
Passive IoT Device-Type Identification Using Few-Shot

Learning

Zineb Meriem Ferdjouni

A Thesis
in

The Concordia Institute
for

Information Systems Engineering (CIISE)

Presented in Partial Fulfillment of the Requirements
For the Degree of

Master of Applied Science (Information Systems Security) at
Concordia University

Montréal, Québec, Canada

June 2023

© Zineb Meriem Ferdjouni, 2023

C O N C O R D I A U N I V E R S I T Y
School of Graduate Studies

This is to certify that the thesis prepared

By:
Entitled:

Zineb Meriem Ferdjouni
Passive IoT Device-Type Identification Using Few-Shot Learning

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Information Systems Security)

complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 Chair
Dr. Suryadipta Majumdar

 External Examiner
Dr. Othmane Ait Mohammed

 Internal Examiner
Dr. Jun Yan

 Thesis Supervisor
Dr. Mourad Debbabi

Approved by
Dr. , Graduate Program Director

Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract for Masters

Passive IoT Device-Type Identification Using Few-Shot Learning

Zineb Meriem Ferdjouni

The ever-growing number and diversity of connected devices have contributed to rising
network security challenges. Vulnerable and unauthorized devices may pose a significant
security risk with severe consequences. Device-type identification is instrumental in reduc-
ing risk and thwarting cyberattacks that may be caused by vulnerable devices. At present,
IoT device identification methods use traditional machine learning or deep learning tech-
niques, which require a large amount of labeled data to generate the device fingerprints.
Moreover, these techniques require building a new model whenever a new device is intro-
duced. To address these limitations, we propose a few-shot learning-based approach on
siamese neural networks to identify IoT device-type connected to a network by analyzing
their network communications, which can be effective under conditions of insufficient la-
beled data and/or resources. We evaluate our method on data obtained from real-world IoT
devices. The experimental results show the effectiveness of the proposed method even with a
small amount of data samples. Besides, it indicates that our approach outperforms IoT
Sentinel, the state-of-the-art approach for IoT fingerprinting, by a margin of 10% additional
accuracy.

iii

Dedication

To my beloved family, I dedicate this thesis to each and every one of you, for your unwa-

vering love, encouragement, and support throughout my academic journey.

To my father, thank you for instilling in me a passion for learning and for always believ-

ing in me, even when I doubted myself. Your unwavering belief in me and my abilities has

given me the confidence to pursue my dreams and has inspired me to push myself beyond

my limits. Your support, guidance and wisdom have been invaluable to me. Your hard

work and sacrifices have allowed me to pursue my dreams, and for that, I appreciate you

and I will be forever grateful.

To my mother, thank you for being my rock. Your unwavering support and encourage-

ment have helped me to overcome even the toughest of challenges. I will never forget the

countless sacrifices you have made to ensure our happiness and success. Thank you for

always being there for us.

To my brother, thank you for being my sounding board and my confidante. Your unwa-

vering support and encouragement have been a source of strength to me.

To my husband, thank you for always standing by my side, even when the demands of

academia made it difficult. Your love, patience, and understanding have been a constant

source of comfort to me.

To my son, thank you for being the light of my life and the reason why I strive to be the

best version of myself every day. Your presence reminds me of the joy and wonder of life,

and I am forever grateful for the opportunity to be your mother. I am blessed to have such

iv

an amazing family, and I dedicate this thesis to each and every one of you.

To my supervisor, thank you for your guidance and support throughout my academic

journey. From our first meeting, you have been a constant source of encouragement and

support. Your commitment to my success has gone above and beyond what I could have

ever expected from a supervisor. Your passion for research and dedication to your students

have inspired me to strive for excellence in my work. I am so grateful for the time and effort

you have invested in my development as a researcher. As I complete my thesis, I want to

take this opportunity to thank you for your guidance, support, and mentorship throughout

this journey. Your impact on my academic and personal growth has been immeasurable,

and I will always be grateful for your contribution to my success. It has been an honor and

a privilege to work with you.

With deepest gratitude and appreciation,

Meriem

v

Acknowledgments

I would like to express my appreciation and gratitude to everyone who has contributed to

the successful completion of this thesis. Foremost, I would like to express my heartfelt

appreciation and gratitude to my supervisor, Dr. Mourad Debbabi who has guided and

supported me throughout my academic journey. His mentorship and expertise have been

invaluable in shaping my research and helping me to achieve my goals.

I am also grateful to the members of my thesis committee, Dr. Jun Yan, Dr. Suryadipta

Majumdar and Dr. Otmane Ait Mohamed for their time and efforts in reviewing and pro-

viding feedback on my work.

I would like to extend my appreciation to my colleagues and friends in the Security Re-

search Centre (SRC), Dhiaa Rebbah, Badis Racherache, Abdullah Qasem, ElMouatez Bil-

lah Karbab, and Pratyusha Bhattacharya, who have supported me throughout my academic

journey. Their encouragement and support have been a source of strength and motivation

during these challenging times.

Finally, I would like to acknowledge the financial support provided by NSERC, which

has made this research possible.

To everyone who has contributed to this thesis in one way or another, I offer my sincere

thanks and appreciation. Your support has been instrumental in helping me achieve this

significant milestone in my academic journey.

vi

Table of Content

Dedication . v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Contributions . 4

1.4 Thesis Organization . 5

2 Background 6

2.1 Internet of Things . 6

2.1.1 Overview . 6

2.1.2 Internet of Things Security . 8

2.2 Device Fingerprinting . 12

2.2.1 Definition . 12

2.2.2 Significance and Applications . 14

2.3 Machine Learning and Deep Learning Techniques 18

2.3.1 Supervised Machine Learning . 18

2.3.2 Unsupervised Machine Learning 20

vii

2.3.3 Deep Learning . 21

3 Literature Review 28

3.1 IoT Device Fingerprinting . 28

3.1.1 IoT or non-IoT . 29

3.1.2 IoT Device-Type Fingerprinting 30

3.1.3 IoT Device Fingerprinting . 31

3.2 Machine Learning for IoT Fingerprinting 32

3.2.1 Supervised Machine Learning . 32

3.2.2 Unsupervised Learning . 34

3.2.3 Semi-Supervised Learning . 34

3.2.4 Deep Learning . 35

3.2.5 Conclusion . 37

4 Methodology 38

4.1 Approach Overview . 38

4.2 Feature Extraction . 39

4.3 Optimized Feature Selection . 40

4.4 IoT Device Identification . 44

4.4.1 IoT Detection . 44

4.4.2 IoT Device-Type Identification . 46

4.5 Conclusion . 49

5 Experimental Results and Analysis 51

5.1 Experimental Setup . 51

5.2 Dataset . 52

5.3 Data Preparation . 59

5.3.1 Data Labeling, Splitting, and Preprocessing 59

viii

5.4 Feature Selection . 61

5.4.1 Unsupervised Feature Selection 62

5.4.2 Supervised Feature Selection . 64

5.4.3 Findings . 69

5.5 Models Training and Performance Evaluation 72

5.5.1 Evaluation Metrics . 72

5.5.2 IoT Detection . 72

5.5.3 IoT Device-Type Identification . 78

5.6 Comparison with Existing Approach . 90

6 Conclusion 95

Bibliography 97

ix

List of Figures

1 Global IoT Market Size by 2026 [1]. 7

2 Mirai Attack Process [2]. 10

3 A Simple FFNNs Architecture with Two Hidden Layers. 22

4 1D-CNN Architecture with Two Convolutional Layers [3]. 23

5 LSTM Cell [4]. 25

6 The Encoder-Decoder Architecture of the Transformer [5]. 27

7 Taxonomy of IoT Device Fingerprinting Techniques 32

8 Taxonomy of ML/DL for IoT Device Fingerprinting 36

9 Approach Overview . 39

10 Hybrid Feature Selection Method Overview. 42

11 Architecture of IoT Device Inference Engines 44

12 Siamese Neural Network Architecture [6]. 48

13 Correlation Matrix Depicting the Correlation among Features for IoT De-

tection . 62

14 Correlation Matrix Depicting the Correlation among Features for IoT

Device-Type . 63

15 The correlation between Fwd Packet Length Mean and Fwd Segment Size

Avg . 64

16 Importance of Each Feature with Respect to the Target Variable (IoT or

non-IoT) for IoT Detection. 66

x

17 Importance of Each Feature with Respect to the Target Variable (Device-

Type) for IoT Device-Type Identification. 67

18 Plot of Model Accuracy versus Number of Features 69

19 IoT Detector Results. 73

20 IoT Detector Confusion Matrix. 74

21 IoT Detector Confusion Matrix After ClusterCentriods Re-Sampling. . . . 76

22 Random Forest Performance comparison after Applying ClusterCentriod

Re-Sampling. 77

23 The Performance of Binary Classifiers including RF and GB, Compared

with One-Class Classifier SVM. 77

24 TNN Loss Curve. 83

25 PCA Embedding Visualization of TNN. 83

26 TNN Accuracy Curve. 84

27 1D-CNN Accuracy Plot over 150 Epochs. 86

28 PCA Embedding Visualization of 1D-CNN. 87

29 1D-CNN Loss Curve Plot. 87

30 DFFNN Accuracy Plot over 150 Epochs. 88

31 PCA Embedding Visualization of DFFNN. 89

32 DFFNN Loss Curve over 150 Epochs. 89

33 Scatter showing that IP Feature value is 0 for All IoT Types. 91

34 Scatter showing that ICMP Feature value is 0 for All IoT Types. 91

35 Scatter showing that IP_Padding Feature value is 0 for All IoT Types. . . . 92

36 Feature Selection on IoT Sentinel [7] Features. 92

37 Confusion Matrix for a One-vs-All Random Forest Classification

Model.The x-axis and y-axis Represent the Predicted and Actual or True

Class Labels, Respectively. 93

xi

List of Tables

1 Common Attacks in IoT Network . 11

2 IoT Devices Used in this Study and Their Connectivity Technologies [7]. . 53

3 The Initial Set of Features Extracted by CICFlowMeter. 54

4 Final Subset of Selected Features for IoT Detection. 70

5 Final Subset of Selected Features for IoT Device-Type Identification. 71

6 IoT and Non-IoT Dataset Overview. 73

7 IoT and Non-IoT Dataset Overview after Applying ClusterCentriod Algo-

rithm for Re-sampling. 76

8 Considered values for each hyper-parameter in the experimental study. . . . 80

9 Best Hyper-parameters for each Deep Learning Model. 80

10 Impact of Batch Sizes on TNN over 50 Epochs. 82

11 Impact of Batch Sizes on TSNN over 100 Epochs. 82

12 Impact of Batch Sizes on TSNN over 150 Epochs. 82

13 Impact of Batch Sizes on RNN over 50 Epochs. 84

14 Impact of Batch Sizes on RNN over 100 Epochs.

15 Impact of Batch Sizes on RNN over 150 Epochs.

. 84

. 85

16 Impact of Batch Sizes on 1D-CNN over 50 Epochs. 85

17 Impact of Batch Sizes on 1D-CNN over 100 Epochs.

18 Impact of Batch Sizes on 1D-CNN over 150 Epochs.

. 86

. 86

19 Impact of Batch Sizes on FFDNN over 50 Epochs. 87

xii

20 Impact of Batch Sizes on FFDNN over 100 Epochs. 88

21 Impact of Batch Sizes on FFDNN over 150 Epochs. 88

22 Set of Features used in IoT Sentinel [7]. 90

xiii

Chapter 1

Introduction

This chapter provides an overview of the research study, presenting the motivation, problem

statement, contribution, and thesis organization.

1.1 Motivation

Nowadays, the number of connected devices in modern homes, industrial systems, and or-

ganizations continues to expand with the rapid growth of Internet of Things (IoT) devices.

The increasing convergence of Information Technology (IT) and Operational Technology

(OT) towards IoT also led to the rise of Industrial IoT (IIoT) as companies are continu-

ously engaging in this new paradigm. IHS claims that more than 75 billion IoT devices will

be connected in 2025 [8]. Moreover, to improve productivity and optimize expenses and

profits, organizations are widely accepting and incorporating the Bring Your Own Device

(BYOD) policy in the workplace, which is also creating a massive spike of interconnected

devices. Unfortunately, this technological advancement is a double-edged sword, while

it can be used to enhance productivity and solve problems, it can present serious security

issues and challenges as these devices can be accompanied by a number of vulnerabilities

1

and security risks whether the network is based on wireless or wired technologies. How-

ever, many of these vulnerabilities remain unpatched [9] and thus leave devices open to

identity theft and can be exploited to connect a malicious device or impersonate a legiti-

mate device, in many cases, by spoofing the Media Access Control (MAC) address or/and

Internet Protocol (IP) address, that would eventually allow an adversary or an outsider to

gain access to the targeted network. Once the access is gained, the adversary can perform

several attacks. If these attacks are successfully launched, it may be possible and relatively

easy to compromise a security aspect such as confidentiality, data integrity, origin integrity,

or availability. For instance, confidentiality may be compromised when a rouge access

point attack is successfully launched. Adversaries can install a malicious AP to imperson-

ate a legitimate AP, and thus a Man-In-The-Middle (MITM) attack can be launched. Also,

over time, attackers can collect confidential information that they can use for malicious

purposes. As stated in [10], Mirai malware infected more than 600,000 IoT-vulnerable

devices that were used to launch distributed denial-of-service (DDoS) attacks. Moreover,

ZDNet and Cynerio reported that healthcare systems could be one of the most impacted

by security risks. The latter found that more than half of IoT and the Internet of Medical

Things (IoMT) are vulnerable, potentially impacting healthcare organizations and patients.

To protect the network against such attacks, an authentication mechanism needs to be

applied. Unfortunately, traditional cryptographic-based solutions alone may enable the at-

tacker to gain network access using broken encryption keys or by spoofing a legitimate

device’s identity due to authentication weakness [11, 12], while security protocols are also

prone to some attacks [13]. In addition to existing cryptographic-based approaches, re-

searchers have proposed authentication solutions based on fingerprinting to add a security

layer to enhance network security. Nevertheless, most of the existing fingerprint-based

authentication systems support user authentication only. To build a robust authentication

system and keep the attack surface as small as possible, device authentication is essential

2

before access to resources, services, or networks can be granted. However, authenticating

devices based on their MAC address to grant devices access to the network is also limited

since MAC addresses are visible and prone to theft. Therefore, there is a strong need to

extend the fingerprinting approach to devices for identification and access management that

can help organizations manage and secure the network without considering the IP or MAC

addresses. Moreover, device fingerprinting techniques may be leveraged for other security

purposes, such as anomaly detection and forensics (a detailed application overview will be

provided in Section 2. Motivated by the above, it was of interest to investigate device fin-

gerprinting in order to prevent such attacks for achieving network security. In this research,

we focus on IoT devices, and the main goal is to develop a passive identification framework

using machine learning techniques. Motivated by the above, it was of interest to investigate

device fingerprinting in order to prevent such attacks for achieving network security. In this

research, we focus on IoT devices, and the main goal is to develop a passive identification

framework using machine learning techniques.

1.2 Problem Statement

IoT devices are rapidly permeating modern society, from personal to industrial usage. With

the increasing number of connected devices, security issues have also been an increasing

concern. A vulnerable device may be maliciously exploited and may eventually result in

significant damage; hence IoT device-type identification is a crucial matter to investigate.

In this thesis, we aim to design and implement a framework that allows us to correctly and

automatically detect and distinguish IoT devices from non-IoT, and if detected as IoT; we

identify the IoT device-type. Particularly, we leverage deep learning techniques to build a

system capable of identifying the types of IoT devices based on network traffic analysis,

even in the presence of encryption.

In this thesis, we seek to answer the following research questions:

3

• How to identify the best set of features that can correctly identify a device?

• How to distinguish between IoT devices and non-IoT devices?

• How can we leverage machine learning techniques to identify IoT device types?

• When an IoT device connects to a network, can we accurately identify the device-

type?

For a network-connected device, our problem can be defined into two sub-problems as

follows:

IoT Detection

In this phase, we seek to detect the presence of an IoT device by deciding whether the

traffic is generated from an IoT or non-IoT, which helps us exclude non-IoT devices.

This is a binary classification problem. Upon IoT device detection, IoT device-type

identification is conducted.

IoT Device-Type Identification

Focusing on IoT devices, we seek to determine the device type that has likely generated

a given traffic. This is One-to-Many mapping of a given device against a list of known

devices.

1.3 Contributions

In this thesis, the contributions are as follows:

1. We design and provide an automatic solution for feature selection to identify the best

set of features.

2. We design and implement an IoT device detection model based on deep learning.

4

3. We design and implement a realistic and effective novel deep learning based model

using network traffic flows for device-type identification.

4. Models performance is evaluated on a real IoT dataset.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides background on IoT secu-

rity, device fingerprinting, and presents an overview of different cyberattacks that may be

prevented using device fingerprinting and its different applications. Chapter 3 summarizes

and highlights recent related work. Chapter 4, describes the methodology, including the re-

search design and deep learning techniques used for IoT identification.Chapter 5 presents

the description of the dataset, implementation details, and illustrates the experiments and

results. Finally, Chapter 6 concludes this thesis and discusses future work.

5

Chapter 2

Background

This chapter introduces the concepts discussed in this thesis. We also discuss IoT security

and its implication for IoT device fingerprinting. For the rest of this thesis, we use the terms

"device identification" and "device fingerprinting" interchangeably.

2.1 Internet of Things

2.1.1 Overview

The term "Internet of Things" (IoT), introduced by Kevin Ashton in 1999, refers to a net-

work of interconnected devices, vehicles, buildings, and other objects embedded with sen-

sors, actuators, and software that enable them to transfer and exchange data [14]. These

devices can range from simple household appliances like thermostats and light bulbs to

complex industrial machinery and autonomous vehicles. IoT devices play an important

role in the digital transformation of various industries and the evolution of the information

society. The prevalence of IoT devices is rapidly growing, and such devices are deployed in

a wide range of applications and permeated various sectors, including smart homes, smart

cities, smart grids, automobiles, healthcare, transportation and manufacturing. As depicted

6

in Figure 1, the IoT market value is projected to grow from 157 billion USD in 2016 to 771

billion USD by 2026 [1]. McKinsey [15] estimates that 127 new IoT devices connect to the

Figure 1: Global IoT Market Size by 2026 [1].

internet every second. Experts predict that the interconnected devices will reach 43 billion

by 2023 [16], more than 75 billion in 2025 [17], and up to 500 billion by 2030 [1]. IoT de-

vices can be broadly categorized into three classes based on their scope and functionality::

1) Consumer IoT, 2) Industrial IoT, and 3) Commercial IoT.

Consumer IoT

Consumer IoT refers to inter-connected devices designed for personal use to enhance con-

venience, comfort, and efficiency in daily life. Examples range from personal and wearable

devices, such as smartwatches, to home devices and appliances (e.g., cameras, smart lamps,

refrigerators, heaters, etc.).

Commercial IoT

7

Commercial IoT focuses on integrating IoT technologies into businesses and various com-

mercial environments. This sector includes retail, healthcare, transportation, hospitality,

and other industries where IoT devices and systems are leveraged to optimize operations,

enhance customer experiences, and drive innovation. Commercial IoT applications range

from inventory management and supply chain optimization to intelligent surveillance sys-

tems, smart retail solutions, and real-time asset tracking. By harnessing the power of IoT,

commercial enterprises can achieve increased operational efficiency, cost savings, and im-

proved decision-making capabilities.

Industrial IoT

The Industrial Internet of Things (IIoT), also known as the Industrial Internet, represents

the application of IoT in industrial settings, such as manufacturing plants, energy grids,

logistics, supply chain management, and critical infrastructure. This integration of IoT

devices and industrial systems enables interconnection among industrial devices and pro-

cesses to analyze, automate, monitor, and exchange system information, providing the abil-

ity to enhance industrial productivity and manufacturing across several industries such as

healthcare, transportation, oil and gas, aviation, energy/utilities, etc.

2.1.2 Internet of Things Security

As the number of IoT devices continues to grow, so do the opportunities and challenges

that come with them. IoT has ushered in a new era of connectivity and automation, where

devices seamlessly communicate and collaborate to enhance various aspects of our lives.

However, the widespread adoption of IoT devices has also introduced significant security

challenges. Many of these devices are often resource-constrained and have weak built-in

security, which poses challenges for implementing strong security measures in IoT devices,

making them susceptible to attacks. In addition, IoT networks expand the attack surface by

connecting multiple devices, creating potential entry points for adversaries, which can then

8

expose the network they are connected to. For example, the fish tank attack that helped hack

and access a secured computer. The attackers attempted to obtain data from a computer in

a casino by using a fish tank, and they managed to access 10 GB of data [18]. Furthermore,

in the race to bring innovative IoT devices to market quickly and at a competitive price.

This approach can leave IoT devices vulnerable to a wide range of attacks

IoT Vulnerabilities, Threats and Risks

An IoT vulnerability is a weakness or flaw in the design, implementation, or deployment

of IoT devices, systems, or networks that can be exploited. These vulnerabilities can range

from simple design flaws to more complex technical issues and have severe consequences

for individuals and organizations. From hacking and data breaches to device manipulation

and network disruption, the potential consequences of IoT security threats are significant

and far-reaching. The increasing number of security threats to IoT devices has already had

significant economic and privacy impacts for companies and users. In 2015, IBM Security

Intelligence reported a vehicle hack. By exploiting vulnerabilities, researchers managed to

control the vehicle, and they could send commands remotely through the CAN bus. Conse-

quently, They could control the steering wheel, engine, transmission, and braking system.

In 2016, Users reported unavailable websites, including Twitter, Netflix, Spotify, Airbnb,

Reddit, Etsy, SoundCloud, and The New York Times, as a result of distributed denial of

service (DDoS) attacks originating from vulnerable IoT devices, using Mirai botnet [19].

Figure 2 illustrates an overview of the Mirai attack.

In 2017, there was a 600 percent increase in IoT attacks [20]. According to [21], "The

FDA confirmed that St. Jude Medical’s implantable cardiac devices have vulnerabilities

that could allow a hacker to access a device. Once in, they could deplete the battery or

administer incorrect pacing or shocks. The devices, like pacemakers and defibrillators,

are used to monitor and control patients’ heart functions and prevent heart attacks." The

9

Figure 2: Mirai Attack Process [2].

article continued, "The vulnerability occurred in the transmitter that reads the device’s

data and remotely shares it with physicians. The FDA said hackers could control a device

by accessing its transmitter". Furthermore, HP revealed that 90 percent of IoT devices

collect personal information and 70 percent of the most commonly used devices contain

vulnerabilities [22].

Furthermore, experts expect the number of IoT-based attacks to grow as connected devices

continue to rise. In 2020, Zscaler [23] released a report about the emerging threats of IoT.

They blocked 14,000 IoT-based malware attempts per month, which increased by seven

times in less than a year [23].

Types of Attacks on IoT

Generally, cyber attacks on IoT can be classified into three main categories: 1) attacks that

compromise the confidentiality of the data, 2) attacks that compromise the integrity and

authentication of connections, and 3) attacks that compromise access control and availabil-

ity. The order in which security objectives are prioritized depends on the IoT sector, the

severity of the attack, the compromised asset, and the sensitivity of the information stored.

A non-exhaustive list of common attacks in IoT networks, along with their definition, is

presented in Table 1.

10

Table 1: Common Attacks in IoT Network

Attack

Identity
Spoofing

Sybil Attack

Denial of Ser-
vice (DoS)

Man-In-
The-Middle
(MITM)

Malware

Wormhole
Attack

Replay At-
tack

Fraud Attack

Unauthorized
Access

Definition

A computer has two traditional network identities, Internet Protocol (IP) and
Media Access Control (MAC). Identity spoofing is computer identity theft that
refers to the act of modifying the source IP/MAC address and imitating the
legitimate addresses to mask the attacker’s identity [24]. These addresses are
usually spoofed to launch more sophisticated attacks such as DoS.
Sybil attack is an impersonation attack where the attacker (the malicious node)
attempts to gain control by forging multiple nodes’ identities. Sybil attacks are
easy to launch in wireless sensor networks (WSN) [25]. The threat of this type
of attack to routing mechanisms was shown in [26]. The adversary can use the
fake identities to disrupt a system or to fake data such as voting results and
reputation evaluation.
DoS attack seeks to make a system, a machine, a network, or a service un-
available to legitimate users. This attack can be launched using spoofed source
IP addresses [27]. The malicious actor sends packets to a destination with the
forged IP address of the target system; if the receiver responds, the response will
be directed to the target. The ability to spoof the addresses is a core vulnerability
exploited by many DDoS attacks [27].
MITM attack is a common attack in the context of network security. It allows
the attacker to intercept a communication between two devices and lurk on the
network silently and undetected making him able to eavesdrop and thus result
in leaking valuable information and altering data [28].
Malware is an attack that infects networked devices (IoT) turning them into
botnets running Linux. This malware is often used to launch DDoS attacks [28].
Wormhole attack is defined as a severe attack that can be launched without
compromising any network host even if the network communication is en-
crypted [29]. This attack occurs when an attacker records a network packet in
one location within a network and transmits it to another location where it will
be replayed on both wired tunnels or wireless. The wormhole attack poses a
serious threat against location-based security system.Wormhole attack make the
attacker perform further attacks such as MITM, routing disruption, or DoS
attacks.
Replay attack occurs when an unauthorized eavesdropper intercepts a data
transmission, captures the network traffic, and maliciously or fraudulently re-
transmits it to the receiver impersonating the original sender [30]. Replay at-
tacks may aid attackers in gaining access to the network or lead to completing
a duplicate transaction. In this attack, the adversary is not required to decrypt a
message.
Cyberfraud may cover a huge range of activities. With the link between com-
puters and the internet, we define online Fraud (Also known as Internet Fraud)
is a type of cybercrime fraud that is committed using devices such as comput-
ers and the internet to defraud victims including businesses and individuals; it
can involve identity theft and financial fraud [30]. Fraudsters can exploit poor
security measures in IoT devices.
Unauthorized access attack occur when an unauthorized entity gains access to
a system or data without permission. This can be done by exploiting vulner-
abilities in systems/devices. IoT devices that are misconfigured or have weak
passwords can also be exploited by attackers to gain unauthorized access [31].

Compromised
Security

Objective

Authentication

Data Integrity
and Availabil-
ity

Availability

Confidentiality
and integrity
(Origin and
Data)
Availability

Confidentiality,
Integrity, and
Availability

Integrity

Integrity

Confidentiality,
Integrity, and
Availability

11

IoT Threats vs. I T Threats

While both IT and IoT networks face security threats that can compromise the confiden-

tiality, integrity, and availability of sensitive information and systems, IoT threats introduce

unique challenges due to the characteristics of interconnected devices and resource limi-

tations. IT threats primarily target traditional information technology systems, including

networks, servers, and software applications. These threats encompass familiar risks such

as malware infections, phishing attacks, network breaches, and data theft. For example, a

ransomware attack targeting an IT network can encrypt critical data and demand a ransom

for its release, disrupting business operations and compromising data integrity. Although

most attacks targeting IoT devices are similar to those targeting IT networks, IoT networks

face unique security challenges. IoT networks are characterized by a diverse array of in-

terconnected devices, each with its own vulnerabilities and communication protocols. This

complexity creates a larger attack surface for potential exploitation. Moreover, IoT threats

can have direct physical consequences. Compromised IoT devices may affect critical in-

frastructure, public safety, or personal well-being. For example, an attack on an industrial

IoT system controlling power grids could lead to widespread power outages. In contrast,

most IT threats primarily affect digital assets and services. For example, in 2021, an at-

tacker tried to poison the water supply of a Florida city by gaining unauthorized access

to the city’s water treatment systems and attempting to manipulate the levels of chemicals

used in water treatment to dangerous levels [32].

2.2 Device Fingerprinting

2.2.1 Definition

Device fingerprinting (also referred to as device identification) is the process of identifying

and distinguishing devices based on their unique characteristics and attributes. It involves

12

collecting and analyzing various data points associated with a device, such as its hardware,

network behaviour, and other identifying features. By analyzing these characteristics, a dis-

tinct "fingerprint" or digital signature is created for each device, enabling its identification

and differentiation from other devices.

IoT Device-Type Fingerprinting

In the context of IoT, device fingerprinting refers to identifying and profiling IoT devices

within a network. IoT device-type fingerprinting specifically focuses on identifying and

categorizing IoT devices based on their device types or classes. It involves analyzing

unique attributes associated with different device types. By employing IoT device-type fin-

gerprinting techniques, organizations can classify IoT devices based on their specific types,

allowing for targeted management, security policies, and compatibility considerations for

each device category.

IoT Device Fingerprinting

IoT device fingerprinting is a process that involves uniquely identifying and profiling indi-

vidual IoT devices within a network or system. It encompasses the collection and analysis

of device-specific attributes. By creating a distinctive digital signature or "fingerprint" for

each IoT device, IoT device fingerprinting enables accurate device identification, track-

ing, and management. It plays a crucial role in enhancing security and enabling effective

device-specific access controls within IoT ecosystems.

Device fingerprinting can be classified into active and passive fingerprinting. Active

device fingerprinting involves actively probing and interacting with a device to gather in-

formation and identify its unique characteristics. This technique typically requires sending

specific requests or commands to the device and analyzing the responses received. In con-

trast, passive device fingerprinting does not involve any direct interaction with the device.

13

Instead, it relies on passive observing and analyzing network traffic or data generated by

the device to gather information about its unique attributes.

The main difference between these methods is that passive fingerprinting can be used

in conjunction with firewall systems, as passive sniffing will not alert or disturb the system.

2.2.2 Significance and Applications

IoT device fingerprinting is important in monitoring and improving network security. It

enables us to identify unseen device types. In other words, when a new device connects to

the network, fingerprinting helps analyze and detect its type. We can then grant or deny

access and apply security measures based on known device vulnerabilities. According

to [33], "Profiling tools are a requirement in the evolution of the IoT ecosystem. Their

significance must not be downplayed, as IoT devices can be the point of access an attacker

needs to initiate a large-scale attack."

Device Identity Validation

Identity spoofing or device forgery is when one device uses another device’s identifiers

to gain authorized access or privilege. According to [34], "A naive solution to defending

against node forgery is to verify the MAC address of the device against the legitimate ones."

However, such traditional identifiers are easy to spoof. Once a device identity is forged,

different attacks can be launched. Identity validation using device fingerprinting tools may

reduce the risk of identity spoofing and identity fraud. Fingerprinting a device is crucial to

enhance network security and protect it from existing threats, as it also helps distinguish

whether a device is legitimate or malicious.

14

Authentication

Authentication is the process that verifies the identity of a user or a device and, therefore,

the process of allowing or denying access to a system or a network. As discussed earlier,

a traditional cryptographic solution such as encryption alone is insufficient to secure net-

works. Moreover, most organizations or networks focus only on authenticating users, not

devices. Therefore, researchers have employed authentication mechanisms based on de-

vice fingerprinting methods to identify devices such as APs and IoT to enhance network

security.

Unauthorized device Detection

Bring Your Own Device (BYOD) is a policy that allows employees to bring personal de-

vices to an organization and connect to its network for work-related activities, which or-

ganizations increasingly accept. The IoT devices that employees bring and connect to the

organization’s network without authorization are called shadow IoT. BOYD and shadow

IoT pose a security risk by increasing the attack surface. Another application of device

fingerprinting is detecting unauthorized or rogue devices. It enables detecting connections

to unauthorized servers or rogue devices attempting to gain network access; once detected,

we can enforce security policies regarding the type of the device and isolate or block unau-

thorized devices.

Digital Forensics

The data source is becoming more important with the growing complexity of com-

puter/device networks. In digital forensics investigation, device fingerprinting aims at iden-

tifying the device using the content/data it produces or/and receives. The device fingerprint-

ing technique is of great importance in the field of digital forensics investigations. It can

be used for forensic data collection in order to determine the content origin and recognize

15

the device and/or its type used in criminal activity. Furthermore, a device fingerprint can

be used as cybercrime evidence. For instance, fingerprinting can be used to identify the

source device that has acquired a digital image or video [35]. According to [1], "However,

unlike IoT security practices, forensics techniques do not aim to minimize the damage but

to identify the attack/deficit origin or the liabilities of the different parties.".

Tracking and Digital Advertising

Cookies are the traditional and most common way of tracking users across multiple web-

sites, "mostly for advertising purposes". Digital advertising or digital marketing is the act

of delivering promotional content to users. Marketers need to be able to understand the

behaviour of their users and identify their platforms; thus, most advertising tracking prac-

tices rely on cookies. However, cookies have evolved through the years and resulted in the

rise of users’ privacy concerns. Also, the reliability of cookies did not remain constant as,

in many cases, users delete or block them. In addition, internet browsers provide the offer

of limiting their use, and some enable tracking rejection by default. Consequently, device

fingerprinting was explored to identify and track the devices of users online. For example,

authors in [36] used fingerprinting techniques to track users. They collected data from de-

vice sensors to generate a device fingerprint. Their technique can be used to supplement

other privacy tracking technologies, such as cookies or canvas fingerprinting. Device fin-

gerprinting is also emerging in the advertising industry [37], which allows advertisers to

create device and user profiles. It uses the data and parameters that a browser on a device

sends to a website, such as screen resolution, device vendor, device operating system, etc.

to develop a device’s digital fingerprint. They can use the collected information and catered

profiles to target users with personalized advertisements or to sell them to marketers.

16

Fraud Prevention

Device fingerprinting can also prevent several types of fraud in different areas, such as

device fraud in online activity, credit card fraud in the financial industry or fraudulent

customers in eCommerce fraud. The uniqueness of a device fingerprint can predict the

fraudulent device even if the identity is altered through the use of proxies. According

to [38], "Constructively, a correctly identified device can be used to combat fraud, e.g., by

detecting that a user who is trying to login to a site is likely an attacker who stole a user’s

credentials or cookies, rather than the legitimate user."

Industrial Security

As stated in [39], "There is an increasing security concern that ICS devices are being vul-

nerable to malicious users/attackers, where any subtle changing or tampering attack would

cause significant damage to industrial manufacturing.". Industrial Control Systems (ICS)

manage critical infrastructures ranging from oil and gas refining, wastewater treatment and

power grid. ICS may be composed of a vast number of devices connected with each other.

While modern technologies, such as automation, are emerging in factories to facilitate and

automate industrial process control, vulnerabilities in industrial systems increase cyber risk.

Moreover, the growing number of IIoT devices increases the attack surface. The security of

the electrical grid and other industrial systems can also be improved by device fingerprint-

ing. It can be combined with other cybersecurity capabilities, such as security monitoring,

to enhance the detection and mitigation of cyberattacks in the ICS network environment.

For example, attackers can replace a real device with a fake device [39], they can inject

false data and commands and result in unsafe consequences [40], such as blackouts in the

power grid. They can also manipulate data in control components like data recorded in

power metering equipment, which may lead to economic losses and environmental disas-

ters [40, 41].

17

2.3 Machine Learning and Deep Learning Techniques

Machine Learning (ML) and Deep Learning (DL) are two rapidly growing fields within Ar-

tificial Intelligence (AI) that aim to give computers the ability to learn and make decisions

without explicit programming. ML focuses on developing algorithms that enable computer

systems to identify patterns and relationships in data, make predictions, and make decisions

based on that information. On the other hand, DL takes ML a step further by using artificial

neural networks to model complex relationships between input and output data. ML falls

into two primary categories, namely supervised learning and unsupervised learning.

2.3.1 Supervised Machine Learning

Supervised machine learning, also known as supervised learning, is a type of machine

learning in which the algorithm is trained using labeled data to make predictions about

unseen data. The labeled data provides the algorithm with information about the correct

output for a given input, so it can learn how to map inputs to outputs. In supervised learn-

ing, the algorithm is given a set of input-output pairs, and the goal is to learn a mapping

function that can be used to predict the output for new inputs. The learning algorithm it-

erates through the training data, adjusting its parameters based on the errors it makes in

until it reaches a level of accuracy that meets the desired performance criteria. Common

applications of supervised learning include image classification, speech recognition, and

predictive modeling. Decision Trees, Random Forest, Support Vector Machine (SVMs),

Gradient Boosting, Naïve Bayes, and K-Nearest Neighbours (KNN) are common super-

vised techniques.

Decision Tree

Decision Tree is a non-parametric supervised learning model that can be used for classifi-

cation and regression problems [42]. The model is composed of a set of questions based

18

on a hierarchical tree and leaves representation. Each node represents a question/test, and

each node output.

Random Forest

Random Forest [43] algorithm is widely used in supervised machine learning problems,

including regression and classification. It combines the multiple decision trees where each

tree is trained on a random subset of the training set. The prediction of each tree is then

aggregated to reach a single result.

Support Vector Machine

SVM is a supervised learning algorithm used for classification and regression analysis [44].

It is a linear classifier that seeks to find the hyperplane that best separates the data into

different classes. SVM is particularly well-suited for high-dimensional data where the

number of features is much larger than the number of samples.

Gradient Boosting

Gradient Boosting is an ensemble learning method that combines the predictions of mul-

tiple simple models, such as decision trees, to produce a more accurate prediction. The

algorithm works by training weak models, such as decision trees, one after the other. After

each model is trained, the algorithm updates the weights of the training instances based on

the accuracy of the previous model’s predictions.

Naïve Bayes

Naive Bayes is a simple probabilistic classifier that is based on Bayes’ theorem. Naive

Bayes is well-suited for device identification tasks that involve a large number of features,

as it can handle a high-dimensional feature space.

19

K-Nearest Neighbours

KNN is a simple classification algorithm that classifies a point based on the classes of its

K nearest neighbors in the feature space [45]. KNN can be used for device identification

tasks, especially if the data is well-separated into different classes.

2.3.2 Unsupervised Machine Learning

Unsupervised machine learning, also known as unsupervised learning, is a type of machine

learning in which the algorithm is not given any labeled data, and the goal is to find patterns

and relationships within the data on its own. Unlike supervised learning, unsupervised

learning algorithms are not given any specific output to predict, but rather the goal is to

extract meaningful insights and representations of the data. Unsupervised learning is often

used in applications such as market segmentation, customer behaviour analysis, and fraud

detection. Despite its benefits, unsupervised learning can be challenging because the results

can depend on the choice of algorithm, the representation of the data, and the number of

clusters or dimensions used. Some of the most common unsupervised learning techniques

include:

Clustering: Clustering is a technique for grouping similar data points together. Common

clustering algorithms include k-means and C-means (also known as fuzzy C-means). The

main difference between the two algorithms is the way they assign points to clusters. In

K-means, each point is assigned to exactly one cluster based on the distance to the cluster

centroid. The assignment is binary, meaning that a point is either in one cluster or another.

In contrast, in C-means, each point can belong to multiple clusters to a certain degree based

on the membership values. The membership values are continuous values that represent the

degree of membership of a point in a cluster, ranging from 0 to 1.

Principal Component Analysis (PCA): PCA is a dimensionality reduction technique that

seeks to project the data onto a lower-dimensional space while preserving as much of the

20

variance in the data as possible.

2.3.3 Deep Learning

Deep learning (DL) is a subfield of machine learning that is based on artificial neural net-

works with multiple layers. It is inspired by the structure and function of the human brain,

and the goal is to build algorithms that can automatically learn and improve their perfor-

mance on a task through experience. Deep learning algorithms can process large amounts

of data, automatically identify patterns, and make predictions or decisions. Unlike tra-

ditional machine learning algorithms, deep learning algorithms can automatically learn a

hierarchy of features from the raw data, and they are particularly well-suited for tasks that

require the processing of unstructured data, such as images, audio, and text. Deep learning

has achieved state-of-the-art results in a wide range of applications, including image and

speech recognition, natural language processing, and cybersecurity such as intrusion de-

tection, malware detection, and spam detection. There are several different types of neural

networks, each with its own unique architecture and strengths:

Feed-Forward Neural Networks (FFNNs)

Feed-forward neural networks (also referred to as Multi-Layer Perceptron (MLP)) are one

of the most widely used types of artificial neural networks, which have been successfully

applied to a wide range of problems in various fields, including cybersecurity, natural lan-

guage processing, and finance. An FFNN is composed of multiple layers of interconnected

nodes or neurons, where information flows in one direction, from the input layer to the out-

put layer, and the network learns to make predictions based on the relationships between

the input and output variables [46]. MLPs are capable of learning complex non-linear re-

lationships between the input and output, making them suitable for a wide range of tasks,

including classification and regression. Figure 3 illustrates a simple example of an FFNN

21

with one input layer, two hidden layers, and one output layer. The input layer receives the

input data, which is then processed by the hidden layers, and the output layer generates

the final output. Each neuron in the hidden layers and the output layer receives weighted

inputs from the previous layer, applies an activation function to the weighted sum of in-

puts, and generates an output. The weights and biases of the neurons are learned during the

training process using backpropagation, which is an iterative optimization algorithm that

minimizes the error between the predicted output and the actual output. The simplicity and

effectiveness of FFNNs have made them a popular choice for many real-world applications

Figure 3: A Simple FFNNs Architecture with Two Hidden Layers.

Convolutional Neural Networks (CNNs)

CNNs are a type of deep neural network that has achieved remarkable success in vari-

ous fields, including computer vision, speech recognition, and natural language process-

ing [47]. CNNs are particularly useful for processing high-dimensional inputs, such as

images or audio signals, by leveraging shared weights and local connectivity to extract

spatial and temporal features. In the context of cybersecurity, CNNs have been applied

to tasks such as intrusion detection, malware detection, and network traffic classifica-

tion. The model 1D-CNNs, which are a variant of CNNs, have also been used to pro-

cess one-dimensional signals, such as time series data, audio signals, or textual data. The

22

architecture of a 1D-CNN is similar to a standard CNN, but the input and the filters are

one-dimensional instead of two-dimensional. Figure 4 illustrates a 1D-CNN with one

input layer, two convolutional layers, and one output layer. At the input layer, the one-

dimensional signal, which is usually represented as a sequence of values, is fed into the

network. The first convolutional layer applies a set of filters to the input in order to extract

local patterns or features.

The second convolutional layer applies another set of filters to the feature maps pro-

duced by the first layer in order to capture higher-level features. The filters in the second

layer have a larger receptive field, which means that they can capture more complex pat-

terns that involve multiple features from the previous layer.

The output layer generates the final output, which can be a classification or regression

result, depending on the task.

In summary, 1D-CNNs with multiple convolutional layers are powerful tools for pro-

cessing one-dimensional signals and can learn to extract meaningful features from sequen-

tial data, which is useful for various applications, including cybersecurity.

Figure 4: 1D-CNN Architecture with Two Convolutional Layers [3].

23

Recurrent Neural Networks (RNNs)

RNNs are a type of neural network architecture that has gained significant attention in re-

cent years due to their ability to process sequential data such as natural language, speech,

and time-series data. RNNs are characterized by their ability to maintain a hidden state that

depends not only on the current input but also on all previous inputs. This makes RNNs

particularly useful for tasks that require the processing of sequential data with variable-

length inputs. RNNs have been successfully applied in a wide range of domains, including

cybersecurity, such as intrusion detection, malware detection and fraud prevention. How-

ever, training RNNs with Backpropagation Through Time (BPTT) can be challenging due

to the issue of vanishing or exploding gradients. Researchers have proposed various solu-

tions to address this issue, including Long Short-Term Memory (LSTM) networks, which

have shown significant improvements in the performance of RNNs on a variety of tasks.

Long Short-Term Memory (LSTM) networks

LSTM [48] networks are a type of RNN architecture that has become increasingly popular

due to their ability to handle long-term dependencies in sequential data. LSTMs were

designed to address the problem of vanishing or exploding gradients in standard RNNs.

LSTMs introduce memory cells and gates that selectively control the flow of information

within the network, allowing the network to selectively forget or remember information

based on its relevance. LSTMs have been successfully applied in a wide range of domains,

such as speech recognition, language modeling, and video analysis. The effectiveness of

LSTMs in handling long-term dependencies has led to significant improvements in the

performance of RNNs on a variety of tasks, and they continue to be an active area of

research in the deep learning community. The architecture of a simple LSTM cell is shown

in Figure 5, which is typically composed of a logistic sigmoid (σ), an input gate (i), a

forget gate (f), an output gate (o) and a cell state (c) [4]. The input gate determines which

information from the current input should be stored in the memory cell. The forget gate

24

determines which information from the previous time step should be forgotten, the output

gate determines which information should be output from the memory cell, and the state

cell is responsible for storing information over time.

Figure 5: LSTM Cell [4].

Transformer Neural Network (TNN)

Transformer is a deep-learning model introduced in [5] as an alternative to RNNs and

CNNs for processing sequential data. It is a type of neural network architecture that relies

on a self-attention mechanism, which allows the model to weigh the importance of each

input element when producing the output. This is in contrast to traditional RNNs or CNNs,

which rely on fixed-size context windows to determine the impact of each element. The

transformer architecture is well suited to parallelization, allowing for much faster training

times and lower memory requirements compared to RNNs and CNNs, which are typically

sequential in nature. This model is also used for sequential data. The Transformer architec-

ture consists of an encoder and a decoder, both of which are composed of several layers of

self-attention and feed-forward neural networks. In the encoder, the input sequence is pro-

cessed by a series of identical self-attention layers in parallel, followed by a feed-forward

neural network. Each self-attention layer takes the input sequence and computes a set

25

of attention weights for each position in the sequence based on the relationships between

all the positions. The attention weights determine how much importance should be given

to each position when computing the output representation. The decoder is similar to the

encoder but includes an additional masked self-attention layer that allows the network to at-

tend only to the previously generated output sequence during training and to the previously

generated tokens during inference. This is necessary to prevent the model from cheating

by looking ahead in the output sequence. A detailed description of the model is available

in [5]. The Transformer has gained popularity in natural language processing tasks, such

as language translation, language modeling, and text classification, due to its ability to han-

dle long-range dependencies, capture semantic relationships between words, and achieve

state-of-the-art performance on several benchmark datasets. Moreover, the Transformer has

shown promising results in other domains, such as image captioning, speech recognition,

and recommendation systems. Therefore, the Transformer is an important area of research

in machine learning and has numerous potential applications in cybersecurity, particularly

in analyzing natural language text data for threat detection and prevention. Figure 6 shows

the transformer architecture consisting of the encoder and decoder components, as well as

the connections between them [5].

26

Figure 6: The Encoder-Decoder Architecture of the Transformer [5].

27

Chapter 3

Literature Review

In this chapter, we present a review of recent literature on IoT device fingerprinting. First,

we provide a taxonomy of IoT fingerprinting techniques proposed in literature based on

whether they are for fingerprinting an individual device or device-type. Furthermore, we

introduce a taxonomy of machine learning and deep learning algorithms used for IoT device

fingerprinting.

3.1 IoT Device Fingerprinting

There are two common methods of performing device fingerprinting: passive and active.

The passive approach acquires data from a device through observation of its normal be-

haviour on the network without interacting with the devices. Differently, the active ap-

proach involves sending a probe request to a device and extracting features from its re-

sponse. For instance, the method introduced by [49] utilizes active fingerprinting to collect

packets of live hosts and uses the device fingerprint to detect IoT devices. In [50], active de-

vice fingerprinting based on protocol analysis was explored. The authors use active probing

to investigate ICS devices and leverage the information encapsulated in the packet header

of these protocols, such as device vendor, type, and function. They analyzed seventeen

28

industrial protocols that operate over TCP or UDP to identify industrial control system de-

vices. Relevant work in the scenario of passive fingerprinting was proposed by Marchal et

al. [51]. The authors present AuDI (Autonomous IoT Device-Type Iidentification), an IoT

device-type identification system by analyzing devices’ network communications. Simi-

larly, [7, 52] propose a passive analysis of traffic for device identification. As the work in

this thesis relies on the passive approach, our review focuses on passive approaches. In

this section, we present a taxonomy of fingerprinting techniques, as shown in Figure 7.

There are three approaches currently being adopted in IoT device fingerprinting, includ-

ing device-type fingerprinting (e.g. whether a device is an IoT or not), IoT device-type

fingerprinting, and individual IoT device fingerprinting.

3.1.1 Io T or non-IoT

IoT enables different objects such as sensor nodes, embedded systems, and intermediate

devices to collect and exchange data over the internet [53]. In the literature [54], more

specifically the field of IoT device fingerprinting, IoT devices consist of devices that need

to be connected to the internet to work properly, such as smart cameras, smart bulbs, smart

fire alarms, etc. While non-IoT involves standard or general-purpose devices such as lap-

tops, personal computers, tablets, and mobile phones.

Bremler-Barr et al. [55] suggest identifying whether a device is an IoT device or not when-

ever a new device connects to the network. In their work, 22 features from standard pro-

tocols (Link-Layer, IP, TCP, DNS, HTTP) are tested for feature selection. Then, they used

three ML classifiers for identification. The first classifier is a Logistic Regression (LR)

using traffic features, the second classifier is based on a Decision Tree on DHCP protocol

information, and the third classifier is a unified classifier that leverages the advantages of

the first and second classifiers. The unified classifier achieves 98% of F-score, precision,

and recall. The authors of [56] propose ProfilIoT, a method to identify devices within a

29

network by analyzing traffic data. The goal is to determine whether the traffic belongs to

a non-IoT device category (computer or smartphone) or a specific IoT type. In [57], the

authors trained a binary classifier to distinguish between IoT and non-IoT devices. The

dataset is composed of 21 IoT devices and seven non-IoT devices, and the traffic was di-

vided into two classes, IoT and non-IoT. They achieved 99% precision in distinguishing

between IoT and non-IoT devices. In [58], the authors propose EvoIoT, an IoT and non-

IoT identification model based on features from encrypted network traffic. They evaluate

EvoIoT on two public datasets and a private dataset collected from a laboratory setting.

Similarly, [59], [60] and [61] also focused on identifying new devices and predicting the

kind of device that is being observed (IoT vs. Non-IoT).

3.1.2 Io T Device-Type Fingerprinting

device-type fingerprinting aims at identifying the device category such as camera, smart

TV, smart doorbells, etc. Identifying the type of device connected to the network can help

to reduce the attack surface. For example, knowing that a device-type X of model Y is vul-

nerable, the identification of this type helps in applying the necessary security measures.

There are several research works that address the problem of identifying device-types. Mi-

ettinen et al. [7] propose IoT Sentinel, a system capable of identifying the types of devices

being connected to a network using machine learning. The authors collected data from

27 IoT device-types during the setup of network communication. The authors collected

data from 27 IoT device-types during the setup process and analyzed packet headers to

extract 23 features resilient to encrypted traffic to generate device fingerprints. In the same

line, Marchal et al. [51] presented AuDi, an autonomous system to identify IoT device-type

based on its periodic network communications in SOHO (Small Office and Home) network.

The system AuDi models the periodic communication traffic of IoT devices using an un-

supervised learning method to perform identification. Ammar et al. [62] also presented an

30

autonomous identification approach to identify new connected IoT device type to a home

network. This method is based on network traffic extracted from network flow features and

payload features. In [63], the authors present an IoT device-type behavioral fingerprinting

using features extracted from the network traffic of the device. They have used a subset of

the features from the set outlined by Miettinen et al in [7]. Additionally, they have con-

sidered payload features, i.e., payload size, entropy and TCP window size. These features

are then used to train several ML classifiers, such as k-nearest-neighbors, Decision trees,

and Gradient boosting. Yantian Luo et al. [64] propose an IoT device-type identification

method based on the Transformer. The authors use two transformer-based models, one to

classify the traffic from IoT devices into normal and abnormal; then, the second model

is adopted on the normal traffic to identify the IoT device-type. Finally, they designed a

results-ensemble algorithm to improve the accuracy of the IoT device-type identification

model. IoT device-type has also been explored in prior studies by [56, 65–67].

3.1.3 Io T Device Fingerprinting

IoT device fingerprinting focuses on identifying the device itself individually. In this cate-

gory, Sivanathan et al. [68] propose a framework for IoT device classification to uniquely

identify a specific IoT device. Their approach uses statistical features derived from network

traffic collected from 28 IoT devices. Using radio signals, Jafari et al. [69] propose a pas-

sive model to identify IoT devices and distinguish among devices from the same manufac-

turer. The authors exploit differences and imperfections that exist in devices that occurred

during the manufacturing process. In the same line, IoT-ID [70] is another system that

can be used for device identification that uses the variations in the manufacturing process

to derive a unique fingerprint for devices. It is based on Physically Unclonable Functions

(PUFs). In [71], the authors present an IoT fingerprinting technique based on the analysis

of the entire physical signals emitted by the devices. The approach is designed to provide

31

complementary protection against spoofing attacks in smart buildings, factories, or homes.

IoT or Non-IoT
[55], [56], [57], [58], [59],

[60], [61]

IoT Device Fingerprinting Device-Type Fingerprinting
[7], [51], [56], [57], [60],

[62], [63], [64], [67]

Device Fingerprinting
[68], [69], [70], [71],

[72]

Figure 7: Taxonomy of IoT Device Fingerprinting Techniques

3.2 Machine Learning for Io T Fingerprinting

In recent years, researchers have applied Machine Learning (ML) and Deep Learning (DL)

techniques in almost every research area. In this section, we focus on ML and DL tech-

niques for IoT device-type identification. For each method, a description is provided, and

a set of publications is presented. The most common types of machine learning taxonomy,

as shown in Figure 8, include supervised learning, unsupervised learning, semi-supervised

learning, and deep learning.

3.2.1 Supervised Machine Learning

Supervised learning relies on labelled data where given a set of known devices, the task is

to find the function or the model that can accurately and uniquely determine whether the

device is one of the known devices. broadly speaking, Supervised Learning can be mainly

divided into two classes: classification problems and regression problems. To our knowl-

edge, no studies have relied on regression algorithms for device identification problems.

Classification is a predictive modeling problem that assigns a class to a data sample. A

number of existing studies in the literature have examined identification using multi-class

32

classification. Common classification algorithms in IoT and device fingerprinting are Ran-

dom Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), Gradient Boosting

(GB), Naïve Bayes (NB), and k-nearest neighbours (kNN) [73], [74].

Supervised Artificial Neural Networks

Ruizhong Du et al. [75] propose a lightweight scheme to build an accurate IoT device

identification based on flow statistical features. The authors then applied feature selection

to select a valid subset of attributes. They evaluate the proposed method using three ML

algorithms in the experiments, including the K-Nearest Neighbors algorithm (KNN), Ran-

dom Forest and Extremely Randomized Trees (ET). Experimental results showed that the

proposed scheme could achieve an accuracy of 99.3%. Identifying IoT devices and events

based on packet length from encrypted traffic is proposed in [57]. In addition to the Major-

ity Voting algorithm, the authors also evaluated the proposed solution using the common

ML algorithms mentioned above. The results show that the Random Forest algorithm can

achieve up to 96% accuracy in the identification of devices. Kostas et al. [76] presented IoT-

DevID, a supervised machine learning system that recognizes IoT devices based on their

network packets. They used six multi-class classifiers to evaluate the proposed solution.

Similarly, several methods followed the same line of evaluation [51], [68], [52], [77], [78].

In [79], a practical IoT device identification system was presented, namely, ByteIoT, based

on a simple but well-organized traffic feature, i.e., the frequency distribution of bidirec-

tional packet lengths. The system ByteIoT applies the k-nearest-neighbors algorithm as the

classifier.

Some authors suggest using One-vs-All for multi-class classification for device and

device-type identification. Given a set of N known devices (classification problem with N

classes), a one-vs-all classifier consists of N binary classifier, one binary classifier for each

class/device. This approach is effective in detecting and classifying unknown class/device.

33

If a new device connects to the network, it should not match any existing binary classifier.

Miettinen et al. [7] extracted network features based on setup communications to generate

a fingerprint for each device. They used one-vs-all classifiers to identify the IoT device-

type when a device connects to the network. Similar classification approach is presented

in [56], [62], [80].

3.2.2 Unsupervised Learning

Previous studies have shown that supervised approaches are effective, and the majority of

prior research has applied them. However, unknown devices (devices not included in the

dataset) can not be recognized. Unlike supervised learning, the unsupervised method does

not rely on labelled data. The goal is to find patterns in unlabeled data. Several works pro-

pose the application of unsupervised learning in device identification. The task is to map

devices’ fingerprints or profiles into groups based on their similarities. In [51], the authors

propose AuDI (Autonomous IoT Device-Type Identification), an IoT device-type identi-

fication using an unsupervised machine learning method without labeled data to identify

previously unseen device-types. This system uses a clustering algorithm to group device-

types fingerprints into clusters. Thangavelu et al. [9] also presented IoT fingerprinting

technique based on unsupervised machine learning. In this approach, network gateways

perform device monitoring and classification while a clustering algorithm is applied to

identify new device-types. In IoT-KEEPER [81], the authors also used unlabeled data to

identify device-types. They employed an unsupervised approach based on fuzzy C-means

clustering.

3.2.3 Semi-Supervised Learning

Semi-supervised learning is a type of machine learning that combines elements of both

supervised and unsupervised learning. In this approach, the algorithms are trained on both

34

labeled and unlabeled data, with the goal of leveraging the structure learned from the unla-

beled data to improve the performance of the labeled data. Fan et al. [60] propose an IoT

identification model based on semi-supervised learning. The model can classify specific

IoT devices based on time interval features, traffic volume features, protocol features and

TLS-related features.

3.2.4 Deep Learning

DL is widely considered to be a good way for classification problems. The main DL models

that are frequently used in device identification are FFNNs, CNNs, and RNNs. In [69],

the authors considered FFNN, CNN, and RNN models for IoT identification using radio

frequency signal data. Better results are achieved using CNN, followed by FFNN and

LSTM.

In Smart Recon [82], the authors used Locality Sensitive Hashes to generate a feature

vector which will be trained by a neural network classifier (MLP) in fingerprinting IoT

devices based on their generated network traffic. They claim that The Smart Recon method

is able to identify known IoT devices with 98% accuracy using only a single packet sniffed

from the network traffic flow.

Merchant et al. [83] used deep CNN to solve the identification and verification problems

using time-domain complex base-band error signals. The model CNN was trained in two

experiments using different data collection setups. In [77,84], the authors propose to define

a device-specific unique fingerprint by analyzing solely the inter-arrival time of packets as

a feature to identify a device. The model CNN is used on images of inter-arrival time (IAT)

signatures for device fingerprinting of 58 non-IoT devices of 5-11 types. To evaluate the

performance, they compared the ResNet-50 layer and basic CNN-5 layer architectures.

In [85], the authors propose an LSTM-CNN model to automatically identify the se-

mantic type of a device. They used network traffic flows to classify new and unseen IoT

35

devices. They have cascaded LSTM and CNN layers to conduct cross-device classifica-

tion. They finally compare their model with different ML and DL classification techniques.

They evaluate their approach by classifying 15 IoT devices into four types with real-world

collected network traffic data and achieving an accuracy of 74.8% Similarly, Feihong Yin

et al. present CBBI in [86], an IoT device identification approach based on Conv-BiLSTM

using spatial and temporal features of the network traffic generated by the IoT devices. The

system CBBI is a hybrid DL model exploiting CNN to learn the spatial characteristics of

network communication traffic and bidirectional LSTM that can extract the time-domain

characteristics of the network communication traffic. Furthermore, to tackle the problem of

data imbalance, the authors use the GAN-based data augmentation module FGAN. Ortiz

et al. propose DeviceMien, network device behavior modeling for identifying unknown

IoT devices which uses the raw TCP payload as the input [59]. DeviceMien employs a

stacked deep LSTM-Autoencoder to learn a set of representative features from the data it-

self. Then, they train a classifier on the labels assigned to the clusters. In [65], Jiaqi Bao et

al. propose a hybrid supervised and unsupervised learning method combining deep neural

networks with clustering to enable both seen and unseen device classification. The method

also employs the autoencoder technique to reduce the dimensionality of data.

Supervised Learning

Unsupervised Learning

ML/DL Algorithms Semi-supervised Learning

[7], [51], [52], [56], [57]
[62], [68], [75], [76],
[77], [78], [79], [80]

[9], [51], [59], [81]

[60]

Hybrid Learning

Deep Learning

[65]

[59], [64], [65], [69], [77],
[82], [83], [84], [85], [86]

Figure 8: Taxonomy of ML/DL for IoT Device Fingerprinting

36

3.2.5 Conclusion

In this chapter, we presented a review of related work on the topic of IoT device iden-

tification and IoT device-type identification. We provided a review of the existing tech-

nologies that use network traffic traces and wireless signal patterns. We discuss existing

non-cryptographic IoT device/device-type identification mechanisms from the perspective

of machine learning and deep learning.

37

Chapter 4

Methodology

Having reviewed related work, we now present the main body of our research. In this

chapter, we outline the specific methods used within this research. Firstly, in Section 4.1,

we provide an overview of our approach. We then present the feature extraction process

in Section 4.2 and the feature selection methods in Section 4.3, followed by details of the

machine learning/deep learning models and techniques we used in Section 4.4. Finally, we

present the conclusion of this chapter in Section 4.5.

4.1 Approach Overview

In this thesis, we develop a multi-stage framework consisting of a set of models that use net-

work flow-based features. To achieve this objective, we will follow a specific methodology

consisting of several steps that can be restated as follows: i) Feature Extraction and Data

Pre-Processing, ii) Optimized Feature Selection, and iii) Device identification. In what fol-

lows, we elaborate on each of these steps. An overview of our approach is illustrated in

Figure 9.

38

Figure 9: Approach Overview

4.2 Feature Extraction

The first step of identification involves extracting relevant information or attributes from

network data. By extracting these features, a device fingerprint can be created, which

serves as a digital signature or unique identifier for the device. Feature extraction involves

transforming raw data into quantifiable features (structured data) that can be used for anal-

ysis and modeling. This step is crucial in building an efficient and accurate identification

model. Network communications offer rich device-related information that can be utilized

for device-type identification. In this regard, the features are extracted through raw pas-

sive observations from the network traffic of IoT devices during the communication setup

phase. However, encryption is a challenge for traffic analysis. Since the payload content is

encrypted, the characteristics are mainly reflected in the data flow. In this context, we work

with bidirectional flow-based features, which include information about both incoming and

39

outgoing traffic between devices since network traffic flows are generated from a sequence

of aggregated packet header data. By considering bidirectional flows, we can gain insights

into the complete communication between devices, capturing the interactions in both direc-

tions. This can reveal more comprehensive patterns within the network. Analyzing network

flows provides a more efficient and manageable approach, as it allows for the aggregation

of information Besides, network flows provide valuable insights into network traffic pat-

terns even when the traffic is encrypted, as they are derived from packet headers without

revealing the actual contents of the encrypted data. A network flow is identified or charac-

terized by a sequence of packets that share the same five-tuple information, which includes

the source IP address, destination IP address, source port, destination port, and protocol.

4.3 Optimized Feature Selection

The high-dimensional data contain irrelevant and redundant features that reduce the perfor-

mance of the models. Hence, Feature selection is required. Feature or variable selection

is the process of selecting a subset of significant features from a given set of features. It

primarily focuses on removing irrelevant and redundant variables [87]. Feature selection

has significant benefits in terms of storage requirements, reducing training time, reducing

model complexity and defying overfitting, as irrelevant and redundant features may con-

fuse the learning algorithm. Furthermore, the presence of non-informative variables can

add uncertainty to the predictions and reduce the overall effectiveness of the model [87].

Thus, in this work, we select a subset of relevant features based on the model performance

(i.e., removing irrelevant features without compromising the performance). There are a

variety of methods to reduce the feature set dimensionality. Generally, the selection can be

divided into two main categories: supervised methods and unsupervised methods. In su-

pervised methods, the class/target is involved during the selection/elimination of variables

40

in the former, while it is ignored in unsupervised methods [87]. Supervised feature selec-

tion can be further classified into three classes: filter, wrapper, and embedded (or intrinsic)

methods [88].

Filter Methods

Filter-based feature selection uses a metric to find irrelevant features. Features are selected

based on their relevance and relationship evaluation with the target variable (i.e. class

in a classification problem) using statistical measures such as correlation and information

theory. These methods are fast and simple; however, they are prone to over-selecting fea-

tures as they evaluate each variable separately, which results in selecting all the highly

ranked/scored features.

Wrapper Methods

Wrapper feature selection was introduced in [89]; unlike filter methods which are inde-

pendent of any machine learning algorithm, wrapper methods rely on the performance of

a given predictive model to assess the usefulness of features. This approach involves re-

peatedly training and testing the model on different subsets of the original feature set and

selecting the subset with the least error or best performance. While wrapper feature selec-

tion has been shown to be effective in various applications, it can be time-consuming and

computationally expensive.

Embedded Methods

Intrinsic or embedded feature selection methods are incorporated into some machine learn-

ing algorithms, such as tree-based models. These models perform automatic feature selec-

tion during the model fitting/training process. The main advantage of Embedded feature

selection methods is that they do not require an external feature selection. In addition, they

41

Figure 10: Hybrid Feature Selection Method Overview.

are faster than wrappers since they are embedded. However, the main downside is that they

are usually specific to given learning algorithms (model-dependent) [88]. If data is better

fit by another type of model that does not contain built-in feature selection, then predictive

performance may be sub-optimal.

Given the advantages and issues related to each method, how should one select a fea-

ture selection method? This question has never been addressed because no general or best

feature selection method exists. In this study, we will use a hybrid feature selection solu-

tion which combines different algorithms to rectify the shortcomings of each incorporated

method. Figure 10 illustrates our hybrid feature selection overview. This proceeds in two

stages:

1) Unsupervised Feature Selection to identify and remove non-informative (zero-variance

and duplicated features) and redundant features. A feature is redundant if it is highly cor-

related with other feature(s). A correlated feature adds no relevant information, and thus it

does not redound to getting a better feature.

2) Hybrid Supervised Features Selection to remove irrelevant features and maintain the

top relevant ones. Feature relevance indicates that the feature is necessary for an optimal

subset. Consequently, irrelevant features can never contribute to prediction performance.

As previously mentioned, wrapper methods can be more accurate but computationally ex-

pensive and time-consuming. To tackle this problem, we first apply the filter method to

42

identify the highly correlated features with respect to the dependent/target variable. Subse-

quently, we use a wrapper method that consists of two main components:

Search Strategy: A search algorithm is used to add and/or eliminate features. Roughly

speaking, this procedure can be forward (Sequential Forward Selection (SFS)) or back-

ward (Sequential Backward Selection (SBS)). In forward selection, the process starts with

an empty set and variables are progressively added to the feature subset. In contrast, back-

ward selection starts with the set of all variables and progressively eliminates the least

promising ones [88]. However, in machine learning, combining different features may re-

sult in different feature significance, where a useful feature may be non-useful combined

with other(s), and vice versa. Therefore, SFS and SBS can be limited as we cannot re-

move/add a feature once it is incorporated/eliminated. To overcome this problem, we will

use the floating search method that dynamically add and remove features based on their

usefulness when combined with other(s). In this study, we will examine both forward and

backward and select the one that results in better performance.

Modeling Method: As mentioned earlier, a wrapper method requires a machine learning

model to evaluate its performance over all the possible features sub-sets. Artificial Neural

Networks are powerful computational models which can be utilized for solving complex

estimations. They are commonly used as classifiers [90] due to their robustness. One of

the most popular ANN models is the multi-layer perception (MLP). MLP model is used in

this step for feature evaluation. The decision of feature subset selection depends on model

performance.

43

Figure 11: Architecture of IoT Device Inference Engines

4.4 IoT Device Identification

When a device connects to the network, our proposed method, as shown in Figure 11,

consists of the IoT detection phase and IoT device-type identification phase. To meet these

goals, the first operation is building a binary classifier to distinguish IoT from non-IoT

devices. Once the presence of IoT devices is detected (e.g., the device is classified as an

IoT), a few-shot learning based on the siamese Neural Network algorithm is used to identify

the IoT device-type.

4.4.1 Io T Detection

In order to identify the type of IoT device connecting to a network, it is necessary first to

detect the presence of IoT devices. IoT Detection refers to the process of identifying the

presence of IoT devices within a network. This involves detecting the existence of IoT

devices by analyzing network traffic, characteristics or patterns. IoT Detection focuses on

discovering whether IoT devices are present or connected to a network, without necessar-

ily identifying specific details about those devices, by distinguishing them from non-IoT

devices. In this context, IoT devices are specific-purpose devices that interconnect with

each other without direct human interaction, such as smart kettles and smart plugs, as IoT

devices [54]. Conversely, non-IoT devices are general-purpose devices such as laptops,

smartphones, computers and tablets that fall under the class of non-IoT. In this phase, we

44

employ a binary classifier and train it on the IoT and non-Iot classes. We apply different

binary classifiers, which will be detailed in Chapter 5. Another approach we can use for bi-

nary classification tasks is One-Class Classification (OCC) [91]. Unlike traditional binary

classification, where the goal is to separate data points into two distinct classes, OCC aims

at fitting a model on single-class data and predicting whether new data belongs to the same

class or not [92]. In this case, we train a one-class classifier on the IoT devices data where

the model captures the density of the IoT class and classifies examples on the extremes

of the density function as non-IoT. One-Class Support Vector Machines (OC-SVM) and

Deep One-Class Classification (DOCC) are common algorithms used for one-class clas-

sification [93]. The model OC-SVM works by mapping the data to a high-dimensional

feature space and then identifying a hyperplane that separates the data from the origin of

the feature space. The hyperplane is defined by a set of support vectors that are located at

the boundary of the data. The distance between the hyperplane and the origin measures the

similarity between a new data point and the training data. The model OC-SVM is powerful

for detection problems but has some limitations. One of the main limitations is that OC-

SVM is based on a linear separation boundary and may not be able to capture non-linear

relationships in the data. On the other hand, DOCC is a variant of one-class classification

that uses a deep neural network to learn a non-linear boundary that separates the positive

examples from the negative examples (i.e., IoT from non-IoT). Deep One Class Classi-

fication involves training a DNN on a set of positive examples to learn a discriminative

representation for the positive and invariant to the negative examples. During training, the

model is only exposed to the positive examples (i.e., IoT data) and is not provided with

any labels indicating which examples are negative. The trained model is then used to make

predictions on new data, and a score is computed for each observation, which reflects how

well the observation fits with the learned representation of the positive examples.

45

4.4.2 Io T Device-Type Identification

Machine learning has been successfully used to achieve state-of-the-art performance in

various applications. However, in many real-world scenarios, it relies on large amounts of

annotated examples to achieve high performance. a large storage space for storing data and

computing resources, which may be costly or/and time-consuming resulting in significant

training overhead. Few-Shot learning is an emerging subfield of machine learning that

addresses the challenge of training models with limited labeled data. The term "few-shot"

refers to the fact that the model is trained on a few training examples (i.e., a small number

of training examples). By leveraging prior knowledge and generalization capabilities, Few-

Shot learning algorithms enable models to quickly adapt and make accurate predictions on

unseen data. Moreover, Few-Shot learning techniques are specifically designed to handle

scenarios where new classes (i.e., device-types) emerge without necessitating a complete

retraining process. This feature makes Few-Shot learning particularly valuable in scenarios

where collecting large amounts of labeled data is expensive or time-consuming or where

new classes are continually emerging. In few-shot learning, deep learning methods have

been used to learn effective representations from a few examples and to perform similarity

comparisons between examples. Siamese neural network is a deep learning architecture

commonly used in few-shot learning.

Siamese Neural Networks (SNNs)

As the name suggests, siamese neural network is a network with two identical sub-networks

architecture consisting of multiple layers of artificial neurons. These sub-networks share

the same set of weights and parameters. In siamese neural network, instead of a model

learning to classify its inputs using classification loss functions, the model takes two in-

puts through the two identical sub-networks and learns a similarity function that outputs

a similarity score between them and checks whether they are the same. The output of

46

the two sub-networks is then concatenated and fed through one or more fully connected

layers, which output a similarity score. We employ few-shot learning based on siamese

neural networks for IoT device-type identification. In this approach, the network receives

data pairs as input to learn the similarity, and the output of the sub-networks are feature

vectors (representation) for each example/input data. The distance between these vectors

is measured at the similarity layer (using a distance metric such as Euclidian distance) to

decide whether they belong to the same class. Figure 12 shows the general architecture

of a siamese neural network. As we can see, Input data (i.e., features) are fed through the

neural sub-networks, and each network transforms the input into a vector. The vectors are

then fed into the distance/similarity function to decide whether they are close enough to

be similar. The training process of siamese neural network involves minimizing the differ-

ence between the predicted similarity score and the actual similarity score between the two

inputs in which examples from the same class are close together while examples from dif-

ferent classes are far apart. This is typically done using a loss function such as contrastive

loss.

Model Definition

For this study, it was of interest to not restrict ourselves to a standard artificial neural net-

work in order to investigate and compare the performance of different deep learning models

when building an SNN model. We consider four different common deep learning mod-

els, including deep feed-forward neural network, convolutional neural network, recurrent

neural network and transformer neural network. In the following, we describe the neural

networks we consider in our model.

Deep Feed-Forward Neural Network:

MLP is a class of feed-forward neural networks. It consists of an input layer, one or more

hidden layers, and an output layer. Each layer contains a number of perceptrons or neurons.

47

Figure 12: Siamese Neural Network Architecture [6].

The input layer receives the input data, which is passed forward to the hidden layers. Each

neuron in the hidden layers receives input from the neurons in the previous layer, computes

a weighted sum of the inputs, applies an activation function, and passes the output to the

neurons in the next layer.

Convolutional neural network:

The convolutional layer is used to process one-dimensional sequential data, such as signals

and sequences, two-dimensional image data and three-dimensional data, such as videos.

The input to a 1D-CNN layer is a 1D sequence, represented as a tensor with shape (batch

size, sequence length, input dim), where the batch size is the number of samples in a batch,

sequence length is the length of the input sequence, and input dim is the number of input

features at each time step. The first step of a 1D-CNN layer is to apply convolution to

the input sequence. The convolution operation involves sliding a small filter (also called

kernel) of fixed width along the sequence, computing the dot product between the filter

and a segment of the input at each position, and producing a feature map that captures the

48

presence of local patterns in the input. In this work, we employ a one-dimensional con-

volutional neural network (1D-CNN) as network traffic data is considered sequential. We

convert the input to a 2-dimensional shape to be compatible with the 1D-CNN layer.

Recurrent neural network:

RNNs can capture sequential information from sequential data. Although there are various

types of RNNs, the Long Short-Term Memory network is the most commonly used type

of RNN. In this work, we use LSTM, which is capable of learning order dependence in

sequential data. The input is converted to a 3-dimensional shape to be compatible with the

requirements of the LSTM layer.

Transformer Neural Network:

As mentioned in Chapter 2, the transformer consists of an encoder and a decoder compo-

nent. The encoder has two layers: multi-head attention and a fully connected feed-forward

network. In addition to the two layers in the encoder, the decoder has a third layer that per-

forms multi-head attention over the encoder output. In this work, we use the encoder part

only and derive the architecture from the transformer encoder introduced in [5]. Specif-

ically, we leverage the attention mechanism to capture information from the flows and

1D-CNN layer. We also add a normalization layer to avoid network degradation and faster

training.

4.5 Conclusion

In this chapter, we have presented a description of the research methodology used in this

study. We began by outlining the feature selection module, which involved a mixed-

methods approach that combined different techniques to automatically identify the best

features and eliminate irrelevant and redundant features. We also discussed our two-stage

model, including IoT detection and IoT device-type identification. In summary, this chap-

ter focused on the main key steps we followed in this study and presented a high-level idea

49

of the machine learning models we leverage. The experimental setup, details of model ar-

chitecture and parameters, and the findings of this study will be presented and discussed in

the following chapter.

50

Chapter 5

Experimental Results and Analysis

In this chapter, we provide details of the experimental procedures and evaluate the effec-

tiveness and present the results of our models, namely:

1. Optimized Feature Selection: We evaluate how effective is this process in reducing

data dimensionality without affecting model performance.

2. IoT Detection: We evaluate how accurately this module can distinguish between IoT

and non-IoT devices.

3. IoT Device-Type Identification: We compare and evaluate the performance of our

models using different architectures.

5.1 Experimental Setup

The experiments of this study were conducted on a desktop computer equipped with In-

tel(R) Core(TM) i7-2600 CPU @ 3.40GHz processor, and 16 GB of RAM. The operating

system is Windows 11, and the code is implemented with Python using the scikit-learn 1

library for data preparation and preprocessing and Keras 2 library for deep learning models.
1https://scikit-learn.org/stable/
2https://keras.io/

51

5.2 Dataset

For this study, we use the data collected from IoT Sentinel [7] to evaluate the performance

of our proposed approach. It is a set of PCAP traffic traces captured from a set of 31 IoT

devices targeted for regular consumers [7]. This set represents 27 device types (4 types

are represented by 2 devices each), covering the most common device types such as smart

lighting, home automation, security cameras, household appliances and health monitoring

devices [7]. A list of the devices used in this study is presented in Table 2. Some of these

devices connect to the network via ZigBee or Z-wave protocols, but the majority use WiFi

or Ethernet [7]. IoT Sentinel data collection is based on passive monitoring of the com-

munication of devices during the setup process. The setup process was repeated 20 times

for each device in order to capture sufficient data for machine learning model training. Ta-

ble 2 lists the IoT devices used in this study along with their connectivity technologies.

In this thesis, we extract network-flow-based features using the Canadian Institute for Cy-

bersecurity feature extractor CICFlowMeter 3, which is a network traffic flow generator

used to extract bidirectional flows identified by the 5-tuple (source IP address, destination

IP address, source port, destination port, and protocol). The tool, CICFlowMeter, reads

PCAP files as input and generates more than 80 network traffic flow-based features from

the packet header, excluding the packet payload, ensuring that the features can be extracted

from encrypted network traffic and outputs related C S V files.
3https://www.unb.ca/cic/research/applications.html

52

Table 2: IoT Devices Used in this Study and Their Connectivity Technologies [7].

Identifier

Aria

HomeMaticPlug

Withings

MAXGateway

HueBridge

HueSwitch

EdnetGateway

EdnetCam

EdimaxCam

Lightify

WeMolnsightSwitch

WeMoLink

WeMoSwitch

D-LinkHomeHub

D-LinkDoorSensor

D-LinkDayCam

D-LinkCam

D-LinkSwitch

D-LinkWaterSensor

D-LinkSiren

D-LinkSensor

TP-LinkPlugHS110

TP-LinkPlugHS110

TP-LinkPlugHS100

EdimaxPlug1101W

EdimaxPlug2101W

SmarterCoffee

iKettle2

Device Model

Fitbit Aria WiFi-enabled scale

Homematic pluggable switch HMIP-PS

Withings Wireless Scale WS-30

MAX! Cube LAN Gateway for MAX!

Philips Hue Bridge model 3241312018

Philips Hue Light Switch PTM 215Z

Ednet.living Starter kit power Gateway

Ednet Wireless indoor IP camera Cube

Edimax IC-3115W Smart HD WiFi Network Camera

Osram Lightify Gateway

WeMo Insight Switch model F7C029de

WeMo Link Lighting Bridge model F7C031vf

WeMo Switch model F7C027de

D-Link Connected Home Hub DCH-G020

D-Link Door and Window sensor

D-Link WiFi Day Camera DCS-930L

D-Link HD IP Camera DCH-935L

D-Link Smart plug DSP-W215

D-Link Water sensor DCH-S160

D-Link Siren DCH-S220

D-Link WiFi Motion sensor DCH-S150

TP-Link WiFi Smart plug HS110

TP-Link WiFi Smart plug HS110

TP-Link WiFi Smart plug HS100

Edimax SP-1101 W Smart Plug Switch

Edimax SP-2101 W Smart Plug Switch

Smarter SmarterCoffee coffee machine SMC10-EU

Smarter Kettle 2.0 water kettle SMK20-EU

Technology

WiFi

Other

WiFi

Ethernet

ZigBee

ZigBee

WiFi

WiFi, Ethernet

WiFi, Ethernet

WiFi, ZigBee

WiFi

WiFi, ZigBee

WiFi

WiFi, ZigBee

Z-wave

WiFi, Ethernet

WiFi

WiFi

WiFi

WiFI

WiFi

WiFi

WiFi

WiFi

WiFi

WiFi

WiFi

WiFi

53

Table 3 shows the initial list of the extracted features with their descriptions. We

obtained a dataset of 540 fingerprints representing 27 device types (20 fingerprints x 27

device-type).

Table 3: The Initial Set of Features Extracted by CICFlowMeter.

Feature

Flow duration

Total Fwd Packet

Total Bwd packets

Total Length of Fwd Packet

Total Length of Bwd Packet

Fwd Packet Length Min

Fwd Packet Length Max

Fwd Packet Length Mean

Fwd Packet Length Std

Bwd Packet Length Min

Bwd Packet Length Max

Bwd Packet Length Mean

Bwd Packet Length Std

Flow Bytes/s

Flow Packets/s

Flow IAT Mean

Description

Duration of the flow in Microsecond

Total packets in the forward direction

Total packets in the backward direction

Total size of packet in the forward direction

Total size of packet in the backward direction

Minimum size of packet in forward direction

Maximum size of packet in forward direction

Mean size of packet in forward direction

Standard deviation size of packet in forward

direction

Minimum size of packet in backward direction

Maximum size of packet in backward direction

Mean size of packet in backward direction

Standard deviation size of packet in backward

direction

Number of flow bytes per second

Number of flow packets per second

Mean time between two packets sent in the

flow

Continued on next page

54

Table 3 – continued from previous page

Feature

Flow IAT Std

Flow IAT Max

Flow IAT Min

Fwd IAT Min

Fwd IAT Max

Fwd IAT Mean

Fwd IAT Std

Fwd IAT Total

Bwd IAT Min

Bwd IAT Max

Bwd IAT Mean

Description

Standard deviation time between two packets

sent in the flow

Maximum time between two packets sent in

the flow

Minimum time between two packets sent in the

flow

Minimum time between two packets sent in the

forward direction

Maximum time between two packets sent in

the forward direction

Mean time between two packets sent in the for-

ward direction

Standard deviation time between two packets

sent in the forward direction

Total time between two packets sent in the for-

ward direction

Minimum time between two packets sent in the

backward direction

Maximum time between two packets sent in

the backward direction

Mean time between two packets sent in the

backward direction

Continued on next page

55

Table 3 – continued from previous page

Feature

Bwd IAT Std

Bwd IAT Total

Fwd PSH flags

Bwd PSH Flags

Fwd URG Flags

Bwd URG Flags

Fwd Header Length

Bwd Header Length

FWD Packets/s

Bwd Packets/s

Packet Length Min

Packet Length Max

Packet Length Mean

Packet Length Std

Packet Length Variance

Description

Standard deviation time between two packets

sent in the backward direction

Total time between two packets sent in the

backward direction

Number of times the PSH flag was set in pack-

ets travelling in the forward direction

Number of times the PSH flag was set in pack-

ets travelling in the backward direction

Number of times the URG flag was set in pack-

ets travelling in the forward direction

Number of times the URG flag was set in pack-

ets travelling in the backward direction

Total bytes used for headers in the forward di-

rection

Total bytes used for headers in the backward

direction

Number of forward packets per second

Number of backward packets per second

Minimum length of a packet

Maximum length of a packet

Mean length of a packet

Standard deviation length of a packet

Variance length of a packet

Continued on next page

56

Table 3 – continued from previous page

Feature

FIN Flag Count

SYN Flag Count

RST Flag Count

PSH Flag Count

A C K Flag Count

URG Flag Count

CWR Flag Count

E C E Flag Count

Down/Up Ratio

Average Packet Size

Fwd Segment Size Avg

Bwd Segment Size Avg

Fwd Bytes/Bulk Avg

Fwd Packet/Bulk Avg

Fwd Bulk Rate Avg

Bwd Bytes/Bulk Avg

Bwd Packet/Bulk Avg

Description

Number of packets with FIN

Number of packets with SYN

Number of packets with RST

Number of packets with PUSH

Number of packets with A C K

Number of packets with URG

Number of packets with CWR

Number of packets with E C E

Download and upload ratio

Average size of packet

Average size observed in the forward direction

Average size observed in backward direction

Average number of bytes bulk rate in the for-

ward direction

Average number of packets bulk rate in the for-

ward direction

Average number of bulk rate in forward direc-

tion

Average number of bytes bulk rate in the back-

ward direction

Average number of packets bulk rate in the

backward direction

Continued on next page

57

Table 3 – continued from previous page

Feature

Bwd Bulk Rate Avg

Subflow Fwd Packets

Subflow Fwd Bytes

Subflow Bwd Packets

Subflow Bwd Bytes

Fwd Init Win bytes

Bwd Init Win bytes

Fwd Act Data Pkts

Fwd Seg Size Min

Active Min

Active Mean

Description

Average number of bulk rate in the backward

direction

The average number of packets in a sub flow

in the forward direction

The average number of bytes in a sub flow in

the forward direction

The average number of packets in a sub flow

in the backward direction

The average number of bytes in a sub flow in

the backward direction

The total number of bytes sent in initial win-

dow in the forward direction

The total number of bytes sent in initial win-

dow in the backward direction

Count of packets with at least 1 byte of TCP

data payload in the forward direction

Minimum segment size observed in the for-

ward direction

Minimum time a flow was active before be-

coming idle

Mean time a flow was active before becoming

idle

Continued on next page

58

Table 3 – continued from previous page

Feature

Active Max

Active Std

Idle Min

Idle Mean

Idle Max

Idle Std

Description

Maximum time a flow was active before be-

coming idle

Standard deviation time a flow was active be-

fore becoming idle

Minimum time a flow was idle before becom-

ing active

Mean time a flow was idle before becoming

active

Maximum time a flow was idle before becom-

ing active

Standard deviation time a flow was idle before

becoming active

5.3 Data Preparation

Data preparation helps improve the data quality and ensures that the machine learning

model produces accurate and reliable results.

5.3.1 Data Labeling, Splitting, and Preprocessing

Data labeling involves assigning labels or categories to the data instances, typically for

supervised learning tasks where the goal is to train a model to predict an output variable

based on input variables. To this aim, we group all IoT types/classes into one class and

59

label it as "IoT" for the IoT detection module. For IoT device-type identification model,

the device types are assigned as labels for each IoT type, such as Aria, HueBridge, etc.

After labeling, data splitting is an essential step that involves dividing a dataset into two

or more subsets to be used for the training, validation, and testing of a machine learning

model. The training set is used to train the model, the validation set is used to evaluate the

model’s performance during training and to optimize the model’s hyper-parameters, and the

test set is used to evaluate the final performance of the model on new, unseen data. In this

work, we split the data before applying any preprocessing step to avoid data leakage that

can occur when preprocessing the entire data before splitting. This ensures that the model

is only trained on the training data and does not have access to any information from the

test set, thus, avoiding overfitting and unreliable performance. As mentioned, we have 20

PCAP files for each class or device type. To this end, we use 15 PCAP files for training and

5 PCAP files for Evaluation and Testing. On the other hand, data preprocessing prepares

raw data for machine learning algorithms by transforming and cleaning it. It is a critical

step in building a successful machine learning model, as the quality of the data fed into the

model directly affects its performance. Our data preprocessing involves several steps (for

both modules, including IoT detection and IoT device-type identification), including:

• Data cleaning: This involves removing or correcting any errors in the data, such as

missing values (NaN values) or incorrect data types.

• Data transformation: This involves converting the data into a format that is more

suitable for machine learning algorithms, such as scaling or normalizing the data.

We employ Min-Max 4 scaling technique to normalize data so that it is scaled to a

fixed range. In this technique, each feature (or variable) in the dataset is transformed

so that its minimum value is mapped to 0 and its maximum value is mapped to 1.

The formula for Min-Max scaling is:
4https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

60

xscaled =
(x − min(x))

(max(x) − min(x))
(1)

where x is the original value of a feature, xscaled is the scaled value, min(x) is the

minimum value of the feature, and max(x) is the maximum value of the feature.

• Data encoding: This involves the process of converting categorical data into numeri-

cal values so that it can be used in machine learning algorithms. However, both sets

of features we use in this thesis are numerical. Therefore, we employ this step to

encode the target/label variable solely as the target variable is categorical.

5.4 Feature Selection

We now identify traffic features of IoT devices that can be selected from the original fea-

ture sets to detect and distinguish them from non-IoT devices and classify their device type.

First, since our approach is not intended to rely on features such as MAC/IP addresses, we

initially removed the flow identifiers such as Flow ID, Source IP, Destination IP, Source

Port and TimeStamp features. Then, to provide insight into feature selection advantages

and assess its impact, we trained a full model, which refers to a model that uses all remain-

ing available features to make predictions. In this thesis, we employ the MLP classifier

with the default parameters. Then, to determine how beneficial or detrimental the removal

of certain features on the model performance would be, the same model was trained and

evaluated each time a feature selection method was applied. In this section, we detail the

implementation of these methods (Filter, Wrapper, and Embedded as elaborated in Section

4) using Scikit-learn 5, Feature-engine 6 and Mlxtend 7 libraries.
5https://scikit-learn.org/stable/
6https://pypi.org/project/feature-engine/
7http://rasbt.github.io/mlxtend/

61

D
st

 P
o
rt

T
o
ta

l
B

w
d

 p
a
ck

e
ts

Fw
d

 P
a
ck

e
t

Le
n
g

th
 M

in
B

w
d

 P
a
ck

e
t

Le
n
g

th
 M

in
Fl

o
w

 P
a
ck

e
ts

/s
Fl

o
w

 I
A

T
 M

in
Fw

d
 I
A

T
 M

a
x

B
w

d
 I
A

T
 S

td
Fw

d
 H

e
a
d

e
r

Le
n
g

th
P
a
ck

e
t

Le
n
g

th
 M

in
P
a
ck

e
t

Le
n
g

th
 V

a
ri

a
n
ce

P
S

H
 F

la
g

 C
o
u
n

t
Fw

d
 S

e
g

m
e
n
t

S
iz

e
 A

v
g

B
w

d
 B

u
lk

 R
a
te

 A
v
g

S
u
b

fl
o
w

 B
w

d
 B

y
te

s
Fw

d
 S

e
g

 S
iz

e
 M

in
A

ct
iv

e
 M

in
Id

le
 M

in

5.4.1 Unsupervised Feature Selection

We employed four unsupervised feature selection steps to find and eliminate any zero-

variance, quasi-constant, duplicated and correlated features. We use correlation measures

to identify and remove correlated features in the context of correlated features. A strong

correlation allows us to predict one variable from another. As such, the correlated features

will not add additional information. The brute force method is one way to search for

correlated features based on a correlation coefficient. However, the problem with such an

implementation, aside from its limited performance, is that it may lead to the unintended

removal of an important feature.

Dst Port
Total Fwd Packet

Total Length of Bwd Packet
Fwd Packet Length Mean

Bwd Packet Length Min
Flow Bytes/s
Flow IAT Std
Fwd IAT Total
Fwd IAT Max

Bwd IAT Mean
Bwd IAT Min

Bwd Header Length
Packet Length Min
Packet Length Std

SYN Flag Count
ACK Flag Count

Fwd Segment Size Avg
Bwd Packet/Bulk Avg

Subflow Fwd Bytes
FWD Init Win Bytes

Fwd Seg Size Min
Active Max

Idle Std

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure 13: Correlation Matrix Depicting the Correlation among Features for IoT Detection

An alternative approach is to find groups of correlated features and then select, from

each group, a feature following certain criteria. This is also termed as smart correlation

selection. In this experiment, to compare correlation selection methods, we ran them both.

62

D
st

 P
o
rt

T
o
ta

l
B

w
d

 p
a
ck

e
ts

Fw
d

 P
a
ck

e
t

Le
n
g

th
 M

in
B

w
d

 P
a
ck

e
t

Le
n
g

th
 M

in
Fl

o
w

 P
a
ck

e
ts

/s
Fl

o
w

 I
A

T
 M

in
Fw

d
 I
A

T
 M

a
x

B
w

d
 I
A

T
 S

td
Fw

d
 H

e
a
d

e
r

Le
n
g

th
P
a
ck

e
t

Le
n
g

th
 M

in
P
a
ck

e
t

Le
n
g

th
 V

a
ri

a
n
ce

P
S

H
 F

la
g

 C
o
u
n
t

Fw
d

 S
e
g

m
e
n
t

S
iz

e
 A

v
g

B
w

d
 B

u
lk

 R
a
te

 A
v
g

S
u
b

fl
o
w

 B
w

d
 B

y
te

s
Fw

d
 S

e
g

 S
iz

e
 M

in
Id

le
 M

e
a
n

For the smart correlation method, we selected from each group the feature with the highest

variance.

We used the Spearman coefficient, which measures the relationship between two vari-

ables monotonically related, even if their relationship is not linear [94], as it provided the

best performance in finding correlated features. It selects the minimum set of features with

the highest test accuracy compared to the Kendall and Pearson coefficients. Moreover, the

Spearman’s rank correlation test does not carry any assumptions about the data distribu-

tion and is suitable for continuous and discrete ordinal variables. Figures 13 and 14 show

the correlated features using the Spearman coefficient. The matrices depict the correla-

tion between each pair of features for the IoT detection model and IoT device-type model,

respectively.

Dst Port
Total Fwd Packet

Total Length of Bwd Packet
Fwd Packet Length Mean

Bwd Packet Length Min
Flow Bytes/s
Flow IAT Std
Fwd IAT Total
Fwd IAT Max

Bwd IAT Mean
Bwd IAT Min

Bwd Header Length
Packet Length Min
Packet Length Std

SYN Flag Count
ACK Flag Count

Fwd Segment Size Avg
Bwd Packet/Bulk Avg

Subflow Fwd Bytes
FWD Init Win Bytes

Fwd Seg Size Min
Active Min

Idle Min

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure 14: Correlation Matrix Depicting the Correlation among Features for IoT Device-
Type

63

The coefficient ranges from -1 to +1, where -1 represents a negative correlation, 0 rep-

resents no correlation, and +1 represents a positive correlation. The correlation coefficient

is represented using different colours, with a darker colour indicating a stronger correlation

and a lighter colour indicating a weaker correlation. A feature that is highly correlated

with other feature(s) (magnitude of 0.90) will be removed in this step. Figure 15 shows an

example of a positive correlation between Fwd Packet Length Mean and Fwd Segment Size

Avg with +1 correlation coefficient, indicating that as Fwd Packet Length Mean increases,

so does Fwd Segment Size Avg.

Figure 15: The correlation between Fwd Packet Length Mean and Fwd Segment Size Avg

.

5.4.2 Supervised Feature Selection

We further explored supervised feature selection, which typically consists of two stages:

In the first stage, we employ the filter method to reduce the feature space by removing

the irrelevant features. We use the wrapper method in the second stage to find the optimal

subset from the retrained features.

64

Supervised Filter Method

It is common to use a statistical measure between independent (input) and dependent (out-

put) variables. As such, the statistical measure/test needs to consider the data types. We

chose to use mutual information (information gain), which is powerful and data-type ag-

nostic. Mutual information measures the amount of information we can obtain from one

variable given another [95]. It is one of the widely used measures in the context of feature

selection based on filter methods, allowing us to capture the relevancy of features in pre-

dicting the target variable and the redundancy with other variables.We use SelectKBest 8

method from the scikit-learn library which identifies the features that are most relevant to

the target variable and eliminates the ones that are less important or redundant using mutual

information. The parameter "K" refers to the number of top features that we want to se-

lect. Figures [16,17] represent a visual representation of the scores of features in relation to

the target variable, indicating which features are most informative for predicting the target

variable for IoT Detection and IoT Device-Type Identification respectively. In order to set

the best value of K , we use grid search (i.e. GridSearchCV9), a systematic approach that

involves defining a range of possible values (numbers of selected features) and testing each

combination using cross-validation.

Supervised Wrapper Method

Recall from Section 4.3 that wrapper feature selection is a greedy search algorithm that

starts with an empty set of features and relatively adds one feature at a time until a desired

number of features is reached.
8https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html
9https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

65

Figure 16: Importance of Each Feature with Respect to the Target Variable (IoT or non-
IoT) for IoT Detection.

66

Figure 17: Importance of Each Feature with Respect to the Target Variable (Device-Type)
for IoT Device-Type Identification.

67

Supervised Wrapper Method

Recall from Section 4.3 that wrapper feature selection is a greedy search algorithm that

starts with an empty set of features and relatively adds one feature at a time until a desired

number of features is reached. In this stage, we use the SequentialFeatureSelector algo-

rithm from the MLxtend library, which selects a subset of features from retained features

from the previous stage. The algorithm works by evaluating the performance of the MLP

model on different subsets of features using an accuracy metric. The SFFS algorithm is as

follows:

1. Initialize an empty set of selected features, S k = �; k = 0, where S is the set of

features and k is the number of features.

2. Select the most significant feature x + that is not already in the selected features set,

train a model using the selected features plus the new feature and measure its perfor-

mance using the accuracy metric.

3. Update S k = S k + x + ; k = k + 1.

4. Select the least significant feature x − from previously selected features and evaluate

whether the removal of x − improves the performance of the model.

5. If M (Sk − x −) > M (Sk) then remove x − ; S k = S k − x − ; k = k − 1 and repeat step

4; otherwise, repeat step 2.

6. Stop when k = the number of features required.

In order to set k, we define a range of k values to test and use grid search (i.e., Grid-

SearchCV) to search over the parameter grid defined by these k values.

68

A
cc

u
ra

cy

5.4.3 Findings

Here, we report the findings of the optimized feature selection module evaluation for dif-

ferent problems, including IoT detection and IoT device-type identification.

IoT Detection

We begin with traffic features that distinguish IoT devices from non-IoTs. Figure 18 shows

the accuracy of a full model that uses all available features (excluding flow identifiers and

IP addresses) compared to a model that uses only a subset of selected features. The figure

shows the performance after the application of each feature selection method. The results

could show that the model using the selected subset of features performs similarly or even

better than the full model, which could indicate that some of the features in the full model

are redundant and irrelevant, leading to overhead. Alternatively, Tables [4, 5] present the

final feature subset and indicate which features are the most relevant and informative for

IoT detection and IoT Device-Type identification models, respectively. This information

could be useful for feature engineering or data preprocessing in future iterations of the

model-building process.

70

65

60

55

50
IoT Device-Type Identification

IoT Detection
45

20 30 40 50 60 70 80
Number of Features

Figure 18: Plot of Model Accuracy versus Number of Features

69

IoT Device-Type Identification

Focusing on IoT types, we examined our hybrid feature selection using C IC Features. The

results can be seen in Figure 18, which shows a moderate degradation in performance

when a full model is trained using all the features (the accuracy is around 55%), compared

to better performance (accuracy is improved to 62%) when using a selected subset of 31

features. As expected, feature selection allowed us to find a smaller subset of features

without negatively affecting the model performance. Table 5 lists the final set of selected

features for this model. With the data now preprocessed and ready for use, the next step is

to train our machine learning models.

Table 4: Final Subset of Selected Features for IoT Detection.

Module

IoT Detection

Subset of Features

[’Dst Port’, ’Flow Duration’, ’Fwd IAT

Min’, ’Fwd PSH Flags’, ’Fwd Header

Length’, ’Packet Length Max’, ’FIN

Flag Count’, ’FWD Init Win Bytes’,

’Fwd Seg Size Min’, ’SYN Flag Count’,

’Flow IAT Mean’, ’Flow IAT Std’, ’Fwd

IAT Std’, ’Fwd IAT Mean’, ’Fwd Packet

Length Max’, ’Bwd Packets/s’, ’Fwd

Packets/s’, ’Bwd Packet Length Min’,

’Fwd Packet Length Std’, ’Fwd Packet’]

70

Table 5: Final Subset of Selected Features for IoT Device-Type Identification.

Module Subset of Features

IoT Device-Type Identification [’Dst Port’, ’Protocol’, ’Flow Dura-

tion’, ’Total Fwd Packet’, ’Total Bwd

packets’, ’Fwd Packet Length Min’,

’Fwd Packet Length Std’, ’Bwd Packet

Length Max’, ’Bwd Packet Length Min’,

’Bwd Packet Length Std’, ’Flow IAT

Mean’, ’Flow IAT Std’, ’Flow IAT

Min’, ’Fwd IAT Total’, ’Fwd IAT Min’,

’Bwd IAT Total’, ’Fwd Header Length’,

’Packet Length Max’, ’FIN Flag Count’,

’SYN Flag Count’, ’RST Flag Count’,

’Down/Up Ratio’, ’Bwd Packet/Bulk

Avg’, ’Subflow Fwd Packets’, ’Subflow

Bwd Bytes’, ’FWD Init Win Bytes’,

’Bwd Init Win Bytes’, ’Fwd Act Data

Pkts’, ’Fwd Seg Size Min’, ’Active

Max’, ’Idle Max’]

71

T P

T P

F 1 =

1 T P T N

T P + T N

5.5 Models Training and Performance Evaluation

5.5.1 Evaluation Metrics

We evaluate the performance of the different components of our framework in terms of

accuracy, F1 score, recall and precision. We also use AUC (Area under the ROC Curve)

metric as it measures the model’s ability to distinguish between classes (i.e., determines the

ability to avoid wrong classification) and indicates the trade-off between the recall and the

number of incorrectly classified samples. These metrics are defined as follows:

Recall =
T P + F N

P recision =
T P + F P

2 × precision × recall
precision + recall

AU C =
2

(
T P + F N

+
T N + F P

)

Accuracy =
T P + T N + F P + F N

(2)

(3)

(4)

(5)

(6)

Where TP, FP, TN and FN indicate the rate of true positive rate, false positive rate, true

negative rate and false negative rate, respectively.

5.5.2 Io T Detection

In IoT Sentinel data [7], there exists only traffic generated from IoT devices. In order

to collect data from non-IoT traffic, we use PCAP files of non-IoT devices from UNSW

72

data [68]. The final data encompasses over 39000 IoT (labeled 1) and non-IoT (labeled 0)

instances as shown in Table 6.

Table 6: IoT and Non-IoT Dataset Overview.

IoT

Non-IoT

Instances

26964

12377

Percentage

68.54

31.46

In this phase, In order to test, evaluate and identify the best-performing machine learn-

ing model, we used AutoSklearn [96], an open-source library, built on top of the machine

learning library, Scikit-learn, for automated machine learning (AutoML) that automates the

process of model selection, hyper-parameter tuning. Random Forest showed the best per-

formance, which achieved an accuracy of 83.23%. In addition, the performance metrics,

namely recall, precision, F1 and AUC are presented in Figure 19.

Figure 19: IoT Detector Results.

73

0
1

T
ru

e
 l
a
b

e
l

Figure 20 shows the confusion matrix of the IoT detection model. The columns indicate

the true labels, and the rows show predicted labels (i.e., 1 for IoT and 0 for non-IoT).

6000

6843 1504

5000

4000

3000
1190 6480

2000

0 1
Predicted label

Figure 20: IoT Detector Confusion Matrix.

Handling Imbalanced dataset

Imbalanced data is a common and critical problem in machine learning, where the distri-

bution of the target classes is highly skewed, with one or a few classes having significantly

fewer samples than the others. This can result in models that perform poorly, leading to

inaccurate predictions and decisions. Effective strategies for addressing imbalanced data

include various sampling techniques such as under-sampling, over-sampling and synthetic

data generation. Under-sampling involves randomly removing samples from the majority

class until the dataset is balanced. This method is simple and computationally efficient,

but it can lead to information loss and a reduction in overall model performance. Over-

sampling involves randomly duplicating samples from the minority class until the dataset

is balanced. This method can be effective in increasing the representation of the minority

class, but it can also lead to overfitting and poor generalization performance. Synthetic

data generation, on the other hand, is a technique used to balance the class distribution by

generating synthetic instances for the minority class. However, the generated data may not

74

accurately represent the true distribution of the original data, which can lead to incorrect re-

sults. In this work, we used ClusterCentroid algorithm based on K-means to under-sample

the majority class (i.e., IoT Class) in order to balance the dataset. The implementation

is conducted using Imblearn 10 library. This approach aims to identify the representative

samples in the majority class by clustering the data and selecting the centroids as represen-

tatives. By reducing the number of majority class samples while preserving the diversity,

Table 7 shows the data instances after conducting re-sampling. The proposed technique

can overcome the limitations of previous sampling methods and improve the performance

of machine learning models on imbalanced datasets, as shown in Figures22. After balanc-

ing the data, gradient boosting was the top model using AutoSklearn and achieved better

performance than random forest. As shown in 23, the results showed that gradient boost-

ing slightly outperformed random forest regarding the accuracy, recall, precision and F1

score. The accuracy of gradient boosting was 0.85, while that of the random forest was

0.84. Similarly, the recall of gradient boosting was 95.95%, while that of the random forest

was 93.68%. The F1 score of gradient boosting was 95%, while that of the random forest

was 93.56%.

On the other hand, the results also showed that one-class SVM performed poorly on

this dataset. The accuracy of one-class SVM was 59.78%, while the F1 score was 69.94%.

This indicates that one-class SVM was unable to identify the pattern in the dataset and was

not an effective method for this problem.

Figure 21 shows the confusion matrix of the IoT detection model after addressing the

imbalanced data problem.
10https://imbalanced-learn.org/stable/

75

0
1

T
ru

e
 l
a
b

e
l

Table 7: IoT and Non-IoT Dataset Overview after Applying ClusterCentriod Algorithm
for Re-sampling.

IoT

Non-IoT

Instances

12000

12377

Percentage

49.23

50.77

3500

3747 165
3000

2500

2000

1500

330 3598 1000

500

0 1
Predicted label

Figure 21: IoT Detector Confusion Matrix After ClusterCentriods Re-Sampling.

76

Figure 22: Random Forest Performance comparison after Applying ClusterCentriod Re-
Sampling.

Figure 23: The Performance of Binary Classifiers including RF and GB, Compared with
One-Class Classifier SVM.

77

5.5.3 Io T Device-Type Identification

Recall from the previous Section 4.4.2 that, unlike traditional classification models, the

Siamese network receives a pair of flows as an input for training. Therefore, the first step

in the process of creating and training this model is to create labeled pairs from labeled

data. Before creating data pairs, we split the data into training and testing sets to avoid

data contamination and data leakage. The input to this task consists of labeled samples

(i.e., fingerprints) belonging to each IoT device-type. Then, given a set of data samples

(i.e., fingerprints) for each class/device-type, we create two pairs: a positive pair of two

fingerprints that belong to the same class, which is labeled as 1 (the data sample is paired

with a random data sample of the same class) and a negative pair of two fingerprints from

different classes, which is labeled as 0 (the data sample is paired with a random sample of

a different class). Our approach relies on aggregated network flows, as generating device-

type fingerprints using a single flow may result in similar behaviour between devices. Thus,

network flow aggregation is significant in improving the performance of our system. Our

analysis resulted in selecting 12 flows, which is chosen as the best value for all the subse-

quent experimentation. The output of this process is 858 pairs for each training and testing

set. Next, the process involves designing the architecture of the Siamese sub-networks and

selecting hyper-parameters for each of the four deep learning models we described in Sec-

tion 4.4.2, including DFFNN, CNN, RNN and TNN. The architecture of a deep learning

model refers to the overall structure of the neural network, such as the number of layers,

types of activation functions, and connections between layers. Hyper-parameter selection,

on the other hand, refers to the process of choosing the values of the hyper-parameters,

which are settings that are not learned during training but are set by the user before train-

ing begins. Examples of hyper-parameters include learning rate, batch size, and dropout

rates. The selection of hyper-parameters can significantly affect the performance of the

78

model, and choosing appropriate values is critical to achieving high accuracy and prevent-

ing overfitting. As mentioned earlier, the sub-networks of the siamese network output two

feature vectors for a given data pair, then we use a loss function to compute the similar-

ity between the produced vectors based on a distance measure. We tested Manhattan and

Euclidean distances to explore the effect of different distance measures on feature vectors.

Furthermore, to determine the optimal values for the hyper-parameters, we explore the im-

pact of various hyper-parameter values on the performance of our models. Specifically,

we investigate the effects of varying the activation function, optimizers, learning rate, loss

function, dropout, distance metric, batch size, and the number of epochs on model per-

formance. We conducted a comprehensive experimental study, where we trained several

deep learning models using different combinations of hyper-parameter values and evalu-

ated their performance. In table 8, we list the hyperparameters that we considered in our

experimental study, along with the specific values that we tested for each hyperparameter.

For example, we experimented with learning rates ranging from 0.1 to 0.00001, batch sizes

ranging from 16 to 128, and dropout rates ranging from 0.1 to 0.6. For each combination of

hyper-parameters, we trained the model for 50, 100 and 150 epochs and evaluated its per-

formance on the validation set. To simplify, we report only the best hyper-parameter values

found during our experimental study in Table 9, where we summarize the optimal values

for each hyper-parameter that resulted in the best performance for each model, including

DFFNN, CNN, RNN, and TNN.

79

Table 8: Considered values for each hyper-parameter in the experimental study.

Parameters

Activation Function

Optimization

Learning Rate

Loss Function

Dropout

Distance Metric

Values

Relu and Tanh

Adam, RMSProp, SDG and Nadam

{0.1, 0.01, 0.001, 0.0001, 0.00001}

Cross-entropy loss and Contrastive loss

{0.10, 0.20, 0.30, 0.40, 0.50, 0.60}

Euclidean distance and Manhattan distance

Table 9: Best Hyper-parameters for each Deep Learning Model.

Parameters
Layers Type

Activation Function
Optimization
Learning Rate
Loss Function

Dropout
Distance Metric

DFFNN
Dense
Relu

Nadam
0.001

Contrastive
0.20

Euclidean

CNN
Conv1D

Relu and Tanh
Nadam
0.001

Contrastive
0.20

Euclidean

RNN
LSTM
Relu

Nadam
0.0001

Contrastive
0.20

Manhattan

TNN
Attention

Tanh
Nadam
0.001

Contrastive
0.20

Manhattan

For example, SNN models based on CNN and DFFNN perform better when using

Euclidean distance, while SNN models based on RNN and TNN report better performance

when using Manhattan distance. As for the loss function, all models performed better using

Contrastive loss, which is defined as follows:

L(x1 , x2 , y) = α(1 − y)D 2 + βy max(margin − D, 0)2 (7)

where x1 and x2 are two feature vectors, y is the paired label denoting whether the two

vectors belong to the same class or not, D is the distance, and α and β are constants.

• DFNN: Dense(1024), Dropout(0.20), Dense(512), Dropout(0.20), Dense(128), Flat-

ten().

80

• CNN: 1D-CNN (4), AveragePooling1D(), Dropout(0.20), 1D-CNN (16), Average-

Pooling1D(), Flatten(), Dense(10).

• RNN: LSTM(64), Dropout(0.20) LSTM(64), Dropout(0.20), Dense(100).

• TNN: Transformer-Encoder(headers=2), AveragePooling1D(), Dense(64),

Dropout(0.20), Dense(27).

All our reported results are obtained from the testing set, containing samples that have

not been seen during training time. The early comparison of the models is conducted using

AUC as the comparison metric. The performance results of our models are shown in Tables

(6-4). Besides, we use PCA embedding plots, to evaluate the performance of the model by

visualizing the testing sample embeddings of the data in a lower-dimensional space (i.e.,

2D). PCA plots can also provide insight into the distribution of the data and help identify

patterns or clusters that can be difficult to see in higher-dimensional spaces. Figures [25,28,

31] show a PCA visualization of the embeddings, with different colours indicating different

classes. As shown in Table ??, which shows the performance of the model with different

numbers of epochs and batch sizes, SNN based on the transformer model leads to good

results, reaching an AUC score of 97.56% when using a batch size of 128 with 150 epochs.

The results show that increasing the number of epochs and batch size generally improves

the performance of the model.

Figure 24 presents the loss curve obtained after training for 150 epochs, with the y-

axis representing the value of the loss function and the x-axis representing the number of

training epochs. Based on the graph, we can see that the model error is notably reducing

over epochs, which indicates that the model is able to learn effectively from the training

and reduces the model error considerably. Figure 25 depicts that generated embeddings,

using SNN based on the transformer, of network flows belonging to the same device type

but captured on different days are close to each other, while those belonging to different

81

Table 10: Impact of Batch Sizes on TNN over 50 Epochs.

Score
16

AUC 96.55
Recall 96.50

Precision 85.54
F1 90.88

Epoch = 50
24 32 64 128
95.85 96.40 95.65 90.69
90.91 87.41 91.84 74.13
87.64 91.46 89.55 84.35
89.27 89.28 90.74 78.82

Table 11: Impact of Batch Sizes on TSNN over 100 Epochs.

Score
16

AUC 96.50
Recall 91.14

Precision 90.93
F1 91.04

Epoch = 100
24 32 64 128
96.93 97.28 96.43 95.31
94.64 92.81 92.07 94.41
88.65 91.65 88.57 87.47
91.60 91.90 90.28 90.82

devices are far from each other. Furthermore, we plot the accuracy curve, with the y-axis

representing the accuracy and the x-axis representing the number of training epochs in

Figure 26, which shows the accuracy of the model over time, which is a measure of how

well the model is able to predict the correct output for a given input. The plot typically

shows the accuracy increasing over time as the model learns to make better predictions.

Table 12: Impact of Batch Sizes on TSNN over 150 Epochs.

Score
16

AUC 97.09
Recall 91.61

Precision 90.97
F1 91.32

Epoch = 150
24 32 64 128
96.32 97.13 96.91 97.56
87.88 92.77 92.31 99.77
91.95 91.92 90.21 75.89
89.70 92.41 91.28 86.43

82

Figure 24: TNN Loss Curve.

Figure 25: PCA Embedding Visualization of TNN.

83

Table 13: Impact of Batch Sizes on RNN over 50 Epochs.

Score
16

AUC 86.06
Recall 93.24

Precision 68.14
F1 78.81

Epoch = 50
24 32 64 128
85.42 84.67 80 78.90
93.24 91.38 89.51 85.55
68.03 68.17 67.25 68.22
78.74 78.15 76.84 75.91

Table 14: Impact of Batch Sizes on RNN over 100 Epochs.

Score
16

AUC 85.16
Recall 90.21

Precision 70.11
F1 78.94

Epoch = 100
24 32 64 128
85.77 84.94 85.52 72.95
89.28 91.61 90.91 87.41
69.64 69.68 69.77 59.06
78.32 79.22 79.01 70.54

Figure 26: TNN Accuracy Curve.

Conversely, the experimental results presented in Tables [13, 14, 15], obtained using

LSTM-based SNN are significantly different.

From the tables, we can see that the Transformer model consistently outperforms the

LSTM model across all batch sizes and epochs on all performance metrics. The perfor-

mance of both models tends to improve with increasing batch size and epochs, but the

84

Table 15: Impact of Batch Sizes on RNN over 150 Epochs.

Score
16

AUC 96.30
Recall 97.20

Precision 84.92
F1 90.76

Epoch = 150
24 32 64 128
44.73 97.08 47.79 95.41
39.86 94.63 42.65 95.33
50.29 90.62 52.43 86.46
44.33 92.65 46 90.82

Table 16: Impact of Batch Sizes on 1D-CNN over 50 Epochs.

Score
16

AUC 85.28
Recall 84.38

Precision 82.09
F1 83.26

Epoch = 50
24 32 64 128
83.08 97.21 87.45 91.13
70.86 75.52 73.43 96.50
78.35 83.29 83.55 76.24
74.18 79.08 77.80 85.41

Transformer model consistently achieves higher scores.

Also, Tables [16, 17, 18] show the results of SNN based on the 1D-CNN model where

it achieves good results (AUC = 97.79%) when using a batch size of 32 with 100 epochs.

Figure 28 depicts that embeddings generated by SNN based on 1D-CNN can capture sim-

ilarity among similar devices’ network flows. Related embeddings are close to each other,

while dissimilar ones are far from each other. Moreover, the findings from Tables [19, 20,

21] demonstrate the performance of the DFFNN model-based SNN, which attains an AUC

of 98.07% by employing a batch size of 150 and conducting 150 epochs. Figure 31 depicts

that embeddings generated by SNN based on DFFNN can capture similarity among similar

devices’ network flows. Related embeddings are close to each other, while dissimilar ones

are far from each other.

85

Table 17: Impact of Batch Sizes on 1D-CNN over 100 Epochs.

Score
16

AUC 97.21
Recall 98.14

Precision 87.71
F1 92.75

Epoch = 100
24 32 64 128
96.89 97.79 96.28 96.11
94.41 95.10 92.31 93.01
87.10 91.07 90.21 88.67
90.76 93.08 91.25 90.79

Table 18: Impact of Batch Sizes on 1D-CNN over 150 Epochs.

Score
16

AUC 96.30
Recall 97.20

Precision 84.93
F1 90.77

Epoch = 150
24 32 64 128
44.74 97.08 47.80 95.40
39.86 94.64 42.66 95.33
50.29 90.62 52.43 86.46
44.33 92.65 46 90.82

Figure 27: 1D-CNN Accuracy Plot over 150 Epochs.

86

Table 19: Impact of Batch Sizes on FFDNN over 50 Epochs.

Score
16

AUC 96.69
Recall 93.94

Precision 89.76
F1 91.87

Epoch = 50
24 32 64 128
96.64 96.84 96.64 97.56
95.10 95.80 94.17 93.94
88.50 87.82 88.21 89.96
91.80 91.78 91.18 91.98

Figure 28: PCA Embedding Visualization of 1D-CNN.

Figure 29: 1D-CNN Loss Curve Plot.

87

Table 20: Impact of Batch Sizes on FFDNN over 100 Epochs.

Score
16

AUC 95.85
Recall 94.64

Precision 91.86
F1 93.29

Epoch = 100
24 32 64 128
97.27 97.25 97.62 95.78
94.87 94.87 95.57 95.10
89.65 92.29 89.32 91.28
92.19 93.64 92.40 93.24

Table 21: Impact of Batch Sizes on FFDNN over 150 Epochs.

Score
16

AUC 97.43
Recall 95.57

Precision 90.31
F1 92.85

Epoch = 150
24 32 64 128
97.29 97.26 97.99 98.07
94.17 95.57 94.64 96.04
90.79 90.91 91.24 89.6
92.40 93.15 92.90 92.75

Figure 30: DFFNN Accuracy Plot over 150 Epochs.

88

Figure 31: PCA Embedding Visualization of DFFNN.

Figure 32: DFFNN Loss Curve over 150 Epochs.

Overall, the best AUC score achieved is 86.06% when using a batch size of 16 with

150 epochs. The highest overall AUC of 98.07% achieved during the experiments was by

using Nadam optimizer with a learning rate of 0.001, batch size of 128 and 150 epochs.

Consequently, based on our reported results, we can state that deep learning models based

on few-shot learning can be effective and yield good results on small data.

89

5.6 Comparison with Existing Approach

The comparison with existing approaches will provide a better understanding of the advan-

tages and limitations of our approach. In this section, we compare our results with those

of the IoT Sentinel approach [7], which used the same dataset for the same problem. Our

approach utilizes a different type of features and machine learning models than previous

studies, making direct comparison challenging. To overcome this challenge, we extract and

use the same set of features used in [7], which is presented in Table 22 in order to 1) eval-

uate the effectiveness of our optimized feature selection method in improving the results

reported in [7], and 2) train our model using Sentinel features.

Table 22: Set of Features used in IoT Sentinel [7].

Type

Link layer protocol (2)

Network layer protocol (4)

Transport layer protocol (2)

Application layer protocol (8)

IP options (2)

Packet content (2)

IP address (1)

Port class (2)

Features

ARP / L L C

IP / ICMP / ICMPv6 / EAPoL

TCP / UDP

HTTP / HTTPS / DHCP / BOOTP / SSDP / DNS / MDNS / NTP

Padding / RouterAlert

Size (int) / Raw data

Destination IP counter (int)

Source (int) / Destination (int)

The features are binary (set to 1 if some selected communication protocols are used

and set to 0 otherwise), except the ones marked with (int) in the table, which are integers.

Feature selection was performed using our feature selection process presented in Section

4.3.

After only applying Unsupervised Feature Selection, the number of features was re-

duced from 23 to 18. Recall from Section 5.4.1 that zero-variance features are features that

have the same value for all instances. In other words, these features have zero variance and

90

do not provide any useful information for a machine-learning algorithm. Figures [33, 34,

35] show an example of zero-variance features (or constant features), namely IP, ICMP and

IP_Padding respectively, where each feature is identified and represented by a vertical line

at x=0. This line indicates that all instances (i.e., all classes) in the dataset have a value of

0 for this particular feature.

Figure 33: Scatter showing that IP Feature value is 0 for All IoT Types.

Figure 34: Scatter showing that ICMP Feature value is 0 for All IoT Types.

91

Figure 35: Scatter showing that IP_Padding Feature value is 0 for All IoT Types.

Further application of the supervised feature selection reduced the number of features

to 12 without affecting the model performance as shown in Figure 36. The final subset of

selected features includes ARP, Packet Size, Destination IP Count, Source Port, Destination

Port, TCP, HTTPS, HTTP, SSDP, DNS, MDNS, and NTP.

Figure 36: Feature Selection on IoT Sentinel [7] Features.

92

After selecting the most informative features, we trained a One-vs-All Random Forest

classification, which is a "one classifier per device-type" approach that builds a binary

classifier for each class. When comparing our results to those of [7], it must be pointed

out that we were able to reduce the dimensionality of the problem and improve the model’s

performance from 81% to 86%. To provide insight into how better the model is performing

using the selected features, the confusion matrix is presented in Figure 37.

Figure 37: Confusion Matrix for a One-vs-All Random Forest Classification Model.The
x-axis and y-axis Represent the Predicted and Actual or True Class Labels, Respectively.

Additionally, in order to conduct a meaningful comparison of the two approaches, the

93

same evaluation metric is used, namely accuracy, to report the results that were achieved.

In this work, an automatic feature selection is employed, which results in the selection

of 31 features from the network flow data to train a Siamese neural network composed

of four different neural networks, as previously detailed. In contrast, the authors of IoT

Sentinel extracted from packet headers a number of 23 features, which they use to train

a random forest model for each device type. Their reported accuracy is 81% on average.

Compared to IoT Sentinel, depending on the model configuration, our proposed approach

achieves the following results: 92.31% for SNN based on a transformer; 91.16% for SNN

based on DFFNN; 90.21% for SNN based on CNN; and 80.07% for SNN based on RNN.

Thus, except for the last configuration, our proposed models outperform the IoT Sentinal

approach, achieving around 10% higher accuracy. In addition, it is worth mentioning that

employing few-shot learning allow us to handle even situations where the availability of

labeled IoT traffic is limited. The reason is that our approach uses SNN to compare the

similarity between traffic features. Also, our approach does not require retraining a model

when a new device connects to the network. Likewise, it does not require training a model

for each device. In contrast, IoT Sentinel relies on training a classifier for each device

and requires training a new model when a new device connects to the network. The re-

sults of this study demonstrate the effectiveness of feature selection in improving model

performance and reducing computational load. The selection of relevant features not only

improves the accuracy of the model but also makes it more interpretable by eliminating

irrelevant or redundant features. In conclusion, feature selection is an important process in

machine learning that can significantly improve model performance and reduce computa-

tional complexity. A further finding is that few-shot learning models outperform the model

in [7].

94

Chapter 6

Conclusion

This thesis investigated the use of deep learning techniques for identifying the types of In-

ternet of Things devices based on their network traffic patterns. We began by discussing

the importance of device identification for securing IoT networks and reviewed the relevant

literature on deep learning for device identification. A hybrid feature selection approach

is presented to automatically select the best features without relying on feature engineer-

ing and domain knowledge. The feature selection method combines and utilizes multiple

methods to achieve a more generalized solution. The comparison between the two machine

learning models (with and without feature selection) revealed some interesting findings.

After applying feature selection, the model achieved a similar or even better performance

than the original model, using fewer features and requiring less computational resources.

This suggests that feature selection is an important step in machine learning that can help

improve the performance of models, particularly when dealing with high-dimensional data.

We then proposed and presented a novel deep learning-based solution for IoT device type

identification, which we evaluated using a real-world network traffic dataset. Our approach

employs the few-shot learning techniques based on the Siamese neural network. The pro-

posed solution is based on passive fingerprinting using bidirectional flows, which are ex-

tracted from the encrypted network traffic. Four deep learning models, including DFFNN,

95

CNN, RNN and TNN model, have been applied and evaluated on a real IoT dataset. The

experimental results show that the proposed models are effective and efficient. Our results

showed that our proposed solution effectively and accurately identified the types of IoT

devices with high precision and recall rates. We also compared the performance of our

proposed solution with [7] and showed that our deep learning model outperformed these

algorithms in terms of accuracy and computational efficiency.

Our study also addressed the challenges of using deep learning for IoT device-type

identification. These challenges included the need for large datasets,

Overall, this study contributes to the growing body of research on using deep learn-

ing for IoT security and provides insights into the potential and challenges of using deep

learning techniques for identifying IoT device types. We hope that our findings will inspire

further research and innovation in this important area and help improve IoT ecosystems’

security and privacy.

In future work, we aim to explore and investigate how our approach behaves on indus-

trial IoT datasets. We also aim to extend the fingerprinting process to identify an anomalous

device within the network (i.e., unexpected device behavior compared to its normal or in-

tended functioning). Furthermore, it may be useful to investigate Neural Network Search

(NAS), such as Google Search [97], to automate the design of neural network architectures

for SNNs and the hyper-parameter tuning.

96

Bibliography

[1] Maria Stoyanova, Yannis Nikoloudakis, Spyridon Panagiotakis, Evangelos Pallis, and
Evangelos K Markakis. A survey on the internet of things (iot) forensics: chal-
lenges, approaches, and open issues. IEEE Communications Surveys & Tutorials,
22(2):1191–1221, 2020.

[2] Nataliia Neshenko, Elias Bou-Harb, Jorge Crichigno, Georges Kaddoum, and Nasir
Ghani. Demystifying iot security: An exhaustive survey on iot vulnerabilities and a
first empirical look on internet-scale iot exploitations. IEEE Communications Surveys
Tutorials, 21(3):2702–2733, 2019.

[3] Alex Shenfield and Martin Howarth. A novel deep learning model for the detection
and identification of rolling element-bearing faults. Sensors, 20(18):5112, 2020.

[4] Jihyun Kim, Jaehyun Kim, Huong Le Thi Thu, and Howon Kim. Long short term
memory recurrent neural network classifier for intrusion detection. In 2016 Interna-
tional Conference on Platform Technology and Service (PlatCon), pages 1–5, 2016.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[6] Kyle Martin, Nirmalie Wiratunga, Sadiq Sani, and Stewart Massie. A convolutional
siamese network for developing similarity knowledge in the selfback dataset. CEUR
Workshop Proceedings, 2017.

[7] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N Asokan, Ahmad-Reza Sadeghi,
and Sasu Tarkoma. Iot sentinel: Automated device-type identification for security
enforcement in iot. In 2017 IEEE 37th International Conference on Distributed Com-
puting Systems (ICDCS), pages 2177–2184. IEEE, 2017.

[8] Sam Lucero et al. Iot platforms: enabling the internet of things. White paper, 2016.

[9] Vijayanand Thangavelu, Dinil Mon Divakaran, Rishi Sairam, Suman Sankar Bhunia,
and Mohan Gurusamy. Deft: A distributed iot fingerprinting technique. IEEE Internet
of Things Journal, 6(1):940–952, 2018.

97

[10] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis,
et al. Understanding the mirai botnet. In 26th {USENIX} Security Symposium
({USENIX} Security 17), pages 1093–1110, 2017.

[11] Donald R Reising, Michael A Temple, and Julie A Jackson. Authorized and rogue
device discrimination using dimensionally reduced rf-dna fingerprints. IEEE Trans-
actions on Information Forensics and Security, 10(6):1180–1192, 2015.

[12] Nicolas Sklavos and Odysseas G Koufopavlou. Mobile communications world: Secu-
rity implementations aspects-a state of the art. Comput. Sci. J. Moldova, 11(2):168–
187, 2003.

[13] Wen-Chuan Hsieh, Yi-Hsien Chiu, and Chi-Chun Lo. An interference-based preven-
tion mechanism against wep attack for 802.11 b network. In International Conference
on Network Control and Engineering for QoS, Security and Mobility, pages 127–138.
Springer, 2004.

[14] Oracle. What is iot?

[15] Mark Patel, Jason Shangkuan, and Christopher Thomas. What’s new with the internet
of things?, Jan 2018.

[16] Fredrik Dahlqvist, Mark Patel, Alexander Rajko, and Jonathan Shulman. Growing
opportunities in the internet of things, Sep 2020.

[17] Tim Hahn. Internet of threats securing the internet of things for industrial and utility
companies. [Online] Available at h t t ps : / / w w w . i bm . c o m / do w n l o ads / c a s /
ZJRRVRKW, Mar 2018.

[18] Alex Schiffer. How a fish tank helped hack a casino.

[19] Yuchen Yang, Longfei Wu, Guisheng Yin, Lijie Li, and Hongbin Zhao. A survey on
security and privacy issues in internet-of-things. IEEE Internet of Things Journal,
4(5):1250–1258, 2017.

[20] ISTR Symantec. Executive summary 2018 internet security threat report. Symantec
Corporation, USA, 123:04, 2018.

[21] Selena Larson. Fda confirms that st. jude’s cardiac devices can be hacked, Jan 2017.

[22] HP News. Hp study reveals 70 percent of internet of things devices vulnerable to
attack, Jul 2014.

[23] Zscaler. Iot devices in the enterprise 2020: Shadow iot threat emerges.

98

https://www.ibm.com/downloads/cas/ZJRRVRKW
https://www.ibm.com/downloads/cas/ZJRRVRKW

[24] Yingying Chen, Wade Trappe, and Richard P Martin. Detecting and localizing wire-
less spoofing attacks. In 2007 4th Annual IEEE Communications Society Conference
on sensor, mesh and ad hoc communications and networks, pages 193–202. IEEE,
2007.

[25] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. Defending against vm rollback
attack. In IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN 2012), pages 1–5. IEEE, 2012.

[26] Chris Karlof and David Wagner. Hidden markov model cryptanalysis. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pages 17–34.
Springer, 2003.

[27] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack and ddos defense mech-
anisms. ACM SIGCOMM Computer Communication Review, 34(2):39–53, 2004.

[28] Sana Benzarti, Bayrem Triki, and Ouajdi Korbaa. A survey on attacks in internet
of things based networks. In 2017 International conference on engineering & MIS
(ICEMIS), pages 1–7. IEEE, 2017.

[29] Y- C Hu, Adrian Perrig, and David B Johnson. Packet leashes: a defense against
wormhole attacks in wireless networks. In IEEE INFOCOM 2003. Twenty-second
Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE
Cat. No. 03CH37428), volume 3, pages 1976–1986. IEEE, 2003.

[30] Mohan V Pawar and J Anuradha. Network security and types of attacks in network.
Procedia Computer Science, 48:503–506, 2015.

[31] Robert Sloan and Richard Warner. Unauthorized access: The crisis in online privacy
and security. Taylor & Francis, 2017.

[32] J Tidy. Hacker tries to poison water supply of florida city. BBC News, 2021.

[33] Miraqa Safi, Sajjad Dadkhah, Farzaneh Shoeleh, Hassan Mahdikhani, Heather
Molyneaux, and Ali A Ghorbani. A survey on iot profiling, fingerprinting, and iden-
tification. ACM Transactions on Internet of Things, 2022.

[34] Qiang Xu, Rong Zheng, Walid Saad, and Zhu Han. Device fingerprinting in wireless
networks: Challenges and opportunities. IEEE Communications Surveys & Tutorials,
18(1):94–104, 2015.

[35] Shancang Li, Kim-Kwang Raymond Choo, Qindong Sun, William J Buchanan, and
Jiuxin Cao. Iot forensics: Amazon echo as a use case. IEEE Internet of Things
Journal, 6(4):6487–6497, 2019.

[36] Anupam Das, Nikita Borisov, and Matthew Caesar. Tracking mobile web users
through motion sensors: Attacks and defenses. In NDSS, 2016.

99

[37] Sebastian Zimmeck, Jie S Li, Hyungtae Kim, Steven M Bellovin, and Tony Jebara.
A privacy analysis of cross-device tracking. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1391–1408, 2017.

[38] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. Cookieless monster: Exploring the ecosys-
tem of web-based device fingerprinting. In 2013 IEEE Symposium on Security and
Privacy, pages 541–555, 2013.

[39] Kai Yang, Qiang Li, Xiaodong Lin, Xin Chen, and Limin Sun. ifinger: Intrusion
detection in industrial control systems via register-based fingerprinting. IEEE Journal
on Selected Areas in Communications, 38(5):955–967, 2020.

[40] Chao Shen, Chang Liu, Haoliang Tan, Zhao Wang, Dezhi Xu, and Xiaojie Su. Hybrid-
augmented device fingerprinting for intrusion detection in industrial control system
networks. IEEE Wireless Communications, 25(6):26–31, 2018.

[41] David Formby, Preethi Srinivasan, Andrew Leonard, Jonathan Rogers, and Raheem A
Beyah. Who’s in control of your control system? device fingerprinting for cyber-
physical systems. In NDSS, 2016.

[42] Michael D Twa, Srinivasan Parthasarathy, Cynthia Roberts, Ashraf M Mahmoud,
Thomas W Raasch, and Mark A Bullimore. Automated decision tree classification
of corneal shape. Optometry and vision science: official publication of the American
Academy of Optometry, 82(12):1038, 2005.

[43] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[44] Vladimir Vapnik. The nature of statistical learning theory. Springer science & busi-
ness media, 1999.

[45] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE trans-
actions on information theory, 13(1):21–27, 1967.

[46] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta
numerica, 8:143–195, 1999.

[47] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks.
arXiv preprint arXiv:1511.08458, 2015.

[48] L Busk Linnebjerg and R Wetke. Long short term memory. Hear. Balanc. Commun,
12:36–40, 1997.

[49] Kai Yang, Qiang Li, and Limin Sun. Towards automatic fingerprinting of iot devices
in the cyberspace. Computer Networks, 148:318–327, 2019.

100

[50] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun. Characterizing industrial con-
trol system devices on the internet. In 2016 IEEE 24th International Conference on
Network Protocols (ICNP), pages 1–10. IEEE, 2016.

[51] Samuel Marchal, Markus Miettinen, Thien Duc Nguyen, Ahmad-Reza Sadeghi, and N
Asokan. Audi: Toward autonomous iot device-type identification using periodic
communication. IEEE Journal on Selected Areas in Communications, 37(6):1402–
1412, 2019.

[52] Mustafizur R Shahid, Gregory Blanc, Zonghua Zhang, and Hervé Debar. Iot devices
recognition through network traffic analysis. In 2018 IEEE international conference
on big data (big data), pages 5187–5192. IEEE, 2018.

[53] Samaresh Bera, Sudip Misra, and Athanasios V. Vasilakos. Software-defined net-
working for internet of things: A survey. IEEE Internet of Things Journal, 4(6):1994–
2008, 2017.

[54] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and
Moussa Ayyash. Internet of things: A survey on enabling technologies, protocols,
and applications. IEEE Communications Surveys Tutorials, 17(4):2347–2376, 2015.

[55] Anat Bremler-Barr, Haim Levy, and Zohar Yakhini. Iot or not: Identifying iot devices in
a short time scale. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium, pages 1–9, 2020.

[56] Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo, Martín Ochoa,
Nils Ole Tippenhauer, and Yuval Elovici. Profiliot: a machine learning approach
for iot device identification based on network traffic analysis. In Proceedings of the
symposium on applied computing, pages 506–509, 2017.

[57] Antônio J Pinheiro, Jeandro de M Bezerra, Caio AP Burgardt, and Divanilson R
Campelo. Identifying iot devices and events based on packet length from encrypted
traffic. Computer Communications, 144:8–17, 2019.

[58] Linna Fan, Lin He, Enhuan Dong, Jiahai Yang, Chenglong Li, Jinlei Lin, and Zhil-
iang Wang. Evoiot: An evolutionary iot and non-iot classification model in open
environments. Computer Networks, 219:109450, 2022.

[59] Jorge Ortiz, Catherine Crawford, and Franck Le. Devicemien: network device behav-
ior modeling for identifying unknown iot devices. In Proceedings of the International
Conference on Internet of Things Design and Implementation, pages 106–117, 2019.

[60] Linna Fan, Shize Zhang, Yichao Wu, Zhiliang Wang, Chenxin Duan, Jia Li, and Jiahai
Yang. An iot device identification method based on semi-supervised learning. In 2020
16th International Conference on Network and Service Management (CNSM), pages
1–7, 2020.

101

[61] Arunan Sivanathan, Daniel Sherratt, Hassan Habibi Gharakheili, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. Characterizing and
classifying iot traffic in smart cities and campuses. In 2017 IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), pages 559–564. IEEE,
2017.

[62] Nesrine Ammar, Ludovic Noirie, and Sebastien Tixeuil. Autonomous identification of
iot device types based on a supervised classification. In ICC 2020 - 2020 IEEE
International Conference on Communications (ICC), pages 1–6, 2020.

[63] Bruhadeshwar Bezawada, Maalvika Bachani, Jordan Peterson, Hossein Shirazi, In-
drakshi Ray, and Indrajit Ray. Behavioral fingerprinting of iot devices. In Proceedings
of the 2018 workshop on attacks and solutions in hardware security, pages 41–50,
2018.

[64] Yantian Luo, Xu Chen, Ning Ge, Wei Feng, and Jianhua Lu. Transformer-based de-
vice type identification in heterogeneous iot traffic. IEEE Internet of Things Journal,
pages 1–1, 2022.

[65] Jiaqi Bao, Bechir Hamdaoui, and Weng-Keen Wong. Iot device type identification
using hybrid deep learning approach for increased iot security. In 2020 International
Wireless Communications and Mobile Computing (IWCMC), pages 565–570, 2020.

[66] Franck Le, Jorge Ortiz, Dinesh Verma, and Dilip Kandlur. Policy-based identification
of iot devices’ vendor and type by dns traffic analysis. Policy-Based Autonomic Data
Governance, pages 180–201, 2019.

[67] Leonardo Babun, Hidayet Aksu, Lucas Ryan, Kemal Akkaya, Elizabeth S. Bentley,
and A. Selcuk Uluagac. Z-iot: Passive device-class fingerprinting of zigbee and z-
wave iot devices. In ICC 2020 - 2020 IEEE International Conference on Communi-
cations (ICC), pages 1–7, 2020.

[68] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford, Chamith
Wijenayake, Arun Vishwanath, and Vijay Sivaraman. Classifying iot devices in smart
environments using network traffic characteristics. IEEE Transactions on Mobile
Computing, 18(8):1745–1759, 2018.

[69] Hossein Jafari, Oluwaseyi Omotere, Damilola Adesina, Hsiang-Huang Wu, and Lijun
Qian. Iot devices fingerprinting using deep learning. In MILCOM 2018 - 2018 IEEE
Military Communications Conference (MILCOM), pages 1–9, 2018.

[70] Girish Vaidya, Akshay Nambi, T.V. Prabhakar, Vasanth Kumar T, and Suhas Sud-
hakara. Iot-id: A novel device-specific identifier based on unique hardware finger-
prints. In 2020 IEEE/ACM Fifth International Conference on Internet-of-Things De-
sign and Implementation (IoTDI), pages 189–202, 2020.

102

[71] Florent Galtier, Romain Cayre, Guillaume Auriol, Mohamed Kâaniche, and Vincent
Nicomette. A psd-based fingerprinting approach to detect iot device spoofing. In 2020
IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC),
pages 40–49, 2020.

[72] Linning Peng, Aiqun Hu, Junqing Zhang, Yu Jiang, Jiabao Yu, and Yan Yan. Design of
a hybrid rf fingerprint extraction and device classification scheme. IEEE Internet of
Things Journal, 6(1):349–360, 2019.

[73] Fatima Hussain, Rasheed Hussain, Syed Ali Hassan, and Ekram Hossain. Machine
learning in iot security: Current solutions and future challenges. IEEE Communica-
tions Surveys & Tutorials, 22(3):1686–1721, 2020.

[74] Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Khalid Al-Ali, Xiaojiang Du,
Ihsan Ali, and Mohsen Guizani. A survey of machine and deep learning methods
for internet of things (iot) security. IEEE Communications Surveys & Tutorials,
22(3):1646–1685, 2020.

[75] Ruizhong Du, Jingze Wang, and Shuang Li. A lightweight flow feature-based iot
device identification scheme. Security and Communication Networks, 2022, 2022.

[76] Kahraman Kostas, Mike Just, and Michael A Lones. Iotdevid: A behavior-based
device identification method for the iot. IEEE Internet of Things Journal, 2022.

[77] Rajarshi Roy Chowdhury, Sandhya Aneja, Nagender Aneja, and Emeroylariffion
Abas. Network traffic analysis based iot device identification. In Proceedings of
the 2020 the 4th International Conference on Big Data and Internet of Things, pages
79–89, 2020.

[78] Phornsawan Roemsri and Rattikorn Hewett. Device identification for iot security. In
2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP),
pages 866–870, 2021.

[79] Chenxin Duan, Hao Gao, Guanglei Song, Jiahai Yang, and Zhiliang Wang. Byteiot: A
practical iot device identification system based on packet length distribution. IEEE
Transactions on Network and Service Management, 19(2):1717–1728, 2022.

[80] Salma Abdalla Hamad, Wei Emma Zhang, Quan Z. Sheng, and Surya Nepal. Iot
device identification via network-flow based fingerprinting and learning. In 2019
18th IEEE International Conference On Trust, Security And Privacy In Computing
And Communications/13th IEEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE), pages 103–111, 2019.

[81] Ibbad Hafeez, Markku Antikainen, Aaron Yi Ding, and Sasu Tarkoma. Iot-keeper:
Detecting malicious iot network activity using online traffic analysis at the edge. IEEE
Transactions on Network and Service Management, 17(1):45–59, 2020.

103

[82] Jay Thom, Nathan Thom, Shamik Sengupta, and Emily Hand. Smart recon: Network
traffic fingerprinting for iot device identification. In 2022 IEEE 12th Annual Com-
puting and Communication Workshop and Conference (CCWC), pages 0072–0079,
2022.

[83] Kevin Merchant, Shauna Revay, George Stantchev, and Bryan Nousain. Deep learning
for rf device fingerprinting in cognitive communication networks. IEEE Journal of
Selected Topics in Signal Processing, 12(1):160–167, 2018.

[84] Sandhya Aneja, Nagender Aneja, and Md Shohidul Islam. Iot device fingerprint using
deep learning. In 2018 IEEE International Conference on Internet of Things and
Intelligence System (IOTAIS), pages 174–179, 2018.

[85] Lei Bai, Lina Yao, Salil S. Kanhere, Xianzhi Wang, and Zheng Yang. Automatic
device classification from network traffic streams of internet of things. In 2018 IEEE
43rd Conference on Local Computer Networks (LCN), pages 1–9, 2018.

[86] Feihong Yin, L i Yang, Jianfeng Ma, Yasheng Zhou, Yuchen Wang, and Jiahao Dai.
Identifying iot devices based on spatial and temporal features from network traffic.
Security and Communication Networks, 2021, 2021.

[87] Max Kuhn, Kjell Johnson, et al. Applied predictive modeling, volume 26. Springer,
2013.

[88] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182, 2003.

[89] Ron Kohavi and George H John. Wrappers for feature subset selection. Artificial
intelligence, 97(1-2):273–324, 1997.

[90] Soledad Galli. Python feature engineering cookbook: over 70 recipes for creating,
engineering, and transforming features to build machine learning models. Packt Pub-
lishing Ltd, 2020.

[91] Bernhard Scholkopf, Robert Williamson, Alex Smola, John Shawe-Taylor, John Platt,
et al. Support vector method for novelty detection. Advances in neural information
processing systems, 12(3):582–588, 2000.

[92] Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C Prati, Bartosz
Krawczyk, and Francisco Herrera. Learning from imbalanced data sets, volume 10.
Springer, 2018.

[93] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed
Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class
classification. In International conference on machine learning, pages 4393–4402.
PMLR, 2018.

104

[94] Gregory W Corder and Dale I Foreman. Nonparametric statistics for non-statisticians,
2011.

[95] Mario Beraha, Alberto Maria Metelli, Matteo Papini, Andrea Tirinzoni, and Marcello
Restelli. Feature selection via mutual information: New theoretical insights. In 2019
international joint conference on neural networks (IJCNN), pages 1–9. IEEE, 2019.

[96] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. Efficient and robust automated machine learning. Advances
in neural information processing systems, 28, 2015.

[97] Hanna Mazzawi, Xavi Gonzalvo, Aleks Kracun, Prashant Sridhar, Niranjan Subrah-
manya, Ignacio Lopez-Moreno, Hyun-Jin Park, and Patrick Violette. Improving key-
word spotting and language identification via neural architecture search at scale. In
Interspeech, pages 1278–1282, 2019.

105

