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Abstract

Force Estimation and Shape Reconstruction of Soft Robots in Contact with Fluid Flow:

theory and experiment

Reza Khoshbakht

This thesis explores two significant aspects of robotic-assisted surgeries. The first part

focuses on a procedure called Robotic Catheter Ablation, which utilizes robots to treat a

heart condition known as Atrial fibrillation. The procedure aims to determine the contact

force at the robot’s tip without the direct use of a force sensor, ensuring proper contact

with the patient’s heart. Recent findings have highlighted the importance of considering

blood flow within the heart, as it can significantly impact the procedure’s success, often

neglected in similar studies. This research examines the experimental effects of blood flow

on the movement of soft robots and demonstrates how disregarding this effect can lead to

less effective treatments. Simultaneously, this study focuses on enhancing soft robots, in-

troducing a method for determining their shape when subjected to varying forces, similar

to the way blood flow affects them. This is accomplished through mathematical modeling,

employing Euler-Bernoulli beam theory and cubic Bézier curves. The model’s accuracy is

confirmed through finite element method testing. Additionally, the research goes beyond

shape prediction by including an approach known as Bayesian neural network (BNN). This

BNN significantly improves our ability to update information rapidly, valuable for various

real-time applications. In the final part of this research, applying the reshaped dataset

from the shape reconstruction phase, it is demonstrated that the results obtained from the
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mathematical model can estimate forces using a new neural network, validated through ex-

perimentation. The proposed model holds potential for use in different fields of soft robotics,

crucial for surgical procedures.
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Chapter 1

Introduction

1.1 Background

1.1.1 Minimally Invasive Surgery

Minimally invasive surgery (MIS) is a surgical approach that aims to minimize patient trauma

and promote faster recovery by using small incisions and specialized instruments (see Figure

1.1). This technique has gained significant attention and popularity in various surgical fields

due to its numerous advantages over traditional open surgery. MIS offers reduced postop-

erative pain, shorter hospital stays, decreased blood loss, minimized potential in-hospital

contamination, and improved cosmetic outcomes [46]. Thanks to its numerous benefits, it

proves highly valuable across a diverse array of surgical procedures. Moreover, these ad-

vancements are progressively asserting their dominance in various fields incrementally. As

an illustrative example, Figure 1.2 showcases the substantial rise in the utilization of MIS

(represented by the green line), replacing traditional open surgery (indicated by the blue

line) for Appendectomy procedures, which involves the removal of an inflamed or infected

appendix in the state of Maryland, U.S [61].
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Figure 1.1: A comparison of incision sizes between traditional open heart surgery (top) and Mini-
mally Invasive Surgery (bottom) [2]

MIS has modernized the field of cardiovascular disease treatments, offering improved

diagnostic imaging techniques [79], blood-resistant surgical glues [69], minimally invasive

surgical approaches [6], digital medicine applications [132], and the use of shape memory

alloys in surgical devices [108]. These advancements in MIS have significantly contributed to

the diagnosis, treatment, and management of cardiovascular diseases, leading to improved

patient treatment outcomes. In the field of plastic surgery, MIS techniques have been widely

used for procedures such as double eyelid surgery. A study comparing different double eyelid

surgical techniques found that the minimally invasive 3-point subcutaneous tunnel method

resulted in milder postoperative swelling and congestion compared to other approaches [130].

This highlights the benefits of MIS in achieving desired aesthetic outcomes with minimal

tissue trauma. MIS has also made significant advancements in the field of hernia repair.

Robotic techniques have been developed to address complex abdominal wall hernias, offering
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Figure 1.2: The remarkable surge in Minimally Invasive Surgery and its gradual substitution for
Open Procedures [61].

a robust repair with minimal complications. Robotic hernia repair has shown comparable

results to standard laparoscopy, with some studies even demonstrating improved outcomes

such as shorter hospital stays [38]. In the field of spine surgery, MIS techniques have been

developed to minimize surgical morbidity. Minimally invasive spine surgery (MISS) aims

to reduce operative time, blood loss, tissue handling, and neural structure manipulation,

resulting in improved patient outcomes. Studies have shown that the invasiveness of spine

surgery is correlated with operative time and blood loss, highlighting the importance of

minimizing these factors [23].

The application of MIS techniques has also expanded to other areas, such as liver surgery

and implant therapy. Robotic liver surgery has experienced significant growth, offering
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additional technical advantages over traditional laparoscopic surgery [10]. Minimally in-

vasive implant therapy has shown favorable clinical effects and aesthetic outcomes in the

treatment of dentition defects [73]. It also has transformed orthopedics with various ap-

plications, leading to improved techniques and patient outcomes. Key applications include

Endoscopic Extreme Transforaminal Lumbar Interbody Fusion (eXTLIF) [41], Minimally

Invasive Plate Osteosynthesis (MIPO) for supracondylar humerus fractures [84], Minimally

Invasive Transforaminal Lumbar Interbody Fusion (MI-TLIF) for degenerative spine disease

[29], SuperPath Technique for Total Hip Arthroplasty (THA) which resulted in smaller scars

and decreased the risk of infection [36], and Minimally Invasive Surgery for Hallux Valgus

as examples of modified surgical methods that improve clinical efficacy [18, 49].

Overall, MIS has revolutionized various surgical fields by offering less invasive approaches

with numerous benefits for patients. The advancements in robotic technology have further

enhanced the capabilities of MIS, allowing for precise and dexterous surgical interventions.

However, it is important to continue research and development in order to optimize and

expand the applications of MIS techniques.

1.1.2 Soft robots in Minimally Invasive Surgeries

A soft robot is a class of robotic systems constructed using flexible and compliant mate-

rials, such as elastomers or soft plastics, in contrast to conventional rigid robots. These

soft robots possess the ability to bend, deform, and adapt to their surroundings, offering

enhanced versatility in a wide range of applications. Drawing inspiration from the flexibility

and dexterity observed in biological organisms, soft robots find utility in various domains,

including medical devices, industrial automation, search and rescue missions, and explo-

ration in challenging and unstructured environments. Due to these inherent advantages, soft

robots are exceptionally well-suited for application in minimally invasive surgeries. Their

4



flexible and adaptable nature allows them to navigate through confined spaces and delicate

anatomical structures with precision, making them valuable tools for surgeons during pro-

cedures that require minimal incisions. The types of soft robots used in MIS can be broadly

categorized into the following:

1. Soft Endoscopes:

Figure 1.3: Soft Self propelled endoscopic robot [3]

A soft endoscope is a type of robotic device that is specifically designed for endoscopic

applications. It is typically composed of soft deformable materials and is used for

minimally invasive procedures such as medical imaging and surgery. Soft endoscopes

are lightweight and can be miniaturized, making them ideal for navigating through

narrow and complex anatomical structures. They often have a flexible backbone that

can be manipulated remotely using tendons such as tendon-driven soft catheters or

other mechanisms. The flexibility of soft endoscopes allows them to conform to the

shape of the body and navigate through tight spaces, providing a high degree of dex-

terity. However, the flexibility of soft endoscopes also poses challenges in terms of

modeling and control, especially when closed-loop control is required. The modeling

of soft endoscopes can be done theoretically by modeling the behavior of the backbone

[59].

5



2. Continuum Robots:

Figure 1.4: 6 Degree of freedom force sensing catheter as a type of soft continuum robot [1]

Continuum robot is a type of robotic device that is characterized by its lack of rigid

linkages. Instead of rigid links and joints, continuum robots have a continuous back-

bone that is connected by flexible components [74]. This allows continuum robots

to have a wide range of motion, shape adaptability, and compliance. The lack of

rigid linkages in continuum robots makes them more suitable for tasks that require

gentle stretching and bending of the robot’s body, such as manipulation in chaotic

environments or delicate surgical procedures. Continuum robots can be driven by var-

ious mechanisms, such as wires or cables, and can be controlled remotely [63]. The

modeling of continuum robots can be challenging due to their high flexibility and the

complex deformations they can undergo in response to external forces and positional

constraints [27]. The main difference between a soft endoscope and a continuum robot

lies in their intended applications and the specific design features that enable them to

perform those applications. Soft endoscopes are designed for endoscopic procedures

and are characterized by their lightweight, miniaturized, and flexible nature. Con-

tinuum robots, on the other hand, have a wide range of motion, shape adaptability,
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and compliance, making them suitable for tasks that require gentle manipulation and

navigation in complex environments

3. Soft Graspers and Manipulators:

Figure 1.5: Laparoscopic soft grasper designed for pancreatic surgery, aiding in delicate tissue
manipulation and hemorrhage control. [4]

Soft graspers and manipulators are a type of soft robotic devices that are designed to

mimic the flexibility and adaptability of natural organisms. These devices are made of

soft materials and flexible components, allowing them to deform and conform to their

environment and are typically driven by pneumatic or fluidic actuators, which enable

them to perform various tasks with high dexterity and precision [124]. In the context of

minimally invasive surgeries, they offer several advantages over traditional rigid robotic

tools. Soft manipulators can adapt their shapes to cluttered environments, making

them well-suited for surgical procedures that require precise and intricate movements

[105]. Soft graspers are particularly useful for handling fragile objects or delicate

tissues, as their compliant nature reduces the risk of damage. Soft manipulators can

also be integrated with imaging systems to provide real-time feedback and enhance

surgical precision [11].
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4. Soft Capsule Robots:

Figure 1.6: Components of elastomer coated soft capsule robot [116]

The application of soft capsule robots in minimally invasive surgery offers several ad-

vantages. Firstly, their compliance and flexibility enable them to adapt to the de-

formable nature of soft tissues, allowing for more precise and controlled movements

[37], reducing the risk of injury to surrounding tissues [120]. Additionally, soft robots

can navigate through narrow and restricted spaces, such as blood vessels or the gas-

trointestinal tract, which are difficult to access with conventional surgical instruments

[121]. This capability opens up new possibilities for performing procedures in hard-to-

reach areas of the body [65]. Soft capsule robots also have the potential to improve the

accuracy and effectiveness of surgical interventions. They can be equipped with sen-

sors and imaging technologies to provide real-time feedback and enhance the surgeon’s

perception of the surgical site [121].

5. Soft Sensors:

Soft Sensors play a crucial role in providing proprioceptive feedback and shape-sensing

capabilities to soft robots used in minimally invasive surgeries. These sensors en-

able safe interaction with the human body, precise control of robot-tissue interaction,

and accurate measurement of deformation and external forces [33, 121]. Their valu-

able force and shape control capabilities render them exceptionally useful for real-time
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control during high-sensitive surgeries. These robots operate through diverse sensing

techniques like stretchable fiber Bragg grating (FBG) [54] and capacitive sensing [133],

enhancing their suitability for precise surgical interventions.

6. Biohybrid Soft Robots:

Figure 1.7: Biohybrid Soft Robot navigating for drug delivery against bacterial infections [104]

Biohybrid soft robots are a type of soft robots that incorporate biological components or

materials into their design. These robots combine the advantages of soft robotics, such

as flexibility and compliance, with the unique properties of biological materials, such

as self-healing and responsiveness [14]. The integration of biological components allows

biohybrid soft robots to mimic the complexity and functionality of living organisms,

enabling them to perform tasks with greater adaptability and versatility [127]. One

of the key advantages of these robots is their ability to access confined and hard-to-

reach spaces in the human body non-invasively [35]. This makes them well-suited for

tasks such as targeted drug delivery, where precise and localized delivery of therapeutic

agents is required [127]. Biohybrid soft robots can navigate through narrow channels

and maneuver in complex environments, allowing them to reach specific target sites

with minimal trauma to surrounding tissues [110]. They can also be used for organ-on-

a-chip applications, tissue engineering, and cell manipulation [127]. Additionally, the
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adaptability of biohybrid soft robot control is crucial in minimally invasive surgeries,

as the task environment conditions can vary dynamically, requiring the robot to adjust

its motion and performance accordingly [35].

It should be noted that some specific models of catheters can be considered as a type

of soft continuum robots, as they share similar characteristics such as flexibility and the

ability to navigate through the body [77]. However, not all catheters can be classified as soft

continuum robots. The term ”soft continuum robot” specifically refers to a type of robot

that is composed of soft materials and can undergo continuous deformation to adapt to its

environment [20].

1.1.3 Robotic-Assisted Surgeries

Robotic-assisted surgeries, also known as robotic surgeries, are medical procedures where

a robotic system assists the surgeon in performing surgical tasks with enhanced precision

and control. These robotic systems are designed to work collaboratively with the surgeon to

provide improved dexterity, stability, and visualization during the surgery. In robotic-assisted

surgeries, the surgeon remains in full control of the procedure and operates the robotic

system from a console. The console typically offers a 3D visualization of the surgical site

and allows the surgeon to manipulate surgical instruments using hand and foot controls. The

robotic system translates the surgeon’s movements into precise actions, making it possible

to perform intricate maneuvers and complex procedures with greater accuracy. Robotic-

assisted surgeries are often performed in minimally invasive surgeries, such as laparoscopy

or endoscopy.

The robotic system’s smaller instruments can be inserted into the patient’s body through

tiny incisions or natural body openings, reducing the need for larger incisions required in

traditional open surgeries. The da Vinci Surgical System is one of the most well-known
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Figure 1.8: Configuration and components of a Robotic-Assisted Surgical setup, featuring the
DaVinci Surgical System in an operating room [@Intuitive Surgical, Inc.].

examples of a robotic-assisted surgical system, widely used in various medical specialties,

including urology, gynecology, general surgery, and cardiac surgery. Figure 1.8 illustrate the

elements of a Da Vinci system used in robotic-assisted surgeries. Depending on the specific

surgical procedure required, the tools attached to the robotic arms are customized. Through

the patient’s cart and hand controls, the surgeon can conduct the intervention without direct

physical contact with the patient’s body. These Surgical Systems offer several advantages

over traditional surgery. The high-definition vision system provides a clear and magnified
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view of the surgical site, allowing for precise and accurate movements [106]. The robotic

arms have a greater range of motion and can perform complex maneuvers that may be

difficult for human hands. The system also filters out hand tremors (i.e. shaking), further

enhancing surgical precision [26]. Additionally, the system allows for a dual-console mode,

which enables real-time teaching, surgical collaboration, and telementoring [106].

The success of a robotic surgery operation depends on various factors, and a combination

of these elements contributes to achieving positive outcomes. Some of the key factors are the

surgeon’s skill and experience, teamwork, and effective communication among the surgical

team. The engineering contribution to this objective is focused on enhancing robotic systems

and advancing technology. The quality and capabilities of the robotic surgical system used

play a significant role. State-of-the-art robotic platforms with advanced features enable

precise movements and enhanced visualization, leading to better surgical outcomes.

1.1.4 Clinical Need

As previously mentioned, the surgical team requires continuous monitoring of vital signs and

procedure advancement during surgery. Currently, this objective is achieved using a range

of costly force sensors and high-tech medical imaging equipment, which have their own

limitations. The need becomes even more critical when employing soft-robots for minimally

invasive medical interventions in challenging and inaccessible fluid-filled confined areas, such

as vessels, tubes, channels, and cavities, which are filled with stagnant or flowing biological

fluids [95]. Patient safety remains an ongoing and critical concern, necessitating careful

control over various factors to reduce the risk of unintended tissue damage and improve

precision in medical procedures. This research specifically targets one crucial element that

plays a significant role in meeting this imperative need for enhanced healthcare practices. The

effective control and handling of robot arms and soft robots depend on several factors, with
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one crucial aspect being real-time tracking of the robot’s position within the patient’s body.

Developing a precise and cost-effective technique for this purpose can enhance accessibility

to these procedures and reduce reliance on expensive medical imaging equipment, while also

lowering X-ray exposure for patients. By achieving better accuracy in guiding these robotic

systems without the need for frequent X-ray scans, patients can experience safer and more

efficient medical interventions.

Another critical consideration during robot-assisted surgeries involves regulating the ap-

plied force to the target area to avoid accidental perforation or puncture of organs and

blood vessels. By maintaining precise control over the force exerted, medical professionals

can perform procedures more efficiently and effectively, thereby ensuring enhanced patient

safety and optimal surgical outcomes [125]. In conclusion, the development of a universally

accessible comprehensive, precise, and fast model that empowers surgical teams to control

crucial factors during procedures remains a significant challenge and is highly demanded

in the field of medicine. Meeting this pressing need would revolutionize surgical practices,

ensuring greater affordability, efficiency, and patient safety. Furthermore, achieving this goal

could potentially unlock a wide array of minimally invasive interventional procedures that

are currently beyond the reach of existing techniques, thereby empowering robotic systems

to revolutionize medical practices and broaden the scope of treatments available to patients

[65]. Creating a precise model is a step towards meeting the requirements; however, it falls

short of fulfilling the real-time feedback needs due to its complexity and extensive calcu-

lations. To accelerate response times and achieve feasible solutions, the incorporation of

additional tools becomes necessary, especially through the application of advanced neural

network algorithms.
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1.1.5 Neural Network

A neural network is a type of artificial intelligence model inspired by the structure and

functioning of the human brain (Figure 1.9, right) which is a computational system composed

of interconnected nodes (artificial neurons) organized in layers. These nodes work together

to process and learn from input data, enabling the network to recognize patterns, make

decisions, and perform various tasks [129].

Figure 1.9: A simple artificial neuron (a) and its biological inspiration (b) depicted alongside a
schematic of a basic neural network (c)

The basic building block of a neural network is an artificial neuron, also known as a

perceptron [28]. Each neuron takes one or more input values, applies weights to them,

and then passes the weighted sum through an activation function. The activation function

introduces non-linearity to the network, allowing it to learn complex patterns and make

non-linear transformations on the input data.

As depicted Figure 1.9, neural networks consist of multiple layers, typically including:

1. Input Layer: The initial layer receives raw input data, which could be images, text,
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numerical values, or any other type of information.

2. Hidden Layers: Intermediate layers between the input and output layers. They

process and transform the input data through their interconnected neurons.

3. Output Layer: The final layer produces the network’s predictions or outputs based

on the processed information from the hidden layers.

During the training process, the neural network learns from labeled data by adjusting

its internal weights and biases to minimize the difference between predicted outputs and the

actual targets. This optimization process is often accomplished using gradient descent and

backpropagation algorithms, where the network iteratively updates its parameters to reduce

the error between predictions and ground truth.

Neural networks have shown exceptional performance in a wide range of tasks, such

as image and speech recognition, natural language processing, machine translation, play-

ing games, medical diagnosis, and more. Their ability to automatically learn features and

patterns from data makes them powerful tools for solving complex problems and handling

large-scale, high-dimensional datasets. Different types of neural networks have been devel-

oped to tackle specific tasks more efficiently. Some popular variations include feedforward

neural networks, recurrent neural networks (RNNs), convolutional neural networks (CNNs),

and transformer networks, each optimized for different types of data and learning objectives

[8].

1.1.6 Neural Network in MIS

Neural networks have demonstrated great potential in diverse applications within the field of

minimally invasive surgery. The integration of artificial intelligence (AI) and computer vision

technologies into minimally invasive surgery has gained traction. Vision-based detection of

surgical instruments has become popular, enabling more precise guidance of surgical robots
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and imaging technology [68]. Computer vision-based models, such as object segmentation,

detection, and tracking, aid surgeons during surgery and enhance the overall outcomes of

minimally invasive procedures [100]. Convolutional neural networks (CNNs) have demon-

strated robust performance in instrument recognition and pose estimation [68].

In gynecology, augmented reality (AR) technology has been integrated into the operating

room, facilitating predictions of survival after surgery for cervical cancer models, and sup-

porting computer-assisted or robotic platforms to bridge the gap between open and minimally

invasive surgical skills [13]. Recurrent neural networks (RNNs) have been employed to esti-

mate forces in robotic tasks, generate force distribution maps, and detect contact transients

[40]. Super-resolution techniques have been investigated to enhance perceived resolution in

robotic-assisted minimally invasive surgery’s foveal field-of-view [72]. Additionally, active

vision-based motion compensation schemes have been proposed to address issues related to

physiological motion during minimally invasive cardiac surgery [96]. Overall, neural networks

have demonstrated promise in diverse applications within minimally invasive surgery, such

as reducing adhesions, assisting with instrument detection and tracking, enhancing visual

perception, estimating forces, reconstructing the shape, and compensating for physiological

motion.

1.1.7 Case study: Ablation procedure

The initial focus of this research revolves around addressing a fundamentally neglected issue

in soft robot modeling, much like Hamlet’s famous phrase: to consider or not to consider

blood flow effects, that is the question. To explore this inquiry, a comprehensive case study

is conducted, examining catheterization during ablation procedures to assess the impact of

blood flow on catheter contact force. As such, it becomes essential to introduce and elucidate

the problem at hand before diving into the experimental details in Chapter 2. By doing so,
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a clear context is established, laying the groundwork for the subsequent investigation.

Robotic Catheter Ablation is a teleoperated robotic procedure. The robotic system

for this procedure has a leader-follower configuration, thus lacking direct human touch on

organs and instruments. However, the sense of touch is replaced by force sensor feedback

that enables surgeons to monitor the contact force between the catheter and the patient’s

heart. Due to the high cost of sensorized cardiac catheters, sensor-free force estimation

techniques have gained momentum in the state of the art. These techniques, for the most

part, neglect the effects of blood flow in the left atrium, while recent clinical evidence suggests

that blood flow disturbance can affect the stability and safety of catheter tip-tissue contact.

This study was aimed at identifying the mechanisms by which blood flow may compromise

tip-tissue contact force and quantifying such effects systematically. To this end, first utilizing

a closed-loop flow channel, we examined the effects of blood (represented by water) flow on

the magnitude of the tip contact force at physiological and pathological flow rates in 3D-

printed pulmonary veins. Also, five configurations of an ablation catheter were considered

to investigate the combined effects of catheter deflection and positioning of the catheter tip.

Our results show that the tip contact force can greatly change because of the fluid flow, e.g.,

up to 37% when the catheter is close to the left inferior pulmonary vein. Also, even in the

absence of blood flow, the maximum contact force was observed to reduce by increasing the

catheter deflection. Diminishing tip contact force was exacerbated at higher flow rates. This

study provides a quantitative mechanical explanation of why robotic ablation may result in

sub-optimal right inferior pulmonary vein isolation.

Background

Catheter ablation therapy is considered an effective treatment for cardiac atrial fibrillation

(AFib). AFib is one the most common types of cardiac arrhythmia in which a sinoatrial
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node fails to produce regular electrical impulses. This causes the heart to quiver or fibrillate

instead of beating routinely, which as a result, considerably increases the risk of stroke. AFib

is linked to several cardiovascular and cerebrovascular issues, and its growing trend among

people will pose extra hospitalization costs and extra public health burdens. If the age-and

sex-specific prevalence remains stable during the next decades, the prevalence of AFib is

estimated to double by 2060 in the European Union [66]. A total of 3.046 million new cases

of AFib worldwide were registered in the Global Health Database in 2017, which is a 31%

increase since 1997. On current projections, there will be more than a 60% increase in the

number of AFib cases by 2050 [76].

AFib intervention is carried out by a surgeon manually or through a robotic-assisted

procedure called Robotic Catheter Ablation (RCA). Figure 1.10(a) shows a typical RCA

system, and Fig. 1.10.(b) schematically shows a cardiac ablation catheter in contact with

atrial tissue. A catheter is essentially a long slender tube, which is inserted into one of the

main veins from the shoulder, neck, or groin and is guided to reach the right atrium. Through

a small transseptal puncture, the catheter reaches the left atrium (LA). The surgeon then

uses the catheter tip to make non-conducting scars (called lesions) on the LA wall using

Radiofrequency (RFA) or Cryo-balloon (CRA) ablation technique. The success of RFA is

directly linked to the formation of effective lesions, which itself is dependent on the catheter-

tissue contact force (CF). Ample clinical evidence suggested a CF between 0.1 to 0.5 N

minimizes the risk of AFib recurrence [53]. CFs as high as 0.6 N may cause steam pop and

the risk of stroke [81], whereas higher forces may cause LA puncture. On the other hand,

CFs below 0.1 N do not make proper lesions to treat AFib. They also put contact stability at

risk by reducing the static friction threshold on the catheter tip-tissue contact. This means

an increase in the possibility of catheter slippage from the LA wall. Thus, monitoring the

CF continuously during ablation is pivotal for the safety and stability of contact.
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Figure 1.10: (a) A representative robot-assisted cardiac intervention system (CorPathTMGRX
robotic PCI system, courtesy of Corindus Inc., Waltham, MA, USA), and (b) cardiac ablation
catheter in contact with atrial tissue.
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RCA is a more attractive option compared to manual intervention since it reduces the

procedure duration and minimizes the operator’s fluoroscopy exposure [126]. However, set-

ting up an RCA is a challenging task. In addition, no haptic feedback is provided to the

surgeon, and force controlling over the LA wall is indirectly implemented by the robot arm.

This is considered as the main limitation of RCA. Thus, catheters with CF sensing tech-

nology have been developed. Electromagnetic or fiber optic sensors installed on the tip of

catheters continuously give force feedback to help the surgeon to apply sufficient force for

ablation. Examples of such technologies are TactiCath™ (Abbot Vascular, CA, US), and

Carto® SmartTouch™ (Biosense Webster, CA, US). Although catheters with integrated

force sensing technology successfully function in clinical trials, they are not pervasive due to

their prohibitive costs, low accuracy of lateral forces sensing [25], and vulnerability to noise

due to a chaotic workspace [91]. Moreover, they are not associated with an increased success

rate nor a decreased complication rate in ablation [94]. Recently, Torkaman et al. have

proposed a low-cost highly flexible force sensor embeddable to the catheter’s body [118];

however, similar to other sensor-based solutions, it adds to the complexity of rather simple

catheters and hence to the cost [19, 56].

1.2 Literature review

1.2.1 Ablation studies review

Toward developing sensor-free force estimation models, the shape of catheters was used in

[17, 55, 58, 62, 101] to estimate the CF. However, virtually all previous sensor-free force

estimation techniques neglect the effects of blood flow on the catheter in the LA. Only

recently, Hao et al. [53] developed a pseudo-rigid-body model to examine the contact stability

and contact safety of a robotic catheter under blood flow disturbances. The blood flow

20



was assumed to be of uniform velocity, and its effect was modeled via a normal pressure

drag. They found that blood flow disturbances can greatly affect the stability and safety

of the contact between the robotic catheter and tissue. However, their results are yet to be

confirmed by experimental studies.

Since the blood flow in the LA is complex, including vortical structures [45], mathematical

models may not be able to fully capture its effects. Thus, experimental studies are in

high demand. Franco et al. [43] performed ex-vivo experiments using TactiCath™ and

SmartTouch™ catheters in contact with porcine left ventricle portions fixed in a saline bath.

They examined the effects of irrigation rate (2-30 ml/min) on the CF before and during

ablation. They found that increasing the irrigation rate before ablation led to a slight but

significant reduction in CF.

1.2.2 Soft-robot modeling review

In surgical interventions where the trajectory of a flexible robot holds significance, such as

angioplasty to track the position of guide wires and catheters [39], endoscopic procedures

[26], respirometry stent placement [113], or Transoral surgeries [109], understanding the

shape becomes crucial. On the other hand, in certain applications, such as ablation [87] and

pathology sampling [123], the magnitude of applied force assumes paramount importance,

leading to the emergence of dedicated force estimation methods. In order to acquire infor-

mation on the shape or force, different methods have been developed in the literature, which

are categorized as illustrated in Figure 1.11. The details about these methods are given in

the following sections.
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Figure 1.11: Various methods for estimating force or shape of soft robots in minimally invasive
surgery applications.
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1.2.3 Shape reconstruction

The first branch of methods have been developed to obtain the shape of a soft robot dur-

ing its insertion into the patient’s body. These methods can be classified into two main

categories: direct methods and indirect methods. Direct or image-based methods use imag-

ing techniques, such as fluoroscopy, endoscopy, and ultrasound and reconstruct the shape

by processing the acquired images. The advantages of these methods include their abil-

ity to provide straightforward and direct visualization, as well as real-time measurements.

Nonetheless, they have several drawbacks, including high cost, bulkiness, low-speed data

acquisition, low signal-to-noise ratio and above all, prolonged patient exposure to radiation

[42, 99]. As a consequence of these drawbacks, indirect methods have been developed to

reconstruct the shape without the need for direct visualization.

Sensors have widely been utilized to indirectly reconstruct the shape of soft robots. For

example, optical sensors were used to reconstruct the shape with a change in the light source

[44]. Since they can be made flexible, in miniature size, and immune to electromagnetic

interference, they are a good fit for soft robot applications. They can be used to detect

curvature, torsion, and control with feedback in real-time [128, 134]. Position sensors (like

electromagnetic or inertial measurement units) can measure the relative position and orien-

tation from a fixed or reference point. Real-time tracking, freedom from the line of sight,

and accuracy allow tracking the shape of a soft robot during colonoscopy [5]. Guo et al.

[50] fitted the variation of a soft robot measured by electromagnetic sensors to a quadratic

Bézier curve to reconstruct the shape. Position sensors can also be used in sub-millimeter

arteries with impaired flow conditions to use waveform of the actuation signal to optimize

the navigation performance [88].
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Magnetic sensors possess desirable characteristics such as compactness, affordability, de-

formability, high sensitivity, and ease of integration into systems; however, the use of per-

manent magnets creates uneven magnetic fields, posing challenges in their control. These

robots require large and complex electromagnetic setups for power and control, limiting their

scalability. Additionally, their control is hindered by the presence of nearby metal objects, as

the robots are attracted to them [122]. Stretchable sensors are used to reconstruct the soft-

robot shape by sensing deformation through capacitance changes. The shape reconstruction

process is performed by acquiring the strain or positional information from these sensors.

Due to their high stretchability, they are mainly adapted to soft actuators, where the elec-

tromagnetic sensors become difficult and time-consuming. The advantages of these sensors

include their practicality, acceptable accuracy, consistency in measuring real-time shape in

various environments, short response time, small size, biocompatibility, non-toxicity, high

sensitivity, and accuracy. However, they are susceptible to noise in turbulent mediums, and

their high cost may limit their applicability in certain scenarios [107].

Various attempts have been made to develop mathematical models for soft robots to

indirectly obtain the shape. These models are the cornerstone of the model-based meth-

ods. The three key models are presented in Figure 1.12. The rigid-links model (see Figure

1.12a) involves representing a soft robot as a series of interconnected rigid links with flexible

rotational joints. Roesthuis et al. conducted a reconstruction of the manipulator’s shape

while advancing through the body using tip force and moment measurements [97]. However,

the study did not take into account the influence of fluid inside the body and reported an

average maximum error of 1.37 mm. Venkiteswaran et al. utilized the rigid-links model

in a quasi-static environment and successfully estimated the deformed configuration with a

minimal shape error of 1.2 mm over its length [119]. However, assuming rigid links in the

context of continuum structures appears as an oversimplification. Such an assumption can
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(a) (b) (c)

Figure 1.12: An overview of key mathematical models used for soft robots with a special focus
on ablation catheters: a. Rigid-links model, b. Piecewise constant curvature model, and c.Beam
model. In the figures, x and y represent the 2-D Cartesian coordinates, Ftip and M represent the
tip force and moment, respectively; also, U represents the flow velocity.

result in either unrealistic behaviors with few segments or a considerably high number of

variables with many segments [119].

Piecewise constant curvature (PCC) refers to a model where a curve or surface is di-

vided into segments with constant curvature. Over each segment, the curvature remains

unchanged, but it may change abruptly at the boundaries between segments (see Figure

1.12b). PCC emerges as a powerful model for reconstructing the shape of soft robots. Qi et.

al [92] proposed a PCC-based navigation method during catheter insertion in blood vessels.

Nonetheless, their approach overlooks the impact of fluid and has significant constraints on

miniaturization and on shape trajectory in smaller environments. Most studies, such as

Refs. [48, 98] have used single-segment PCC, and only a few (e.g., Ref. [34]) employed a

multi-segment PCC in their modeling.

An attractive alternative for modeling soft robots is to use the principles of classical beam

theories (Figure 1.12c). Among the numerous studies, the Cosserat rod and Euler-Bernoulli
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beam models are the most popular. These models entail solving a set of equilibrium equations

that establish the relationship between the position, orientation, force, and moment of the

robot. By solving these equations using known values of forces and moments, it is possible to

obtain the shape of the robot. Yuan et. al [131] employed the Euler-Bernoulli beam theory

to model a surgical robot, considering external forces and moments. Although their solution

provided a shape reconstruction model with a 7% error, they did not account for the blood

flow forces acting on the robot.

Olson et. al [85] proposed an Euler-Bernoulli beam model to describe the bending be-

havior of soft robot arms under the combined influence of self-stress and external loads.

Ji et. al [60] proposed a simplified design method that involves dividing the actuator into

single segments or multiple segments and applying the Euler-Bernoulli beam theory to each

segment. This allows for a quick and accurate prediction of the actuator’s deflection under

different operating conditions. The Cosserat rod model [31] which accounts for the inherent

bending, twisting, and stretching behavior of slender rods has emerged as a reliable technique

for obtaining the shape of soft robots. Naughton [82] introduced Elastica as a simulation

framework that leverages the Cosserat rod model to accurately capture the mechanics of

soft robots. Till et. al [117] presented several case studies to demonstrate the application

of the Cosserat rod model in real-time simulations, proving the model’s ability to capture

the intricate deformations and motions of soft and continuum robots. Berthold et. al [22]

utilized the Cosserat rod theory to incorporate distributed load and moment, predicting the

tip position of a catheter as a soft robot through finite element analysis. They reported a

position error of 13%.

With the advent of neural networks and data analysis, learning-based methods have

also been developed for estimating the shape of soft robots. The data required for training

the neural network (and effectively creating a ‘black box’) can be collected from real-world
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applications or experimental apparatuses or can be synthesized using theoretical models.

This black box, given initial force values and characteristics of the soft robot, can be used to

reconstruct the shape. Thututhel et. al [114] modeled the soft robot as an Euler-Bernoulli

beam and solved it numerically for a range of tip forces to build a data set and trained the

neural network using the Bayesian regularization back-propagation algorithm. The fitted

network reported 0.0058 ± 0.028 meters position error. One of the key advantages of their

work was the modeling of the force and moment of the robot-tissue contact. Next, Thuruthel

[115] employed a Cosserat rod model to represent the soft robot and synthesized data for

training a neural network. The learning-based framework was used to forecast the real-time

trajectory of the robot’s tip. In a similar fashion, Pfaff et. al [90] utilized high-dimensional

Finite Element Method (FEM) simulation data to train a neural network that can reconstruct

and predict the shape of the robot.

1.2.4 Force estimation

As shown in Figure 1.11, there is a second branch of methods aimed at obtaining (or esti-

mating) forces acting on soft robots. Unlike the first branch of methods which focuses on

reconstructing the shape, the primary objective here is to determine or predict the force and

effectively control it to ensure the success of minimally invasive surgeries. Similarly to the

shape reconstruction methods, the force estimation methods are also classified into two main

categories, namely direct and indirect methods.

Direct methods, as the name implies, involve directly measuring the forces (and moments)

using sensors embedded in the body of soft robots. For example, the most straightforward

approach to determine the force acting on a catheter (as a soft robot) during manipulation

is by directly integrating a force sensor onto the parts of the catheter that come into contact

with the tissue. To date, four different technologies have been commercialized to measure
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Figure 1.13: Schematic of force sensing technologies: (A) Tacticath™ Quartz (Abbott), (B) Ac-
QBlate® Force (Biotronik), (C) Stablepoint™ (Boston Scientific), (D) Thermocool Smarttouch®
SF Catheter (Biosense Webster). Images were adopted from Ref. [67].

contact force at the tip of cardiac catheters [67], as illustrated in Figure 1.13.

Tacticath™ Quartz from Abbott (Chicago, IL, USA) utilizes three optical fibers and

Fabry-Pérot interferometers to measure contact force; see Figure 1.13 A. When a force is

applied to the catheter tip, the flexible structure changes length, altering the interference

pattern and allowing computation of force magnitude and orientation. AcQBlate® Force

from Biotronik (Berlin, Germany) employs sensors along multiple axes to measure forces; see

Figure 1.13 B. A deformable parallelogram detects axial forces, while separate sensors detect

lateral forces. The fiber Bragg grating within an optical fiber reflects different wavelengths

based on the force, enabling calculation of the force vector. Stablepoint™ from Boston

Scientific (Marlborough, MA, USA) uses a machined precision spring and inductive sensors

to measure forces; see Figure 1.13 C. The movement of ferromagnetic cores within the coils of

the sensors, caused by deflection of the spring, changes the inductance. Hooke’s law and the

spring stiffness are used to calculate axial and lateral forces. Thermocool Smarttouch® SF

28



Catheter from Biosense Webster1 (Irvine, CA, USA) utilizes a precision spring and magnetic

field sensors; see Figure 1.13 D. A magnetic transducer generates a field, causing the catheter

tip to move towards the sensors when forces are applied. By analyzing the signal changes in

the sensor coils, the force and direction can be determined using Hooke’s law and the spring

characteristics.

Several studies [9, 25, 67, 78] have evaluated the accuracy of contact force measurements

from these force sensors. Despite the great convenience provided by direct force measure-

ment, force sensors often face limitations related to their functionality and construction. The

limitations may include non-linear force measurement, force hysteresis (delayed response to

force changes), bulkiness, coupling effects between longitudinal and lateral forces, inaccurate

force estimation, and the complexity of design, assembly, and very importantly, their high

costs.

These limitations have motivated researchers to explore indirect methods for estimating

forces acting on soft robots. In this regard, model-based methods for force estimation, which

involve with solving mathematical equations inversely, are considered very promising. More

precisely, mathematical models, such as rigid-links, piece-wise constant curvature, and beam

models (including Cosserat rod and Euler-Bernoulli beam models), typically used for shape

reconstruction, are treated differently, where the shape is known (e.g., through imaging

techniques) while forces are unknown. Hence, these model-based methods are sometimes

referred to as ‘inverse solutions’ or ‘inverse modeling’ techniques.

Hooshiar et. al [57] developed and validated a force estimation framework based on Bézier

spline shape approximation and inverse Cosserat rod model. They obtained the necessary

condition for the Bézier spline approximation of a constant bending radius catheter. Using

the proposed technique, the kinematics and balance equations were solved to calculate the

1The company is part of the Johnson&Johnson family of companies.
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tip force. Experimental results showed good agreement between the estimated and reference

forces, with a mean absolute error of 0.024 ± 0.020 N. Nevertheless, the study oversimplified

the soft robot configuration by considering it as a section of a circle with a force and a moment

applied at the tip. Adagolodjo et. al [7] devised an inverse modeling technique for soft

robots using the Cosserat rod model and developed a coupled numerical method for solving

the equations. Despite demonstrating enhanced efficiency, the method was computationally

expensive. Additionally, a further simplification was made by solely considering a force and

moment at the tip, rendering it unsuitable for soft robots which are in contact with fluid

flow.

Using the rigid-links method, Back et. al [15, 16] developed a model for soft robots and

employed numerical techniques to estimate the forces involved, the results of which were

then validated against experiments. Although their proposed method was intended for the

use in the ablation procedure, the order of magnitude of forces considered in the studies

exceeded the typical range encountered in the procedure. They considered forces up to 2 N

in [15] while in practice the tip force does not exceed 0.5 N. In addition, in both modeling

and experiment, the working fluid was assumed to be air, ignoring the effects of blood flow.

Few studies have examined the effects of a surrounding stationary or flowing fluid on the

shape or forces acting on soft robots. Gong et. al [47] designed and tested a soft robotic

arm for underwater manipulation. In addition to field tests, some tests were performed in a

water tank (with still water) to examine the flow pattern and to measure how much force and

moments are generated as the soft manipulator was moving underwater. They also utilized

the inverse kinematics approach to determine the required joint angles and positions of the

soft robotic arm, taking into account the desired end-effector position. Nevertheless, the

effects of fluid were not included in the modeling. Hao et. al [51–53] employed a pseudo-

rigid-body model to represent the catheter as a soft robot, taking into account the effects of
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a uniform blood flow applied perpendicular to the catheter. Khoshbakht et. al [64] designed

a flow circuit, and for the first time, experimentally evaluated the effects of fluid flow on the

ablation catheters. They reported a 10%-70% change in the tip force components as a result

of fluid flow.

The accuracy and efficacy of model-based methods for force estimation heavily depend on

how holistic their underlying mathematical models are as well as on the computational com-

plexity. To address the challenges faced by model-based methods, learning-based methods

have recently emerged. To employ these methods effectively, a sufficiently large data set is

required for training the neural network to accurately predict force based on known shapes.

Sayadi et. al [102] introduced and validated a novel learning-based framework for estimating

forces in steerable catheters. The framework employed the learning-from-simulation princi-

ple and utilized a Bézier shape-fitting method to reduce input space dimensions. Nonlinear

regression models, such as Artificial Neural Networks (ANN), and Support Vector Regres-

sion (SVR) were used and demonstrated acceptable accuracy within the clinical requirements

range.

The present study bridges a significant research gap by considering the effects of fluid

flow on the shape reconstruction and force estimation of soft robots. First, a model-based

method is developed for shape reconstruction. More precisely, the Euler-Bernoulli beam

theory is used, which relates the known tip force, tip moment, and fluid flow properties, to

the curvature of the soft robot. Instead of solving the differential equation analytically or

computationally, the shape is approximated by a Bézier curve, and a minimization problem is

formulated to find the Bézier curve control points. The results from this model are compared

with those from FEM simulations. One limitation of the proposed model-based method is its

relatively long run-time. To address this issue, next, the numerical results from the model

are utilized to build a dataset which is then used to train, validate and test a learning-based
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model. It will be shown that this model is accurate and about 50 times faster than the

model-based method. Since in some applications, such as sensorless ablation catheters, tip

force estimation is crucial, a second learning-based model is developed, in which the tip

force is assumed to be unknown while all other variables are considered as known. Again,

the data obtained from the model-based method is leveraged for training, validation, and

testing. The force estimation results from this learning-based model are compared with

experimental results, where a fair agreement between the two sets is observed.

1.3 Problem Definition

As discussed in section 1.1.4, there is a significant clinical demand for the development of a

comprehensive soft robot model during surgery, allowing the surgical team to have precise

control over the robot’s movements inside the body and regulate the applied force accurately

to the surgical target. This model has the potential to enhance surgical precision and re-

duce the reliance on advanced imaging equipment and highly-cost force-sensing techniques

commonly used in robotic-assisted surgery.

As highlighted in section 1.2, various attempts have been made to create such models,

each based on different principles, each with its own set of advantages and disadvantages.

However, achieving a more comprehensive and accurate model requires minimizing simplifi-

cations and ensuring that the model conditions closely resemble real surgery conditions. By

refining the soft robot model and reducing simplifications, surgeons can gain better insights

into the robot’s behavior during the procedure. This would enable them to control the robot

more effectively, leading to improved surgical outcomes. Additionally, with a more robust

model, the surgery team can better understand how the applied forces interact with tissues,
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enhancing safety and reducing the risk of potential complications. The significance of devel-

oping a comprehensive model lies in its potential to decrease the dependence on high-tech

imaging and force-sensing technologies, making robotic surgery more accessible and cost-

effective. Moreover, with precise control over the soft robot’s movements and applied forces,

surgeons can conduct surgeries with greater accuracy and confidence, particularly in delicate

and complex procedures.

In conclusion, the quest for a comprehensive soft robot model in surgery is driven by

the need for precise control, enhanced surgical precision, and reduced reliance on advanced

equipment. By minimizing simplifications and closely aligning the model conditions with real

surgery scenarios, researchers aim to create a powerful tool that can revolutionize robotic

surgery and improve patient outcomes.

1.4 Research Objectives

The primary objective of this study is to develop advanced models for accurate real time

shape reconstruction and tip-force estimation of ablation catheters in contact with fluid flow.

The following sub-objective work toward achieving the primary objective:

1. to examine the hypothesis that the fluid flow may have significant effects on the tip-

force and shape of catheters, some experiments were performed in a one-of-a-kind

experimental apparatus.

2. To develop a mechanistic model for accurate shape reconstruction of a soft robot sub-

jected to a tip-force, a tip-moment and a distributed load due to fluid flow. This

model will then be used to create a data set which will be used for developing artificial

intelligence neural network (NN) models.
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3. To develop NN models for real time shape reconstruction and tip force estimation of

soft robot in contact with fluid flow. The former enables real time shape reconstruction

of soft robot without the need for imaging equipment. The latter enables continuous

monitoring of the tip-force of the soft robot without the need for force sensors.

1.5 Contributions

The subsequent list outlines the publications and also the author’s and co-authors’ contri-

butions made during the course of this master’s research:

1. Reza Khoshbakht, Mojtaba Kheiri, Javad Dargahi, and Amir Hooshiar, “Effects of

Blood Flow on the Tip Contact Force of Cardiac Ablation Catheters,” 2022 IEEE

International Symposium on Robotic and Sensors Environments (ROSE), Abu Dhabi,

United Arab Emirates, 2022, pp. 1-7.

The first author designed and assembled the experimental apparatus, designed and

performed experiments, analysed the experimental results and drafted. The second

author provided valuable assistance in the preparation of the experimental setup, and

interpretation of results, and contributed to the review and editing process of the paper.

The third author provided funding and offered guidance and support throughout the

research. Additionally, the fourth author actively participated in the construction of

the experimental setup and provided inputs during the review and editing stages of

the paper.

2. Reza Khoshbakht, Mojtaba Kheiri, Javad Dargahi, and Amir Hooshiar, “Physics-

informed Neural Network Modeling of Quasi-static Soft Robots for Percutaneous In-

terventions,”. Submitted to: International Journal of Solids and Structures.
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The first author performed research about various shape reconstruction and force es-

timation methods, led the conceptualization and development of the mechanistic and

NN models, performed analysis and drafted the paper. The second author contributes

to the conceptualization of the mechanistic model, interpretation of the results and

reviwing and editing the paper. The third author provide feedback on the model and

numerical results. The fourth author contributed to the conceptualization of the neural

network reviewing and editing the paper.

1.6 Thesis Layout

This thesis follows the manuscript-based style in accordance with the ”Thesis Preparation

and Thesis Examination Regulations for Manuscript-based Thesis” of Concordia University’s

School of Graduate Studies. It is composed of the following chapters:

Chapter 1 presents the identified clinical need and the limitations observed in previous

attempts have served as the driving force behind the motivation to develop a model and

shape the direction of this research

Chapter 2: Presents the development of a one-of-a-kind experimental apparatus to

examine the effect of fluid flow on the tip-force of ablations catheters. The results from five

cases are presented and discussed. The experimental results from one of the cases are also

used in chapter 3 to validate a neural network model developed for tip-force estimation of

soft robot.

Chapter 3: A mechanistic model was proposed to reconstruct the shape of a soft robot

based on the applied forces while considering the fluid effect as a distributed load. The

model utilized Bezier curves to fit the highly nonlinear equations derived from the problem

and solved them using a minimization solution. The accuracy of the proposed solution was
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validated by comparing it with Finite Element Method (FEM) results obtained from Abaqus

software under the same loading conditions. The results met the accuracy requirements,

but due to high numerical calculations, real-time responses were not feasible. To address

the speed issue, a neural network solution was implemented. A dataset was generated by

running the model for a valid range of forces, and the Bayesian algorithm was selected to

train, validate, and test the neural network and the results were presented and discused.

In the second part of this chapter, the reverse route was explored to demonstrate that

the proposed model could also predict forces based on shapes during surgeries where force

monitoring is critical. Another neural network was trained using shape data as input to

estimate the force. The results of this neural network were compared with the results of

one of the cases of the experiments conducted in the previous chapter. and the results were

presented and discused.

Chapter 4: presents the conclusions drawn from the current study and proposes po-

tential extensions for future research based on the findings. These proposed extensions can

serve as a reference for further investigations building upon the present work.
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Chapter 2

Effects of Blood Flow on the Tip

Contact Force of Cardiac Ablation

Catheters

2.0.1 Objectives and Contributions

In this study, to continue our previous works on the fluid-structure interactions of flexible

slender structures (modeling, e.g., an ablation catheter in the LA) [111], we have experimen-

tally investigated the hemodynamics (drag) and deflection effects (force transmissibility) on

the catheter-tissue contact force. The main contribution of this study is in providing ex-

perimental evidence on hypothesized mechanisms of CF variation in human LA at different

anatomical locations. In the following, we have described the methodology in Sec. II, in-

cluding the experimental set-up, procedure, and test cases, and discussed the key results and

findings in Sec. III. Concluding remarks are also presented at the end.
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2.1 Methodology

To investigate the effects of blood flow on the catheter and, in particular, on the contact

force, an in-vitro ablation procedure is designed based on the anatomical characteristics of

AFib patients in terms of blood flow rates and pulmonary veins dimensions and directions.

The three-dimensional contact force is measured in the presence of water flow at various flow

rates. The numerical values are then compared with the contact force measured in air.

2.1.1 Experimental setup

Fig. 2.1 shows the components of a closed-loop experimental set-up built to simulate blood

circulation during the ablation procedure. For simplicity, the fluid flow was kept steady.

Nevertheless, the anatomy of pulmonary veins allowed for dynamic vortices formation.

To simulate an ablation procedure, an 8Fr Ablation Catheter (Blazer II XP, Boston

Scientific, MA, USA) was used. Also, four Digiten G3/8 Hall effect flow sensors were used

for continuous flowmetry. The flow sensors were calibrated against a standard flow meter

(Cole Parmer, IL, USA). The flowmeters were interrogated by an Arduino Mega 2560 with

custom-developed firmware developed in C++ programming language. In addition, a six-

axis Force / Torque sensor (Mini40, ATI Industrial Automation, NC, USA) was used for

catheter tip force measurements. Water was used as the working fluid, which is circulated

with two Deluxe 1056 GPH submersible pumps. The setup was installed on 3D-printed

housings. As shown in Fig. 2.1(a), water was pumped from a reservoir and was split into

4 outlets, each connected to a pulmonary vein. The flow in these branches was adjusted

manually using four needle valves. The setup was capable of supplying flow rates up to 350

LPH (liters per hour) [70].

As seen from Fig. 2.1(b), two parts were designed based on real dimensions and angles
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Figure 2.1: (a) Experimental setup components. The red arrows show the flow path from the
reservoir towards the chamber. The blue arrow shows the flow direction from the chamber towards
the reservoir, and (b) the LA phantom with four 3D-printed pulmonary vein inlets. L/R: left/right,
I/S: inferior/superior, PV: pulmonary vein, and (c) shows the fixed contact point.
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of pulmonary veins when they reach the left atrium [21]. They were 3D-printed and glued

externally to the chamber. These parts ensure that the fluid enters the chamber with proper

velocities and at proper angles. The chamber (or the test section) was cylindrical in shape,

was rigid, and was made of transparent plastic. The chamber was larger in volume compared

to an actual left atrium, which allowed easy access and a better view. The fluid inside the

chamber was drained through a hole made to the bottom of the chamber. The size of

the drain hole is equal to that of the mitral orifice of the LA according to the anatomical

references [86]. A small orifice was made in the wall of the chamber opposite the PVs (which

mimicked a transseptal puncture) to let the catheter in the chamber. The hole was sealed

with an 8-Fr introducing sheath.

Since the force sensor used in these experiments was not water-resistant, an indirect

force measurement method was adopted. An L-shaped rod was designed and 3D-printed to

transmit the force from inside the chamber to the outside. The rod, i.e. force transmitter,

was secured on the force sensor at one end. A tiny dimple was made to the free end of the

force transmitter which was placed close to (but not touching) the interior of the lateral

surface of the chamber. As a result, small moments are also generated at the contact point.

The horizontal, vertical, and angular positions of the contact points inside the chamber were

selected based on the common clinical ablation sites [93].

2.1.2 Tests Protocol

Various experiments were conducted to measure the contact force in the presence of fluid

flow. In all the experiments, the following procedure was followed to collect data:

1. The force transmitter tip is placed at the desired location (or ablation site) inside the

empty chamber.
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2. The force sensor is started at zero.

3. The catheter is inserted into the chamber and is made in contact with the force trans-

mitter. The catheter is deflected using its shape deflector knob to reach the desired

reference (or nominal) CF denoted by Fc,ref .

4. The force sensor is set at zero, again.

5. The pump is started, and the flow rate is slowly increased to the desired value by

adjusting the splitter valves. Enough time is permitted for flow to reach a steady

state. Then, force measurement is performed at the sample rate of 62.5 Hz over 250

Seconds. This force is denoted by Ftot.

6. The pump is turned off; the chamber is drained, and the catheter is removed from the

chamber.

7. The force sensor is set at zero.

8. The pump is started, and the flow rate is slowly increased to the value(s) in step 5.

After the flow reaches the steady state, force measurement is performed. This is the

force due to fluid flow, acting on the force transmitter. This force is denoted by Ftrans.

The fluid force is obtained from Fc,f = Ftot − Ftrans. To obtain the contact force which

also includes the fluid effect, one should add the contact force in air, Fc,ref , to Fc,f , i.e.,

Ff = Fc,f + Fc,ref . Figure 2.2 shows different contact arrangements between the catheter

and the free end of the transmitter at contact point C.

2.1.3 Test Cases

Five sets of experiments were conducted, the summary of which is given in Table 2.1. One

of the most frequent targets for the ablation procedure is on the LA wall around pulmonary

41



Figure 2.2: Different arrangements considered in the present experiments: (a) the ablation site is
in the vicinity of the LIPV outlet, and flow enters the chamber from the LIPV, (b) the ablation site
is in the vicinity of the LIPV outlet, and flow enters from the RIPV, (c) the ablation site is in the
vicinity of the LIPV outlet, and flow enters from both LIPV and RIPV, and (d) the ablation site
is in the vicinity of RIPV, and flow enters from the RIPV. The blue arrow shows the flow direction
into the chamber. The red arrows represent the coordinate system attached to the force sensor.
Also, the contact point is marked by C.
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veins outlets [93]. In the table, an ablation site refers to the position of the force transmitter

tip. For example, if the tip is placed in the vicinity of the outlet of the LIPV, then the

ablation site is called LIPV. Figure 2.2 shows the different arrangements considered in the

present experiments.

Table 2.1: Conditions and initial forces in the present experiments

Reference CF (N)

Case Site LIPV RIPV Fx Fy Fz
1 LIPV Open Closed -0.078 0.1029 0.284
2 LIPV Closed Opened -0.048 0.085 0.246
3 LIPV Open Open -0.078 0.089 0.265
4 RIPV Closed Open -0.037 -0.058 0.2023
5 RIPV Closed Open -0.025 -0.018 0.1044

2.2 Resutls and Discussions

Here, some results on the variation of the three-dimensional (3-D) tip CF as a function of

the flow rate into the chamber are presented. These results show if the CF in the presence

of fluid flow is higher or lower and by how much, compared to the reference CF (i.e., the CF

in the air). The results are summarized in Figs. 4 - 8 and Tables 2 - 6. The figures show

the variation of the mean value of the CF (in N) in the x-, y-, and z-directions, represented

by Fx, Fy and Fz, respectively. In all the figures, the lighter color represents the reference

CF, the darker color shows an increase, and the hatched pattern represents a decrease in

the CF caused by fluid flow. The tables, on the other hand, report the relative change (in

percent) in the CF and the standard deviation of measurements (in N). The selection of the

coordinate system is not arbitrary; it is based on the coordinate system associated with the

force sensor. Considering the orientation of the catheter in test cases 1 - 5 (see Fig. 2.2), one

may conclude that Fz for the most part works as the normal component of the contact force
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while Fx and Fy may be considered as the tangential components. The tangential forces

are due to surface friction and reaction forces by the walls of the tiny dimple on the force

transmitter end. The magnitude of the normal contact force is crucial for both the safety

and stability of the ablation procedure while the tangential components are the key for the

stability of the catheter.

Figure 2.3: The variation of the mean value of the 3-D CF as a function of the flow rate for case 1.

See Fig. 2.3 which shows the results for test case 1; refer also to Table 2.1 and Fig. 2.2(a).

Table 2.2: Effect of flow rate on the CF in case 1.

Flow Rate (LPH) Fx Impact % St.Dev Fy Impact % St.Dev Fz Impact % St.Dev
200 6.036 0.00412 011.36 0.00412 -0.16289 0.00422
250 9.211 0.00772 -13.421 0.00580 -18.776 0.00451
300 15.122 0.01075 -20.821 0.00783 -23.142 0.00605
350 19.974 0.01195 -24.181 0.00896 -27.014 0.00739
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As seen from the chart, for all three components, by increasing the flow rate, the difference

between the force under the fluid flow and the reference force becomes larger. This is very

much expected as the force applied by the fluid flow is theoretically proportional to the flow

velocity (and thus flow rate) squared. It is also seen that because of the fluid flow, the

magnitude of Fx increases (with respect to the reference value) while Fy and Fz decrease.

Both the reduction of Fz and the increase in Fx have adverse effects on the stability of

the catheter. Considering the so-called stability cone [112], both these would increase the

possibility of slippage. In contrast, the reduction of Fy is favorable for the stability and

may compensate for the destabilizing effects of the other two components. The increase in

Fx and the reduction in Fy and Fz under the fluid flow may be explained as follows. As

shown in Fig. 2.2 (a), the fluid inside the chamber leaves the chamber through a hole at the

bottom, which in fact causes a secondary flow and thus a force in the downward direction

(i.e., -x-direction). This force becomes stronger by increasing the flow rate, as evidenced

by the values given on the chart. On the other hand, the direction of the flow entering the

chamber through the LIPV is such that it pushes the catheter in the -y and -z-directions,

which as a result, reduces the contact forces in those directions with respect to the reference

values.

Table 2.3: Effect of flow rate on the CF in case 2

Flow Rate (LPH) Fx Impact % St.Dev Fy Impact % St.Dev Fz Impact % St.Dev
200 5.377 0.00192 5.5172 0.00261 -4.80474 0.00231
250 8.9901 0.00191 9.0085 0.00319 -7.16587 0.00286
300 16.3954 0.00288 11.5299 0.00338 -16.15509 0.00454
350 20.1050 0.00338 12.2064 0.00364 -24.71779 0.00475

From Table 2.3, one can conclude that the fluid flow impacts Fz the most, where the

maximum change is approximately 27%. This occurred at the flow rate of 350 LPH. The

relative changes in Fx and Fz are also comparable, with the maximum of approximately
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Figure 2.4: The variation of the mean value of the 3-D CF as a function of the flow rate for case 2.

20% and 24%, respectively. As also seen in Table 2.2, the standard deviation for all force

components increases with the flow. Stronger vortical structures are expected to develop

inside the chamber at higher flow rates. These would create stronger flow disturbances and

thus more fluctuations in the fluid forces. The standard deviation is particularly higher for

Fx, where it can be as large as 10% of the mean value.

Fig. 2.4 shows the results for test case 2 where the flow enters the chamber via the

RIPV. Interestingly, very similar observations as those for case 1, can be made here. The

only exception is that, in case 2, Fy increases above the reference value due to fluid flow.

This can be understood by examining the direction of the flow into the chamber from Fig.

2.2(b). As seen, the flow entering the chamber through the RIPV pushes the catheter in
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Figure 2.5: The variation of the mean value of the 3-D CF as a function of the flow rate for case 3.
The flow rates given in the chart are only for one of the veins. The actual flow rates are two times
of those given above.

the y-direction. Comparing cases 1 and 2, case 2 appears to be more critical from the

stability point of view. This is because the reduction in Fz and the increase in Fx and Fy,

all are unfavorable changes. As seen from Table 2.3, the impact of fluid flow on Fy has been

significantly reduced, when compared to case 1. For Fx and Fz, the impact is almost of the

same magnitude with the maximum of 20% and 24%, respectively. Force fluctuations appear

to be significantly less in case 2, as evidenced by very small standard deviations.

Figure 2.5 shows the results for case 3. As seen from Figure 2.2(c), in case 3, both the

LIPV and RIPV are open and the total flow rate into the chamber is almost double the flow

rate in case 1 or 2. Thus, case 3 results may be considered as an aggregation of those from

cases 1 and 2. From what discussed above, one can conclude that Fx due to the LIPV flow
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and that due to the RIPV flow add up, which introduces a larger change to the reference Fx.

A similar cumulative effect can be seen for Fz. In contrast, for Fy, the two flows weaken each

other. Since the LIPV flow shows a stronger impact, the overall behavior of Fy is similar

to that in Figure 2.3. Compare the heights of hatched and dark-color regions on the bars

in Figure 2.5 with those in Figure 2.3 and 2.4. The numbers given in Table 2.4 confirm the

cumulative effect of the LIPV and RIPV flows on Fx and Fz and their competing role in Fy.

The maximum change in Fz is approximately 36% while it is 34% and 11% for Fx and Fy,

respectively.

During a PV circumferential ablation, reaching regions around the RIPV is typically

hard. This is due to the location of the RIPV with respect to the transseptal puncture. As

a result, the catheter needs to be considerably bent (as also shown in Figure 2.2(d)) which

limits the force that can be applied by the surgeon. For these reasons, cases 4 and 5 have

been designed to examine the effects of fluid flow on the CF when the catheter is in the

vicinity of the RIPV.

Figure 2.6 shows the results for case 4. The maximum force in the z-direction, achieved

in air by pushing and bending the catheter was approximately 0.2 N. As seen from the bar

chart, the most significant change due to fluid flow occurs to Fz. This is also confirmed

from Table 2.5, where the maximum change in Fz is around 30%, which occurs at 350 LPH.

The maximum changes in Fx and Fy are about 16% and 25%, respectively. The fluid flow

reduces the magnitude of the reference Fz and Fy while similarly to cases 1 to 3, increasing the

Table 2.4: Effect of flow rate on the CF in case 3.

Flow Rate (LPH) Fx Impact % St.Dev Fy Impact % St.Dev Fz Impact % St.Dev
200 20.371 0.00311 8.7983 0.00264 -19.7841 0.00436
250 22.164 0.00376 10.1494 0.00327 -22.4991 0.00483
300 25.737 0.00422 10.6054 0.00385 -30.0227 0.00496
350 34.47423 0.00505 11.2895 0.00451 -36.6031 0.00585
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Figure 2.6: The variation of the mean value of the 3-D CF as a function of the flow rate for case 4.

magnitude of the reference Fx. Again, these can be explained by considering the orientation

of the coordinate system, the catheter, and the incoming fluid flow.

Case 5 is the same as case 4 with the exception that the reference contact force is set

close to 0.1 N which is the minimum limit for a successful ablation [? ]. As seen from the

bar chart shown in Figure 2.7 and confirmed by the numerical values given in Table 2.6, the

impact of the fluid flow becomes more pronounced in this case. For example, Fz reaches

a maximum reduction of 47%, and the maximum reduction in Fy becomes approximately

70%. These large changes are not because the fluid flow forces are stronger in case 5. They

are because the magnitude of the reference CF is now comparable to the magnitude of the

fluid forces. As seen from Figure 2.7, at any of the flow rates, Fz ¡ 0.1 N. Assuming that

the normal contact force is mainly due to Fz, this means that the ablation would inevitably
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Table 2.5: Effect of flow rate on the CF in case 4.

Flow Rate (LPH) Fx Impact % St.Dev Fy Impact % St.Dev Fz Impact % St.Dev
200 6.515 0.00574 10.847 0.00393 18.103 0.00477
250 8.489 0.00690 16.014 0.00561 22.618 0.00534
300 11.216 0.00882 21.742 0.00701 24.253 0.00696
350 16.099 0.01004 24.767 0.00865 30.069 0.00983

Figure 2.7: The variation of the mean value of the 3-D contact force as a function of the flow rate
for case 5.

fail. On the other hand, with a significantly small normal contact force, the contact stability

would also be in jeopardy.

2.3 Conclusion

We have built an experimental apparatus in which water with realistic flow rates and angles

entered the chamber and flowed over an RFA catheter. By subjecting the catheter to various
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Table 2.6: Effect of flow rate on the CF in case 5.

Flow Rate (LPH) Fx Impact % St.Dev Fy Impact % St.Dev Fz Impact % St.Dev
200 8.343 0.00308 25.264 0.00286 29.981 0.00308
250 12.269 0.00596 41.019 0.00599 36.892 0.00604
300 15.611 0.00806 57.738 0.00777 42.005 0.00758
350 20.037 0.00932 70.171 0.00814 47.507 0.00961

flow rates, the effect of fluid flow on the CF and contact stability at two common AFib sites

was studied. Our results showed that depending on the ablation site (i.e., LIPV or RIPV)

and the magnitude of the reference CF, the fluid flow could change the normal CF in the

range of 25% to 48%. The change in tangential components could be even more significant.

Two distinct effects were also identified: (i) catheter deflection which may compromise the

force transmissibility, and (ii) fluid drag that may “lift” the catheter thus reducing the

CF in flow conditions encountered in common ablation sites inside the LA. In the present

experiments, for simplicity, the flow was kept steady, and a rigid chamber was used to mimic

the LA. This might be considered as an acceptable quasi-steady approximation of the actual

pulsatile blood flow through pulmonary veins and the LA. Future studies will include a

compliant chamber since a real LA continuously undergoes expansions and contractions.

Another limitation of this work was to use water to represent blood, while blood is more

viscous and denser and thus could significantly increase the fluid drag. Moreover, in the

present set-up, the catheter was made in contact with a rigid surface while the real atrial

tissue is viscoelastic with small friction coefficients, which could further reduce the stability

of the catheter in the experimented ablation sites.
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Chapter 3

Physics-informed Neural Modeling of

Quasi-static Soft Robots for

Percutaneous Interventions

3.1 Introduction

As fully dicussed in chapter 1, Minimally Invasive Surgery (MIS) aims to reduce patient

trauma, accelerate recovery, and improve surgical outcomes by replacing traditional open

surgery [30, 89]. Soft continuum robots play a crucial role in minimally invasive surgery

by offering unique advantages over traditional surgical tools, such as providing enhanced

dexterity, flexibility, and safety. While the flexibility of soft robots allows them to navigate

through unpredictable and constantly changing environments, it also poses control difficul-

ties, particularly when interacting with anatomical structures. Given the insertion of soft

robots within the human body during surgical procedures, real-time monitoring and control

of both the force exerted and the shape assumed by these flexible robotic systems is essential.
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The determination of shape, force, or both, is contingent upon the specific application and

clinical requirements.

3.2 Materials and Methods

3.2.1 A model-based method for shape reconstruction

Equation of equilibrium

A constitutive model is used to relate the shape of a soft robot to the forces acting on

it. Here, we use the Euler-Bernoulli beam theory which has two key assumptions [21]: (i)

beam’s cross-section is infinitely rigid within its own plane, meaning that no deformations

occur in the plane of the cross-section, and (ii) during deformation, the cross-section remains

plane and perpendicular to the deformed axis of the beam. The following equation gives the

relationship between the applied load and the resulting deflection of a soft robot:

M(s) = EIκ, (3.1)

whereM(s) represents the internal bending moment at a section located at arclength distance

s ∈ [0, 1], E is Young’s modulus of elasticity, I is the second moment of area of the cross-

section, κ is the curvature.

Using the Frenet-Serret formula, κ can be obtained [80]:

κ =
∥c′(s)× c′′(s)∥

∥c′(s)∥2
, (3.2)

in which c(s) denotes the position vector in the Cartesian coordinate system; prime denotes

the derivative with respect to s; cross represents a cross product, and || . || denotes the
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magnitude of a vector.

It should be noted that for a body lying in the xy-plane, i.e. c(s) = x(s)i + y(s)j

(i and j being the unit vectors in the x- and y-directions, respectively), by assuming the

inextensibility of the neutral axis, i.e. x′2+y′2 = 1, equation (3.2) is reduced to the following

well-known form [103]:

κ =
y′′

√

1− y′2
. (3.3)

See Figure 3.1(a) which schematically shows the forces and moments that typically act

on a soft robot during a minimally invasive surgery. The moment and forces acting at the

robot’s end manipulator are represented by Mtip and Ftip, respectively. Additionally, the

distributed load q (i.e., force per unit length), which may represent the effect of fluid flow

(e.g., blood flow in the left atrium), is applied to the entire body of the robot. To simplify

the analysis, we assume that the soft robot lies in the xy-plane, and the distributed load is

downward, opposite to the direction of the y-axis. Considering a section of the soft robot at

s, the equation of moment balance can be written as (see Figure 3.1(b)) follows

M(s)k =
(

c(1)− c(s)
)

× Ftip +Mtip +Mq, (3.4)

where k is the unit vector normal to the xy-plane; Mq is the bending moment due to q,

which is given as below:

Mq =

∫

1

s

(c(η)− c(s))× (−qj)dη, (3.5)

where η is a dummy variable.

For a stationary cylindrical body of diameter D, subjected to a fluid with density ρ,

flowing with the velocity U normally to the longitudinal axis of the body, q is obtained as

q =
1

2
ρU2DCD, (3.6)
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where CD is the drag coefficient which is generally dependent on the Reynolds number;

however, for the range of the Reynolds number typically seen by ablation catheters in the

left atrium (100 < Re < 1000), the drag coefficient may safely be taken in the range of

CD ≈ 1.0−1.2 [12]. It should be noted that, in equation (3.6), the effects of the dynamics of

the body have been neglected. Also, for simplicity of the analysis, the x-component of fluid

flow forces has been neglected. This component becomes more significant as the deformations

of the soft robot become larger. A future model will include both the x- and y-components

of fluid flow forces.

Combining equations (3.1), (3.4) and (3.5), the governing equation in the final form can

be written as

EI
∥c′(s)× c′′(s)∥

∥c′(s)∥2
k =

(

c(1)− c(s)
)

× Ftip +Mtip −

∫

1

s

(c(η)− c(s))× (qj)dη. (3.7)

Bézier curve approximation

Equation (3.7) is a nonlinear integro-differential equation. Similar equations have previously

been developed and solved by a number of researchers. For example, [71] obtained the non-

linear equation for the large deflection of cantilever beams made of Ludwick type material,

subjected to a uniformly distributed load and a tip force. The nonlinear equation was solved

using Butcher’s fifth-order Runge-Kutta method. [32] studied the large deflection behaviour

of prismatic and non-prismatic cantilever beams subjected to generally non-uniform dis-

tributed loads and tip forces and tip moment. The nonlinear differential equation governing

the deflection was obtained as a function of the angle of rotation of the beam. The solution

was expressed as a polynomial in terms of the arclength of the deflected beam axis, and

the unknown coefficients of the polynomial were obtained by minimizing the integral of the
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(a)

(b)

Figure 3.1: Schematic drawings showing (a) a soft robot in static equilibrium under the influence
of a tip force, a tip moment and a distributed load, and (b) applying moment balance for a segment
extending between s > 0 and s = 1.

residual error of the governing equation and applying the boundary conditions. [73] devel-

oped a mechanics model for large deformation of hard-magnetic soft rods with deformable

cross-section. They employed the finite element method for solving the weak form of the

equations.

Here, instead of solving the governing equation, we approximate the shape of the soft

robot by a Bézier curve:
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c(s) ≈ C(s) =
n

∑

i=0

(

n

i

)

(1− s)n−isiPi, (3.8)

where Pi = (Pi,x Pi,y)(i j)
T represent the position of the control points of the Bézier

curve, n is the order of the curve, and
(

n

i

)

represent the corresponding binomial coefficients.

Bézier curves have successfully been used in previous studies (e.g. [57], [58]) to represent

the deformed shape of continuum arms/robots. Here, we adopt a cubic Bézier curve (i.e.,

n = 3) to limit the computational costs. Thus,

C(s) = (1− s)3P0 + 3(1− s)2sP1 + 3(1− s)s2P2 + s3P3. (3.9)

The first and second derivatives of C(s) can be conveniently obtained from equation (3.9):

C′(s) = 3(1− s)2 (P1 −P0) + 6(1− s)s (P2 −P1) + 3s2 (P3 −P2) , (3.10)

C′′(s) = 6(1− s) (P2 − 2P1 +P0) + 6s (P3 − 2P2 +P1) . (3.11)

Considering the simplification made above, the integro-differential equation (3.7) can be

reformulated as a nonlinear algebraic equation where the uknowns would be Pi.

Minimization problem

The resulting nonlinear algebraic equation will have a maximum of 2(n + 1) unknowns

(considering a planar configuration) while the equation can technically be used for any

s ∈ [0, 1] and thus infinite number of equations. An efficient solution to this is to re-formulate

the problem as a minimization problem:

min F = w

∫

1

0

R2ds+ (1− w) (L− L0)
2 , (3.12)

57



where F represents the objective function, R = (LHS2 − RHS2) is the difference between

squared l.h.s. and r.h.s. of equation (3.7), and 0 < w < 1 is a weight function; also, L0 and

L are the length of the soft robot before and after deformation, respectively.

In equation (3.12), the first term on the r.h.s. ensures the moment equilibrium along the

soft robot while the second term works as a constraint (i.e., the soft robot is inextensible) to

yield unique solutions. Assuming that the soft robot is fixed at s = 0, one can conclude from

equation (3.9) that P0,x = P0,y = 0. In other words, the first control point must be located

at s = 0. In addition, since at the fixed end, the slope is zero, after some mathematical

manipulation, one can show that P1,y = 0. This means that the second control point is

located on the x-axis. Thus, the number of unknowns (or optimization variables) reduces

from 8 to 5, for a cubic Bézier approximation.

The minimization problem is solved via MATLAB’s fminunc function. The numerical

results from the model, which essentially include deformed shapes of a beam under various

loading scenarios, are compared with FEM results obtained via Abaqus. All the numerical

results were obtained with a desktop which has an Intel core i7-4790 (3.6 GHz) processor

and 20 GB of installed RAM.

3.2.2 A learning-based model for shape reconstruction

As shown in Section 3.2.1, a model-based method capable of obtaining the shape of a soft

robot was developed. However, one major drawback of this method is its relatively high

computational time, which hinders its use in actual clinical applications where real-time

response is required.

Here, we develop a learning-based model with the hope that such a model can potentially

run much faster. The model is developed using the Bayesian Neural Network (BNN) and

employing 10 hidden layers. BNN is a type of neural network that incorporates Bayesian
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inference to model uncertainty in the network’s parameters. In contrast to standard neural

networks, the weights and biases in the BNN do not take unique values but have probability

distributions attached to them [83]. BNN is chosen due to the vulnerability of traditional

neural networks to overfitting where training data memorization occurs, resulting in inade-

quate performance with unseen data. In contrast, BNNs provide plausible explanations for

training data, transcending mere data fitting. This strategy mitigates overfitting risks and

promotes improved generalization [24].

The required data for training, testing and validating the neural network is provided by

the model-based method of Section 3.2.1. A total of 1296 cases were run, 70% of which are

used for training, 15% are used for validation, and the remaining 15% are used for testing.

The inputs are the tip force components (0 ≤ fx, fy ≤ 0.5 N), the tip moment (0 ≤ M ≤ 5

N.mm), and the force per unit length due to fluid flow (0 ≤ q ≤ 0.5 N/m) while the outputs

are the coordinates of the Bézier curve control points, i.e., P1,x, P2,x, P2,y, P3,x, and P3,y; see

Figure 3.2. The range of values taken for the input variables are typical of ablation catheters

in the left atrium.

Input

Hidden Layers

Output

fx

fy

M

q

h1

h1

h1

h10

h10

h10

P1, x

P2, x

P2, y

P3, x

P3, y

Figure 3.2: Schematic of the neural network used for shape reconstruction.
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3.2.3 A learning-based model for force estimation

There is a growing interest in the medical research community to develop sensorless or sensor-

free surgical robot technologies with the aim of significantly reducing the cost of such devices

and thus the surgical procedure. Sensorless ablation catheters, for example, need reliable

real-time tip-force estimations. This need has motivated us to develop a second learning-

based model which will be used for tip force estimation. Here, the inputs include the shape

of the robot (i.e., the coordinates of the Bézier curve control points) which can be obtained

from, for example, fluoroscopic images, the tip moment applied by the surgeon via a handset

or a controlling knob, and the distributed load due to blood flow, which may be obtained

from in vitro measurements or computational fluid dynamic simulations. The outputs, on

the other hand, include the components of the tip force; see Figure 3.3.

The same algorithm and number of hidden layers as those in Section 3.2.2 are used here.

In addition, the same proportion of cases as those in the previous section are used here for

the training, validation and testing.

Input

Hidden Layers
Output

P1, x

P2, x

P2, y

P3, x

P3, y

M

q

h1

h1

h1

h10

h10

h10

fx

fy

Figure 3.3: Schematic of the neural network used for force estimation.
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3.2.4 In vitro experiments

Some in vitro experiments were conducted by the authors [64] with the aim of examining

the effects of fluid flow on the tip force of ablation catheters. The results from one set

of these experiments will be used for comparison against the numerical results from the

learning-based model of Section 3.2.3.

Experimental apparatus

Figure 3.4 shows the components of a closed-loop experimental setup designed to replicate

blood circulation during the ablation procedure — a minimally invasive surgery conducted

within the left atrium of heart to treat arrhythmia. In order to simulate this procedure,

an 8-Fr (1 Fr ∼ 1/3 mm) Ablation Catheter (Blazer II XP, Boston Scientific, MA, USA)

was employed as a representative example of a soft robot. Additionally, four Digiten G3/8

Hall sensors were utilized for flow rate measurement. These flow sensors were calibrated

against a standard flow meter (Cole Parmer, IL, USA). Interrogation of the flow meters was

carried out using an Arduino Mega 2560 with custom-developed firmware programmed in

C++. Furthermore, a six-axis Force/Torque sensor (Mini40, ATI Industrial Automation,

NC, USA) was employed for measuring the force exerted at the catheter tip. Water was

used as the working fluid, which was circulated using two Deluxe 1056 GPH submersible

pumps. 3-D printed parts were used to enclose the valves, flow meters as well as to support

the catheter.

As seen from the figure, water was pumped from a reservoir and was divided into four

branches, each leading to a pulmonary vein through which the flow entered the chamber.

The flow in the branches was manually adjusted using four needle valves. The setup could

accommodate flow rates up to 350 LPH (liters per hour) in each branch. The direction and
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velocity of the flowing water accurately followed the physiological conditions. For simplic-

ity, a cylindrical chamber was chosen instead of a chamber with the exact geometry and

dimensions of the left atrium. The fluid within the chamber was drained through a hole

located at the bottom of the chamber, which matched the size of the mitral orifice of the left

atrium based on anatomical references. As also seen from the figure, an orifice was made on

the lateral surface of the chamber opposite to the pulmonary veins (simulating a transseptal

puncture) to allow for the passage of the catheter. This orifice was sealed using an 8-Fr

introducing sheath. Since the force sensor was not water resistant, force measurement was

done indirectly. An L-shaped rod was designed and 3D-printed to transmit the force from

inside the chamber to the outside. This rod, acting as a force transmitter, was securely

attached at one end to the force sensor. At the other end, the force transmitter was placed

in close proximity to (but not in contact with) the inner lateral surface of the chamber and

in contact with the tip of the catheter.

3.3 Results and discussion

3.3.1 Validation of the model-based method for shape reconstruc-

tion

To assess the accuracy of the model-based method proposed in Section 3.2.1, a comparative

study is performed against a finite element method (FEM) model created in Abaqus. More

precisely, the deformed shape of a soft robot, which is represented as a cantilevered beam of

length L = 40 mm and flexural rigidity EI = 750 N.mm2, was obtained for various loading

cases, using the present model and the FEM model. Six loading cases were selected from

many, which are shown schematically in Figure 3.5. As seen, these six cases include a good
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Figure 3.4: Experimental apparatus for examining the effects of fluid flow on the force acting on
the tip of ablation catheters. In the figure, red arrows show the flow direction from the reservoir to
the chamber while the blue arrow shows the flow direction from the chamber back to the reservoir
[64].

mix of tip forces, tip moment, and distributed load.

Figure 3.5 shows the comparison between the deformed shapes obtained from the pro-

posed model (represented by solid lines) and those obtained from the FEM model (repre-

sented by markers). Overall, a very good agreement is observed between the results from the

two models, even when deformations are large, such as in case 3 or case 6. A quantitative

comparison is also made, where the tip displacement of the beam in the x- and y-directions,

obtained from the two models are compared; see Table 3.1. As seen, the error for the x-

component of the tip displacement is around 2% and that for the y-component is below 5%.

Generally, a higher error is observed when the deformation is larger. From the results, one

may conclude that the model based on the 3rd-order (or cubic) Bézier curve may be still
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Figure 3.5: Validation of the model-based method: (a) six different load cases, and (b) comparison
between deformed shapes obtained from the present model (solid line) and those from the FEM
model (markers).
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Table 3.1: Tip displacement of a cantilevered Euler-Bernoulli beam (EI = 750 N.mm2, L = 40
mm) for the load cases shown in Figure 3.5. The column called ‘Bézier’ provides the numerical
values obtained from the model-based method while the column called ‘FEM’ gives the results from
Abaqus.

Case Loads Tip displacement x (mm) Tip displacement y (mm)
fx (N) fy (N) M (N.mm) q (N/m) Bézier FEM Error % Bézier FEM Error %

1 0 0 10 0 38.12 38.13 0.03 10.43 10.42 -0.10
2 0 0 0 -20 39.02 38.94 -0.21 -8.59 -8.56 -0.35
3 0.1 0.1 20 -10 34.70 34.01 -2.03 16.59 16.25 -2.09
4 0.1 -0.1 20 -20 37.91 37.55 -0.96 9.76 9.71 -0.51
5 0.1 -0.2 -10 10 38.05 37.22 -2.23 -10.45 -9.99 -4.60
6 0.2 0.2 -20 -20 33.33 32.76 -1.74 -19.13 -18.22 -4.99

reliable even when the tip displacement of the robot is almost 50% of the length while for

larger displacements, a higher-order Bézier curve should be employed in the modeling to

ensure accuracy.

Using the model, the average run-time for a case was approximately 0.9 s (equivalent to

∼ 1 Hz) which is far from the requirement of 10-30 Hz for the use in clinical applications

[75]. Thus, despite the reasonable level of accuracy demonstrated by the model, it is not

ready yet for the use in real-world scenarios.

3.3.2 Numerical results from the learning-based model for shape

reconstruction

Table 3.2 provides the results from training, validation, and testing the learning-based model

for shape reconstruction, described in Section 3.2.2. As seen, the mean squared error (MSE)

is always in the order of 10−5. In addition, the correlation coefficient R is very close to 1,

which indicates a strong linear relationship between predicted and target values. Both these

measures confirm the accuracy of the model.

Figure 3.6 shows the variation of the MSE as a function of the number of epochs for both

the training and testing phases. An epoch refers to the training the neural network (NN)
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Table 3.2: Mean squared error (MSE) and correlation coefficient (R) for training, validation and
testing the BNN for shape reconstruction.

MSE R
# Train 908 6.8161e-5 0.9996
# Validation 194 5.0733e-5 0.9998
# Test 194 3.3425e-5 0.9999

Figure 3.6: Evolution of the mean squared error during training and testing of the shape recon-
struction NN model. The inset shows the correlation between predicted and target values.

with the entire training data for one cycle. As seen from the figure, the MSE for testing (red,

online) goes below 10−4, relatively fast (i.e., after first few epochs). The MSE for training

(blue, online) reaches almost a plateau after 40 epochs. Interestingly, the MSE of the test

data is almost always below that of the train data. This means that the NN performs even

better on unseen data. The inset to the figure shows the quality of the fitness of the model

predictions to the target values. As seen, the predictions fit very well to the target values.

The average run-time for the NN model was found to be approximately 0.02 s (equivalent

to 50 Hz) which is even above the required range for clinical applications. Given that the

model is both accurate and fast, it is suitable for the use in real-world scenarios.
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3.3.3 Numerical results from the learning-based model for force

estimation

Table 3.3 provides the values of the MSE and R for training, validation and testing the

learning-based model for force estimation, described in Section 3.2.3. As seen, the MSE is

in the order of 10−5 in all the three phases, which is an order of magnitude higher than the

MSE values obtained for the shape reconstruction model (cf. Table 3.2). The MSE slightly

increases from training to testing, which is a quite common behaviour. The correlation

coefficient R is also fairly close to 1, which confirms a strong linear relation between predicted

and target values. Both MSE and R values confirm the accuracy of the learning-based model

for force estimation.

Figure 3.7 shows the evolution of the MSE as the number of epochs is increased. As

seen, much more number of epochs are required to converge to an acceptable accuracy

when compared to the model in Section 3.3.2. The inset also indicates a fairly good linear

correlation between predicted and target values.

Table 3.3: Mean squared error (MSE) and correlation coefficient (R) for train, validation and test
of the BNN for force estimation.

MSE R
# Train 908 1.3741e-5 0.9992
# Validation 194 1.5443e-5 0.9991
# Test 194 1.9129e-5 0.9990

Comparison with in vitro experiments

The experimental apparatus described in Section 3.2.4 was employed to measure the tip

force of the catheter (at the contact point between the catheter and the force transmitter)

at different flow rates. These measurements are compared against predictions made by the
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Figure 3.7: Evolution of the mean squared error during training and testing of the force estimation
NN model. The inset shows the correlation between predicted and target values.

learning-based model.

Figure 3.8(a) shows a top-view of the chamber. As seen, the tip of the catheter is in

contact with the tip of the force transmitter which has been placed in the vicinity of the

left inferior pulmonary vein. This is a common ablation area during actual operations. In

this experiment, the flow into the chamber is only through the right inferior pulmonary vein.

Four different flow rates 200, 250, 300, and 350 LPH were tested. The selection of these

flow rate values is grounded in the actual blood flow rate entering the left atrium through

the four inlets known as pulmonary veins [70] and the value of Mtip is 12 N.mm2. Before

doing measurements for different water flow rates, the contact force was measured when the

chamber was empty, i.e. the contact force in the air. Ideally, the deformed shape of the

catheter had to be taken in air and for all four flow rates. However, only the deformed shape

of the catheter in the air could be retrieved from the stored data. Given that the shape of

the catheter does not significantly change due to the flow, this same image will be used for

all the cases.
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The shape of the catheter was extracted using PlotDigitizer from the image shown in

Figure 3.8(a). The digitized shape is represented by a blue curve in Figure 3.8(b). Using

MATLAB, a cubic Bézier curve was fitted to the digitized shape, which is represented by a

green curve in the figure. As seen, the quality of the fitting is quite well close to the tip of the

catheter while it might be possible to improve it close to the fixed end using a higher-order

Bézier curve. Nevertheless, this is beyond the scope of the present work and is deferred to

a future study. The forces acting at the tip of the catheter are normal and tangential to

the tip. These forces are represented by Fy,exp and Fz,exp, respectively. The forces and the

flow direction are described in the coordinate system attached to the catheter, as shown in

Figure 3.8(c).

Figure 3.9 shows the comparison between experimentally measured and numerically ob-

tained tip force in air and in the presence of fluid flow. The figure shows the variation of (a)

fx, and (b) fy as a function of the flow rate. Considering the experimental results, both fx

and fy are decreased as the flow rate is increased. This can be understood when considering

the direction of flow with respect to the direction of tip force. For example, fx has a positive

value in air; a flow with the direction shown in Figure 3.9(c) will generate a force in the

x-direction, the reaction of which would be acting at the tip in the opposite direction. Thus,

fx in the presence of fluid flow would be smaller than fx in air. As the flow rate is increased,

the fluid flow force and thus the opposing reaction force become stronger, and as a result,

fx is further reduced.

As also seen from the figure, fx and fy obtained form the learning-based model follow a

similar trend as observed form experimental results. Interestingly, the model always overes-

timates fx and fy. As the flow rate is increased, the difference between experimental and

numerical values becomes smaller.

Table 3.4 provides a more detailed quantitative comparison between experimental and
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(a)

Flow

(b) (c)

Figure 3.8: In vitro experiments used for the validation of the force estimation NN model: (a)
top-view of the chamber, showing the position of the tip of the catheter and the flow direction, (b)
the digitized shape of the catheter (black) versus the fitted curve (dashed red), and (c) the forces
measured by the force sensor (fy,exp and fz,exp) and the flow direction, described in the Cartesian
coordinate system attached to the catheter, (x, y); the angles are: α = 35◦, and β = 40◦.
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(a)

(b)

Figure 3.9: Comparison between tip force components measured experimentally via a force sensor
(blue) and those estimated using the force estimation NN model (orange) for no flow (air) as well
as four different flow rates.

numerical results. Both absolute values of the tip force components fx and fy, as well as

relative errors δx = 100× (fx,NN − fx,exp)/fx,exp and δy = 100× (fy,NN − fy,exp)/fy,exp were
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Table 3.4: Comparison between experimental and numerical values from the force estimation NN
model; fx and fy are the tip force components in the x- and y-directions, respectively; δx and δy
represent the relative errors between the two sets for fx and fy, respectively.

Flow Rate (LPH)
Tip force (N) No flow (air) 200 250 300 350

Experiment
fx,exp 0.1007 0.0894 0.0759 0.0509 0.0204
fy,exp -0.2399 -0.2343 -0.2238 -0.1991 -0.1658

Neural Net.
fx,NN 0.1714 0.1032 0.0863 0.0625 0.0263
fy,NN -0.3198 -0.2882 -0.2754 -0.2174 -0.1881

Rel. Error (%)
δx 46.07 15.49 13.59 22.65 28.61
δy 33.29 22.99 23.05 9.20 13.43

reported. As seen, except for the results in air, the learning-based results are within 30%

of the experimental results. Overall, a better agreement is seen for fy values. Given that

the NN model has been trained using the data obtained from a theoretical model (and not

actual experimental data), the level of agreement is fair. Several sources of uncertainty exist

in the theoretical model, which could be the reason for the discrepancy between experimental

and numerical results. For example, the flow field inside the chamber is highly uncertain.

The flow expands upon entering the chamber, it is confined, and complex vortical structures

are likely to exist. All these combined, make the flow velocity (and thus the fluid force)

magnitude, direction, and distribution non-uniform. In contrast, in the theoretical model,

the force due to fluid flow was assumed to be in a fixed direction and uniformly distributed

over the catheter. Another source of uncertainty and a likely reason for the discrepancy is

how much the shape of the catheter varied with the variation of the flow rate. As discussed

previously, a single image (deformed shape in air) was fed to the NN model regardless of the

flow rate.
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3.4 Conclusions

The present study developed two novel, physics-informed neural network models that hold

significant potential for various applications in the field of soft robotics, particularly in

minimally invasive surgery. The first model could accurately (MSE ∼ 10−5) and quickly

(refresh rate ∼ 50 Hz) reconstruct the shape of the inserted robot within the body when

the information on the tip force, tip moment, and distributed load due to fluid flow are fed

to the model. Such a model could potentially obviate the need for medical imaging during

operations, thus making them safer and more affordable. The second NN model offered the

ability to predict forces based on the shape of the robot (i.e., artificial force sensing), making

it highly valuable in applications where precise force control is critical. Such a model could

greatly contribute to the development of sensorless or sensor-free technologies which again

aim to reduce the cost of surgical operations. The results from this model were compared

with those from a one-of-a-kind experimental apparatus developed to examine the effects

of fluid flow on ablation catheters. The two sets of results were similar in trend while the

relative error was found to be in the range of 9-46%.

The data needed for training, validation, and testing the two NN models was collected

from solving a novel theoretical model. The novelty mainly lies in the inclusion of fluid

flow effects, which had been largely neglected in previous studies despite their substantial

significance. The theoretical model was developed based on the Euler-Bernoulli beam theory,

employing the moment balance equation, and the use of cubic Bézier curve to approximate

the shape of the soft robot. The resulting equations were solved through a minimization

approach. The results from the theoretical model were validated against those from a finite

element model, with a maximum relative error below 5%.

Considering the real-time nature of shape and force control requirements in minimally
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invasive surgery, the two NN models hold the potential to serve as versatile tools for ad-

dressing various medical needs. Moving forward, further improvements to the models are

anticipated. For example, a fresh experimental campaign will be conducted to collect test

data for training the NN models more comprehensively. In addition, the theoretical model

will be improved, for example, by using higher-order Bézier curves for shape approximation,

which eventually help to get more accurate NN models. By making such improvements, sig-

nificant contributions are expected to the advancement of the field of soft robotics in medical

applications.
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Chapter 4

Conlcusion and Future works

4.1 Conclusions

This thesis brings together two important studies concerning medical applications. The first

study focused on the experimental examination of the fluid effects on catheters in the left

atrium of the heart. By testing catheters in varying flows, we learned that fluid dynamics can

change forces on the catheters, sometimes by a large amount. It was found that, depending

on the location of the tip of catheter (i.e. the ablation site) and the prevalent flow direction,

the fluid flow may reduce or increase the no-flow contact force. And this negatively affects

both the efficiency and stability of the contact (or tip) force in the ablation procedure. The

results from the experimental study indicated the importance of including fluid flow forces

in the mechanistic models developed for shape reconstruction or tip-force estimation.

In the second study, two novel neural network based models were developed for soft

robots in contact with fluid flow. One model could recreate a robot’s shape in real time,

given the loads acting on it.Such a model can potentially obviate the need for imaging,

thereby mitigating health risk due to exposure to medical scans in surgical applications.
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The other model could do real-time force estimation. This type of models can significantly

contribute to the development of sensorless soft robots which are expected to be very cost

effective. Comparing the models with real tests showed they’re promising for real-world use.

Behind all this progress was a new mechanistic model took into account the effect of

fluid flow. The model was validated against a finite element model. Although the model

was reasonably accurate, it was not real-time fast. considering the typical range of forces

and fluid flow in the ablation procedure, a fairly good amount of data was created via the

model, which was then used for developing NN based models. Developing more accurate

mechanistic models could potentially leads to the development of more reliable NN based

model.

We see how these studies fit into the fast pace of surgerical advancement. Our models

could help make surgeries safer and more effective. Looking forward, we plan to make our

models even better by collecting more data and refining our theory, and excited about what

lies ahead in the world of medical robotics.

4.2 Future Work

Herein are presented several recommendations for prospective endeavors that may extend

the trajectory of my research in a supplementary manner.

In the context of the initial phase, it is proposed that subsequent investigations could be

pursued:

• The chamber utilized in the experiments did not accurately represent the mechanical

properties and the geometry of the left atrium. Consequently, in the forthcoming

phase of the investigation, a flexible chamber which also precisely emulates the left

atrium’s geometry will be used. This approach can increase the level of realism in fluid
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dynamics, resulting in more accurate findings.

• The flow was maintained in a steady-state condition as a simplification measure. To

enhance the accuracy of the flow representation, it is suggested that a pulsatile flow,

akin to the human body’s circulatory rhythm, be introduced into the system. This

approach aims to bring the setup closer to the physiological conditions of the actual

human body.

In the context of the second part of this research, the following studies may be put forth

as a progression of my work:

• In cases where soft robots experience significant deformation and intricate forces and

moments, employing higher order Bézier curves becomes essential for enhanced pre-

cision. While this may lead to increased computational requirements, the growing

dataset, when trained using neural network methods, has the potential to alleviate

this complexity.

• The methodology can identically be extended into a three-dimensional framework,

advancing our alignment with the physiological complexities of the human body. In this

context, all three equations governing moment equilibrium possess non-trivial values,

demanding their concurrent resolution and rigorous validation.
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[43] E. Franco, D. Rodŕıguez Muñoz, R. Mat́ıa, A. Hernández-Madrid, I. Sánchez Pérez,

J. L. Zamorano, and J. Moreno. Contact force-sensing catheters: performance in

an ex vivo porcine heart model. Journal of Interventional Cardiac Electrophysiology,

53:141–150, 2018.

[44] K. C. Galloway, Y. Chen, E. Templeton, B. Rife, I. S. Godage, and E. J. Barth. Fiber

optic shape sensing for soft robotics. Soft robotics, 6(5):671–684, 2019.

[45] J. Garcia, H. Sheitt, M. S. Bristow, C. Lydell, A. G. Howarth, B. Heydari, F. S.

Prato, M. Drangova, R. E. Thornhill, P. Nery, et al. Left atrial vortex size and

83



velocity distributions by 4d flow mri in patients with paroxysmal atrial fibrillation:

Associations with age and cha2ds2-vasc risk score. Journal of Magnetic Resonance

Imaging, 51(3):871–884, 2020.

[46] P. C. Giulianotti, F. Sbrana, F. M. Bianco, E. F. Elli, G. Shah, P. Addeo, G. Car-

avaglios, and A. Coratti. Robot-assisted laparoscopic pancreatic surgery: single-

surgeon experience. Surgical endoscopy, 24:1646–1657, 2010.

[47] Z. Gong, J. Cheng, K. Hu, T. Wang, and L. Wen. An inverse kinematics method of

a soft robotic arm with three-dimensional locomotion for underwater manipulation.

In 2018 IEEE International Conference on Soft Robotics (RoboSoft), pages 516–521.

IEEE, 2018.

[48] S. Grazioso, G. Di Gironimo, and B. Siciliano. A geometrically exact model for soft

continuum robots: The finite element deformation space formulation. Soft robotics,

6(6):790–811, 2019.

[49] C. Guo, X. Li, C. Li, Y. Xu, M. Cai, and X. Xu. A new minimally invasive surgery of

hallux valgus: Technique and preliminary outcomes. 2020.

[50] H. Guo, F. Ju, Y. Cao, F. Qi, D. Bai, Y. Wang, and B. Chen. Continuum robot shape

estimation using permanent magnets and magnetic sensors. Sensors and Actuators A:

Physical, 285:519–530, 2019.
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[53] R. Hao, N. L. Poirot, and M. C. Çavuşoğlu. Analysis of contact stability and contact

safety of a robotic intravascular cardiac catheter under blood flow disturbances. In

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 3216–3223. IEEE, 2020.

[54] Y. He, L. Gao, Y. Bai, H. Zhu, G. Sun, L. Zhu, and H. Xu. Stretchable optical fibre

sensor for soft surgical robot shape reconstruction. Optica Applicata, 51(4), 2021.

[55] A. Hooshiar, N. M. Bandari, and J. Dargahi. Image-based estimation of contact forces

on catheters for robot-assisted cardiovascular intervention. In Hamlyn Symposium on

Medical Robotics, pages 119–120, 2018.

[56] A. Hooshiar, S. Najarian, and J. Dargahi. Haptic telerobotic cardiovascular inter-

vention: a review of approaches, methods, and future perspectives. IEEE reviews in

biomedical engineering, 13:32–50, 2019.

[57] A. Hooshiar, A. Sayadi, M. Jolaei, and J. Dargahi. Accurate estimation of tip force

on tendon-driven catheters using inverse cosserat rod model. In 2020 International

Conference on Biomedical Innovations and Applications (BIA), pages 37–40. IEEE,

2020.

[58] A. Hooshiar, A. Sayadi, M. Jolaei, and J. Dargahi. Analytical tip force estimation

on tendon-driven catheters through inverse solution of cosserat rod model. In 2021

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

1829–1834. IEEE, 2021.

85



[59] B. N. G. I. Isbister, A. An integrated kinematic modeling and experimental approach

for an active endoscope. Front. Robot. AI, 8, 2021.

[60] M. Ji, Q. Li, I. H. Cho, and J. Kim. Rapid design and analysis of microtube pneu-

matic actuators using line-segment and multi-segment euler–bernoulli beam models.

Micromachines, 10(11):780, 2019.

[61] A. S. John, I. Caturegli, N. S. Kubicki, and S. M. Kavic. The rise of minimally

invasive surgery: 16 year analysis of the progressive replacement of open surgery with

laparoscopy. JSLS: Journal of the Society of Laparoscopic & Robotic Surgeons, 24(4),

2020.

[62] M. Jolaei, A. Hooshiar, and J. Dargahi. Displacement-based model for estimation of

contact force between rfa catheter and atrial tissue with ex-vivo validation. In 2019

IEEE International Symposium on Robotic and Sensors Environments (ROSE), pages

1–7. IEEE, 2019.

[63] M. T. Kanada, A. Switching between continuum and discrete states in a continuum

robot with dislocatable joints. IEEE Access, 9:34859–34867, 2021.

[64] R. Khoshbakht, M. Kheiri, J. Dargahi, and A. Hooshiar. Effects of blood flow on the

tip contact force of cardiac ablation catheters. In 2022 IEEE International Symposium

on Robotic and Sensors Environments (ROSE), pages 1–7. IEEE, 2022.

[65] Y. Kim, G. A. Parada, S. Liu, and X. Zhao. Ferromagnetic soft continuum robots.

Science Robotics, 4(33):eaax7329, 2019.

[66] B. P. Krijthe, A. Kunst, E. J. Benjamin, G. Y. Lip, O. H. Franco, A. Hofman, J. C.

Witteman, B. H. Stricker, and J. Heeringa. Projections on the number of individuals

86



with atrial fibrillation in the european union, from 2000 to 2060. European heart

journal, 34(35):2746–2751, 2013.
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