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Abstract 
Development of Deep Learning Techniques for Image Retrieval 

 
Farzad Sabahi, Ph.D. 

Concordia University, 2023 

Images are used in many real-world applications, ranging from personal photo repositories to 

medical imaging systems. Image retrieval is a process in which the images in the database are first 

ranked in terms their similarities with respect to a query image, then a certain number of the images 

are retrieved from the ranked list that are most similar to the query image. The performance of an 

image retrieval algorithm is measured in terms of mean average precision. There are numerous 

applications of image retrieval. For example, face retrieval can help identify a person for security 

purposes, medical image retrieval can help doctors make more informed medical diagnoses, and 

commodity image retrieval can help customers find desired commodities. In recent years, image 

retrieval has gained more popularity in view of the emergence of large-capacity storage devices 

and the availability of low-cost image acquisition equipment. On the other hand, with the size and 

diversity of image databases continuously growing, the task of image retrieval has become 

increasingly more complex. Recent image retrieval techniques have focused on using deep 

learning techniques because of their exceptional feature extraction capability. However, deep 

image retrieval networks often employ very complex networks to achieve a desired performance, 

thus limiting their practicability in applications with limited storage and power capacity. The 

objective of this thesis is to design high-performance, low complexity deep networks for the task 

of image retrieval. This objective is achieved by developing three different low-complexity 

strategies for generating rich sets of discriminating features.  

Spatial information contained in images is crucial for providing detailed information about the 

positioning and interrelation of various elements within an image and thus, it plays an important 

role in distinguishing different images. As a result, designing a network to extract features that 

characterize this spatial information within an image is beneficial for the task of image retrieval. 

In the light of the importance of spatial information, in our first strategy, we develop two deep 

convolutional neural networks capable of extracting features with a focus on the spatial infor-

mation. For the design of the first network, multi-scale dilated convolution operations are used to 
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extract spatial information, whereas in the design of the second network, fusion of feature maps 

obtained from different hierarchical levels are employed to extract spatial information. 

Textural, structural, and edge information is very important for distinguishing images, and 

therefore, a network capable of extracting features characterizing this type of information about 

the images could be very useful for the task of image retrieval. Hence, in our second strategy, we 

develop a deep convolutional neural network that is guided to extract textural, structural, and edge 

information contained in an image. Since morphological operations process the texture and struc-

ture of the objects within an image based on their geometrical properties and edges are fundamental 

features of an image, we use morphological operations to guide the network in extracting textural 

and structural information, and a novel pooling operation for extracting the edge information in an 

image. 

Most of the researchers in the area of image retrieval have focused on developing algorithms 

aimed at yielding good retrieval performance at low computational complexity by outputting a list 

of certain number of images ranked in a decreasing order of similarity with respect to the query 

image. However, there are other researchers who have adopted a course of improving the results 

of an already existing image retrieval algorithm through a process of a re-ranking technique. A re-

ranking scheme for image retrieval accesses the list of the images retrieved by an image retrieval 

algorithm and re-ranks them so that the re-ranked list at the output the scheme has a mean average 

precision value higher than that of the originally retrieved list.  

A re-ranking scheme is an overhead to the process of image retrieval, and therefore, its com-

plexity should be as small as possible. Most of the re-ranking schemes in the literature aim to boost 

the retrieval performance at the expense of a very high computational complexity. Therefore, in 

our third strategy, we develop a computationally efficient re-ranking scheme for image retrieval, 

whose performance is superior to that of the existing re-ranking schemes. Since image hashing 

offers the dual benefits of computational efficiency and the ability to generate versatile image 

representation, we adopt it in the proposed re-ranking scheme.  

Extensive experiments are performed, in this thesis, using benchmark datasets, to demonstrate 

the effectiveness of the proposed new strategies in designing low-complexity deep networks for 

image retrieval. 
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1 Introduction 

 

Chapter 1 
 

Introduction 

1.1 Overview of Image Retrieval 

"A picture is worth one thousand words." This proverb comes from Confucius - a philosopher who 

lived more than 2500 years ago. Humans have often used drawings to convey information. 

Throughout history, mankind often uses visual representations as a medium for information con-

vey. Evidence of this is the prehistoric cave paintings depicting the perilous hunting experiences 

as well as several paintings from Pharaohs’ ritual practice wall paintings found in Egypt. Today, 

we are surrounded by visual information almost everywhere. With the influence of the digital 

world, a substantial amount of information is available only in digital formats, including images. 

Nowadays, digital images are gaining the main visual medium across various platforms, from per-

sonal photo libraries to medical imaging. With the rise of computational power and decreasing 

storage costs, Images are playing an increasingly important role in people’s daily lives. We cannot 

access or make use of a large collection of images unless it is organized to allow efficient browsing, 

searching, and retrieval processes. Image retrieval involves retrieving images similar to a user-
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specified textual or pictorial object (query) from the images of a database. An illustration of the 

image retrieval task in shown in Figure 1.1.  

With the rapid growth of digital image repositories and the increasing demand for efficient and 

accurate retrieval systems, image retrieval has emerged as a crucial research area. The task of 

image retrieval has evolved significantly over the years, advancing from low-level feature-based 

approaches to deep learning-based methods. Low-level feature-based image retrieval methods fo-

cus on extracting and comparing features such as color, texture, and shape from images.  

In recent years, image retrieval has gained more attention in light of the emergence of applica-

tions employing computer vision and artificial intelligence techniques. Image retrieval processes 

have also become more complex owing to the exponential growth of the size and diversity of image 

databases resulting from the availability of low-cost digital acquisition equipment and the emer-

gence of large-scale storage devices. 

A typical image retrieval method performs the task by processing the visual information con-

tained in an image and creating a feature vector based on the image content. Any subsequent query 

operations take place solely within the generated feature vectors, not the raw image data. In fact, 

every image in the image database, including the query image, is analyzed, and a compact repre-

sentation of it is stored as a feature vector. This feature vector acts as a unique signature for the 

image that represents it during similarity matching. The key processes conducted in a typical image 

 
Figure 1.1:  Illustration of the task of image retrieval. 
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retrieval method are shown in Figure 1.2.The units shown in the figure are explained further as 

follows: 

• Feature extraction: This process is the core of any image retrieval method. Every image 

must be transformed into numerical values (a feature vector) in order to make the visual 

information understandable by a computer. The representable ability of the generated fea-

ture vectors is crucial to obtain high retrieval performance.  

• Feature database: all the feature vectors are stored in the feature database. The algorithm 

that is used to generate this database is the same for processing all the images, including 

the query image. 

• Feature matching: This step involves comparing the feature vector of the query image to 

each feature vector in the feature database. A suitable similarity measurement method is 

used to calculate the distance between the feature vectors. 

• Sorting: During this final stage, images are ranked based on the similarity scores obtained 

from the feature-matching process. The images corresponding to the feature vectors that 

are closest to the query image are expected to have the highest scores and will be reported 

as the top matches.  

 
Figure 1.2:  Details of an image retrieval system. 
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1.2 Importance of Image Retrieval 

Image retrieval plays a vital role in a wide range of applications ranging from medical diagnostics 

to e-commerce. In medical diagnostics, image retrieval systems can efficiently locate relevant 

medical images, such as X-rays, from available medical image databases [1]. Similarly, the e-

commerce industry exploits image retrieval systems to offer visually similar product recommen-

dations [2]. Several online retail stores have integrated image retrieval into their platforms, facili-

tating product discovery. Given the ongoing advancements in image retrieval techniques, the scope 

of its application continues to broaden across various industries. This trend necessitates more ef-

ficient and effective image retrieval methods capable of analyzing the ever-increasing volume and 

complexity of image databases for real-world applications. Consequently, the study and improve-

ment of image retrieval techniques are not only relevant but crucial in our progressively digital 

world. 

1.3 Brief Literature Review 

The quality of features extracted from images is crucial in achieving high retrieval performance. 

Therefore, it is not surprising that a significant portion of research in the field of image retrieval 

has been done to improve the representational capacity of the obtained feature vectors. The pro-

gression can be divided into three distinct eras, each characterized by differences in how raw pixel 

values of images are transformed into feature vectors.  

In the first era, the focus was on extracting global low-level features to describe the character-

istics of an image in the form of a single feature vector. An example is the Query By Image Content 

(QBIC) system [3], which uses global characteristics like color and texture to represent images. 

However, these global features frequently failed to discriminate between the visual contents of 

different images effectively. Due to this deficiency in representation, researchers shifted their fo-

cus towards methods based on local low-level features, which was the start of the second era. In 

this era, methods involve identifying salient patches within a given image and extracting the fea-

ture vector of each patch to represent the image as a combination of several such vectors [4], [5]. 

An example is scale-invariant feature transform (SIFT) [4] which is a method designed to extract 
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distinctive invariant features from images, which can be used to perform reliable matching be-

tween different views of an object or scene. Despite these advances, a common drawback of these 

early low-level feature-based methods is their struggle with understanding high-level visual con-

tent in images [6]. As a result, traditional image retrieval systems that relied on low-level features 

often underperformed due to the inherent limitations associated with low-level features [7]. 

The advent of deep Convolutional Neural Networks (CNNs) has initiated a new era for image 

retrieval, fundamentally revolutionizing the field with their remarkable feature extraction capabil-

ities. Unlike handcrafted features, CNNs automatically learn discriminative and robust features 

directly from raw pixel values, significantly outperforming the low-level-based image retrieval 

methods. The strength of CNNs lies in their architecture, which consists of multiple convolutional 

layers, each learning increasingly complex features from the outputs of the previous layer through 

several convolution operations followed by nonlinear activation functions. The stack of several 

convolutional layers forms a hierarchical structure, with low-level features (such as edges and 

textures) learned in the early shallow layers and high-level features (such as objects) identified in 

the deeper layers. This hierarchical feature extraction process enables CNNs to integrate critical 

visual characteristics within an image into high-level features, resulting in feature sets that are 

highly representative and discriminative, allowing for superior image representation and, thereby, 

enhancing the retrieval performance.  

Early deep learning-based techniques primarily utilized pre-trained networks to obtain features 

[8]–[17]. For instance, in [8], the authors investigated the use of feature maps from the top fully 

connected layer of a large CNN for image retrieval, transforming a given image into a single vec-

tor. The lack of spatial information in the fully connected layers has led to utilizing feature maps 

available in the convolutional layers, as proposed in [15]. Convolutional layers contain spatial 

information, which is crucial for applications where the location of objects is helpful for generating 

more informative features. However, the discriminative power of these methods is inherently lim-

ited by the pre-trained deep networks from which the feature vectors are obtained. To address this 

issue, some works have been developed to combine deep features and high-end low-level features. 

For example, in [16], the authors proposed a technique to combine features obtained from a deep 

network with and that of SIFT features in order to exploit the strengths of both types of features. 

While some improvements were achieved by combining low- and high-level features, the 
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performance degraded when there is a high degree of inter-class similarity. To mitigate this issue, 

in [17], the feature maps of multiple deep networks can be fused in order to improve the represen-

tational ability of the feature vectors. While these methods provide a good performance, usage of 

multiple deep networks renders them resource-intensive and impractical for real-world applica-

tions. It is seen from the above discussion that the main focus of image retrieval methods using 

pre-trained networks is on designing effective mechanisms to extract the best possible features. 

However, the performance of these techniques is constrained by the design of the utilized pre-

trained networks, which are not specifically designed for image retrieval tasks, thereby resulting 

in suboptimal performance [18]. This paves the way for designing new architectures, which may 

offer more tailored solutions for image retrieval tasks. 

Apart from improving representational capacity to enhance retrieval performance, another 

promising research direction is to re-rank an initial retrieval list obtained from a retrieval process 

in such a way that images similar to a given query image are ranked higher in the list. Some re-

ranking methods have been proposed to enhance retrieval performance [20-34]. For example, in a 

query expansion method proposed in [19], a new feature vector for the query image is constructed 

by averaging the feature vectors of the top-ranked images from the initial retrieval list. This revised 

feature vector is then used to search the image dataset again. However, query expansion requires 

performing an entirely new search, which can be particularly resource-intensive for large-scale 

datasets. Using k-nearest neighbor is another technique that is used to exploit the similarity rela-

tionship between top-ranked images for re-ranking the initial retrieval results. Similarly, in [20]–

[23], the k-reciprocal nearest neighbor is used where two images are defined as k-reciprocal nearest 

neighbors if both appear in each other top-k list when one image serves as the query image. Dis-

criminative Query Expansion (DQE) [24] proposes a re-ranking method based on the support vec-

tor machine model. Building upon the idea of feature-specific expansion, methods like Texture 

Expansion based on Feature Selection Retrieval (TXEBFSR) [25] are proposed. This method cre-

ates a new feature vector for the query image by averaging texture features calculated on top-

ranked images to perform a new image retrieval process. Recently, a new re-ranking scheme for 

image retrieval is proposed [26]. This method transforms an initial retrieval list into a correlation 

matrix. This matrix is then used to train a CNN to learn the semantic relevance among the images. 

After the network has learned these relationships, the images in the list are re-ranked based on 
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their relevance to the original query. However, a significant limitation of this method is its depend-

ency on the training of a CNN and the requirement for a ground-truth relevance matrix. The latter 

can be particularly challenging to obtain, especially when dealing with large datasets or in scenar-

ios where the relationships between images are not well-defined or known in advance. Very re-

cently, a new re-ranking method referred to as RbQE has been proposed [27]. RbQE has two search 

stages: a rapid search and a final search. In the rapid search, using feature vector of the query 

images, retrieval process is done in each class and by calculating mean values of deep features of 

top-ranked images from each class, a feature vector for each class is computed. In the final search, 

among the computed feature vectors, the one that is most similar to the original query is used to 

re-query the database. While the aforementioned re-ranking techniques demonstrate promising 

performance, they suffer from high computational complexity, leading to slow and resource-inten-

sive operations and, thereby, making them impractical for real-world applications. This necessi-

tates the development of a computationally efficient re-ranking approach that effectively improves 

retrieval performance. 

1.4 Motivation and Objective 

It is seen from the literature review in Section 1.2 that the design of efficient image retrieval meth-

ods is very crucial in many real-world computer vision applications, and the performance of any 

image retrieval method largely depends on the quality of representation of the feature vectors. 

Many existing image retrieval methods, although providing respectable performance, may fall 

short when faced with the continuously growing size and complexity of image datasets. Moreover, 

they achieve their performance at the expense of high computational complexity, making them 

impractical for real-world applications. Furthermore, there is a noticeable scarcity in the design of 

new deep architectures that focus on improving the representational capacity of the network. The 

incorporation of crucial information for obtaining high retrieval performance for the task of image 

retrieval, such as spatial and structural information, remains largely unexplored, despite the poten-

tial for these tailored architectures to significantly enhance the performance of a deep image re-

trieval network. 
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The objective of the thesis is twofold. First, we propose several novel residual blocks focusing 

on extracting textural and structural information to be used in convolutional neural networks to 

enhance the representational capacity of the networks for image retrieval tasks. The proposed re-

sidual blocks include various novel modules, including hierarchical spatial feature extraction, 

multi-scale feature extraction, multi-source spatial feature extraction, edge feature extraction, and 

morphological feature extraction. By employing these new modules in residual framework, vari-

ous deep convolutional neural networks are proposed that learn rich sets of features to enhance the 

retrieval performance significantly. The second objective is to improve the retrieval performance 

of an initial retrieval list through a novel re-ranking method, utilizing the speedy and proficient 

nature of image hashing techniques for image representation. The proposed method aims to im-

prove the retrieval performance of an initial retrieval list with minimal computational overhead. 

1.5 Organization of the Thesis 

The organization of this thesis is as follows. Chapter 3 presents two designs of residual blocks 

and their applications in deep convolutional neural networks in order to improve the representa-

tional capacity of the deep networks. These designs focus on the integration of spatial information 

into feature maps to enhance the representational capacity of a deep convolutional neural network 

for image retrieval. Chapter 4 explores the application of the idea of guided feature generation in 

deep networks. The chapter proposes a new method designed to enhance the representational abil-

ity of feature vectors obtained from a deep network by guiding the network to incorporate textural 

and structural information using processes such as morphological operations and edge feature ex-

traction. In addition, a new pooling operation is presented, which focuses on producing rich sets 

of edge features to further improve the network learning quality. Chapter 5 proposes a novel hash-

ing-based re-ranking technique aimed at enhancing the performance of any image retrieval tech-

nique. This innovative technique explores how image hashing can be utilized to refine the initial 

retrieval list, hence boosting the retrieval performance of an image retrieval method through effi-

cient post-processing of the results. Finally, in Chapter 6, the thesis concludes with a summary of 

the significant findings and contributions, along with identifying potential research directions for 

future investigations. 
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2 Background Material 

Chapter 2 
 

Background Material 
 

In this chapter, we provide a brief review of background material that is useful for understanding 

the work presented in this thesis. We start with a brief overview of Hopfield Neural Networks, 

presenting the basic principles of this recurrent neural network architecture recognized for its as-

sociative memory capabilities. This is followed by a discussion on image hashing, a technique 

used for efficient and effective image representation. Next, we present the idea of re-ranking, a 

method designed to refine an initial retrieval list to improve the retrieval performance further. 

Recognizing the importance of fast image search, we then review the balanced binary search tree, 

a data structure designed for efficient data storage and retrieval. Further, the pooling operation in 

deep convolutional neural networks is discussed, an essential process in deep networks that re-

duces dimensionality while preserving crucial information. Finally, we present an overview of 

morphological operations and image processing techniques proficient in processing the images 

based on their shapes and structural information. 
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2.1 Hopfield Neural Network 

A Hopfield network is a specific type of recurrent neural network designed to model associative 

memory. Associative memory is characterized by its ability to store and recall relationships be-

tween patterns stored within the network [28]–[30]. Due to this fundamental attribute, Hopfield 

networks have been utilized in various computer vision tasks, including image retrieval [31], [32]. 

The goal of using Hopfield networks is to memorize 𝒫𝒫 different patterns 𝑋𝑋𝒾𝒾𝒦𝒦,𝒦𝒦 = 1, … ,𝒫𝒫 , 𝒾𝒾 =

1, … ,𝓃𝓃. Each pattern consists of 𝓃𝓃 components. The network is defined by a weight matrix, 𝒲𝒲, 

an 𝓃𝓃 × 𝓃𝓃 matrix in which element 𝒲𝒲𝒾𝒾𝒾𝒾 equals the weight attached to the connection between node 

𝒾𝒾 and node 𝒾𝒾 in the network. The weight matrix is computed as follows: 

 
𝒲𝒲𝒾𝒾𝒾𝒾 =

1
𝒫𝒫
�𝑋𝑋𝒾𝒾𝒦𝒦𝑋𝑋𝒾𝒾𝒦𝒦
𝒫𝒫

𝐾𝐾=1

 

𝒾𝒾 = 1, … ,𝓃𝓃   ,    𝒾𝒾 = 1, … ,𝓃𝓃   ,    𝒲𝒲𝒾𝒾𝒾𝒾 = 𝒲𝒲𝒾𝒾𝒾𝒾 

(2.1) 

where 𝒫𝒫 is the number of patterns that we aim to store in the network. Given a Hopfield network 

holding some patterns, the retrieval process begins by providing an initial pattern, denoted as 𝓆𝓆. 

The network then retrieves the closest pattern to the initial pattern using the weight matrix, 𝒲𝒲. 

The retrieval process starts by using q as the initial pattern of the network. The pattern at time 𝓉𝓉 +

1, is a function of the weight matrix multiplied by the pattern at time 𝓉𝓉 or 𝓋𝓋(𝓉𝓉), as 

 𝓋𝓋𝒾𝒾(𝓉𝓉 + 1) = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 ��𝑊𝑊𝒾𝒾𝒾𝒾

𝒩𝒩

𝒾𝒾=1

𝓋𝓋𝒾𝒾(𝓉𝓉)� (2.2) 

Here, 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 function is defined as 

 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑚𝑚) = �1     𝑖𝑖𝑓𝑓 𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 0
−1  𝑖𝑖𝑓𝑓 𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡 < 0 (2.3) 

Given 𝓋𝓋(0) = 𝓆𝓆, after all components of 𝓋𝓋(𝓉𝓉 + 1) have been calculated, 𝓋𝓋(𝓉𝓉 + 1) will be 

entered into the network to obtain another pattern until the state becomes stable. The state 𝓋𝓋(𝓉𝓉) is 
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considered stable if the difference 𝓋𝓋(𝓉𝓉 + 1) −𝓋𝓋(𝓉𝓉) is less than a predetermined threshold. Upon 

the completion of the stabilization process, 𝓋𝓋(𝓉𝓉) is the retrieved output. 

Some image retrieval methods have been proposed that take advantage of the capabilities of 

Hopfield networks. For instance, in [31], a Hopfield network is used for content-based image re-

trieval, where the network learns to identify and retrieve images that are most similar to the query 

image. In [32], the Hopfield network is employed to create an initial retrieval list, and a re-ranking 

technique is employed to improve the retrieval performance.  

2.2 Image Hashing 

Image hashing is a computational technique used in image processing to generate a concise and 

unique representation, known as a hash code, for a given image. The fundamental aim of image 

hashing is to formulate a compact, fixed-length binary code that embodies the visual attributes of 

an image [33]–[37]. This process typically necessitates the extraction and transformation of fea-

tures of an image. These features, once transformed into a hash code, enable more efficient storage 

of image data and also improve resource efficiency during any image processing process. There-

fore, by encapsulating the visual content of images into hash codes, image hashing can effectively 

complement other techniques, thereby enhancing efficiency in applications such as image authen-

tication, duplication detection, and digital watermarking. For example, in [38], image hashing is 

employed for image authentication, a process that seeks to verify the integrity and authenticity of 

digital images. The work in [39] utilizes image hashing for copy detection to identify image du-

plication or plagiarism. Lastly, the work in [40] proposes a method incorporating image hashing 

with image watermarking. This method involves transforming a digital signature into a binary hash 

vector and embedding it within the transformed coefficients of the original image, thereby improv-

ing the robustness of the image authentication process.  

2.3 Re-ranking 

Re-ranking is a post-processing task of refining and initially ranked list of images obtained from 

an image retrieval technique for a given query image, with the goal of enhancing retrieval 
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performance in an efficient manner. By employing various methods such as query expansion and 

k-nearest neighbor algorithms, the re-ranking process focuses on re-arranging the retrieved images 

to bring the ones most similar to the query image to the forefront of the list in order to improve the 

overall retrieval performance. 

One common technique utilized in re-ranking is query expansion [27], which aims to improve 

the representational capacity of the feature vector of the query image by incorporating additional 

information into it. This expanded query is then used to retrieve a new list of images, providing 

more accurate results. This expansion is typically achieved by using techniques such as pseudo-

relevance feedback, which employs the top-ranked images from the initial retrieval as a basis for 

expanding the query representation. 

Another widely used approach in re-ranking is based on k-nearest neighbor algorithms [41]. In 

this method, the similarity between the query image and the retrieved images is reassessed using 

a suitable distance metric in order to identify the nearest neighbors. The re-ranking process reor-

ders the initial list by considering the similarities between the query and these nearest neighbors. 

2.4 Balanced Binary Search Tree 

One of the pillars of efficient search algorithms in computer science is the Binary Search Tree 

(BST). A BST is a tree data structure in which each node contains a key and corresponding value. 

A distinguishing characteristic of BSTs is that the key of any node is always larger than all keys 

in its left subtree and smaller than all keys in its right subtree. This property allows BSTs to have 

an average time complexity of 𝒪𝒪(log𝑛𝑛) for operations such as search [42]. However, in certain 

scenarios, the absence of a height constraint can cause a BST to become skewed, which can dete-

riorate the time complexity of these operations to 𝒪𝒪(𝑛𝑛). To overcome the skewness issue of BST, 

balanced binary search trees (BBST) can be used. BBSTs are a variant of BSTs that maintain 

balance by ensuring that the height difference between the left and right subtrees of any node never 

exceeds one [43]. This condition helps prevent the tree from becoming excessively skewed and 

thus guarantees more predictable time cost and efficient operations. Figure 2.1 shows an illustra-

tive comparison, demonstrating that a search operation in a BBST would require fewer compari-

sons than in an unbalanced BST. For example, searching for the node marked as ‘7’ requires only 
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two comparisons in the BBST, whereas, in the unbalanced BST, the number of comparisons rises 

to six.  

Binary search trees have been used in some image processing applications. For example, in 

[44], a method is proposed that utilizes Binary Search Trees for approximate nearest neighbour 

searches in high-dimensional binary vectors. In [45], a geometrically motivated approach is intro-

duced that effectively compresses binary search trees for more efficient nearest-neighbor searches. 

 

                                                        (a)                                                                 (b) 

Figure 2.1: Unbalanced (a) vs. balanced (b) binary search trees. 

2.5 Pooling Operation 

A pooling operation can be considered as a mapping of a set of input feature maps (also called 

channels) ℐ to a set of output feature maps 𝑂𝑂 given by 

 𝑂𝑂 = 𝒫𝒫(ℐ) 
 

(2.4) 

where 𝒫𝒫 is the pooling operation. Let 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑛𝑛] represent the 𝑐𝑐-th two-dimensional channel of the 

input feature tensor ℐ. In practice, the pooling operation consists of placing at the (𝑚𝑚,𝑛𝑛)-th posi-

tion of the 𝑐𝑐-th feature map, a window of size (𝑎𝑎 + 1, 𝑏𝑏 + 1) and performing  

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = ℱ
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]  

(2.5) 

where 𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛) is a set of indices given by 
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 𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛) = �

𝑚𝑚,𝑛𝑛 𝑚𝑚 + 1,𝑛𝑛     ⋯  𝑚𝑚 + 𝑎𝑎 − 1,𝑛𝑛      
𝑚𝑚,𝑛𝑛 + 1 𝑚𝑚 + 1,𝑛𝑛 + 1     ⋯ 𝑚𝑚 + 𝑎𝑎 − 1,𝑛𝑛 + 1

⋮
 𝑚𝑚,𝑛𝑛 + 𝑏𝑏 − 1

⋮
𝑚𝑚 + 1,𝑛𝑛 + 𝑏𝑏 − 1    ⋮             ⋮         

  ⋯ 𝑚𝑚 + 𝑎𝑎 − 1, 𝑛𝑛 + 𝑏𝑏 − 1 

� 
 

(2.6) 

 

and ℱ is a pooling operation performed on the elements of 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑛𝑛] that fall within the window. 

For example, using the summation operation as the pooling operation ℱ, Equation (2.5) becomes 

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = � 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)

  
(2.7) 

2.5.1 Average and Max Pooling 

Average pooling and max pooling are two of the most common pooling operations used in convo-

lutional neural networks. Average pooling performs the pooling operation as: 

 𝑜𝑜𝑐𝑐[𝑚𝑚, 𝑛𝑛] =
1
𝑎𝑎𝑏𝑏

� 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)

  
(2.8) 

Average pooling diminishes critical information by smoothing the extreme values in the feature 

maps, thus lowering the performance of a network [46]. 

The max pooling operation involves obtaining the maximum value for each pooling window 

as follows: 

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = 𝒎𝒎𝒎𝒎𝒎𝒎
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]  

(2.9) 

The shortcoming of max pooling is that it ignores everything but the maximum value. Therefore, 

this method misses all crucial information except the most significant value, thus making it diffi-

cult to consider other informative features that exist in the input signal. 

Without evaluating these methods in a network on a given dataset, it is difficult to predict 

effectively whether max pooling or average pooling will yield higher performance [47]. For ex-

ample, max pooling is not robust to scenes with clutter, as it produces the maximum response at 

clutter locations rather than object locations [48]. In such scenarios, average pooling is more 
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effective. The optimal choice depends on the image dataset, and one should apply both methods 

to see which one provides better results. However, in addition to the greater computational require-

ments involved, investigating both pooling operations is not feasible for real-world applications, 

as the data used in these applications change over time. 

2.5.2 Other Pooling Methods 

Some variants of average pooling and max pooling have been developed to address the abovemen-

tioned shortcomings. One variant of average pooling is Lp pooling [49]. In this pooling operation, 

a weighted average of the pooling window is calculated as 

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = �
1
𝑎𝑎𝑏𝑏

� (𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦])𝑝𝑝

𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛)

× 𝐺𝐺(𝑚𝑚,𝑦𝑦)�

1
𝑝𝑝

 
 

(2.10) 

where 𝐺𝐺(𝑚𝑚, 𝑦𝑦) is a Gaussian kernel. Rank-based average pooling [50] is another variant of average 

pooling that attempts to address the issue that standard average pooling decreases the importance 

of extreme values. This method utilizes an average of the top 𝑡𝑡 highest values in the pooling win-

dow and calculates the output as follows: 

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] =
1
𝑡𝑡

� 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛),𝑟𝑟(𝑥𝑥,𝑦𝑦)≤𝑡𝑡

  
(2.11) 

where 𝑟𝑟(𝑥𝑥,𝑦𝑦) is the rank of the value located at (𝑚𝑚,𝑦𝑦) in the pooling window. However, this method 

cannot be generalized effectively, as the value of 𝑡𝑡 has to be selected empirically based on the 

database used. 

Mixed pooling [51] is a combination of the average and max pooling operations defined by 

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = 𝛼𝛼 𝐦𝐦𝐦𝐦𝐦𝐦
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] + (1 − 𝛼𝛼)

1
𝑎𝑎𝑏𝑏

� 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦]
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)

 (2.12) 

where 𝛼𝛼 is an activation parameter, which for a given window is set randomly to a value of either 

0 or 1, indicating the choice of using the max pooling or average pooling. The proposed method 

changes the pooling regulation scheme in a stochastic manner. However, this method suffers from 
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possible overfitting, as randomness may cause unpredictable biased training. A method similar to 

the mixed pooling is the stochastic pooling [47]. Stochastic pooling is less vulnerable to overfitting 

because the activation parameter is chosen for each pooling layer based on a multinomial distribu-

tion. This method is superior to the mixed pooling and the 𝐿𝐿𝑝𝑝 pooling, but it suffers from a higher 

computational complexity. Another variant of max pooling was introduced in [52] that applies 

max pooling several times on the same pooling window but with different pooling window sizes. 

The pooled features are then fused to form the final feature map. Even though this pooling method 

improves the representational capacity of the generated feature maps, it adds many operations to 

the pooling layer that significantly decrease the learning speed. 

Another pooling operation is the spectral pooling proposed in [53], which has been shown to 

outperform max pooling since it preserves more information for the same output dimensionality 

by applying linear low-pass filtering. While spectral pooling offers a fast pooling operation, the 

features learned by the network fail to preserve the image’s visual content effectively, as the re-

sulting feature maps are the output of a blurred version of the input.  

2.6 Morphological Operations 

Morphological operations are commonly employed in image processing [54]. These operations 

can be used to develop methods to analyze the shape and form of the objects in images. In view of 

these characteristics of morphological operations, they have been extensively used in conventional 

schemes for image retrieval to extract features. They also have been used in convolutional neural 

networks, but with the exception of work in [55], only in applications other than image retrieval. 

For example, morphological operations have been utilized in CNN for the purpose of edge detec-

tion in [56] and for the enhancement of image super-resolution in [57]. The work in [55] is the 

only work in which an image retrieval deep network has been designed in which morphological 

operations have been utilized for automatic feature extraction. This network has used the basic 

morphological operations of erosion and dilation. In view of the importance of morphological op-

erations, it would be worthwhile to explore the use of other morphological operations in the design 

of deep networks for the task of image retrieval. 
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2.7 Evaluation Metric 

Mean Average Precision (mAP) is a standard metric for evaluating the performance of image re-

trieval techniques. This metric takes into account the order of appearance of similar images in the 

ranked list. The first step in calculating mAP is to compute the precision at rank 𝑘𝑘, denoted as 

𝑃𝑃(𝑘𝑘). It is defined as: 

 𝑃𝑃(𝑘𝑘) =
𝑇𝑇𝑃𝑃(𝑘𝑘)

𝑇𝑇𝑃𝑃(𝑘𝑘) + 𝐹𝐹𝑃𝑃(𝑘𝑘) (2.13) 

where 𝑃𝑃(𝑘𝑘) is the precision until position 𝑘𝑘 in the retrieval ranked list for a given query. 𝑇𝑇𝑃𝑃(𝑘𝑘) is 

number of true positives up to position 𝑘𝑘, indicating the number of similar images that have been 

correctly retrieved among the top 𝑘𝑘 results. 𝐹𝐹𝑃𝑃(𝑘𝑘) is the number of false positives up to position 

𝑘𝑘, indicating the number of dissimilar images that have been retrieved among the top 𝑘𝑘 results.  

Building upon precision at rank 𝑘𝑘, average precision for a query 𝑞𝑞, denoted as 𝐴𝐴𝑃𝑃𝑞𝑞, is calcu-

lated as follows: 

 𝐴𝐴𝑃𝑃𝑞𝑞 =
1
𝑅𝑅𝑞𝑞

�𝑃𝑃(𝑘𝑘) × 𝑆𝑆@𝑘𝑘
𝑛𝑛

𝑘𝑘=1

 (2.14) 

where 𝑅𝑅𝑞𝑞 is the total number of relevant documents for query 𝑞𝑞. 𝑃𝑃(𝑘𝑘) is the precision at rank 𝑘𝑘 

for query 𝑞𝑞. 𝑆𝑆@𝑘𝑘 is an indicator function that equals 1 if the item at rank 𝑘𝑘 is a similar image to 

the query and 0 otherwise. 𝑛𝑛 is the total number of retrieved images for query 𝑞𝑞. 

Finally, mAP is calculated as the mean of 𝐴𝐴𝑃𝑃𝑞𝑞 values across all queries as follows: 

 𝑚𝑚𝐴𝐴𝑃𝑃 =
1
𝑄𝑄
�𝐴𝐴𝑃𝑃𝑞𝑞

𝑄𝑄

𝑞𝑞=1

 (2.15) 

where 𝑄𝑄 is the total number of queries. The mAP score ranges from 0 to 1; a score close to 0 

suggests that similar images are mostly ranked lower in the ranked list, whereas a score close to 1 

indicates that similar images appear predominantly at the top of the list. 
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2.8 Summary 

This chapter has reviewed two primary groups of methods for achieving high retrieval performance 

in image retrieval: enhancing the representational capacity of the features in deep networks and 

refining the initial retrieval list through re-ranking techniques. The review discusses the usage of 

deep learning to obtain representative and discriminative features. Additionally, the chapter re-

views some processes that can be employed to enhance the representational capacity of deep net-

works. The chapter also reviews various pooling operations and highlights the importance of pool-

ing in the learning quality of the network. Regarding the re-ranking technique, the review reveals 

the importance of computational efficiency. Since generating the initial retrieval list can be a re-

source-intensive task, utilizing high computationally expensive re-ranking techniques can result in 

slow, resource-intensive operations, making them impractical for real-world applications. The re-

view highlights the importance of developing computationally efficient re-ranking approaches that 

effectively improve retrieval performance. 



19 

 

 

 

 
3 Deep Image Retrieval Networks Using Residual 

Blocks Focusing on Spatial Information 
 
 
 

Chapter 3 

 

Deep Image Retrieval Networks using 

Residual Blocks Focusing on Spatial 
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The performance of deep image retrieval networks significantly depends on the quality of the fea-

ture vectors that these networks generate. Deep convolutional neural networks are excellent at 

feature extraction but may compromise a portion of the spatial information during the convolution 

and pooling operations. This is because they are designed to be invariant to translations which 

makes them excellent for classification tasks where the position of the object in the image is irrel-

evant to some extent. Such loss of spatial information can potentially impact the performance of a 
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deep image retrieval network, where retention of spatial information, with its ability to provide 

cues about the location and interrelations of objects within an image, is crucial in obtaining highly 

discriminative feature vectors. In this chapter, we develop two distinct residual blocks with a focus 

on incorporating spatial information obtained from different scales and levels of abstraction in 

order to enhance the representational capacity of deep convolutional neural networks for the task 

of image retrieval. Two spatial information acquisition techniques, namely multi-scale spatial fea-

tures and multi-source spatial features, are developed to improve the representational capacity of 

deep networks for image retrieval [58], [59]. 

3.1 Improving Deep Features for Image Retrieval using 

Multi-Source Spatial Information 

The representational quality of the generated feature vectors for images is essential for image re-

trieval models to achieve high performance. Spatial information is crucial in obtaining highly rep-

resentative feature vectors for image retrieval, and deep convolutional neural networks provide an 

excellent framework to generate such features. Deep convolutional neural networks include spatial 

information in the feature maps through convolutional operations. However, most available archi-

tectures cannot include adequate spatial details in the feature maps helpful for obtaining high-

performance image retrieval. Deep residual networks are deep networks capable of including use-

ful information through residual learning. This section presents a novel residual block to generate 

feature maps by focusing on spatial information. The proposed residual block comprises three 

modules: a spatial feature extraction module, a hierarchical feature extraction module, and a fea-

ture fusion module. The first module includes spatial information in the feature maps at different 

levels of abstraction, while the second module includes spatial information using conventional 

convolution hierarchy. The third model fuses the outputs of the first two modules to provide a very 

rich set of feature maps. 

Figure 3.1 shows the architecture of the proposed residual block. Figure 3.1(a) shows a high-

level view of the proposed residual block, which consists of two distinct feature extraction mod-

ules, one feature fusion module, and a skip connection. The figure shows that the input feature 

tensor 𝒎𝒎 is passed through two parallel pathways, each of which extracts specific features from the 
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input tensor 𝒎𝒎. The upper pathway extracts spatial features, and the lower pathway extracts hier-

archical features. The feature maps 𝐕𝐕 and 𝐔𝐔 resulting from these two modules are given by 

 
𝑽𝑽 = 𝒮𝒮(𝒎𝒎)  

𝑼𝑼 = ℋ(𝒎𝒎) 
(3.1) 

where 𝒮𝒮(. ) and ℋ(. ) denote the processes of the spatial feature extraction module and the hierar-

chical feature extraction module, respectively. 

 
                                         (a) 
 
 

 
                                        (b) 
 

 

 
                                       (c) 

 

Figure 3.1: Architecture of (a) the proposed residual block, (b) the spatial feature extraction 
module, and (c) the hierarchical feature extraction module. Conv. denotes the convolution. “C” is 
a symbol representing concatenation and summation operations. Spatial FEM and Hierarchical 
FEM denote “spatial feature extraction module” and “hierarchical feature extraction module,” 
respectively. 
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Figure 3.1(b) shows the architecture of the spatial feature extraction module used to produce 

feature tensor 𝑽𝑽. In this module, the input feature tensor 𝒎𝒎 undergoes a cascade of three sets of 

convolutional operations followed by ReLU activation functions to produce feature tensors 𝒗𝒗𝑖𝑖 as 

 𝒗𝒗𝑖𝑖 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝒞𝒞𝑖𝑖(𝒗𝒗𝑖𝑖−1)� 𝑖𝑖 = 1,2,3   and    𝒗𝒗0 = 𝒎𝒎 (3.2) 

where 𝒞𝒞𝑖𝑖 represents the convolution operations employing 128 filters with a kernel size of 3×3. 

The output feature tensor of this module is generated as 

 𝑽𝑽 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝒞𝒞4 ��𝒗𝒗𝑖𝑖

3

𝑖𝑖=0

�� (3.3) 

where 𝒞𝒞4 is a convolution operation with 128 filters, each with a size of 3×3. 

In the hierarchical feature extraction module shown in Figure 3.1(c), the input feature tensor 𝒎𝒎 

is fed into a sequence of convolution operations, each of which is followed by a ReLU activation 

function. The output of this module is the feature tensor 𝑼𝑼, which is given by 

 𝑼𝑼 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅 �𝒞𝒞𝑗𝑗�𝒖𝒖𝑗𝑗−1��  𝑗𝑗 = 1,2,3   and   𝒖𝒖0 = 𝒎𝒎 (3.4) 

where 𝒞𝒞𝑗𝑗 denotes the convolution operation with 128 filters with a kernel size of 3×3. 

In the feature fusion module shown in Figure 3.1(a), the two feature tensors 𝑼𝑼 and 𝑽𝑽 are con-

catenated as 

 𝑾𝑾 = 𝐶𝐶𝑂𝑂𝑁𝑁𝐶𝐶(𝑼𝑼,𝑽𝑽) (3.5) 

where 𝐶𝐶𝑂𝑂𝑁𝑁𝐶𝐶(. ) is the concatenation operation. The feature tensor 𝑾𝑾 is then passed through a 

convolution operation, followed by the ReLU activation function, to produce the feature tensor 𝒁𝒁 

as follows: 

 𝒁𝒁 = ℱ(𝑼𝑼,𝑽𝑽) = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝒞𝒞(𝑾𝑾)� (3.6) 
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where ℱ (.) denotes the feature fusion process, and 𝒞𝒞 is the convolution operation with 128 filters 

with a kernel size of 3×3. Next, the obtained feature tensor 𝒁𝒁 is added to the feature tensor 𝒎𝒎 input 

to the block through a skip connection to produce the output of the block as 

 𝒚𝒚 = 𝒎𝒎 + 𝒁𝒁 (3.7) 

The output feature tensor 𝒚𝒚 of the residual block contains a rich set of features enhanced by 

spatial features and hierarchical features that significantly enhance the representational capacity 

of the network to improve the retrieval performance of the deep image retrieval network. 

The deep network employing the proposed residual block is derived from standard AlexNet 

[60]. Standard AlexNet contains five convolutional layers and three fully connected layers. The 

first two convolutional layers are followed by max pooling layers, while the third and fourth con-

volutional layers are directly connected to the next convolutional layer. We have modified the 

standard AlexNet to employ our proposed residual block and use it as a feature extractor. The 

major modifications are listed below: 

1. The feature tensors obtained from the fourth convolutional layer are fed to a sequence of 

eight units of the proposed residual block.  

2. Unlike the standard AlexNet, where the last convolutional layer is connected to a max 

pooling layer, our modified version does not have a pooling layer after the last convolu-

tional layer to ensure the spatial information of the last convolutional layer remains intact.  

The network employing the proposed residual block is trained as a classifier on the chosen 

dataset. Depending on the dataset used for a given experiment, the size of the last fully connected 

layer is changed to match the number of classes present in the dataset. This fully connected layer 

later provides the probability for every image passing through the network through a SoftMax 

activation function. Once the training is done, the top layers, including all the fully connected 

layers and the SoftMax activation function, are removed, and the network is converted into a fea-

ture extractor. Feature extraction is performed by inputting a given image into the network and 

capturing the network’s output as the corresponding feature vector for the image. Unlike most 

existing deep image retrieval networks, we do not obtain feature vectors from one of the fully 

connected layers since these layers distort spatial information. We refer to our proposed residual 
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block as a Multi-source Spatial Feature generating Residual block (MSFR) and the network using 

the proposed MSFR as MSFRNet. 

The network is trained for 200 epochs with a batch size of 32. The sizes of the datasets are 

artificially expanded using the idea of data augmentation for training purposes to improve the 

learning performance of the network. The utilized augmentation techniques are random rotation, 

random zoom, and random brightness methods, using techniques in [61]. The network is optimized 

using the stochastic gradient descent technique. The learning process starts with a learning rate of 

0.01, and the decay is set to 5 × 10−6. The deep network employing the proposed residual block 

is implemented using TensorFlow [62] and Keras [63]. An Intel Core i7 @3.2 GHz machine with 

an Nvidia GeForce GTX 3060 GPU is used to train and test the proposed network. The metric used 

is mean average precision (mAP), which is the mean value of the average precisions computed for 

all query images [66]. 

3.2 Development of a Deep Image Retrieval Network using 

Hierarchical and Multi-scale Spatial Features 

Deep convolutional neural networks provide an excellent tool for obtaining highly representative 

feature vectors from images which is a crucial aspect in improving the performance of image re-

trieval methods. Among various available deep architectures, residual networks have shown supe-

rior flexibility and performance over other architectures, as they can be designed to incorporate 

valuable information into the feature vectors through residual learning [57]. Their superiority can 

be attributed mainly to their ability to embed additional information into the feature vector through 

residual learning, which can be accomplished by designing suitable operations within the block. 

One operation is to include spatial information obtained at different scales and levels of abstraction 

in the deep network. In this section, we develop a novel residual block to include spatial infor-

mation obtained at different abstraction levels and scales to enhance a deep network's ability to 

generate very rich sets of features for image retrieval. The proposed residual block consists of three 

modules: a hierarchical spatial feature extraction module focusing on spatial information at differ-

ent abstraction levels, a multi-scale feature extraction module that generates features at three dif-

ferent scales, and a feature fusion module. 
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Figure 3.2: Architecture of the proposed residual block. Conv., D.Conv. and P.Conv. represent the convolution, 
dilated convolution and point-wise convolution operations, respectively.  

 
 
 
 
 
 
 

 
Figure 3.3: Modified variant of AlexNet architecture to employ the proposed residual block. DW Pool. denotes 
depth-wise pooling. Max pooling layers are not shown.  
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The design of the proposed residual block is shown in Figure 3.2. As the figure shows, the 

proposed residual block consists of three modules: a hierarchical spatial feature extraction module, 

a multi-scale feature extraction module, and a feature fusion module. The input feature tensor 𝑿𝑿 is 

simultaneously fed into two feature extraction modules. In the hierarchical spatial feature extrac-

tion module, the input feature tensor 𝑿𝑿 undergoes a sequence of convolution operations, followed 

by ReLU activation functions as 

 𝒗𝒗𝑖𝑖 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝑊𝑊𝑖𝑖(𝒖𝒖𝑖𝑖)�, 𝑖𝑖 = 1, … ,5 and 𝒗𝒗0 = 𝑿𝑿 (3.8) 

where 𝑊𝑊𝑖𝑖 represents the convolution operations, each of which has 64 filters with spatial support 

of 3×3. The outcome of each of 𝒗𝒗𝑖𝑖 incorporates spatial information into the corresponding feature 

tensor at different levels of abstraction. Concatenating these feature tensors, namely 𝒗𝒗𝑖𝑖, into fea-

ture tensor 𝒛𝒛 provides rich feature sets enriched by strong spatial information. The spatial infor-

mation improves the capability of the residual block to generate a rich set of feature vectors to 

enhance retrieval performance.  

The second module, namely the multi-scale feature extraction module, is designed to extract 

features based on different scales, as the module contains dilated convolution operations performed 

on different sizes of receptive fields. This process broadens the view of the convolution operation 

on the input feature map to obtain different spatial information. In this module, the input feature 

tensor 𝑿𝑿 undergoes three parallel coevolution operations as follows: 

 

𝒖𝒖1 = 𝑊𝑊6(𝑿𝑿) 

𝒖𝒖2 = 𝑊𝑊7(𝑿𝑿) 

𝒖𝒖3 = 𝑊𝑊8(𝑿𝑿) 

(3.9) 

where 𝑊𝑊6 is the convolution operation employing 64 filters with a kernel size of 3×3, and 𝑊𝑊7 and 

𝑊𝑊8 are dilated convolution operations, each with 64 filters with kernel size 3×3 and a dilation rate 

of 2 and 3, respectively.  
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However, dilated convolution operations have a gridding artifact that degrades their perfor-

mance [57],[64]. The negative effect of the artifact is mitigated by adding the feature tensor 𝒖𝒖1, 

which is not generated employing a dilated convolution operation, to the other two feature tensors 

obtained from dilated convolution operations (namely, 𝒖𝒖2 and 𝒖𝒖3) to produce feature tensor 𝒖𝒖4 as 

 𝒖𝒖4 = 𝑊𝑊6(𝑿𝑿)���
𝒖𝒖1

+ 𝑊𝑊7(𝑿𝑿)���
𝒖𝒖2

+ 𝑊𝑊8(𝑿𝑿)���
𝒖𝒖3

 (3.10) 

Then, the feature tensor 𝒖𝒖7 is generated by fusing the feature tensors obtained from the application 

of the ReLU activation function on 𝒖𝒖1 and 𝒖𝒖4 as 

 𝒖𝒖7 = 𝐶𝐶𝑜𝑜𝑛𝑛𝑐𝑐 �𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅(𝒖𝒖1)�������
𝒖𝒖5

+ 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅(𝒖𝒖4)�������
𝒖𝒖6

� (3.11) 

where 𝐶𝐶𝑜𝑜𝑛𝑛𝑐𝑐(. ) is the concatenation operation. The feature tensor 𝒖𝒖7 is then passed through a con-

volution operation followed by a ReLU activation function to produce feature tensor 𝒔𝒔.  
 

In the feature fusion module, the feature tensors 𝒔𝒔 and 𝒛𝒛 obtained from the two feature extrac-

tion modules are concatenated. Then, the resulting feature maps undergo a convolution operation 

and a ReLU function to generate a rich set of residual feature maps of the block as 

 𝒓𝒓 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅 �𝑊𝑊9�𝐶𝐶𝑜𝑜𝑛𝑛𝑐𝑐(𝒔𝒔, 𝒛𝒛)�� (3.12) 

where the operation 𝑊𝑊9 represents a convolution operation using 64 filters with a kernel of size 

3×3. The residual feature tensor 𝒓𝒓 is added to the feature tensor 𝑿𝑿 input into the block to produce 

the block’s output 𝒀𝒀 as 

 𝒀𝒀 = 𝑿𝑿 + 𝒓𝒓 (3.13) 
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We refer to the proposed residual block as the Hierarchical and Multi-scale Spatial feature 

generating Residual block (HMSR), and the network employing the proposed block is called 

HMSRNet. 

The network architecture of the proposed deep image retrieval network is shown in Figure 3.3. 

The backbone of the deep image retrieval network employing the proposed residua block is 

AlexNet [60], with some modifications. The original architecture of the AlexNet consists of five 

convolutional layers and three fully connected layers. The first two layers contain a sequence of 

two sets of convolution operations followed by a ReLU activation function. The following (third 

and fourth) convolutional layers are connected to their succeeding convolutional layers without 

interleaving by any activation functions. In the original AlexNet, the following (fifth) layer con-

tains a convolution layer and a max pooling layer. However, in our proposed HMSRNet, the output 

of the fourth convolutional layer is cascaded with six units of the proposed residual block, namely 

HMSR, followed by the fifth convolution layer, which is directly connected to the first layer of a 

group of three fully connected layers. A SoftMax activation function follows the fully connected 

layers to train the model as an image classifier. 

Once the network is trained, the fully connected layers and the SoftMax activation function are 

removed and replaced by the feature extraction module highlighted in Figure 3.3 without further 

refining the weights. The feature extraction module contains a depth-wise convolution operation 

and a flattening layer. The output of the feature extraction module for a given image is the feature 

vector of that image, which is used for retrieval. 

The network is trained for up to 200 epochs. The best-performing network configuration is then 

chosen and employed for retrieval tasks. The size of the batch utilized during the training process 

is 64. Optimization is carried out using the stochastic gradient descent technique. The learning 

process starts with a learning rate of 0.01, and it is decayed by the learning rate divided by the 

number of epochs. The proposed HMSRNet is trained and tested on an Intel Core i7 @3.2 GHz 

machine with an Nvidia GeForce GTX 3060-12GB GPU. The implementation is done using the 

Keras library [63] and the TensorFlow package [62].  
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Table 3.1: Comparison between various image retrieval networks. 
 

Network Backbone 
Dataset 

FLOPs* 
Cifar10 Cinic10 Cifar100 Animals 

CSCFM [65] ResNeXt-50 0.8351 0.7143 0.8351 0.6087 >15.3 

BIMCNN [66] VGG16 0.8382 0.7343 0.8295 ̶ >15.3 

DELG [67] ResNet101 0.8334 0.7482 0.8211 0.6351 >7.6 

MRDL [68] VGG19 0.7782 0.7336 0.7556 0.6036 >19.6 

ADFSDH [69] VGG16+VGG19 0.7933 0.7372 0.7743 ̶ >27.2 

UDPH  [70] VGG16 0.7754 0.5990 0.7598 0.4235 >15.3 

SIRS-IR [71] Inception-ResNet-V2 0.6945 0.7343 0.6627 0.5832 >17.0 

MSFRNet [58] AlexNet 0.8431 0.7487 0.8348 0.6346 9.3 
BOLD, ITALIC, and underlined fonts indicate the best, second-best, and third-best performance, respectively.  
* FLOPs refer to floating point operations on a scale of billions. 

 

3.3 Experimental Results 

3.3.1 Experimental Results of MSFRNet  

Table 3.1 compares the results obtained from the proposed MSFRNet [58] with those obtained 

from state-of-the-art deep image retrieval networks. As the table shows, our proposed MSFRNet 

demonstrates the highest or second-highest accuracy for all the datasets, even though it uses 

AlexNet as a relatively lightweight deep network, whereas other methods utilize complex and 

heavy networks. The performance of the proposed MSFRNet demonstrates that the proposed re-

sidual block improves the performance of AlexNet such that it is comparable with the performance 

of other (much more complex) networks. 
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Table 3.2: Comparison of the results obtained by the network depending on whether the proposed 
residual block is used. 

 
Dataset With Without Reduction 

Cifar100 0.8348 0.7918 5.4% 

Cinic10 0.7487 0.7058 6.0% 

Animals 0.6346 0.6047 15.2% 
 
 
 

 
Figure 3.4: Design of the proposed residual block using a serial scheme. 

 

 
Figure 3.5: Learning curves for two design schemes of the proposed residual block on Animals dataset. 
 

 

Table 3.3: mAP values for the serial configuration of the residual block and the proposed residual block. 

 
Dataset Proposed Serial Scheme % Reduction 

Cifar100 0.8348 0.7445 12.1 

Cinic10 0.7487 0.6501 15.2 

Animals 0.6346 0.5565 14.0 
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We now investigate the effectiveness of the proposed residual block by excluding it from the 

MSFRNet, thus degenerating it to the standard AlexNet. The results are shown in Table 3.2. The 

table clearly shows that the modified AlexNet employing the proposed residual block performs 

significantly better than the standard AlexNet for all datasets. 

We now study the design of the proposed residual block. As shown in Figure 3.1(a), the pro-

posed residual block contains two modules in a parallel mode. Unlike a serial scheme, this parallel 

arrangement enables the modules to extract features based on their design without mutual distor-

tion if the feature tensor 𝒎𝒎 is input into two modules simultaneously. We carry out an experiment 

to show the superiority of our proposed method over the serial scheme. The design of the serial 

configuration of the proposed residual block model is shown in Figure 3.4. The serial residual 

 

 
Figure 3.6: Learning curves for the proposed residual block and its variants on Animals dataset. 
 
 
Table 3.4: mAP values for the proposed block and its variants. 
 

Modules Variant 1 Variant 2 Variant 3 Proposed 

Hierarchical Feature Extraction - 🗸🗸 - 🗸🗸 

Spatial Feature Extraction 🗸🗸 - - 🗸🗸 

mAP (Cifar100) 0.8045 0.7761 0.7918 0.8348 

mAP (Cinic10) 0.7299 0.7087 0.7058 0.7487 

mAP (Animals) 0.6243 0.6032 0.6047 0.6346 
            The values in the BOLD fonts indicate the best. 
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block has a major change compared to the proposed residual block. In the block shown in Figure 

3.1(a), both modules use the input feature tensor 𝒎𝒎. Differently, in the serial residual block shown 

in Figure 3.4, the input of the hierarchical feature extraction module is the feature tensor 𝑽𝑽 which 

is provided by the spatial feature extraction module. The learning curves are shown in Figure 3.5. 

As Figure 3.5 shows, the network employing the serial residual block has significantly lower learn-

ing quality than the proposed residual block. Table 3.3 shows the mAP of the networks using the 

proposed residual block and using the serial configuration of the block. The table clearly shows 

that the parallel configuration (the proposed method) is superior to the serial configuration in terms 

of mAP values. 

We now investigate the impact of each of the two modules of the proposed residual block—

namely, the hierarchical feature extraction module and edge feature extraction module—on the 

network performance individually. Three variants of the proposed residual block are formed; Var-

iant 1, Variant 2, and Variant 3. Each of these variants is formed by individually employing either 

module or removing the entire residual block (Variant 3). The learning curves for the proposed 

deep image retrieval network with its variants are shown in Figure 3.6. As seen from the figure, 

the learning curve for the network employing the proposed residual block shows a consistent, fa-

vorable learning curve. Furthermore, the curves are close for those variants when only a hierar-

chical feature extraction module is used and no residual block is employed. The slight improve-

ment in the block with only a hierarchical feature extraction module is because of the extra con-

volution operations added to the network by the module. However, the network employing the 

residual block with only the spatial feature extraction module shows an apparent improvement 

gain compared to Variants 2 and 3. Results demonstrate that spatial information is the key to im-

proving the retrieval performance of a deep image retrieval network. A quantitative comparison 

between the proposed residual block and its variants is shown in Table 3.4. The table confirms the 

proposed network’s superior retrieval performance for all the datasets. 

3.3.2 Experimental Results of HMSRNet 

The performance of the proposed network is compared with that of several other conventional and 

state-of-the-art deep image retrieval networks. The results are given in Table 3.5. The table shows 

that HMSRNet [59] performs best in three of the four datasets while maintaining much lower 
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complexity than the others.  A noteworthy observation is that the proposed HMSR residual block 

allows a comparatively lightweight network like AlexNet to be comparable or superior to methods 

that employ much more complex networks.  

We now compare HMSRNet with our previously presented work, namely MSFRNet. Table 

3.5 clearly demonstrates the significant superiority of HMSRNet. A key reason for this superiority 

is the utilization of dilated convolutional operations in the multi-scale module used in the proposed 

residual block. Unlike traditional convolutional operations, in which their receptive fields are lim-

ited to only capture information from immediate, neighboring pixels, utilizing dilated convolution 

operations in HMSRNet enables it to generate a richer set of features, thereby significantly en-

hancing the retrieval performance.  

 

Table 3.5: Comparison between various image retrieval networks in terms of mAP. 

 

Network Backbone 
Dataset 

FLOPs* 
Cifar10 Cinic10 Cifar100 Animals 

CSCFM [65] ResNeXt-50 0.8351 0.7143 0.8351 0.6087 >15.3 

BIMCNN [66] VGG16 0.8382 0.7343 0.8295 ̶ >15.3 

DELG [67] ResNet101 0.8334 0.7482 0.8211 0.6351 >7.6 

MRDL [68] VGG19 0.7782 0.7336 0.7556 0.6036 >19.6 

ADFSDH [69] VGG16+VGG19 0.7933 0.7372 0.7743 ̶ >27.2 

UDPH  [70] VGG16 0.7754 0.5990 0.7598 0.4235 >15.3 

SIRS-IR [71] Inception-ResNet-V2 0.6945 0.7343 0.6627 0.5832 >17.0 

MSFRNet [58] AlexNet 0.8431 0.7487 0.8348 0.6346 9.3 

HMSRNet [59] AlexNet 0.8543 0.7390 0.8507 0.6405 9.3 
BOLD, ITALIC, and underlined fonts indicate the best, second-best, and third-best performance, respectively. 
*FLOPs refer to floating point operations, shown here in billions (GFLOPs). 
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Figure 3.7: Precision-recall curves obtained from the proposed HMSRNet on Cifar10, Cinic10, and Animals datasets.  
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To further investigate the effectiveness of the proposed residual block, we exclude the residual 

block and re-train the network before observing the performance. The results are summarized in 

Table 3.6. As the table indicates, removing the proposed residual block from the retrieval network 

reduces the retrieval performance by at least 2.51% for Cinic10. The performance degradation is 

more severe for the network tested without the residual block on Cifar10 and Animals datasets, 

which exhibited performance reductions of 6.46% and 5.53%, respectively. 

Figure 3.7 presents examples of precision-recall curves generated based on the testing results 

of our proposed retrieval network and several other networks on three datasets. As the figure 

shows, HMSRNet demonstrates better retrieval performance than the other methods for all da-

tasets.  

We now study the impact of two modules of the proposed residual block—i.e., the hierarchical 

spatial feature extraction module and multi-scale feature extraction module—on the performance 

by forming three distinct variants. Variant 1 is formed by including only the spatial feature 

Table 3.6: Performance comparison of the proposed method. 
 

Dataset With Without % Reduction 

Cifar10 0.8643 0.7718 6.46 

Cinic10 0.7382 0.6701 2.51 

Animals 0.6365 0.6031 5.53 
 
 

Table 3.7: Results of ablation study. 
 

Modules Variant 1 Variant 2 Variant 3 HMSRNet 

Hierarchical Spatial Feature Extraction 🗸🗸 - - 🗸🗸 

Multi-scale Feature Extraction - 🗸🗸 - 🗸🗸 

mAP (Cifar10) 0.8145 0.7801 0.7718 0.8643 

mAP (Cinic10) 0.7283 0.6984 0.6701 0.7382 

mAP (Animals) 0.6123 0.5967 0.6031 0.6365 
     The values in the red fonts indicate the best. 
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extraction module. Variant 2 includes only the multi-scale feature module. Finally, Variant 3 is 

formed by removing the entire residual block from the network. The results using the proposed 

residual block and its three variants are summarized in Table 3.7. it is seen from the table that 

removing either module from the network significantly degrades the retrieval performance. The 

degradation in performance intensifies when the spatial feature extraction module is removed from 

the network (Variant 2). This outcome is not surprising, as spatial information is the most im-

portant information for locating the objects in the images in order to match the content of the 

images. As this module incorporates spatial information from different levels of abstraction in the 

feature maps, excluding such information significantly reduces the representational capacity of the 

feature vectors generated by the block. Meanwhile, the multi-scale feature extraction module pro-

duces more general features from the input feature maps than the others. Variant 3 is the worst-

performing variant, as this network relies on the non-residual network; the feature maps produced 

by such a network have less spatial information than networks employing the proposed residual 

block. 

Figure 3.8 shows the learning curves for the above-discussed variants of the proposed residual 

blocks for 200 epochs on the Animals dataset. The learning quality of the network employing the 

proposed residual block is higher than that of the network employing either module individually. 

Therefore, the proposed block is able to enhance the representational capacity of the feature vec-

tors. 

 
Figure 3.8: Learning curves of the proposed network and the variants on Animals dataset. 
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3.4 Summary 

In this chapter, we have proposed two novel techniques aiming to guide deep networks to generate 

rich feature sets by extracting spatial information. Specifically, we have used two distinct tech-

niques to extract spatial information, namely, the multi-source spatial information extraction fea-

ture technique and the multi-scale feature extraction technique. We have developed two deep con-

volutional neural networks capable of extracting features with a focus on spatial information. The 

extensive experimental results have confirmed that the new designs of residual blocks focusing on 

spatial information result in high-performance, low-complexity deep networks for the task of im-

age retrieval. 
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Chapter 4 
 

Deep Image Retrieval Network with 

Guided Feature Generation 
4 Deep Image Retrieval Network with Guided Feature 

Generation 
Textural, structural, and edge information is very important for differentiating images. As such, a 

network designed to capture these specific attributes could significantly enhance the effectiveness 

of image retrieval tasks. In [55], we have shown that the textural and structural information derived 

from images significantly contributes to the generation of highly discriminative features. The work 

presented in [55] highlights the potential of morphological operations, which are capable of 

providing such information effectively to a deep network. Building upon this foundational work, 

this chapter proposes a novel residual block that utilizes morphological operations and a new pool-

ing operation that emphasizes edge features. The aim is to design a deep convolutional neural 

network capable of generating rich sets of features for image retrieval tasks [72].  
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4.1 Max-m-Min Pooling 

Let us define a pooling operation, referred to as maximum minus minimum pooling (Max-m-Min), 

as 

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = 𝐦𝐦𝐦𝐦𝐦𝐦
𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] − 𝐦𝐦𝐦𝐦𝐦𝐦

𝑥𝑥,𝑦𝑦∈𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛)

𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] (4.1) 

In order to illustrate this pooling operation, for the sake of simplicity, we consider a pooling win-

dow of size of 2 × 2 with its set of indices given by 𝒩𝒩2×2
(𝑚𝑚,𝑛𝑛). The output signal 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] obtained 

by applying Max-m-Min pooling operation to the input signal 𝑖𝑖𝑐𝑐[𝑚𝑚,𝑛𝑛] is  

 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] = 𝐦𝐦𝐦𝐦𝐦𝐦
𝑥𝑥,𝑦𝑦∈𝒩𝒩2×2

(𝑚𝑚,𝑛𝑛)
𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] − 𝐦𝐦𝐦𝐦𝐦𝐦

𝑥𝑥,𝑦𝑦∈𝒩𝒩2×2
(𝑚𝑚,𝑛𝑛)

𝑖𝑖𝑐𝑐[𝑚𝑚,𝑦𝑦] (4.2) 

Let the values of the features in the window corresponding to these indices be 𝑖𝑖𝑐𝑐 [𝑚𝑚, 𝑛𝑛] =

{𝑎𝑎1,𝑎𝑎2, 𝑎𝑎3,𝑎𝑎4}, as shown in Figure 4.1 (a). The minimum (𝑚𝑚𝑖𝑖𝑛𝑛) and maximum (𝑚𝑚𝑎𝑎𝑚𝑚) values in 

the pooling window required to calculate 𝑜𝑜𝑐𝑐[𝑚𝑚,𝑛𝑛] can be found in four possible locations, as 

shown in Figure 4.1 (b)-(e). Taking Figure 4.1(b) as an example (in which the maximum value is 

𝑎𝑎1), the three possibilities presented below arise: 

 

 𝑜𝑜𝑐𝑐[𝑚𝑚, 𝑛𝑛] = �
 𝐺𝐺1 = 𝑎𝑎1 − 𝑎𝑎2    𝑖𝑖𝑓𝑓   𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑎𝑎2 
𝐺𝐺2 = 𝑎𝑎1 − 𝑎𝑎3    𝑖𝑖𝑓𝑓   𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑎𝑎3
𝐺𝐺3 = 𝑎𝑎1 − 𝑎𝑎4    𝑖𝑖𝑓𝑓   𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑎𝑎4

 (4.3) 

where 𝐺𝐺1, 𝐺𝐺2, and 𝐺𝐺3 represent gradient approximations of two adjacent pixels located at indices 

represented by 𝒩𝒩2×2
(𝑚𝑚,𝑛𝑛). The above discussion can be easily generalized to the other three scenarios 

depicted in Figure 4.1(c)-(e). Note that a pooling window in an image represents a very small 

neighborhood of the image in which, generally a pair of adjacent pixels does not have a significant 

difference in their pixel values unless the pixel (𝑚𝑚,𝑛𝑛) is an edge pixel. Therefore, after applying 

the proposed Max-m-Min pooling operation, most of the pixel values in the resulting image will 
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have very small values, and only the pixel positions on the image edge will have large pixel values. 

Therefore, by applying the proposed pooling operation, one can expect the resulting image to rep-

resent an edge map of the image. It is because of this reason; one can also expect to improve the 

representational capacity of the network if the proposed pooling operation is utilized. 

 

 

 

   

(a) 

 

(b) 𝑚𝑚𝑎𝑎𝑚𝑚=𝑎𝑎1 (c) 𝑚𝑚𝑎𝑎𝑚𝑚=𝑎𝑎2 

 

  

 
 

(d) 𝑚𝑚𝑎𝑎𝑚𝑚=𝑎𝑎3 (e) 𝑚𝑚𝑎𝑎𝑚𝑚=𝑎𝑎4 

Figure 4.1: (a) An example illustrating a pooling window of size 2×2. (b)-(e) represent four templates 
of the possible locations of minimum and maximum values required for Max-m-Min pooling on this 
window. 
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Figure 4.2: Detailed architecture of the proposed residual block. LReLU, Conv., and PConv. are Leaky-ReLU, convolution, and 

pointwise convolution, respectively. The symbols ‘+’ and ‘-’ represent tensor addition and tensor subtraction, respectively. The 

symbol ‘c’ represents the concatenation operation. 
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4.2 Proposed Residual Block 

Figure 4.2 shows the architecture of the proposed residual block, which consists of three modules: 

an edge feature extraction module, a morphological feature extraction module, and a feature fusion 

module. In the edge feature extraction module, the feature tensor 𝑿𝑿 input into the proposed residual 

block undergoes an edge feature extraction operation to obtain feature maps that consist of high-

frequency components. The edge feature extraction module consists of two groups of convolution 

operations, which are interleaved with one Max-m-Min pooling layer and are encapsulated by two 

Leaky-ReLU (LReLU) activation functions. Specifically, the feature tensor obtained from the 

Max-m-Min pooling operation (i.e., 𝒖𝒖1) is calculated as    

 𝒖𝒖1 =Max-m-Min�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶�𝐿𝐿𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅(𝑿𝑿)�� (4.4) 

where 𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶 is a convolution operation with 64 filters and a kernel size of 3×3. Then, 𝒖𝒖1 undergoes 

two convolution operations, followed by LReLU activation to obtain the feature tensor 𝒖𝒖2 as 

 𝒖𝒖2 = 𝐿𝐿𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅 �𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶(𝒖𝒖1)�� (4.5) 

Finally, the residual feature tensors 𝒖𝒖1 and 𝒖𝒖2 are added to the input tensor 𝑿𝑿 to produce the 

edge feature extraction module’s output 𝒖𝒖3 given by  

 𝒖𝒖3 = 𝒖𝒖1 + 𝒖𝒖2 + 𝑿𝑿 (4.6) 

In the edge feature extraction module, feature maps are learned solely through conventional 

convolution operations with the assistance of the proposed Max-m-Min pooling operation. Simi-

larly, in the morphological feature extraction module, feature vectors are learned through convo-

lution operations but with the guidance of nonlinear morphological operations. This guidance pro-

vides the network with rich textural and structural information; thus, the network using this resid-

ual block would learn a richer set of features. 
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In the morphological feature extraction module, the feature tensor 𝑿𝑿 first undergoes convolu-

tion operation to produce feature map 𝒗𝒗𝟏𝟏 as 

 𝒗𝒗1 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶(𝑿𝑿)� (4.7) 

The feature tensor 𝒗𝒗1 is then processed in parallel through two branches that consist of morpho-

logical operations to produce morphologically guided features 𝒎𝒎1 and 𝒎𝒎3. Specifically, let 𝒗𝒗1𝑘𝑘 

represent the kth channel of the tensor 𝒗𝒗1, respectively. In the upper branch, the kth channel of the 

feature tensor 𝒏𝒏1 resulting from the dilation operation is given by 

 𝒏𝒏1𝑘𝑘[𝑚𝑚,𝑛𝑛] = �𝒗𝒗1𝑘𝑘 ⊕ 𝑏𝑏�[𝑚𝑚,𝑛𝑛] = max
(𝑥𝑥,𝑦𝑦)𝜖𝜖𝑩𝑩

𝒗𝒗1𝑘𝑘[𝑚𝑚 + 𝑚𝑚,𝑛𝑛 + 𝑦𝑦] (4.8) 

where 𝑏𝑏 is the structuring element defined over a neighborhood 𝑩𝑩 of size 2×2 around [𝑚𝑚,𝑛𝑛] and 

⊕ is the dilation operation. The kth channel of the feature tensor 𝒏𝒏2 resulting from the erosion 

operation over the same neighborhood 𝑩𝑩 is obtained as 

 𝒏𝒏2𝑘𝑘[𝑚𝑚, 𝑛𝑛] = �𝒗𝒗1𝑘𝑘 ⊝ 𝑏𝑏�[𝑚𝑚,𝑛𝑛] = min
(𝑚𝑚,𝑛𝑛)𝜖𝜖𝑩𝑩

𝒗𝒗1𝑘𝑘[𝑚𝑚 + 𝑚𝑚,𝑛𝑛 + 𝑦𝑦] (4.9) 

where 𝒗𝒗1𝑘𝑘[𝑚𝑚,𝑛𝑛] is the two-dimensional signal representing the kth channel of tensor 𝒗𝒗1 at pixel 

position [𝑚𝑚,𝑛𝑛] and ⊝ is the erosion operation. The kth channel of the output feature tensor 𝒎𝒎1 is 

the difference between the feature tensors 𝒏𝒏1 and 𝒏𝒏2 (so-called morphological gradient operation), 

and is given by 

 𝒎𝒎𝟏𝟏
𝑘𝑘[𝑚𝑚,𝑛𝑛] = 𝒏𝒏1𝑘𝑘[𝑚𝑚,𝑛𝑛] − 𝒏𝒏2𝑘𝑘[𝑚𝑚,𝑛𝑛] (4.10) 

To learn the features of 𝒎𝒎1, a convolution operation followed by a ReLU activation function 

is carried out on the feature tensor 𝒎𝒎1, yielding 𝒗𝒗2 given by 
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 𝒗𝒗2 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶(𝒎𝒎1)�. (4.11) 

The feature tensor 𝒗𝒗2 is then added to the input feature tensor 𝒗𝒗1 to obtain the first set of residual 

feature maps 𝒗𝒗3 as 

 𝒗𝒗3 = 𝒗𝒗1 + 𝒗𝒗2 (4.12) 

In the lower branch, the feature tensor 𝑚𝑚3 is obtained by letting the feature tensor 𝒗𝒗1 to un-

dergo the erosion operation followed by the dilation operation. The tensor 𝒎𝒎3 is given by  

 𝒎𝒎3
𝑘𝑘[𝑚𝑚, 𝑛𝑛] = �𝒎𝒎2

𝑘𝑘 ⊕ 𝑏𝑏�[𝑚𝑚,𝑛𝑛] = max
(𝑥𝑥,𝑦𝑦)𝜖𝜖𝑩𝑩

𝒎𝒎2
𝑘𝑘[𝑚𝑚 + 𝑚𝑚,𝑛𝑛 + 𝑦𝑦] (4.13) 

where 𝒎𝒎2 is given by 

 𝒎𝒎2
𝑘𝑘[𝑚𝑚,𝑛𝑛] = �𝒗𝒗1𝑘𝑘 ⊝ 𝑏𝑏�[𝑚𝑚,𝑛𝑛] = min

(𝑥𝑥,𝑦𝑦)𝜖𝜖𝑩𝑩
𝒗𝒗1𝑘𝑘[𝑚𝑚 + 𝑚𝑚,𝑛𝑛 + 𝑦𝑦) (4.14) 

The tensor feature 𝒎𝒎3 is passed through a convolution operation and a ReLU activation to yield 

𝒗𝒗4 as 

 𝒗𝒗4 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶(𝒎𝒎3)� (4.15) 

The feature tensor 𝒗𝒗4 is then added to the input feature tensor  𝒗𝒗 to generate the output feature 

tensor 𝒗𝒗5 of the lower branch as 

 𝒗𝒗5 = 𝒗𝒗1 + 𝒗𝒗4 (4.16) 

The feature tensors 𝒗𝒗3 and 𝒗𝒗5 obtained from the two morphological branches are concatenatively 

fused to obtain the final output 𝒗𝒗6 of the morphological feature extraction module as 
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 𝒗𝒗6 = 𝐶𝐶𝑂𝑂𝑁𝑁𝐶𝐶(𝒗𝒗3,𝒗𝒗5) (4.17) 

where CONC is the concatenation operation. The feature tensor 𝒗𝒗6 is enriched by the strong tex-

tural and structural information provided by the morphological operations. 

In the feature fusion module, the feature tensor 𝒖𝒖3 obtained from the edge feature extraction 

module and that obtained from the morphological feature extraction module, namely, 𝒗𝒗6, are con-

catenated, resulting in the feature tensor 𝒔𝒔 given by 

 𝒔𝒔 = 𝐶𝐶𝑂𝑂𝑁𝑁𝐶𝐶(𝒖𝒖3,𝒗𝒗6) (4.18) 

The feature tensor 𝒔𝒔 then undergoes a pointwise convolution operation, followed by ReLU, to pro-

duce the residual feature tensor 𝒓𝒓 as 

 𝒓𝒓 = 𝑅𝑅𝑒𝑒𝐿𝐿𝑅𝑅�PConv(𝒔𝒔)� (4.19) 

where PConv represents the pointwise convolution operation. Finally, the residual feature tensor 

𝒓𝒓 is added to the input feature tensor 𝐗𝐗 to produce the output of the residual block, 𝒀𝒀, as 

 𝒀𝒀 = 𝒓𝒓 + 𝑿𝑿 (4.20) 

The features produced by the residual block are greatly enhanced by the feature extraction 

capability of the edge feature extraction module employing the proposed pooling operation as well 

as by the capability of the morphological feature extraction module in extracting textural and struc-

tural information guided by the morphological operations. The richness of the feature tensor 𝒀𝒀 

enables the network to learn highly representational and discriminative feature maps that are crit-

ical for high-performance image retrieval.
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Figure 4.3: Architecture of the proposed image retrieval network. Conv., PL1, PL2, and DW Pool., respectively, 
denote the feature extraction module, convolution operation, first pooling layer, second pooling layer, and depth-wise 
pooling layer.  
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Figure 4.3 shows the overall architecture of the proposed deep image retrieval network referred 

to as MoFNet. The input to the network is images of size 224×224 denoted as 𝒳𝒳. Each image 𝒳𝒳 

is passed through the first convolutional layer of the architecture, which consists of 64 filters, each 

of kernel size 3×3, followed by a ReLU activation function. Then, the resulting feature maps go 

through a sequence of five residual blocks, proposed in Section 4.2. The feature maps resulting 

from the sequence of residual blocks are passed through a convolution layer consisting of 64 filters, 

each of size 3×3, followed by a ReLU activation function. Next, the feature maps obtained from 

this convolutional layer are fed to the first Max-m-Min pooling layer denoted by PL1. The feature 

maps resulting from PL1 go through a sequence of two convolution operations, each followed by 

a ReLU activation function, and then the resulting feature maps are passed through another Max-

m-Min pooling layer denoted by PL2. 

The network architecture described so far is used for training as well as for testing. For the 

purpose of training, the network described so far is supplemented by a classifier module, as shown 

in Figure 4.3. The output of the second pooling layer, PL2, is fed to the classifier module, which 

consists of a flattening layer, two dense layers, and a SoftMax layer. The output of the SoftMax 

layer is a probability vector denoted by 𝑌𝑌𝑃𝑃 for each class of the image dataset, where each element 

of the output vector represents the probability of the input belonging to that class. 

Once the network has been trained, that classifier module is replaced by the module marked as 

the feature representation module shown in Figure 4.3. During the testing phase, the output of the 

pooling layer, the feature representation module, uses the output of the second pooling layer, PL2, 

followed by a depth-wise pooling layer to form a feature vector. The feature vector is then en-

hanced using the principal component analysis to obtain the final feature vector 𝑌𝑌𝐹𝐹 of size 512 

representing the features of the input image 𝒳𝒳.  

We refer to the proposed residual block as Morphological Feature-generating residual block 

(MoF) and the image retrieval network architecture employing the proposed MoF as MoFNet.  

For training and testing the proposed retrieval network, six datasets Cifar10 [73], Cinic10 [74], 

Animals [75], MS-COCO [76], ImageNet [77], and YFCC100M [78] are used. The first three da-

tasets are divided into training and testing sets with a ratio of 4:1. The images in the training set 

undergo augmentation by random rotation and distortion of the aspect ratio. From each category in 
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the testing set, five images are randomly selected and used as a set of query images, and the rest of 

the test images form a set, called search set, from which output images are selected corresponding 

to a given query image. The COCO dataset is split into a training set consisting of 118K images, a 

validation set with 5K images, and a test set with 41K images. For this dataset, following the protocol 

similar to that described in [79], we use the validation set as the query set and the images in the test 

set as the search set. For the ImageNet, following [79], [80], we randomly select 100 classes, use 

100 images from each of these classes are used as the search set, use all the images in the validation 

set as the query set, and the rest of the images in these classes is used as the training set. For the 

YFCC dataset, we randomly select 100 classes. Since YFCC is very unbalanced, the selected classes 

are checked to ensure that the number of images is evenly distributed in each of the selected classes. 

From each class, we select 500 images as the query set and split the remaining images into search 

and training sets with a ratio of 4:1. Since YFCC contains a massive number of images, the proposed 

MoFNet is first trained on the ImageNet dataset and is then fine-tuned on the YFCC dataset. Table 

4.1 presents the detailed allocation of images for various datasets, systematically divided into train-

ing, query, and search sets. 

The proposed network is optimized by training it using the stochastic gradient descent method 

with a momentum of 0.9. The learning process starts with a learning rate of 0.01, and after each 

epoch, the learning rate is decayed by a factor of 5 × 10−6. We use a batch size of 64. The network 

is trained on a machine with an Nvidia GeForce 3060 12 GB GPU, an Intel Core i7-6700 CPU 

@3.4 GHz, and 16 GB RAM for up to 200 epochs. The proposed method is implemented using 

the TensorFlow framework [62] and Keras library [63].  

Table 4.1: Distribution of images for different datasets. 

Dataset Number of images in  
training set 

Number of images in  
query set 

Number of images in  
search set 

Cifar10 48k 50 11k 
Animals 1.8k 70 370 
Cinic10 216k 50 53k 
COCO 118k 5k 41k 

ImageNet 100k 10k 50k 
YFCC 16000k 50k 3950k 
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4.3 Experimental Results 

As discussed in Section 4.2, our proposed residual block consists of two feature extraction mod-

ules, namely, the edge feature extraction module and the morphological feature extraction module. 

To investigate the impact of each of these modules, three variants of the proposed residual block 

are formed. Variant 1 is formed by removing both modules. Variant 2 is formed by removing the 

edge feature extraction module from the residual blocks, whereas Variant 3 is formed by removing 

the edge feature extraction module from the residual blocks. 

Table 4.2 gives the results in terms of the mAP of the proposed residual block and its three 

variants. It is seen from the table that removing the morphological feature extraction module results 

in noticeable performance degradation (Variant 3). Removing the edge feature extraction module 

(Variant 2) impacts the results, although not as strongly as excluding the morphological module. 

The reason is that the morphologically guided features still contain some amount of edge infor-

mation, and therefore, the richness of the features is not heavily impacted. However, it is clear that 

the highest performance is obtained by employing both modules.  

Table 4.2: The network performance in terms of mAP of the proposed network and its 
variants. 

Dataset 
mAP 

Variant 1 Variant 2 Variant 3 Proposed 

Cifar10 0.8201 0.8681 0.8443 0.9170 

Animals 0.7273 0.7684 0.7518 0.8544 

Cinic10 0.7298 0.7803 0.7657 0.8231 

ImageNet 0.5549 0.6470 0.5994 0.6955 

COCO 0.6282 0.7310 0.6934 0.7833 
The best results are shown in BOLD font. 
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Before we study the impact of the proposed Max-m-Min pooling operation, we examine the 

result of this operation by applying different pooling methods on some selected images from the 

Cifar10, Cinic10, Animals, and COCO datasets and compare the results with those obtained by 

applying average, max, Lp, and median pooling operations. Figure 4.4 shows the output images 

resulting from using the various pooling operations. It is very clear from this figure that the pro-

posed Max-m-Min operation is the most successful in extracting the edge information of the 

 
Figure 4.4: Comparison of different pooling methods on various inputs. The pooling size 
is 2×2 with stride=1. Max-m-Min detects fine edges that enable the network to learn texture 
features effectively. 
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images. Hence, we expect that the use of the proposed Max-m-Min operation should have a more 

positive impact on the proposed network performance in comparison to the use of the other pooling 

operations. 

We now consider the impact of using the proposed Max-m-Min pooling operation on the re-

trieval performance and compare it with that obtained by employing the other four pooling opera-

tions. The results are given in Table 4.3. It is seen from this table that the proposed Max-m-Min 

pooling operation provides the best network performance over all the datasets. 

 

Table 4.3: The network performance comparison in terms of mAP when PL1, PL2 corre-
sponding to Average, Max, Lp, Median, and Max-m-Min pooling operations. 

Pooling operation Cifar10 Animals Cinic10 COCO ImageNet YFCC* 

Average 0.8708 0.8514 0.8143 0.7416 0.6853 0.3215 

Max 0.8860 0.8514 0.8184 0.7412 0.6847 0.3210 

Lp 0.8810 0.8505 0.8146 0.7292 0.6528 0.2918 

Median 0.8797 0.8535 0.8170 0.7259 0.6694 0.3002 

Max-m-Min 0.9170 0.8544 0.8231 0.7833 0.6955 0.3243 
The best results are shown in BOLD font, and the second-best results are presented in ITALIC font. 
* The network is pretrained on ImageNet and finetuned on YFCC.  
 
 

Table 4.4: Training and testing times (in seconds) of the proposed network with different 
pooling operations. 

Pooling operation Training time* (one epoch) Testing time* 

Average 68.13 0.1473 

Max 67.74 0.1471 

Lp 81.54 0.1485 

Median 70.93 0.1470 

Max-m-Min 67.96 0.1468 
The best results are shown in BOLD font, and the second-best results are 
presented in ITALIC font. 
*  The network includes the proposed residual block. 
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Table 4.4 provides the training and testing times of the proposed network employing the pro-

posed Max-m-Min pooling operations and other pooling operations for PL1 and PL2, using the 

Cifar10 dataset. This table shows that the proposed network using the proposed Max-m-Min pool-

ing operation takes training time that is about the same as that taking when the average or max 

pooling operations is employed. It is seen from the table that the proposed Max-m-Min pooling 

operation takes less testing time than when other pooling operations are used. 

 

Preserving discriminative information while performing pooling operations is crucial to 

achieving desirable performance in a deep network. The discrimination ability of the pooled 

features is dominated by diverse and salient information [50]. In max pooling, the most salient 

information contributing to local features is preserved by enhancing the high-frequency com-

ponents. As a result, max pooling may be well suited for simple images in which the fore-

ground objects contain high-frequency components, such as the images in the Cifar10 dataset. 

However, in complex images, such as images in the COCO dataset, foreground items with 

less texture may disappear after several max pooling operations; thus, the features are more 

likely to lack the foreground object’s features. Additionally, average pooling retains a wide 

range of data by merging features from all parts of the image. However, average pooling may 

perform poorly because salient information is constantly linked with nonsalient details. There-

fore, a pooling operation that provides a trade-off between salient and diverse information 

may improve the discriminating capacity of the generated features. In light of the above dis-

cussion, Shannon entropy can be used to evaluate this trade-off in the pooling method [50]. Math-

ematically, Shannon entropy calculates the uncertainty associated with a certain value appearing 

in a pooling window. Considering pooled activation 𝑜𝑜𝑐𝑐[𝑚𝑚, 𝑛𝑛] over a pooling window defined by 

𝒩𝒩𝑎𝑎×𝑏𝑏
(𝑚𝑚,𝑛𝑛) as a random variable 𝑬𝑬 with 𝑍𝑍 = 𝑎𝑎. 𝑏𝑏 possible values {𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑍𝑍} and {𝑖𝑖1,𝑖𝑖2, … ,𝑖𝑖𝑍𝑍} as 

the corresponding probabilities, the entropy 𝐻𝐻(𝑒𝑒) of a pooled activation 𝑬𝑬 is defined as  

 𝐻𝐻(𝑒𝑒) = −�𝑖𝑖𝑧𝑧 𝑙𝑙𝑜𝑜𝑠𝑠2 𝑖𝑖𝑧𝑧

𝑍𝑍

𝑧𝑧=1

 (4.21) 
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Assuming a 2×2 pooling window (𝑍𝑍 = 4), the entropy of max pooling is 

 𝐻𝐻(𝑒𝑒) = −(1 𝑙𝑙𝑜𝑜𝑠𝑠2 1) = 0 (4.22) 

This means there is no uncertainty, as max pooling selects the strongest value; max pooling 

assigns a probability of 1 to the maximum value and 0 to the others. In contrast, average pooling 

is calculated by assigning equal probability to every component in the pooling window. Hence, for 

average pooling, we have 

 𝐻𝐻(𝑒𝑒) = −�(
1
4
𝑙𝑙𝑜𝑜𝑠𝑠2

1
4

) = 2 
𝑍𝑍

𝑧𝑧=1

 (4.23) 

The proposed Max-m-Min pooling operation always considers two extreme values in the pool-

ing window, namely, the maximum and minimum values. Therefore, the entropy for Max-m-Min 

pooling is given by 

 𝐻𝐻(𝑒𝑒) = −(
1
2
𝑙𝑙𝑜𝑜𝑠𝑠2

1
2

+
1
2
𝑙𝑙𝑜𝑜𝑠𝑠2

1
2

) = 1  (4.24) 

This value is between those of the max pooling and average pooling, meaning that the Max-m-

Min pooling provides an excellent trade-off between these two pooling operations. In other words, 

the proposed Max-m-Min pooling operation can effectively preserve salient features and diverse 

information. The entropy values of different pooling operations are presented in Table 4.5. 

Table 4.5: Shannon entropy 𝐻𝐻(𝑒𝑒) of different pooling methods. 

Pooling operation 𝐻𝐻(𝑒𝑒) 

Average 2 

Max 0 

Lp [0, 2] 

Median 0, 1 

Max-m-Min 1 
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Table 4.6: Impact of the size of morphological operators on the network 
performance in terms of mAP. 

 

Operator Size Animals COCO 

2×2 0.8544 0.7833 

3×3 0.8196 0.7228 

4×4 0.8107 0.7229 

5×5 0.8054 0.7298 

6×6 0.8098 0.7101 

7×7 0.7875 0.7043 

8×8 0.7964 0.7032 

9×9 0.7741 0.6856 
The best results are shown in BOLD font, and the second-
best results are presented in ITALIC font. 

 
 

 

Table 4.7: Impact of using different fusion strategies on the performance of the net-
work in terms of mAP. 

 

Fusion method Cifar10 Animals Cinic10 COCO ImageNet YFCC 

Summation 0.8754 0.8185 0.8376 0.7205 0.5911 0.2954 

Concatenation 0.9170 0.8544 0.8231 0.7833 0.6955 0.3243 

BOLD font indicates the best performance. 
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Figure 4.5: Visualization of feature map evolution through the residual block. The residual block 
outputs a feature vector enriched with textural and structural information. 
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As mentioned in Section 4.2, using the proposed residual block enables the deep network to 

learn rich sets of feature maps. In order to visually see as to how the objective of extracting a rich 

set of feature maps by the proposed residual block we have isolated the 5th residual of an opera-

tional proposed network and presented it as Figure 4.5. A comparison of the typical feature maps 

𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 with the map 𝑎𝑎 shows that the edge extraction module and the two branches of the 

morphological module are indeed achieving their objectives in that map 𝑏𝑏 has more information 

on the edges of the input image, whereas maps 𝑐𝑐 and 𝑑𝑑 have more textural and structural infor-

mation about the image. On the other hand, feature map 𝑓𝑓 has all the information contained in 𝑏𝑏,𝑐𝑐, 

and 𝑑𝑑 combined together. 

 

As previously mentioned, all the morphological operators employed to generate morphological 

features use a kernel of size 2×2. We now investigate the effect of using other kernel sizes on the 

network performance. The results using the Animals and COCO datasets are given in Table 4.6. It 

is seen from this table that the kernel size of 2×2 provides the best performance and the kernel size 

of 3×3 yields the second-best performance. 

  

Two strategies can be used for feature fusion in deep networks, namely, summation and con-

catenation. In the proposed residual block, we utilize concatenation to fuse multiple feature ten-

sors. In Table 4.7, we provide the results of using each of the two fusion schemes. It is seen from 

this table that concatenation is a better fusion strategy in comparison to the summation strategy, 

regardless of the dataset used. 
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Table 4.8: Comparison between the performance (in terms of mAP) of the convolutional 
neural networks for image retrieval. 

 
Method 

 
Net 

 
F-Tun 

 
Dim 

 
Params 

 
mAP 

Cifar10 Animals Cinic10 ImageNet COCO YFCC* 

Neural Code (2014) [8] V Yes 4096 138M 0.6723 0.6387 0.5485 0.6458 0.7512 0.2608 

DHN (2016) [81] A Yes 64 62M 0.6210 ̶ ̶ 0.5730 0.7340 ̶ 

MSIR (2020) [82] V Yes 4096 138M 0.7955 0.4732 0.6163 0.5642 0.6734 0.1645 

HashNet (2017) [79] V Yes 64 138M 0.7870 0.6663 0.7132 0.6955 0.7360 0.2987 

DPAH (2020) [83] V Yes 64 138M ̶ ̶ ̶ 0.7138 0.7815 ̶ 

UDPH (2022) [70] R Yes 256 44M 0.5520 0.4843 0.4934 
 

0.5357 0.7201 0.2814 

Neural Code (2014) [8] V No 4096 138M 0.6545 0.6243 0.5154 0.5198 0.7362 0.2343 

MSIR (2020) [82] V No 4096 138M 0.6643 0.4156 0.5856 0.5337 0.6748 0.1247 

DHA (2019) [84] A No 64 62M 0.6990 ̶ ̶ ̶ 0.7532 ̶ 

UDPH (2022) [70] R No 256 44M 0.4965 0.3998 0.4112 0.5057 0.7073 0.2156 

XBL (2021) [85] X No 4096 44M 0.7254 0.6629 0.6845 0.6823 0.7182 0.1858 

MRDL (2021) [68] V No 4096 138M 0.6657 0.6256 0.6534 0.5963 ̶ ̶ 

DELG (2020) [67] R No 2048 44M 0.9046 0.6787 0.7176 0.6914 0.7525 0.3034 

C-LSH (2018) [86] E n/a 2048 103M 0.6365 0.3640 0.3843 0.5963 0.6883 0.2443 

TBH (2020) [87] E n/a 64 71M 0.8739 ̶ ̶ ̶ 0.7211 ̶ 

MorIRNet (2022) [55] E n/a 3136 85M 0.7773 0.6654 0.7168 0.6145 0.6954 0.2778 

MSFRNet (Ch.3) E n/a 169 62M 0.8431 0.6346 0.7487 0.5318 0.5617 0.2224 

HMSRNet (Ch.3) E n/a 169 62M 0.8643 0.6405 0.7390 0.5423 0.5901 0.2361 

MoFNet (proposed) E n/a 512 64M 0.9170 0.6934 0.7317 0.6990 0.7833 0.3243 

BOLD, ITALIC, and underlined fonts indicate the best, second-best, and third-best performance, respectively. 
 

“Net” is the backbone network that is used by the corresponding method: VGG16 (V), ResNet101 (R), AlexNet (A), Xception (X), or 
end-to-end (E). “F-Tun” is “Yes” when the fine-tuned network is used, “No” when the off-the-shelf network is used, and “n/a” when the 
network is trained from scratch. “Dim” is the final feature vector dimension. “Params” is the number of parameters (in millions). † Eu-
clidean metric is used. Euclidean distance is used as the similarity measurement for all the datasets. 

 

* The results are obtained using the network that is pretrained on ImageNet and fine-tuned on YFCC. 



58 

 

We now compare our proposed MoFNet with several conventional and state-of-the-art image 

retrieval methods, including Neural Code [8], UDPH [70], C-LSH [86], DHA [84], TBH [87], 

MorIRNet [55], DHN [81], DPAH [83], MSIR [82], XBL [85], MRDL [68], DELG [67], and 

HashNet [79]. The results are reported in Table 4.8. It is clear from the table that the proposed 

MoFNet gives the best performance on all the datasets except for the ImageNet dataset, where its 

performance is the second-best. In particular, for the Cifar10 dataset, the proposed MoFNet gives 

a performance that is significantly superior to that of all the other networks. In the case of the 

YFCC dataset, which is a very challenging large-scale dataset, our proposed MoFNet exhibits the 

best results, with a mAP of 0.3243. This retrieval performance is significantly higher than the 

second-best result of mAP=0.3034 obtained by DELG [67]. The relatively poor performance on 

this dataset by all the methods is due to the dataset size and the fact that its label distribution is not 

well-balanced. It is to be noted that the higher performance of the proposed MoFNet is achieved 

despite the fact that it uses a smaller number of parameters than most of the other networks. It 

should also be noted that the performance of each of those networks that uses the number of pa-

rameters smaller than the proposed MoFNet is very much lower. 

4.4 Summary 

In this chapter, we have developed a deep convolutional neural network guided to extract the tex-

tural, structural, and edge information contained in images. Recognizing that morphological oper-

ations process, the texture and structure of objects based on their geometrical properties and that 

edges represent fundamental features of an image, we have used these ideas in our network. We 

have utilized morphological operations to guide the network to extract textural and structural in-

formation. Also, a novel pooling operation has been designed to extract the edge information in an 

image. Extensive experimental results have confirmed the effectiveness of our proposed network, 

significantly enhancing the learning quality of the deep network for image retrieval tasks. 
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Chapter 5 
 

Hashing-based Re-ranking Technique 

for Image Retrieval  
5 Hashing-based Re-ranking Technique for Image Retrieval  
Re-ranking is a task of refining an initially ranked list of images obtained from an image retrieval 

technique for a given query image, with the goal of enhancing retrieval performance in an efficient 

manner. However, existing re-ranking methods suffer from high computational complexity, lead-

ing to slow and resource-intensive operations that render them impractical for real-life applica-

tions. This necessitates the development of a computationally efficient re-ranking approach that 

effectively improves retrieval performance. Image hashing is one of the techniques that has shown 

promising performance along with computational efficiency for the task of image retrieval [32], 

[88]. Motivated by these advantages offered by image hashing, this chapter develops a novel and 

computationally efficient re-ranking method for image retrieval, utilizing the speedy and proficient 

nature of image hashing techniques for image representation [89].  
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5.1 RefinerHash: A New Hashing-based Re-ranking 

Technique for Image Retrieval 

5.1.1 Initial Retrieval List 

In order to prepare the initial retrieval list, we employ two distinct methods. The first method, 

detailed later in this chapter, is based on our approach presented in [89], which utilizes A novel 

Block-wise technique and a pre-trained deep network to generate the initial retrieval list.  We re-

fer to this method as Block-wide Hopfield-based Image Retrieval (BHIR). The second method is 

MoFNet, proposed in [72] and extensively detailed in Chapter 4. MoFNet differs as it requires a 

deep network to be trained. By strategically using these methods in tandem, we aim to explore the 

impact of both improving representational capacity through MoFNet and employing effective re-

ranking strategies, with the goal of maximizing the overall performance in our image retrieval 

tasks. 

5.1.1.1 Block-wise Hopfield-based Image Retrieval 
 

The general framework of the initial list creation process of [89] is depicted in Figure 5.1. The 

process consists of two main steps: training and testing. During the training step, we partition each 

image available in the training set into 𝑏𝑏 blocks. We extract features from these blocks using deep 

features using ResNet50 deep network. Using these features, we calculate weight matrices, 𝑾𝑾𝑏𝑏
𝑗𝑗 , 

for each block, which are then summed to obtain 𝑏𝑏 weight matrix sets, 𝑾𝑾𝒃𝒃. During the testing step, 

these matrices are used for calculating scores for initial list creation. 
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Figure 5.1: Framework of the proposed method for the initial retrieval list creation. During the 
training step, the weight matrix that is used in the testing step, 𝑾𝑾𝒃𝒃, is calculated to create the initial 
list. The “Feature Extraction” module can be based on either low-level features or deep features. 
The sizes of feature vectors, 𝑓𝑓𝑏𝑏𝑁𝑁, 𝑓𝑓𝑏𝑏𝑀𝑀 and 𝑾𝑾𝒃𝒃 are 2048×1, 2048×1 and 2048×2048, respectively. 
The output is K images, which are stored in a set called Γ. “T” which is the super-script to the 
feature vectors, is the transpose operator. 
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We utilize the ResNet50 [90] convolutional neural network, as depicted in, for feature extrac-

tion. We modify the standard structure of ResNet50 to fit our purpose. As illustrated in Figure 5.2, 

the classification head of ResNet50 is replaced with a feature extraction module. Specifically, our 

feature extraction module takes the output of the last convolutional layer, size 7×7×2048, and 

passes it through a global max pooling layer with a window size of 7×7 and a stride of 1. The 

output from this pooling layer then undergoes a flattening process, resulting in a 2048-dimensional 

vector. This vector serves as our desired image representation. The choice of ResNet50 was moti-

vated by its demonstrated efficiency in extracting intricate image features and its robustness in 

handling a variety of visual tasks. Additionally, using a pre-trained model allows us to capitalize 

on the knowledge gained from large-scale datasets, thereby providing a strong foundation for our 

feature extraction. 

An example of the blocking scheme is shown in Figure 5.3. As the figure shows, the weights 

are assigned based on the location of the blocks within an image, and the blocks in the central 

region of the image, which contain the most informative visual information, are assigned greater 

weights compared to those located along the borders. These weight values are pre-defined and 

 

 

Figure 5.2: The ResNet50 architecture and the modifications made for its use as a feature extractor. The 
depicted architecture shows the size of filters and the dimensions of the outputs of convolutional modules. 
The notation “𝑛𝑛 × 𝑛𝑛, k” in the convolutional modules denotes a filter size of 𝑛𝑛 × 𝑛𝑛 with k filters. The 
values at the top of each module denotes the repetition of the corresponding module. The values above the 
arrows represent the size of the output of the corresponding module. The Classification head is removed 
from the pre-trained ResNet50 and replaced with the “Feature Extraction” module. For simplicity, residual 
shortcuts and activation functions are not shown. 
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determined experimentally. For our experiments, the following values are used in the block weight 

vector: 

 
𝐵𝐵 = �

𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝐵𝐵4
𝐵𝐵5
𝐵𝐵9

𝐵𝐵6 𝐵𝐵7
𝐵𝐵10 𝐵𝐵11

𝐵𝐵8
𝐵𝐵12

𝐵𝐵13 𝐵𝐵14 𝐵𝐵15 𝐵𝐵16

� =  �
0.5 0.5 0.5 0.5
0.5
0.5

2.0 2.0
2.0 2.0

0.5
0.5

0.5 0.5 0.5 0.5

� 

𝐵𝐵�⃗ 𝑏𝑏 = {𝐵𝐵1, … ,𝐵𝐵16} 

 
(5.1) 

Each image in the dataset is divided into b blocks. For each specific block position, we collate 

the same block across all images to form a block set. For instance, block set 1 contains the first 

block from all images in the dataset. For each of these block sets, we compute a distinct weight 

matrix. This process is repeated across all block positions, yielding a collection of weight matrices 

that uniquely correspond to each block position within the images. The first step in calculating the 

desired weight matrices is to compute the weight matrices for each image in the training set: 

 𝑾𝑾𝑏𝑏
𝑗𝑗 = 𝑓𝑓𝑏𝑏

𝑗𝑗𝑓𝑓𝑏𝑏
𝑗𝑗𝑇𝑇 (5.2) 

where 𝑾𝑾𝑏𝑏
𝑗𝑗  is the weight matrix for the b-th block of the j-th image and 𝑓𝑓𝑏𝑏

𝑗𝑗 is the feature vector for 

the b-th block of the j-th image. The superscript 𝑇𝑇 represents the transpose operation, and 𝑗𝑗 is the 

number of images in the training set, with 𝑗𝑗 ∈ {1. . .𝑁𝑁}. Therefore, for each block set, there are 𝑁𝑁 

weight matrices. Adding these weight matrices (for a block set) yields the desired weight matrix 

for block set b as follows: 

 

 

Figure 5.3: The block weight vector. The center region includes four blocks and has a four times 
greater influence on the score calculation than the blocks at the borders. These values are found 
experimentally and provide the best results. 
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 𝑾𝑾𝑏𝑏 = �𝑾𝑾𝑏𝑏
𝑗𝑗

𝑁𝑁

𝑗𝑗=1

 (5.3) 

Considering that there are 16 block sets, we have a total of 16 different weight matrices, each with 

a size of 2048×2048. These matrices encapsulate the associative memory capabilities of the Hop-

field network to be used in the initial retrieval list creation.  

5.1.1.2 MoFNet 
In Chapter 4 of this work, a detailed explanation of MoFNet is provided. MoFNet is specifically 

designed to enhance the representational capacity of features for image retrieval. It achieves this 

by integrating two innovative approaches: a new pooling mechanism known as Maximum minus 

Minimum (Max-m-Min) pooling and a novel morphological feature-generating residual block 

(MoF). 

The Max-m-Min pooling operation is a novel pooling operation that focuses on extracting edge 

features. It calculates the difference between the maximum and minimum element values within a 

pooling window of a feature map to highlight the edge features. When the pooling operation is 

applied on an input feature map, the resultant feature map consists of robust edge features. 

The morphological feature-generating residual block (MoF) consists of three modules: an edge 

feature extraction module, a morphological feature extraction module, and a feature fusion mod-

ule. The edge feature extraction module utilizes the Max-m-Min pooling method alongside con-

ventional convolution operations to extract high-frequency components and learn discriminative 

features. The morphological feature extraction module employs nonlinear morphological opera-

tions to extract textural and structural information from the image, contributing to a rich set of 

features. Lastly, the feature fusion module combines the outputs from the previous two modules, 

providing the network with high representational features for the task of image retrieval. 

The MoFNet architecture includes multiple layers of conventional convolution layers, a se-

quence of five MoF residual blocks, and some Max-m-Min pooling layers. During training, the 

network employs a classifier module, while for testing, the classifier module is replaced with a 

feature representation module. The trained network is then used as a feature representation module.  
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5.1.1.3 Initial Retrieval List Creation using BHIR 

Before the creation of the initial retrieval list for a given query, all the M images in the test set 

should go through the feature extraction step to obtain their corresponding feature vectors, namely 

𝑓𝑓𝑏𝑏𝑖𝑖, 𝑖𝑖 ∈ {1 … M}, following the same procedure used in the training step. These obtained feature 

vectors, 𝑓𝑓𝑏𝑏𝑖𝑖, are then applied to the trained Hopfield network. In our image retrieval method, the 

network is used to transform the feature vectors of the images during the testing phase. By em-

ploying the network, with its weight matrix calculated in the training part (as discussed in Section 

3.1.4), our method takes advantage of the associative memory capability of the network to align 

the feature vectors of the images more closely with the vectors of similar images. Utilizing the 

Hopfield network, each feature vector 𝑓𝑓𝑏𝑏𝑖𝑖 is transformed into a new vector, 𝑓𝑓𝑏𝑏𝑖𝑖. 

Once all the new feature vectors, 𝑓𝑓𝑏𝑏𝑖𝑖, are calculated, they are used to generate a similarity score 

for every image in the test set with respect to the query image. This query image is one of the 𝑀𝑀 

images in the test set. The process of creating the initial list begins with the calculation of the score 

for image 𝑖𝑖 of the test set as follows: 

 𝑠𝑠𝑖𝑖 = � 𝑃𝑃𝑝𝑝𝑖𝑖
2048

𝑝𝑝=1

 (5.4) 

Here, 𝑃𝑃𝑖𝑖 is calculated using: 

 𝑃𝑃𝑖𝑖 = �𝐵𝐵𝑏𝑏𝑓𝑓𝑏𝑏𝑖𝑖
𝑇𝑇

16

𝑏𝑏=1

 
 

(5.5) 

where 𝐵𝐵𝑏𝑏 is weight for block b. Next, we compute the distance measure, which is done by sub-

tracting the score of the query image (𝑠𝑠𝑞𝑞) from the score calculated for every other image in the 

test set. This is represented as: 

 𝑙𝑙𝑞𝑞𝑖𝑖 = �𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑞𝑞�, 𝑖𝑖 ∈ {1 …𝑀𝑀}, 𝑖𝑖 ≠ 𝑞𝑞 
 

(5.6) 

where, 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑞𝑞 are the scores calculated for images in the test set and the query image, respec-

tively, and |. | is the absolute value operation. Afterward, we arrange the computed 𝑙𝑙𝑞𝑞𝑖𝑖  values in 

ascending order: 
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 𝐿𝐿𝑞𝑞 = 𝑠𝑠𝑜𝑜𝑟𝑟𝑡𝑡��𝑙𝑙𝑞𝑞𝑖𝑖 , 𝑖𝑖 = 1, . . ,𝑀𝑀��, 𝑖𝑖 ≠ 𝑞𝑞 (5.7) 

From this sorted list, we select the images corresponding to the 𝐾𝐾 lowest values of 𝑙𝑙𝑞𝑞𝑖𝑖  that are more 

likely to include similar images to the query image. These selected images form the initial retrieval 

list (denoted as Γ), which serves as the input for further processing in the re-ranking step. 

5.1.1.4 Initial Retrieval List Creation using MoFNet 
In the image retrieval process using MoFNet, the first step is to compute the feature maps for a 

query image and all images in the database. To find the initial retrieval list, the query feature vector 

is compared with all the feature vectors from the database using a suitable similarity measurement. 

This comparison measures the similarity between the query and each image in the database based 

on their respective feature maps. The images are then ranked according to their similarity scores. 

The top K images, which have the highest similarity scores, are selected to form the initial retrieval 

list Γ.  

5.1.1.5 Hash Code Generation 
In this section, we develop RefinerHash, which is a computationally efficient re-ranking scheme 

for image retrieval. We first present the generation of hash codes using Discrete Cosine Transform 

(DCT) and Discrete Wavelet Transform (DWT), yielding concise yet comprehensive representa-

tions of the images. These hash codes form the backbone of the re-ranking process. Utilizing the 

hash codes, we present our image search technique that employs an efficient tree data structure to 

boost search speed and retrieval accuracy. 

General hash code generation technique: Our approach involves generating hash codes for a 

given image by combining the codes calculated for the different rotations of the image. We initiate 

the process by partitioning an image into blocks. Following this, a transformation is applied to 

these blocks, and the median value of the transformed blocks, denoted as 𝑚𝑚, is calculated. Subse-

quently, a single bit of the hash code is computed by comparing this median value with the average 

coefficient value of the transformation within each block. This bit-generation procedure is sum-

marized as follows: 

 𝑓𝑓(𝐴𝐴𝑏𝑏) = �0,         𝐴𝐴𝑏𝑏 < 𝑚𝑚
1,         𝐴𝐴𝑏𝑏 ≥ 𝑚𝑚 (5.8) 
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where 𝐴𝐴𝑏𝑏 represents the average coefficient value calculated for the 𝑏𝑏-th block. Once each bit has 

been calculated for all blocks, the next step is to create the final hash code, which is created by 

merging the bit outputted by applying the hash code generation technique on all blocks.  

Hash code generation based on DCT: Figure 5.4 shows our proposed image hashing technique 

using DCT transformation. As the figure shows, the process involves deriving four distinct hash 

codes, denoted as ℎ𝑚𝑚, with 𝑚𝑚 ∈ {1, 2, 3, 4}, from concatenating the hash codes obtained by rotat-

ing the image to four orientations: 𝜃𝜃 = {0,π/2,π, 3π/2}. Subsequently, these images undergo a 

DCT transformation. However, directly applying DCT to the entire image may include irrelevant 

background information, limiting the representational capacity of the hash codes [32]. To over-

come this limitation, our approach selectively applies DCT to the central region of the image. 

The central region is defined by a 128×128 patch which is partitioned into 𝛼𝛼 equal blocks, 

where 𝛼𝛼 = 16 and each block of size 32×32 pixels. The hash code calculation starts by applying 

DCT to each of these blocks: 

 𝛷𝛷𝜃𝜃,𝛼𝛼
𝑖𝑖 = 𝐷𝐷𝐶𝐶𝑇𝑇�𝐼𝐼𝜃𝜃,𝛼𝛼

𝑖𝑖 � (5.9) 

where 𝐼𝐼𝜃𝜃,𝛼𝛼
𝑖𝑖  is the 𝛼𝛼-th block of the 𝑖𝑖-th image rotated 𝜃𝜃 degrees. The average coefficient value, 

𝜇𝜇𝜃𝜃,𝛼𝛼
𝑖𝑖 , is computed from these DCT coefficients for each block. These average values are further 

averaged for all α blocks in the central region of the image, resulting in values denoted as 𝜇𝜇𝜃𝜃𝑖𝑖 . Each 

bit of the hash code, ℎ𝜃𝜃,𝛼𝛼
𝑖𝑖 , is determined based on the comparison of 𝜇𝜇𝜃𝜃,𝛼𝛼

𝑖𝑖  with the median value, 

𝑚𝑚𝜃𝜃
𝑖𝑖 , as follows: 

 ℎ𝜃𝜃,𝑎𝑎
𝑖𝑖 = �

0,          𝜇𝜇𝜃𝜃,𝛼𝛼
𝑖𝑖 < 𝑚𝑚𝜃𝜃

𝑖𝑖

1,          𝜇𝜇𝜃𝜃,𝛼𝛼
𝑖𝑖 ≥ 𝑚𝑚𝜃𝜃

𝑖𝑖   (5.10) 

where 𝑚𝑚𝜃𝜃
𝑖𝑖  is the median of all the average values for the 𝑖𝑖-th image when rotated by θ degrees. By 

processing all the blocks and concatenating the obtained bits, we generate the final hash code for 

the 𝑖𝑖-th image as follows: 

 ℎ𝑖𝑖 = ℎ3𝜋𝜋/2,16
𝑖𝑖  …   ℎ0,1

𝑖𝑖  , 𝑖𝑖 = 1 … K (5.11) 

The size of ℎ𝑖𝑖 is equivalent to the product of the number of rotations and windows. As such, 

the size of a DCT-based hash code totals 4×16, or 64 bits. Given that our initial list comprised K 

images, we consequently generated K hash codes. 
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Figure 5.4: An overview of how a hash code is generated using DCT. Given rotated images, the hash codes based on DCT are calculated on 
partitioned central regions. The output is a hash code generated by concatenating all the hash codes calculated for an image. All the final hash codes 
are used to build a tree (𝒯𝒯ℎ). 𝐾𝐾 is the number of images available in the initial retrieval list, 𝜃𝜃 is the image orientation, and 𝛼𝛼 is the block number.  
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Figure 5.5: An overview of how hash codes are generated using DWT. Given rotated images, the DWT-based hash codes are calculated on the 
partitioned whole image. The hash codes are then divided into equal-length hash codes, namely 𝐿𝐿𝑖𝑖 and 𝑅𝑅𝑖𝑖. These two hash codes are used to build 
two different trees (𝒯𝒯𝐿𝐿 and 𝒯𝒯𝑅𝑅). Note that 𝛹𝛹𝜃𝜃,𝛽𝛽

𝑖𝑖  is the coefficient of the LL band after the first decomposition, 𝜃𝜃 is the image orientation, 𝛽𝛽 is the 
block number, and 𝐾𝐾 is the number of images in the initial retrieval list. 
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Hash code generation based on DWT: Our proposed DWT-based hashing technique is shown in 

Figure 5.5. As the figure shows, the algorithm for calculating hash codes using DWT is similar to 

that for generating DCT-based hash codes. However, the DWT-based method generates two hash 

codes per image, taking advantage of the multi-resolution representation that DWT offers. The 

DWT transformation decomposes an image into four bands: low-low (LL), low-high (LH), high-

low (HL), and high-high (HH). We specifically select the LL band, which contains the most critical 

information about the original image [91]. Therefore, the hash codes derived from this LL band 

encapsulate essential and expansive details about the image, effectively representing its content.  

Similar to the DCT-based hashing technique, we introduce a step of rotating images prior to 

the application of DWT, aiming to improve the representational diversity of the generated hash 

codes. This rotation presents a different perspective of the image content, thus potentially provid-

ing additional features. By generating hash codes from the LL band of the rotated images, our 

method captures a broader range of details, resulting in a more comprehensive representation of 

the image. This rotation-aided approach thereby enhances the robustness and representational ca-

pacity of the generated hash codes. 

The process begins by dividing a given image 𝐼𝐼 into 𝛽𝛽 blocks with a size of 32×32. After the 

process of dividing the image and applying the DWT transformation to each block, we then derive 

a coefficient, 𝛹𝛹𝜃𝜃,𝛽𝛽
𝑖𝑖 . From these coefficients, we select the low-low (LL) bands after the first de-

composition of the DWT for further processing. We proceed by averaging the coefficient for each 

block to yield �̂�𝜇𝜃𝜃,𝛽𝛽
𝑖𝑖 . The subsequent step is the calculation of the median for all the blocks of each 

orientation of a given image, denoted as, 𝑚𝑚�𝜃𝜃𝑖𝑖 . Given �̂�𝜇𝜃𝜃,𝛽𝛽
𝑖𝑖  and 𝑚𝑚�𝜃𝜃𝑖𝑖 , we can compute one bit of the 

hash code as follows: 

 ℎ�𝜃𝜃,𝛽𝛽
𝑖𝑖 = �

0,          �̂�𝜇𝜃𝜃,𝛽𝛽
𝑖𝑖 < 𝑚𝑚�𝜃𝜃𝑖𝑖

1,          �̂�𝜇𝜃𝜃,𝛽𝛽
𝑖𝑖 ≥ 𝑚𝑚�𝜃𝜃𝑖𝑖

  (5.12) 

Once the bits for all blocks have been computed, the final step in the DWT-based method is to 

construct the hash code by concatenating the calculated bits for all the blocks of images rotated θ 

degrees, leading us to a hash code as follows: 

 ℎ�𝑖𝑖 = ℎ�3𝜋𝜋/2,64
𝑖𝑖  … ℎ�0,1

𝑖𝑖 , 𝑖𝑖 = 1 …𝐾𝐾 (5.13) 
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The length of the hash code for an image, represented by ℎ�𝑖𝑖, is 4 × 64 = 256 bits due to the 

image rotation across four different orientations. We partition this hash code into two equal sec-

tions, 𝐿𝐿𝑖𝑖 and 𝑅𝑅𝑖𝑖, representing the left and right parts of ℎ�𝑖𝑖, respectively. This division is performed 

as follows: 

 
𝐿𝐿𝑖𝑖 = ℎ�𝑖𝑖 ⊙ [1� , 0�] 

𝑅𝑅𝑖𝑖 = ℎ�𝑖𝑖 ⊙ [0�, 1�] 
(5.14) 

where ⊙ denotes the canonical (element-wise) multiplication operation, while 1� ∈ 𝑅𝑅𝟙𝟙𝟙𝟙𝟙𝟙 and 0� ∈

𝑅𝑅𝟙𝟙𝟙𝟙𝟙𝟙 are vectors of ones and zeros, respectively. These operations essentially mask one-half of the 

hash code, retaining the other half. The sections filled with zeros (masked) are subsequently omit-

ted, leaving us with 𝐿𝐿𝑖𝑖 and 𝑅𝑅𝑖𝑖, each of length 128 bits. These are then used to construct the trees 

𝒯𝒯ℒ  and 𝒯𝒯ℛ, respectively. These trees, along with the tree constructed based on DCT, is the founda-

tion of our re-ranking method. They facilitate efficient image search by serving as structured re-

positories of the hash codes. Using these hash code repositories, similar images can be quickly 

identified and retrieved. 

5.1.1.6 Image Search 
As discussed before, BBSTs are efficient and effective tree data structures that would be highly 

beneficial for heavy search operations like image retrieval. In light of this advantage of the BBSTs, 

in our proposed method, we utilize BBSTs as the core mechanism for the image search process. 

Here, the hash codes function as the keys, and the image filenames serve as the corresponding 

values. Given the three distinct hash code sets generated for the images in the test set, we create 

three trees. Each tree is constructed using one of the three hash code sets: 𝒯𝒯h uses the DCT-based 

hash codes while 𝒯𝒯L and 𝒯𝒯ℛ employ the DWT-based hash codes. Figure 5.6 shows the architecture 

of our proposed image search method. As shown in the figure, the search starts with the generation 

of hash codes for the query image using the same algorithms previously used for the test set. Spe-

cifically, for each query, three distinct hash codes—Lq,Rq, and hq—are computed and used to 

search the corresponding tree. These hash codes are used to search the trees. The goal is to identify 

a subtree whose root's hamming distance to the query hash code is smaller than a predetermined 

threshold (e.g., less than 20% of the maximum possible distance between two hash codes). When 
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this criterion is met, the search halts, and the node at which the search stopped, along with all 

nodes within its subtree, form a candidate list. Figure 5.7 shows an example of this process.  

Following the querying of all three trees and identification of the corresponding subtrees, we 

obtain three candidate sets: δ1,δ2, and δ3. Using these sets, we then construct the following four 

subsets: 

 

Figure 5.6: Overview of the proposed image search. Three trees are built based on hash 
codes generated using DWT and DCT transformations. The final image report is done by 
first reporting all the images in 𝛿𝛿123, and if the number of reported images is not sufficient, 
images in the set of 𝛿𝛿12,𝛿𝛿13, 𝛿𝛿23. 

 

 

 

Figure 5.7: Illustration of the process of searching a subtree to generate a candidate list, 
denoted as 𝛿𝛿3, using a threshold of 2 and a hash code of ℎ𝑞𝑞  =  19. The bold path represents 
the search route taken to reach the desired subtree, which is enclosed in a green box. Note 
that this is a simplified example, and the actual hash codes are longer and stored in binary 
format, with larger trees.  
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     δ123 = δ1 ∩ δ2 ∩ δ3 

      δ12 = δ1 ∩ δ2 − δ123 

      δ13 = δ1 ∩ δ3 − δ123 

       δ23 = δ2 ∩ δ3 − δ123 

 

(5.15) 

 

where ∩ and − represent set intersection and set subtraction operations, respectively. An example 

of the interrelationships between these sets is shown in the form of a Venn diagram in Figure 5.8. 

As shown, δ123 contains images present in all three candidate sets δ1, δ2, and δ3. Meanwhile, δ12 

comprises images that occur in δ1 and δ2, excluding those in δ123 to prevent duplication. The sets 

δ13 and δ23 are defined in a similar manner. Based on these four subsets, we report the final image 

list according to the following hierarchy: 

1. Images in δ123. 

2. Images in δ12 and δ13 with a shorter Hamming distance to the query. 

3. Images in δ23. 

 

 

 

 

 

Figure 5.8: A Venn diagram illustrating the interrelationships among sets derived from tree 
searches. Majority voting determines the similar images for a given query image, with the 
most similar ones expected to reside in 𝛿𝛿123.  
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Table 5.1:  Performance and time complexity comparison of RefinerHash with other re-ranking techniques. 

Method  mAP   Time (Seconds) 
Baseline       Re-ranking  Cifar10 NUS-WIDE ImageNet COCO YFCC  Cifar10 NUS-WIDE ImageNet COCO YFCC 

BHIR   0.7761 0.6323 0.5371 0.6154 0.2224  1120 5040 22400 2380 183300 
 +AQE [92]  0.8108 0.6647 0.5898 0.6756 0.2378  8.9 9.2 11.4 11.2 12.1 
 +RCN [93]  0.8294 0.6686 0.6023 0.6904 0.1949  41.4 49.5 73.4 70.9 96.5 
 +CLEBFSR [25]  0.7934 0.6595 0.55.48 0.6372 0.1701  9.4 10.7 15.6 15.6 14.2 
 +TXRBFSR [25]  0.7916 0.6524 0.55.05 0.6219 0.1987  9.3 11.5 15.3 15.9 15.1 
 +TDBG [94]  0.8114 0.6734 0.62.76 0.6645 0.2047  12.6 16.3 24.3 29.3 40.6 
 +SCMR-R [95]  0.7843 0.7011 0.65.94 0.6972 0.2457  33.5 40.1 45.6 46.9 67.8 
 +RefinerHash (proposed)  0.8627 0.8090 0.69.82 0.7401 0.2651  4.3 4.8 5.9 4.9 7.6 

Results in bold, italic and underlined fonts indicate, respectively, the best, the second-best and the third-best performance. 

Table 5.2:  Performance comparison in terms of mAP. 

Method Dimension 
mAP 

Cifar10 NUS-WIDE ImageNet COCO YFCC 
MSIR (2020) [82]  4096 0.7955 0.6887 0.5642 0.6734 0.1645 
PIHE (2021) [96] 128 0.6210 0.5198 0.4630 0.6156 0.1473 
C-LSH (2018) [86] 2048 0.6365 0.5634 0.5963 0.6883 0.2443 
XBL (2021) [85] 4096 0.7254 0.7182 0.6823 0.7182 0.1858 
MRDL (2021) [68] 4096 0.6657 0.6993 0.5963 0.6365 0.2187 
CWAH (2022) [97] 512 0.7357 0.7154 0.6481 0.7034 0.2454 
DETR (2022) [98] 1000 0.5641 0.7056 0.6128 0.6582 0.2105 
UAIR (2022) [99] 128 0.8521 0.7994 0.6473 0.7254 0.2686 
GeM (2019) [100] 512 0.8143 0.7656 0.6565 0.6801 0.2256 
GreedyHash (2018) [101]  128 0.7585 0.6717 0.6506 0.6554 0.2355 
SBA (2019) [102] 512 0.8581 0.7965 0.6856 0.7010 0.2569 
AutoRet (2022) [103] 1024 0.6550 0.6175 0.5843 0.6265 0.2403 
MSFRNet (Ch.3) 169 0.8431 0.7067 0.5318 0.5617 0.2224 
HMSRNet (Ch.3) 169 0.8643 0.7091 0.5423 0.5901 0.2361 
MoFNet (Ch.4) 512 0.9170 0.7965 0.6990 0.7833 0.3243 
MSFRNet (Ch.3)+RefinerHash 169 0.8501 0.7124 0.5734 0.5874 0.2374 
HMSRNet (Ch.3)+RefinerHash 169 0.8667 0.7153 0.5799 0.6148 0.2482 
MoFNet (Ch.4)+RefinerHash 512 0.9214 0.8187 0.7021 0.7849 0.3272 
BOLD, ITALIC and underlined fonts indicate, respectively, the best, the second-best and the third-best performance. 
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5.2 Experimental Results 

We first analyze the computational complexity of the proposed RefinerHash algorithm asymptot-

ically. The computational complexity of our proposed method is primarily determined by two 

parts: the creation of the initial retrieval list and the re-ranking of this list. Given an image dataset 

divided into N images for the training set (to calculate the weight matrix) and M images for the 

test set, the complexity of our method for the initial list creation process can be analyzed in two 

phases: the weight calculation step and the testing step. In the weight calculation step, each image 

in the training set is divided into b blocks, and the calculation of the weight matrix has a complex-

ity of 𝒪𝒪(bd2N), where d is the dimension of the feature vector and the squared term, i.e., d2, arises 

from the matrix multiplication process1. Similarly, in the testing step, the cost of calculating the 

initial list is 𝒪𝒪(bd2M) for M images in the test set. Hence, the total time complexity for the crea-

tion of the initial retrieval list is 𝒪𝒪(bd2(M + N)). It should be pointed out that our method can 

greatly benefit from the parallel computation capabilities of a GPU, as the computations required 

for each block are independent of the other blocks, thereby allowing for efficient parallel pro-

cessing. Therefore, utilizing a GPU can substantially reduce the complexity of creating the initial 

list to 𝒪𝒪(d2(M + N)).  

As detailed in Section 5.1.1, the proposed re-ranking method starts with the generation of hash 

codes for K images in the initial retrieval list. The hash code generation includes three main steps: 

image rotation, transformation, and hash code calculation. For an image of size n × n, the com-

plexity of the rotation is 𝒪𝒪(Kn2). The transformation step, involving the application of the DCT 

and DWT to b blocks, yields complexities of 𝒪𝒪(bKn2) and 𝒪𝒪(bK(log n)2 ), respectively [104]. 

Lastly, calculating the hash code and finding the median for all blocks results in an additional 

complexity of 𝒪𝒪(bKn log n). By adding these together, we find the accumulated complexity for 

the hash code generation to be 𝒪𝒪(Kn2)  +  𝒪𝒪(bKn2)  +  𝒪𝒪(bK(log n)2)  +  𝒪𝒪(bKn log n). How-

ever, among these terms, the complexity of the transformation step, 𝒪𝒪(bKn2), dominates as n 

 
1 The best-known algorithm for matrix multiplication, as of the time of writing, achieves a time complexity of 
𝒪𝒪(n2.3728596) [106]. Here, we approximate this as 𝒪𝒪(n2) for simplicity. This approximation does not affect the con-
clusions drawn from our analysis. 
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increases. Consequently, the overall time complexity of the hash code generation process simpli-

fies to 𝒪𝒪(bKn2). The three groups of calculated hash codes for the K images are then used to create 

three trees with a complexity of 𝒪𝒪(log K). However, in real-world scenarios, the creation of the 

trees can be performed in advance and offline. Therefore, given that the trees are pre-constructed 

and loaded, the only requirement is to calculate the initial list for a specified query image and 

perform a tree search, which has a computation cost of 𝒪𝒪(M) and 𝒪𝒪(log K), respectively. There-

fore, the overall computational cost for obtaining the final retrieval list is 𝒪𝒪(M) + 𝒪𝒪(log K), which 

simplifies to 𝒪𝒪(M) (For a detailed proof, please refer to Appendix A). The above discussion shows 

that the contribution of the proposed re-ranking method to the overall retrieval complexity is sig-

nificantly lower than that of the initial list creation. The above discussion shows that the contribu-

tion of the proposed re-ranking method in the overall retrieval complexity is significantly lower 

than initial list creation. 

We now provide the performance of the proposed RefinerHash using the benchmark datasets, 

Cifar10[73], NUS-WIDE [105], MS-COCO [76], ImageNet [77], and YFCC100M [78]. The per-

formance is compared with that of AQE [92], RCN [93], CLEBFSR [25], TXRBFSR [25], TDBG 

[94], and SCMR-R [95] by applying them to a common BHIR baseline retrieval technique on the 

five benchmark datasets. The results are reported in Table 5.1. It is seen from the table that the 

proposed RefinerHash gives a performance superior to that of all the other methods regardless of 

the dataset used and requires a computational cost that is significantly lower than required by the 

others. In particular, for the NUS-WIDE dataset, the proposed method gives a performance that is 

10 percent higher than that of SCMR-R, the second-best performing scheme, at a computational 

cost that is more than seven times lower. Similarly, for the COCO dataset, RefinerHash outper-

forms SCMR-R, the second-best performing method, by 7.5 percent at a computational cost that 

is ten times lower. 

We now compare our re-ranking method with all the image retrieval techniques, including our 

methods presented in this thesis, namely, MSFRNet, HMSRNet and MoFNet with a number of 

state-of-the-art image retrieval methods, including MSIR [82], PIHE [96], C-LSH [86], 

GreedyHash [101], XBL [85], MRDL [68], CWAH [97], DETR [98], UAIR [99], GeM [100] and 

AutoRet [103]. The results are reported in Table 5.2. As seen in the table, the combination of 

RefinerHash with other methods shows performance that is either comparable to or superior over 
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all other methods, regardless of whether they use re-ranking or not. It is seen from this table that 

when we combine the proposed hashing-based re-ranking method with our methods proposed in 

Chapters 3 and 4, the proposed re-ranking technique RefinerHash combined with MoFNet (Chap-

ter 4) provides the best results than all the methods for comparison in the table. The robustness 

and superior performance of our proposed image retrieval technique are further confirmed through 

the various precision-recall curves illustrated in Figure 5.9. The curves in the figure are created by 

plotting 100 pairs of precision-recall points, derived from incremental 1% increases in recall along 

the recall-axis and their corresponding precision values. The curves are then interpolated for a 

cohesive visualization of performance. 
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Figure 5.9:  Comparative visualization of precision-recall curves for some query images. 
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5.3 Summary 

In this chapter, we have developed a novel and computationally efficient hashing-based re-

ranking technique for the task of image retrieval. Since the re-ranking of the results is an overhead 

for any image retrieval task, it is very important that the computational complexity of the re-rank-

ing step be as small as possible. The main advantage of the proposed hash-based re-ranking tech-

nique lies in its ability to significantly enhance the retrieval performance of an image retrieval 

method at a very low computational cost. The performance of the proposed hash-based re-ranking 

technique has been compared with other re-ranking techniques by applying them to a common 

baseline retrieval technique. It has been shown that the image retrieval performance using the pro-

posed hash-based re-ranking technique is superior to that obtained by using the other re-ranking 

methods at a computational cost that is several times smaller than that required by the other 

schemes. The retrieval performance using the proposed hash-based re-ranking technique has also 

been compared with a number of image retrieval techniques regardless of whether or not they 

employ a re-ranking technique. It has been demonstrated that employing a solution that enhances 

the representational capacity of a deep network and also includes the proposed hash-based re-

ranking technique results in superior performance, significantly outperforming other image re-

trieval methods.
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Chapter 6 
 

Conclusion and Future Work 
6 Conclusion and Future Work 

6.1 Concluding Remarks 

Image retrieval is a critical function in numerous real-world scenarios. With the exponential 

growth in the size of image databases and the increasing complexity of image content, the pursuit 

of efficient and high-performing retrieval techniques remains an active research focus. With the 

advent of large storage devices and affordable image acquisition equipment, image retrieval has 

seen a surge in popularity. Yet, the growing size and diversity of image databases have heightened 

the complexity of the image retrieval task. Recent methods have leveraged deep learning for its 

superior feature extraction capabilities, often at the expense of complexity and practicability, par-

ticularly in storage and power-constrained applications. In this thesis, several low-complexity, 

high-performance deep convolutional neural networks for the task of image retrieval have been 

proposed by employing three unique strategies for generating rich, discriminating feature sets. 
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In Chapter 3, we have developed two methods to improve the representational capacity of a 

deep image retrieval network using spatial information. Recognizing the importance of spatial in-

formation in improving retrieval performance, we have proposed two novel residual blocks that 

primarily focus on generating feature maps enriched with spatial information. These residual 

blocks have been specifically designed to provide solid spatial information to the deep network 

through residual learning by using different scales and levels of abstraction of a deep network.  

In Chapter 4, we have developed a deep image retrieval network by guiding the network with 

textual, structural, and edge information in order to improve the representational capacity of the 

networks. We have proposed a new residual block designed to guide the deep network by incor-

porating textural and structural information into the feature maps, enabling it to produce rich sets 

of features for image retrieval. Particularly, we use morphological operations to guide the network 

in extracting textural and structural information. In addition, we have developed a novel pooling 

operation for extracting the edge information in an image.  

In Chapter 5 of this thesis, we have developed a novel hashing-based re-ranking technique for 

the task of image retrieval. Recognizing the need to minimize computational complexity due to 

the re-ranking being an overhead for any image retrieval task, we have proposed a low-complexity 

re-ranking method using image hashing to enhance the retrieval performance of an image retrieval 

method. The proposed hash-based re-ranking technique provides a unique approach to enhance 

retrieval performance by generating and utilizing multiple hash codes at a very low computational 

cost. The novelty of the proposed re-ranking method lies in its ability to balance the dual objectives 

of improving retrieval performance while maintaining computational efficiency. 

The effectiveness and efficiency of the proposed image retrieval methods have been validated 

through a series of extensive experimental evaluations.  

6.2 Future Work 

In this thesis, several image retrieval methods have been developed. In light of the findings and 

methodologies presented in this thesis, there are several directions for future research. One such 

direction is the exploration and application of deep-based image hashing methods in the re-ranking 

techniques. The development of a real-time responsive image retrieval system based on the 
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computationally inexpensive methods proposed in this thesis could provide substantial contribu-

tions to this field. This direction of research would be beneficial, particularly in the context of 

emerging fields such as autonomous driving. Another direction for future research is the adaptation 

of the proposed deep image retrieval networks for use on mobile devices which usually have lim-

ited computational resources. Moreover, all the deep image retrieval networks presented are based 

on supervised learning, which requires labeled data for training. A potential direction for future 

research is to explore solutions that can adapt these deep networks to unsupervised learning set-

tings to offer greater flexibility in various domains and applications. 
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Appendix A: Proofs 
Appendix 

Proposition 1: Given 𝑀𝑀 ≥ 𝐾𝐾 > 0, the limit of the ration of 𝜑𝜑2 and 𝜑𝜑1 as 𝑀𝑀 approaches infinity 

converges to zero, where 𝜑𝜑1 ∈  𝒪𝒪(𝑀𝑀) and 𝜑𝜑2 ∈  𝒪𝒪(log𝐾𝐾). 

Proof. Let 𝜑𝜑1 = 𝐶𝐶1𝑀𝑀 and 𝜑𝜑2 = 𝐶𝐶2𝑙𝑙𝑜𝑜𝑠𝑠 𝐾𝐾, where 𝐶𝐶1 and 𝐶𝐶2 are positive constants representing the 

rate of growth of each function. Through analysis of the limit of the ratio of 𝜑𝜑1 and 𝜑𝜑2 as 𝑀𝑀 ap-

proaches infinity, we have 

 lim
𝑀𝑀→∞

𝜑𝜑2
𝜑𝜑1

 =   lim
𝑀𝑀→∞

𝐶𝐶2  log𝐾𝐾
𝐶𝐶1𝑀𝑀

 (A.16) 

Since log𝐾𝐾 grows slower than 𝑀𝑀, as 𝑀𝑀 approaches infinity, the limit converges to zero: 

 lim
𝑀𝑀→∞

𝐶𝐶2  log𝐾𝐾
𝐶𝐶1𝑀𝑀

= 0 (A.17) 

∴ Asymptotically, the growth of 𝜑𝜑2 is negligible compared to the growth of 𝜑𝜑1. □ 

 

 

Proposition 2: Time complexity of 𝒪𝒪(𝑀𝑀) + 𝒪𝒪(log𝐾𝐾) is 𝒪𝒪(𝑀𝑀) for 𝑀𝑀 ≥ 𝐾𝐾 > 0. 
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Proof. Let function 𝜑𝜑 be the sum of two other functions, 𝜑𝜑1  and 𝜑𝜑2 , such that 𝜑𝜑 = 𝜑𝜑1 + 𝜑𝜑2 , 

where 𝜑𝜑1 ∈ 𝒪𝒪(𝑀𝑀) and 𝜑𝜑2 ∈ 𝒪𝒪(log𝐾𝐾). Then we can express the upper bound of 𝜑𝜑1and 𝜑𝜑2 as  

 
∃𝐶𝐶1 > 0,∃𝑁𝑁1 ∈ ℕ,∀𝑛𝑛 > 𝑁𝑁1,𝜑𝜑1 ≤ 𝐶𝐶1𝑀𝑀 

∃𝐶𝐶2 > 0,∃𝑁𝑁2 ∈ ℕ,∀𝑛𝑛 > 𝑁𝑁2,𝜑𝜑2 ≤ 𝐶𝐶2 log𝐾𝐾. 
(A.18) 

We have 𝜑𝜑 as 

 𝜑𝜑 = 𝜑𝜑1 + 𝜑𝜑2, (A.19) 

Then, by applying the upper bounds for 𝜑𝜑1 and 𝜑𝜑2 from Eq. 22, we can derive an upper bound for 

𝜑𝜑 as 

 𝜑𝜑 = 𝜑𝜑1 + 𝜑𝜑2 ≤ 𝐶𝐶1𝑀𝑀 + 𝐶𝐶2 log𝐾𝐾 (A.20) 

or, 

 𝜑𝜑 ≤ 𝑀𝑀�𝐶𝐶1 + 𝐶𝐶2
log𝐾𝐾
𝑀𝑀

�. (A.21) 

Now, based on Proposition 1, as 𝑀𝑀 grows large, the term 𝐶𝐶 2 becomes negligible compared to 
𝐶𝐶1𝑀𝑀. Therefore, the dominant term here is 𝐶𝐶1𝑀𝑀, leading us to express the upper bound of φ as: 

 𝐶𝐶1 + 𝐶𝐶2
log𝐾𝐾
𝑀𝑀

≤ 𝐶𝐶1. (A.22) 

or 

 𝜑𝜑 ≤ 𝐶𝐶1𝑀𝑀 (A.23) 

So, the time complexity 𝒪𝒪(𝑀𝑀)  +  𝒪𝒪(𝑙𝑙𝑜𝑜𝑠𝑠 𝐾𝐾) is dominated by 𝒪𝒪(M), which leads us to conclude 

that the overall time complexity is 𝒪𝒪(M). □ 
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