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Abstract 

 

Calibration and Evaluation of Building Energy Models to Assess and Mitigate Canadian 

Building Overheating Risks in Current and Future Climates  

 

Kathryn Chung Tze Cheong 

 

Climate change continues to impact weather conditions globally, requiring cities to adapt to new 

environments. In Canada, indoor summer overheating in buildings is problematic due to their 

primary design for cold winters, making them susceptible to extreme heatwave events. This 

research focuses on calibrating building models and employing model calibration methodologies 

to evaluate and address overheating risks in various building types across Canada using current 

and future weather data. The study's objectives are to accurately assess summertime overheating 

risks in selected buildings in Montreal, Quebec, and evaluate effective mitigation strategies. 

Bayesian calibration and multi-objective genetic algorithms are used as calibration methods, with 

the latter showing superiority in producing highly accurate calibrated models based on five 

performance criteria. By incorporating field measurements and novel methodologies, the research 

ensures precise assessment and mitigation of summertime overheating risks. After calibrating 

several buildings, including schools, a hospital, and a residential building, which demonstrates the 

reliability and repeatability of the calibration process, the assessment of overheating is conducted 

on calibrated models to determine the number of overheating hours during the summer. In 

conclusion, this thesis demonstrates the repeatability of the calibration methods on a variety of 

existing Canadian buildings and the effective use of passive cooling techniques, such as external 

shading, night cooling, and high albedo surfaces, that are implemented in the building models, to 

mitigate overheating based on current and future weather data. 
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1. Introduction 
 

1.1. Background 
 

Climate change is being experienced in many different ways around the world. Earth’s global 

average surface temperature has increased steadily by 0.7C since 1900 (Chidiac et al., 2022). As 

a global average, different areas of the planet are experiencing the effects of this temperature 

increase in a variety of extreme weather events, such as heatwaves, floods, earthquakes, forest 

fires, hurricanes, tsunamis, etc. In Canada, the country’s average annual temperature has risen by 

1.7C since 1948, which is more than twice the global average temperature rise, resulting in 

climate change having an even greater impact in this region (Zhang et al., 2019). While increasing 

temperatures may not seem to be very detrimental for a country that is known for its colder climate, 

this temperature increase is causing summertime overheating in many ill-equipped buildings and 

is becoming a health issue for those who are affected (Baba et al., 2022a). For example, Quebec 

experienced a severe heatwave in 2018 that resulted in at least 66 deaths (Oetomo et al., 2022). 

And so, this increase in surface temperature is becoming problematic, especially to older adults, 

persons with disabilities, persons with chronic conditions and children who are more vulnerable 

during extreme heat days due to their impaired ability to regulate their body temperature (Oetomo 

et al., 2022). 

 

In addition to increasing surface temperatures having an influence on climate change, greenhouse 

gas emissions related to energy use, along with urbanization and changes in land use are one of 

the main causes of climate change (Chidiac et al., 2022). Buildings in particular, are responsible 

for approximately 32% of global final energy use, 17% of direct carbon dioxide emissions and 33% 

of indirect emissions (Skillington et al., 2022). In this respect, efforts have been made to reduce 

energy use and related greenhouse gas emissions in buildings to reduce climate change effects due 

to buildings by making them more energy efficient. A solution to improving buildings’ energy use 

often leads to increasing building envelope insulation to reduce heating costs, especially in cold 

climates. However, this is proving to be challenging during the summer for buildings that are 

unable to release excess heat and/or end up requiring excessive use of mechanical cooling. And 

this overheating is extremely harmful for older buildings that are not equipped with mechanical 

ventilation, as mechanical ventilation and/or air conditioning was not historically required in all 

building types. 

 

Between the rising global surface temperature and the greenhouse gas emissions causing climate 

change and buildings seeking highly energy-efficient building envelopes in colder climates, 

overheating is becoming a significant problem in Canada (Berardi et al., 2020). Previous studies 

have already concluded that the risk of overheating will increase in the future due to climate change 

and the trend toward high energy-efficient envelopes (Baba et al., 2022a). With an increasing 

emphasis on the quality of the built environment and a growing focus on building energy efficiency, 

building simulation has become an indispensable tool for design, validation, and analysis 

(Mahmoud et al., 2022). Subsequently, this technology can and will be used to assess overheating 

risks in both existing and new construction.  
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1.2. Research objectives 
 

This research examines the calibration of building models to assess and mitigate the risks of 

overheating in various building types in Canada, as a part of the project funded by the National 

Research Council Canada (NRC) and the Natural Sciences and Engineering Research Council 

(NSERC) on the “Assessment and Mitigation of Summertime Overheating Conditions in 

Vulnerable Buildings of Urban Agglomerations”. The work shown in this thesis follows the 

selection of buildings, field monitoring and data collection, whole building simulations and urban 

scale simulations, in order to come to this part of the project that involves the calibration of 

buildings and the assessment and mitigation of overheating risks in buildings.   

 

The impact of climate change on indoor summer overheating in Canadian buildings is expected to 

be more significant than in other climates, given that Canadian buildings have been primarily 

designed to withstand cold and long winters, not hot summers, especially in buildings that house 

vulnerable people, such as the elderly, children or residents with pre-existing health conditions 

(Baba et al., 2023). With the recent change in Canada’s climate, existing Canadian buildings have 

not all been adapted to withstand higher summertime temperatures and research in assessing the 

overheating risks and retrofit solutions is limited. Global weather statistics show that the average 

global temperature on Earth has been rising faster over time, having increased by about 0.8C since 

1880, with two-thirds of this warming having occurred since 1975 (Lessen et al. 2019). And so, it 

is unsurprising that most school buildings that were built before 1970, which represent 64% of all 

schools in Quebec (Gouvernement du Québec, 2021), and 58% of residential buildings in Canada 

(Baba et al., 2022a) are not equipped with air conditioning units and are at risk for overheating. 

Additionally, in a study looking at indoor temperatures during the 2018 heatwave in Quebec, 

Canada, non-air-conditioned homes experienced a greater than 1C difference in temperature 

between heatwave and non-heatwave days (Oetemo et al., 2022).  

 

To resolve problems of overheating, the risk of summertime overheating is assessed and mitigation 

strategies are evaluated in this thesis using calibrated building models. Simulation programs are 

invaluable tools that aid engineers in expediting the design process, mitigating critical flaws, and 

enhancing overall efficiency (Mahmoud et al., 2022). A variety of simulation tools will enable 

modelling of existing buildings and running of simulations over measured and future climate data 

files to allow further investigation into building overheating issues. However, the gap between 

modelled and actual energy performance remains one of the most discussed concerns in the 

building design community (Moradi et al., 2023). And so, to bridge the gap between modelled and 

actual building data and performance in the context of summertime overheating, building model 

simulations and model calibrations using field measurements will be performed using recently 

developed building model calibration methodologies to accurately assess the risk of overheating 

in the selected buildings located in Montreal, Quebec, Canada.  

 

Lastly, model calibration plays an important role in reducing the discrepancy between the 

simulation value and the measured data (Li et al. 2018). A calibrated thermal performance model 

will better guide building retrofits and optimized operations to address overheating (Li et al., 2018). 

Two calibration methodologies will be evaluated to select one methodology that is more suited to 

accurately calibrate different building types in Quebec, Canada. One methodology was developed 

by Hou et al. using Bayes’ Theorem to auto-calibrate building models while minimizing 
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computing time and maximizing model accuracy (Hou et al., 2021a). Another robust methodology 

was developed by Baba et al. to create a building model with high accuracy prediction of indoor 

air temperature compared to measured data (Baba et al., 2022b). Using calibrated models with 

measured indoor data and running simulations with measured and future climate data will ensure 

a highly accurate assessment and mitigation of summertime overheating risks. 

 

1.3. Outline of the Thesis 
 

This thesis is composed of the following chapters: 

Chapter 1 – Introduction 

Chapter 2 – Literature review: This chapter includes four parts: model calibration types and 

methods; sensitivity analysis method used to determine important unknown building 

parameters; use of current and future weather data for overheating risk assessment; 

and thermal comfort criteria for the evaluation of occupant comfort in indoor 

environments. 

Chapter 3 – Calibration methodology: This chapter provides details on the application of two 

calibration methods and the performance criteria used to evaluate the accuracy and 

precision of these methods. 

Chapter 4 – Comparison of calibration methods: This chapter presents the calibration results of 

one school’s building models using two different calibration methods. 

Chapter 5 – Application of the MOGA methods on schools, hospitals and residential buildings: 

This chapter provides a summary of the calibration results and performance criteria 

following the calibration of different types of buildings using MOGA. 

Chapter 6 – Assessment and mitigation of summertime overheating: This chapter provides a 

summary of the summertime overheating risks and proposed solutions to mitigate 

these risks on schools, hospitals and residential buildings in current and future 

climates. 

Chapter 7 – Conclusions and discussions: This chapter summarizes the key findings and main 

contributions of this thesis. 
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2. Literature Review 
 

2.1 Model Calibration 
 

Building energy models can be used during the initial design phases to optimize energy efficiency, 

as well as with existing buildings to evaluate their current energy performance. Although the 

building energy simulation software is quite mature, large discrepancies exist between building 

energy simulation and measured data (Li et al., 2018). This can be caused by a number of factors 

including, but not limited to occupancy behavior, malfunctioning or unexpected functioning of 

building services, changes in building use, extreme weather events, etc. In an attempt to take into 

account these variable factors, model calibration is necessary to provide a more accurate picture 

of the building’s situation, by fine-tuning input parameters of the simulation model to minimize 

discrepancies with the existing building (Lim and Zhai, 2018). To do this, there are two methods 

of building model calibration that can be classified into two broad categories of manual calibration 

and automated calibration (Zhu et al., 2020). 

 

2.1.1. Types of Calibration 

 

Manual calibration refers to the manual adjustment of the input parameters of the model by 

comparing the discrepancy between the output of the thermal performance model and the actual 

measured data according to the user’s professional knowledge (Li et al., 2018). This method can 

be a lengthy process and requires a person who is an expert in the field. Automatic calibration 

takes building thermal performance model calibration as a mathematical optimization process, and 

automatically adjusts the model input parameters according to certain constraints to minimize the 

difference between simulated values and actual values (Li et al., 2018). This method should allow 

users with limited knowledge to produce highly accurate models. Historically, automatic 

calibration methods have been known to require a high amount of computing time, causing it to 

still be a lengthy and costly process in some cases. However, with the advancement of computers, 

automated calibration can now match the simulation results to the measured data with an 

acceptable error and considerably faster than manual calibration (Derakhti et al., 2022). There 

exists a few automated approaches in development that include Bayesian analysis, pattern 

matching, and multi-objective optimization (Zhu et al., 2020). More recent research has focused 

on these automated approaches since it can increase the accuracy of calibrated models and improve 

the consistency of the calibration process.  

 

2.1.2. Bayesian Calibration 

 

This type of automated calibration uses Bayesian Inference which is the process of fitting a 

probability model to a data set and summarizing the results by using a probability distribution on 

the parameters of the model and unobserved quantities (Hou et al., 2021b). Even though Bayesian 

Inference Statistics can be derived from over two hundred years ago, it has only begun to 

experience significant advancements in recent years with the development of computer techniques 

and advanced statistical theory (Hou et al., 2021a). Still, it is a time-consuming process that has 

been refined by using simplified energy models, namely meta-models to represent the original 

building energy model, to reduce the calculation time of Bayesian Calibration (Lim and Zhai, 

2018). It has been previously confirmed that multi-linear regression models could generate 
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reasonable calibration results that significantly reduced computing and therefore was selected for 

the meta-model (Lim and Zhai, 2018). Furthermore, Monte-Carlo-Markov-Chain method is 

employed to further reduce the computational burden as discussed in a methodology developed by 

Hou et al. (Hou et al., 2021b).  

 

2.1.3. Multi-Objective Genetic Algorithm 

 

Genetic algorithm is one of many optimization techniques for automated calibration from the 

evolutionary algorithm family (Derakhti et al., 2022). This algorithm determines a potential 

solution to a specific problem by evolving a population of individuals (Derakhti et al., 2022). Using 

this technique, a study by Baba et al. developed a robust methodology to create a building model 

with high accuracy prediction of indoor air temperatures compared to measured data (Baba et al., 

2023). This methodology allows the simultaneous calibration of multiple rooms in the same 

building using global variance-based sensitivity analysis to reduce the number of unknown 

building parameters by calibrating only the parameters with significant impact on indoor 

temperature (Baba et al., 2023). In this thesis, jePlus + EA is used to calibrate several buildings in 

Montreal, Quebec, Canada. It utilizes a multi-objective optimization algorithm for building 

optimizations as explored in a study evaluating energy-saving measures and operation parameters 

for a newly retrofitted building by Gao et al. (Gao et al. 2023). 

 

2.2. Sensitivity Analysis 
 

Both above-mentioned automated calibration methods utilize sensitivity analysis, to reduce the 

number of parameters to calibrate and further reduce computing time and extensive computing 

loads. Sensitivity analysis can reduce the number of parameters to calibrate and improve the 

calibration efficiency (Li et al., 2018). The less significant parameters can be left out of calibration 

to enhance the efficiency of the calibration process because very little variance of the final output 

can be observed by tuning these particular parameters as determined by sensitivity analysis (Qiu 

et al., 2018). This is an important step in the calibration process that has two types of analyses: 

local sensitivity and global sensitivity. Local sensitivity is the simplest method that can be used to 

estimate the influence of the inputs on the output by changing the value of each variable separately 

(Derakhti et al., 2022). This type of analysis observes one parameter at a time to optimize each 

factor individually. However, with a system as complex as a building where variables are most 

often interacting with each other, optimizing one parameter at a time may not guarantee a holistic 

optimal solution. Therefore, global sensitivity methods are used by Bayesian and multi-objective 

genetic algorithm calibration methods to quantify the sensitivity of a parameter of the model by 

varying all design parameters simultaneously (Derakhti et al., 2022). 

 

2.3. Current and Future Weather Data 
 

To evaluate the overheating risks in the present and for the future, both present and future weather 

data must be used. This is especially important in evaluating mitigation strategies to best 

recommend solutions that have a lasting effect on the building now and in the coming years. When 

it comes to new buildings, design decisions and climate change, mitigation strategies are going to 

affect the buildings’ performance and their ability to withstand short and long-term climate events 

for the next 50 to 120 years, being the typical service life of a building (Kim et al., 2023). And 
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while in this study, the focus was evaluating existing buildings, major renovations that involve 

introducing building features to mitigate overheating risks in future climates could extend the 

service life of these existing buildings by at least 50 years (Baba et al., 2023). 

 

In this section, typical weather data and future climate data are described to rationalize the use of 

future climate data for overheating risk assessment. First, typical weather data files include 

information based on recent historic weather trends to predict future data (Baba et al., 2022a). 

These data files are suitable for assessing overall energy consumption in buildings. However, 

overheating assessment needs to take extreme weather events into account and requires inclusion 

of extreme climactic data in the weather file that typical weather data files do not have (Baba et 

al., 2023). Second, future climate data was developed by Baba et al. to create a Reference Summer 

Weather Year (RSWY), which includes multi-year weather data to represent the extreme weather 

years that focuses on specific years in historical, mid-, and long-term periods which experience 

the most intense, severe and/or long heatwaves (Baba et al., 2023). Heatwave periods are defined 

by Environment Canada as periods of at least three consecutive days during which temperatures 

reach or exceed 30°C during the day (Li et al., 2018; Ville de Montreal, 2017). RSWY files were 

generated using IPCC’s reports with varying levels of expected severity of global warming due to 

climate change that is quantified by RCP values to project greenhouse gas emission levels (Baba 

et al., 2022b). With these reference summer weather files as opposed to historical typical weather 

files, extreme weather events that include increased frequency, severity and duration of heatwaves 

can be considered. And, so the use of future weather files, as opposed to typical weather data that 

relies on historical climate data, attempts to provide a clearer, more accurate picture of the 

overheating risks of each building. 

 

2.4. Thermal Comfort Criteria 
 

Finally, to assess overheating risk which constitutes the core of this study, thermal comfort criteria 

systems were selected to evaluate the acceptability of indoor thermal comfort in the buildings in 

question. And in conjunction with the previous section, the periods of time that are evaluated for 

overheating risk are during expected heatwave periods, to assess the building during the most 

extreme weather conditions. And simulating these extreme scenarios is made possible by the use 

of future extreme summer weather year data files. Subsequently, the definition of overheating in 

this thesis to assess the risk during current and future climates is defined by the following criteria, 

as calculated by the adaptive ASHRAE 55 method and CIBSE TM52. These criteria use the 

equations defined below to determine the an acceptable amount of hours in a given time period 

that may surpass the occupants level of thermal comfort. ASHRAE 55’s 80% acceptability limit 

was used to assess the overheating for the residential and hospital buildings over the entire year, 

while BB101, which is based off CIBSE TM52 was used for school buildings over the months of 

May to September, from 9:00 to 16:00. The use of these thermal comfort criteria systems follows 

common use in evaluation of overheating and the study by Baba et al. exploring possible causes 

of overheating risks due to increasing energy-efficiency in buildings (Baba et al., 2022a).  

 

2.4.1. ASHRAE 55’s 80% Acceptability Limit/BC Energy Step Code 

 

The most common standards developed to deal with adaptive thermal comfort are ASHRAE 55 

and EN1521 (Baba et al., 2022a). Even though they have similar thresholds, ASHRAE 55 is still 
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chosen because it is more commonly used in North America (Baba et al., 2022a). This standard 

evaluates thermal comfort in naturally ventilated zones based on operative temperature, and 

overheating is considered to occur when this temperature exceeds the upper threshold temperature 

(Baba et al., 2023), which is described in the equations 2-1 and 2-3 below. These equations 

calculate the duration of overheating hours, time for which the indoor operative temperature 

(calculated by equation 2-3) of a room exceeds the acceptability limit of 80% that considers 

humidity, clothing discomfort, metabolic rate and air speed (Baba et al., 2023).  

 

Upper 80% acceptability limit: 𝑇𝑢𝑝 = 0.31 ×  𝑇𝑝𝑚𝑎(𝑜𝑢𝑡) + 21.3  Eq. (2-1) 

Lower 80% acceptability limit: 𝑇𝑙𝑜𝑤𝑒𝑟 = 0.31 × 𝑇𝑝𝑚𝑎(𝑜𝑢𝑡) + 14.3 Eq. (2-2) 

𝑇𝑜𝑝 =
(𝑇𝑟+𝑇𝑚𝑟𝑡)

2
 Eq. (2-3) 

 

Using these criteria, the BC Energy Step Code (BCESC) and the City of Vancouver Zero 

Emissions Building Plan determined that overheating hours must not exceed 200 hours for regular 

occupants and 40 hours for vulnerable people (elderly, children and/or ill) during the summertime 

(which includes the months of May to September) to stay within the acceptable limit when 

studying overheating in buildings (Baba et al., 2022b). 

 

2.4.2. CIBSE TM52/59 and BB101 for Schools 

 

Another commonly used thermal comfort criteria is established by CIBSE, which requires two of 

three criteria to be fulfilled according to TM52, such as Hours of Exceedance, Daily Weighted 

Exceedance and Upper Limit Temperature (Escandón et al., 2022). Using these criteria, in the UK, 

Building Bulletin 101 (BB101) provides a design framework for school buildings, as described 

below where occupancy is expected from 9:00 to 16:00, May to September:  

 

1. Hours of Exceedance (He) must less than or equal to 40 hours. 

2. Daily Weighted Exceedance (We) must be less than or equal to 6 hours. 

3. Upper Limit Temperature (Tupp) represents the maximum indoor operative temperature, 

with the condition that T = Tupp – Tmax must be less than or equal to 4 K (Escandón et al., 

2022). Eq. (2-4) 

 

These criteria are built into DesignBuilder to provide an assessment for overheating hours during 

building simulations and is consequently used to determine which mitigation strategies can offset 

these overheating hours. 
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3. Methodology 
 

As mentioned earlier, this research is a part of the NSERC project “Assessment and Mitigation of 

Summertime Overheating Conditions in Vulnerable Buildings of Urban Agglomerations”. In the 

earlier stages of this project, numerous buildings in Montreal were selected and evaluated in order 

to select a final roster of buidings to be studied for this project. Once selected, these buildings were 

equipped with indoor temperature sensors and humidity sensors, often in the rooms that were 

known to experience the most severe overheating according to building surveys with building 

managers and/or building occupants. Selected buildings were also equipped with local weather 

stations that were installed on their roofs. These weather stations collected various weather data 

including temperature, humidity, wind spped, etc. All measurement devices collected data in 10-

min intervals. This raw data was then converted to hourly data in Excel to complete the calibration 

process. And while the weather station data could be accessed wirelessly, the indoor sensors had 

stored data that needed to be accessed in person every few months. Following the data collection 

of building information and field monitoring data, the calibration portion of the project began with 

the methodologies presented in this thesis. 

 

Two methods were used in this thesis to calibrate building models, which include four school 

buildings, one hospital building and one residential building. The first method used and introduced 

here was Bayesian Calibration (BC) and the second method is Multi-Objective Genetic Algorithm 

(MOGA). The preparation of field measurements, building model and sensitivity analysis can be 

used for both methods. It is at the calibration step where the calculation process is different. This 

means that both processes go through the following steps: preparing data, model geometry, 

sensitivity analysis, calibration, and validation. This chapter first covers a section to describe the 

calibration process for each method and is then followed by the description of common steps that 

both methods share in more detail, including the tools used, building parameter ranges, sensitivity 

analysis, evaluation criteria and calibration and validation periods.  

 

3.1. Bayesian Calibration 
 

Hou et al. developed this methodology by extensively researching Bayesian Inference and its 

application to the calibration of building energy models (Hou et al., 2021c). It has 6 main steps 

that are explained below and were developed using R-code with RStudio and EnergyPlus. 

 

Step 1: Measurements and Preparation 

In the first step of this process, data must be collected and prepared to be used in conjunction with 

the prepared R-code. Outdoor weather data, specifically the dry-bulb temperature that is collected 

by the respective buildings’ weather station, and the indoor air temperature of each of the measured 

rooms must be collected. This data is recorded in 10-minute intervals, so it must be converted in 

Excel to be used as hourly data. This process takes the average of the measured values within each 

hour to produce the estimated hourly data. Approximately 3 weeks of data for the calibration step 

and the following 3 weeks of data for the validation period are the ideal time periods to work with. 

Anything under two weeks would be too short of a time frame, while over 4 weeks could possibly 

incur drastic changes in occupational behaviors as seen in the literature (Baba, 2022). 
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Step 2: Building Energy Modelling 

A building energy model of the building is required to perform the parametric simulation, using 

the building geometry, separate thermal zones for each room in the building and the building 

orientation. Parametric simulation is performed using set ranges and distributions commonly used 

in practice for unknown model building parameters. This creates a dataset that will be used in later 

steps. 

 

Step 3: Sensitivity Analysis 

Using the dataset generated in the previous step, a sensitivity analysis is performed. This step 

reveals which building parameters have the most impact on the temperature fluctuations in the 

building. The sensitivity analysis code calculates the t-value, SRC value and random forest value 

of each building parameter, which can then be used to calculate each parameter’s SVI. The 

parameters with the highest SVI have the greatest effects on the indoor building temperature, 

therefore these are the parameters that need to be prioritized while calibrating the models. 

 

Step 4: Meta-Model Development 

With the same dataset, the original building model can be compressed, and a separate meta-model 

is created for each of the monitored rooms. Compressing the building model will decrease the 

calibration processing time.  

 

Step 5: Bayesian Inference Calibration 

Bayesian Inference is performed using Markov Chain Monte Carlo (MCMC), which will output 

calibrated values for the unknown building parameters that have high importance rank as 

calculated by the sensitivity analysis. The calibrated values will help align the simulation results 

to the actual measurements.  

 

Step 6: Validation and Analysis 

Once the calibrated indoor measurements are compared to the monitored results over the 

calibration period, the calibrated model is then used to produce indoor measurements over the 

validation period to be compared again to the monitored results. This step is different from the 

previous one because it is using the calibrated values from the calibration period to predict the 

values from the validation period that follows the calibration period. These results can then be 

further analyzed.  

 

3.2. Multi-Objective Genetic Algorithm 
 

Building calibration, as well as assessment and mitigation of overheating risks were performed 

using the MOGA method. Following the selection of buildings to collect thermal data for 

overheating risk assessment, building information and data needs to be collected. This includes 

conducting preliminary research on the building materials, type, use/function, location, year of 

construction, building plans, etc. With this data, an uncalibrated building energy model can be 

created in DesignBuilder using building information, site conditions, building geometry, 

orientation, location and materials. Then, field measurements of the building’s indoor thermal 

conditions and exterior weather conditions must be gathered. Using collected field data and the 

uncalibrated model, a calibrated building energy model can be created by calibrating and 

validating the unknown parameters. Unknown parameters are defined in this thesis as the 
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parameters to be calibrated that have the greatest impact on the building model. The precision of 

the final calibrated parameters is evaluated against a set of performance criteria. Once the unknown 

parameters meet the performance criteria targets, the resulting building energy model is a highly 

precise calibrated building energy model that is ready to be used for the assessment of overheating. 

While the calibration process is performed over a 3-week period during the summer months, the 

overheating assessment is conducted over the entirety of one year to calculate the number of hours 

that the building surpasses a specified temperature in a year according to ASHRAE 90 standards 

for hospitals and residential buildings or CIBSE TM52 for school buildings. Once this step is 

completed, several mitigation techniques are then applied to the building to reduce the number of 

overheating hours to an acceptable level. These final two steps are subsequently replicated during 

future extreme weather years to identify which mitigation techniques, or their combinations, will 

yield a sustained effect on the building. 
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Figure 1. Flowchart of General Calibration Methodology  
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3.3. Building energy modelling in DesignBuilder 
 

The first step to calibration is the geometry of the building. Using architectural drawings, Google 

Maps and Google Earth, an approximate model and placement of the building is drawn in 

DesignBuilder. The architectural plans provide the divisions of the partitions in the building layout. 

Google Maps, help with the overall building size dimensions, and Google Earth helps with a rough 

visualization of each model, as well as the building orientation with reference to the north. 

Additionally, field notes, as collected by the students who install the sensors and collect the data, 

help with determining the building walls and floor compositions, as well as the window dimensions. 

The building parameters (envelope materials, window materials, lighting loads, etc.) are inputted 

into the model. It is these parameters that can then be modified later during calibration. The 

program can use weather data and building information to simulate results. Once this step is 

complete, the building model can be exported as an .idf file. This file is then linked to the Bayesian 

Inference Calibration Code in R Studio or to jePlus for the Multi-Objective Genetic Algorithm. 

 

3.4. Building Parameter Ranges 
 

In both methods used to calibrate building energy models, the same building parameters were used 

to calibrate each building. Each type (school or hospital) of building had slightly different building 

parameters.  

 

For the schools, the building parameters used while the school was unoccupied included: wall 

insulation U-value, window U-value, roof insulation U-value, solar reflectance of window shade 

rolls, infiltration rate, and solar heat gain coefficient. The building parameters used while the 

school was occupied included: occupancy, lighting power density, equipment power density, 

natural ventilation rate, natural ventilation setpoint, and solar reflectance of window shade rolls. 

The ranges for these building parameters can be found below in Table 1. These values were 

determined based on similar building types and other existing literature (Baba et al., 2022). 

 

3.5. Sensitivity Analysis 
 

Sensitivity analysis is carried out in both Bayesian Calibration and Multi-Objective Genetic 

Algorithm. This process is automated using written code in R Studio and Excel spreadsheets and 

is used to determine building parameters that have the greatest effect on the indoor environment 

of the building. By ranking the parameters, the focus is then placed on the top 3 to 4 parameters, 

which are consequently modified to produce the best-calibrated model. And, as mentioned in 

Chapter 2, the sensitivity analysis calculation that was used for this study is SVI, which is a 

combination of three commonly used equations, namely SRC value, random forest and t-value. 

 

3.6. Evaluation Criteria Requirements 
 

For all calibration methods, five evaluation criteria items were used. These included RMSE, 

NMBE, maximum difference between the measured and calibrated hourly indoor air temperature, 

percentage of calibrated results that were less than 1 degree Celsius away from the measured 

results and percentage of calibrated results that were less than 0.5 degrees Celsius away from the 

measured results. In addition to qualitatively observing the trend comparison of temperature over 
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time graphs between the measured temperatures and the simulated temperature, those five 

elements provide a quantitative method to determining the accuracy and precision of the simulated 

results. Hitting the correct target range in all five criteria can confirm how close the building energy 

model came to matching the actual measured building.  

 

The benchmarks to denote which results were deemed good included a value of less than 0.7 

degrees Celsius for the RMSE, a two to three-degree Celsius maximum difference, less than 10 to 

15% of the calibrated results more than 1-degree Celsius difference from the measured results and 

a less than 35 to 50% of the calibrated more than 0.5 degrees Celsius difference from the measured 

results (Baba et al., 2023). Although there are limited studies on model calibration based on hourly 

indoor temperature for overheating studies as compared to model calibration for unknown 

parameters, these target ranges were selected based on existing ranges for evaluation criteria for 

model calibration from existing literature (Baba, 2022). And so, if the model calibration in this 

thesis is able to achieve these target ranges, these methodologies will prove to calibrate and assess 

models for overheating risks with higher accuracy than currently existing methods. 

 

Table 1: Approximate Building Parameter Ranges for Various Building Types in Quebec, 

Canada 

Building 

Parameters 

School (1960s) School (1990s) Hospital 

(1960s) 

Residential 

(1990s) 

Wall U-value 

(W/m2-K) 

0.40  – 0.70 0.10 – 0.40 0.40 – 0.70  0.10 – 0.40  

Roof U-value 

(W/m2-K) 

0.15 – 0.40  0.05 – 0.20  0.23 – 0.33  0.05 – 0.20  

Window U-value 

(W/m2-K) 

2.20 –  3.00 0.75 – 1.50  2.20 –  3.00 0.75 – 1.50 

Solar Heat Gain 

Coefficient 

0.45 – 0.75 0.25 – 0.45  0.45 – 0.75 0.25 – 0.45  

Window Shade Roll 

Reflectance (%) 

10 - 90 10 - 90 10 - 90 10 - 90 

Infiltration Rate 

(ACH) 

0.15 – 0.40  0.05 – 0.15 0.15 – 0.40  0.05 – 0.15 

Occupancy 

(persons/room) 

20 – 25  20 – 25  1 – 4  1 – 5  

Lighting 

(W/m2) 

5 – 12  5 – 12  3 – 12  5 – 12  

Natural Ventilation 

Rate (ACH) 

0 – 10  0 – 10  0 – 10  0 – 5 

Natural Ventilation 

Setpoint (C) 

21 – 24 21 – 24 21 – 24 21– 24 

Equipment Power 

Density (W/m2) 

2 – 5  2 – 5  2 – 5  2 – 5  
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3.7. Calibration and Validation Periods 
 

With every building, a calibration and validation period must be chosen. The calibration period 

refers to the period where the computer model of the building will be modified to be able to output 

data that matches the measured data from the real building. During this phase, building parameters 

will be modified as needed and then the model will output simulated data that will be compared to 

the measured data. Once the differences between the model and the existing building is minimized, 

the model is calibrated. Then, this now calibrated model will output simulated data over the 

validation period to be effectively validated, where the simulated output data, using the calibrated 

model will again be compared to the measured data over the validation period, to see if the 

calibrated model can adequately simulate the existing building. It is shown that the evaluation 

criteria of the validation can sometimes have larger degrees of error than the calibration period, 

but the target range remains the same.  

 

Each period ideally consists of 21 days but can be adjusted depending on the available data, 

targeted season, and/or any number of reasons that might have affected typical occupant behavior 

to ensure good results, as was concluded by existing literature (Baba, 2022). A minimum of 14 

days and a maximum of 28 days is required for calibration, while 21 to 28 days is required for 

validation. This is based on the assumption that 14 days is the minimum required time period to 

observe a regularity in occupant movements and patterns; and that 28 days would be the limit of 

where significant changes in occupant habits may appear. 

 

3.8. Unoccupied and Occupied Calibration Periods for School Buildings 
 

In both methods, the buildings must be calibrated without occupants and then that calibrated 

building model is used as the starting point for the calibration of the model with occupants. This 

allows the calibration of only the building envelope at first, focusing on the building’s physical 

properties that will not change once the building is occupied. These parameters include the wall 

insulation U-value, roof insulation U-value, window U-value, window SHGC, air infiltration and 

window shading. In this case, parameters related to an occupied building including occupancy, 

lighting loads, equipment loads and natural ventilation (no one is there to open or close the 

windows) are set to zero. Once the building envelope is calibrated while unoccupied, those 

parameters will not change during the calibration during the occupied period. And so, the 

parameters related to internal loads and occupant-dependent properties (opening and closing of 

windows and shades, internal loads, etc.) that were originally set to zero will be turned on to 

calibrate the building with occupants.  

 

This process only exists for the school buildings, as the schools are considered closed during the 

summer (July-August). The hospital and residential buildings are occupied year-round, therefore 

both the building envelope and occupant-related parameters must be calibrated simultaneously.  
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4. Comparison of Bayesian Inference and MOGA Calibration 
 

In this section, the two described methods for calibrating building models will be discussed below. 

While both methods have been successful in achieving precise models, they have achieved this 

through a similar process that is described in the next section. Both methods were applied to one 

of the schools to compare the precision of the calibration results. In the end, while both methods 

achieved high precision results as compared to existing calibration methods, the multi-objective 

genetic algorithm (MOGA) method was able to achieve better results in calibrating multiple 

individual rooms simultaneously. Ultimately, after the calibration of this school, the rest of the 

buildings in this thesis were calibrated using the MOGA method. 

 

4.1. Computing Time Differences between Calibration Methods 
 

Multi-objective genetic algorithm (MOGA) has been able to achieve similar or higher precision 

than Bayesian calibration with less computing power. While Bayesian is very good for calibrating 

a building with the use spatial averages, which computes an average temperature for the entirety 

of the building, based off of a few calculated rooms, and has a quicker set-up compared to MOGA, 

the computing time is significantly longer as it runs through 20 000 iterations to then take the 

average value of these iterations to produce the final calibrated values. This process is considerably 

quick with the amount of data it must produce, but it is not yet capable of producing a higher level 

of precision, as calculated by the performance criteria targets, than MOGA when observing 

individual rooms’ calibration results. On the other hand, MOGA takes more time to set up the 

parameter ranges and connect the necessary computer codes and software programs, but the 

computing time is much quicker and can accurately calibrate multiple rooms simultaneously. The 

MOGA method only goes through a maximum of 10 generations of Pareto-optimal solutions for a 

total of 100 iterations before producing a set of calibrated building parameters. 

 

4.2. Bayesian Calibration of School 1 
 

This is the first and only school that was calibrated using Bayesian Inference and MOGA 

calibration methods. 

 

4.2.1. Building description of School 1 

 

School 1 is a two-storey primary school in Montreal, Quebec, Canada. Four rooms on the top floor 

were selected for the study, with the installation of indoor temperature sensors in each room and a 

weather station that was installed on the roof. It was built in 1958 and features a red brick façade, 

double pane windows, interior shade rolls and approximately 60% window-to-wall ratio. There is 

no mechanical cooling, therefore it relies on natural ventilation with windows that have an 

openable area of 25%. 
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Figure 2: Google Streetview of School 1 

 

4.2.2. Building energy model 

 

With this building and all buildings to follow, the basic geometry and measurements of the school 

were created in DesignBuilder. Using this software, buildings can be created in a 3D space using 

approximate dimensions, window-to-wall ratio and geographic orientation of the existing building. 

These building elements are integrated in DesignBuilder based on the information that is available 

per building, by using a combination of building plan measurements and Google Earth’s and 

Google Maps’ measuring tools are used. All building properties are also added, including window, 

wall and roof properties, natural ventilation rates, ventilation setpoints, occupancy, lighting and 

equipment loads, infiltration rates, etc. These properties are initially added based on existing 

literature ranges, before fully calibrating them, as shown in Table 1. For natural ventilation, this is 

modelled in DesignBuilder by adjusting the window opening area and the Airflow Network 

calculations performed by EnergyPlus that is integrated in this program. As much information as 

possible is included based on known building details, scheduling and function are included to 

facilitate the calibration process. These parameters can then be adjusted during the calibration 

process to later use the calibrated building model to assess for overheating risk and run building 

simulations to evaluate mitigation techniques, while also using current and future weather data 

files. 

 

 
Figure 3: Renderings of School 1 in DesignBuilder 
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4.2.3. Calibration results using Bayesian Calibration for School 1 

 

For this school, the calibration process is performed on the building when it is unoccupied and 

again when it is occupied. The building is first calibrated for a time period for which the school 

was closed from May 23 to June 3, 2020, using building parameters that are specific to the building 

envelope and excluding any parameters related to building occupants. Following the calibration of 

the unoccupied building, this calibrated model was then used as the starting point to begin the 

calibration of the occupied building using parameters that are affected by the occupants, such as 

the opening of windows, the use of shades on windows, the use of lights and equipment, etc. Using 

the calibrated unoccupied model, all 6 steps are repeated using the occupied building parameters. 

 

It is important to highlight that in Step 4, separate meta-models are generated for each measured 

room after the building has been evaluated as a whole during the parametric simulation and the 

sensitivity analysis. Therefore, there are 4 separate calibrated meta-models that were used to for 

each individual room. While each meta-model started from the same file, each file was then 

calibrated according to the field measurements that were provided for each room to ultimately 

produce 4 calibrated meta-models. This allows for the calibrated values to be output based on the 

specific input measurements from each individual measured room. The way this is applied in the 

unoccupied case and the occupied case is different as explained below. 

 

In the case of the unoccupied building calibration, the final calibrated model used the average of 

the calibrated values calculated from each individual room for parameters that must be the same 

throughout the whole building. For example, the average was taken for wall insulation thickness, 

roof insulation thickness, infiltration rate from the four measured rooms, however each room’s 

percentage of the shade covering the window of that room was applied as it was calculated by that 

specific room’s data. In short, room level calibrated building parameters were used as calculated 

in the final calibrated model, while building level calibrated parameters were calculated from the 

average of the values that had resulted from the room specific calibrations. 

 

In the case of the occupied building calibration, the final calibrated model uses a combination of 

all the room-level calibrated parameters. First, the average of each building parameter is applied 

to all the building zones, and then the room specific calibrated values are applied to those 

individual rooms and the surrounding rooms. As a result, the final calibrated model will have the 

values as calculated according to room level data all in one model. 

 

Room 

200 

Room 

212 

Room 

203 

Room 

208 

Figure 4: Plan view of School 1 with the measured rooms identified 
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The figure below shows the difference in simulated results using the calibrated model compared 

to the collected data from the indoor sensors. The orange line represents the calibrated building 

model indoor temperature, while the blue line represents the measured indoor temperature data. 

The following tables present the calibrated building parameters used in the calibrated model and 

quantify the errors between measured and simulated data using performance criteria. 
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Figure 5: Comparison of the indoor temperature of each classroom using the calibrated model 

and the collected data during the unoccupied period at School 1 
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Table 2: Calibrated building parameters during the unoccupied period for School 1 using 

Bayesian Inference 

Parameters R 200 R 203 R 208 R 212 

Shading solar reflectance  0.7 0.6 0.4 0.4 

Infiltration Rate (ACH) 0.16 

Wall Insulation U-value (W/m2-K) 0.46 

Roof Insulation U-value (W/m2-K) 0.27 

 

This first table shows the values of the important (as determined by the sensitivity analysis) 

unknown parameters calibrated using Bayesian Inference to create a building model in which its 

simulated indoor temperatures are very closely matched to the measured results of this building. 

The difference between these sets of data is measured by the evaluation criteria in Table 3. The 

RMSE measures the average differences between the measured and simulated results. A target of 

0.7C was set for the RMSE value to achieve a high level of precision with the model. Normalized 

Mean-Bias Error (NMBE) was also used to evaluate the error as it is a typical indicator in 

calibration statistics. However, it was not a limiting factor in this study. The maximum difference, 

which is an indicator of the maximum difference between the simulated and measured results at 

any given hour during the calibration period, and RMSE were often the indicators that did not meet 

their targets during initial rounds of calibration. The final two indicators calculate the percentage 

of the simulated data set in which the difference from the measured data set is more than 1C or 

more than 0.5C, with targets of 15% and 50%, respectively. In this case, the calibration of R 200 

was not able to achieve the above-mentioned goals. This can be explained by unknown field 

situations, such as unexpected occupancy when the building was supposed to be closed, lights that 

were left on by accident, windows that were left open, rolling blind shades that were left open, etc. 

However, using the results from the other three rooms to determine the building envelope 

parameters, the calibration process continued with the next step of calibrating the building while 

occupied to calibrate the occupancy-related parameters such as natural ventilation, lighting, 

number of occupants, percentage of shade roll opening, etc. 
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Figure 6: Comparison of the indoor temperature of each classroom using the calibrated model 

and the collected data during the occupied period at School 1 
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Table 3: Evaluation criteria during the calibration and validation period using the calibrated 

model during the unoccupied period for School 1 using Bayesian Inference 

 

Evaluation criteria 
Calibration Validation 

R 200 R 203 R 208 R 212 R 200 R 203 R 208 R 212 

RMSE (ºC) 1.2 0.8 0.4 0.7 1.3 1.0 0.6 0.8 

NMBE (%) 3.8 2.0 -0.8 -0.1 3.4 2.4 1.5 2.4 

Max Diff. (ºC) 2.8 2.2 1.0 1.4 3.6 3.0 1.7 1.8 

1 °C Percentage 

Error (%) 
33 14 0 7 51 22 2 16 

0.5 °C Percentage 

Error (%) 
74 38 3 35 69 50 28 50 

 

Table 4: Calibrated building parameters during the occupied period for School 1 using Bayesian 

Inference 

 

Parameters R 200 R 203 R 208 R 212 

Max NV amount (ACH) 7.5 5.7 7.7 7.8 

NV setpoint (ºC) 23.7 22.7 21.1 21.0 

Maximum lighting load (W/m2) 9.1 9.1 9.1 9.1 

Shading solar reflectance 0.86 0.89 0.57 0.86 

 

Table 5: Evaluation criteria during the calibration and validation period using the calibrated 

model during the occupied period for School 1 using Bayesian Inference 

 

Evaluation criteria 
Calibration Validation 

R 200 R 203 R 208 R 212 R 200 R 203 R 208 R 212 

RMSE (ºC) 0.6 0.8 0.7 0.7 1.1 0.9 1.4 1.1 

NMBE (%) 0.9 -2.0 1.2 1.7 2.6 0.3 4.7 4.7 

Max Diff. (ºC) 1.4 2.5 2.0 2.1 2.3 2.7 2.8 2.1 

1 °C Percentage 

Error (%) 
3 10 7 15 33 14 45 36 

0.5 °C Percentage 

Error (%) 
30 37 32 31 61 39 57 68 
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4.3. Calibration Results using MOGA for School 1 
 

The following results are produced using MOGA mainly through the software jePlus. This 

software provides the framework for calibrating many significant parameters simultaneously until 

a set of optimal solutions are achieved. A python script developed by Baba et al. is also used in 

combination with this software to evaluate the performance of these solutions. Once a set of 

optimized values is achieved, these sets are then inserted into DesignBuilder to calibrate the base 

model. This process only requires one meta-model, because all 4 rooms are calibrated 

simultaneously. The following tables list the results of the calibration over the same time period 

as the Bayesian calibration method using MOGA method. 

 

Table 6: Calibrated building parameters during the unoccupied period for School 1 using MOGA 

 

Parameters R 200 R 203 R 208 R 212 

Shading solar reflectance  0.50 0.60 0.60 0.40 

Infiltration Rate (ACH) 0.18 

Wall Insulation U-value (W/m2-K) 0.41 

Roof Insulation U-value (W/m2-K) 0.21 

 

Table 7: Evaluation criteria during the calibration and validation period using the calibrated 

model during the unoccupied period for School 1 using MOGA 

 

Evaluation criteria 
Calibration Validation 

R 200 R 203 R 208 R 212 R 200 R 203 R 208 R 212 

RMSE (ºC) 0.4 0.5 0.3 0.7 0.6 0.6 0.6 0.9 

NMBE (%) 0.0 -0.1 -0.4 0.4 -0.3 0.2 1.5 2.5 

Max Diff. (ºC) 1.2 1.2 0.9 1.7 1.7 2.1 1.7 1.8 

1 °C Percentage 

Error (%) 
2% 2% 0% 20% 11% 9% 7% 31% 

0.5 °C Percentage 

Error (%) 
26% 29% 9% 41% 38% 35% 44% 72% 
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Table 8: Calibrated building parameters during the occupied period for School 1 using MOGA 

 

Parameters R 200 R 203 R 208 R 212 

Shading solar reflectance 0.90 0.90 0.80 0.90 

Maximum lighting load (W/m2) 6.00 6.00 6.00 6.00 

NV setpoint (ºC) 23.00 23.00 21.00 20.00 

Max NV amount (ACH) 9.00 9.00 9.00 9.00 

 

Table 9: Evaluation criteria during the calibration and validation period using the calibrated 

model during the occupied period for School 1 using MOGA 

 

Evaluation criteria 
Calibration Validation 

R 200 R 203 R 208 R 212 R 200 R 203 R 208 R 212 

RMSE (ºC) 0.6 0.8 0.7 0.7 1.1 0.9 1.4 1.1 

NMBE (%) 0.9 -2.0 1.2 1.7 2.6 0.3 4.7 4.7 

Max Diff. (ºC) 1.4 2.5 2.0 2.1 2.3 2.7 2.8 2.1 

1 °C Percentage 

Error (%) 
11% 19% 14% 19% 50% 21% 49% 43% 

0.5 °C Percentage 

Error (%) 
51% 53% 44% 42% 74% 58% 66% 80% 

 

4.4. Summary 
 

In this section, the values obtained by calibrating the school building using Bayesian calibration 

and multi-objective genetic algorithm are compared side by side to highlight the differences of 

each method’s calibrated values. In addition to a slightly higher accuracy as determined by the 

evaluation criteria using the MOGA method, this process only required one meta-model per 

building (as opposed to a using one meta-model per room when using Bayesian calibration), was 

able to calibrate multiple rooms simultaneously to produce one final calibrated model and used 

less computing time with less iterations to find the optimal solution. 
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Table 10: Comparison of calibrated parameters during the unoccupied period using Bayesian 

Calibration and Multi-objective Genetic Algorithm 

 

Building 

Parameter 

R 200 R 203 R 208 R 212 Difference 

BC MOGA BC MOGA BC MOGA BC MOGA  

Shading solar 

reflectance 

0.70 0.50 0.60 0.60 0.40 0.60 0.40 0.40 0 – 0.2 

Infiltration Rate 

(ACH) 

0.16 0.18 0.16 0.18 0.16 0.18 0.16 0.18 0.2 

Wall U-value 

(W/m2-K) 

0.46 0.41 0.46 0.41 0.46 0.41 0.46 0.41 0.05 

Roof U-value 

(W/m2-K) 

0.27 0.21 0.27 0.21 0.27 0.21 0.27 0.21 0.06 

 

 

Table 11: Comparison of calibrated parameters during the occupied period using Bayesian 

Calibration and Multi-objective Genetic Algorithm 

 

Building 

Parameter 

R 200 R 203 R 208 R 212 Difference 

BC MOGA BC MOGA BC MOGA BC MOGA  

Shading solar 

reflectance  

0.86 0.90 0.89 0.90 0.57 0.90 0.86 0.90 0.04 – 

0.33    

Max lighting 

load (W/m2) 

9.10 6.00 9.10 6.00 9.10 6.00 9.10 6.00 3.10 

NV setpoint 

(C) 

23.70 23.00 22.70 23.00 21.10 23.00 21.00 23.00 0.03 – 

2.00 

Max NV 

(ACH) 

7.50 9.00 5.70 9.00 7.70 9.00 7.80 9.00 1.20 – 

3.30 

 

For calibrated building envelope parameters, the values obtained by both methods differ by less 

than a tenth. The differences between calibrated building parameter values are larger in occupant-

dependent parameters, which is to be expected because occupant behavior can change quickly and 

without notice. Such behaviors can include forgetting to close the windows and/or lights at the end 

of the day, changes in window-opening patterns and/or use of shade rolls depending on daily 

activities and/or changes in weather, etc. 
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Table 12: Comparison of evaluation criteria while unoccupied using Bayesian Calibration and 

Multi-objective Genetic Algorithm during the calibration period 

 

Evaluation 

Criteria 

R 200* R 203 R 208 R 212 Difference 

BC MOGA BC MOGA BC MOGA BC MOGA  

RMSE (C) 1.2 0.4 0.8 0.5 0.4 0.3 0.7 0.7 0 – 0.3 

NMBE (%) 3.8 0.0 2.0 -0.1 -0.8 -0.4 -

0.1 

0.4 0.4 – 2.1 

Max Diff. (C) 2.8 1.2 2.2 1.2 1.0 0.9 1.4 1.7 0.1 – 1.0 

Greater than 

1C Error (%) 

33 2 14 2 0 0 7 20 0 – 13 

Greater than 

0.5C Error (%) 

74 26 38 29 3 9 35 41 6 – 9  

*Room 200 was not successfully calibrated according to the target ranges. Therefore, it was 

excluded in the calculations for the difference in values between BC and MOGA 

 

Table 13: Comparison of evaluation criteria during the occupied period using Bayesian 

Calibration and Multi-objective Genetic Algorithm during the calibration period 

 

Evaluation 

Criteria 

R 200 R 203 R 208 R 212 Difference 

BC MOGA BC MOGA BC MOGA BC MOGA  

RMSE (C) 0.6 0.6 0.8 0.8 0.7 0.7 0.7 0.7 0 

NMBE (%) 0.9 0.9 -2.0 -2.0 1.2 1.2 1.7 1.7 0 

Max Diff. (C) 1.4 1.4 3.5 2.5 2.0 2.0 2.1 2.1 0 – 1.0 

Greater than 

1C Error (%) 

3 11 10 19 7 14 15 19 4 – 8 

Greater than 

0.5C Error (%) 

30 51 37 53 32 44 31 42 11 – 21  

 

In conclusion, although there were very many similarities in processing times, ease of use and 

precision of results between the two methods, MOGA method was slightly better adapted to 

perform the task at hand. As shown in Tables 12 and 14, the RMSE value was often less than that 

attained by BC by several tenths of a degree Celsius. MOGA was also able to successfully calibrate 

all 4 rooms of the building in all cases. The maximum difference calculated using MOGA was also 

less than that calculated by BC by up to 1C. The Bayesian calibration method was a robust 

automatic calibration method that was better suited to calibrate buildings as a whole, but was not 

as effective as MOGA to calibrate individual rooms simultaneously. The set-up time for both 

methods have its advantages and disadvantages with comparable ease of use. Even though the 

Bayesian calibration platforms were less user-friendly and more heavily reliant on the user’s 
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knowledge of programming code, this design also allowed for easier access to code customization 

and troubleshooting. On the other hand, MOGA had an easier to understand user interface, 

although getting access to the program code for troubleshooting was a bit more complex. And so, 

after evaluating both methods, the rest of the school building models, residential building models 

and hospital building models that were calibrated in this paper will use MOGA method from this 

point forward. The following three school models also used the calibrated School 1 model’s 

building parameters as a baseline for their calibration.  
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5. Calibration using the MOGA Method for existing Canadian Buildings 
 

After completing the calibration of School 1 using both Bayesian Inference Calibration method 

and Multi-Objective Genetic Algorithm methods, a set of building parameter ranges were found. 

All the schools that were assessed in this thesis were built around the same time and are similar in 

structure and function. Therefore, the same building parameter ranges obtained from School 1, 

were used to calibrate the subsequent three schools using automatic calibration with DesignBuilder. 

After modeling each building in DesignBuilder, the unknown parameters were modified with each 

simulation and then the simulation results are exported to an Excel sheet, where the evaluation 

criteria can be calculated and the differences between the measured and calibrated data can be 

compared. The results of this process for the three additional schools are shown in the following 

sections. This process was also used to calibrate a hospital and residential building. However, the 

parameter ranges for these buildings were obtained from typical building ranges and building 

codes. All the buildings that were calibrated for this thesis are shown in the Figure 7. The school 

buildings are shown in yellow; the hospital building is shown in red; and the residential building 

is shown in green. 

 

  
Figure 7: Calibrated Buildings Identified on a Map of Montreal (Google Maps) 

 

5.1 Calibration of School Buildings 

 
This thesis investigated the calibration of four school buildings built in 1950s to 1960s. Here is a 

summary of general building characteristics for all school buildings. 

  

: Schools 

: Hospitals 

: Residential 
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Table 14: Major building features of calibrated school buildings 

 

Building 

Parameters 

School 1 School 2 School 3 School 4 

Year of 

Construction 

1958 1958 1960 1953 

Major Renovations 

(building additions) 

N/A 1990s and 2000s unknown 1990s 

Building Shape Rectangular C-shaped (only 

calibrated 

original 

rectangular 

building) 

Irregular T-shaped 

(originally 

rectangular 

before the 

additions) 

Number of Storeys 2 2 1 2 

Wall Materials Red brick 

veneer, concrete 

block 

Yellow brick 

veneer, concrete 

block 

Red brick 

veneer, concrete 

block (except 

one kindergarten 

room) 

Yellow brick 

veneer, concrete 

block 

Window 

Composition 

Double 

windows with 

single glass 

Double 

windows with 

single glass 

Double 

windows with 

single glass 

Double 

windows with 

single glass 

Window-to-Wall 

Ratio 

60% 30-40% 20% 30-40% 

Window Opening 

Area 

25% 25% 10-20% 20-30% 

Interior Shading Rolling shades Rolling shades Rolling shades Rolling shades 

Ventilation Natural  Natural Natural Natural and 

mechanical (in 

select rooms, no 

air cooling) 

 

Using these building details, in combination with provided architectural plans, the building models 

are created in DesignBuilder. The geometry and building orientation are created from the 

architectural plans and then the building envelope properties and occupancy loads are entered as 

input parameters. These inputs are important in creating the baseline building before starting 

calibration. In DesignBuilder, the specific inputs included wall u-value, roof u-value, window u-

value, solar heat gain coefficient, infiltration rate, solar reflectance of shade rolls, natural 

ventilation rate and setpoint, number of occupants, lighting loads, and equipment loads. 
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School 2 

 
Figure 8: Aerial view of School 2 from Google 

Earth 

 
Figure 9: Axonometric view of the building 

energy model in DesignBuilder of School 2 

School 3 

 

 
Figure 10: Google Earth view of School 3 

 

 
Figure 11: Axonometric View of School 3 in 

DesignBuilder 

School 4 

 
Figure 12: Google Earth View of School 4 

 
Figure 13: Axonometric View School 4 in 

DesignBuilder 
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In some cases, only the main building or a section of the building where the monitored rooms are 

located are modelled in detail with room partitions and the surrounding buildings and/or trees are 

modelled as adjacent blocks. It is done this way to save on computing time, while still considering 

the surrounding environment. These adjacent blocks are shown in grey in Figure 9 above. There 

are four rooms per school that were equipped with temperature sensors. School 2 had two measured 

rooms on the top floor and two measured rooms on the bottom floor. School 3 is only one-storey 

high and had 4 measured classrooms, including one kindergarten room that acts more like an 

activity room. School 4 had two measured rooms in the top floor of the original construction and 

two measured rooms on the first floor in the building addition from 1990s. For further details 

concerning the plan views of School 3 and School 4, please see Chapter 9. 

 

 

 
Figure 14: Plan view School 2 of first floor (top) and second floor (bottom) 

 

For the school cases, the calibration process was performed in two steps. First, each building was 

calibrated during the summertime months when the building is expected to be empty. A period of 

3 weeks during the months of July and/or August was chosen for the calibration step and another 

2 to 3 weeks directly following the calibration period was chosen for the validation step. This two-

step process was required to first calibrate the building envelope’s parameters without any 

occupancy loads. These parameters included the building wall U-value, roof U-value, window U-

Room 

201 

Room 

204 

Room 

120 

Room 

108 
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value and SHGC, air infiltration rate and solar reflectance of rolling shades percentage. Once these 

values are calibrated, the next step is to keep those parameters constant while then including 

occupancy loads, such as lighting power density, equipment power density, number of occupants 

per room, natural ventilation rate and setpoint and again solar reflectance of rolling shades 

percentage. 

 

While there are 6 parameters to adjust during the calibration process, some parameters have a 

greater effect on the simulation output than others. For example, when the school is occupied, the 

most important parameters included natural ventilation rate and solar reflectance of rolling shades. 

Increasing the fraction of solar reflectance led to decreasing the indoor temperature and increasing 

natural ventilation during the cooler parts of the day (early morning and at night) led to decreasing 

indoor temperatures. Equipment power density had the smallest effect on the indoor temperature 

simulation results. However, increasing the number of occupants could significantly increase the 

indoor temperature during the day. Similarly, but to a lesser extent, increasing lighting power 

density during the day also increased indoor temperature, but more notably adding or removing 

lighting during the night had a significant effect in proper calibration of the simulation results. 

Therefore, inputting the correct scheduling is a very important input in the calibration process. 

 

With each step of the calibration process, the resulting calibrated values of these parameters are 

evaluated using 5 evaluation criteria: RMSE, NMBE, maximum hourly difference, percentage of 

hourly differences that were below 1C and percentage of hourly differences that were below 0.5C. 

The degree differences are taken from the difference between the simulated result generated by 

the calibrated model compared to the measured result collected from the sensor. The target range 

for these performance metrics was determined by selecting a range that would yield a more 

accurate calibrated model, compared to the existing standards required by ASHRAE (Baba et al., 

2022b). Therefore, by meeting these targets, the calibration methodology produced calibrated 

models that are well below the current standards required by ASHRAE (Baba et al., 2022b). The 

same evaluation criteria were used for all building types (school, hospital, residential). 

 

Table 15: Target ranges for evaluation criteria 

 

Evaluation Criteria Target Range 

RMSE (C) Less than 0.70 C 

NMBE (%) Less than +/- 5.0% 

Maximum Hourly Difference (C) 2 to 3 C 

Percentage of Hourly Differences below 1C Less than 15% 

Percentage of Hourly Differences below 0.5C Less than 50% 

 

5.1.1. Comparison of Calibration Results for School Buildings 

 

Overall, all four schools were built around the same year and fulfill the same building function, 

and therefore have similar building envelope parameters and occupancy parameters.  
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5.1.1.1.  Calibration results for School 2 

 

The calibration for School 2 was successful for all four rooms as is shown in Table 17 and 19. This 

building was the most like School 1 compared to the other three schools. Both schools were 

rectangular with two floors, however two of the measured rooms were on the second floor and two 

of the measured rooms were on the first floor for School 2. All rooms were approximately the 

same size and had the same function.  

 

 

Table 16: Calibrated building parameters during the unoccupied period for School 2 

 

Parameters R 108 R 120 R 201 R 204 

Shading solar reflectance  0.65 0.80 0.50 0.60 

Air infiltration Rate (ACH) 0.25 

Wall insulation U-value (W/m2-K) 0.38 

Roof insulation U-value (W/m2-K) 0.23 

 

 

Table 17: Evaluation criteria results during the unoccupied period for School 2 

 

Evaluation criteria 
Calibration Validation 

R 108 R 120 R 201 R 204 R 108 R 120 R 201 R 204 

RMSE (ºC) 0.8 0.6 0.6 0.7 0.5 0.4 0.8 0.6 

NMBE (%) 0.1 1.5 0.5 -0.3 -1.0 0.9 1.9 0.8 

Max diff. (ºC) 2.2 1.5 2.4 2.0 2.0 1.2 2.5 2.8 

1 °C percentage 

error (%) 
18% 10% 12% 9% 9% 2% 20% 8% 

0.5 °C percentage 

error (%) 
56% 43% 34% 44% 34% 18% 48% 26% 

 

 

Table 18: Calibrated building parameters during the occupied period for School 2 

 

Parameters R 108 R 120 R 201 R 204 

Max NV amount (ACH) 7.60 7.60 7.60 7.60 

NV setpoint (ºC) 21.20 21.20 21.20 21.20 

Maximum lighting load (W/m2) 9.00 9.00 9.00 9.00 

Shading solar reflectance 0.40 0.85 0.90 0.70 
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Table 19: Evaluation criteria results during the occupied period for School 2 

 

Evaluation criteria 
Calibration 

R 108 R 120 R 201 R 204 

RMSE (ºC) 0.7 0.9 0.5 0.6 

NMBE (%) -0.8 -0.1 0.4 0.2 

Max diff. (ºC) 2.9 3.8 1.8 2.8 

1 °C percentage 

error (%) 
11% 21% 5% 6% 

0.5 °C percentage 

error (%) 
47% 53% 32% 25% 

 

Validation was not performed on this school, because the results were already validated with the 

previous school. 

 

5.1.1.2. Calibration results for School 3 

 

During the calibration of this school, one of the rooms (Room 60), which was a classroom for 

school children under the age of 6, could not be calibrated.  Its building materials are unknown, 

and its function is also different. This room functions as an activity room, and the children in this 

room likely move around more than the children in the other classrooms. The windows are also a 

lot larger, and it is unclear if there may be mechanical ventilation. The other three measured rooms 

were successfully calibrated, achieving less than 0.8C RMSE and less than 15% of the calibrated 

results had a less than 1C difference than the measured results. The calibrated parameters of this 

first phase of calibration where the building was unoccupied, is then used to calibrate the school 

while it was occupied. And again, the calibrated results were evaluated against the performance 

metrics to conclude the calibration results are accurate as shown in Table 21.  

 

Table 20: Calibrated building parameters during the unoccupied period for School 3 

 

Parameters R 14 R 23 R 34 R 60 

Shading solar reflectance  0.90 0.30 0.50 0.50 

Air infiltration Rate (ACH) 0.25 

Wall insulation U-value (W/m2-K) 0.40 

Roof insulation U-value (W/m2-K) 0.20 

 

Table 21: Evaluation criteria results during the unoccupied period for School 3 

 

Evaluation criteria 
Calibration Validation 

R 14 R 23 R 34 R 60 R 14 R 23 R 34 R 60 
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RMSE (ºC) 0.6 0.6 0.7 1.9 0.4 0.7 0.8 1.9 

NMBE (%) 1.0 -1.2 -1.3 -5.4 0.3 -2.5 -1.8 -4.9 

Max diff. (ºC) 1.8 1.3 1.7 3.3 1.3 1.7 1.9 3.0 

1 °C percentage 

error (%) 
8% 8% 14% 73% 3% 17% 33% 75% 

0.5 °C percentage 

error (%) 
37% 40% 52% 86% 52% 55% 54% 90% 

 

Table 22: Calibrated building parameters during the occupied period for School 3 

 

Parameters R 14 R 23 R 34 R 60 

Max NV amount (ACH) 3.00 7.00 7.00 2.00 

NV setpoint (ºC) 22.00 22.00 22.00 22.00 

Maximum lighting load (W/m2) 9.00 9.00 9.00 9.00 

Shading solar reflectance 0.90 0.30 0.80 0.30 

 

Table 23: Evaluation criteria results while occupied for School 3 

 

Evaluation criteria 
Calibration Validation 

R 14 R 23 R 34 R 60 R 14 R 23 R 34 R 60 

RMSE (ºC) 0.6 0.7 0.6 1.1 1.6 2.7 0.9 1.8 

NMBE (%) 1.5 -2.3 -1.1 -0.5 -4.7 -12.4 -1.8 -5.3 

Max diff. (ºC) 1.9 2.7 2.2 3.5 4.7 5.0 2.9 3.5 

1 °C percentage 

error (%) 
11% 10% 6% 28% 56% 91% 20% 74% 

0.5 °C percentage 

error (%) 
45% 50% 41% 72% 78% 96% 51% 89% 

 

 
These evaluation criteria show that this calibration methodology can achieve highly precise results. 

The values in Table 23 above show smaller discrepancies between the measured and calibrated 

indoor temperature than what has been previously accepted in literature. 

 

5.1.1.3. Calibration results for School 4 
 

During the calibration procedure for this school, one of the indoor sensors encountered a 

malfunction, leading to the loss of a few days’ worth of data points. In order to complete the 

calibration, a period of consecutive 3 weeks for the calibration and another 3 weeks that follow 

that period is required. This time frame ensures the attainment of accurate results, by assuming 
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there are minimal changes in human behavior within the three-week period. Furthermore, this time 

period provides a sufficient window for conducting an accurate investigation into the temperature 

fluctuations experienced by the school. Therefore, for the unoccupied period, R 215 was excluded 

from the calibration due to the missing data. However, it was included for the calibration period 

while the school was occupied for which it had a complete data set. 

 

Table 24: Calibrated building parameters during the unoccupied period for School 4 

 

Parameters R 112 R 113 R 212 R 215 

Shading solar reflectance  0.90 0.50 0.50 N/A 

Air infiltration rate (ACH) 0.10 

Wall insulation U-value (W/m2-K) 0.30 

Roof insulation U-value (W/m2-K) 0.25 

 

Table 25: Evaluation criteria results during the unoccupied period for School 4 

 

Evaluation criteria 
Calibration Validation 

R 112 R 113 R 212 R 215 R 112 R 113 R 212 R 215 

RMSE (ºC) 0.7 0.6 0.4 N/A 0.9 0.7 0.5 N/A 

NMBE (%) 1.9 -1.2 -0.5 N/A 1.9 -0.6 -0.8 N/A 

Max diff. (ºC) 2.0 1.4 1.5 N/A 2.0 1.5 1.6 N/A 

1 °C percentage 

error (%) 19% 12% 1% 
N/A 

16% 13% 3% 
N/A 

0.5 °C percentage 

error (%) 54% 49% 19% 
N/A 

54% 42% 22% 
N/A 

 

 

Table 26: Calibrated building parameters during the occupied period for School 4 

 

Parameters R 112 R 113 R 212 R 215 

Max NV amount (ACH) 5.00 5.00 6.00 6.00 

NV setpoint (ºC) 21.00 21.00 22.00 22.00 

Maximum lighting load (W/m2) 9.00 9.00 9.00 9.00 

Shading solar reflectance 0.65 0.15 0.50 0.60 
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Table 27: Evaluation criteria results during the occupied period for School 4 

 

Evaluation criteria 
Calibration 

R 112 R 113 R 212 R 215 

RMSE (ºC) 0.7 0.7 0.6 0.7 

NMBE (%) 1.6 0.3 0.4 -0.8 

Max diff. (ºC) 2.7 2.3 2.6 2.7 

1 °C percentage 

error (%) 
14% 17% 10% 14% 

0.5 °C percentage 

error (%) 
43% 47% 29% 50% 

 
5.1.2. Summary of Findings for Calibration of Schools 

 

After calibrating four schools to validate this calibration method, the following findings were also 

identified. Even though all the schools are based on the optimized solution calculated in jePlus, 

each school is fine-tuned in DesignBuilder. When using jePlus, the most difficult part was ensuring 

that all the input files were correctly submitted, and the parameters were given the correct intervals. 

Once this is set-up, the program can run through the python scripts and input files, which includes 

the base model from DesignBuilder and current weather data, in addition to parameter ranges, to 

produce a set of solutions to be used as the input parameter for DesignBuilder to calibrate the base 

model. This model can then be subjected to extra fine-tuning as described below. 

 

First, it is very important to get the correct geometry before beginning the calibration process. 

With the use of Google Earth, it is possible to get an accurate reading of the degrees from the north 

to which the school is oriented. Next, having access to building plans is very helpful in tracing the 

correct dimensions, with the help of Google Maps if needed. Lastly, ensuring that the window-to-

wall ratio accurately represents the real building can have a significant effect on building envelope 

calibration and consequently affect the overheating risk assessment. For example, it was found 

with School 3 that the small size of the windows is likely responsible for the low risk of overheating. 

Window size is important to accurately represent in the model, because it can affect many of the 

input parameters, such as solar heat gain coefficient, window U-value and natural ventilation due 

to its relation to window opening size. This leads to the next step of calibrating the building 

envelope, which needs to be properly calibrated before continuing to calibrate the occupancy loads. 

The wall and roof U-value and infiltration rate were often calibrated first to determine the overall 

daily temperature fluctuations of the model. Window U-value and SHGC are the next parameters 

to be calibrated and then finally the solar reflectance of shade rolls is often the last parameter to 

be calibrated. This is a general order and is not strictly linear, sometimes needing to go through 

several iteration processes. However, the solar reflectance of shade rolls which is the percentage 

of the window area that is covered by the shade roll. The higher the percentage, the more the 

window’s shade has been pulled down. This part is all done in DesignBuilder starting with the 

whole building first and then it is continued at the room-level. Following this process, it is then 

repeated with the occupant-related building parameters. First, equipment density had little effect 
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on all schools. Next, natural ventilation was calculated using DesignBuilder’s Fabrics and 

Ventilation function. To do this, the model’s natural ventilation rate is set to be calculated (to be 

calculated by DesignBuilder), all the windows are closed, and infiltration rate is assumed to be 

virtually zero. The result of this simulation allows us to check the maximum ventilation at any 

given time during the year to create the range for this parameter. By setting the infiltration rate to 

virtually zero, the program is able to calculate the maximum natural ventilation rate that will be 

used as the natural ventilation rate for the school without taking into account the effect of building 

infiltration rate. However, the infiltration rate was already calculated in the first part of the 

calibration process (when the building was unoccupied), and so this simulation is only performed 

to check the maximum range of the building’s infiltration rate, therefore once this test is performed, 

the infiltration rate is returned to the calibrated value from the first part of the calibration. 

Subsequently, lighting, occupancy, natural ventilation rate and setpoint are adjusted to achieve the 

final calibrated model.  

 

Starting with natural ventilation, this building parameter had the greatest effect for all school 

buildings. The natural ventilation rate refers to the amount of air exchanges that is happening with 

window opening. Therefore, ensuring that the value for the free aperture for windows in the 

Openings tab in DesignBuilder was a significant input parameter. For some schools, the part of 

the window that was able to open was 33% and for others it was up to 50%. The scheduling of the 

natural ventilation was also important. It was often assumed that the windows were closed on 

weekends and holidays and when the school was not open. However, in certain situations, natural 

ventilation can be introduced during nighttime hours, resulting in a substantial reduction of 

simulated indoor building temperatures. If this improved the results, it can be assumed that there’s 

a possibility that nighttime cooling is being used in this building or that a window was left open 

overnight by accident. On the other hand, natural ventilation should be removed or reduced during 

the daytime when the simulated daytime indoor temperatures are too low. When turned off during 

the day, this can either increase or decrease the simulated indoor temperature depending on 

whether the indoor temperature was hotter or colder than the outdoor air, the rate and the amount 

of time natural ventilation has time to affect the indoor temperatures. Opening a window can also 

offer a degree of cooling and cross-ventilation; however, it can trigger an increase in room 

temperature as hot air enters, but only when the outdoor temperature surpasses the indoor 

temperature. Thus, natural ventilation can effectively lower indoor temperature if the outdoor 

temperature is cooler. 

 

Next, mechanical ventilation can also be modified similarly to the way natural ventilation is 

modified to change temperature fluctuations in a simulated building. Even though it may not 

provide cooling, which was the case for the schools included in this study, it acts very well for 

cooling down the building at night, and is more secure than natural ventilation, i.e. open windows 

at night can pose a safety hazard, while mechanical ventilation can be run all night without 

affecting the security of the building. Hence, it is crucial to contemplate augmenting mechanical 

ventilation rates during nighttime if there are observed reductions in indoor temperatures during 

that period. 

 

Other building parameters that had a significant effect on the school’s indoor temperature were 

lighting and occupancy. Increasing the lighting power density at night can increase the indoor 

temperature of the simulated building. It is possible that some lights are either left on at night for 



39 

 

safety reasons and/or by accident. Occupants will also increase indoor room temperatures. More 

occupants will increase internal loads. Therefore, removing them will decrease indoor air 

temperatures and adding them will increase indoor air temperatures. And, like all the other building 

parameters mentioned above, the schedules for these input parameters sometimes required special 

attention to correctly model the existing building’s activities. 

 

Lastly, some exceptional assumptions were made to account for COVID restrictions. All data 

discussed in this thesis was taken partially or fully under covid restrictions. While the exact 

measures cannot be identified, the following assumptions were thought to have had significant 

effects on the indoor temperature changes. For example, for School 1, the calibration was 

performed in a time period in May 2020, due to school closures at the time. However, in 2021, the 

school was reopened, and the unoccupied periods needed to be taken in July and/or August. In 

some cases, an elevated level of natural ventilation was presumed to be adopted by the schools, 

following COVID guidelines, which aimed to increase ventilation rates and mitigate the risks of 

air contamination by enhancing air exchange rates. In School 4, there were suspicions that one of 

the classrooms remained unused, possibly due to reduced class sizes, school closures, and/or the 

adoption of a hybrid model involving online learning.  The models were adapted accordingly to 

account for these assumptions using special scheduling for specific rooms. 

 

Table 28: Examples of solutions for calibration troubleshooting 

 

Building Parameters Indoor temperature is too 

high 

Indoor temperature is too low 

Natural Ventilation Rate Increase, especially if outdoor 

air is cooler 

Decrease, unless outdoor air is 

hotter 

Mechanical Ventilation Increase Decrease 

Lighting Power Density Decrease Increase 

Occupancy Density Decrease Increase 

Solar Reflectance of Shade 

Roll 

Increase Decrease 

 

 

5.2. Calibration for Hospital Buildings 
 

5.2.1. Calibration of Hospital 1 

Hospital 1 was originally built in 1926. It features many different hospital wings for a variety of 

patients. Similarly, to the schools, the hospital features brick veneer walls, concrete roof, double-

pane windows and approximately 30-40% window-to-wall ratio. While the entirety of the hospital 

appears to be modelled, only the block in grey (shown in Figure 16) was studied. This section of 

the building is a long-term care wing that is naturally ventilated. Indoor temperature data was 

collected from three rooms on the 5th floor of this block.  
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Figure 15: Snapshot taken from Google Earth of Hospital 1 

 
Figure 16: Snapshot of Hospital 1 modelled in DesignBuilder

Figure 17: Building Plan of the location of the measured rooms in Hospital 1 

Room 

501 

Room 

504 

Room 

502 



41 

 

5.2.1.2. Calibrated Parameters 

Because the building is always occupied, unlike the school calibrations, all building envelope and 

occupancy related parameters were calibrated simultaneously. The calibration period for this 

building was from July 6, 2021 to July 27, 2021 and the validation period was from July 28, 2021 

to August 17, 2021. 

 

Table 29: Calibrated building parameters for all rooms unless otherwise specified for Hospital 1 

 

Building Parameters Calibrated Value 

Max Air Infiltration Rate (ACH) 0.25 

Wall U-value (W/m2-K) 0.40 

Roof U-value (W/m2-K) 0.25 

Window U-value (W/m2-K) 2.60 

Solar Heat Gain Coefficient 0.75 

Solar Shade Reflectance 0.80 

0.60 (Room 504) 

Max Occupancy 1 

Natural Ventilation Rate (ACH) 3 

Natural Ventilation Setpoint (°C) 22 

Lighting Power Density (W/m2) 5 

Equipment Power Density (W/m2) 2 

 

5.2.1.3. Performance Metrics 

 

Table 30: Evaluation criteria results for Hospital 1 

 

Measurement 

criteria 

Room 501 Room 502 Room 504  

Calibration Validation Calibration Validation Calibration Validation 

RMSE (ºC) 0.7 0.7 0.7 0.7 0.5 0.6 

NMBE (%) 1.7 1.5 0.6 0.1 0.3 0.2 

Max diff. (ºC) 1.8 2.7 2.2 1.9 1.5 1.6 

1 °C percentage 

error (%) 15% 12% 11% 15% 6% 7% 

0.5 °C percentage 

error (%) 44% 44% 48% 43% 31% 38% 

 

With all RMSE values under 0.8°C and equal or less than 15% of the temperature differences 

between calibrated and simulated results being under 1°C for both the calibration and validation 

periods, this model shows a high level of accuracy using this calibration method. 

 

5.2.2. Summary  

 

While some of the same findings for the school calibrations apply to the hospital building, one of 

the major differences was the complexity of the hospital geometry. Choosing a large enough 
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section of the building without modeling the entirety of the building was important to reduce 

computing time. In this case, only one wing of the hospital was studied, with all three rooms 

situated on the same floor. The building's function as a long-term care wing was also a critical 

factor to consider. This meant that only one to two people per room would be permanently staying 

in that room, unless the room was unused. The building envelope of this hospital was also very 

similar to that of the one found for School 1, because they were built around the same time. All 

the other parameters are calibrated similarly to schools, but with less variation. It seems that 

hospital conditions are a lot more stable, which could be due to the low occupancy. With less 

people, there are less changes in human-behavior, creating a more constant environment day to 

day. This allowed for a quick calibration of this hospital, once its geometry was correctly set up, 

with no major issues arising. 

 

5.3. Calibration for Residential Buildings 
 

5.3.1. Calibration of a residence at Residential 1 

 

This residential building was originally constructed in 1962 and featured yellow brick veneer wall. 

However, in 2018, Residential 1 underwent major renovations, with a new red brick veneer wall 

and new double-paned, low U-value windows. There are two measured apartments, one is located 

on the first floor with the temperature sensor placed in the bedroom and the other one is located 

on the third floor with the temperature sensor placed in the living room. The two pink blocks in 

Figure 18 (on the right) below represent nearby buildings. 

 

 
Figure 18: Google streetview of Residential 1 (left) and its axonometic view of its building model 

in DesignBuilder (right) 
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Figure 19: Plan views of the measured rooms in Residential 1 

 

5.3.1.2. Calibrated Parameters 
 

Similarly, to the hospital building, residential buildings are occupied all year round unlike the 

school buildings, so the calibration was completed in one phase while including all the building 

parameters and occupancy parameters. This building was calibrated from July 1, 2021 to July 22, 

2021 and validated from July 23, 2021 to August 12, 2021. The resulting calibrated building 

parameters are shown in the table below. The types of schedules used for this building assumed 

that the occupants were out of the apartments during working hours (Monday to Friday, 9 to 5 pm) 

and were home all day on weekends. 

 

Table 31: Calibrated Building Parameters for all rooms unless otherwise specified for Residential 

1 

 

Building Parameters Calibrated Value 

Max Air Infiltration Rate (ACH) 0.10 

Wall U-value (W/m2-K) 0.16 

Roof U-value (W/m2-K) 0.12 

Window U-value (W/m2-K) 0.80 

Solar Heat Gain Coefficient 0.45 

Solar Shade Reflectance 0.60 (Apt 2) 

0.30 (Apt 6) 

Max Occupancy 5 

Natural Ventilation Rate (ACH) 5 

Natural Ventilation Setpoint (°C) 24 

Lighting Power Density (W/m2) 5 

Equipment Power Density (W/m2) 2 

Bedroom 

in Apt 2 

Living 

Room in 

Apt 6 

First Floor Third Floor 
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5.3.1.3. Performance Metrics 

 

It is notable that this building had some of the best results according to the evaluation criteria. It is 

also the most recently renovated building, where its building envelope was significantly improved. 

All the RMSE values are equal to or less than 0.7°C and most of the NMBE values are close to 

zero. The maximum differences are on the higher side, but remain under 3°C. And finally, the 

percentage of calibration results having less than 1°C difference between measured and simulated 

stays under 15% and under 50% for those less than 0.5°C difference. Calibrating only two rooms 

also reduced the amount of time required to achieve a fully calibrated model. It is also a smaller 

building, with only 6 apartments total, 2 per floor with a total of 3 floors. The neighbouring 

buildings were also modeled as adjacent buildings with adiabatic surfaces in between the separate 

buildings. This type of building type in DesignBuilder allows for heat transfer between buildings, 

assuming all buildings have similar insulation and indoor temperature, without requiring a full 

simulation of the adjacent buildings. It was necessary to add these component blocks, because they 

were in close proximity to the residential building and might have a small effect in terms of shading 

and/or heat absorption. 

 

Table 32: Evaluation criteria results of measured rooms for Residential 1 

 

Measurement 

criteria 

Apt 2 Apt 6 

Calibration Validation Calibration Validation 

RMSE (ºC) 0.6 0.7 0.7 0.7 

NMBE (%) -0.03 1.4 -0.1 0.2 

Max diff. (ºC) 2.6 2.5 2.2 2.2 

1 °C percentage 

error (%) 
11% 14% 13% 20% 

0.5 °C percentage 

error (%) 
38% 38% 49% 49% 

 

5.3.2. Summary 

 

Similarly, to hospitals, the building envelope was quick to calibrate. In this case, the building 

envelope was recently renovated, so it was well within the reasonable range for current building 

standards. Detailed building plans were also provided, therefore creating the building geometry 

and orientation was easy to recreate with high accuracy. And so, the combination of good building 

geometry and orientation and a well-insulated building envelope allowed for the building envelope 

to be quickly calibrated. The natural ventilation and solar reflectance of shade rolls were the most 

difficult part of the calibration. For residential buildings, the location of windows was important 

for security and privacy concerns. Human influence, likely driven by privacy and security concerns, 

directly impacted the window shading preference, resulting in a solar shade reflectance of 60% for 

the first-floor apartment and 30% for the top-floor apartment. The natural ventilation setpoint was 

also set to 24°C which is a bit high, but from the installation notes, it was mentioned that the family 

that had moved into the top apartment was used to a hotter climate.   
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6. Assessment and Mitigation of Overheating Risks 
 

Following the calibration of the buildings in this study, these calibrated models were used to 

calculate the number of overheating hours to assess and mitigate the risk of overheating. Two 

different sets of criteria were used to assess the overheating risks amongst the three types of 

buildings. CIBSE TM52 criteria were used to assess School 3 and School 4 with school-aged 

children of 5 to 12 years old. This system is tailored for school children, using Category 1 for 

sensitive and/or vulnerable patrons, under which young children fall. ASHRAE 55 was used for 

Hospital 1 and Residential 1. The hospital assessment and residential building assessement 

followed the 40-hour limit for vulnerable patrons (young, elderly and/or sick).This assessment is 

conducted using 2020, 2044 and 2090 weather data, which were the years determined by Baba et 

al. to be the most intense and severe in the short-, mid- and long-term years (Baba et al., 2023). 

 

For the school models, overheating hours were calculated based on CIBSE TM52 as mentioned in 

Chapter 2. CIBSE TM52 is an input parameter that is included in DesignBuilder and is able to 

calculate the percentage of overheating hours during the summer season as per its criteria by 

including it as an input parameter before running the simulation over one whole year. Once the 

simulation is complete, the values calculated according to CIBSE TM52 by DesignBuilder are 

then exported to Excel and the zones that have overheating hours within the acceptable range as 

determined by CIBSE TM52 to present a value that is less than 4.5% of the total summerttime 

hours. This process is then repeated with future climate data and then again with mitigation 

techniques to determine which techniques can have the greatest impact in the current and future 

climate. 

 

This process is then repeated with the hospital and residential building, however the thermal 

comfort criteria used for these buildings come from ASHRAE 55’s 80% acceptability level, where 

a maximum of 200 overheating hours is allowed for healthy patrons and a maximum of 40 

overheating hours is allowed for vulnerable patrons, such as young children, elderly people and/or 

people who are ill. This system is also integrated in the DesignBuilder software. The program is 

able to calculate the number of overheating hours over the year and this information is exported 

into an Excel worksheet where zones that surpass the number of overheating hours according to 

the acceptability limits are identified and are at risk of overheating.  

 

Once the buildings are assessed for overheating risks, various mitigation strategies are applied 

individually and/or in combination. Mitigation techniques that are applied include a 1.5 m 

overhang, a pair of 1.5 m sidefins, exterior shade roll, cool roofs and/or walls with an absorptivity 

of 20%, green walls and/or roofs, and night cooling. These strategies were selected based on the 

existing literature that proved to be effective in mitigating overheating risks (Baba, 2022). The 

addition of overhangs, sidefins and exterior shade rolls are mitigation strategies that make use of 

exterior shading to prevent heat from entering the building from the outside. Overhangs are 

horizontal shades that are installed at the top edge of windows. Sidefins are vertical shades that 

are installed on both sides of each window. Cool roofs and walls have a higher albedo, which 

provides a more reflective surface so that the building does not absorb as much heat as a 

conventional rooftop. On the other hand, green roofs and walls have the ability to absorb sunlight 

through its plantation to reduce the amount of heat transfer to the building. Finally, night cooling 

takes advantage of the cooler nighttime temperatures by leaving windows open at night to enable 
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natural ventilation. With the colder outdoor temperature, cooler air can enter the building from the 

bottom floor windows and push hotter air up and out of the upper floor windows. This enables the 

building to cool off at night and prevent heat from carrying over into the next day. If a singular 

technique is not enough to mitigate the overheating risks in all zones of the buildings, then 

techniques are combined to find a solution that works. Some combinations include overhangs with 

cool roofs, exterior shade roll with night cooling, etc. 

 

6.1. School Buildings 
 

The evaluation of classrooms was performed according to BB101 which follows CIBSE TM52 

requiring overheating hours to be less than or equal to 4.5% total hours over the summer period 

only (May to August), Monday to Friday, from 9 am to 4 pm. Classrooms that exceed this 

percentage are indicated in red in Table 33 to 37. 

 

6.1.2. Overheating and Mitigation for School 3 

 

School 3 does not appear to experience any major overheating issues in the current climate, except 

for the one classroom (Zone 26). As explained earlier, this is the case because this room has a 

different function than the rest of the classrooms in this building, has much larger windows than 

any of the other classrooms and appears to be built from different materials. As shown in Table 

33, only zone 26, experiences overheating in 2020 and continues to have the highest overheating 

risk in future years as shown in red below, while the other rooms remain below the acceptability 

limit as shown in green. By 2044, most of the rooms remain under 10%, which is more than double 

the acceptability rate, with 10 rooms reaching up to close to 40%. And finally, by 2090, most 

rooms will reach close to 20%, doubling the amount of summertime overheating hours again. 

Therefore, while this school did not experience major overheating in 2020, it will require some 

building modifications to ensure it does not overheat in the future.  

 

Table 34, 35 and 36 present the mitigation strategies applied, where the first column shows the 

zone being evaluated and the second column shows the percentage of overheating hours without 

mitigation measures applied for reference. Starting with the year 2020, using DesignBuilder, 

window overhangs projecting by 1.5 m were added above each window to reduce the amount of 

overheating. While this measure had a great effect on zone 26, the amount of overheating was still 

not reduced to below the acceptability limits. Thus, the next mitigation strategy used was the use 

of a cool roof. This cool roof had a solar absorptance of 20%, as compared to a conventional roof 

with 85%, which increased the albedo of the roof. This should have a great impact on all rooms, 

because the building is only one storey high. While it did have a positive effect on all rooms, it 

only reduced the percentage of summertime overheating of zone 26 by approximately 30%. Lastly, 

the rolling blind shades were switched to be installed on the outside of the building, which finally 

reduced the overheating risk in zone 26 to zero. From this calculation, a conclusion was drawn that 

this school’s overheating risk was considerably low, due to its small windows. While the exterior 

shade rolls had a major effect on the classrooms with very large windows, it had a smaller effect 

on the classrooms with smaller windows.  
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Table 33: Percentage of overheating hours over the summer period by zone for School 3 

  
2020 2044 2090 

Zone 01 0.13 8.04 19.16 

Zone 02 0.09 7.67 15.94 

Zone 03 0.1 9.1 16.81 

Zone 04 0.12 7.32 15.95 

Zone 05 0.13 6.85 15.67 

Zone 06 0.13 6.83 15.7 

Zone 07 0.12 6.64 15.33 

Zone 08 0.16 17.87 22.5 

Zone 09 0.12 6.23 15.19 

Zone 10 0.15 7.1 16.84 

Zone 12 0.13 6.57 14.65 

Zone 13 0.12 9.64 19.65 

Zone 15 0.15 6.9 16.86 

Zone 16 0.15 9.12 17.17 

Zone 19 0.25 36.35 31.71 

Zone 20 0.21 21.75 26.07 

Zone 21 0.98 25.04 33.49 

Zone 24 0.16 8.63 19.47 

Zone 25 0.1 12.5 19.05 

Zone 26 21.57 37.53 37.96 

Zone 28 0.1 18.14 23.29 

Zone 29 0.13 3.59 10.77 

Zone 30 0 9.51 16.33 

Zone 32 0.85 15.68 24.13 

Zone 33 0.15 12.58 21.27 

Zone 35 0.12 3.68 11.63 

Zone 36 2.06 15.54 27.93 

Zone 37 0.12 7.94 17.47 

Zone 38 0.15 6.55 16.19 
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Table 34: Overheating and individual mitigation measure applied to School 3 in 2020 

 

2020 

Overheating 

(%) 

Overhang 

(%) 

Cool Roof 

(%) 

Exterior 

Shade 

Rolls (%) 

Zone 01 0.13 0.13 0 0.13 

Zone 02 0.09 0.07 0 0.04 

Zone 03 0.1 0.09 0 0.06 

Zone 04 0.12 0.12 0 0.12 

Zone 05 0.13 0.12 0 0.12 

Zone 06 0.13 0.12 0 0.12 

Zone 07 0.12 0.12 0 0.1 

Zone 08 0.16 0.13 0.1 0.12 

Zone 09 0.12 0.1 0 0.1 

Zone 10 0.15 0.15 0.01 0.13 

Zone 12 0.13 0.12 0 0.12 

Zone 13 0.12 0.1 0 0.09 

Zone 15 0.15 0.13 0.03 0.13 

Zone 16 0.15 0.13 0.09 0.12 

Zone 19 0.25 0.16 0.13 0.12 

Zone 20 0.21 0.13 0.09 0.12 

Zone 21 0.98 0.19 0.13 0.13 

Zone 24 0.16 0.15 0.04 0.13 

Zone 25 0.1 0.03 0 0 

Zone 26 21.57 6.37 14.62 0 

Zone 28 0.1 0 0 0 

Zone 29 0.13 0.12 0.03 0.12 

Zone 30 0 0 0 0 

Zone 32 0.85 0 0 0 

Zone 33 0.15 0.13 0.1 0.12 

Zone 35 0.12 0.1 0 0.1 

Zone 36 2.06 0.22 0.21 0.12 

Zone 37 0.12 0.12 0 0.1 

Zone 38 0.15 0.13 0.01 0.13 

 

The above process for finding a mitigation strategy that worked to reduce the overheating hours 

below the acceptability level was repeated for 2044 and 2090, as shown in the Tables 35 and 36, 

respectively. However, in 2044, the mitigation strategy required more than the use of exterior 

shade rolls. It was found that a combination of exterior shade rolls, and the use of a cool roof was 

required to reduce the amount of overheating below the 4.5% threshold. And so, in terms of 

applicability of major renovations to mitigation current and future overheating, the use of exterior 

shade rolls should be installed as soon as possible, while the cool roof must be installed before 

2044.  
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Table 35: Overheating and mitigation measures applied to School 3 in 2044 

 

2044 

Overheatin

g (%) 

Overhang 

(%) 

Cool Roof 

(%) 

Exterior 

Shade 

Rolls (%) 

Cool Roof 

+ 

Overhang 

(%) 

Cool Roof 

+ Ext 

Shade Roll 

(%) 

Zone 01 8.04 5.58 0.56 3.75 0.2 0.13 

Zone 02 7.67 6.57 0.7 3.82 0.43 0.13 

Zone 03 9.1 7.86 1.3 5.15 1 0.32 

Zone 04 7.32 6.06 0.6 3.54 0.34 0.07 

Zone 05 6.85 5.49 0.43 3.24 0.25 0.04 

Zone 06 6.83 5.47 0.42 3.25 0.25 0.04 

Zone 07 6.64 5.49 0.39 3.27 0.31 0.04 

Zone 08 17.87 8.7 6.41 2.95 0.9 0.03 

Zone 09 6.23 4.56 0.48 2.31 0.17 0 

Zone 10 7.1 5.72 0.58 3.48 0.24 0.07 

Zone 12 6.57 4.52 0.41 2.34 0.13 0 

Zone 13 9.64 7.04 1.78 4.91 0.86 0.22 

Zone 15 6.9 5.27 0.55 3.66 0.25 0.08 

Zone 16 9.12 4.38 1.21 2.3 0.18 0 

Zone 19 36.35 29.26 24.13 4.71 12.53 0.32 

Zone 20 21.75 14.56 7.77 5.65 3.21 0.35 

Zone 21 25.04 12.57 11.34 4.63 3.87 0.38 

Zone 24 8.63 6.33 1.35 4.73 0.53 0.21 

Zone 25 12.5 5.81 1.77 2.72 0.18 0.04 

Zone 26 37.96 22.71 30.67 0.31 20.76 0.08 

Zone 28 18.14 6.93 5.89 3.07 0.66 0.07 

Zone 29 3.59 1.49 0.06 0.55 0 0 

Zone 30 9.51 1.36 2.4 0.04 0.56 0 

Zone 32 15.68 3.49 6.44 0.17 1.42 0 

Zone 33 12.58 10.49 3.73 1.89 2.41 0 

Zone 35 3.68 3.11 0.04 1.43 0 0 

Zone 36 15.54 10.54 5.98 2.58 2.79 0.03 

Zone 37 7.94 6.24 0.83 3.25 0.31 0.06 

Zone 38 6.55 5.11 0.52 2.65 0.21 0.01 

  

Based on the findings from 2044, employing exterior shade rolls and cool roof is deemed suitable 

for 93% of the rooms, including Zone 26, and will be used as a foundation for future development 

in 2090.The two rooms that will experience overheating in 2090, using the mitigation solution 

from 2044, are close to the threshold, but surpass it by less than 15%. Zones 20 and 21, which are 

classrooms that are adjacent to each other also experience more overheating than the other rooms 

due to their position. Zone 20 is one of the smallest classrooms with two small windows and Zone 
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21 is south facing with two openings that are south facing: one window and a set of double doors. 

Therefore, these two classrooms will receive the most direct sunlight during the summer, which 

explains the amount of overheating they experience. And so, the additional use of overhangs by 

2090 is required to eliminate the risk of overheating for all rooms. 

 
Figure 20: Plan view of School 3 

 

 

  

Zone 26 

(R 60) 

Zone 13 

(R 23) 

Zone 
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21 

(R 34) 

Zone 

20 

Zone 29 
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Table 36: Percentage of overheating hours when mitigation measures are applied to School 3 in 

2090 

 

2090 
Overheating 

(%) 

Cool Roof + Ext 

Shade Roll (%) 

Cool Roof + Overhang 

+ Ext Roll (%) 

Zone 01 19.16 3.47 3.32 

Zone 10 16.84 2.99 2.86 

Zone 12 14.65 2.3 2.15 

Zone 13 19.65 4.28 3.87 

Zone 15 16.86 2.96 2.81 

Zone 16 17.17 2.38 2.15 

Zone 19 31.71 3.97 3.52 

Zone 02 15.94 3.56 3.47 

Zone 20 26.07 4.64 3.93 

Zone 21 33.49 5.16 4.29 

Zone 24 19.47 4.01 3.55 

Zone 25 19.05 2.44 2.24 

Zone 26 37.53 2.44 1.75 

Zone 28 23.29 2.95 2.22 

Zone 29 10.77 1.59 1.15 

Zone 03 16.81 3.97 3.82 

Zone 30 16.33 1.11 0.88 

Zone 32 24.13 1.49 0.91 

Zone 33 21.27 2.64 2.38 

Zone 35 11.63 1.71 1.57 

Zone 36 27.93 3.76 2.99 

Zone 37 17.47 2.86 2.68 

Zone 38 16.19 2.67 2.55 

Zone 04 15.95 3.04 2.95 

Zone 05 15.67 2.85 2.69 

Zone 06 15.7 2.82 2.71 

Zone 07 15.33 2.92 2.83 

Zone 08 22.5 2.61 2.29 

Zone 09 15.19 2.33 2.2 

 

 

Overall, the risk of overheating at School 3 can be considered minimal and is potentially this way 

due to the small window-to-wall ratio of this building, and the lack of many south-facing windows. 

The addition of a cool roof would also be a great solution for this one-storey building, as it will be 

able to directly affect all classrooms. And finally, the mitigation solution for this building can be 

applied in steps, by first adding exterior shade rolls, then installing a cool roof and then window 

overhangs, to mitigate all overheating risk by 2090.  
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6.1.2. Overheating and Mitigation of School 4 

 

School 4 appears to have more overheating issues for the majority of the building in the current 

and future climate than School 3. As shown in the table below, all zones will experience an 

excessive number of overheating hours in 2020, 2044 and 2090. The zone with the highest 

percentage of overheating hours per year is indicated in red, which is room 212, located on the 

second floor of the original building, for all three years. 

 

Table 37: Percentage of overheating hours over the summer period by zone at School 4 

 

Block Zone 2020 2044 2090 

Block1 112 15.63 37.75 41.43 

Block1 113 23.11 51.37 56.1 

Block2 212 40.94 68.83 77.67 

Block2 215 25.25 64.82 72.59 

Block2 Zone 05 38.53 66.54 74.78 

Block2 Zone 06 39.29 67.14 75.98 

Block2 Zone 07 36.56 64.98 72.12 

Block2 Zone 09 39.57 67.09 76.25 

Block2 Zone 13 37.55 66.3 73.47 

Block2 Zone 15 39.75 67.4 76.42 

Block2 Zone 16 38.28 67.4 74.37 

Block2 Zone 17 38.38 67.3 74.67 

Block2 Zone 18 38.71 66.36 75.86 

Block2 Zone 19 39.91 67.92 76.67 

 

 

Compared to School 3, School 4 has a higher window-to-wall ratio and has two floors. It also has 

a large gymnasium and library and was built in phases. As mentioned in Chapter 2, it is possible 

that as buildings attempt to become more energy efficient, buildings may experience more 

overheating during the summertime. The rooms in Block 1 were part of the school extension in 

1990, while the rest of the school was built in 1953. And, as shown in the tables below, one 

mitigation measure is not enough to reduce overheating hours to below the thermal comfort 

threshold for all extreme years. Already in 2020, exterior shade rolls and a cool roof are required 

to ensure that all zones are below the 4.5% acceptability limit. Zones below this limit are shown 

in green. However, by 2044, this solution is no longer acceptable. However, the use of exterior 

shade rolls in combination with night cooling does mitigate the overheating risk and continues to 

work for most rooms by 2090. Only three rooms experience too much overheating, which can be 

fixed with the addition of a cool roof. Therefore, for this school, the addition of exterior roll shades 

is needed for all three extreme years. And then, the use of night cooling, especially in the second-

floor rooms, for security reasons, would also be effective for all three years and could be applied 

immediately. Night cooling is a great minimally obstructive strategy because it consists of a 

behavioral or system change without the installation of new, potentially costly equipment. And 

although night cooling was not tested as a solution in 2020, if this measure works in 2044, there is 

a high chance this measure is also effective in eliminating overheating in 2020. And so, night 
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cooling should be introduced immediately, if it is safe to do so, followed by the installation of 

exterior shade rolls and the eventual upgrade of the roof to a cool roof to mitigate overheating by 

2090.  

Table 38: Mitigation measures applied to School 4 in 2020 

 

2020 

Overheatin

g (%) 

Ext. Shade 

Roll (%) 

Overhang 

(%) 

Cool Roof 

(%) 

Cool Roof 

+ Ext. 

Shade Roll 

(%) 

Block1 112 15.63 0.52 5.26 14.05 0.51 

Block1 113 23.11 0.24 9.09 15.51 0.24 

Block2 212 40.94 6.36 21.29 31.6 0.1 

Block2 215 25.25 1.86 4.71 13.4 0.24 

Block2 Zone 05 38.53 3.65 16.33 27.18 0 

Block2 Zone 06 39.29 5.23 19.88 29.13 0 

Block2 Zone 07 36.56 5.26 13.99 25.03 0.03 

Block2 Zone 09 39.57 4.87 19.7 28.06 0 

Block2 Zone 13 37.55 5.32 16.1 26.4 0.03 

Block2 Zone 15 39.75 5.14 19.95 28.33 0 

Block2 Zone 16 38.28 5.42 16.59 27.18 0.04 

Block2 Zone 17 38.38 4.53 17.54 27.96 0 

Block2 Zone 18 38.71 4.43 19.09 27.15 0 

Block2 Zone 19 39.91 5.66 20.23 29.03 0.07 

 

Table 39: Mitigation measures applied to School 4 in 2044 

 

2044 

Overheating 

(%) 

Cool Roof + 

Ext Roll (%) 

Ext Roll + 

Night Cooling 

(%) 

Block1 112 37.75 12.71 0.14 

Block1 113 51.37 7.55 1.89 

Block2 212 68.83 21.58 0.56 

Block2 215 64.82 15.08 1.12 

Block2 Zone 05 66.54 23.3 0.81 

Block2 Zone 06 67.14 21.03 0.52 

Block2 Zone 07 64.98 21.9 0.72 

Block2 Zone 09 67.09 20.61 0.49 

Block2 Zone 13 66.3 22.12 0.73 

Block2 Zone 15 67.4 20.69 0.52 

Block2 Zone 16 67.4 23.55 0.74 

Block2 Zone 17 67.3 24.45 0.81 

Block2 Zone 18 66.36 20.65 0.49 

Block2 Zone 19 67.92 21.21 0.53 
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Table 40: Percentage of overheating hours with mitigation measures applied to School 4 in 2090 

 

2090 

Overheating 

(%) 

Ext. Shade Roll 

+ Night Cooling 

(%) 

Ext. Shade Roll 

+ Cool Roof + 

Night Cooling 

(%) 

Block1 112 41.43 1.77 1.37 

Block1 113 56.1 6.83 3.69 

Block2 212 77.67 3.66 1.53 

Block2 215 72.59 4.58 2.53 

Block2 Zone 05 74.78 4.09 1.73 

Block2 Zone 06 75.98 3.48 1.5 

Block2 Zone 07 72.12 3.43 1.45 

Block2 Zone 09 76.25 3.53 1.45 

Block2 Zone 13 73.47 3.68 1.58 

Block2 Zone 15 76.42 3.54 1.45 

Block2 Zone 16 74.37 3.69 1.55 

Block2 Zone 17 74.67 3.76 1.59 

Block2 Zone 18 75.86 3.37 1.28 

Block2 Zone 19 76.67 3.51 1.47 

 

 

In this case, there is no one mitigation strategy that is able to resolve overheating in all rooms. 

Therefore, a combination of mitigation measures is necessary to achieve comfortable indoor 

temperatures to meet the criteria set by CIBSE TM52 for Category 1 (sensitive) patrons. In 2020, 

the use of exterior shade rolls and either night cooling or cool roof will solve the overheating risk. 

In 2044, exterior shade rolls in combination with night cooling will be required to have all zones 

below the thermal comfort. In 2090, an exterior shade roll in combination with night cooling and 

cool roof will be necessary to avoid overheating. These strategies can be installed in phases as 

mentioned earlier to adapt the building as needed for all extreme years. 

 

6.2. Hospital Buildings 
 

As mentioned at the beginning of this chapter, the next two sections for hospital and residential 

buildings use ASHRAE 55’s 80% Acceptability Limit for the thermal comfort threshold. This 

threshold was also adapted by the BC Energy Step Code that limits overheating hours to a 

maximum of 200 hours for healthy patrons and 20 hours for vulnerable patrons (Baba et al., 2023). 

Zones that exceed these numbers are at risk of overheating. For hospitals, it is especially important 

to respect the 20-hour limit, seeing as most patients will fall under the vulnerable patrons’ 

description (Baba et al., 2023). 

 

In Figure 21 below, it is shown that all measured rooms are overheated in all extreme years 

according to the above-mentioned thermal comfort threshold. 
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Figure 21: Number of Overheating Hours in Hospital 1 

 

Therefore, mitigation techniques must be applied to assess what building modifications can be 

made to bring these overheating numbers below the thermal comfort threshold level. The results 

of these simulations are shown in the following table below. The numbers in red show the solutions 

that are not acceptable. In the year 2020 and 2044, exterior shading can resolve the overheating 

risk of this building. However, for the year 2090, exterior shade rolls in combination with cool 

walls are required to ensure thermal comfort for all patrons. 

 

Table 41: Number of Overheating Hours using Various Mitigation Techniques and 

Combinations for Hospital 1 

 

Year Room Overhan

g (hrs)  

Sidefins 

(hrs) 

Exterior 

Shade 

Roll  

(hrs) 

Cool 

Wall 

(hrs) 

Green 

Wall 

(hrs) 

Cool 

Wall      

& 

Sidefin 

(hrs) 

Cool 

Wall & 

Exterior 

Shade 

Roll 

(hrs) 

2020 R 501 11 2 0 16 25 0 0 

R 502 18 3 0 3 5 0 0 

R 504 6 3 0 0 3 0 0 

2044 R 501 33 10 0 28 65 0 0 

R 502 18 14 0 4 100 0 0 

R 504 15 11 0 2 34 0 0 

2090 R 501 132 98 35 136 153 57 17 

R 502 153 135 44 137 151 55 19 

R 504 127 121 41 118 124 53 17 

2020 2044 2090

501 44 54 221

502 73 116 320

504 57 48 289

0

50
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Number of Overheating Hours using ASHRAE 55 80% 
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The overheating risk assessment for this hospital only covers the three rooms that had indoor 

sensors where data was collected. When the buildings were selected for this study, indoor sensors 

were installed in the most problematic rooms, i.e. the rooms that were experiencing the greatest 

amount of overheating as per the surveys. Therefore, it is assumed that one of these three rooms 

will most likely experience the greatest amount of overheating for this building. From the table 

above, room 502 had the highest risk of overheating, and that all three rooms will experience great 

amounts of overheating in 2090. Although exterior shade rolls and sidefins independently proved 

effective in reducing overheating to below 20 hours in 2020 and 2044, a combination of exterior 

shade rolls and cool walls will be necessary for 2090. Therefore, it is advisable to install exterior 

shade rolls in the near future and to later upgrade the walls to use high albedo wall material or to 

install sidefins and later exchange them for exterior shade rolls and cool walls by 2090.  

 

6.3. Residential Buildings 
 

Similar to hospitals, residential buildings follow ASHRAE 55, but can also follow CIBSE TM59 

which is similar to CIBSE TM52 that was used for schools but is adapted for residential buildings. 

The acceptability limits for overheating hours remain at 200 hours for healthy patrons but is 40 

hours for vulnerable patrons (Baba et al., 2023). In this building, the overheating in 2020 is 

considerably moderate, being under the 200-hour limit, but over the 40-hour limit in some zones 

and becomes increasingly problematic in the years 2044 and 2090 as shown in the table below. 

Yellow indicates rooms that fall below the 200-hour limit and green indicates the rooms that fall 

under the 40-hour limit. 

 

Table 42: Overheating Hours for Residential 1 

 

  Orientation 2020 2044 2090 

First Floor - Apartment 2       

  Bedroom 2-1 North 0 0 54 

Bedroom 2-2 Southeast 75 453 492 

Living Room 2-1 Southeast 40 856 945 

  
 

        

Third Floor - Apartment 6       

  Bedroom 6-1 North 86 101 304 

Bedroom 6-2 Southeast 136 586 662 

Living Room 6-1 Southeast 31 741 886 

 

 

To mitigate these overheating hours, mitigation measures are necessary to reduce these numbers. 

In the table below, for apartment 2, it is shown that the use of exterior shade rolls reduces the 

number of overheating hours to below the limit of acceptability. However, for the other two 

extreme years, a combination of mitigation measures is required. For 2044, the use of a cool walls 

and exterior shade rolls in combination will reduce the number of overheating hours to zero. And, 

for 2090, the solution for 2044 plus the use of cool roofs will reduce the number of overheating 

hours to below 25 hours. The case is similar for apartment 6, however there is no solution to 
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mitigate overheating to below 20 hours in 2090. The suggested mitigation solution for this building 

is to install exterior shade rolls for the near and mid-future and later to change the roof and wall 

surfaces to use high albedo material to reduce overheating as much as possible by 2090. Night 

cooling may be an option to explore, as shown with the school buildings, however it is not ideal 

for residential buildings, due to noise pollution, air pollution and security reasons.  

 

Table 43: Number of Overheating Hours using Various Mitigation Techniques and 

Combinations in Apartment 2 

 

Zone Overha

ng (hrs)  

Sidefins 

(hrs) 

Exterior 

Shade 

Roll  

(hrs) 

Cool 

Wall 

(hrs) 

Green 

Wall 

(hrs) 

Cool Wall      

& Ext. 

Shade 

Roll (hrs) 

Cool Wall 

+ Roof & 

Ext. 

Shade 

Roll (hrs) 

Year 2020 

Bedroom 2-1 0 0 0 0 0 0 -- 

Bedroom 2-2 37 42 6 51 73 1 -- 

Living Room 

2-1 

1 7 0 3 36 0 -- 

Year 2044 

Bedroom 2-1 0 0 0 0 0 0 -- 

Bedroom 2-2 166 137 0 355 430 0 -- 

Living Room 

2-1 

563 443 4 600 937 0 -- 

Year 2090 

Bedroom 2-1 24 34 0 34 27 -- 0 

Bedroom 2-2 274 301 66 393 380 -- 24 

Living Room 

2-1 

617 685 138 693 655 -- 16 

 

Table 44: Number of Overheating Hours using Various Mitigation Techniques and 

Combinations in Apartment 6 

 

Zone  Overha

ng (hrs)  

Sidefins 

(hrs) 

Exterior 

Shade 

Roll  

(hrs) 

Cool 

Wall 

(hrs) 

Green 

Wall 

(hrs) 

Cool Wall      

& Ext. 

Shade 

Roll (hrs) 

Cool Wall 

+ Roof & 

Ext. Shade 

Roll (hrs) 

Year 2020 

Bedroom 6-1 46 59 0 64 87 0 -- 

Bedroom 6-2 84 107 23 116 131 8 -- 

Living Room 6-1 4 10 0 3 32 0 -- 

Year 2044 

Bedroom 6-1 77 81 0 79 116 0 -- 

Bedroom 6-2 339 291 13 450 556 1 -- 
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Living Room 6-1 484 379 70 433 733 0 -- 

Year 2090 

Bedroom 6-1 214 245 67 247 242 -- 6 

Bedroom 6-2 510 527 219 595 586 -- 78 

Living Room 6-1 745 771 441 746 734 -- 57 

 

6.4. Summary 
 

Throughout this process of assessing overheating risks among different types of buildings using 

both CIBSE TM52 for schools and ASHRAE 55 for hospitals and residential buildings, the 

following conclusions can be drawn: building orientation has a great effect on the amount of 

overheating that rooms may experience; external shading can be very effective in reducing 

overheating in buildings; the school buildings responded well to many types of mitigation 

strategies; the residential building experienced more overheating than expected despite having 

been recently renovated; mitigation solutions for four buildings were found; and the process for 

finding mitigation strategies was refined. 

 

First, with building orientation, the rooms with windows that had the most exposure to the south 

and direct sunlight will cause those rooms to experience the most overheating, as shown with 

Room 23 in School 3 and Room 502 in Hospital 1. In these cases, overhangs were effective in 

mitigating this overheating risk. Conversely, rooms that were facing east or west would require 

sidefins. However, of all external shading, the exterior shade rolls were the most effective for all 

buildings out of the three types of external shading applied in this study, because it worked for all 

room orientations. And these external shading devices were shown to effectively block direct 

sunlight and heat from entering the building.  

 

Next, it is worth noting that the overheating risk was seemingly easier to mitigate in schools than 

in the hospital and residential building. The difference between these two types of buildings is that 

the schools are only occupied during the daytime and are unoccupied at nighttime, while the 

hospital rooms and residential rooms are either occupied all day or have people sleeping in them 

at night. While schools and hospitals might be able to open the windows during the day when it 

gets too hot and/or adjust the shade rolls, houses that are unoccupied during the hottest time of the 

day are unable to be adjusted. And then, when the occupants come home at night to sleep, it is not 

always possible to use night cooling as a solution due to exterior noise and security concerns. 

Therefore, hospitals and residential buildings are restricted to using highly reflective surfaces, 

and/or to closing the shades before leaving the house to mitigate some overheating. It is also 

unexpected that the residential building performed relatively poorly for having been renovated in 

2018, experiencing similar overheating to the hospital which was initially built in the mid-1900s. 

Thus, it can be concluded that newer construction is not necessarily better adapted to the increasing 

temperatures and frequency of heatwaves. Newer building envelopes have better insulation, but in 

summertime, it shows to be detrimental in retaining too much heat. Another reason could be that 

the ceiling height and room sizes are much smaller in residential buildings, as compared to 

classrooms and hospital rooms.  
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And finally, a significant finding in optimizing the process of finding mitigation solutions for 

buildings is to build upon the solutions used in previous extreme years. With the hospital and 

residential building, each mitigation strategy was first applied to the building for each year and 

then combinations of mitigation techniques were used to find a solution for each year. For School 

3, the building was assessed one year at a time, first finding a solution for 2020 and then using that 

solution as a starting point to find a solution for overheating in 2044. In this way, less simulations 

need to be run and it is easier to create a clear path in the installation of these devices, as is shown 

in the Table 45 that summarizes the suggested mitigation strategies to be installed by that year in 

addition to what has been installed in the previous year. And so, for example, School 3 will require 

the installation of exterior shade rolls immediately to mitigate short-term overheating, then add a 

cool roof to resolve mid-term overheating and finally install overhangs to resolve long-term 

overheating. 

 

Given the findings from the overheating risk assessments which did not involve improvements to 

the building envelope, it is essential to consider that the existing buildings may require building 

envelope upgrades to meet energy requirements by 2044 and 2090. Upgrading the building 

envelope to code requirements is an essential step to enhance energy efficiency and optimize 

indoor thermal conditions and should be considered before evaluating the risk of overheating and 

application of mitigation strategies. These modifications can play a significant role in adapting the 

buildings to cope with increasing temperatures and the frequency of heatwaves, and their 

incorporation into the overall mitigation approach should be carefully evaluated.  

 

Table 45: Summary of mitigation strategies to install by year 

 

Building 2020 2044 2090 

School 3 exterior shade rolls cool roof overhangs 

School 4 exterior shade rolls night cooling cool roof 

Hospital 1 exterior shade roll or 

sidefins 

cool wall exchange or add 

sidefins for exterior 

shade roll 

Residential 1 exterior shade roll -- cool roof and cool 

wall 
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7. Conclusion 
 

7.1. Conclusion 

 
This thesis applied two different building calibration methodologies to assess and mitigate 

overheating risks in six existing buildings. The MOGA calibration method was chosen, due to its 

higher precision and ease of use in the simultaneous calibration of individual rooms within one 

building. Using this method allowed the calibration of 4 schools, 1 hospital and 1 residence. The 

application of this calibration method was validated with each case and the assessment and 

mitigation of overheating risks in these buildings was performed, closing a knowledge gap in the 

calibration of building models for the risk assessment in summertime overheating in Canada. 

Several mitigation techniques were proven sufficient in adapting these buildings for current and 

future climate, such as exterior roll shades, night cooling, exterior shading (overhangs or sidefins) 

and cool walls and/or roofs. 

 

7.2. Contributions 
 

Major contributions of the work presented in this paper include the validation and repeatability of 

two novel calibration techniques: Bayesian calibration and multi-objective genetic algorithm. The 

first school was calibrated using both Bayesian calibration and multi-objective genetic algorithm, 

which produced highly precise results with margins of error significantly smaller than existing 

calibration methods and standards. The use of both methods on one school also showed the 

differences in results and the advantages and disadvantages of each method. Having decided that 

MOGA was more suited for the task at hand, this procedure was refined and repeated over 5 other 

buildings, including 3 schools, 1 hospital and 1 residential building, which all yielded acceptable 

results with high level of precision as calculated using the performance metrics. Throughout the 

calibration process on these buildings, both the calibration methodology and evaluation criteria 

performed well and have good repeatability over many buildings of the same type and of different 

types. Other contributions include: finding the building parameters which have the most impact on 

the indoor temperature of the buildings; the calibration process of modifying building inputs, as 

shown in Table 28; using future weather data instead of typical weather data to assess buildings 

for overheating; using mitigation strategies in building simulation to predict their impact on 

reducing overheating hours; and providing a timeline to apply multiple mitigation strategies in 

combination over time to mitigate overheating risks. 

 

7.3. Future Work 
 

These methods should be used to create user-friendly programs, where inputs can be minimized to 

maximize productivity and stability of the code. While some moderate to extensive background in 

building science, computer-aided modeling and reading program code is required to make use of 

both calibration methods explored in this study, it would be interesting to create a user interface in 

which a client with limited knowledge would be able to input a small dataset concerning a 

building’s parameters and measured data to produce a calibrated model of their buildings. It would 

also be interesting to connect existing thermostats to a program to record indoor temperature as an 

added source of information to continuously calibrate a building model from measured data. 
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9. Appendices 
 

 
Figure 22: Floorplan of first floor of School 2 

                          

Figure 23: Floorplan of second floor of School 2 
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Figure 24: Simulation Options for Residential 1 in DesignBuilder 
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Figure 25: Snapshot of DesignBuilder for Green Roof Properties used for Hospital 1 
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Figure 26: Snapshot from DesignBuilder of Simulation Options from School 3 
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Figure 27: Axonometric view of first floor of School 4 in DesignBuilder 

 
Figure 28: Axonometric view of second floor of School 4 in DesignBuilder 
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Figure 29: Plan view of first floor of School 4 
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Figure 30: Plan view of second floor of School 4 
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Figure 31: Axonometric Views of School 3 in DesignBuilder 

 

 

 
Figure 32: Plan view of School 3 with the measured rooms identified 
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Figure 34: Room 212 before (left) and after (right) ceiling construction from School 4 

 

 

Figure 33: Photos of Room 112 from School 4 


