-th image. The superscript 𝑇𝑇 represents the transpose operation, and 𝑗𝑗 is the

number of images in the training set, with 𝑗𝑗 ∈ {1. . .𝑁𝑁}. Therefore, for each block set, there are 𝑁𝑁

weight matrices. Adding these weight matrices (for a block set) yields the desired weight matrix

for block set b as follows:

Figure 5.3: The block weight vector. The center region includes four blocks and has a four times
greater influence on the score calculation than the blocks at the borders. These values are found
experimentally and provide the best results.

64

 𝑾𝑾𝑏𝑏 = �𝑾𝑾𝑏𝑏
𝑗𝑗

𝑁𝑁

𝑗𝑗=1

 (5.3)

Considering that there are 16 block sets, we have a total of 16 different weight matrices, each with

a size of 2048×2048. These matrices encapsulate the associative memory capabilities of the Hop-

field network to be used in the initial retrieval list creation.

5.1.1.2 MoFNet
In Chapter 4 of this work, a detailed explanation of MoFNet is provided. MoFNet is specifically

designed to enhance the representational capacity of features for image retrieval. It achieves this

by integrating two innovative approaches: a new pooling mechanism known as Maximum minus

Minimum (Max-m-Min) pooling and a novel morphological feature-generating residual block

(MoF).

The Max-m-Min pooling operation is a novel pooling operation that focuses on extracting edge

features. It calculates the difference between the maximum and minimum element values within a

pooling window of a feature map to highlight the edge features. When the pooling operation is

applied on an input feature map, the resultant feature map consists of robust edge features.

The morphological feature-generating residual block (MoF) consists of three modules: an edge

feature extraction module, a morphological feature extraction module, and a feature fusion mod-

ule. The edge feature extraction module utilizes the Max-m-Min pooling method alongside con-

ventional convolution operations to extract high-frequency components and learn discriminative

features. The morphological feature extraction module employs nonlinear morphological opera-

tions to extract textural and structural information from the image, contributing to a rich set of

features. Lastly, the feature fusion module combines the outputs from the previous two modules,

providing the network with high representational features for the task of image retrieval.

The MoFNet architecture includes multiple layers of conventional convolution layers, a se-

quence of five MoF residual blocks, and some Max-m-Min pooling layers. During training, the

network employs a classifier module, while for testing, the classifier module is replaced with a

feature representation module. The trained network is then used as a feature representation module.

65

5.1.1.3 Initial Retrieval List Creation using BHIR

Before the creation of the initial retrieval list for a given query, all the M images in the test set

should go through the feature extraction step to obtain their corresponding feature vectors, namely

𝑓𝑓𝑏𝑏𝑖𝑖, 𝑖𝑖 ∈ {1 … M}, following the same procedure used in the training step. These obtained feature

vectors, 𝑓𝑓𝑏𝑏𝑖𝑖, are then applied to the trained Hopfield network. In our image retrieval method, the

network is used to transform the feature vectors of the images during the testing phase. By em-

ploying the network, with its weight matrix calculated in the training part (as discussed in Section

3.1.4), our method takes advantage of the associative memory capability of the network to align

the feature vectors of the images more closely with the vectors of similar images. Utilizing the

Hopfield network, each feature vector 𝑓𝑓𝑏𝑏𝑖𝑖 is transformed into a new vector, 𝑓𝑓𝑏𝑏𝑖𝑖.

Once all the new feature vectors, 𝑓𝑓𝑏𝑏𝑖𝑖, are calculated, they are used to generate a similarity score

for every image in the test set with respect to the query image. This query image is one of the 𝑀𝑀

images in the test set. The process of creating the initial list begins with the calculation of the score

for image 𝑖𝑖 of the test set as follows:

 𝑠𝑠𝑖𝑖 = � 𝑃𝑃𝑝𝑝𝑖𝑖
2048

𝑝𝑝=1

 (5.4)

Here, 𝑃𝑃𝑖𝑖 is calculated using:

 𝑃𝑃𝑖𝑖 = �𝐵𝐵𝑏𝑏𝑓𝑓𝑏𝑏𝑖𝑖
𝑇𝑇

16

𝑏𝑏=1

(5.5)

where 𝐵𝐵𝑏𝑏 is weight for block b. Next, we compute the distance measure, which is done by sub-

tracting the score of the query image (𝑠𝑠𝑞𝑞) from the score calculated for every other image in the

test set. This is represented as:

 𝑙𝑙𝑞𝑞𝑖𝑖 = �𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑞𝑞�, 𝑖𝑖 ∈ {1 …𝑀𝑀}, 𝑖𝑖 ≠ 𝑞𝑞

(5.6)

where, 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑞𝑞 are the scores calculated for images in the test set and the query image, respec-

tively, and |. | is the absolute value operation. Afterward, we arrange the computed 𝑙𝑙𝑞𝑞𝑖𝑖 values in

ascending order:

66

 𝐿𝐿𝑞𝑞 = 𝑠𝑠𝑜𝑜𝑟𝑟𝑡𝑡��𝑙𝑙𝑞𝑞𝑖𝑖 , 𝑖𝑖 = 1, . . ,𝑀𝑀��, 𝑖𝑖 ≠ 𝑞𝑞 (5.7)

From this sorted list, we select the images corresponding to the 𝐾𝐾 lowest values of 𝑙𝑙𝑞𝑞𝑖𝑖 that are more

likely to include similar images to the query image. These selected images form the initial retrieval

list (denoted as Γ), which serves as the input for further processing in the re-ranking step.

5.1.1.4 Initial Retrieval List Creation using MoFNet
In the image retrieval process using MoFNet, the first step is to compute the feature maps for a

query image and all images in the database. To find the initial retrieval list, the query feature vector

is compared with all the feature vectors from the database using a suitable similarity measurement.

This comparison measures the similarity between the query and each image in the database based

on their respective feature maps. The images are then ranked according to their similarity scores.

The top K images, which have the highest similarity scores, are selected to form the initial retrieval

list Γ.

5.1.1.5 Hash Code Generation
In this section, we develop RefinerHash, which is a computationally efficient re-ranking scheme

for image retrieval. We first present the generation of hash codes using Discrete Cosine Transform

(DCT) and Discrete Wavelet Transform (DWT), yielding concise yet comprehensive representa-

tions of the images. These hash codes form the backbone of the re-ranking process. Utilizing the

hash codes, we present our image search technique that employs an efficient tree data structure to

boost search speed and retrieval accuracy.

General hash code generation technique: Our approach involves generating hash codes for a

given image by combining the codes calculated for the different rotations of the image. We initiate

the process by partitioning an image into blocks. Following this, a transformation is applied to

these blocks, and the median value of the transformed blocks, denoted as 𝑚𝑚, is calculated. Subse-

quently, a single bit of the hash code is computed by comparing this median value with the average

coefficient value of the transformation within each block. This bit-generation procedure is sum-

marized as follows:

 𝑓𝑓(𝐴𝐴𝑏𝑏) = �0, 𝐴𝐴𝑏𝑏 < 𝑚𝑚
1, 𝐴𝐴𝑏𝑏 ≥ 𝑚𝑚 (5.8)

67

where 𝐴𝐴𝑏𝑏 represents the average coefficient value calculated for the 𝑏𝑏-th block. Once each bit has

been calculated for all blocks, the next step is to create the final hash code, which is created by

merging the bit outputted by applying the hash code generation technique on all blocks.

Hash code generation based on DCT: Figure 5.4 shows our proposed image hashing technique

using DCT transformation. As the figure shows, the process involves deriving four distinct hash

codes, denoted as ℎ𝑚𝑚, with 𝑚𝑚 ∈ {1, 2, 3, 4}, from concatenating the hash codes obtained by rotat-

ing the image to four orientations: 𝜃𝜃 = {0,π/2,π, 3π/2}. Subsequently, these images undergo a

DCT transformation. However, directly applying DCT to the entire image may include irrelevant

background information, limiting the representational capacity of the hash codes [32]. To over-

come this limitation, our approach selectively applies DCT to the central region of the image.

The central region is defined by a 128×128 patch which is partitioned into 𝛼𝛼 equal blocks,

where 𝛼𝛼 = 16 and each block of size 32×32 pixels. The hash code calculation starts by applying

DCT to each of these blocks:

 𝛷𝛷𝜃𝜃,𝛼𝛼
𝑖𝑖 = 𝐷𝐷𝐶𝐶𝑇𝑇�𝐼𝐼𝜃𝜃,𝛼𝛼

𝑖𝑖 � (5.9)

where 𝐼𝐼𝜃𝜃,𝛼𝛼
𝑖𝑖 is the 𝛼𝛼-th block of the 𝑖𝑖-th image rotated 𝜃𝜃 degrees. The average coefficient value,

𝜇𝜇𝜃𝜃,𝛼𝛼
𝑖𝑖 , is computed from these DCT coefficients for each block. These average values are further

averaged for all α blocks in the central region of the image, resulting in values denoted as 𝜇𝜇𝜃𝜃𝑖𝑖 . Each

bit of the hash code, ℎ𝜃𝜃,𝛼𝛼
𝑖𝑖 , is determined based on the comparison of 𝜇𝜇𝜃𝜃,𝛼𝛼

𝑖𝑖 with the median value,

𝑚𝑚𝜃𝜃
𝑖𝑖 , as follows:

 ℎ𝜃𝜃,𝑎𝑎
𝑖𝑖 = �

0, 𝜇𝜇𝜃𝜃,𝛼𝛼
𝑖𝑖 < 𝑚𝑚𝜃𝜃

𝑖𝑖

1, 𝜇𝜇𝜃𝜃,𝛼𝛼
𝑖𝑖 ≥ 𝑚𝑚𝜃𝜃

𝑖𝑖 (5.10)

where 𝑚𝑚𝜃𝜃
𝑖𝑖 is the median of all the average values for the 𝑖𝑖-th image when rotated by θ degrees. By

processing all the blocks and concatenating the obtained bits, we generate the final hash code for

the 𝑖𝑖-th image as follows:

 ℎ𝑖𝑖 = ℎ3𝜋𝜋/2,16
𝑖𝑖 … ℎ0,1

𝑖𝑖 , 𝑖𝑖 = 1 … K (5.11)

The size of ℎ𝑖𝑖 is equivalent to the product of the number of rotations and windows. As such,

the size of a DCT-based hash code totals 4×16, or 64 bits. Given that our initial list comprised K

images, we consequently generated K hash codes.

68

Figure 5.4: An overview of how a hash code is generated using DCT. Given rotated images, the hash codes based on DCT are calculated on
partitioned central regions. The output is a hash code generated by concatenating all the hash codes calculated for an image. All the final hash codes
are used to build a tree (𝒯𝒯ℎ). 𝐾𝐾 is the number of images available in the initial retrieval list, 𝜃𝜃 is the image orientation, and 𝛼𝛼 is the block number.

69

Figure 5.5: An overview of how hash codes are generated using DWT. Given rotated images, the DWT-based hash codes are calculated on the
partitioned whole image. The hash codes are then divided into equal-length hash codes, namely 𝐿𝐿𝑖𝑖 and 𝑅𝑅𝑖𝑖. These two hash codes are used to build
two different trees (𝒯𝒯𝐿𝐿 and 𝒯𝒯𝑅𝑅). Note that 𝛹𝛹𝜃𝜃,𝛽𝛽

𝑖𝑖 is the coefficient of the LL band after the first decomposition, 𝜃𝜃 is the image orientation, 𝛽𝛽 is the
block number, and 𝐾𝐾 is the number of images in the initial retrieval list.

70

Hash code generation based on DWT: Our proposed DWT-based hashing technique is shown in

Figure 5.5. As the figure shows, the algorithm for calculating hash codes using DWT is similar to

that for generating DCT-based hash codes. However, the DWT-based method generates two hash

codes per image, taking advantage of the multi-resolution representation that DWT offers. The

DWT transformation decomposes an image into four bands: low-low (LL), low-high (LH), high-

low (HL), and high-high (HH). We specifically select the LL band, which contains the most critical

information about the original image [91]. Therefore, the hash codes derived from this LL band

encapsulate essential and expansive details about the image, effectively representing its content.

Similar to the DCT-based hashing technique, we introduce a step of rotating images prior to

the application of DWT, aiming to improve the representational diversity of the generated hash

codes. This rotation presents a different perspective of the image content, thus potentially provid-

ing additional features. By generating hash codes from the LL band of the rotated images, our

method captures a broader range of details, resulting in a more comprehensive representation of

the image. This rotation-aided approach thereby enhances the robustness and representational ca-

pacity of the generated hash codes.

The process begins by dividing a given image 𝐼𝐼 into 𝛽𝛽 blocks with a size of 32×32. After the

process of dividing the image and applying the DWT transformation to each block, we then derive

a coefficient, 𝛹𝛹𝜃𝜃,𝛽𝛽
𝑖𝑖 . From these coefficients, we select the low-low (LL) bands after the first de-

composition of the DWT for further processing. We proceed by averaging the coefficient for each

block to yield �̂�𝜇𝜃𝜃,𝛽𝛽
𝑖𝑖 . The subsequent step is the calculation of the median for all the blocks of each

orientation of a given image, denoted as, 𝑚𝑚�𝜃𝜃𝑖𝑖 . Given �̂�𝜇𝜃𝜃,𝛽𝛽
𝑖𝑖 and 𝑚𝑚�𝜃𝜃𝑖𝑖 , we can compute one bit of the

hash code as follows:

 ℎ�𝜃𝜃,𝛽𝛽
𝑖𝑖 = �

0, �̂�𝜇𝜃𝜃,𝛽𝛽
𝑖𝑖 < 𝑚𝑚�𝜃𝜃𝑖𝑖

1, �̂�𝜇𝜃𝜃,𝛽𝛽
𝑖𝑖 ≥ 𝑚𝑚�𝜃𝜃𝑖𝑖

 (5.12)

Once the bits for all blocks have been computed, the final step in the DWT-based method is to

construct the hash code by concatenating the calculated bits for all the blocks of images rotated θ

degrees, leading us to a hash code as follows:

 ℎ�𝑖𝑖 = ℎ�3𝜋𝜋/2,64
𝑖𝑖 … ℎ�0,1

𝑖𝑖 , 𝑖𝑖 = 1 …𝐾𝐾 (5.13)

71

The length of the hash code for an image, represented by ℎ�𝑖𝑖, is 4 × 64 = 256 bits due to the

image rotation across four different orientations. We partition this hash code into two equal sec-

tions, 𝐿𝐿𝑖𝑖 and 𝑅𝑅𝑖𝑖, representing the left and right parts of ℎ�𝑖𝑖, respectively. This division is performed

as follows:

𝐿𝐿𝑖𝑖 = ℎ�𝑖𝑖 ⊙ [1� , 0�]

𝑅𝑅𝑖𝑖 = ℎ�𝑖𝑖 ⊙ [0�, 1�]
(5.14)

where ⊙ denotes the canonical (element-wise) multiplication operation, while 1� ∈ 𝑅𝑅𝟙𝟙𝟙𝟙𝟙𝟙 and 0� ∈

𝑅𝑅𝟙𝟙𝟙𝟙𝟙𝟙 are vectors of ones and zeros, respectively. These operations essentially mask one-half of the

hash code, retaining the other half. The sections filled with zeros (masked) are subsequently omit-

ted, leaving us with 𝐿𝐿𝑖𝑖 and 𝑅𝑅𝑖𝑖, each of length 128 bits. These are then used to construct the trees

𝒯𝒯ℒ and 𝒯𝒯ℛ, respectively. These trees, along with the tree constructed based on DCT, is the founda-

tion of our re-ranking method. They facilitate efficient image search by serving as structured re-

positories of the hash codes. Using these hash code repositories, similar images can be quickly

identified and retrieved.

5.1.1.6 Image Search
As discussed before, BBSTs are efficient and effective tree data structures that would be highly

beneficial for heavy search operations like image retrieval. In light of this advantage of the BBSTs,

in our proposed method, we utilize BBSTs as the core mechanism for the image search process.

Here, the hash codes function as the keys, and the image filenames serve as the corresponding

values. Given the three distinct hash code sets generated for the images in the test set, we create

three trees. Each tree is constructed using one of the three hash code sets: 𝒯𝒯h uses the DCT-based

hash codes while 𝒯𝒯L and 𝒯𝒯ℛ employ the DWT-based hash codes. Figure 5.6 shows the architecture

of our proposed image search method. As shown in the figure, the search starts with the generation

of hash codes for the query image using the same algorithms previously used for the test set. Spe-

cifically, for each query, three distinct hash codes—Lq,Rq, and hq—are computed and used to

search the corresponding tree. These hash codes are used to search the trees. The goal is to identify

a subtree whose root's hamming distance to the query hash code is smaller than a predetermined

threshold (e.g., less than 20% of the maximum possible distance between two hash codes). When

72

this criterion is met, the search halts, and the node at which the search stopped, along with all

nodes within its subtree, form a candidate list. Figure 5.7 shows an example of this process.

Following the querying of all three trees and identification of the corresponding subtrees, we

obtain three candidate sets: δ1,δ2, and δ3. Using these sets, we then construct the following four

subsets:

Figure 5.6: Overview of the proposed image search. Three trees are built based on hash
codes generated using DWT and DCT transformations. The final image report is done by
first reporting all the images in 𝛿𝛿123, and if the number of reported images is not sufficient,
images in the set of 𝛿𝛿12,𝛿𝛿13, 𝛿𝛿23.

Figure 5.7: Illustration of the process of searching a subtree to generate a candidate list,
denoted as 𝛿𝛿3, using a threshold of 2 and a hash code of ℎ𝑞𝑞 = 19. The bold path represents
the search route taken to reach the desired subtree, which is enclosed in a green box. Note
that this is a simplified example, and the actual hash codes are longer and stored in binary
format, with larger trees.

73

 δ123 = δ1 ∩ δ2 ∩ δ3

 δ12 = δ1 ∩ δ2 − δ123

 δ13 = δ1 ∩ δ3 − δ123

 δ23 = δ2 ∩ δ3 − δ123

(5.15)

where ∩ and − represent set intersection and set subtraction operations, respectively. An example

of the interrelationships between these sets is shown in the form of a Venn diagram in Figure 5.8.

As shown, δ123 contains images present in all three candidate sets δ1, δ2, and δ3. Meanwhile, δ12

comprises images that occur in δ1 and δ2, excluding those in δ123 to prevent duplication. The sets

δ13 and δ23 are defined in a similar manner. Based on these four subsets, we report the final image

list according to the following hierarchy:

1. Images in δ123.

2. Images in δ12 and δ13 with a shorter Hamming distance to the query.

3. Images in δ23.

Figure 5.8: A Venn diagram illustrating the interrelationships among sets derived from tree
searches. Majority voting determines the similar images for a given query image, with the
most similar ones expected to reside in 𝛿𝛿123.

74

Table 5.1: Performance and time complexity comparison of RefinerHash with other re-ranking techniques.

Method mAP Time (Seconds)
Baseline Re-ranking Cifar10 NUS-WIDE ImageNet COCO YFCC Cifar10 NUS-WIDE ImageNet COCO YFCC

BHIR 0.7761 0.6323 0.5371 0.6154 0.2224 1120 5040 22400 2380 183300
 +AQE [92] 0.8108 0.6647 0.5898 0.6756 0.2378 8.9 9.2 11.4 11.2 12.1
 +RCN [93] 0.8294 0.6686 0.6023 0.6904 0.1949 41.4 49.5 73.4 70.9 96.5
 +CLEBFSR [25] 0.7934 0.6595 0.55.48 0.6372 0.1701 9.4 10.7 15.6 15.6 14.2
 +TXRBFSR [25] 0.7916 0.6524 0.55.05 0.6219 0.1987 9.3 11.5 15.3 15.9 15.1
 +TDBG [94] 0.8114 0.6734 0.62.76 0.6645 0.2047 12.6 16.3 24.3 29.3 40.6
 +SCMR-R [95] 0.7843 0.7011 0.65.94 0.6972 0.2457 33.5 40.1 45.6 46.9 67.8
 +RefinerHash (proposed) 0.8627 0.8090 0.69.82 0.7401 0.2651 4.3 4.8 5.9 4.9 7.6

Results in bold, italic and underlined fonts indicate, respectively, the best, the second-best and the third-best performance.

Table 5.2: Performance comparison in terms of mAP.

Method Dimension
mAP

Cifar10 NUS-WIDE ImageNet COCO YFCC
MSIR (2020) [82] 4096 0.7955 0.6887 0.5642 0.6734 0.1645
PIHE (2021) [96] 128 0.6210 0.5198 0.4630 0.6156 0.1473
C-LSH (2018) [86] 2048 0.6365 0.5634 0.5963 0.6883 0.2443
XBL (2021) [85] 4096 0.7254 0.7182 0.6823 0.7182 0.1858
MRDL (2021) [68] 4096 0.6657 0.6993 0.5963 0.6365 0.2187
CWAH (2022) [97] 512 0.7357 0.7154 0.6481 0.7034 0.2454
DETR (2022) [98] 1000 0.5641 0.7056 0.6128 0.6582 0.2105
UAIR (2022) [99] 128 0.8521 0.7994 0.6473 0.7254 0.2686
GeM (2019) [100] 512 0.8143 0.7656 0.6565 0.6801 0.2256
GreedyHash (2018) [101] 128 0.7585 0.6717 0.6506 0.6554 0.2355
SBA (2019) [102] 512 0.8581 0.7965 0.6856 0.7010 0.2569
AutoRet (2022) [103] 1024 0.6550 0.6175 0.5843 0.6265 0.2403
MSFRNet (Ch.3) 169 0.8431 0.7067 0.5318 0.5617 0.2224
HMSRNet (Ch.3) 169 0.8643 0.7091 0.5423 0.5901 0.2361
MoFNet (Ch.4) 512 0.9170 0.7965 0.6990 0.7833 0.3243
MSFRNet (Ch.3)+RefinerHash 169 0.8501 0.7124 0.5734 0.5874 0.2374
HMSRNet (Ch.3)+RefinerHash 169 0.8667 0.7153 0.5799 0.6148 0.2482
MoFNet (Ch.4)+RefinerHash 512 0.9214 0.8187 0.7021 0.7849 0.3272
BOLD, ITALIC and underlined fonts indicate, respectively, the best, the second-best and the third-best performance.

75

5.2 Experimental Results

We first analyze the computational complexity of the proposed RefinerHash algorithm asymptot-

ically. The computational complexity of our proposed method is primarily determined by two

parts: the creation of the initial retrieval list and the re-ranking of this list. Given an image dataset

divided into N images for the training set (to calculate the weight matrix) and M images for the

test set, the complexity of our method for the initial list creation process can be analyzed in two

phases: the weight calculation step and the testing step. In the weight calculation step, each image

in the training set is divided into b blocks, and the calculation of the weight matrix has a complex-

ity of 𝒪𝒪(bd2N), where d is the dimension of the feature vector and the squared term, i.e., d2, arises

from the matrix multiplication process1. Similarly, in the testing step, the cost of calculating the

initial list is 𝒪𝒪(bd2M) for M images in the test set. Hence, the total time complexity for the crea-

tion of the initial retrieval list is 𝒪𝒪(bd2(M + N)). It should be pointed out that our method can

greatly benefit from the parallel computation capabilities of a GPU, as the computations required

for each block are independent of the other blocks, thereby allowing for efficient parallel pro-

cessing. Therefore, utilizing a GPU can substantially reduce the complexity of creating the initial

list to 𝒪𝒪(d2(M + N)).

As detailed in Section 5.1.1, the proposed re-ranking method starts with the generation of hash

codes for K images in the initial retrieval list. The hash code generation includes three main steps:

image rotation, transformation, and hash code calculation. For an image of size n × n, the com-

plexity of the rotation is 𝒪𝒪(Kn2). The transformation step, involving the application of the DCT

and DWT to b blocks, yields complexities of 𝒪𝒪(bKn2) and 𝒪𝒪(bK(log n)2), respectively [104].

Lastly, calculating the hash code and finding the median for all blocks results in an additional

complexity of 𝒪𝒪(bKn log n). By adding these together, we find the accumulated complexity for

the hash code generation to be 𝒪𝒪(Kn2) + 𝒪𝒪(bKn2) + 𝒪𝒪(bK(log n)2) + 𝒪𝒪(bKn log n). How-

ever, among these terms, the complexity of the transformation step, 𝒪𝒪(bKn2), dominates as n

1 The best-known algorithm for matrix multiplication, as of the time of writing, achieves a time complexity of
𝒪𝒪(n2.3728596) [106]. Here, we approximate this as 𝒪𝒪(n2) for simplicity. This approximation does not affect the con-
clusions drawn from our analysis.

76

increases. Consequently, the overall time complexity of the hash code generation process simpli-

fies to 𝒪𝒪(bKn2). The three groups of calculated hash codes for the K images are then used to create

three trees with a complexity of 𝒪𝒪(log K). However, in real-world scenarios, the creation of the

trees can be performed in advance and offline. Therefore, given that the trees are pre-constructed

and loaded, the only requirement is to calculate the initial list for a specified query image and

perform a tree search, which has a computation cost of 𝒪𝒪(M) and 𝒪𝒪(log K), respectively. There-

fore, the overall computational cost for obtaining the final retrieval list is 𝒪𝒪(M) + 𝒪𝒪(log K), which

simplifies to 𝒪𝒪(M) (For a detailed proof, please refer to Appendix A). The above discussion shows

that the contribution of the proposed re-ranking method to the overall retrieval complexity is sig-

nificantly lower than that of the initial list creation. The above discussion shows that the contribu-

tion of the proposed re-ranking method in the overall retrieval complexity is significantly lower

than initial list creation.

We now provide the performance of the proposed RefinerHash using the benchmark datasets,

Cifar10[73], NUS-WIDE [105], MS-COCO [76], ImageNet [77], and YFCC100M [78]. The per-

formance is compared with that of AQE [92], RCN [93], CLEBFSR [25], TXRBFSR [25], TDBG

[94], and SCMR-R [95] by applying them to a common BHIR baseline retrieval technique on the

five benchmark datasets. The results are reported in Table 5.1. It is seen from the table that the

proposed RefinerHash gives a performance superior to that of all the other methods regardless of

the dataset used and requires a computational cost that is significantly lower than required by the

others. In particular, for the NUS-WIDE dataset, the proposed method gives a performance that is

10 percent higher than that of SCMR-R, the second-best performing scheme, at a computational

cost that is more than seven times lower. Similarly, for the COCO dataset, RefinerHash outper-

forms SCMR-R, the second-best performing method, by 7.5 percent at a computational cost that

is ten times lower.

We now compare our re-ranking method with all the image retrieval techniques, including our

methods presented in this thesis, namely, MSFRNet, HMSRNet and MoFNet with a number of

state-of-the-art image retrieval methods, including MSIR [82], PIHE [96], C-LSH [86],

GreedyHash [101], XBL [85], MRDL [68], CWAH [97], DETR [98], UAIR [99], GeM [100] and

AutoRet [103]. The results are reported in Table 5.2. As seen in the table, the combination of

RefinerHash with other methods shows performance that is either comparable to or superior over

77

all other methods, regardless of whether they use re-ranking or not. It is seen from this table that

when we combine the proposed hashing-based re-ranking method with our methods proposed in

Chapters 3 and 4, the proposed re-ranking technique RefinerHash combined with MoFNet (Chap-

ter 4) provides the best results than all the methods for comparison in the table. The robustness

and superior performance of our proposed image retrieval technique are further confirmed through

the various precision-recall curves illustrated in Figure 5.9. The curves in the figure are created by

plotting 100 pairs of precision-recall points, derived from incremental 1% increases in recall along

the recall-axis and their corresponding precision values. The curves are then interpolated for a

cohesive visualization of performance.

78

Figure 5.9: Comparative visualization of precision-recall curves for some query images.

79

5.3 Summary

In this chapter, we have developed a novel and computationally efficient hashing-based re-

ranking technique for the task of image retrieval. Since the re-ranking of the results is an overhead

for any image retrieval task, it is very important that the computational complexity of the re-rank-

ing step be as small as possible. The main advantage of the proposed hash-based re-ranking tech-

nique lies in its ability to significantly enhance the retrieval performance of an image retrieval

method at a very low computational cost. The performance of the proposed hash-based re-ranking

technique has been compared with other re-ranking techniques by applying them to a common

baseline retrieval technique. It has been shown that the image retrieval performance using the pro-

posed hash-based re-ranking technique is superior to that obtained by using the other re-ranking

methods at a computational cost that is several times smaller than that required by the other

schemes. The retrieval performance using the proposed hash-based re-ranking technique has also

been compared with a number of image retrieval techniques regardless of whether or not they

employ a re-ranking technique. It has been demonstrated that employing a solution that enhances

the representational capacity of a deep network and also includes the proposed hash-based re-

ranking technique results in superior performance, significantly outperforming other image re-

trieval methods.

80

Chapter 6

Conclusion and Future Work
6 Conclusion and Future Work

6.1 Concluding Remarks

Image retrieval is a critical function in numerous real-world scenarios. With the exponential

growth in the size of image databases and the increasing complexity of image content, the pursuit

of efficient and high-performing retrieval techniques remains an active research focus. With the

advent of large storage devices and affordable image acquisition equipment, image retrieval has

seen a surge in popularity. Yet, the growing size and diversity of image databases have heightened

the complexity of the image retrieval task. Recent methods have leveraged deep learning for its

superior feature extraction capabilities, often at the expense of complexity and practicability, par-

ticularly in storage and power-constrained applications. In this thesis, several low-complexity,

high-performance deep convolutional neural networks for the task of image retrieval have been

proposed by employing three unique strategies for generating rich, discriminating feature sets.

81

In Chapter 3, we have developed two methods to improve the representational capacity of a

deep image retrieval network using spatial information. Recognizing the importance of spatial in-

formation in improving retrieval performance, we have proposed two novel residual blocks that

primarily focus on generating feature maps enriched with spatial information. These residual

blocks have been specifically designed to provide solid spatial information to the deep network

through residual learning by using different scales and levels of abstraction of a deep network.

In Chapter 4, we have developed a deep image retrieval network by guiding the network with

textual, structural, and edge information in order to improve the representational capacity of the

networks. We have proposed a new residual block designed to guide the deep network by incor-

porating textural and structural information into the feature maps, enabling it to produce rich sets

of features for image retrieval. Particularly, we use morphological operations to guide the network

in extracting textural and structural information. In addition, we have developed a novel pooling

operation for extracting the edge information in an image.

In Chapter 5 of this thesis, we have developed a novel hashing-based re-ranking technique for

the task of image retrieval. Recognizing the need to minimize computational complexity due to

the re-ranking being an overhead for any image retrieval task, we have proposed a low-complexity

re-ranking method using image hashing to enhance the retrieval performance of an image retrieval

method. The proposed hash-based re-ranking technique provides a unique approach to enhance

retrieval performance by generating and utilizing multiple hash codes at a very low computational

cost. The novelty of the proposed re-ranking method lies in its ability to balance the dual objectives

of improving retrieval performance while maintaining computational efficiency.

The effectiveness and efficiency of the proposed image retrieval methods have been validated

through a series of extensive experimental evaluations.

6.2 Future Work

In this thesis, several image retrieval methods have been developed. In light of the findings and

methodologies presented in this thesis, there are several directions for future research. One such

direction is the exploration and application of deep-based image hashing methods in the re-ranking

techniques. The development of a real-time responsive image retrieval system based on the

82

computationally inexpensive methods proposed in this thesis could provide substantial contribu-

tions to this field. This direction of research would be beneficial, particularly in the context of

emerging fields such as autonomous driving. Another direction for future research is the adaptation

of the proposed deep image retrieval networks for use on mobile devices which usually have lim-

ited computational resources. Moreover, all the deep image retrieval networks presented are based

on supervised learning, which requires labeled data for training. A potential direction for future

research is to explore solutions that can adapt these deep networks to unsupervised learning set-

tings to offer greater flexibility in various domains and applications.

83

References

References

[1] H. Ayadi, M. Torjmen-Khemakhem, and J. X. Huang, “Term dependency extraction using
rule-based Bayesian Network for medical image retrieval,” Artificial Intelligence in
Medicine, vol. 140, Jun. 2023, doi: 10.1016/J.ARTMED.2023.102551.

[2] M. Hendriksen, M. Bleeker, S. Vakulenko, N. van Noord, E. Kuiper, and M. de Rijke,
“Extending CLIP for Category-to-Image Retrieval in E-Commerce,” in Proc. European
Conference in Information Retrieval, 2022, pp. 289–303. doi: 10.1007/978-3-030-99736-
6_20/.

[3] M. Flickner et al., “Query by image and video content: The QBIC system,” Computer, vol.
28, no. 9, pp. 23–32, 1995, doi: 10.1109/2.410146.

[4] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. IEEE
International Conference on Computer Vision, 1999, pp. 1150–1157.

[5] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust features,” in Proc.
European Conference on Computer Vision, 2006, pp. 404–417. doi: 10.1007/11744023_32.

[6] M. Yasmin, S. Mohsin, and M. Sharif, “Intelligent image retrieval techniques: a survey,”
Journal of Applied Research Technology, vol. 12, no. 1, pp. 87–103, 2014, doi:
10.1016/S1665-6423(14)71609-8.

[7] S. Wang, K. Han, and J. Jin, “Review of image low-level feature extraction methods for
content-based image retrieval,” Sensor Review, vol. 39, no. 6, pp. 783–809, Nov. 2019, doi:
10.1108/SR-04-2019-0092.

[8] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes for image

84

retrieval,” in Proc. European Conference on Computer Vision, 2014, pp. 584–599.

[9] A. Babenko and V. Lempitsky, “The inverted multi-index,” in Proc. IEEE International
Conference on Computer Vision, 2012, pp. 3069–3076. doi: 10.1109/CVPR.2012.6248038.

[10] A. B. Yandex and V. Lempitsky, “Aggregating local deep features for image retrieval,” in
Proc. IEEE International Conference on Computer Vision, 2015, pp. 1269–1277. doi:
10.1109/ICCV.2015.150.

[11] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-shelf: An
astounding baseline for recognition,” in Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 512–519. doi: 10.1109/CVPRW.2014.131.

[12] J. Wan et al., “Deep learning for content-based image retrieval: a comprehensive study,” in
Proc. ACM International Conference on Multimedia, 2014, pp. 157–166. doi:
10.1145/2647868.2654948.

[13] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless pooling of deep
convolutional activation features,” in Proc. European Conference on Computer Vision,
2014, pp. 392–407. doi: 10.1007/978-3-319-10584-0_26.

[14] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for
scalable Image Recognition,” in Proc. IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 8697–8710.

[15] Y. Li, X. Kong, L. Zheng, and Q. Tian, “Exploiting hierarchical activations of neural
network for image retrieval,” in Proc. ACM International Coference on Multimedia, 2016,
pp. 132–136. doi: 10.1145/2964284.2967197.

[16] W. Zhou, H. Li, J. Sun, and Q. Tian, “Collaborative Index Embedding for Image Retrieval,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, pp. 1154–
1166, May 2018, doi: 10.1109/TPAMI.2017.2676779.

[17] K. Ozaki and S. Yokoo, “Large-scale landmark retrieval/recognition under a noisy and
diverse dataset,” arXiv preprint:190604087, 2019.

[18] L. Zheng, Y. Yang, and Q. Tian, “SIFT meets CNN: a decade survey of instance retrieval,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 5, pp. 1224–
1244, 2018.

[19] O. Chum, A. Mikulík, M. Perdoch, and J. Matas, “Total recall II: query expansion
revisited,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2011,
pp. 889–896. doi: 10.1109/CVPR.2011.5995601.

[20] D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool, “Hello neighbor: accurate
object retrieval with k-reciprocal nearest neighbors,” in Proc. IEEE Conference on

85

Computer Vision and Pattern Recognition, 2011, pp. 777–784. doi:
10.1109/CVPR.2011.5995373.

[21] Z. Zhong, L. Zheng, D. Cao, and S. Li, “Re-Ranking person re-identification with k-
reciprocal encoding,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3652–3661. doi: 10.1109/CVPR.2017.389.

[22] H. Jegou, H. Harzallah, and C. Schmid, “A contextual dissimilarity measure for accurate
and efficient image search,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition, 2007, pp. 1–8. doi: 10.1109/CVPR.2007.382970.

[23] F. Wu, S. Yan, J. S. Smith, and B. Zhang, “Vehicle re-identification in still images:
Application of semi-supervised learning and re-ranking,” Signal Processing: Image
Communication, vol. 76, pp. 261–271, Aug. 2019, doi: 10.1016/J.IMAGE.2019.04.021.

[24] R. Arandjelovic and A. Zisserman, “Three things everyone should know to improve object
retrieval,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2012,
pp. 2911–2918. doi: 10.1109/CVPR.2012.6248018.

[25] A. Ahmed and S. J. Malebary, “Query expansion based on top-ranked images for content-
based medical image retrieval,” IEEE Access, vol. 8, pp. 194541–194550, 2020, doi:
10.1109/ACCESS.2020.3033504.

[26] J. Ouyang, W. Zhou, M. Wang, Q. Tian, and H. Li, “Collaborative image relevance learning
for visual re-ranking,” IEEE Transactions on Multimedia, vol. 23, pp. 3646–3656, 2021,
doi: 10.1109/TMM.2020.3029886.

[27] M. Rashad, I. Afifi, and M. Abdelfatah, “RbQE: An Efficient Method for Content-Based
Medical Image Retrieval Based on Query Expansion,” Journal of Digital Imaging, vol. 36,
no. 3, pp. 1248–1261, Jun. 2023, doi: 10.1007/S10278-022-00769-7.

[28] D. Krotov and J. J. Hopfield, “Dense associative memory for pattern recognition,” in Proc.
International Conference on Neural Information Processing Systems, 2016, pp. 1180–1188.

[29] D. Krotov and J. Hopfield, “Large associative memory problem in neurobiology and
machine learning,” in Proc. International Conference on Learning Representations, 2020,
pp. 1–13.

[30] H. Ramsauer et al., “Hopfield networks is all you need,” in arXiv preprint:2008.02217,
2020.

[31] F. Sabahi, M. O. Ahmad, and M. N. S. Swamy, “Hopfield network-based image retrieval
using re-ranking and voting,” in Proc. IEEE Canadian Conference on Electrical and
Computer Engineering, 2017, pp. 1–4. doi: 10.1109/CCECE.2017.7946798.

[32] F. Sabahi, M. O. Ahmad, and M. N. S. Swamy, “Content-based image retrieval using

86

perceptual image hashing and hopfield neural network,” in Proc. IEEE International
Midwest Symposium on Circuits and Systems, 2018, pp. 352–355. doi:
10.1109/MWSCAS.2018.8623902.

[33] C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu, “Semi-Supervised nonlinear hashing using
bootstrap sequential projection learning,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 6, pp. 1380–1393, Jun. 2013, doi: 10.1109/TKDE.2012.76.

[34] W. Pronobis et al., “Sharing hash codes for multiple purposes,” in arXiv
preprint:1609.03219, 2017.

[35] X. Zhang, M. Wang, and J. Cui, “Efficient indexing of binary LSH for high dimensional
nearest neighbor,” Neurocomputing, vol. 213, pp. 24–33, Nov. 2016, doi:
10.1016/J.NEUCOM.2016.05.095.

[36] D. Xu, J. Wu, D. Li, Y. Tian, X. Zhu, and X. Wu, “SALE: self-adaptive LSH encoding for
multi-instance learning,” Pattern Recognition, vol. 71, pp. 460–482, 2017, doi:
10.1016/J.PATCOG.2017.04.029.

[37] L. Li, C. C. Yan, W. Ji, B. W. Chen, S. Jiang, and Q. Huang, “LSH-based semantic
dictionary learning for large scale image understanding,” Journal of Visual Communication
and Image Representation, vol. 31, pp. 231–236, Aug. 2015, doi:
10.1016/J.JVCIR.2015.06.008.

[38] R. K. Karsh, A. Saikia, and R. H. Laskar, “Image authentication based on robust image
hashing with geometric correction,” Multimedia Tools and Applications, vol. 77, no. 19, pp.
25409–25429, Oct. 2018, doi: 10.1007/s11042-018-5799-6.

[39] S. Liu and Z. Huang, “Efficient image hashing with geometric invariant vector distance for
copy detection,” ACM Transactions on Multimedia Computing, Communications, and
Applications, vol. 15, no. 4, pp. 1–22, Dec. 2019, doi: 10.1145/3355394.

[40] M. Roy, D. M. Thounaojam, and S. Pal, “A perceptual hash based blind-watermarking
scheme for image authentication,” Expert Systems with Applications, vol. 227, p. 120237,
Oct. 2023, doi: 10.1016/J.ESWA.2023.120237.

[41] M. Hanif, H. Ling, W. Tian, Y. Shi, and M. Rauf, “Re-ranking person re-identification using
distance aggregation of k-nearest neighbors hierarchical tree,” Multimedia Tools and
Applications, vol. 80, no. 5, pp. 8015–8038, Feb. 2021, doi: 10.1007/S11042-020-10123-0.

[42] K. H. Rosen, Handbook of graph theory, 2nd ed. Chapman and Hall/CRC, 2013. doi:
10.1201/B16132.

[43] H. Samet and Hanan, “The quadtree and related hierarchical data structures,” ACM
Computing Surveys, vol. 16, no. 2, pp. 187–260, Jun. 1984, doi: 10.1145/356924.356930.

87

[44] M. Komorowski and T. Trzciński, “Random Binary Search Trees for Approximate Nearest
Neighbour Search in Binary Spaces,” Applied Soft Computing, vol. 79, pp. 87–93, Jun.
2019, doi: 10.1016/J.ASOC.2019.03.031.

[45] P. Gupta, A. Jindal, Jayadeva, and D. Sengupta, “ComBI: Compressed Binary Search Tree
for Approximate k-NN Searches in Hamming Space,” Big Data Research, vol. 25, p.
100223, Jul. 2021, doi: 10.1016/J.BDR.2021.100223.

[46] T. Zhi, L. Y. Duan, Y. Wang, and T. Huang, “Two-stage pooling of deep convolutional
features for image retrieval,” in Proc. IEEE International Conference on Image Processing,
2016, pp. 2465–2469. doi: 10.1109/ICIP.2016.7532802.

[47] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep convolutional
neural networks,” in Proc. International Conference on Learning Representations, 2013,
pp. 1–5.

[48] B. Wang, Y. Liu, W. Xiao, Z. Xiong, and M. Zhang, “Positive and negative max pooling
for image classification,” in Proc. IEEE International Conference on Consumer
Electronics, 2013, pp. 278–279. doi: 10.1109/ICCE.2013.6486894.

[49] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural networks applied to house
numbers digit classification,” in Proc. IEEE International Conference on Computer Vision
and Pattern Recognition, 2012, pp. 3288–3291.

[50] Z. Shi, Y. Ye, and Y. Wu, “Rank-based pooling for deep convolutional neural networks,”
Neural Networks, vol. 83, pp. 21–31, Nov. 2016.

[51] D. Yu, H. Wang, P. Chen, and Z. Wei, “Mixed pooling for convolutional neural networks,”
in Proc. International Conference on Rough Sets and Knowledge Technology, 2014, pp.
364–375. doi: 10.1007/978-3-319-11740-9_34.

[52] A. Jose, R. D. Lopez, I. Heisterklaus, and M. Wien, “Pyramid pooling of convolutional
feature maps for image retrieval,” in Proc. IEEE International Conference on Image
Processing, 2018, pp. 480–484. doi: 10.1109/ICIP.2018.8451361.

[53] O. Rippel, J. Snoek, and R. P. Adams, “Spectral representations for convolutional neural
networks,” in Proc. International Conference on Neural Information Processing Systems,
2015, pp. 2449–2457.

[54] J. Serra and P. Soille, Mathematical morphology and its applications to image processing,
vol. 1. Dordrecht: Springer, 1994.

[55] F. Sabahi, M. O. Ahmad, and M. N. S. Swamy, “MorIRNet: A deep image retrieval network
using morphological feature and residual block,” in Proc. IEEE International Midwest
Symposium on Circuits and Systems, 2022, pp. 1–4. doi:

88

10.1109/MWSCAS54063.2022.9859341.

[56] G. Franchi, A. Fehri, and A. Yao, “Deep morphological networks,” Pattern Recognition,
vol. 102, p. 107246, Jun. 2020, doi: 10.1016/j.patcog.2020.107246.

[57] A. Esmaeilzehi, M. O. Ahmad, and M. N. S. Swamy, “SRNMSM: A Deep Light-Weight
Image Super Resolution Network Using Multi-Scale Spatial and Morphological Feature
Generating Residual Blocks,” IEEE Transactions on Broadcasting, vol. 68, no. 1, pp. 58–
68, Mar. 2022, doi: 10.1109/TBC.2021.3126275.

[58] F. Sabahi, M. O. Ahmad, and M. N. S. Swamy, “Improving deep features for image retrieval
using multi-source spatial information,” in Proc. IEEE International Symposium on Circuits
and Systems, 2023, pp. 1–5. doi: 10.1109/ISCAS46773.2023.10182225.

[59] F. Sabahi, M. O. Ahmad, and M. N. S. Swamy, “Development of a deep image retrieval
network using hierarchical and multi-scale spatial features,” in Proc. IEEE International
Symposium on Circuits and Systems, 2023, pp. 1–5. doi:
10.1109/ISCAS46773.2023.10181673.

[60] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Communications, vol. 60, no. 6, pp. 84–90, 2017, doi:
10.1145/3065386.

[61] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep
learning,” Journal of Big Data, vol. 60, no. 1, pp. 1–48, Dec. 2019, doi: 10.1007/978-3-
319-46484-8_21.

[62] M. Abadi et al., “TensorFlow: large-scale machine learning on heterogeneous systems,”
2015. https://www.tensorflow.org/

[63] F. Chollet, “GitHub - Keras-team/Keras: Deep learning for humans.”

[64] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 636–644. doi:
10.1109/CVPR.2017.75.

[65] X. Li, J. Yang, and J. Ma, “Large scale category-structured image retrieval for object
identification through supervised learning of CNN and SURF-based matching,” IEEE
Access, vol. 8, pp. 57796–57809, 2020, doi: 10.1109/ACCESS.2020.2982560.

[66] I. Ha, H. H. H. Kim, S. Park, and H. H. H. Kim, “Image retrieval using bim and features
from pretrained VGG network for indoor localization,” International Journal of Building
Science and its Applications, vol. 140, pp. 23–31, Aug. 2018, doi:
10.1016/J.BUILDENV.2018.05.026.

[67] B. Cao, A. Araujo, and J. Sim, “Unifying deep local and global features for image search,”

89

in Proc. European Conference on Computer Vision, Aug. 2020, pp. 726–743. doi:
10.1007/978-3-030-58565-5_43.

[68] K. T. K. T. Ahmed, S. Jaffar, M. G. Hussain, S. Fareed, A. Mehmood, and G. S. Choi,
“Maximum response deep learning using markov, retinal & primitive patch binding with
googlenet & VGG-19 for large image retrieval,” IEEE Access, vol. 9, pp. 41934–41957,
2021.

[69] S. Cheng, H. Lai, L. Wang, and J. Qin, “A novel deep hashing method for fast image
retrieval,” The Visual Computer, vol. 35, no. 9, pp. 1255–1266, Sep. 2019, doi:
10.1007/S00371-018-1583-X.

[70] Y. Ma, Q. Li, X. Shi, and Z. Guo, “Unsupervised deep pairwise hashing,” Electronics, vol.
11, no. 5, pp. 744–755, 2022, doi: 10.3390/electronics11050744.

[71] R. Punithavathi, A. Ramalingam, C. Kurangi, A. S. K. Reddy, and J. Uthayakumar, “Secure
content based image retrieval system using deep learning with multi share creation scheme
in cloud environment,” Multimedia Tools and Applications, vol. 80, no. 17, pp. 26889–
26910, Jul. 2021, doi: 10.1007/S11042-021-10998-7.

[72] F. Sabahi, M. O. Ahmad, and M. N. S. Swamy, “A deep image retrieval network using Max-
m-Min pooling and morphological feature generating residual blocks,” International
Journal of Multimedia Information Retrieval, vol. 12, no. 1, pp. 1–14, Apr. 2023, doi:
10.1007/S13735-023-00274-9.

[73] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 and CIFAR-100 datasets,” 2009.
https://www.cs.toronto.edu/~kriz/cifar.html

[74] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “CINIC-10 is not ImageNet
or CIFAR-10,” arXiv preprint:1810.03505, 2018.

[75] X. Wang, K. Yu, C. Dong, and C. C. Loy, “Recovering realistic texture in Image super-
resolution by deep spatial feature transform,” in Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 606–615. doi: 10.1109/CVPR.2018.00070.

[76] T. Y. Lin et al., “Microsoft COCO: Common objects in context,” in Proc. European
Conference on Computer Vision, 2014, pp. 740–755. doi: 10.1007/978-3-319-10602-1_48.

[77] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, Dec. 2015.

[78] B. Thomee et al., “YFCC100M: the new data in multimedia research,” Communications,
vol. 59, no. 2, pp. 64–73, 2016, doi: 10.1145/2812802.

[79] Z. Cao, M. Long, J. Wang, and P. S. Yu, “HashNet: Deep learning to hash by continuation,”
Proc. IEEE International Conference on Computer Vision. pp. 5609–5618, 2017. doi:

90

10.1109/ICCV.2017.598.

[80] S. Eghbali and L. Tahvildari, “Deep spherical quantization for image search,” in Proc.
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11682–
11691. doi: 10.1109/CVPR.2019.01196.

[81] H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep hashing network for efficient similarity
retrieval,” in Proc. AAAI Conference on Artificial Intelligence, 2016, pp. 2415–2421. doi:
10.1609/aaai.v30i1.10235.

[82] H. Zhu, “Massive-scale image retrieval based on deep visual feature representation,”
Journal of Visual Communication and Image Representation, vol. 70, p. 102743, 2020.

[83] R. Wang, R. Wang, S. Qiao, S. Shan, and X. Chen, “Deep position-aware hashing for
semantic continuous image retrieval,” in Proc. IEEE Winter Conference on Applications of
Computer Vision, 2020, pp. 2482–2491. doi: 10.1109/WACV45572.2020.9093468.

[84] J. Xu, C. Guo, Q. Liu, J. Qin, Y. Wang, and L. Liu, “DHA: Supervised deep learning to
hash with an adaptive loss function,” in Proc. IEEE/CVF International Conference on
Computer Vision Workshop, 2019, pp. 3054–3062. doi: 10.1109/ICCVW.2019.00368.

[85] S. Gkelios, A. Sophokleous, S. Plakias, Y. Boutalis, and S. A. Chatzichristofis, “Deep
convolutional features for image retrieval,” Expert Systems with Applications, vol. 177, p.
114940, 2021, doi: 10.1016/j.eswa.2021.114940.

[86] M. Ghayoumi, M. Gomez, K. E. Baumstein, N. Persaud, and A. J. Perlowin, “Local
sensitive hashing (LSH) and convolutional neural networks (CNNs) for object recognition,”
in Proc. IEEE International Conference on Machine Learning and Applications, 2018, pp.
1197–1199. doi: 10.1109/ICMLA.2018.00193.

[87] Y. Shen et al., “Auto-encoding twin-bottleneck hashing,” in Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 2815–2824. doi:
10.1109/CVPR42600.2020.00289.

[88] F. Sabahi, M. O. Ahmad, and M. N. S. Swamy, “Perceptual image hashing using random
forest for content-based image retrieval,” in Proc. IEEE International New Circuits and
Systems Conference, 2018, pp. 348–351. doi: 10.1109/NEWCAS.2018.8585506.

[89] F. Sabahi, M. O. Ahmad, and M. N. S. Swamy, “RefinerHash: A new hashing-based re-
ranking technique for image retrieval,” under review.

[90] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
doi: 10.1109/CVPR.2016.90.

[91] P. Govindaraj and R. Sandeep, “Ring partition and dwt based perceptual image hashing

91

with application to indexing and retrieval of near-identical images,” in Proc. IEEE
International Conference on Advances in Computing and Communication, 2016, pp. 421–
425. doi: 10.1109/ICACC.2015.90.

[92] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total recall: automatic query
expansion with a generative feature model for object retrieval,” in Proc. IEEE International
Conference on Computer Vision, 2007, pp. 1–8. doi: 10.1109/ICCV.2007.4408891.

[93] F. Ye, M. Dong, W. Luo, X. Chen, and W. Min, “A new re-ranking method based on
convolutional neural network and two image-to-class distances for remote sensing image
retrieval,” IEEE Access, vol. 7, pp. 141498–141507, 2019, doi:
10.1109/ACCESS.2019.2944253.

[94] G. Lao et al., “Three degree binary graph and shortest edge clustering for re-ranking in
multi-feature image retrieval,” Journal of Visual Communication and Image
Representation, vol. 80, p. 103282, Oct. 2021, doi: 10.1016/J.JVCIR.2021.103282.

[95] L. Wang, X. Qian, X. Zhang, and X. Hou, “Sketch-based image retrieval with multi-
clustering re-ranking,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 30, no. 12, pp. 4929–4943, Dec. 2020, doi: 10.1109/TCSVT.2019.2959875.

[96] X. Yuan and Y. Zhao, “Perceptual image hashing based on three-dimensional global
features and image energy,” IEEE Access, vol. 9, pp. 49325–49337, 2021, doi:
10.1109/ACCESS.2021.3069045.

[97] F. Lu and G. H. Liu, “Image retrieval using contrastive weight aggregation histograms,”
Digital Signal Processing, vol. 123, p. 103457, Apr. 2022, doi:
10.1016/J.DSP.2022.103457.

[98] C. G. Ban, Y. Hwang, D. Park, R. Lee, R. Y. Jang, and M. S. Choi, “Multi-Subject Image
Retrieval by Fusing Object and Scene-Level Feature Embeddings,” Applied Sciences, vol.
12, no. 24, p. 12705, Dec. 2022, doi: 10.3390/APP122412705.

[99] L. Huang, C. Bai, Y. Lu, S. Zhang, and S. Chen, “Unsupervised adversarial image retrieval,”
Multimedia Systems, vol. 28, no. 2, pp. 673–685, 2022, doi: 10.1007/S00530-021-00866-7.

[100] F. Radenovic, G. Tolias, and O. Chum, “Fine-tuning CNN image retrieval with no human
annotation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no.
7, pp. 1655–1668, 2019.

[101] S. Su, C. Zhang, K. Han, and Y. Tian, “Greedy hash: towards fast optimization for accurate
hash coding in CNN,” in Proc. International Conference on Neural Information Processing
Systems, 2018, pp. 806–815. doi: 10.5555/3326943.3327018.

[102] J. Xu, C. Wang, C. Qi, C. Shi, and B. Xiao, “Unsupervised semantic-based aggregation of

92

deep convolutional features,” IEEE Transactions on Image Processing, vol. 28, no. 2, pp.
601–611, Feb. 2019, doi: 10.1109/TIP.2018.2867104.

[103] M. M. Monowar, M. A. Hamid, A. Q. Ohi, M. O. Alassafi, and M. F. Mridha, “AutoRet: a
self-supervised spatial recurrent network for content-based image retrieval,” Sensors, vol.
22, no. 6, p. 2188, Mar. 2022, doi: 10.3390/S22062188.

[104] S. H. Ieng, E. Lehtonen, and R. Benosman, “Complexity analysis of iterative basis
transformations applied to event-based signals,” Frontiers in Neuroscience, vol. 12, p. 373,
Jun. 2018.

[105] P. Zhang, W. Zhang, W.-J. Li, and M. Guo, “Supervised hashing with latent factor models,”
in Proc. ACM International Conference on Research and Development in Information
Retrieval, 2014, pp. 173–182. doi: 10.1145/2600428.2609600.

[106] J. Alman and V. V. Williams, “A refined laser method and faster matrix multiplication,” in
Proc. ACM-SIAM Symposium Discrete Algorithms, 2021, pp. 522–539. doi:
10.1137/1.9781611976465.32.

93

Appendix A: Proofs
Appendix

Proposition 1: Given 𝑀𝑀 ≥ 𝐾𝐾 > 0, the limit of the ration of 𝜑𝜑2 and 𝜑𝜑1 as 𝑀𝑀 approaches infinity

converges to zero, where 𝜑𝜑1 ∈ 𝒪𝒪(𝑀𝑀) and 𝜑𝜑2 ∈ 𝒪𝒪(log𝐾𝐾).

Proof. Let 𝜑𝜑1 = 𝐶𝐶1𝑀𝑀 and 𝜑𝜑2 = 𝐶𝐶2𝑙𝑙𝑜𝑜𝑠𝑠 𝐾𝐾, where 𝐶𝐶1 and 𝐶𝐶2 are positive constants representing the

rate of growth of each function. Through analysis of the limit of the ratio of 𝜑𝜑1 and 𝜑𝜑2 as 𝑀𝑀 ap-

proaches infinity, we have

 lim
𝑀𝑀→∞

𝜑𝜑2
𝜑𝜑1

 = lim
𝑀𝑀→∞

𝐶𝐶2 log𝐾𝐾
𝐶𝐶1𝑀𝑀

 (A.16)

Since log𝐾𝐾 grows slower than 𝑀𝑀, as 𝑀𝑀 approaches infinity, the limit converges to zero:

 lim
𝑀𝑀→∞

𝐶𝐶2 log𝐾𝐾
𝐶𝐶1𝑀𝑀

= 0 (A.17)

∴ Asymptotically, the growth of 𝜑𝜑2 is negligible compared to the growth of 𝜑𝜑1. □

Proposition 2: Time complexity of 𝒪𝒪(𝑀𝑀) + 𝒪𝒪(log𝐾𝐾) is 𝒪𝒪(𝑀𝑀) for 𝑀𝑀 ≥ 𝐾𝐾 > 0.

94

Proof. Let function 𝜑𝜑 be the sum of two other functions, 𝜑𝜑1 and 𝜑𝜑2 , such that 𝜑𝜑 = 𝜑𝜑1 + 𝜑𝜑2 ,

where 𝜑𝜑1 ∈ 𝒪𝒪(𝑀𝑀) and 𝜑𝜑2 ∈ 𝒪𝒪(log𝐾𝐾). Then we can express the upper bound of 𝜑𝜑1and 𝜑𝜑2 as

∃𝐶𝐶1 > 0,∃𝑁𝑁1 ∈ ℕ,∀𝑛𝑛 > 𝑁𝑁1,𝜑𝜑1 ≤ 𝐶𝐶1𝑀𝑀

∃𝐶𝐶2 > 0,∃𝑁𝑁2 ∈ ℕ,∀𝑛𝑛 > 𝑁𝑁2,𝜑𝜑2 ≤ 𝐶𝐶2 log𝐾𝐾.
(A.18)

We have 𝜑𝜑 as

 𝜑𝜑 = 𝜑𝜑1 + 𝜑𝜑2, (A.19)

Then, by applying the upper bounds for 𝜑𝜑1 and 𝜑𝜑2 from Eq. 22, we can derive an upper bound for

𝜑𝜑 as

 𝜑𝜑 = 𝜑𝜑1 + 𝜑𝜑2 ≤ 𝐶𝐶1𝑀𝑀 + 𝐶𝐶2 log𝐾𝐾 (A.20)

or,

 𝜑𝜑 ≤ 𝑀𝑀�𝐶𝐶1 + 𝐶𝐶2
log𝐾𝐾
𝑀𝑀

�. (A.21)

Now, based on Proposition 1, as 𝑀𝑀 grows large, the term 𝐶𝐶 2 becomes negligible compared to
𝐶𝐶1𝑀𝑀. Therefore, the dominant term here is 𝐶𝐶1𝑀𝑀, leading us to express the upper bound of φ as:

 𝐶𝐶1 + 𝐶𝐶2
log𝐾𝐾
𝑀𝑀

≤ 𝐶𝐶1. (A.22)

or

 𝜑𝜑 ≤ 𝐶𝐶1𝑀𝑀 (A.23)

So, the time complexity 𝒪𝒪(𝑀𝑀) + 𝒪𝒪(𝑙𝑙𝑜𝑜𝑠𝑠 𝐾𝐾) is dominated by 𝒪𝒪(M), which leads us to conclude

that the overall time complexity is 𝒪𝒪(M). □

	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviation
	1 Introduction
	1.1 Overview of Image Retrieval
	1.2 Importance of Image Retrieval
	1.3 Brief Literature Review
	1.4 Motivation and Objective
	1.5 Organization of the Thesis

	2 Background Material
	2.1 Hopfield Neural Network
	2.2 Image Hashing
	2.3 Re-ranking
	2.4 Balanced Binary Search Tree
	2.5 Pooling Operation
	2.5.1 Average and Max Pooling
	2.5.2 Other Pooling Methods

	2.6 Morphological Operations
	2.7 Evaluation Metric
	2.8 Summary

	3 Deep Image Retrieval Networks Using Residual Blocks Focusing on Spatial Information
	3.1 Improving Deep Features for Image Retrieval using Multi-Source Spatial Information
	3.2 Development of a Deep Image Retrieval Network using Hierarchical and Multi-scale Spatial Features
	3.3 Experimental Results
	3.3.1 Experimental Results of MSFRNet
	3.3.2 Experimental Results of HMSRNet

	3.4 Summary

	4 Deep Image Retrieval Network with Guided Feature Generation
	4.1 Max-m-Min Pooling
	4.2 Proposed Residual Block
	4.3 Experimental Results
	4.4 Summary

	5 Hashing-based Re-ranking Technique for Image Retrieval
	5.1 RefinerHash: A New Hashing-based Re-ranking Technique for Image Retrieval
	5.1.1 Initial Retrieval List
	5.1.1.1 Block-wise Hopfield-based Image Retrieval
	5.1.1.2 MoFNet
	5.1.1.3 Initial Retrieval List Creation using BHIR
	5.1.1.4 Initial Retrieval List Creation using MoFNet
	5.1.1.5 Hash Code Generation
	5.1.1.6 Image Search

	5.2 Experimental Results
	5.3 Summary

	6 Conclusion and Future Work
	6.1 Concluding Remarks
	6.2 Future Work

