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Abstract

Optimizing Reinforcement Learning: Fog and Edge Resource Manage-
ment Through Bootstrapping and Reward Shaping

Hani Sami, Ph.D.

Concordia University, 2023

The rapid and extensive use of technology is unprecedented. From small devices like

sensors and mobile phones to large systems like servers and data centers, a wide range of

computing setups exists to meet human needs. However, the increased demand has raised

concerns about whether these setups can handle the load. Fog and edge computing are con-

cepts that bring servers closer to users to improve response time and service quality. But

the availability of these fog devices is limited, highlighting the need for systems to manage

computing resources. These systems’ main task is to efficiently distribute services across

available resources and adapt to changing needs. Existing resource management solutions

still possess challenges and limitations with regards to the quality of decisions due to their

increasing complexity.

In this thesis, our main motivation is leveraging AI in addressing resource management,

which stems from its ability to intelligently handle complex and dynamic scenarios, such

as optimizing service placement, predicting demands, and adapting to changing environ-

ments. AI’s capacity to learn from data and make informed decisions offers a promising

approach to efficiently manage computing resources in a rapidly evolving technological

landscape. This research is motivated by four main goals: (1) creating a strong computing
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architecture that can meet diverse user needs across various applications managed by a re-

source management system; (2) using AI to develop resource management solutions that

handle decisions like placement and scaling, as well as predict user demands and resource

availability; (3) ensuring the AI solution is reliable despite potential errors by improving

its performance or having a backup plan; (4) making the AI solution adaptable to sudden

environmental changes to keep decisions effective.

The thesis aims to address these gaps by: (1) designing an effective networking and

computing architecture in the context of on-demand fog and edge formation, while sup-

porting an Intelligent Computing Resource Management solution (ICRM) for multi-types

of applications through offline learning and bootstrapping; (2) using DRL to build the

ICRM, driven by a Markov Decision Process (MDP) environment design that produces

actions related to host selection and service placement while accounting for the change in

user demands; (3) enhancing the proposed MDP by adding the support for predicting the

change in both user demands and available computing resources, where the agent becomes

capable for issues horizontal and vertical resource scaling decisions in multi-applications

setting; (4) introducing the first solution to speed the learning speed of DRL agent by

devising a Graph Convolutional Network solution as a potential-based reward shaping so-

lution; (5) developing another reward shaping solution based on Convolutional Neural Net-

work (CNN) carefully designed and inspired by the value iteration network (VIN), to speed

learning. Besides these contributions, we present a set of experimental studies and simula-

tions using real-world test cases for each of the contributions compared to state-of-the-art

solutions.

In conclusion, this thesis identifies research gaps that warrant further exploration in the

future.
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Chapter 1

Introduction

This chapter provides an introduction to the context of our research work, outlines

the problems addressed in this thesis, presents the corresponding research questions, and

defines the objectives and contributions of our research.

1.1 Research Context and Motivation

Fog computing is utilized to work out the limitations of distant clouds affecting IoT

devices in terms of networking, computation, and data storage. Fog can be any computing

device located close to the user. The creation of these fogs can be static [3] or dynamic

[1], depending on the environment it is serving. Effective computing resource management

plays a pivotal role in today’s technology-driven world. It involves the efficient alloca-

tion and utilization of the fog computing resources, such as processing power, memory,

storage, and network bandwidth, to meet the diverse demands of various applications and

tasks. The process of Intelligent Computing Resource Management (ICRM) encompasses

resource optimization, scaling, load balancing, scheduling, and intelligent decision-making

to ensure the most efficient and effective use of available resources. With the exponential

growth of technology and the increasing complexity of computing systems, the significance
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of ICRM cannot be overstated. In particular, ICRM is essential for various applications,

including Autonomous Driving, energy management, smart cities, healthcare, financial ser-

vices, manufacturing, industrial automation, video surveillance, and Natural Language Pro-

cessing (NLP). These applications rely on real-time data processing, resource optimization,

and intelligent decision-making for improved performance and efficiency.

To achieve a generalized environment setting for various applications, we explore the

concept of on-demand computing [1, 4]. This mechanism utilizes Docker containers for

hosting edge services orchestrated by Kubernetes clusters [5] on-demand. Docker con-

tainers offer a lightweight solution to offload and run containers on constraint computing

devices. In this context, nodes are volunteers that possess variable capacities of CPU, Mem-

ory, and Disk resources. Despite the on-demand flexibility that offers lightweight service

placement, there must be an effective ICRM for managing the selection of hosts and place-

ment of services intelligently. Hence, the motivation of this thesis is to build an ICRM that

considers the change in demands by users for various services in different locations and

provide the required support proactively with the minimal impact on the Quality of Service

(QoS). Such an action entails a careful consideration to the required service resources and

the offerings on hosts. Furthermore, It is important to consider the time it takes to initial-

ize or update an environment for serving these users. Besides, the ICRM should offer a

flexibility of scaling computing resources dynamically and proactively, while attaining for

a variety of objective functions that can required by the application.

1.2 Computing Resource Management: An Example

Users request a set of different services from the cloud using their smart devices. As

shown in Fig. 1.1, these requests arrive from different locations with different volumes.

Assuming that five services are initially running on the cloud {S1, S2, . . . , S5}, each rep-

resented by a different color in figure 1.1, the cloud can become overloaded with tons of

2



Figure 1.1: An Illustration of the Service Placement Problem on Fog Clusters
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requests. Subsequently, users start complaining because of the embarrassing QoS caused

by transmission delay or high load on the cloud servers. Thereafter, fogs are used to over-

come these issues by running close to users with acceptable performance. In addition, edge

also refers to computing machine that run closer to the users than fogs. In the remainder of

this thesis, we are not making differences between fog and edge devices, so they are used

interchangeably. As illustrated in the figure, the cloud makes scheduling decisions on a set

of services that need to be placed near users. Following the approach in [6], the placement

request is received by the master of the fog cluster. One of the master’s tasks is to distribute

these services on its fogs in a way that enhances the QoS level experienced by the users and

preserves the fog requirements. For instance, these services should be as close as possible

to users requesting them. Every fog has a coverage area users can reach. Therefore, fogs

should serve users present within their range. In Fig. 1.1, Fog 1.1, serving Area 1.1, can

only host S1 and S2 because of the limitation of its resources. In this subarea, a user is

requesting service S3 (green); however, it’s not hosted by Fog 1.1. Therefore, this user is

still served by the cloud. Because of the fog servers resource limitation inside their Kuber-

netes cluster, solving the problem of fog selection and service distribution is of immense

importance. In addition, the demands of services coming from users to fogs change over

time. For instance, in Area 1.2, Fog 1.2 is hosting S3 and S4. If the demands for S1 gets

higher than S4, the fog has to switch these services to start serving S1 to achieve a better

QoS. The demands are only one objective that the master has to satisfy when adjusting the

placements. Other objectives have to be considered. For example, minimizing the distance

between the serving fog and the user, maximizing the number of services pushed having a

higher priority, and minimizing the number of hosts for lighter orchestration. These objec-

tives are essential to consider when making selection and placement decisions.
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1.3 Problem Statement and Research Questions

Dynamic formation of on-demand fog clusters introduces the service placement prob-

lem. This problem is divided into fog selection and service assignment or placement. Fog

selection entails choosing the best fog from a set of available ones, whereas service place-

ment is the action of assigning services to selected fogs. The service placement and fog

selection problem is NP-hard and requires at least a heuristic solution to solve it [1]. For

instance, genetic algorithms use randomness to build populations, evaluate the solutions’

fitness value, and evolve the pareto front. Thus, there is no single solution to the problem,

especially when the input grows due to the hardness of reaching the optimal decision [1].

In other words, heuristic solutions are not always guaranteed to make acceptable decisions,

affecting the quality of decisions made in critical situations. Furthermore, our problem

requires studying users’ demand of services so that services with high demand are pri-

oritized for placement. Such a demand needs to be predicted in order for the model to

react proactively by placing services before the demand occurs, and therefore eliminating

the overhead of initializing fogs, migrating, and starting services. Proactive decision mak-

ing is not feasible when using heuristics because of the lack of prediction model that can

adapt to the stochastic change in demand for different services and from different locations.

Besides the limitation in the quality of decisions considering that an environment state

is given, a change in the requirements or demands in this state hinders the adequacy of

the existing placement. Traditional static resource allocation approaches [3] often lead

to under-utilization or over-utilization of resources, resulting in performance bottlenecks,

increased costs, and inefficient operations. Such static solutions, based on rule-based, pre-

defined allocations, or heuristic-based methods, cannot adapt to changing user demands

for different services, rendering them unsuitable for modern applications with complex

requirement. This leads us to our first research question (RQ1):
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• RQ1: How to produce effective selection and placement decisions that account

for a variety of objectives or application requirements as well as the change of

user demands?

Resource scaling decisions should combine horizontal and vertical scaling for more op-

timized resource usage [7]. In short, horizontal and vertical scaling imply adding/removing

service instances to/from running hosts, and adjusting the amount of resources used by a

running instance respectively. Unfortunately, existing auto-scaling solutions do not have

robust models for predicting the change in demands for services [8], in addition to the

change in computing resources. Moreover, hosts running the application instance offer a

certain volume of resources that are subject to change depending on other running appli-

cations. Performing scaling on hosts with varying resource availability can cause resource

overflow and application downtime. Furthermore, horizontal scaling creates new instances

of services that should be placed on the correct host of a cluster, following a specific set

of fog computing objectives [9]. Moreover, existing solutions are targeting a single appli-

cation or service for scaling [10][9]. However, it is important to study multi-application

scaling in the same cluster for achieving combined management of resources [11]. Finally,

a large enterprise application may run a large cluster and many applications that require

scaling, demanding a scalable solution. Henceforth, our second research question (RQ2)

is:

• RQ2: How to properly scale computing resources horizontally and vertically to

better manage the continuously changing computing spaces on different hosts

for multi-type and large scale applications?

When it comes to production deployment and the dynamic management of computing

resources, the ability to adjust these resources on the fly is a critical aspect. It requires

intelligent decision-making that can effectively handle the challenges of large-scale, com-

plex, and diverse applications. However, predicting user demands accurately and providing
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optimal solutions can be a challenging task subject to potential errors.

Firstly, one common source of error is the misjudgment of demand for specific services.

In the ever-changing landscape of technology and user preferences, anticipating the exact

needs of users can be a daunting task. Such miscalculations can lead to either overprovi-

sioning, wasting valuable resources, or underprovisioning, causing service disruptions and

user dissatisfaction.

Secondly, the emergence of new conditions in the environment or applications can ren-

der existing solutions obsolete or unfeasible. For instance, an unexpected objective may

arise that the placement solution wasn’t designed to handle. This requires adaptability and

agility in the decision-making process to accommodate novel requirements.

Moreover, the quality of the decision made by the ICRM system heavily relies on the

amount of relevant information available about the environment and applications. A lack of

sufficient data can limit the system’s ability to make well-informed decisions, potentially

leading to suboptimal resource allocation.

Therefore, to avoid errors in the decision making in such dynamic and complex envi-

ronment, the ICRM solution should avoid errors by: (1) adapting to environment demands,

(2) adapting to environment changes such as changes in application requirements, and (3)

gathering the maximum amount of useful information to make decisions effectively.

• RQ3: How to build a robust ICRM that avoids mistakes when placing services

through offering high flexibility and adaptability to environment changes and

diverse applications requirements?

1.4 Research Objectives and Contributions

The ultimate goal of this thesis is to develop an effective, efficient, and flexible ICRM

that is capable of producing host selection and service placement decisions. To achieve this

7



goal, we have outlined specific objectives as follows::

• Objective 1: Design a flexible architecture that facilitates on-demand service man-

agement through the ICRM, catering to diverse types of applications.

• Objective 2: Harness the power of Artificial Intelligence (AI) to predict user de-

mands for various services, in addition to available volunteering resources, and gen-

erate multi-objective placement and resource scaling decisions accordingly.

• Objective 3: Implement an effective offline learning solution to enable the AI system

to learn before live deployment, thereby reducing the likelihood of placement and

scaling errors.

• Objective 4: Enhance the AI-based solution to adapt quickly and proactively to en-

vironmental changes and ensure a consistent and high level of Quality of Service

(QoS).

Aware of the above limitations, described in the problem statement section, and cooping

with 1) the Deep Reinforcement Learning (DRL) advancements in the resource manage-

ment field [12], and 2) the potential of having an AI fostered environment supporting the

fog and edge computing [13], exploring the use of DRL as a resource management solution

is promising. A breakthrough in Reinforcement Learning (RL) has been witnessed after

introducing the DRL algorithms. The DRL can achieve high degree non-linear function

approximation capable of solving multi-objective optimization problems with intelligence

while being able to adapt to environment changes. Subsequently, DRL is becoming the core

solution for several resource management and networking-related problems, compelling in-

telligent decisions which usually require human intervention. Thus, there is a potential in

using DQN in the context of fogs selection, service placement, and demand analysis. As

part of our main contribution in this thesis, we argue that a DRL algorithm is the best fit to

build an ICRM.
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To achieve the stated objectives, this thesis makes the following significant contribu-

tions:

(1) Contribution 1: We conducted a comprehensive literature review about existing

intelligence computing resource management frameworks. We also considered the

efforts that tried to improve the speed of learning in Reinforcement Learning. Fur-

thermore, we identified the main research gaps (This contribution is discussed in

Chapter 2).

(2) Contribution 2: We propose a promising on-demand based fog and edge formation

architecture that supports hosting an ICRM in a multi-types of applications setting.

Our architecture offers support for the RL solution through offline learning and boot-

strapping. This contribution is discussed in Chapter 3 and 4.

(3) Contribution 3: We designed a Markov Decision Process (MDP) environment for

the resource management that considers a multi-objective optimization decision and

offers the capability to predict demands. This formulation is used to build a DRL

algorithms. This work also offered means for avoiding decision errors made by the

DRL during the first stages of learning. This contribution is discussed in Chapter

3.

(4) Contribution 4: We augmented the MDP of the previous contribution by adding

additional support to proactive horizontal and vertical resource scaling that considers

both the change in demand and avilable resources on volunteering hosts. Applied

in the context of Mobile Edge Computing (MEC), the developed DRL proved high

efficiency and intelligence. This contribution is discussed in Chapter 4.

(5) Contribution 5: We developed a reward shaping solution using Graph Convolutional

Network (GCN) combined with Recurrent Neural Network (RNN) to form a GCRN
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with the purpose of speeding learning in the context of DRL. This contribution is

discussed in Chapter 5.

(6) Contribution 6: We devised another reward shaping solution using Convolutional

Neural Network (CNN) which processes images from the environment and helps

the DRL agent speed learning by converging and adapting faster to changes. This

contribution is discussed in Chapter 6

1.5 Thesis Organization

Chapter 2 provides a detailed background on IoT, cloud, edge, and fog computing,

along with computing resource management. It covers various technologies like micro-

services, containers, virtual machines, Kubernetes, and network requirements. The chapter

explores heuristic and AI solutions, including DRL, GCN, and CNN, and discusses re-

ward shaping in DRL. It also includes a literature review on existing computing resource

management solutions and related works using RL and AI in general.

In Chapter 3, we showcase the efforts to build a DRL solution, named Intelligent Fog

and Service Placement (IFSP), to perform instantaneous placement decisions proactively

combined with an offline learning mechanism. Following the MDP formulation and DRL

algorithm development, we present a series of experiments to evaluate the performance of

IFSP on real-life dataset of resource management. We also show the ability of IFSP to

adapt to changes in the environment and improve the Quality of Service (QoS) compared

to state-of-the-art-heuristic and DRL solutions.

In Chapter 4, we present IScaler, a DRL-based resource scaling and service placement

solution combined with a suitable architecture for integration in clustering environments.

IScaler is an extension of the work presented in Chapter 3, where horizontal scaling of a
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single application using the SARSA RL algorithm is proposed. In the proposed architec-

ture supporting IScaler, we devise a more advanced solution to the problem of learning

errors by DRL by presenting an integration to a heuristic-based algorithm. Furthermore,

we present in this chapter a series of experiments using real datasets to illustrate the ability

of IScaler to perform optimal auto-scaling decisions in multi-application container-based

clustering environments, while considering the change in demands and available resources.

Aware of the limitation in the convergence speed of DRL algorithms, we introduce in

Chapter 5 a novel reward shaping solution that improve the performance for most of the

DRL solutions. In this chapter we present the novel Graph Convolutional Recurrent Net-

work (GCRN) architecture that combines GCN and RNN. We also showcase the proposed

training mechanism utilizing a message passing technique, augment Krylov, and the look

ahead advice. The evaluations conducted on the Atari and MuJoCo games and compared

to various baselines.

In Chapter 6, we further address the problem of slow learning and convergence speed

of DRL algorithms by proposing the Value Iteration Network for Reward Shaping (VIN-

RS). This Chapter elaborate on the architecture of VIN-RS based on CNN which helps

DRL solutions improve planning over time. Furthermore, experiments are performed on

tabular games, Atari 2600 and MuJoCo, for discrete and continuous action space to demon-

strate the improvement achieved over state-of-the-art solutions.

Finally, we summarize the thesis contributions in Chapter 7 and highlight on the ex-

isting research gap that require further consideration by the research community. Further-

more, we introduce as part of our future directions an ICRM solution that combines the
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I-Scaler solution based on DRL with both the GCRN and CNN-based reward shaping tech-

niques.
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Chapter 2

Background and Literature Review

This chapter presents a detailed background required to learn about Internet of Things

(IoT), cloud, edge, and fog computing, and the computing resource management problem.

In particular, we cover the technological enablers related to building an environment foster-

ing the resource management functionalities. Such technologies include, micro-services,

containers, virtual machines, Kubernetes and orchestration tools, as well as network re-

quirements. Furthermore, we discuss the use of heuristic solutions, as well as AI solutions

that form the main building blocks behind our ICRM solution. Such solutions include:

Heuristic algorithms (e.g. Evolutionary Genetic and Memetic algorithms), Deep Reinforce-

ment Learning (DRL), Graph Convolutional Network (GCN), Recurrent Neural Network,

and Convolutional Neural Network. As part of our objective and contribution to speed

learning in DRL for improving ICRM solutions adaptability, we present the background

required for using reward shaping solutions. These solution include potential-based and

non-potential-based reward shaping techniques,.

This background is followed by a comprehensive literature review about existing com-

puting resource management solutions, in addition to any intelligent form (ICRM) that uses

RL or other forms of AI. Furthermore, we describe the related work that proposes reward

shaping solutions to speed learning in the context of RL.
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Following each part of our studied literature, we highlight the research gap and compare

with our objectives and contributions in this thesis.

2.1 Background

2.1.1 On-Demand Fog and Resource Management

Fog computing was first proposed by Cisco back in 2013 [14] with an objective to re-

duce (1) the load on the network, (2) the cloud processing load, and (3) the transmission

power and energy consumed by IoT devices. In addition, fog devices makes it easier to

orchestrate IoT devices through a master-slave architecture [4]. It is also possible to have

multi-level hierarchies of fog devices, where the closest are represented as edge nodes. Re-

cently, the concept of on-demand fog computing has been proposed to consider deploying

fog nodes on volunteering devices regardless of the place and time. The containerization

technology is used to host services on the volunteering fog devices based on the demands

of IoT nodes. The massive amount of containers produced to serve as fog services should

be managed and controlled by an authority. Therefore, the Kubernetes tool is used to cre-

ate a master-slave cluster of volunteering devices to host and remove services from worker

(slave) nodes, as well as scale the resources. On-demand fog computing is proposed as part

of our previous research efforts [1], and it is extended to serve the vehicular fog computing

paradigm [15]. In this work, we utilize the on-demand fog computing technology to host

containers in Kubernetes clusters for serving critical and time sensitive applications. The

smart resource management solution composing the core of our proposal is deployed in the

on-demand fog computing environment, powered by an advanced RL solution. The RL so-

lution requires a careful design of an MDP environment to consider the user demands and

manage the resources intelligently. In the following section, we describe the foundation of

an MDP for decision making problems.
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2.1.2 Markov Decision Process

An MDP is a mathematically designed framework for modeling decisions where part

of it is random and the other is made by the decision maker. An MDP is a stochastic

formulation of an environment that is composed of the following tuple < S,A,P ,R, γ >.

In this tuple, S is the state space and A is the action space. The taking action a ∈ A

while on state s ∈ S results in a next state s
′ . The probability of ending up in state s

′

following the old state and action is retrieved from the probability transition matrix P . The

action taken that results in the next state s
′ is called a transition. For each transition, a

reward is given to check how well that action is relative to the problem. A reward function

that takes a transition is denoted as R. An MDP is a set of consecutive actions that are

taken in the environment while transitioning in the environment to reach the final goal.

Given that the aim is to reach the final or goal state through the minimum number of

transitions possible, a total discounted reward should be computed. This discounted reward

is maximized, resulting in a trajectory with the highest set of rewards to reach the final goal.

In this regard, γ is the discounted factor used as part of the MDP environment design. For

solving each problem, all these components should work together to model the problem

environment. A solution resulting in the maximum total discounted reward for the problem

is the optimal policy, which is denoted as π∗. A solution to compute the optimal (π∗) or

near optimal policy (π) for finite state and action spaces of an MDP is usually done using

dynamic programming. For such solution, there is an assumption that the reward function

and probability transition matrix are given, which is usually not the case. Solutions for

MDP are categorized into value and policy iterations or updates.
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2.1.3 Reinforcement Learning

Using an accurate MDP formulation of the environment with regards to the problem, an

agent can be developed using RL to find an optimal solution or policy to the problem. Com-

pared to other forms of Machine Learning (i.e. supervised and unsupervised), RL solutions

do not learn from datasets. An RL agent learns from experiences or transitions taken in the

environment based on the actions, which can be induced following a trade-off between ex-

ploration and exploitation. Such trade-off can be addressed by using the ϵ-greedy method

which increases the exploration rate at the first stages of learning. The exploration rate

then gets diminished as the agent continues learning in the environment. Exploration is se-

lecting random actions in the environment no matter the cost, while exploitation is mainly

evaluating the current value function and extracting the best possible action maximizing

the notion of cumulative rewards. Compared to dynamic programming, RL methods are

used to solve large MDPs where an explicit mathematical model is unknown. There exist

multiple RL solutions including model-based and model-free. A model-based algorithm

builds an explicit policy π, while model-free algorithms do not use any policy. A policy

in model-free settings is inferred from a value function. In model-free methods, the pol-

icy is changed before the values are settled. Depending on the size of the state and action

spaces, a tabular or deep learning version of RL can be used. There exist multiple types

of Deep Reinforcement Learning (DRL) algorithms such as Deep Q-Network, Proximal

Policy Optimization, and many versions of the Actor Critic (A2C) solution.

A basic RL agent interacts with the environment while at state st and considering action

at. The agent tries to find the policy π(s) : S → A by minimizing a cost function C.

Action a(t + 1) in an MDP is incurred from the previous action and state, which tells

the agent about the decisions to take. In value-iteration RL methods, the performance of

a(t+1) is represented using the state value function Vπ(s), which is calculated by observing

the rewards during an infinite time horizon. In order to perform model-free control to
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improve a policy, the agent should perceive P in order to configure its actions greedily

towards this value function. However, in most cases, the dynamics of the environment are

not given. An alternative is to use the state-action value function Q(s, a), where considering

greedy actions is possible through maximizing or minimizing Q(s, a) of a given state. The

ultimate goal of using an RL solution is to find the optimal policy π∗, which can minimize

Ct. π∗ can be expressed as follows:

π∗(s) = argmin
a

Q∗(s, a) ∀s ∈ S (1)

Update the state-action value function is possible using the Bellman update, which is ex-

pressed as follows:

Q(S,A)← Q(S,A) + α(C(S,A′, S ′) + γQ(S ′, A′)−Q(S,A)) (2)

where α is the learning rate.

2.1.4 Hidden Markov Model

A Hidden Markov Model (HMM) is a Markov Process but with a set of hidden states.

As part of the HMM definition, a hidden process is introduced, which is directly influenced

by the original Markov Process. Through a solution to the observations, a solution to the

Markov Process can be induced. Observations are denoted as O. The goal is to compute

the probability of the observation belonging to an optimal trajectory.

A common solution is to use the forward-backward algorithm. The probability infer-

ence view of RL can be used to build a reward shaping function [16]. To apply probabil-

ity inference on an MDP structure, the binary optimality variable O is introduced, where

Ot = 1 means the state St ∈ S is optimal, and Ot = 0 otherwise. The distribution over the

optimality variable is written as: p(Ot = 1|St, At) = f(r(St, At)), where f is a function
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Figure 2.1: A Representation of the Hidden Markov Model

that maps rewards r to a probability value. This structure is presented in Figure 2.1, and

is analogous to HMMs. Thus, the VFA is obtained using the backward message passing

function of the form: β(St, At) = p(Ot:T |St, At) [17, 18]. In this equation, Ot:T represents

the observation variables from time t until the end of the episode or the final state at T .

The measure is proven to represent the probability inference view of RL, which is a gener-

alization of the optimal control problem [19]. We use this quantity as a signal to speed the

learning in the form of a potential function.

On the other hand, forward messages (α) are used to look back at the trajectory from

t = 0 to t − 1. Thus, combining forward and backward messages allows the agent to

view the outcome of the whole trajectory and induce its optimality, which is relevant for

forming an effective reward shaping function. The forward message has the following

form: α(St, At) = p(Ot0:t−1)|St, At)p(St, At). Thus, the combined messages is expressed

as:

p(Ot|St, At) ≃ α(St, At)β(St, At) (3)

Based on [16], the potential function is expressed as ϕα,β = α(St, At)× β(St, At)

Forward and backward messaging is only possible for some MDP problems where the

state space and the size of trajectories are small. To make the message passing scalable,

GCN is proposed as a function of reward shaping in [16]. GCN is first used to perform
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semi-supervised learning benefiting from its recursive nature and information propagation

of labeled data to neighbors [20]. Transforming an MDP to a graph structure and applying

GCN to perform message passing for reward shaping is possible. A basic form of two

layers GCN is written as:

ϕGCN(X) = Softmax(T ReLu(TXW1)W0) (4)

where ReLu and Softmax are the activation functions, T is the GCN filter used to define

the graph connections, X is the input matrix, and W0,W1 are the weights of each layer. As

shown in Equation 4, T is used in the GCN calculations for propagating information from

the neighbors. In the context of reward shaping, T is an approximation of the transition

matrix. In [16], the graph Laplacian is used as an approximate of the transition matrix.

This is motivated by the proto-value function framework in the RL literature, which uses

the graph Laplacian as a surrogate of the transition matrix due to its smooth approximate

to the value function of an MDP following the spectral graph theory [21, 22].

As argued in [23], the graph Laplacian is guaranteed to form an approximate estimate

of the value function when assuming that the latter is smooth over the induced MDP graph.

In order to resolve the issue of smoothness for the value function, diffusion wavelets can be

used. However, diffusion wavelets require a matrix inverse operation, which is very expen-

sive to compute. In addition, the work in [23] derived that using the actual transition matrix

instead of the adjacency matrix leads to a smaller margin of error for forming the VFA.

Henceforth, the use of the Krylov basis instead of the graph Laplacian for approximat-

ing the value function is a better option. The Krylov basis is formed using the augmented

Krylov algorithm. In this thesis, we argue in Chapter 5 that the Krylov basis can be used for

approximating the transition matrix for the GCN propagation. To predict the future reward

shaping value, we propose the use of GCRN that combines GCN and Bi-GRUs to study the

spatio-temporal dependencies between the nodes of the graph. In the next subsection, we
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provide more details about the augmented Krylov algorithm and the Krylov basis.

2.1.5 Reward Shaping

The idea behind reward shaping is to apply expert knowledge for directing the reward

function. This is done by appending scaler values, from the shaping function F , to the

reward function so that it takes the following form:

R(St, At, St+1) = r(St, At) + F (St, St+1) (5)

In this equation, F (St, St+1) is the shaping function that takes as input the states at t and

t+1 from S. Because it is important to preserve the policy when applying reward shaping,

F is written as [24]:

F (St, St+1) = γϕ(St+1)− ϕ(St) (6)

where ϕ is a potential-shaping function that outputs a scaler value. Existing solutions that

form shaping functions either rely on human intervention [25], or cannot scale well in

complex environments [26]. On the other hand, in [16], the authors propose the use of

GCN as the shaping function, which resolves the issue of scalability. However, [16] does

not consider the drawback of using the graph Laplacian as the GCN filter and neglects the

importance of studying the temporal dependencies between states of the graph. Moreover,

it is important to consider the option of adding the look-ahead feature when computing the

reward shaping values using the potential function [24].

2.1.6 Look Ahead Advice

The look-ahead advice is a reward shaping technique proposed in [24] without altering

the optimal policy. The shaping function usually takes the form of Equation 6, allowing
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the agent to send feedback after observing the rewards of the states only. A more rigorous

advice is given by building the reward shaping on both states and actions. Following the

look-ahead advice proposed in [24], the shaping function takes the following form:

F (St, At, St+1, At+1) = γϕ(St+1, At+1)− ϕ(St, At) (7)

where ϕ is a function of the state from S and action from A that produces a scaler value.

Hence, the reward shaping function is expressed as follows:

R(St, At, St+1, At+1) = r(St, At) + F (St, At, St+1, At+1) (8)

The look-ahead advice in the reward shaping decisions could further speed the learning

process by augmenting the action values and affecting the action selection [24].

2.1.7 Augmented Krylov

In [23], the authors analyze the performance of the graph Laplacian for computing the

function approximation. A normalized graph Laplacian is widely used and expressed as

Lc = I −D
−1
2 AD

−1
2 , where D and A are the degree matrix and the adjacency matrix re-

spectively, and I is the identity matrix. Besides, Lc is adapted in the original GCN work

to resemble a filter connecting the nodes of the graph. Furthermore, GCN with Lc is used

to generate the potential function for reward shaping in RL, where the adjacency matrix

forming Lc is extracted from the graph of states [16]. In the same context, we argue in

this work that the vectors extracted from the augmented Krylov algorithm, which we refer

to as Krylov basis, outperforms the use of Lc as the GCN filter for forming the potential

function. The results of the analysis in [23] show that the graph Laplacian forms an effec-

tive approximation when assuming that the adjacency matrix is symmetric (i.e., the value
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function is smooth over the graph of states). Such an approximation can be defined by con-

sidering the bottom eigenvectors of the graph Laplacian to approximate smooth functions

with a low Sobolev norm. The final step is to aggregate these vectors to form the VFA.

According to [23], using the adjacency matrix to approximate the value function is not

well motivated. In fact, using the actual transition matrix P π leads to a smaller margin

of errors when approximating the function compared to using the graph Laplacian. Using

the spectral approximation of VFA, we can compute the top eigenvectors of P π, which

are considered as the approximation vectors. The algorithm for computing these vectors is

referred to as the weighted spectral method. There is also another motivated base choice,

which is using m vectors from the Neumann series, where m is the degree of the minimal

polynomial of (I−γP ) [27]. These extracted vectors form the Krylov space to approximate

the VFA, denoted as K(P, r).

A practical implementation of the weighted spectral method faces issues in regards to

the complexity of computing the eigenvectors. In addition, Jordan-decomposition should

be calculated when dealing with a non-diagonalizable transition matrix, which is time con-

suming, and there might be complex numbers in the computed eigenvalues and eigenvec-

tors. In order to overcome these problems, the augmented Krylov algorithm is used, which

combines the benefits of both approximations. In particular, the Krylov space captures the

short-term behavior, while the top eigenvectors of the transition matrix capture the long-

term behavior [23]. These features are well suited for our proposed GCRN for propagating

the short and long term impacts of the messages in GCN. In augmented Krylov, the Krylov

basis is built using the top eigenvectors of P followed by m vectors of the Neumann series.
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2.1.8 Bi-Directional Gated Recurrent Units

The purpose of reward shaping is to speed the learning. Thus, predicting the reward

shaping value of the next state can further improve the effectiveness of any potential func-

tion. To do this, we propose in Chapter 5 adding a bi-directional RNN that processes the

reward shaping values from t = 0 to T to predict the shaping value at T+1. In other words,

we use the bi-directional RNN to learn the temporal dependencies between the states and

transform it to a shaping value. The loss function in this network relies on using the mes-

sage passing to compute the actual labels. In the sequel, we describe the mechanism behing

the Bi-GRUs.

LSTM and GRUs are RNN variants that use the gated mechanism to expand the mem-

ory capabilities. Both LSTM and GRU excel in different domains. LSTMs are more com-

plex and require more training time; however, GRUs have simpler structures with less

number of parameters and less time to train. For these reasons, GRUs are more useful in

the context of reward shaping. Besides, Bi-GRUs contain hidden layers for studying the

sequences in forward and backward directions, which is better suited for our problem.

2.1.9 Convolutional Neural Network

The CNN network is proven to be successful in computer vision and natural language

processing applications. Furthermore, CNN layers extract features from the images as it

goes deeper into the network. The input layer in a CNN takes as input raw image pixels

which are three-dimensional. A CNN is composed of convolutional layer, non-linearity

layer, max pooling layer, and fully connected layer. At each convolutional (conv) layer,

there is a kernel matrix or filter with a certain size. Setting the filter size is considered a

hyperparameter. A filter for the current layer is applied on the input matrix, where matrix

multiplication takes place. In addition, a sliding window or stride on the input matrix can

be applied so that more information about the image can be concluded. Adding more layers
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with various filters results, in most cases, in more feature extraction from the input matrix.

Furthermore, padding can be added to the images to not lose any information present at the

frame or edges of the matrix.

2.1.10 Value Iteration Network

A VIN incorporates planning inside a policy of the original MDP M by performing

value iteration using a CNN [28]. It is assumed that VIN tries to learn and solve another

MDP M̄. Similar to any MDP, M̄ has states, actions, reward and transition functions de-

noted as s̄ ∈ S̄, ā ∈ Ā, R̄(s̄, ā), and P̄(s′̄|s̄, ā) respectively. The state and action spaces in

M̄ are similar toM. The reward and transition matrices of M̄ depend on the observations

ofM, i.e. R̄ = fr(ϕ(s)) and P̄ = fp(ϕ(s)). The functions of the reward and transition (fr

and fp) are learned during the policy training of M̄ using the CNN. The learned policy of

M̄ is connected to obtaining the optimal policy ofM, even though the reward and transi-

tion functions are not the same. The input to the VIN model is a list of images extracted

from the environment. The first layer in the CNN of VIN is a convolution (Conv) layer

that processes raw pixels and pass them to the second layer. The first step in value iteration

at the second conv layer is to convert the input of the previous layer into a reward matrix

using the reward function fr. The filter/kernel of this second conv layer is considered as the

probability transition matrix of M̄. In addition, the third conv layer contains the Q value

or state-action value function over the channels of this layer for M̄. Finally, this last layer

is max-pooled to produce the next value iteration V̄ .

The output of VIN is only for a subset of states. Therefore, the output is passed to

an attention module that helps reduce the number of parameters to train or the actions to

focus on. Furthermore, the output of the attention model is passed to the policy update of

M to guide the model in selecting better actions. The CNN is trained using the standard

backpropagation to support RL or IL decisions.
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2.2 Litearture Review

In this section, we overview the existing literature work for (1) intelligent resource

management, (2) bootstrapping in RL, and (3) reward shaping.

2.2.1 Computing Resource Management

Computing Resource management includes problems related to services distribution,

cashing, and computation offloading. Resource management is needed at any of the well-

known layers of cloud, fog, and edge computing. Table 2.1 overviews some of the latest

research on resource management from multiple disciplines in computing. In this table,

we compare the existing literature work based on nine different metrics. Horizontal and

Vertical scaling indicate if the work considers scaling actions. Availability is to indicate

if proactive actions are taken in order to account for the demands for services, tasks, or

cached content.

There exist literature work that considers horizontal and vertical scaling while predict-

ing the change of demands for certain services, tasks, or content. Furthermore, intelligent

solutions are used to adapt to environmental changes using Machine Learning (including

RL). Furthermore, some of the existing work considers service placement as a problem.

All these features are provided by [9, 10, 45, 46]; however, none of them considers proac-

tive service placement to account for availability, offers prediction to resource changes, or

performs offline learning through bootstrapping. Moreover, some research efforts propose

solutions for horizontal resource scaling [41, 42], with demands prediction [43, 44] or ser-

vice placement [47]. Other solutions do not consider intelligent decision-making but still

consider proposing methods for solving the service placement problem [33, 34, 35, 36].
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Classical Solutions

Classical solutions do not employ intelligent or machine-learning-based solutions. For

instance, the authors in [42] deploys a space-search pruning algorithm to find the best edge

server for migration and scaling. Despite that the complexity of the search algorithm can

grow exponentially in the worst case, the solution has to wait for the demands to occur to

make a decision. On the other side, the authors in [41] measure the system state and classify

its workload into low, medium, and high based on predefined thresholds. Similar to [42],

downtime or degradation of QoS can happen while scaling resources. In addition, the work

in [47] proposes the use of a heuristics search algorithm to perform the resource scaling

in a cloud environment. The limitation in [47] is the use of a heuristic-based solution to

perform the scaling after the increase in demand occurs, which directly affects the QoS.

Besides, a heuristic solution does not guarantee optimal solutions.

Machine Learning Solutions

There are many recent proposals that utilize machine learning to solve wireless and

resource management problems. In this section, we focus on the RL-based solutions,

which outperform classical machine learning solutions due to their ability to perform linear

and non-linear approximations for the state-action value function, adapt to environmen-

tal changes, and learn without prior knowledge. The main RL applications in the context

of resource provisioning include network resource management, computational resource

scaling, wireless network security, and content caching [48]. DRL solutions exist for each

application under different fields, such as the internet of vehicles, unmanned aerial vehicles,

cloud, edge computing, and cellular technologies (5G & 6G) [48]. With regard to network

management, DRL is used for solving the problem of resource management for network

slicing [49]. Besides, DRL is also exploited in [50] for securing the wireless communica-

tion at the physical layer by adjusting the agent’s reflecting elements with a base station. In
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[37], RL-based linear function approximation is used for content caching on base stations

in the context of 5G based on the change of users’ demand. In the same context, the au-

thors in [9] builds a Markov Decision Process (MDP) by defining the states, actions, reward

function, and retrieving the probability transition function. In their work, a Model-Based

RL solution is proposed to take the scaling decision while knowing the probability transi-

tion function through period updates. As shown in Table 2.1, the main limitation of [9] is

the risk of application downtime. Downtime can happen in two cases. First, the probability

transition matrix extracted might not be representative enough of the dynamics of the en-

vironments. Therefore, wrong scaling decisions are possible to be made. Second, in case

the state space grows, it becomes impossible to estimate the probability transition function

because this will require huge memory on the processing machine.

More recently, several approaches, such as [43] and [44], are working on improving the

prediction of workload forecasting, which leads to accurate scaling decisions if successful.

However, these time-series forecasting approaches still look for seasonality and pattern in

the data studied, which drains its accuracy in case new patterns are encountered.

Industry-Based Solutions

Dynamic resource scaling is mandatory in any clustering environment that hosts ser-

vices or executes computing tasks. The leading industry companies that offer cloud plat-

forms offer the service scaling feature. Examples of these cloud solutions are Google Cloud

Platform, Microsoft Azure, and Amazon Web Services (AWS). These solutions integrate

the Kubernetes clustering tool to benefit from the orchestration and embedded scaling fea-

tures, thus offering new environments titled Google GKE 1, Azure AKS 2, and AWS EKS

3. As shown in Table 2.1, these environments offer vertical, horizontal, or both scaling, as

1https://cloud.google.com/kubernetes-engine
2https://azure.microsoft.com/en-us/services/kubernetes-service/
3https://aws.amazon.com/eks/
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well as availability because of the multi-zone hosting of services inside Kubernetes clus-

ters. The main limitation of these environments is that the demands of services, such as

resource load or response time experienced by the user, are not predicted. These solutions

either rely on thresholds or manual configurations similar to Azure AutoScale, which runs

per application instance 4. Such problems are resolved by a platform-native solution for

AWS titled Auto Scaling, which is independent of Kubernetes 5. In AWS Auto Scaling,

time series prediction takes place to be able to scale the application instance before actual

demands occur. As mentioned earlier, this method is not reliable because the time-series

model might not be able to capture seasonality or signature in the demands.

Resource load is not an accurate measure of the scaling decision in cluster-based envi-

ronments; however, most of the recent research and industry approaches are utilizing this

metric at the service instance and cluster levels. Moreover, as shown in Table 2.1, some

solutions do not consider service placement because either they perform vertical scaling

only or they run the horizontal scaling inside the same hosting machine. Additionally, the

resources available on the servers may vary because of hosting several other independent

applications. However, resource prediction is not considered by the aforementioned state

of the art solutions.

2.2.2 Bootstrapping for Reinforcement Learning

Bootstrapping is an existing field of research that gained attention recently with the in-

crease of RL use to solve challenging problems. Challenging problems are usually sensitive

to high costs and require bootstrapping solutions to avoid high exploration costs. Using a

dataset from storage, offline learning is performed to boost the performance of RL at the

first stages of model building. The literature contributions vary concerning the learning

solution used offline on the stored history of experiences. The authors in [51] study the

4https://azure.microsoft.com/en-ca/features/autoscale/
5https://aws.amazon.com/autoscaling/
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difficulties of performing offline learning of a model using any history of experiences, then

fine-tune the policy online. The authors propose an actor-critic bootstrap solution for a

smoother transition between offline and online policy tuning by introducing constraint ac-

tor updates. Moreover, the work in [52] contributes by advising the use of transformers

to generate more offline data to further boost the performance of the offline solution. The

main problem addressed by [52] is the limited representation or distribution of the offline

data, which necessitates the generation of more data with enhanced distribution. Some of

the limitations of these methods are preventing the value function from generalizing and

the misleading characterization of actions that are out of distribution [53]. In this regard,

the authors in [53] propose an uncertainty estimation method for penalizing the value func-

tion in addition to a novel offline sampling method. The problem with data distribution of

offline datasets could severely affect the bootstrapping criteria, which continues to be ad-

dressed in [54]. The authors in [54] propose a prioritization method of online experiences

while training multiple Q-functions on various experiences to select the closest policy to

the online settings.

The bootstrapping criteria proposed in the literature focus on the data distribution of the

history of experiences, which we agree severely affects the model updates. In this proposal,

we propose using heuristic-based methods to replace RL at the exploration stages. Using

our approach, less burden is placed on the quality of historical data, and better decisions are

produced using heuristics during exploration. Data and actions extracted using heuristics

are utilized by the RL model to speed learning during exploration. We believe that our

approach is the first in the literature to propose a heuristic-based bootstrapping solution for

supporting RL.
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2.2.3 Reward Shaping

Reward shaping has gained more attention in the past years due to the importance of

speeding the learning process in Deep RL [55], especially in applications requiring real-

time feedback. In this section, we first describe VIN and its applications. Second, we dis-

cuss existing reward shaping solutions and their limitations. Third, we discuss and present

the limitations of recent literature solutions that utilize deep learning to build the potential

function.

Value Iteration Networks and Applications

Solving numerical problems to obtain an optimized solution is a machine learning task

[56], even when genetic algorithms are used [57]. In Chapter 6, we consider the use of VIN

as the optimization solution to obtain the optimal policy for an RL solution using CNN.

CNN is a type of neural network commonly used in image and video recognition tasks.

Therefore CNN can be used to extract image features to be passed for RL solutions such

as Deep Q-Network, Actor Critic, or PPO. Thus, CNN can be a part of the approximated

function to compute the policy or value networks in RL. On the other hand, VIN is a

specific neural network architecture designed for solving MDPs and forming the policy of

the RL solution. In specific, VIN uses the CNN layers to compose the different components

forming the RL policy update mechanism. In other words, VIN is composed of a set of

convolutional and pooling layers that encode the information from the MDP, which can

estimate the value function. In [28], a VIN module is proposed to perform planning on

a new MDP extracted from images of the environment. The motivation behind VIN is

to support planning in NNs by integrating a new value iteration method inspired by the

policy updates in RL. The value of the work comes from using the convolution operators to

perform value iteration on an unknown MDP that outputs an optimal trajectory. The states

and actions of this MDP are the same as the original MDP, while the reward and transition
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functions are any differentiable functions that can be learned from the model while training.

One of the main limitations of VIN is that it can be applied using imitation learning which

requires a lot of ground truth labels or RL that provides poor performance. Furthermore,

VIN supports low-dimensional environments or MDPs only. Due to the importance of the

planning feature in NNs, various works extended form [28] and proposed new differentiable

reward and transition functions that can stabilize learning in the network. For example, the

authors in [58] proposes a novel convolution operator to learn and plan on spatial and

irregular graphs.

Various applications use VIN to combine planning with a supervised learning task to

improve the quality of the decisions. For instance, the work in [59] utilizes VIN to perform

UAV planning and adapt to novel physical locations. Furthermore, the work in [60] uses

VIN to learn urban navigation planning. Besides, the authors in [61] offer a solution for

traffic control between vehicles using VIN, which takes as input a graph of the traffic.

In this work, we propose a new variation of VIN, named VIN-RS, for the first time in

the context of potential-based reward shaping. VIN-RS encodes a new training mode with

message passing as part of the loss function. Our VIN-RS can effectively plan trajectories

to speed learning in the original policy. VIN-RS takes images of the environment as input

to output shaping values. The shaping values are used in the form of potential-based reward

shaping by appending the original reward function.

Existing Reward Shaping Methods

There exist various reward shaping solutions that (1) alter the optimal policy, (2) target

action exploration instead of reward signal, or (3) requires human intervention. For in-

stance, Learning Intrinsic Rewards for Policy Gradients (LIRPG) proposes an optimal re-

ward framework and does not guarantee invariance of the optimal policy [62]. The Random

Network Distillation (RND) approach provides an action exploration method to accelerate
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learning [63]. RND uses an exploration bonus, which is calculated using the error of a

NN that predicts the observation features. The proposed RND solution provides Superior

performance in the challenging Montezuma Revenge game. In [64], authors propose the

intrinsic curiosity module (ICM) to speed learning using action exploration. In ICM, the

authors formulate exploration by the error of the agent when trying to predict the conse-

quences of its actions [64]. In contrast to RND and ICM, our proposed VIN-RS offers

reward shaping based on the reward signal and not the exploration bonus. In [16], the au-

thors proposed a potential-based reward shaping solution that performs message passing

using GCN. More details about the GCN solution are provided in the next subsection.

In LIRPG [62], the mean relative improvement over A2C baseline is 23% with a stan-

dard deviation of 12%, indicating significant variation in performance across different Atari

games. The sensitivity of the optimal step size (β) and intrinsic reward scaling parameter

(λ) impacts performance, showing variation with different β values.

For ICM [64], it achieves a 66% success rate in "very-sparse" reward settings, while

A3C and ICM-pixels fail. The performance difference between ICM and ICM-pixels is

attributed to the difficulty of learning pixel-prediction models with increasing textures.

However, no specific quantitative analysis is provided for the superiority of ICM over ICM-

pixels.

In GCN-based reward shaping [16], the impact of environment graph sampling on effi-

ciency lacks specific statistics. A comprehensive comparison of different sampling methods

would aid in understanding the approach’s effectiveness. Additionally, there is no statistical

analysis of the sensitivity of crucial hyperparameters α and β, warranting further investi-

gation to assess their impact and robustness accurately.
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Using GCN for Reward Shaping

Existing reward shaping solutions requires a neural network to become scalable and

accommodate for dynamicity in the environment with large state or action spaces. For

instance, the work in [26] suffers from scalability issues, while [25] demands human inter-

vention to update the reward function with feedbacks. Therefore, we study the related work

proposing to build the potential function through deep learning to overcome the mentioned

problems. In specific, the most suitable deep learning models belong to the family of Graph

Neural Network (GNN), such as GCN. Hence, we discuss the two most related work that

uses GCN to build the value function [16, 65]. The GCN is capable of recursively propagate

messages among neighboring nodes in the graph, determining its relation and importance.

When using message passing of HMM, those messages reveal more information about the

state or trajectory of state optimality, thus enlightening the original reward function about

useful information among the selected path. In [16], an improvement of learning speed and

reward achieved are presented for the first time when using GCN as a reward shaping func-

tion. Despite its performance, the presented mechanism suffers from various limitations

including the representation of the sampled MDP as a sub-graph of sampled transitions,

and the approximation of the transition matrix using graph Laplacian, which results in a

margin of error affecting its performance.

The image-based approach allows VIN-RS to capture more comprehensive and detailed

information about the entire environment, providing a broader perspective and a larger set

of states compared to GCN’s limited graph-based representation. Furthermore, using GCN

to compute the message passing requires an approximation of the transition matrix. In this

case, the graph Laplacian is utilized [16]. Due to many drawbacks of using graph Laplacian

as analyzed in [23], reward shaping using GCN affects the performance. Several methods

were proposed to construct bases for Value Function Approximation (VFA), such as using

the graph Laplacian. It is proven that the graph Laplacian can only produce effective VFA
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when assuming that the latter is smooth over the induced MDP graph. Therefore, using

the graph Laplacian to approximate the transition matrix cannot generalize to all MDPs

[23]. In our previous work [65], the graph Laplacian is replaced by a Krylov subspace

computed using the augmented Krylov [23], as an attempt to overcome the graph Laplacian

limitations. However, this method still cannot guarantee an improvement over GCN in

some cases. Therefore, we replace in this work GCN by a CNN. In the proposed VIN-RS,

the probability transition matrix within the convolution layers is learned when training the

CNN network, thus avoiding the burden of approximating this matrix.
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Chapter 3

Demand-Driven Deep Reinforcement

Learning for Scalable Fog and Service

Placement

The increasing number of Internet of Things (IoT) devices necessitates the need for a

more substantial fog computing infrastructure to support the users’ demand for services.

In this context, the placement problem consists of selecting fog resources and mapping

services to these resources. This problem is particularly challenging due to the dynamic

changes in both users’ demand and available fog resources. Existing solutions utilize on-

demand fog formation and periodic container placement using heuristics due to the NP-

hardness of the problem. Unfortunately, constant updates of services are time consuming

in terms of environment setup, especially when required services and available fog nodes

are changing. Therefore, due to the need for fast and proactive service updates to meet

users’ demand, and the complexity of the container placement problem, we present in

this chapter a Deep Reinforcement Learning (DRL) solution, named Intelligent Fog and

Service Placement (IFSP), to perform instantaneous placement decisions proactively. By
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proactively, we mean producing placement decisions before demands occur. The DRL-

based IFSP is developed through a scalable Markov Decision Process (MDP) design. To

address the long learning time for DRL to converge, and the high volume of errors needed

to explore, we also devise a novel end-to-end architecture utilizing a service scheduler and

a bootstrapper on the cloud. Our scheduler and bootstrapper perform offline learning on

users’ demand recorded in server logs. Through experiments and simulations performed on

the NASA server logs and Google Cluster Trace datasets, we explore the ability of IFSP to

perform efficient placement and overcome the above mentioned DRL limitations. We also

show the ability of IFSP to adapt to changes in the environment and improve the Quality of

Service (QoS) compared to state-of-the-art-heuristic and DRL solutions.

3.1 Motivational Use Case

We consider the use case of a road with groups of autonomous vehicles performing

self-driving, in addition to unmanned aerial vehicles (UAVs). Drivers and passengers are

requesting different types of services using existing network protocols [66]. In particular,

some drivers are requesting a service to retrieve real-time traffic information [67]. A smart

vehicle is requesting services to collect more sensed data from vehicles around to improve

its driving decisions [68]. Furthermore, the UAVs are requesting network management

services [69, 70]. The passengers from their sides are interested in infotainment-related

services such as video streaming and playing video games. Due to the limited computing

resources on On-Boarding Units of the vehicles, on-demand fog computing is employed

to improve the QoS experienced by the requesters. In this case, the fog computing cluster

is initialized on volunteering edge servers, such as the Road Side Units (RSUs). In the

on-demand fog context, services are not always lightweight. For example, downloading

a guest operating system for hosting the traffic measurement service takes time. Besides,
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initializing the Kubernetes cluster and downloading the required modules are also time-

consuming. In addition, the moving vehicles and UAVs can leave the range of the serving

RSU, leading to networking delays and reachability issues. In order to overcome this prob-

lem, proactive placement is required. Proactive placement can be performed by predicting

the pattern of demands on each road by the RSUs. Furthermore, vehicles send different vol-

umes of requests for services. Hence, a dynamic placement of services on the nearest RSU

is required to meet the users’ demand. Besides, the number of available resources running

on the RSUs is changing due to other independent applications. Hence, the demands and

available resources should be predicted to perform optimal placement.

3.2 Proposed Architecture Realizing DRL

In this section, we elaborate on a proposed architecture tailored to enable the use of

DRL to solve our service placement and fog selection problem. This architecture ensures

a complete end-to-end intelligent and automated solution for service placement and fog

selection to improve QoS. A presentation of the architecture and components interactions

is depicted in Fig. 3.1. The two core layers of our architecture are the cloud and fog layers.

In this architecture, users can be any IoT devices. As shown in Fig. 3.1, users start by

requesting services from the cloud. Applications on the cloud are hosted inside computing

engines that are dedicated to hosting the back-end logic of the applications. Every applica-

tion has a logging logic that keeps track of connected users, the source IP, and the requested

APIs or services. These logs keep on updating, which means that new demands will always

be taken into consideration while our models are learning. Our proposed architecture will

then fully rely on these logs as a source of data to learn and make decisions. These data are

then utilized by IFSS (Intelligent Fog Service Scheduler) and Bootsrapper, which are two

intelligent components running two different reinforcement learning algorithms.
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Figure 3.1: Proposed Architecture Realizing DRL

The IFSS agent runs an R-Learning algorithm that uses an MDP formulation for de-

ciding about the best time and place for pushing services to fogs. IFSS was modeled and

implemented in our previous work [6]. IFSS learns from the server logs the different de-

mands of users divided by location and based on the time of the day. The decision of the

IFSS scheduler is proactive, which means a decision for placing a service is taken before

the actual demands occur. The bootstrapper then receives the scheduling decision by the

IFSS agent, which contains the list of locations, each having a list of services to place for

the given time. The Bootstrapper on the cloud runs a DRL algorithm that takes as input a
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state built using the services to be placed, the fogs available in the target location, and the

changing demands of users over time retrieved from the server logs. The MDP for the agent

is discussed in Section 3.2. In contrast, the DRL algorithm is presented in Section ??. The

primary purpose of this model is to perform offline learning on all the demands captured in

the log files using the DRL algorithm. This model is then considered as a bootstrapping for

the IFSP (Intelligent Fog Service Placement) running on the master, which performs online

learning. IFSP will receive a mature model and avoid the long learning time and errors the

model yields at the first stages of learning.

The Fog Broker is responsible for managing all the communication between the cloud

and the set of master nodes available anywhere. The Fog Broker is the gateway of the

cloud to the Internet. It is horizontally scalable, keeps track of all available master nodes,

and ensures reliable connections. The broker also reaches periodically to all the master

nodes of the different clusters about their available fog nodes, the resources capacity, and

the geographical locations of each. The Bootstrapper then utilizes this information as a

requirement for the model to start offline learning. Once the Bootstrapper finishes modeling

the environment and builds the DRL agent by achieving convergence, it forwards this model

using the Fog Broker to the master node.

The fog layer consists of the fog clusters, each having a master node responsible for

orchestrating fogs and managing the running services on each one. Each master node

contains an IFSP and the Kubernetes required model for creating and maintaining a fog

cluster which relies on the containerization technology. The master expects the broker’s

requests, which contain the new IFSP model to be adapted in its cluster. The received

model is mature, and the master can rely on to make selection and placement decisions.

Because user demands are stochastic, the master will also run an online update for each

decision made. Using the Kubernetes model, the master has knowledge of the demands for

services on each fog and how it changes over time. This information is fed for the IFSP
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for the online updates. Kubernetes is also used to take the actions generated by decisions

from the IFSP including placing and updating containers on available fogs. Fog nodes will

be able to run services that are of best use for users and therefore improving the QoS of the

applications. Thus, users will migrate their requests from the cloud to available fogs.

3.3 IFSP Modeling

Following our proposed model, IFSP can be used in fog clusters with confidence that

the deployed model online will act maturely and keep on improving itself as new demands

are measured. In this section, we present a novel MDP model that is capable of taking the

selection and placement decisions proactively, takes into account the changing demands

per service, considers four contradicting objectives, and is scalable, which means it can

model hundreds of fogs and containers as input.

3.3.1 Background

MDP is a mathematical framework for modeling sequential decision making in stochas-

tic environments. An MDP is characterized by the following tuple: (S,A,Pr, C, γ). S is

the set of states that the agent can be at, where S = {s1, s2, . . . }. A = {a1, a2, . . . } is the

action space or the set of possible actions that can be taken by the agent at each step. Pr

is the probability transition matrix or the probability distribution over the successor states

s′ after taking an action in A. In case Pr is known, the agent then has a model of the

environment. In most cases, Pr is not given and the use of model-free RL is essential to

obtain a model of the environment. C is the cost function designed to measure how well the

agent is doing after taking an action from A at a state s and moving to a state s′. Finally,

γ is a decimal value from [0, 1]. The value of γ is usually close to one. γ is used to help

the model converge by discounting over the rewards of the next states. In other words, γ
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tells how much the agent cares about the reward of the future states. In order to model our

problem as MDP, we need to define S,A,Pr, C, and γ.

3.3.2 States and Actions Modeling

The decision taken by the IFSP agent takes place at different time moments t, where

t = 1, 2, . . . . Let F = {F1, F2, . . . , Fm} be the list of m fogs, where each fog has a

list of available CPU, memory, disk, and geographical distance from the user. A fog Fi

in the cluster can be represented as a vector Fi = [Ficpu , Fimem , Fidisk , Fid ], where Fid is

the mean of distances between the location of each user in a target area and the fog loca-

tion. In other words, Fid measures the proximity of Fi to requesting users in the area. Let

P = {P1, P2, . . . , Pn} be the set of n containers to place. Each service Pj has resources

requirements and a priority value indicating that this service should be prioritized for place-

ment to maintain a certain level of QoS. A service Pj has the following requirements for

deployment Pj = [Pjcpu , Pjmem , Pjdisk , Pjk ], where Pjk is the priority of service Pj having a

value of either zero for low priority or one for high priority.

Let q(t) be the vector of normalized number of requests for every service in P . An

element in q(t) for service Pj is denoted by [q(t)]Pj
and is calculated as follows:

[q(t)]Pj
=

Number of requests for service Pj at time t

Total number of requests for all services in P at t
(9)

The placement decision is taken sequentially for each container per state at a time. The

combined placement decision denoted by k(t) at t is a binary matrix of size m× n, where

k(t)ij = 1 means that Pj is placed on Fi, and 0 otherwise. Furthermore, a counter u is

used to indicate the current container Pu the agent is taking the decision for, such that

u ∈ {1, . . . , n}. After making n decisions, the counter is reset to one. Henceforth, the state
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of our model is:

s(t, u) = [q(t), k(t), u] (10)

Selecting an action from the set of possible actions A in our MDP allows the agent

to take a placement decision for the current container Pu. The possibilities in A are (1)

selecting a fog from F ; (2) selecting a container from P; or (3) doing nothing. In case a

fog is selected, the action performed is to place Pu on this fog. On the other hand, in case a

container is selected, this container is removed from it’s current running fog and replaced

by Pu. Mathematically, A = {0, f1, f2, . . . , fm, p1, p2, . . . , pn}, where zero means that

container Pu is not assigned to any fog, fi means the fog Fi is selected for placement, and

pj means an already placed service Pj is unplaced from its fog and replaced by the service

Pu. We also denote by a(t) a typical element ofA at t. It is important to emphasize that the

list of services for replacement in the action space are the ones that were placed in previous

time-steps. This list of services can be extracted from k(t). Therefore, there are some

infeasible actions which are discarded from the actions list based on the current state. The

main motivation behind considering one container to place at a time is to make the MDP

design capable of handling large inputs, in contrast to [37] where the action space can grow

exponentially. Moreover, placing one service at a time guarantees more availability as the

other services will keep running.

3.3.3 States Transition and Model Dynamics

Using Fig. 3.2, we elaborate in this section on the evolution of the key quantities used

to evaluate the cost function and build the next states for the agent. In our formulation,

every episode is divided into time-steps where the agent takes the placement decision for

a single container. Consequently, during every episode, the agent takes separate placement

decisions for each container in P . The action taken at state s(t, u) is a(t + 1), which is a

preparation for the coming request at state s(t+1, u+) where u+ = u+1 if u ≤ n− 1 and
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Figure 3.2: The Evolution of the Main Quantities Used for Cost Calculation over Time

u+ = 1 if u = n. Thus, u is incremented by 1 and reset to 1 in case u = n. After taking

the action a(t + 1), k(t + 1) is extracted by updating k(t) following the action taken. The

agent then waits to observe q(t + 1) to be able to calculate the cost function C at the next

state. The process of calculating C is elaborated in the next subsection. It is important to

mention that the time difference between the time-steps is short so that the agent will be

able to update the placement for all containers and learn different patterns of demands. The

state space grows to cover all possible combinations of demands, resulting in more robust

placement decisions.

Knowing that the loads for users’ requests on services is unpredictable because of its

stochastic nature, the design of our formulation helps the agent predict the common se-

quence of loads by considering the load of the next episode to calculate the cost of the

combined decision for the current episode. Because of the dynamic change in demands,

we use a model-free approach, which does not require an explicit modeling of the environ-

ment.

In case the agent is at state s(t, u) and takes action a(t+ 1), the model has to represent
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the cost incurred by every previous state action in order to find the optimal policy for the

new state at the next step. The calculation of the cost incurred and the formulation of the

different objectives are presented in the forthcoming sub-section.

3.3.4 Cost Function

For an agent at a certain state, taking an action and moving to the next state is evaluated

by considering four contradicting objectives. In this section, we elaborate on a mathemat-

ical formulation for each objective. The objectives are (1) minimizing unserved requests

measured using unsatisfied demands per service; (2) minimizing the number of fogs se-

lected for placement; (3) minimizing the number of not placed services with high priority;

and (4) minimizing the distance of selected fogs from requesting users. A cost in our for-

mulation is represented as C(s(t−1, u−), a(t)|q(t)), where u− = u−1 if u > 1 and u− = n

if u = 1. In the sequel, we present the mathematical formulation of the cost function which

is a superposition of four sub-costs.

Throughout the cost function formulation, we denote by g(t) a 1-dimensional binary

list of size n, where gj(t) = 1 means that the jth service is placed on a fog in F , and

0 otherwise. In addition, we denote by r(t) a 1-dimensional binary list of size m, where

ri(t) = 1 indicates that the fog Fi is hosting at least one container from P . g(t) and r(t)

are extracted from k(t) for each step in an episode. For each cost related to an objective,

we assign a weight λl ∈ [0, 1] to it such that
∑︁4

l=1 λl = 1. These weights are adjustable

depending on the service provider preferences, given that the higher the weight, the more

the objective has impact.

For calculating the cost of s(t−1, u−), the first cost c1 considers the cost of not placing

requested services at the next state. The purpose of this cost is to motivate the agent to place

services that will be demanded in the next time-step. Following this approach, the agent

learns the pattern of how the demand of services changes over time. This objective ensures
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maximizing the number of satisfied requests served by the fog cluster; hence, leading to

a lower response time, higher throughput and thus better overall QoS. This cost can be

mathematically expressed as follows:

c1 = λ1(1− g(t))⊺q(t) (11)

Following Equation 11, 1 − g(t) results in a binary vector with 1 indicating that the con-

tainer is not placed on any fog. Therefore, Equation 11 sums the loads (q(t)) for all un-

placed services. This cost motivates the agent to satisfy as much demands as possible in

order to minimize the cost.

The second cost, c2, ensures that services with higher priority are considered in the

placement decision in order to maintain an acceptable QoS level for all high priority ser-

vices. High priority services do not necessarily have high demand. c2 is then calculated

using the below equation:

c2 = λ2P⊺
k [1− g(t)] (12)

where Pk is the vector of priority levels (0 or 1) for all services in P . In Equation 12, we

take services that are not placed by the decision at t, and some those with high priority. The

aim for the agent is to minimize the total sum resulted by c2.

In the third cost, c3, we aim at minimizing the distance from selected fogs for placement

and users requesting services to be placed. This preserves a very important feature for the

fog layer, which is bringing services as close as possible to users. Respecting this objective

leads to a lower response time experienced by users, therefore a better QoS. This cost is

calculated using the following formula:

c3 = λ3F⊺
dN(t) (13)
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where N(t) is a vector of size m indicating the total count of containers placed at each

fog in F and Fd is the vector of mean distances of each fog in F to the users. Thus, c3

computes the total sum of mean distances for all fogs used times the number of containers

hosted on each. The end goal is to minimize this sum to ensure that running services on

selected fogs are as close as possible to users.

The objective of the fourth cost, c4, is to minimize the number of fogs used for a place-

ment. This helps minimize the cluster complexity and the load on the orchestrator, which

is responsible of managing all services running and the health of every fog. This objec-

tive leads to faster learning of changing fog resources and optimal placement, therefore

improving the QoS experienced by the users. This cost is calculated as follows:

c4 = λ4r(t)
⊺
1 (14)

In Equation 14, we sum the number of fogs that are used for placement, by summing the

1’s in r(t).

Finally, the agent is allowed to make placement decisions that are not feasible, however,

it’s prompted to learn from it’s mistakes through a punishment technique. For instance, an

action is deemed infeasible if the agent overloads a fog by utilizing more than its available

capacity. Thus, we calculate the CPU punishment score for the agent using the below

equation:

p_scorecpu =
m∑︂
i=1

max(
n∑︂

j=1

(Pjcpuk(t)ij)− Ficpu , 0) (15)

In Equation 15,
∑︁n

j=1 Pjcpuk(t)ij is equal to the total CPU required by the containers and

asked to be hosted on Fi. Our p_scorecpu calculates the excess of CPU utilization on

Fi to be added to the total cost. Similar equations apply for calculating p_scoremem and

p_scoredisk, which are the punishment scores for memory and disk excess, by simply re-

placing the index cpu by mem and disk respectively. Therefore, the punishment score is
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the sum of the three scores following Equation 16.

p_score = p_scorecpu + p_scoremem + p_scoredisk (16)

Following the calculation of the four sub-costs and the punishment score, our cost func-

tion for evaluating the agent action is expressed as follows:

C(s(t− 1, u−), a(t)|q(t)) =
4∑︂

l=1

cl + p_score (17)

This cost is a combination of different measures that are mainly used to evaluate the QoS

level of the user in the fog environment. In our case, minimizing the function C implies

optimizing the QoS. Therefore, we use the cost function as a measurement of the QoS level

experienced by the users in our experiments.

3.4 IFSP Using Deep Reinforcement Learning

The IFSP agent interacts with the environment for evaluating the placement action taken

for each container. The agent executes actions for every state encountered and builds a

strategy that adapts to the stochastic changing demands of users requesting services. The

end goal of the agent is to learn the transition probability distribution from a state to all next

states and find the optimal policy π∗, which takes as input a state and outputs the action

that minimizes the future cost. In other words, π∗ is a strategy or a set of actions the agent

takes to minimize the cost. The future costs are discounted by γ, which controls the effect

of future actions on past and current states and helps achieve the agent’s mathematical

convergence. By letting C(s(t, u), π) be the cost implied by choosing policy π from t that

indicates the following actions a(t′), such that t ≤ t
′ ≤ T where T is the final time-step of
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the episodes, the future discounted cost is represented as:

C(s(t, u), π) =
T∑︂

t′=t

γt
′−tC(s(t′ , u′

), a(t
′
)|q(t′)) (18)

where u
′ is updated to u+ at each t

′ . We denote by Q∗(s, a) the optimal action value

function which minimizes the average expected cost for any selected strategy. It can be

expressed as:

Q∗(s, a) = min
π

E[C(s(t− 1, u−), π)|s(t− 1, u−) = s,

a(t) = a, π] (19)

The optimal Q-function selects the action of the next state that minimizes the action value

function following the below equation:

Q∗(s, a) = Es′∼E [C + γmin
a′

Q(s
′
, a

′
)] (20)

where C is the immediate cost from Equation 17 and E is the state at T . The basic form

of RL is to find the optimal action value function using iterative updates following the

Bellman equation. This update can be expressed as:

Q(s, a) := Q(s, a) + α[C + γmin
a′

Q(s
′
, a

′
)] (21)

where α is the learning rate. In Equation 21, the update of the Q-function happens follow-

ing the Q-learning algorithm [71]. All Q-values are stored in a table structure containing

the list of states and actions. An exploration-exploitation trade-off aids the agent into inter-

acting with the environment by covering the maximum number of possibilities, observing

the cost signal, and updating the Q-values using Equation 21.
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However, the use of tabular RL is not practical in our problem, where we have a large

state space. The state-space can grow with an increase in the number of containers and

hosts to place. Thus, handling the whole table in memory, trying to cover all possible

actions for every state, and updating the Q-values for all of them is computationally very

expensive. Such an implementation is time consuming and makes any tabular RL agent

diverge [72]. As a solution, learning the optimal Q-values can be retrieved from some

adjustable weights denoted as θ. These weights get updated using gradient descent to

update the weights downwards towards the direction of the gradient for minimizing the

error of the calculated Q-values for every iteration. The common form of approximation

is the linear function approximation which generalizes the environment through its weight,

where the Q-function becomes close to the optimal Q∗ having Q∗(s, a) ≈ Q(s, a, θ).

Given the advantages of a linear approximation to overcome the tabular learning lim-

itations, these models will not be able to generalize well when the model complexity and

state spaces increase. Here comes the advantage of using non-linear approximations such as

Deep Neural Network (DNN) to approximate the environment, giving the agent the power

of Deep Learning (DL) to update its weights, where training can be customized [73]. The

Deep Q-Network (DQN) algorithm has the advantage of merging the concepts of RL and

DL [74]. Henceforth and after experimenting with the different linear approximation ap-

proaches for building our IFSP agent, including Temporal Difference TD(0) and TD(λ)

[75], DQN outperforms the other approximation methods. Algorithm 1 provides a pseudo-

code of our IFSP learning algorithm, which benefits from the advancement achieved in

DQN.

DQN benefits from the DL power in the supervised learning paradigm of machine learn-

ing. This is made possible by introducing a replay buffer that performs mini-batch sampling

and stores the weights in a target network. In the sequel, we go over our implementation of

the DQN algorithm for building the IFSP agent.
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Algorithm 1: IFSP Algorithm Using DQN
1 Build a Multi-Layer Perceptron as source model to calculate Q and randomly

initialize its weights θ;
2 Build a target model for Q with weights θ− which are a copy of θ;
3 Initialize replay buffer D to capacity G;
4 while episode X do
5 Initialize a random state s(t, u);
6 Reset t;
7 while t < T do

/* following ϵ-greedy policy */

8 if Random Selection then
9 select a(t+ 1) randomly from feasible actions;

10 else
11 a(t+ 1) = maxaQ(s(t, u), a, θ);
12 end
13 Update k(t+ 1), observe q(t+ 1);
14 Calculate C(s(t, u), a(t+ 1)|q(t+ 1)) using Equation 17;
15 Update u to u+;
16 Build s(t+ 1, u+);
17 Store [s(t, u), a(t+ 1), C(s(t, u), a(t+ 1)|q(t+ 1)), s(t+ 1, u+)] in D;
18 Select random mini-batch transition (si, ai, Ci, si+1)) of size Y from D;
19 for j in length(mini-batch) do
20 yi = Ci + γmina′ Q(si+1, a

′
, θ−);

21 end
22 Update θ using gradient descent towards minimizing the loss:

(yi −Q(si, ai, θ))
2 for every transition;

23 if length(D) > G then
24 Pop out the oldest element in D;
25 end
26 Every Z steps, copy θ into θ−;
27 Update the current state to s(t+ 1, u+);
28 Increment t;
29 end
30 Increment Episode;
31 end
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As illustrated in Algorithm 1, we start by creating a multi-layer perceptron for the

source model used for calculating the state action-value function Q using its weights θ.

The input to the model is a transition sample, and the output is a single neuron with linear

activation. A target multi-layer perceptron is created, which is a copy of the source model.

We denote by θ− the weights of the target model, which are a copy of θ in the initialization

phase (line 1). We then initialize a replay buffer D of size G = 1000 which stores the

transition containing the current state, the action taken, the cost retrieved, and the next state

observed (line 2).

The learning starts by initializing a random state s(t) at the beginning of every episode

(line 5). X episodes are played for learning. X varies depending on the input size for

the test case. Each episode is bounded by T learning steps. Every step starts by decid-

ing on the action taken for the current state. We implement this decision by following

the ϵ-greedy policy, which is essential for achieving a trade-off between exploration and

exploitation. In ϵ-greedy, we set ϵ to be a variable that decays over time. For instance,

ϵ = B1
B2+Numberofiteration

decreases as the number of iteration increases, where B1 and B2

are two constants such that B1 < B2. We then generate a random value of w between

zero and one. If 1 − ϵ > w, we select an action randomly from the action space (lines

8-9). This is known as an exploration iteration for the agent. Otherwise, the action having

the maximum Q-value in the source model is selected (lines 10-11). This is known as the

exploitation iteration.

After taking the action, the agent observes the service demands after the service place-

ment is updated. This then allows the agent to calculate the cost C(s(t, u), a(t+1)|q(t+1))

using Equation 17. After forming the next state s(t + 1, u+), a transition is stored in the

replay buffer (lines 13-17). Because updating the model online as data come causes insta-

bility, data are stored in the replay buffer. Samples from these data, of size Y = 50, are

extracted randomly and uniformly to form the mini-batch dataset for the model to train and
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break the problem of correlation between sequences of actions (line 18). As mentioned

previously, the source weights are stored in the target model. This is vital to improve the

source model learning stability. The source model adjusts θ of Q-function by using the pre-

dicted Q-values of the target model as labels (lines 19-21). This, in turn, builds a supervised

learning context with a fixed dataset and labels on which to train. In our implementation of

our IFSP-based DQN, loss functions are inferred and calculated for every iteration using

the mean squared error loss (line 22). This loss is back-propagated to the neurons using

the gradient-descent towards minimizing the loss to get a better estimate of Q (line 22).

To preserve the RL concept for allowing the model to keep on improving the Q-function

as new data come, the replay buffer D keeps on updating slowly by removing the oldest

transitions at every iteration when the buffer is full (lines 23-25). On the other hand, the

weights for the target model θ− keeps on updating after Z = 500 (line 26).

3.5 Experimental Study

In this section, we experiment with our proposed IFSP solution based on DQN by

studying the following:

• The convergence behavior of IFSP for small, medium, and large scale clusters, where

the objective is to minimize our cost function.

• The ability of the IFSP agent to adapt to changes in the environment, including un-

expected changes in the users’ demand patterns for requested services, and for unex-

pected changes in the cost function parameters.

• The ability of the IFSP bootstrapping technique on the cloud to avoid the high rate

of exploration errors, make the learning faster, and scale for large inputs.

• The ability of IFSP to outperform existing heuristic-based approaches in (1) quality
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of the decision and (2) execution time to take the decision.

Our data utilized throughout the experiments are extracted from the Google Cluster

Trace 2011-2 dataset (GCT) [76] and Nasa Server Logs (NSL) [77]. GCT provides real-

life deployment scenarios of services on available servers. Thus, it provides a set of hosts

with available resources and a set of services having resources requirements. In order to

measure changing demands of requested services in real scenarios, we can utilize any logs

present on any server, which point to the source IP of the user, the service requested, and

the timestamp. These fields are enough for our IFSP agent to conduct the bootstrapping

on the cloud and update itself when running on the orchestrator. In NSL, we considered

source IP having the same subnet mask as a single geographical entity requesting services.

Requesting a specific endpoint on the NASA web server is considered as calling a single

service. Thus, for each service extracted from GCT, we assign a list of changing demands

aggregated during a specified period of one hour.

Our simulation was performed on a Core i7-8700 (12 CPUs), 32GB RAM, and a

Graphic card for GPU computation of type NVIDIA Quadro P620. We implemented Algo-

rithm 1 using Python and the Tensorflow library. Using Tensorflow, we built the source and

target networks. Our networks have four layers of neurons with 32, 16, 8, and 1 neurons re-

spectively. The activation function used on each layer is ReLU, except for the output layer,

where linear activation is used to predict the Q-Value. The input of the source and target

neural networks is a combination of the state and action taken at that state. The first layer

has an input size of n+(m×n)+ 2, where n is the number of services, and m is the num-

ber of hosts. We also use the RMS optimizer with a learning rate of 0.001. Furthermore,

we compare our approach with two heuristic-based solutions and a DRL service placement

solution. These solutions are implemented from scratch based on the objectives specified

by each paper. In some of our experiments, we rely on evaluating the cost function which

is directly related to the QoS experienced by the users. Furthermore, for each experiment,
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F Fcpu Fmem Fdisk Fd

F1 0.5 0.24 0.4 500
F2 0.25 0.4 0.4 50
F3 1.0 1.0 1.0 20

Table 3.1: Fogs Configurations for Scenario 1 (s1)

we run a different number of iterations depending on the objectives. For instance, we run

103 iterations to study the convergence and stability of IFSP. Meanwhile, 30 iterations are

enough to illustrate the bootstrapper advantage.

3.5.1 IFSP Convergence and Scalability

In order to study the performance of IFSP following our MDP design, we simulate

two different sizes of clusters with a different number of fogs and services having varying

demands. Similar sizes are expected to be used in real-life settings. In Scenario 1 (s1),

we use 3 fogs and 6 containers which are shown in Tables 3.1 and 3.2 and extracted from

the GCT dataset. The purpose of Tables 3.1 and 3.2 is to show a snapshot of the data

we have. For Scenario 2 (s2), we also use the GCT dataset to simulate a larger cluster

composed of 15 fogs and 40 containers for validating the scalability of our MDP design.

For both scenarios, demands are assigned to each service randomly from the NSL dataset.

To compare our solution with the optimal decision, we utilize a greedy search for small

inputs and pass it the demands after their occurrence. This greedy search generates all

possible solutions for a given input, and yields the best placement for it, considering the

same weights and cost function.

We define the weights for the current simulation in both scenarios as λ1 = λ2 = λ3 =

λ4 = 0.25. Fig. 3.3 illustrates the convergence results towards minimizing the cost function

while the number of iterations increases. The experiment was executed for 103 iterations

in order to illustrate the convergence and stability of IFSP. The results shown in this figure
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P Pcpu Pmem Pdisk Pk

P1 0.12 0.2 0.2 0
P2 0.24 0.23 0.1 1
P3 0.18 0.2 0.32 0
P4 0.25 0.42 0.2 1
P5 0.31 0.15 0.24 1
P6 0.375 0.175 0.08 0

Table 3.2: Containers Configurations for Scenario 1 (s1)

are an average of 50 iterations for every observation. We can observe in (s1) that IFSP

is capable of converging to make optimal decisions by approaching the optimal line. The

optimal line is extracted using the greedy search method applied at each iteration for every

encountered load. In (s2), the the IFSP agent also converges, validating its ability to handle

large inputs. Due to the large input and high paste of changing demands, using greedy

search to obtain the optimal decision is impossible. Therefore, we elaborate later in this

section on the optimality of the decisions taken by comparing with a heuristic approach.

We can also observe from the results that (s1) achieves faster convergence than (s2) due to

the larger input experienced by the agent in (s2). Furthermore, it is important to mention

that because all objective costs are given equal weights, the agent is expected to take longer

because of a more complicated policy required to learn. In case one or two objectives are

given a weight of zero, the convergence will be faster due to less complex policies to learn,

which we demonstrate in the next subsection.

3.5.2 IFSP Adapting to Environment Changes

In order to elaborate further on the ability of IFSP to adapt to changing demands, we

simulate Scenario 3 (s3) containing 8 fogs and 20 containers. We aim to study the combined

and normalized demands of users that are not met after doing the IFSP placement for all

services. In (s3), we aim to change the pattern of demands four times intentionally for
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Figure 3.3: Convergence Performance of IFSP for Small and Large Clusters

each container to simulate how IFSP reacts to such a situation. The change in demands is

provoked every 40 iterations, leading to 160 iterations during the evaluation. The results are

shown in Fig. 3.4. As shown in the figure, IFSP is able to always converge into learning

a pattern for the new incoming demands. We can see four jumps in the numerical cost

for the four changes done to the demands because of the new states encountered. We are

also able to notice through this simulation that the convergence incurred after the second

change in demands is slightly faster than the starting stages of learning. This reduction in

convergence speed is due to the tuned model that we have from the first cycle of demands.

As a conclusion from (s3), whenever the pattern of demands for a service changes over

time, IFSP adapts to this change by learning new patterns and meeting new demands when

possible. In some cases, the change in demands makes placing services impractical, and

therefore IFSP refrains from placing it. This is illustrated in the first and fourth cycles of

learning where the error is larger compared to the second and third cycles.

The non-served requests studied in this experiment are served by the cloud. A decrease in

this amount implies that more requests are served by the fog, therefore the user experiences

a lower response time and a better QoS. Therefore, we show through this experiment that
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Figure 3.4: IFSP Performance Evaluation while Changing Demands

IFSP is able to improve the QoS experienced by the users even-though new patterns of

demand are encountered.

As mentioned in our cost function formulation, four weights are assigned to each objec-

tive cost, which can be adjusted based on the service provider’s assessment of the environ-

ment’s needs. Such changes in the cost function introduce changes to the cost calculated

by the agent. In order to verify the robustness of the agent in such a situation, we simulate

Scenario 4 (s4), which confirms the intelligence of IFSP for adapting to the changes in the

cost function. In (s4), we copy the cluster configuration of (s3) and update the weights

after hitting a predefined number of iterations by the agent. The strategy for updating the

weights is illustrated in Fig. 3.5a. In this figure, a signal equal to one means that the weight

is in use for the current cycle. If more than one weight is used, the total weight is divided

equally among them. In Fig. 3.5b, we show the performance of IFSP while considering

four consecutive changes in weights. Every 100 iterations in (s4) are averaged to obtain the

results shown in the figure. The IFSP performance is measured using the normalized cost

function. The cost function starts converging at the beginning until a change to the weights

occurs. A change in the weights causes a peak in the cost, as shown in the results. After

every change in weights, IFSP is able to converge again to optimal solutions.
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(a) Weights Variation

(b) Model Convergence

Figure 3.5: IFSP Performance Evaluation while Changing Weights
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3.5.3 Comparison with DRL and Heuristic Approaches

Following the large input in (s2), we study in this section the performance of our IFSP

agent compared to existing heuristic-based solutions [1, 2]. Besides, we compare with a

DRL solution for service placement at the edge [30] and show the importance of using the

IFSP bootstrapper. The large input caused scalability issues by overloading the memory

when generating the possible actions in [30], which is not the case when using IFSP. We

also present the limitations of the existing heuristic solutions in terms of execution time

when the input to the problem grows, thus requiring more iterations to try finding the near

optimal solution. This in turn results in increasing the execution time to make the place-

ment decision, henceforth delaying the update of services or ignoring them completely as

demands can change more often. We are also able to highlight the importance of proactive

placement, which is not possible when using a heuristic solution. In this context, we build

Scenario 5 (s5), which is a copy of (s2) input. However, in (s5), the IFSP model has passed

the bootstrapping on the cloud discussed in Section 3.2, hence the model is a continuation

of the learning that happened in (s2). Knowing that heuristic approaches rely on random-

ness to generate solutions, the range of possibilities is considerable when the input size is

large, making it hard for the algorithm to hit the optimal solution. For instance, in (s5),

and following our MDP design, the agent has 825 possibilities of placement to be taken

for each observed demand, which is an acceptable number for such a large input. If we

consider the service placement formulation in [1] or in [2] for cloud/fog placement, the

number of possibilities is the different binary combinations of a matrix of size 15×40. The

implemented heuristic solution embeds a local search to minimize the chances of halting in

local optimal, and speeds reaching a feasible solution. The same cost function formulated

in Equation 17 is implemented for fitness evaluation in MA. We used 200 generations and

100 individuals per generation that evolves to find a feasible solution. More details about

the implemented MA can be found in [1].
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Figure 3.6: Our IFSP Agent Performance v.s. Heuristic-Based Approaches In Scenario 5 (s5)

After completing the bootstrapping phase in (s5), we utilize the ready model to make

decisions, benefiting from the mature model. On the other hand, we run the DRL agent of

[30] without bootstrapping, causing the agent to start learning from scratch on the current

environment. Afterward, a snapshot of the decisions made by IFSP and the DRL agent of

[30] is taken. The lists of fogs and services are passed to the heuristic solution to make

the placement decisions. In the existing heuristic solutions [1][2], the change in demands

for services is not studied. In order to measure the heuristic decision’s performance, we

pass the input to MA 10 times and record the average cost of the placement decisions. A

snapshot of the decisions made by IFSP compared to heuristic-based approaches following

(s5) is illustrated in Fig. 3.6. The evaluation is performed for 30 iterations, which are

enough to show the importance of using a bootstrapper compared to a traditional DRL

solution. Besides, each environment state is passed to heuristic for evaluation, which is

time-consuming. This also explains the choice of 30 iterations for evaluation.

Following the performance of IFSP compared to DRL and heuristic-based decisions,

we can observe that the normalized costs produced by IFSP are always less than or equal to

those produced by both solutions. The IFSP and heuristic-based results are not only for the

snapshot of the sample, but also always valid after IFSP converges. From Fig. 3.6, we can
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observe the large difference in the cost results for all decisions made. In the case of DRL

[30], the agent starts at the beginning by exploring the environment and taking random ac-

tions, which causes a high cost (i.e. low QoS) at the first stages of learning compared. In

contrast, the IFSP solution has a pretrained model using the bootstrapper. This comparison

highlights the importance of using a bootstrapper to overcome existing DRL limitations.

Due to the limited capabilities of the heuristic solutions, proactive placement of services is

not possible. Because we are executing the heuristic algorithm periodically, the placement

of the current timestamp is outdated because it does not meet the actual demand. Moreover,

due to the large input size, the execution time of the heuristic solution increases exponen-

tially as illustrated in the next experiments. In this context, initializing the environment and

migrating the containers consume more time, rendering the heuristic algorithms infeasible

in time-sensitive applications. Noting that the results of Fig. 7 do not consider the time to

setup the environment based on the new placement decision. On the other hand, IFSP is

capable of taking decisions on the fly with a negligible processing time.

In heuristic-based algorithms, the processing time increases due to the increase in the

input size. Every Pareto set, or list of best solutions is generated every time in heuris-

tic by looping for specific number of generations and manipulating a set of individuals.

The higher the numbers of generations and individuals are, the more likely the heuristic

algorithm will generate better solutions. In (s5), because the input is large, we varied the

numbers of generations/individuals and studied the run time for making the placement de-

cision. The results of this experiment are revealed in Fig. 3.7. The execution time of

the heuristic solution increases exponentially as the numbers of Generation/Individual in-

crease. Because our IFSP solution is based on DRL, the execution time to get the placement

decision is negligible because the agent takes a forward pass on the deep network for each

action to select the best.

In order to elaborate further on the execution time drawback of using the heursitic
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Figure 3.7: Execution Time While Changing The Number of Generations and Individuals In Sce-
nario 5 (s5)

solutions to solve our problem, we consider applying the heuristics to our placement envi-

ronment by feeding it the changing demands in (s5). The time between one iteration and

another when the demands change is 5 minutes. The purpose of the experiment is to show

the time needed for heuristic-based solutions to update services in the environment. We

also varied the numbers of generations/individuals for each trial. The results are shown in

Fig. 3.8a for 900/300 and in Fig. 3.8b for 1000/500.

As shown in Fig. 3.8a, the heuristic solution takes around 1.5 minutes to generate every

solution. This is shown in every peak in execution time at the beginning of the iteration.

These peaks are the time taken to update services, whereas our IFSP agent updates the ser-

vices proactively before demands occur. Increasing the number of generations/individuals

to 1000/500, we observe in Fig. 3.8b that the execution time of the heuristic solution is

not terminating at every iteration (never updating the services), because the time it takes to

produce the solution is more than 5 minutes (the duration of observing new demands).

Therefore, heuristic-based solutions are not suitable for time-sensitive placement prob-

lems and can be replaced by our solution. IFSP is capable of producing more efficient

results in minimal execution time. We also benefit from the IFSP Bootsrapper running on
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(a) Execution Time With 900 Generations and
300 Individuals

(b) Execution Time With 1000 Generations
and 500 Individuals

Figure 3.8: The execution time of heuristic-based approaches [1, 2] using generations/individuals
of 900/300 v.s. 1000/500 and changing the demands every 5 minutes for each iteration in scenario
(s5)

the cloud to prepare the orchestrator. Furthermore, because IFSP is (1) scalable, (2) capa-

ble of adapting to changes in the environment, and (3) making proactive decisions before

demands occur, it can completely replace the state-of-the-art heuristic solutions.

3.6 Conclusion

Fog and service placement is a challenging problem in demands-driven context entail-

ing the need for effective decisions while adequately adapting to environmental changes.

The use of heuristic solutions to perform the placement is not feasible due to the changing

demands and the possibility of heuristics to diverge from optimal solutions. Empowered

by the breakthroughs in the AI field, we exploited in this chapter the use of DRL as an

intelligent solution for fog selection and container placement. Despite the errors made by

the agent at the exploration stage and the long time required to learn, we are able to build

an IFSP agent based on DQN capable of making efficient decisions in no time. This is pos-

sible by incorporating an intelligent IFSS scheduler and a bootstrapper for preparing the
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IFSP model before being used. We then formulated an MDP design used for developing

the IFSP agent based on the DQN algorithm. Our MDP formulation allows the agent to

take proactive decisions, to study the change in user demands, and to consider fulfilling

multiple objectives for serving the fog computing context. Through experimental studies,

we used real-life datasets and demonstrated our IFSP agent’s ability to generate efficient

solutions for small and large cluster sizes. We were also able to validate the ability of IFSP

to adapt to changes in the environment, including demand changes and preferences adjust-

ments for calculating the cost function. In addition to these advancements, we were able to

exhibit the power of our intelligent solution for generating better solutions compared to the

state of the art heuristic solutions in large scale clusters.
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Chapter 4

AI-based Resource Provisioning of IoE

Services in 6G: A Deep Reinforcement

Learning Approach

Currently, researchers have motivated a vision of 6G for empowering the new genera-

tion of the Internet of Everything (IoE) services that are not supported by 5G. In the context

of 6G, more computing resources are required, a problem that is dealt with by Mobile Edge

Computing (MEC). However, due to the dynamic change of service demands from vari-

ous locations, the limitation of available computing resources of MEC, and the increase in

the number and complexity of IoE services, intelligent resource provisioning for multiple

applications is vital. To address this challenging issue, we present in this chapter IScaler,

a novel intelligent and proactive IoE resource scaling and service placement solution. IS-

caler is tailored for MEC and benefits from the new advancements in Deep Reinforcement

Learning (DRL). Multiple requirements are considered in the design of IScaler’s Markov

Decision Process. These requirements include the prediction of the resource usage of scaled

applications, the prediction of available resources by hosting servers, performing combined
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horizontal and vertical scaling, as well as making service placement decisions. The use of

DRL to solve this problem raises several challenges that prevent the realization of IScaler’s

full potential, including exploration errors and long learning time. These challenges are

tackled by devising an architecture that embeds an Intelligent Scaling and Placement mod-

ule (ISP). ISP utilizes IScaler and an optimizer based on heuristics as a bootstrapper and

backup. Finally, we use the Google Cluster Usage Trace dataset to perform real-life sim-

ulations and illustrate the effectiveness of IScaler’s multi-application autonomous resource

provisioning.

4.1 What is Resource Scaling?

Resource scaling is necessary for dynamic resource management of clustered comput-

ing environments. In the literature, resource scaling methods can either be vertical or hor-

izontal for one micro-service. Horizontal scaling scales an instance in and out. Scale-out

means creating and placing copies of a micro-service in the cluster, while scale-in means

removing placed instances. Horizontal scaling requires a service placement decision, which

assigns or remove services to and from the servers based on preferred objectives. Besides,

vertical scaling is composed of Scale-up and Scale-down methods, which adjust the CPU

and Memory for a micro-service. Scaling in and down are very important for improving

energy and resource consumption and offering more resources to be utilized by other ap-

plications running in the cluster. A better visualization of resource scaling and service

placement is depicted in Fig. 4.1.

In this work, we develop a multi-application scaling and placement solution, which can

be integrated into any service-based clustering environment running containers and orches-

tration technologies, such as MEC. In reality, resource scaling is accompanied by many
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Figure 4.1: Visual Representation of the Horizontal and Vertical Resource Scaling Problem

requirements and sub-problems, which render the decision challenging. For instance, mul-

tiple applications could run on the same cluster; therefore, multi-application resource hori-

zontal and vertical scaling is essential to find a balance between the different applications.

Besides, in case scaling is not proactive, the QoS and QoE are affected. For instance, in

case of scaling is performed as demands occur, the user might encounter a service delay,

which can be measured from the starting time of demands to the time when scaling is

performed. Hence, proactive scaling of resources is mandatory. Knowing that available

resources of worker nodes can change, a prediction of availability is necessary for proac-

tive scaling. Aside from executing the scaling decision, the target hosting worker should

be identified to remove or add instances. This is known as the service placement problem,

where decisions are made based on many objectives that can be configured depending on

the cluster’s situation. In other words, the cluster might be situated at the edge; therefore,

placing a service closer to the user is required.
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4.2 Architecture for Resource Provisioning in MEC Clus-

ters

In this section, we present our architecture for integrating the IScaler technology in

MEC clusters serving a 6G environment. This includes container-based clustering archi-

tectures managed using an orchestration technology. In this architecture, we apply changes

to existing master nodes at the orchestration layer. These changes include the novel ISP

module, which is responsible for performing intelligent scaling using IScaler and avoiding

the challenges of using DRL.

4.2.1 Architecture Overview

For simplicity, we assume in this work that Kubernetes clusters are used for scaling,

which is dedicated to managing Docker containers. Kubernetes also offers a suitable envi-

ronment for managing and scaling resources, as well as load balancing the tasks on running

instances. As shown in Fig. 4.2, this architecture covers the common cases of running an

MEC cluster that contains orchestrators and worker nodes. In the MEC layer, the orches-

trator performs scaling through IScaler, and the MEC servers host services and execute

scaling decision. Finally, the user layer tha generates requests.

The cluster manager node runs the necessary Kubernetes components for cluster and

connection management. The master is responsible for adding and removing worker nodes

from the cluster. Moreover, installing, removing, and performing physical scaling are done

through the master controller. A connection to all workers is checked for ensuring healthy

running services. Failure to reaching services results in rebooting or migration to other

workers. Besides, the master node receives information about the loads of each worker to

perform optimal load balancing. The information is stored in log files, which are used for

IScaler learning. Utilizing these standard functionalities of the master node, we propose
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the integration of the ISP module described in Section 4.2.3. Besides, the communications

that happen between the master and worker nodes at the MEC layer of the 6G environment

go through the 6G network.

The worker nodes in our architecture are running at the MEC layer. The nodes can

resemble any computing device, ranging from a mobile phone to a powerful server or a

base station compute engine. These devices run the required Kubernetes components to

be able to join the cluster and communicate with the master. Worker nodes receive orders

from the master to host services. These services run in the form of containers hosted

inside pods. A worker is also responsible for sending periodic updates about the current

status and the time of availability to the master. More importantly, the worker nodes host

services for supporting the requests coming from the user layer. These requests arrive with

different levels of demands that change over time and have to be supported. These demands

are reflected on a load of worker nodes. Hence, the master’s job is to load balance these

requests and use IScaler to scale the available resources proactively using AI.

In our architecture, users requesting edge services through the 6G network can be any

computing device that initiates requests and can range from small IoT devices to powerful

computing servers. Using IScaler and in case the edge servers have enough available re-

sources, users are guaranteed highly available applications and a satisfactory QoE with a

high response rate and negligible delay.

4.2.2 Architecture Components

Resource scaling does not tolerate mistakes or sub-optimal decisions that directly affect

the hosted applications by causing downtime and disrupting the QoS and QoE. IScaler

utilizes model-free DRL; therefore, the agent learns the environment from scratch through

interaction and trial and error. Henceforth, by using DRL, IScaler is subject to producing

wrong decisions at the starting stages of learning, or when unseen patterns or new states are
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Figure 4.2: Resource Provisioning Architecture for IoE Services Hosted by an MEC Cluster in a
6G Environment

encountered and a model update is needed. To solve this issue, we propose in this section

a novel architecture utilizing an optimizer combined with IScaler to cover possible errors

during the learning phases. Also, our architecture offers a suitable environment for IScaler

to learn using the collected application logs. A description of the orchestration layer’s

components is presented in Fig. 4.3 and described in the sequel.
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4.2.3 Cloud Layer

The cloud layer is composed of (1) the actual application logic which gets offloaded to

edge servers, and (2) the service management of connected clusters through orchestrators.

The application logic is divided in two sublayers, the cloud native and containerization

middleware. Additionally, the CaaS (Container as a Service) layer manages the under-

lying orchestrators of edge clusters. Initially, service requests generated from users are

served by the application hosted on the cloud in a form of connected micro-services. These

micro-services can be hosted in different clusters and locations, and they are launched and

managed by the app server for correct distribution of tasks and collection of results. The

role of the database in our architecture is to store the application logs which are exploited

by IScaler for learning. IScaler, heuristics, and the solution switch are hosted by the cloud

for learning. These three components are as well employed by the orchestrator for intel-

ligent scaling and placement of services. More details about these scaling components is

provided in the next subsection describing the orchestrator layer.

CaaS Module

The Container as a Service (CaaS) module presents the different Kubernetes compo-

nents that should be running on the master node. The cluster orchestrator is the manager

for its cluster. Workers’ initialization, management, and configuration happen through the

cluster orchestration entity. Moreover, this entity is responsible for updating the logs that

represent the worker nodes’ status and load. Besides, the cluster controller component is

the direct connection with the worker node, which distributes, scales, and organizes ser-

vices following the instructions of the cluster orchestration entity [6].
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The Intelligent Scaling and Placement (ISP)

The intelligent scaling and placement sublayer is composed of IScaler, the Optimizer,

and the Solution Switch. These components can be integrated into existing cluster orches-

trators for performing resource scaling. IScaler is the DRL-based resource scaling solution

that is responsible for proactively scaling computing resources and placing newly formed

services on available servers. DRL solutions require time to learn by interacting with the

environment in two cases: (1) learning the environment from scratch through trial and er-

ror, and (2) facing unseen patterns of services’ demand or available resources in the studied

data. These two factors cause the agent to make mistakes while performing the scaling

decisions. To overcome this issue, we host a heuristic solution on the orchestrator as an

alternate solution to replace IScaler while learning, and that confirms IScaler’s correctness

when making decisions on newly observed states or patterns. In other words, the Opti-

mizer component is the bootstrapping tool for IScaler. The Solution Switch unit is utilized

to check if IScaler’s learning converges, to find the right time to switch between the Opti-

mizer and IScaler solutions. This unit takes the output of IScaler and compares it with the

one issued by the Optimizer. For simplicity, we use a threshold-based approach that counts

and evaluates the correctness of the IScaler decision compared to heuristics. In case this

count exceeds a predefined threshold, for instance, one hundred consecutive correct deci-

sions, the orchestrator switches to using IScaler. It is also important to note that a heuristic

solution cannot replace IScaler because: (1) a heuristic solution has to wait for demands to

occur because it cannot take proactive decisions, and (2) heuristics cannot always guarantee

a good solution.

Learning Data From Logs

Data utilized by the Optimizer and IScaler to learn and make decisions are provided by

the Solution Switch module. This module keeps track of the current loads of each edge
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server and monitors the demands of hosted micro-services at the edge. The service mesh

component is utilized by the Optimizer and IScaler to respect the connection between mi-

croservices. Despite that these data are used for learning, they can be used by the Solution

Switch to monitor IScaler’s performance to take further actions.

Figure 4.3: MEC Architecture Components Embedding ISP for Enabling IScaler

4.3 MDP Formulation for IScaler

IScaler agent utilizes a model-free DRL algorithm for learning. DRL takes as input a

representation of the environment MDP model and tries to learn its dynamics or state tran-

sitions following some actions. In this section, we present a novel MDP formulation for

performing proactive resource scaling and service placement while considering the change
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in users’ demand and available resources. Our MDP design guarantees scalability by han-

dling large inputs. In other words, IScaler is still able to perform fast learning in case of a

large input, in addition to consuming less memory while learning.

4.3.1 Background

An MDP is a mathematical formulation for modeling sequential decisions in a stochas-

tic environment and is the main framework applied to problems solved using RL. An MDP

is characterized by the following tuple (S,A,Pr, C,Y). This tuple is a design choice that

can affect the RL solution scalability and speed of convergence. S = {s1, s2, . . . } is the

state space, i.e., the set of all states of the environment. Problems can have a finite or in-

finite number of states. A = {a1, a2, . . . , al} is the action space, i.e., the set of possible

actions the agent can take at any given state. Pr is the probability transition matrix which

outputs for each state s the probability distribution for going to the next state s’ when per-

forming action a. When Pr is given, model-based RL is used. However, in most real-life

applications, Pr is not known. In this case, model-free RL techniques are used to estimate

it. C is the cost function which reflects the objectives of the agent. C takes the current

state, action, and next state, and outputs a value to be minimized. Finally, Y is the discount

factor, which is a decimal number ∈ [0, 1] and is usually close to one. The main use of Y

is to speed the convergence by discounting over the reward of the next states. In order to

build a DRL solution for IScaler, we need to define these elements of the MDP tuple. In

the sequel, we provide a novel design of each element.

4.3.2 State and Action Spaces

IScaler is a multi-application scaling solution, where every application has a set of

services. Hence, we denote by G = {G1, G2, . . . , Gg} the set of applications of size g,

which are represented by services. In addition, We denote by E = {E1, E2, . . . , En} the set
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of services of size n. A service Ei ∈ E is represented as: Ei = [Ecpu
i , Emem

i , Epri
i , k], where

1 ≤ i ≤ n and Ecpu
i , Emem

i are the CPU and memory requirements respectively. Moreover,

Epri
i is an integer representing the priority level over other services. When Epri

i is high, Ei

has a high priority to be considered for scaling and placement before other services with

lower priority. Finally, k is the application index implying that Ei ∈ Gk. On the other hand,

we denoteH = {H1, H2, . . . , Hm} the set of available hosts of size m that are running the

services in E . Every host Hj is represented as Hj = [Hcpu
j , Hmem

j , Hdis
j ], where 1 ≤ j ≤ m

and Hcpu
j , Hmem

j , Hdis
j are the CPU and memory available and the distance of this host from

the group of requesting users respectively. As highlighted in Section 4.2, the hosting cluster

can run at the MEC layer. In this case, there are specific requirements for hosting services.

For instance, service placement should consider minimizing the hosts distances from the

area of the users. Consequently, the host distance feature is considered later as one of the

objectives in the MDP cost function described in Section 4.3.

In our state space, we represent the change in users demand and resource availability of

each host in the cluster at different timestamp t. In each state, q(t) represents the change

in demand for different services, where q(t)i is a matrix of size m× 2, which contains the

average resource usage of CPU and memory of service Ei at t for every host in H. The

values in q(t) are normalized to the total resource available on the hosts. Furthermore, we

denote by r(t) a matrix of size m × 2 representing the normalized available resources of

all hosts at t. r(t)j denotes the line j of r(t) that represents the average resources for host

Hj , i.e., r(t)cpuj for CPU and r(t)mem
j for memory. Besides, available resources at a given

state can be bounded by how much resources can service Ei use to scale. This boundary

is set by a system administrator in order to leave space for other applications to scale in

case the system is overloaded. To keep track of the latest scaling decisions, we denote by

p(t) the matrix of size m×n that stores these decisions taken at each host for each service.

Each element p(t)i,j contains the CPU and memory allocations represented as p(t)cpui,j and
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p(t)mem
i,j respectively. Thereafter, we represent a state s at t in our state space as follows:

s(t, i, j) = (q(t), r(t), p(t), i, j) (22)

Following Equation 22, i and j are part of the state representation to denote the current

service and host the agent is performing the decision for. The full p(t), q(t), r(t) matrices

are required in each state representation to make a combined decision while considering all

services requirements and hosts availabilities. During t, the agent passes over all services

and makes scaling decisions for each one separately. This reduces the action space and

makes our MDP design scalable no matter the input size.

The action space in our MDP has a constant size which is very important for the model

scalability. Every action a is composed of a list of two elements that hold the scaling

decision of the CPU and memory for a given state. A scaling decision for CPU for instance

is denoted as a[0] and belongs to {−u,−1, 0, 1, u}. In this set, ±1 denotes horizontal

scaling,±u is a decimal value that denotes vertical scaling, and 0 means no action is taken.

It is important to emphasize that some actions are not feasible; however, if taken, the agent

is punished using our cost function described in Section 4.3.4.

4.3.3 States Transition and Model Dynamics

IScaler state design presented in Section 4.3.2 relies on q(t) and r(t), which are the

applications’ resource requirements and the available resource at the next timestep t re-

spectively. The values of these lists are unknown and are hard to predict. In other words,

q(t) and r(t) have a stochastic behavior which is based on the demand change of the user for

an application and the change in resource usage of hosting servers in the cluster. Because

these values are unknown, Pr of our MDP is unknown. Henceforth, the RL algorithm that

should be used for these environments is model-free. On the other hand, the state design
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entails the ability to perform scaling decisions for large clusters hosting several applica-

tions. To avoid blowing the action space, each state within a given timestep is divided into

several steps.

Assuming that the current state is at t, the state representation is (q(t), r(t), p(t), i+, j+).

For instance, if the timestep is t, there are two loops of iterations defining the next states.

The first loop considers fixing an application service and increasing j by one until passing

over all the hosts and choosing the proper scaling action fromA. Once j = m, j+ becomes

zero and i is increased by 1, which is denoted as i+. Hence, j+ = j < m : j + 1 ? 0. In

addition, i+ = j = m : i + 1 ? i, which means that i+ increases i by 1 in case j = m

and does not change i otherwise. Moreover, p(t) at a state is updated by every scaling

decision for the given i and j. It is important to note that for these internal iterations within

a timestep, q and r are fixed until the agent moves to the next timestep. In this case, i, j,

and p(t) reset to zero, and a new q and r are observed by the agent.

4.3.4 Cost Function

Given the current state, the action taken, and the next state the agent results in, the cost

function is calculated. When navigating in the state space, the goal of IScaler is to select the

best action of the current state that results in the minimum cost. In other words, the correct

selection of the action using the cost function C helps in forming an optimal policy for

IScaler. In this section, we present four different objectives composing the cost function.

These objectives are: (1) minimize the application load, (2) minimize the overload of the

available resources, (3) minimize the containers priority cost, and (4) minimize the cost of

other customizable objectives, such as minimizing the distance cost from the serving edge

workers to actors. Taking an action moves the agent to the next timestep, i.e. from t−1 to t.

A cost is represented as C(s(t− 1), a(t)|s(t)). In the sequel, we present the mathematical

formulation of each objective in the proposed cost function.
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Minimize Application Load

The purpose of this objective function is to meet the load of different applications at

the next timestep. Considering that the applications’ loads are predicted, C1 evaluates the

scaling decision and compares the allocated resources to the ones required by each appli-

cation. If the scaling decision underestimates the load, the cost returned is the difference

between the actually required resources and the scaled ones. In case the demands are met

for an application, the resource cost returned is zero. For this objective, we consider the

cost of meeting the applications’ resource requirements for both CPU and memory. Math-

ematically, C1 of the CPU cost is represented in Equation 23.

Ccpu
1 (t) =

∑︁n
i=1(q(t)

cpu
i −

∑︁m
j=1 p(t)

cpu
j,i × Ecpu

i )∑︁n
i=1 q(t)

cpu
i

(23)

such that ∀i,
m∑︂
j=1

p(t)cpuj,i × Ecpu
i < q(t)cpui

where q(t)cpui is the CPU usage of service i and Ecpu
i is its CPU requirement. Otherwise, if

∃i s.t. q(t)cpui ≤
∑︁m

j=1 p(t)
cpu
j,i × Ecpu

i , the cost of this service is zero because the resource

requirements for the application are met. We also divide the cost by
∑︁n

i=1 q(t)
cpu
i for nor-

malization. It is important to note that Equation 23 refers to CPU calculation, which is the

same for memory calculation; however, we use q(t)mem
i and Emem

i instead of q(t)cpui and

Ecpu
i . Finally, C1(t) = Ccpu

1 (t) + Cmem
1 (t).

Minimize Available Resources Overload

In this objective function, the agent is punished for exceeding the use of available re-

sources using the proactive scaling decision made. We denote C2 as the cost of this objec-

tive. C2 represents the resource overload cost by each application for the CPU and memory

on each host. The CPU cost for this objective is represented mathematically in Equation
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24.

Ccpu
2 (t) =

∑︁m
j=1

∑︁n
i=1(p(t)

cpu
j,i × Ecpu

i )− q(t)cpui∑︁m
j=1 r

cpu
j

(24)

such that ∀j,
n∑︂

i=1

(p(t)cpuj,i × Ecpu
i ) > q(t)cpui

In case the sum of scaled resources on at least one host underestimates available resource

(i.e. ∃j,
∑︁n

i=1(p(t)
cpu
j,i < 0), the agent is punished for the action taken and a cost of k is re-

turned for this objective, where k > 1. The same punishment applies when the scaling deci-

sion surpasses the available resources of any host (i.e. ∃j,
∑︁n

i=1(p(t)
cpu
j,i ×E

cpu
i ) > r(t)cpuj ).

Equation 24 applies if the usage surpasses the required resource load identified. Hence, the

sum of the difference between the scaled resources of each application and the actual re-

quired resource load is returned. Otherwise, the cost is zero. In addition, A normalization

factor of
∑︁m

j=1 r
cpu
j is considered. Finally, Similar to C1, C2(t) = Ccpu

2 (t) + Cmem
2 (t).

Priority Cost

A priority level is assigned to each service description. This value prioritizes the scaling

of a service over others, which is important in the multi-application context and helps

IScaler make efficient decisions. The cost of this objective is denoted as C3. Ccpu
3 is

mathematically formulated in Equation 25 showing the CPU cost.

Ccpu
3 (t) =

∑︁n
i=1

∑︁m
j=1(q(t)

cpu
i − p(t)cpuj,i × Ecpu

i )× Epri
i∑︁n

i=1 q(t)
cpu
i × Ecpu

i

(25)

such that ∀i,
m∑︂
j=1

p(t)cpuj,i × Ecpu
i < q(t)cpui

In case the resource loads of the application at the next timestep are met, or the service pri-

ority is zero, the cost of this service is zero. Otherwise, Equation 25 is applied to calculate
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the remaining amount of resources needed to meet the resource load requirements of that

service. Finally, C3(t) = Ccpu
3 (t) + Cmem

3 (t).

Minimize Distance Cost

As highlighted earlier, the infrastructure admin can add custom objectives to our IS-

caler cost function. Using this custom objective, IScaler can adapt and produce the desired

scaling actions following specific preferences related to the hosting environment. Suppos-

ing that the cluster where IScaler is deployed is hosted at the edge, one of the possible

objectives to consider is minimizing the distance between the edge worker and the group

of requesting users. Therefore, we present in Equation 26 a mathematical representation of

C4 for minimizing the total distance cost.

C4(t) =

∑︁m
j=1 v(t)j ×Hdis

j∑︁m
j=1 H

dis
j

(26)

where Hdis
j is the distance cost of host Hj , and v(t) is a vector of size m and is calculated

as follows: ∀j, v(t)j = 1 if
∑︁n

i=1 p(t)i,j > 0 and 0 otherwise. A normalization factor of∑︁m
j=1 H

dis
j is added.

Therefore, our cost function becomes:

C((s(t− 1), a(t))|s(t)) = λ1 × C1(t) + λ2 × C2(t)+

λ3 × C3(t) + λ4 × C4(t)

(27)

where λ ∈ [0, 1] is a weight corresponding to each cost function given
∑︁4

i=1 λi = 1. These

weights are tuned depending on the applications requirements and the nature of the cluster

to give some cost functions more importance over the others, where the aim is to minimize

C((s(t− 1), a(t))|s(t)).
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4.4 Intelligent Scaling and Placement (ISP)

4.4.1 IScaler using Deep Reinforcement Learning

The IScaler agent interacts with the environment for evaluating the placement action

taken for each container. The agent executes actions for every state encountered and builds

a strategy that adapts to the stochastic demands of users requesting services, as well as the

change in available resources on worker nodes. The end goal of the agent is to learn the

transition probability distribution from a state to all next states and find the optimal policy

π∗, which takes as input a state and outputs the action that minimizes the future cost. In

other words, π∗ is a strategy or a set of actions the agent takes to minimize the cost. The

future costs are discounted by γ, which controls the effect of future actions on past and

current states, and helps the agent achieve faster convergence. let C(s(t−1), π|s(t)) be the

future discounted cost implied by choosing policy π at t that indicates selecting an action

a(t
′
), such that t ≤ t

′ ≤ T where T is the final timestep of the episodes. C(s(t−1), π|s(t))

is computed as follows:

C(s(t− 1), π) =
T∑︂

t′=t

γt
′−tC(s(t′ − 1), a(t

′
)|s(t′)) (28)

We denote by Q∗(s, a) the optimal action value function which minimizes the average

expected cost for any selected strategy. It is expressed as follows:

Q∗(s, a) = min
π

E[C(s(t− 1), π)] (29)

where s(t− 1) = s, a(t) = a

Let [s..L] be the chain of states from s to L linked by transitions using Pr. The optimal

Q-function selects the action of the next state that minimizes the action value function
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following Equation 30:

Q∗(s, a) = Es′∈[s..L][C + γmin
a′

Q(s
′
, a

′
)] (30)

where C is the immediate cost from Equation 27, and Es′∈[s..L] is the expected value from

the current state s to the last state L at T . The basic form of RL is to find the optimal action

value function using iterative updates following the Bellman equation. This update can be

expressed as:

Q(s, a) := Q(s, a) + α[C + γmin
a′

Q(s
′
, a

′
)] (31)

where α is the learning rate. In Equation 31, the update of the Q-function happens follow-

ing the Q-learning algorithm [71]. All Q-values are stored in a table structure containing

the list of states and actions. An exploration-exploitation trade-off aids the agent into inter-

acting with the environment by covering the maximum number of possibilities, observing

the cost signal, and updating the Q-values using Equation 31.

However, the use of tabular RL is not practical in our problem, where we have a large

state space. The state-space can grow with an increase in the number of containers and

hosts to place. Thus, handling the whole table in memory, trying to cover all possible

actions for every state, and updating the Q-values for all of them is computationally very

expensive. Such an implementation is time-consuming and makes any tabular RL agent

diverges [72]. As a solution, learning the optimal Q-values can be retrieved from some

adjustable weights denoted as θ. These weights get updated using gradient descent to

update the weights downwards towards the direction of the gradient for minimizing the

error of the calculated Q-values for every iteration. The common form of approximation is

the linear function approximation, which generalizes the environment through its weight,

where the Q-function becomes close to the optimal Q∗ having Q∗(s, a) ≈ Q(s, a, θ).
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Given the advantages of a linear approximation to overcome the tabular learning lim-

itations, these models will not be able to generalize well when the model complexity and

state spaces increase. Here comes the advantage of using non-linear approximations such as

Deep Neural Network (DNN) to approximate the environment, giving the agent the power

of Deep Learning (DL) to update its weights, where learning can be customized [73]. The

Deep Q-Network (DQN) algorithm has the advantage of merging the concepts of RL and

DL. Henceforth and after experimenting with the different linear approximation approaches

for building our IScaler agent, including Temporal Difference TD(0) and TD(λ) [75], DQN

outperforms the other approximation methods. Algorithm 2 provides a pseudo-code of our

IScaler learning algorithm, which benefits from the advancement in DQN.

As illustrated in Algorithm 2, we start by creating a multi-layer perceptron for the

source model used for calculating the state action-value function Q using its weights θ.

The input to the model is a transition sample, and the output is a single neuron with linear

activation. A target multi-layer perceptron is created, which is a copy of the source model.

We denote by θ− the weights of the target model, which are a copy of θ in the initialization

phase (line 1). We then initialize a replay buffer D of size G = 1000, which stores the

transition containing the current state, the action taken, the cost retrieved, and the next

state-observed (line 2).

The learning starts by initializing a random state s(t) at the beginning of every episode

(line 5). X episodes are played for learning. X varies depending on the input size for the

test case. Each episode is bounded by T learning steps. Every step starts by deciding on the

action taken for the current state. We implement this decision by following the ϵ-greedy

policy, which is essential for achieving a trade-off between exploration and exploitation.

In ϵ-greedy, we set ϵ to be a variable that decays over time. For instance, ϵ = B1
B2+NI

decreases as the number of iterations NI increases, where B1 and B2 are two constants

such that B1 < B2. We then generate a random value of w between zero and one. If
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Algorithm 2: IScaler Algorithm Using DQN
1 Build a Multi-Layer Perceptron as source model to calculate Q and randomly

initialize its weights θ;
2 Build a target model for Q with weights θ− which are a copy of θ;
3 Initialize replay buffer D to capacity G;
4 while episode X do
5 Initialize a random state s(t);
6 Reset t;
7 while t < T do

/* following ϵ-greedy policy */

8 if Random Selection then
9 select a(t+ 1) randomly from feasible actions;

10 else
11 a(t+ 1) = maxaQ(s(t), a, θ);
12 end
13 Update p(t+ 1), observe q(t+ 1) and r(t+ 1);
14 Update j to j+; // if applicable

15 Update i to i+; // if applicable

16 Build s(t+ 1);
17 Calculate C(s(t), a(t+ 1)|s(t+ 1)) using Equation 27;
18 Store [s(t); a(t+ 1); C(s(t), a(t+ 1)|s(t+ 1));

s(t+ 1)] in D;
19 Select random mini-batch transition of size Y from D;
20 for k in length(mini-batch) do
21 yk = Ck + γmina′ Q(sk+1, a

′
, θ−);

22 end
23 Update θ using gradient descent towards minimizing the loss:

(y −Q(s, a, θ))2 for every transition;
24 if length(D) > G then
25 Pop out the oldest element in D;
26 end
27 Every Z steps, copy θ into θ−;
28 Update the current state to s(t+ 1);
29 Increment t;
30 end
31 Increment Episode;
32 end
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1 − ϵ > w, we select an action randomly from the action space (lines 8-9). This is known

as an exploration iteration for the agent. Otherwise, the action having the maximum of

Q-value in the source model is selected (lines 10-11). This is known as the exploitation

iteration.

After taking the action, the agent observes the service demands and available resources

after the service placement is updated. This then allows the agent to calculate the cost

C(s(t), a(t + 1)|s(t + 1)) using Equation 27. After forming the next state s(t + 1), a

transition is stored in the replay buffer (lines 13-18). Because updating the model online as

data comes causes instability, data are stored in the replay buffer. Samples from these data,

of size Y = 50, are extracted randomly and uniformly to form the mini-batch dataset for the

model to train and break the problem of correlation between sequences of actions (line 19).

As mentioned previously, the source weights are stored in the target model. This is vital

to improve the source model learning stability. The source model adjusts θ of Q-function

by using the predicted Q-values of the target model as labels (lines 20-22). This, in turn,

builds a supervised learning context with a fixed dataset and labels on which to train. In our

implementation of IScaler-based DQN, loss functions are inferred and calculated for every

iteration using the mean squared error loss (line 23). This loss is back-propagated to the

neurons using the gradient-descent towards minimizing the loss to get a better estimate of

Q (line 23). To preserve the RL concept for allowing the model to keep on improving the

Q-function as new data come, the replay buffers D keeps on updating slowly by removing

the oldest transitions at every iteration when the buffer is full (lines 24-26). On the other

hand, the weights for the target model θ− keeps on updating after Z = 500 (line 27).

4.4.2 Optimizer

An Evolutionary Memetic Algorithm (MA) is an extension of the genetic algorithm

that includes a local search. The local search allows the heuristic solution to minimize the
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chance of halting in a local optimal and offers faster convergence to a near-optimal solution.

The MA is used in our previous research work for resource management [1], [15].

In the context of resource scaling and management, we utilize the Optimizer to support

IScaler in producing efficient decisions. The implementation of the Optimizer is based on

the MA solution. In terms of the formulation of the MA, the inputs to the algorithm are:

the set of services E , the set of hostsH, the set of resource usage of each application q after

the occurrence of the demands, and the set of currently available resources r. The output

of the MA is a two-dimensional matrix of size m × n representing the scaling value of

each container on every host. An element in the output matrix is a value in [0,Gmax] where

Gmax denotes the maximum value a container can be scaled to. Moreover, obviously, our

MA solution for the Optimizer uses the same cost function presented in Equation 27. This

allows the Solution Switch to be able to compare the output of the Optimizer and IScaler.

More details about the MA implementation can be found in [1].

4.5 Experiments and Evaluations

In this section, we describe the experimental setup and elaborate on the different ex-

periments conducted to show the efficiency of the proposed IScaler in different contexts,

the advantage of utilizing the Optimizer within ISP, and finally a comparison with a recent

existing scaling solution. In brief, the objectives are:

• Study IScaler DRL model convergence in a multi-application context, in addition to

studying the efficiency of the decisions made towards resource provisioning.

• Highlight the advantage of using our Optimizer on the orchestrator during the learn-

ing phase of IScaler.

• Compare the performance of IScaler to a model-based RL algorithm for edge com-

puting environments [9].
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4.5.1 Experiment Setup

To meet the objectives of the experiment, we implemented a DRL algorithm based on

the proposed MDP design for building IScaler, a model-based RL algorithm called Dyna-Q

[9] for a comparative study with IScaler, the MA for simulating the behavior of the Opti-

mizer, and finally the Solution Switch. The experiments were executed on a Windows 10

machine having a Core-i7 (12 CPUs), 32GB of RAM, and an Nvidia Quadro P620 graphic

card for GPU training. The programming language used is Python V3.7, and we relied

on the Tensorflow library for the implementations of the source and target deep learning

models of IScaler [78]. The source and target networks for the DRL implementation are

deep neural networks that consist of four layers having 32, 16, 8, and 1 neuron, respec-

tively. The activation function on the hidden layers is ReLU, while we are using a linear

activation on the output. The networks are configured to use the RMS optimizer, the Huber

loss, a learning rate of 0.001, and a batch size of 60. The source code for our MDP and

DQN implementation is accessible on Github1.

The conducted experiments are based on simulations on the Google Cluster Usage

Traces v3 2019 dataset (GCT) [79]. In this dataset, google physical machines are used

and grouped into cells (clusters) having different resources allocated and available. More-

over, jobs refer to users’ requests to execute a certain task on the cluster. GCT provides

the data describing each machine in the cell, the resources allocated and available, the jobs

to be executed on each machine, and the required resources in terms of CPU and memory.

In our work, we map the cell to a Kubernetes cluster where IScaler, the Optimizer, and

the Solution Switch are running. Machines in the cells resemble the worker nodes of our

clusters. Furthermore, the jobs correspond to the containers to be scheduled in the cluster

and scaled using our solution.

1https://github.com/hanisami/IScaler-DRL
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Data pre-processing, cleaning and visualization are performed on the dataset. For sim-

plicity, three jobs/containers and three machines/worker nodes are selected from the dataset

and visualized in Figs. 4.4 and 4.5. In Fig. 4.4, we show the average change in CPU de-

mands by three different services over multiple samples from the dataset. In this figure, the

curve drops imply a decrease in resource demands and therefore fewer requests from users

arrive. In contrast, the curve reaches higher values when the demands of users increase. On

the other hand, Fig. 4.5 illustrates the change of the average available resources for three

different hosts sampled from the dataset. These figures demonstrate a real-life scenario for

the change in demands and offered resources in the cluster. We benefit from this data in our

experiment to show the ability of IScaler to adapt to these changes and perform efficient

scaling and service placement decisions. For Simplicity, we display the CPU usage in the

results instead of both CPU and Memory.

Figure 4.4: GCT Services Resource Demands

4.5.2 Multi-Application Model Convergence

In this part, we experiment with the performance of IScaler in a multi-application

setting using the GCT dataset. In particular, we use the three samples of services and

hosts described in Section 4.5.1. Services are presented by {E1, E2, E3}, and hosts by

{H1, H2, H3}. Following the objectives of our cost function described in Section 4.3.4,
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Figure 4.5: GCT Hosts Available Resources

we assign to each service a priority level, and for each host a distance value. The dis-

tance value represents the distance between the host location (longitude and latitude), and

the central point between a group of users. The priority levels are assigned as follows:

Epri
1 = 1, Epri

2 = 3, Epri
3 = 2. Moreover, the distance value assigned to each host are:

Hdis
1 = 10 Hdis

2 = 20 Hdis
3 = 30. Besides, we assign different weights to each objec-

tive of the cost described in Section 4.3.4. The weights assigned are: λ1 = 0.2 , λ2 =

0.4 , λ3 = 0.2 , λ4 = 0.2. Consequently, the objective of minimizing the resource load of

the application has more influence on the decision of the agent.

Following two million iterations of learning for IScaler using data of demands and

resource availability fed from the GCT dataset, the model can converge with respect to the

cost value produced for every decision. The long time of convergence is interpreted by the

stochastic nature of demands and available resources on the GCT dataset as shown in Figs.

4.4 and 4.5. In Fig. 4.6, we show the convergence of our proposed DRL solution. In this

figure, we plot the variation of the average cost value with respect to the average number

of iterations, which are considered epochs. This graph is displayed on a logarithmic scale

for better visualization of the agent performance.

In addition, we study the efficiency of decisions made during the learning and after the

convergence with respect to every objective of our cost function. In Fig. 4.7, we show the

amount of CPU resource load that is proactively prepared for each service after scaling.
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Figure 4.6: IScaler Convergence

In each graph, we plot the averaged difference between the actually required resource and

the offered resources in the cluster with respect to the averaged number of iterations. This

means that a closer value to zero means exactly the required demands are offered. On the

other hand, a negative value indicates that the amount of offered resources exceeds the

actual requirements of each application.

(a) E1 (b) E2 (c) E3

Figure 4.7: The Difference Between Actual Demands and Offered Resources for Each Service

As shown in the results of each figure, the amount of offered resources is most of the

time larger than the required ones at the beginning of learning. This is because λ2 = 0.4 >

λ1 = 0.2. Thus, meeting the amount of required resources has more impact compared to

using available resources. Besides, the amount of utilized resources is approaching zero in

each graph as the agent converges. In the end, the agent is able to learn the optimal resource

allocation decisions for each service. More importantly, the resource of E2 is exactly met
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at each iteration due to the high priority score.

Available resources change over time, thus it is important to check if IScaler is utilizing

more than the available resources on each host, which should be avoided. In Fig. 4.8, we

show the averaged difference between the utilized resources by IScaler and the available

resources on each host. A value of zero means that IScaler is proactively using the exact

amount of available resource on this host, while a positive value indicates the amount of

remaining available resources IScaler can use.

(a) H1 (b) H2 (c) H3

Figure 4.8: Remaining Available Resources of Each Host

As shown in Fig. 4.8, IScaler is able to converge while respecting the change of avail-

able resources on each host. It is important to note that the available resources on H1 are

more utilized compared to other hosts because H1 has the shortest distance to the user.

Moreover, as shown in the results of each figure, IScaler is not utilizing the full available

resources on each host, therefore respecting the first objective in our cost function to mini-

mize the amount of utilized resources.

In summary, IScaler is capable of performing efficient scaling decisions by meeting the

load requirements for each application, more importantly, the ones with high priority, and

respecting the amount of available resources for each host.
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4.5.3 ISP Performance

As shown in the results of Figs. 4.6, 4.7, and 4.8, the agent is performing decisions

that result in high costs on the environment. The high cost is reflected in shortening the

applications’ availability through unbalanced resource utilization and incorrect scaling of

containers. This behavior of a DRL agent can occur in two cases. First, the agent is in

the first stages of learning. Second, the agent is facing an unprecedented change in the

environment that requires a model update. In both cases, the Optimizer can intervene to

perform the scaling decision until IScaler develops a better model.

In order to experiment with the advantage of using the Optimizer, we simulate the

behavior of combining the Solution Switch, the Optimizer, and the IScaler. While IScaler

starts learning from scratch, we use the same setting and input of the previous experiment.

The results of the averaged cost function using ISP with respect to an averaged number of

iterations are shown in Fig. 4.9. As shown in this figure, the cost of the decisions made

Figure 4.9: ISP Performance

is in the range between 0.14 and 0.3, including the first iterations when IScaler is making

inaccurate decisions. This explains the importance of using the Optimizer for replacing

IScaler. In this experiment, we queue the results of the decisions made by IScaler and

the Optimizer. After every 100 iterations, the Solution Switch evaluates both decisions to

decide on the right solution to use. After 300, 000 iterations, the Solution Switch silently
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shifts from using the Optimizer to IScaler for proactive decisions. As shown in the graph,

there are no jumps outside the range of [0.14, 0.3] of cost because the model converges. One

limitation remains when using the Optimizer, which is the inability of performing proactive

decisions. Therefore, the scaling decision is made after the demands occur.

Furthermore, we study the impact of using the Optimizer on improving the quality of

the decision to meet each of the objectives of our cost function described in Section 4.3.4.

Therefore, Figs. 4.10 and 4.11 present the amount of resource load met for each application

and the utilization of available resources on each host, respectively.

(a) E1 (b) E2 (c) E3

Figure 4.10: Resource Load for Each Service

(a) H1 (b) H2 (c) H3

Figure 4.11: Remaining Available Resources of Each Host

As shown in the results of Fig. 4.10, the required resources for each application are al-

ways met. Besides, the CPU resource load of each service has a negative value sometimes.

This implies that services are assigned more resources compared to the needed ones. The
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main reason behind this behavior is that meeting the resource load has more importance

over minimizing the resources utilized on hosts (λ1 < λ2).

On the other hand, as shown in the results of Fig. 4.11, the available resources for H2

and H3 are less utilized by IScaler compared to H1. The main reason is that the shortest

distance from the users is H1. Therefore, the IScaler decision respects the fourth objective

of our MDP cost function to minimize the distance from users.

4.5.4 IScaler v.s. Model-Based Scaling

A recent literature work proposed a horizontal and vertical resource scaling for a single

application using model-based reinforcement learning [9]. Despite that the service place-

ment solution of that work is based on a heuristic solution, we compare in this section the

performance of model-based RL to IScaler for a single application. Therefore, we replicate

in this experiment the Dyna-Q model-based algorithm proposed in [9]. Some adjustments

are applied to the state space of the Dyna-Q model to perform a fair comparison with IS-

caler. For instance, the features of service placement and the representation of the change

of available resources are applied. Dyna-Q solution uses tabular Q-learning and estimates

the probability transition matrix Pr for learning the dynamics of the environment. Despite

that estimating Pr requires a lot of computation and sometimes is not practical in the case

of large input spaces, the main objective of this experiment is to compare the behavior of

Dyna-Q and IScaler when a change to the environment occurs. For this purpose, service

E1 is selected for scaling in both solutions on the three hosts. After multiple episodes of

learning for IScaler, and one iteration for extracting Pr for Dyna-Q, a major drop in de-

mands is manually provoked in both environments. In order to compare the performance

of each agent, the results of the averaged cost value are presented in Fig. 4.12b.

As shown in the results of Fig. 4.12b, the errors at the first stages of the decision making

are negligible for the model-based Dyna-Q compared to IScaler performance in Fig. 4.12a.
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(a) IScaler Performance - Model Free

(b) DynaQ Performance - Model Based

Figure 4.12: IScaler Performance vs Dyna-Q

This is obvious because the dynamics of the environment are known for Dyna-Q. However,

once unprecedented change happens in the resource demands of the application, the errors

for Dyna-Q jump, as shown in the first graph of Fig. 4.12b. This high error remains untilPr

of Dyna-Q is updated with new samples of data, making it impractical in such a dynamic

environment. On the other hand, it is noticeable that IScaler is able to re-adjust the model,

adapt to the environment change, and converge again in minimal time. IScaler uses model-

free DRL for approximating Pr. This approximation dynamically changes with respect to

changes in the environment that are interpreted through the reward signal.

4.6 Conclusion

Heading towards the development, hosting, and management of the new generation of

services that are supported by 5G and 6G requires, there is a need for massive availabil-

ity of computing resources, which is offered by the MEC. Due to the limitation of MEC
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available resources, dynamic resource management of multiple applications on the MEC

infrastructure has been identified as one of the main challenges for the future of cellular

networks. Therefore, we propose in this chapter IScaler. IScaler is a DRL-based multi-

applications resource scaling and service placement solution capable of overcoming the

existing challenges of the dynamic environment with a stochastic change in demands to

execute efficient decisions. Furthermore, adopting a DRL-based solution in 5G or 6G net-

works is very costly because of the errors the agent can make and the time required to

learn. Thus, we propose an ISP module, which consists of IScaler, Optimizer, and Solu-

tion Switch. Through a series of experiments using the GCT dataset, we illustrated the

efficiency of ISP decisions in (1) performing proactive intelligent multi-application scaling

and placement decisions, (2) using the Optimizer during IScaler’s model changes, and (3)

demonstrating the ability of IScaler to outperform existing model-based scaling solutions.
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Chapter 5

Graph Convolutional Recurrent

Networks for Reward Shaping in

Reinforcement Learning

In this chapter, we consider the problem of low-speed convergence in Reinforcement

Learning (RL). As a solution, various potential-based reward shaping techniques were pro-

posed to form the potential function. Learning a potential function is still challenging and

comparable to building a value function from scratch. In this work, our main contribution

is proposing a new scheme for reward shaping, which combines (1) the Graph Convolu-

tional Recurrent Networks (GCRN), (2) augmented Krylov, and (3) Look-ahead advice to

form the potential function. We devise an architecture for GCRN that combines Graph

Convolutional Networks (GCN) to capture spatial dependencies and Bi-Directional Gated

Recurrent Units (Bi-GRUs) to account for temporal dependencies. Our definition of the

loss function of GCRN incorporates the message passing technique of the Hidden Markov

Models (HMM). Since the transition matrix of the environment is hard to compute, we
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use the Krylov basis to estimate the transition matrix, which outperforms the existing ap-

proximation bases. Unlike existing potential functions that only rely on states to perform

reward shaping, we use both the states and actions through the Look-ahead advice mech-

anism to produce more precise advice. Our evaluations conducted on the Atari 2600 and

MuJoCo games show that our solution outperforms the state-of-the-art that utilizes GCN as

the potential function in most games in terms of the learning speed while reaching higher

rewards.

5.1 Introduction

A Reinforcement Learning (RL) agent recognizes its position in the environment through

a state defined by a Markov Decision Process (MDP). From a given state, the agent decides

on the action that best maximizes the cumulative rewards. The action selection is based on

a value function, which either considers states only, or states and actions. The objective

of the value function is to maximize the cumulative rewards by selecting the best action

for each state. The reward function is defined through the MDP and is used to evaluate

the actions taken. The value function is updated iteratively using an RL algorithm, such as

Q-learning, SARSA(λ), Deep Q-Network (DQN), etc [80]. RL techniques are usually time

consuming; therefore, speeding the learning process is crucial for practical consideration

of RL solutions in various applications. For this purpose, reward shaping techniques were

invented to alter the original reward function definition, thus helping the agent reach the

optimal policy [81]. Different techniques exist for designing a reward shaping function. In

this work, we focus on potential-based reward shaping [81] because it guarantees invari-

ance with respect to the optimal policy for solving an MDP. Building the potential function

is not straightforward for complex environments [82]. Therefore, a potential-based re-

ward shaping solution is still an open problem. Hence, we propose in this chapter a novel

potential-based reward shaping solution using Convolutional Neural Network (CNN).
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Our first step in this chapter is defining the potential function using the probabilistic

inference view of RL. Using the message passing technique of Hidden Markov Models

(HMM) [17], we are able to calculate the probability of the agent belonging to an optimal

trajectory given the state and action [16], which we consider as an effectiveness signal

for accelerating the learning. We also claim that predicting the reward shaping value at

the next timestep helps accelerate further the learning. Therefore, we propose using a

Recurrent Neural Network (RNN) that takes as input the state transitions from time t = 1

to a timestep T and predicts the reward shaping value at T + 1. The loss function of

the RNN uses the actual labels of the reward shaping values that are calculated using the

message passing technique.

The message passing technique is used to calculate the forward and backward mes-

sages. As discussed in Section 2.1.4, calculating these messages is computationally expen-

sive, especially when dealing with a large graph of states and transitions. To overcome this

issue, we propose using a GCRN model that combines a Graph Convolutional Network

(GCN) and an RNN, where the GCN is responsible for computing the message passing,

while the RNN predicts the next reward shaping value. In other words, the GCRN is capa-

ble of studying the spatio-temporal dependencies using GCN and RNN respectively. Due

to the recursive nature of GCN, it is straightforward to perform message passing by prop-

agating information about rewarding states between the neighbors using a filter matrix.

In various research proposals that use GCN, the graph Laplacian corresponds to the filter

that represents the connection of nodes in the graph or approximates the transition matrix.

For instance, the authors in [16] use the graph Laplacian to perform reward shaping using

GCN, while assuming that the value function is smooth over the induced MDP graph. This

smoothness is defined using the Sobolov norm [21]. This assumption results in a margin

of error for approximating the value function that can be reduced by computing the Krylov

basis [23]. In this chapter, we also argue that if the graph Laplacian affects the accuracy of
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the value function approximation (VFA), it definitely affects using GCN for reward shaping

with the filter of the graph Laplacian. We elaborate on the drawbacks of using the graph

Laplacian instead of the Krylov basis in Section 2.1.7.

In this work, we propose using GCRN with the Krylov basis as the filter of GCN to

produce reward shaping values. The actual labels in the GCRN training are resulted from

calculating the forward and backward messages. Due to the computation complexity in-

duced for calculating the message passing, as well as the difficulty of retrieving the full

transition matrix of the environment, we train GCRN on a sample of the agent transitions.

When using a sub-graph of transitions, the learning accuracy of GCN is not affected, be-

cause GCN propagates information in the graph and was commonly used to perform semi-

supervised learning [20]. In order to further improve the performance of GCRN, we also

propose adapting an optional Look-ahead advice mechanism to the training process. By

using the Look-ahead advice, the potential function is a function of the state and action,

instead of only the state. Adapting this mechanism helps produce more precise advice at

the action level [24].

The full process of our proposed GCRN scheme is presented in Figure 5.1. We collect

a sample of the agent transitions for each episode in the environment. Using these tran-

sitions, we form a sub-graph as shown in Figure 5.1 (the red sub-graph). Afterwards, the

input to GCN X(S,A) is formed from the states S ⊂ S and actions A ⊆ A of the MDP,

which considers incorporating the Look-ahead advice mechanism. In addition, we build

the Krylov basis K (i.e. the approximated transition matrix) using the augmented Krylov

algorithm presented in Section 2.1.7. The input X(S,A) and the approximated transition

matrix K are employed to perform the GCN training. The output from GCN up to T , re-

ferred to as GC, is passed to an RNN network composed of Bi-directional Gated Recurrent

Units (Bi-GRUs) to predict the reward shaping value at T + 1. Our choice of the GRUs

over LSTM is due to the superior performance of GRUs in our evaluations. Moreover,
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we propose using bi-directional networks to predict the agent decision from the future as

well as the post. Therefore, we claim that bi-directional networks further contribute to the

novelty of our proposed scheme.

As a summary, our contributions in this chapter are:

(1) A novel scheme for potential-based reward shaping using a GCRN architecture that

combines GCN and Bi-GRUs and benfits from the probability inference view of RL.

(2) Train GCRN on a sample of transitions that predicts the reward shaping value at the

next timestep.

(3) Use the Krylov basis as a filter for the GCRN, which outperforms the graph Lapla-

cian.

(4) Adapt an optional Look-ahead advice to produce more precise advice for the agent.

The rest of this chapter is organized as follows. In Section 5.2, we present our pro-

posed reward shaping solution that utilizes GCRN with the Krylov basis and Look-ahead

advice. The evaluations conducted on the Atari and MuJoCo games are presented in Sec-

tion 5.3 compared to various baselines. We conclude the chapter in Section 5.4 with an

open discussion about the limitations and future plan.

5.2 Proposed Scheme

In this section, we list the steps for constructing the potential function of our reward

shaping solution using GCRN. We also present an algorithm to obtain the Krylov basis

to approximate the transition matrix, and another algorithm showing the training of our

proposed GCRN for potential-based reward shaping.
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Figure 5.1: Proposed Scheme Using GCRN

5.2.1 GCRN Configuration

In this work, we propose GCRN, which combines GCN and RNN as shown in Figure

5.1. GCRN learns both the complex spatial dependencies and dynamic temporal dependen-

cies in the graph of states. Our GCRN network is composed of GCN followed by Bi-GRU

layers, where the vanilla GRU is used and the hidden layers are unchanged. However, the

input to the RNN is the output of the preceding GCN. Noting that the input layer of the
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GCN accepts states and actions as part of implementing the Look-ahead advice mecha-

nism. Furthermore, the output of our GCRN is a probability distribution considered as the

potential function output. The outputs of a GRU, reset, and update gates are computed as

follows:
rt = σ(WrXt + Urht−1 + br)

gt = σ(WgXt + Ught−1 + bg)

h̃t = tanh[WhXt + Uh + rt ⊙ ht−1) + bh]

ht = (1− gt)⊙ ht−1 + gt ⊙ h̃t

(32)

In these equations, r, g, and h are the reset, update, and the output gates respectively.

In addition, Xt is the input at time t, σ is the logistic sigmoid activation, and ⊙ is the

Hadamard product. Wr, Wg, Wh, Ur, Ug, and Uh are the weight matrices. br, bg, and bh are

the synthesis of bias vectors for the input X .

A Bi-GRU is composed of forward backward GRUs. The output vectors of the forward

and backward GRUs are concatenated to get the final result. In our implementation, a

forward pass in GCRN is expressed as follows:

GCN(Xt) = K ReLu(KXtW1)W0

−→
ht = GRUfwd(GC(Xt),

−−→
ht−1)

←−
ht = GRUbwd(GC(Xt),

←−−
ht+1)

ϕGCRN(Xt) = LogSoftmax(
−→
ht ⊕

←−
ht)

(33)

where GRUfwd and GRUbwd are computed following the steps in Equation 32. In this

formulation, the output of GCRN as a potential function is expressed as ϕGCRN . Xt is the

input matrix of size (||St|| + ||At||), where ||St|| and ||At|| are the number of features in

the state and action respectively; and K is the Krylov basis, which is computed through the

augmented Krylov. The output of GCRN resembles the scaler value that gets appended to

the original reward value of the transition being studied.
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5.2.2 Loss Function

Updating GCRN for reward shaping entails using the message passing technique for

calculating the network loss using the predicted and actual labels. The standard GCRN

loss function is composed of the base and recursive cases in order to reflect the message

passing mechanism as follows:

L = L0(S,A) + ηLrec(S,A) (34)

where S and A are the lists of base case states and actions respectively, and S and A are

the states and actions obtained from the sampled transitions. The base states and actions

have a reward different from zero for the current episode, where each action is assigned

to its state. It is important to propagate information in GCN from rewarding states and

actions only. The actual labels for this loss are calculated using the forward and backward

messages defined in Equation 3. Therefore, the base loss is calculated as follows:

L0 = H(p(O|S,A), ϕGCRN(S,A)) =∑︂
s,a∈S,A

p(O|s, a)log(ϕGCRN(s, a))
(35)

where H represents the cross entropy loss between the actual and predicted values by the

GCRN. In this approach, the input to the network considers both the state and action to

benefit from the Look-ahead advice described in Section 2.1.6.

For the recursive case, the loss function takes the following form:

Lrec =

||d||∑︂
i=1

||e||∑︂
j=1

Ai,j||ϕGCRN(Si, Ai)− ϕGCRN(Sj, Aj)||2 (36)

where d and e are sets of identifiers for the states and their corresponding neighbors respec-

tively. Furthermore, Ai and Aj are the actions taken at states Si and Sj respectively, A is
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the adjacency matrix, and ϕGCRN(Si, Ai) is the output of the shaping function for state Si

while selecting action Ai. Noting that the propagation model in GCRN uses the approxi-

mated transition matrix K to aggregate messages. Thus, a message in GCRN is written as

mi = σ(
∑︁||e||

j=1Ki,jmj), where mj is a message from the neighbor j.

5.2.3 Computing the Krylov Basis

In our GCRN, a sample from the MDP is converted to a graph structure, where each

node corresponds to a state. Furthermore, an edge resembles the transition between states

for a given action, as part of the Look-ahead advice mechanism. Because constructing the

whole graph iteratively is expensive when calculating the message passing, we consider

using a sub-graph. The extracted sub-graph from the transition samples is sufficient to con-

struct the shaping function [16]. To compute the Krylov basis K, we apply the augmented

Krylov algorithm on the sub-graph. The resulted vectors from the augmented Krylov al-

gorithm are appended to form the Krylov basis K as an approximation of the transition

matrix. The full pseudo-code for computing K using the Krylov space and the weighted

spectral method is presented in Algorithm 3.

Algorithm 3: Transition Matrix Approximation Using Augmented Krylov To
Construct K
1 Input: P ′ - sampled transition matrix, r, e - number of eigenvectors from P ′, n -

number of sampled transitions;
2 Output: K - Estimate of the transition matrix P π;
3 Compute top e eigenvectors of P ′: {q0, q1, . . . qe};
4 qe+1 = r;
5 for i = 1, . . . n+ e do
6 if i > e+ 1 then
7 qi = P ′qi−1;

8 for j = 1, . . . , (i− 1) do
9 qi = qi − (qj.qi)qj;

10 K = [q0, q1, . . . , qe, . . . , qn];
11 return K;
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5.2.4 Training GCRN

A sample of the transition matrix P ′ is taken to form a sub-graph for training the GCRN

every n steps. Once P ′ is retrieved, the augmented Krylov algorithm is applied to build the

estimate of transitions matrix. The loss function of GCRN is applied following Equa-

tions 34, 35, and 36. The combined value function with reward shaping takes the form of

Qπ
comb(s, a) = αQπ(s, a) + (1 − α)Qπ

ϕ(s, a), where Qπ
ϕ(s, a) = E(s,a)[

∑︁
t γ

tr(St, At) +

γϕGCRN(St+1, At+1) − ϕGCRN(St, At)]. Moreover, α is a hyperparameter indicating the

amount of reward shaping decision used in the global value function.

Algorithm 4: Training GCRN
1 Create empty graph G;
2 for Episode=0,1,2, . . . do
3 for t = 1, 2, . . . , T do
4 Store transition (St−1, At−1, St, At);
5 Build a graph of transitions in G;
6 end
7 if mod(Episode, N) then
8 Build the sampled transition matrix P ′ from G;
9 Construct Krylov basis K from P ′;

10 Update GCRN using Equation (34);
11 end
12 Qπ

comb = αQπ + (1− α)Qπ
ϕ;

13 Train DRL to maximize Eπ[∇logπ(At|St)Q
π
comb(St, At)];

14 Reset G to empty graph (optional);
15 end

5.3 Experiments

In this section, we provide a set of experiments for evaluating the performance of

GCRN compared to: (1) Actor Critic (A2C) [83], (2) Proximal Policy Optimization (PPO)

[84], (3) Random Network Distillation (RND), (4) Intrinsic Curiosity Module (ICM), (5)

Learning Intrinsic Rewards for Policy Gradient (LIRPG), and (6) using GCN as the shaping
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function with the graph Laplacian Lc as the filter [16]. RND and ICM are reward shaping

solutions that improve exploration of actions. Furthermore, LIRPG seeks reward shaping

through improving the agent performance, but it does not guarantee invariance with re-

spect to the optimal policy. On the other hand, GCN and the proposed GCRN are potential

based, scalable, and capable of improving the agent performance. LIRPG does not support

continuous action spaces, thus its performance is studied in environments with discrete

controls.

In the sequel, we first study the complexity of the proposed GCRN compared to the

different baselines in the four rooms and four rooms traps games. Afterwards, we evaluate

the performance of GCRN compared to the baselines in the Atari and MuJoCo games for

discrete and continuous control.

5.3.1 Complexity

In order to study the runtime of each reward shaping method, we measure the number

of frames processed per second (FPS) for each solution in Atari games. The number of FPS

is a measure of the runtime for each method because it indicates the speed of learning the

policy and the potential function in the environment. For every episode in GCRN, eigen-

vector decomposition on the sampled transition matrix is performed to compute the Krylov

basis K. To avoid the expensive computation to retrieve the eigenvectors, we utilize the

Singular Value Decomposition (SVD) for extracting the top eigenvectors from the sampled

transition P ′ [85]. The time complexity for using SVD to calculate the top eigenvectors

of a matrix is O(mde), where m is the mean vector of the input, d is dimension, and e

is the number of eigenvectors to compute. Furthermore, training GCRN consumes addi-

tional time every episode due to training the GCN and GRU layers. Therefore, GCRN has

a slightly slower execution time compared to PPO and GCN. Despite this, GCRN is faster

compared to RND, ICM, and LIRPG and has the best overall performance. In Table 5.1,
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we provide a comparison of the frame processing time (FPS) between PPO, GCN, and our

proposed GCRN for potential-based reward shaping.

Method FPS

PPO 1122

GCRN 1028

GCN 1054

RND 1002

ICM 896

LIRPG 274

Table 5.1: FPS - Atari

5.3.2 Performance Evaluation

To evaluate the performance of the proposed reward shaping approach, we study the

impact of each of the proposed techniques for building GCRN as a potential function. Thus,

we analyze the impact of (1) ϕkGCRN : GCRN using Krylov basis and look-ahead advice;

(2) ϕkGCN : GCRN with Krylov basis; and (3) ϕGCRN : GCRN with look-ahead advice,

compared to A2C and ϕGCN of [16] in tabular learning. We evaluate the performance of

these proposed techniques compared to PPO, RND, ICM, LIRPG, and ϕGCN in 20 Atari

for discrete control. Furthermore, additional experiments are performed on four Mujoco

games for continuous control compared to PPO and ϕGCN .

Tabular

We developed two versions of the Four Rooms game to compare the learning speed

and analyze the impact of ϕkGCRN , ϕkGCN , and ϕGCRN compared to A2C, ϕGCN , and

ϕαβ as baselines, where ϕαβ is using the pure message passing. The two games are Four
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Rooms and its variant Four Rooms Traps, where negative rewards are scattered through

the room as traps. We use tabular learning in the form of A2C, where the critic uses λ-

return. In such games, it is possible to calculate the results of the message passing because

the environments are small. In addition, random actions are selected with a probability of

0.1. The results showing the cumulative steps to reach the goal are presented in Figures

5.2 and 5.3. As shown in these figures, the performance of ϕkGCRN , ϕkGCN , and ϕGCRN

(a) Four Rooms (b) Convergence Speed

Figure 5.2: Convergence speed of different solutions in the Four Rooms game

(a) Four Rooms Traps (b) Convergence speed

Figure 5.3: Convergence speed of different solutions in the Four Rooms Traps game

outperforms the rest of the baselines. Furthermore, the best performance can vary between
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the proposed mechanisms depending on the hyperparameters used. These simple games

show the importance of appending RNN to the GCN architecture. The BiGRU layer makes

use of the message passing results that require a memory for the forward and backward

passes in the environment. Therefore, predicting the shaping value at the next time-steps

while considering what happened in the past, contributes to speeding the learning. In the

next experiment, we perform our evaluations on the Atari 2600 games, where message

passing cannot be directly computed.

Atari 2600

Atari 2600 games are sufficient for comparing the performance between the proposed

ϕkGCRN and ϕGCN in terms of discrete action space. The Atari games offer a range of

environments, which we use to show the importance of the combined solution, rather than

using the separate components of augmented Krylov, look-ahead advice, and RNN. In order

to add the action to the state vector, we utilize the one-hot-encoding and concatenate the

state and action vectors. This step is required to evaluate the look-ahead advice mechanism

in our proposed solution.

The performance of ϕkGCRN , ϕGCRN , ϕkGCN , ϕGCN , and PPO is evaluated on all Atari

games. The same parameters were used for all the learning solutions for fair comparison.

The parameters for the Atari games are shown in Table 5.2. Using GYM python depen-

dency, the pixel rows are passed to a CNN for feature extraction. The input to GCRN is the

output of the last hidden layer of the CNN. The experiments were executed for ten million

steps for each game.

In Figure 5.4, we show the improvement achieved by ϕkGCRN , ϕGCN , RND, ICM, and

LIRPG compared to PPO in log scale. Following the results displayed in Figure 5.4a,

ϕkGCRN learns faster compared to PPO in all the games except RoadRunner. This implies
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Hyperparameter Value
Learning rate 2.5e-4

γ 0.99
λ 0.95

Entropy Coefficient 0.01
PPO steps 128

PPO Clipping Value 0.1
# of minibatches 4

# of processes 8
GCRN: α 0.9
GCRN: η 1e1
GCN: α 0.9
GCN: η 1e1

Table 5.2: Model configuration for the Atari games

that ϕkGCRN achieves the best results in terms of the number of games where an improve-

ment is achieved over PPO as baseline.

Furthermore, to show the importance of using GCN combined with the use of aug-

mented Krylov, look-ahead advice, and BiGRUs, we study the improvement of each of the

three proposed techniques (ϕkGCRN , ϕkGCN , and ϕGCRN ) compared to ϕGCN . The results

are presented in Figure 5.5 in log scale compared with ϕGCN . We chose to compare with

ϕGCN as baseline because it is the most related to our proposed solution, and it achieves

significant advancement in the domain of reward shaping.

Comparing Figure 5.5a with 5.5b and 5.5c, we notice the importance of using the com-

bined solution. Considering for example the MsPacman and UpNDown, we can see that

ϕkGCRN improves in terms of convergence speed and maximum reward reached compare

to ϕGCN , ϕkGCN , and ϕGCRN . In contrast, taking the example of the RoadRunner game,

we can see that ϕGCN , ϕGCRN , and ϕkGCN performed better. Besides, ϕkGCRN does not

always provide the best performance compared to ϕGCN . Similar to the tabular learning

case, the selection of the hyperparameters also affects the performance of each solution.

Therefore, studying the spatial and temporal dependencies for the Atari games by using

GCRN as the potential function improves the overall learning quality compared to ϕGCN .
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(a) ϕkGCRN performance different Atari games in
log scale over PPO

(b) GCN performance different Atari games in log
scale over PPO

(c) ICM performance different Atari games in log
scale over PPO

(d) LIRPG performance different Atari games in log
scale over PPO

(e) RND performance different Atari games in log
scale over PPO

Figure 5.4: Performance comparison between the proposed ϕkGCRN and different baselines in
Atari games

113



Moreover, adding augmented Krylov, look-ahead advice, or both, can also result in im-

proving the learning speed and maximum reward achieved. As a conclustion, there is no

one best solution for all the Atari games, thus ϕkGCRN , ϕGCRN , ϕkGCN , and ϕGCN should

be tried when tested on similar environments. In Figure 5.6, the average reward of each of

the solutions for different games is shown.

(a) ϕkGCRN (b) ϕGCRN

(c) ϕkGCN

Figure 5.5: Performance comparison of the improvement achieved in different Atari games in log
scale over ϕGCN

Mujoco

To further investigate the performance of our proposed model compared to ϕGCN and

PPO, we perform experiments on continuous action space using the Mujoco environments.
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(a) Alien (b) Assault (c) Asteroids (d) Frosbite

(e) Gopher (f) Jamesbond (g) Hero (h) Kangaroo

(i) Krull (j) MontezumaRevenge (k) MsPacman (l) NameThisGame

(m) Qbert (n) RoadRunner (o) Seaquest (p) SpaceInvaders

(q) UpNDown (r) Venture (s) WizardOfWar (t) Zaxxon

Figure 5.6: Results on 20 Atari games comapring the performance of ϕCNN to ϕGCN and PPO
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We also use these environments to illustrate the advantage of combining the spatial and

temporal learning through GCRN. We evaluate the performance of the three different pro-

posed reward shaping techniques: ϕkGCRN , ϕGCRN , and ϕkGCN . The results comparing the

performance of each game and technique, in terms of average rewards, are shown in Figure

5.7. We use the same parameters for evaluating the different techniques compared to ϕGCN

for fair comparison. The experiments were executed for three million steps for each game.

The model parameters for MuJoCo evaluation are provided in Table 5.3.

Hyperparameter Value
Learning rate 3e-4

γ 0.99
λ 0.95

Entropy Coefficient 0.0
PPO steps 2048

PPO Clipping Value 0.1
# of minibatches 32

# of processes 1
GCRN/GCN (Walker and Ant): α 0.6

GCRN/GCN (Hopper and HalfCheetah): α 0.6
GCRN/GCN: η 1e1

Table 5.3: Model configuration for the MuJoCo games

Using our approach, learning on continuous action spaces is possible; however, the

evaluation should be done for the different models with varying hyperparameters. It is not

guaranteed that ϕkGCRN always achieves the best performance. Similar to the Atari games,

ϕkGCRN offers the best performance among the remaining approaches. These results further

highlight the importance of combining the different techniques to form ϕkGCRN . In the

games of Ant, HalfCheetah, and Hopper, ϕkGCN is offering a better performance compared

to ϕGCN , thus showing the advantage of using the augmented Krylov instead of graph

Laplacian to approximate the transition matrix.

116



(a) Ant (b) HalfCheetah

(c) Hopper (d) Walker

Figure 5.7: Performance comparison between different reward shaping mechanisms and PPO in
Mujoco environments.

5.4 Conclusion and Discussion

Our work proposes a novel GCRN scheme for potential-based reward shaping, which

guarantees invariance in the optimal policy. The shaping function of GCRN combines

layers of GCN followed by RNN to capture spatio-temporal dependencies between the

sampled states. The training of GCRN is performed on a sample of transitions. Our solu-

tion embeds the look-ahead advice methodology and uses the augmented Krylov algorithm

to estimate the transition matrix. Computing the actual labels of our GCRN is inspired

by the probabilistic view of RL to perform message passing. The proposed GCRN excels
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in terms of convergence speed compared to existing potential-based reward shaping solu-

tions. ϕkGCRN achieves state of the art learning speed in some of the games. Besides,

ϕGCRN and ϕkGCN also outperform other solutions in particular environments. Therefore,

we recommend trying the three techniques we experimented with when testing the agent

performance including the use of the Krylov basis and look-ahead advice.

The computational complexity of training the ϕkGCRN varies depending on the size of

sampled transitions. In addition, we believe that the sub-graph selection can be improved

by capturing more important information from the trajectories traversed, to be included in

future samples. Furthermore, we aim to augment our solution to be deployed in multi-agent

systems while trying to optimize multiple objectives.

Later on, we believe that the proposed GCRN can be applied to a wider range of ap-

plications utilizing RL for solving time-sensitive problems. The results achieved improve

the learning speed, which has direct impact on the feasibility of RL in various applica-

tions. For example, fast decisions are essential for autonomous driving [86, 87], resource

management [88], task scheduling [89], trust-driven reinforcement selection for federated

learning [90] and health-related applications.
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Chapter 6

Reward Shaping Using Convolutional

Neural Network

In this chapter, we propose Value Iteration Network for Reward Shaping (VIN-RS), a

potential-based reward shaping mechanism using Convolutional Neural Network (CNN).

The proposed VIN-RS embeds a CNN trained on computed labels using the message pass-

ing mechanism of the Hidden Markov Model. The CNN processes images or graphs of

the environment to predict the shaping values. Recent work on reward shaping still has

limitations towards training on a representation of the Markov Decision Process (MDP)

and building an estimate of the transition matrix. The advantage of VIN-RS is to con-

struct an effective potential function from an estimated MDP while automatically inferring

the environment transition matrix. The proposed VIN-RS estimates the transition matrix

through a self-learned convolution filter while extracting environment details from the in-

put frames or sampled graphs. Due to (1) the previous success of using message passing

for reward shaping; and (2) the CNN planning behavior, we use these messages to train the

CNN of VIN-RS. Experiments are performed on tabular games, Atari 2600 and MuJoCo,

for discrete and continuous action space. Our results illustrate promising improvements in

the learning speed and maximum cumulative reward compared to the state-of-the-art. The
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improvement achieved by VIN-RS can only be observed for some of the games due to the

underlying nature of some environments. In terms of the studied MuJoCo games, there

is on average an increase of 30% in the maximum reward reached during early stages of

learning.

6.1 Introduction

A Reinforcement learning (RL) algorithm is executed against a Markov Decision Pro-

cess (MDP) environment. The MDP environment is sketched by the solution designer

where the agent can perform actions decided by RL. The agent sends feedback to the RL

solution with a reward value to update the value function based on the actions taken. There-

fore, an accurate representation of the reward function is vital for future action selection.

Hence, dynamicity in the structure of the reward function is required to adapt to environ-

mental changes and produce more effective rewards. Consequently, better rewards lead to

faster convergence to near optimality with regard to agent decisions. MDP environments

have different types with continuous or discrete, finite or infinite states, and action spaces.

Furthermore, a transition matrix deciding the next state of the agent is most of the time

unknown. These MDP properties make it challenging to develop a scalable and dynamic

reward function [80].

RL algorithms are slow to converge, where most of the time is spent on exploration at

the early stages of learning. There are multiple learning speedup techniques for RL such

as offline learning, dynamic exploration, transfer learning, imitation learning, and reward

shaping [91, 92]. Reward shaping alters the original reward function with values generated

from a shaping function. The shaping values speed learning in RL by directing the reward

function to speed the policy convergence [81]. One of the reward shaping mechanisms is

potential-based, which ensures that updates to the original reward function do not affect

the ability of an agent to reach optimal policy decisions. Due to the different types of MDP
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and dynamicity of the environment, it is difficult to design a scalable and effective poten-

tial function for reward shaping that is suitable for most environments [82]. The existing

reward shaping solutions suffer from one or more of the following limitations: (1) they

alter the optimal policy; (2) they are based on action exploration only [93]; (3) they are

not applicable in different environments; (4) they rely on transition matrix approximation;

(5) have limited representation of sampled MDPs. The negative consequence of the first

limitation is that obtaining the optimal policy cannot be guaranteed. Because of the sec-

ond limitation, the reward function is never adapted to the environment. Due to the other

limitations, the agent performance based on the potential function can be improved. The

applicability of a reward shaping solution is measured by the performance in various en-

vironments and the dependability on external knowledge like expert feedback. Therefore,

a potential-based reward shaping solution is still an open problem. Hence, we propose in

this chapter a novel potential-based reward shaping solution that is scalable, learns on a

representation of the MDP either through frames of images or sampled MDP graphs, and

estimates a transition matrix while training.

The proposed potential function architecture follows the mechanism of the Value Iter-

ation Network (VIN) and uses convolution layers to perform planning [28]. The original

VIN module in [28] uses a Convolutional Neural Network (CNN) architecture, which can

be trained using RL or Imitation Learning (IL). The CNN of the VIN can perform value

iteration on an MDP for planning. The output of the CNN is part of an attention mechanism

that selects actions as part of the optimal plan. In [28], learning is either done using IL,

thus requiring a large number of labels, or using RL whose performance is poor on irregular

graphs. Irregular graphs are problematic when training VIN with RL because the number

of actions for the neighbors varies.

The proposed VIN-RS trains a novel CNN based on the probabilistic view of RL to
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serve as a potential function. Our new scheme, named Value Iteration Network for Re-

ward Shaping (VIN-RS), incorporates this novel training mode and new architecture tai-

lored for reward shaping. Computing message passing on Hidden Markov Models (HMM)

[17], composed of forward and backward messages, derives the probability of trajectory

optimality, thus can be used to redirect the reward function and speed learning [16, 17].

Computing these messages in a large environment requires high computation as discussed

further in Section 2.1.4. On one hand, message passing helps the agent decide if the current

state belongs to an optimal trajectory. On the other hand, the CNN module of VIN provides

a goal-oriented plan for an optimal trajectory. In this chapter, we will argue that the mes-

sage passing and VIN combined would help accelerate learning by acting as the potential

function. Therefore, we aim to train the proposed CNN of VIN-RS based on the message

passing loss computed from sampled trajectories followed by the agent.

In [16], the authors propose a potential-based reward shaping solution using Graph

Convolution Network (GCN). GCN has the potential in propagating the forward and back-

ward messages of HMM using the graph operation for sharing information between nodes.

Despite significant improvement achieved over existing reward shaping solutions, using

GCN as the potential function still has some limitations, and it cannot generalize to all

environments. Even though both CNN and GCN belong to the family of Graph Neural

Networks (GNN), GCN performs message passing on a sample of the states, while CNN

uses full images of the environment, which can reveal more states and speed planning. In

addition, to perform the GCN layer operation, the transition matrix of the MDP should be

estimated [16]. Assuming that the value function is smooth over the MDP graph, the graph

Laplacian is used as an approximation of the transition matrix, resulting in a margin of

error [23]. Furthermore, GCN has issues related to MDP representation and information

extraction, which is due to the graph approximation technique used to represent the envi-

ronment. Compared to GCN, the proposed CNN learns a representation of this transition
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matrix while training. More specifically, VIN-RS estimates a new MDP, not necessarily

related to the original one, which is learned using images of the environment and trained

following the message passing values. Even when the environment is not captured as im-

ages, VIN-RS can train the CNN on a graph representation from this environment, which

leads to promising performance as illustrated later in our experiments.

Training VIN-RS for reward shaping requires the true labels that are inferred using mes-

sage passing. Therefore, the loss function incorporates the message passing mechanism.

Due to (1) the computation complexity induced by calculating the message passing; and

(2) the difficulty of retrieving and sometimes approximating the transition matrix of the en-

vironment, we train CNN on image frames or samples of the environment graph capturing

the current state of the agent. CNN uses a transition matrix that is trained as part of the net-

work. The output of the proposed CNN is a regression value for each possible action in the

environment that estimates if the current state of the agent belongs to an optimal trajectory.

Furthermore, VIN-RS embeds the look-ahead advice mechanism [24]. By evaluating the

state and action, the look-ahead advice improves the quality of the potential function and

thus can improve the learning speed using reward shaping. Thus, VIN-RS produces advice

at the state and action levels, which is at the core of the look-ahead advice mechanism.

In addition, it is possible to apply our solution in discrete and continuous action spaces.

Some of the potential applications for applying VIN-RS for supporting RL agents include

autonomous driving and control [94], robotics, and video games. These three applications

require complex environments with high-dimensional state and action spaces representa-

tion due to the involvement of multiple input devices, while making decisions in real time.

Furthermore, these applications can also offer visual inputs, which is also suitable for the

underlying VIN-RS architecture that utilizes CNN to extract useful information to help the

agent learn more effectively. Furthermore, VIN-RS can be also combined with other ma-

chine learning mechanisms to speed the learning process, such as federated learning [90]
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and resource management [95].

The contributions of this chapter are summarized as follows:

(1) VIN-RS for potential-based reward shaping using a novel CNN architecture.

(2) CNN trained on images or graphs from the environment while using a message pass-

ing mechanism in the loss function.

(3) Estimating the transition matrix through training the CNN.

(4) Overcoming the limitations of using GCN for reward shaping as the potential func-

tion by training on an estimated MDP using CNN.

(5) State-of-the-art results in most of the games for discrete and continuous action spaces.

In Figure 6.1, we present a graphical abstract summarizing our proposed approach,

snapshot of the results on the Atari and MuJoCo games, and a conclusion of findings.

Figure 6.1: VIN-RS Graphical Abstract
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The structure of the chapter is divided as follows. In Section 6.2, we present our pro-

posed reward shaping solution "VIN-RS". The evaluations conducted on tabular, Atari and

MuJoCo games are illustrated in Section 6.3. The results of our evaluation shows that VIN-

RS achieves on average the best results in the Atari and MuJoCo games compared to all

baselines. Finally, we present a discussion in Section 6.4 and summarize and conclude the

chapter in Section 6.5 with future directions.

6.2 Proposed Scheme: VIN-RS

In this section, we start first by describing the overall proposed architecture which con-

sists of three main components: (1) VIN-RS, (2) message passing, and (3) reinforcement

learning algorithm. We describe each of the components and list the steps for constructing

the potential function of our reward shaping solution using CNN and focus on the advan-

tage of incorporating the look-ahead advice mechanism. We also discuss the technique to

obtain the message passing values, which are used to compute the loss for the CNN. In

addition, we show an algorithm to train VIN-RS. Finally, the policy update combining the

output of CNN is presented in the main reinforcement learning algorithm.

6.2.1 Overall Architecture

In Figure 6.2, we show the overall proposed architecture that combines VIN-RS with

RL. Our solution contains two main modules, the first is VIN-RS that uses a CNN on M̄,

while the second is the main RL solution for the original MDPM.

Starting with the main component which is the RL algorithm that computes the policy

π to solveM. The input to the RL module is the list of states which can either be images

or states representation from the environment. These states are also called observations.

Based on the observations, the agent selects the best action according to the policy π, then
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Figure 6.2: An architecture incorporating the Value Iteration Network for Reward Shaping with
Reinforcement Learning

executes that action in the environment. The agent then receives the next state as well as the

reward of the action taken in the environment. This information is used to update the policy

using the RL algorithm. The policy then selects another action for the new observation and

keeps on repeating these steps until the agent finds the optimal policy π∗. The novelty of

our RL solution is that the policy update incorporates the reward shaping value, which is

constructed using the output of VIN-RS.

The CNN of VIN-RS is built using three two-dimensional CNN layers. The input to

CNN is a list of images captured from the environment. CNN accepts graphs, in con-

trast to the main RL algorithm where the input can be a state representation that combines

information other than the environment images. This is similar to the case of MuJoCo

environments [96]. The image is passed to the first conv layer that is responsible for pro-

cessing the raw image pixels. The result of the first conv layer is passed to the second one,

which is responsible of producing a reward matrix R̄. This layer has two channels, one

holds the old value function matrix V̄ , and one holds the current rewards. In other words,

states are represented as a two-dimensional grid at each timestep, and each of these states

has a reward value computed using the first layer. This layer is trained and improved over

time by the network through continuous weights updates. The kernel applied to this layer
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resembles the probability transition matrix P̄ , which is also updated during the training.

Applying this kernel to the first reward matrix resulted from the first conv layer will give us

the state-action value function (Q̄-value). At this conv layer, there are x channels, where x

is the number of actions in the action space Ā. Selecting the action having the maximum

Q̄-value is done by applying a max-pooling for the Q̄ value of the corresponding states.

The resulting matrix V̄ is passed to R̄ to be considered for the next value iteration or policy

update. Furthermore, the Q̄ is flattened and a dense layer is applied to obtain the output

layer. This output layer has the size of x, which is considered as a shaping value for each

action, passed to the main policy update of the RL algorithm to update the policy using

potential-based reward shaping. Producing a shaping value for each action of a given state

is at the core of the look-ahead advice mechanism [24].

In order to train our CNN, we use the standard backpropagation by computing the labels

using the message passing technique. As discussed in the background section, the message

passing value including the forward and backward messages is considered as a signal that

could accelerate learning. In order to compute the messages values, a graph of states is

formed as shown in Fig. 6.3, this graph contains only a subset of the states. Due to the

fact that computing message passing is computationally expensive for large graphs, it is

enough to compute this message passing for the sampled graph of states for the current

training iteration of CNN. For every training episode, the graph is emptied and a new one

is formed. The output of the message passing algorithm is used as the true labels for the

CNN to compute the loss function. In [16], message passing is implemented using a GCN;

however, in this work, we overcome the limitations of using GCN, described in Section

2.2.3, and apply CNN to perform value iteration and compute the message passing values.

Because CNN is used to perform planning in the network over K iterations, VIN-RS can

tell if an agent state belongs to an optimal trajectory. The ability of CNN to plan using

value iteration is mapped to what a message passing value represents.
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6.2.2 VIN-RS Module

Our VIN-RS builds and solves M̄, where the parameters of the policy π̄ include fr and

fp. These two functions are differentiable and learned while training the CNN. The CNN

is trained using the message passing result as the label. To obtain π̄∗ for solving M̄, value

iteration is applied as follows:

π̄∗(s̄) = argmaxāR̄(s̄, ā) + γ
∑︂
s̄′

P̄(s̄′|s̄, ā)V̄ ∗
(s̄′) (37)

where s̄′ is the state at the next timestep. Furthermore, we construct a VIN-RS tailored for

reward shaping in the context of RL. Mainly, we train VIN-RS using the message passing

values and consider its output as the shaping value that is used to update the original policy

of the RL algorithm. An illustration on the training and integration between the CNN

of VIN-RS and the RL module is shown in Figure 6.2. In addition, the CNN in VIN-

RS is trained in a separate network to solve its own policy and not combined with the

RL network. As shown in Figure 6.3, the input to CNN is the list of images extracted

from the environment. The input can also be a graph representation of the states from

the environment, in case images are not available. Using graphs instead of images can

reduce the number of states the CNN trains on; however, it makes our solution applicable

to high dimensional state spaces. In other words, using grid of pixels is practical when

the environment image is two-dimensional or covers the current state and end goal. Using

fr, which corresponds to the weights of the first conv layer, the R̄ matrix is computed. R̄

has the dimension of l,m, n, where l is number of channels and m and n represent the

image dimensions. The extracted reward R̄ is passed to the next conv layer, where the Q̄

values are computed. The Q̄ conv layer contains x channels, or a channel for each action

in M̄. Q̄ā,i′,j′ represents the Q̄-value for a state defined at positions between i, i′ and j, j′
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respectively for a particular action ā. Q̄ā,i′,j′ is computed as follows [28]:

Q̄ā,i′,j′ =
∑︂
l,i,j

W ā
l,i,jR̄l,i′−i,j′−j (38)

In Equation 38, the reward matrix is multiplied by the weights or a representation of the

transition matrix P̄ . From the resulting Q̄ matrix, we apply max-pooling by selecting the

highest Q̄-value from the list of actions or channels to obtain V̄ . An element in V̄ at i, j is:

V̄ i,j = maxāQ̄(ā, i, j) (39)

where Q̄(ā, i, j) is the result of the Q̄ function for a given state and action. Following the

computation of V̄ , we update the first channel of the R̄ matrix. In addition, a dense layer is

applied after flattening Q̄. Finally, a fully connected output layer is added, which results in

the shaping values for each action. In order to obtain the true labels for the shaping value,

we apply the message passing mechanism on the extracted graph from the observations,

and pass this value to the loss of CNN. A forward pass in this CNN is considered as a

single value iteration. Assuming that the number of steps required by the agent to reach the

goal from the current state is K, then the ideal number of value iterations required in CNN

for value function updates is K. After each iteration, V̄ is calculated using Q̄ and appended

to R̄ for the next iteration, as shown in Figure 6.3. In Algorithm 5, we show a pseudo-code

of the training steps in our proposed CNN. The pseudo-code of Algorithm 5 presents how

the CNN of VIN-RS is trained for a single step. Lines 1-5 perform a forward pass in the

algorithm. Lines 6-10 perform K value iterations. Lines 11-13 flatten the Q̄ matrix and

obtain the output ϕ. Lines 14-15 compute the message passing values and compute the

loss. Line 16 performs backpropagation to compute the gradients of the network weights.

Line 17 updates the weights based on the computed gradient.
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Algorithm 5: A training step with K value iterations of CNN in VIN-RS
1 Input: X: a list of images sampled from the environment.
2 G: a graph constructured from the sampled images or the list of states

encountered.;
3 cnnH: Conv layer that processes the image pixels;
4 cnnR: Conv layer that computes the R̄ matrix;
5 cnnQ: Conv layer that computes the Q̄ matrix;
6 wV : Initialize weights for computing Q̄ matrix;
7 Fn: Fully connected layer;
8 Opt: Output layer;
9 Output: ϕ: shaping value for the corresponding images/states.;

10 Function evaluateQ(r, v, cnnQ,wV ){ ▷ Perform value iteration;
11 rv = Concat(r, v) ▷ Concatenate r and v;
12 wQwV = Concat(cnnQ.weights, wV );
13 q = Conv(rv, wQwV ) ▷ Apply a Convolutional layer;
14 return q;
15 };
16 p = Normalize(X) ▷ or G as input when applicable;
17 h = cnnH(p);
18 r = cnnR(h);
19 q = cnnQ(r);
20 v = Max(q) ▷ Get the maximum or apply max pooling;
21 for i = 1, . . .K do
22 ▷ Perform K value iterations;
23 q = evaluateQ(r, v, cnnQ,wV );
24 v = Max(q);

25 q = evaluateQ(r, v, cnnQ,wV );
26 v = Max(q);
27 flatten_q = Reshape(q) ▷ Flatten the matrix v;
28 fn = Fn(flatten_q);
29 ϕ = Opt(fn);
30 label = Message_Passing(G);
31 loss = L(label, ϕ);
32 backpropagate();
33 update_gradient();
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Figure 6.3: The CNN architecture of the proposed VIN-RS module

6.2.3 Loss Function: Message passing

Following the success of using message passing for reward shaping, we propose train-

ing the CNN of VIN-RS using the message passing values as the true labels. Using the

probability inference view of RL, a solution is to find the distribution of the optimality vari-

ableO = 1 for a given state and action. This structure is analogous to HMM, where forward

and backward messages can be used to compute this probability distribution. Combining

the forward and backward messages results in a policy that looks backward and forward in

time. In other words, the resulting values from message passing tells if a state belongs to

an optimal trajectory. More details about the messages calculation is presented in Section

2.1.4. Thus, the combined forward and backward messages (α and β) are expressed as

follows:

p(Ot|St, At) ≃ α(St, At)β(St, At) (40)

Thus, the potential function is expressed as ϕα,β = α(St, At) × β(St, At). Compared to

VIN, a CNN can also produce optimal plans/trajectories for the agent on M̄. Based on

this observation, we propose VIN-RS that incorporates the message passing results in the

training process to produce the shaping values.

In VIN-RS, we benefit from message passing to compute the loss of CNN. To com-

pute those messages, base and recursive losses are required. In our loss formulation, the
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state and action are passed as input when computing the loss. Such formulation boosts the

performance of VIN-RS by applying the look-ahead advice naturally in the CNN imple-

mentation, due to the fact that each channel in Q̄ is a Q-function for each action in the

environment. Therefore, the loss function is computed in two steps as follows [16]:

L = L0(S̄, Ā) + ηLrec(S̄, Ā) (41)

where L0 is the base case, Lrec is the recursive case, S̄ and Ā are the lists of base case

states and actions respectively in M̄, and S̄ and Ā are the states and actions retrieved from

the graph of experiences. Noting that the base states are composed of the rewarding states.

In VIN-RS, we consider states that are used to form the graph G, where each state in this

graph is an images of the environment. Furthermore, the base loss is computed using the

rewarding states only in G, in order to extract information only from important states. The

base loss is the usual supervised loss that considers the true and predicted labels.

L0 = H(p(Ō|S̄, Ā), ϕ(S̄, Ā)) =∑︂
s,a∈S̄,Ā

p(Ō|s, a)log(ϕ(s, a))
(42)

The recursive loss written as Lrec is computed by aggregating the messages with the neigh-

boring states using the adjacency matrix of the graph G. Lrec is formulated as follows:

Lrec =

||d||∑︂
i=1

||e||∑︂
j=1

Ai,j||ϕ(S̄ i, Āi)− ϕ(S̄j, Āj)||2 (43)

In Equation 43, d and e are the list of states and corresponding neighbors respectively. In

addition, A is the adjacency matrix. Getting ϕ for a given state and action is at the output

layer Opt of CNN for VIN-RS. Compared to [16], our loss function considers both the

states and actions for activating the look-ahead advice mechanism.
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6.2.4 Look-Ahead Advice

The Look-ahead advice mechanism proposed in [24] suggests considering the action as

part of the potential-based reward shaping function. Advising on specific actions is a more

rigorous method taken at the level of actions instead of being general for the whole state.

The shaping function produced by CNN in VIN-RS after applying the look-ahead advice

takes the following form:

F (s̄, ā, s̄′, ā′) = γϕ(s̄′, ā′)− ϕ(s̄, ā) (44)

where ϕ is the potential shaping function that considers states from S and actions from A

to result in a scalar value. Hence, the updated shaping function considering the action taken

becomes:

R(s, a, s′, a′) = r(s, a) + F (s, a, s′, a′) (45)

By augmenting the action values, the shaping function could potentially speed the learning

speed further. Therefore, we propose adding the look-ahead advice in the design of VIN-

RS, which is naturally embedded at the Q̄ layer.

6.2.5 Training RL with VIN-RS

After training the CNN of VIN-RS, the resulting shaping values for each state and

action are passed to the RL algorithm for training and policy update. In Algorithm 17, we

show the steps followed to train RL and benefit from the shaping value to obtain theQcomb,

which is a combination of the originalQ value and the one obtained using Equation 6 with

ϕ from CNN as the shaping value. The algorithm starts by initializing the CNN and RL

networks, as well as an empty graph G to hold the list of transitions. In each epoch of

training, for a number of iterations T (for each trajectory followed by the agent), images

are stored to later train the CNN. In addition, the list of transitions are stored in graph G to
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later compute the loss of CNN. For every N episodes, the CNN is trained with the sampled

images and graphs of transitions. Training the CNN every N episodes is more efficient

and reduces the runtime of using VIN-RS in combination with the RL solution to speed

learning. The loss is computed using Equation 41 and the CNN is trained for K iterations

following the steps of Algorithm 5. Noting that if images are not available for training the

CNN, the graph G can be used instead.

The combined value function with reward shaping is expressed as [16]:

Qπ
comb(s, a) = αQπ(s, a) + (1− α)Q̄π̄

ϕ(s, a)

where Q̄π̄
ϕ(s, a) = E(s,a)[

∑︂
t

γtr(St, At) + γϕ(St+1,

At+1)− ϕ(St, At)]

(46)

ϕ(St, At) is the shaping value at the output layer Opt of the CNN for state St and action

At. Moreover, α is a hyperparameter the amount of the reward shaping value considered

for updating the state-action value function. At the end of an epoch, the graph G can be

emptied.

6.3 Experiments

In this section, the evaluation consists of experiments on two environments with dis-

crete and continuous state and control. We use twenty Atari 2600 games from the Gym

environment and four games from MuJoCo. In order to analyse the performance of VIN-

RS and illustrate its advantage, we compare with the Proximal Policy Optimization (PPO)

[84]; using GCN (denoted as ϕGCN ) as the shaping function with the graph Laplacian as the

filter [16]; LIRPG [62]; RND [63]; and ICM [64]. Details about the implementation and

machines used are provided in the next subsection. First, we analyze the time complexity
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Algorithm 6: Training RL with VIN-RS
1 Create the CNN network for VIN-RS;
2 Create empty graph G;
3 Create the RL networks;
4 for Episode=0,1,2, . . . do
5 for t = 1, 2, . . . , T do
6 Store images of all transitions;
7 Perform the best action based on π;
8 Get the state and reward from the environment;
9 Add the transition to graph G;

10 if mod(Episode, N ) then
11 Pass the list of images to CNN;
12 Compute the loss for CNN using Equation 41;
13 Train CNN following Algorithm 5 for K iterations;

14 Obtain ϕ for the list of states and actions;
15 Qπ

comb = αQπ + (1− α)Q̄π̄
ϕ;

16 Train RL networks by updating the policy to maximize
Eπ[∇logπ(At|St)Qπ

comb(St, At)];
17 Reset G to empty graph (optional);

of VIN-RS compared to PPO and GCN. Afterward, we evaluate the performance of VIN-

RS in different games for the Atari 2600 [97], and MuJoCo [96] environments compared

to various baselines.

6.3.1 Implementation and Setup

The source code is written in the Python programming language. In our implementa-

tion, we used the PyTorch library to build our VIN-RS and combine it with the implementa-

tion of the Actor Critic (A2C) and Proximal Policy Optimization (PPO) algorithm. We also

utilize the OpanAi Gym [97] and MuJoCo [96] libraries to simulate the environments of all

the games. Images are passed to CNN to train in both the Atari and MuJoCo environments.

The state representation of the MuJoCo games contains additional information about the

state and not only the raw pixels. Therefore, we utilized the camera option in the MuJoCo
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package to build the CNN input. In case there is no option to get images from the envi-

ronment, a graph of states can be used as input to CNN. The same graph of states is used

to compute the loss function, through message passing, when training the CNN. Passing

images as input results in more information about the environment, which further improves

the performance of CNN. As described in Section 6.2, the look-ahead advice mechanism

is naturally embedded within the VIN-RS design and implementation, which offers a level

of advantage for the proposed scheme compared to existing baselines. A link to our source

code will be provided upon request.

For each run, a single GPU (NVIDIA V100 Volta (16GB HBM2 memory)) and eight

CPUs (Intel E5-2683 v4 Broadwell @ 2.1GHz) were used with 32 GB of RAM. Details

about the network configuration of each environment are provided in Sections 6.3.3 and

6.3.3.

6.3.2 Complexity

In this section, we show the results of our analysis in terms of runtime of the proposed

VIN-RS when combined with PPO compared to GCN and vanilla PPO. In Table 6.1, we

show the number of frames processed per second (FPS) using each of the solutions. As pre-

sented in Algorithm 5, the CNN of VIN-RS is only trained every N = 1000 episodes, that’s

why the FPS is very close compared to the other solutions. Therefore, when comparing the

performance of VIN-RS to the other baselines, it is enough to compare the cumulative steps

to converge or the average reward achieved over the number of iterations.

Method FPS
PPO 1126
GCN 1054

VIN-RS 1051

Table 6.1: Frame Per Second (FPS) evaluated on Atari 2600

Training VIN-RS consumes additional time every couple of episodes due to the added
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computation of the loss using Equation 41, in addition to the steps of training CNN follow-

ing Algorithm 5. Therefore, VIN-RS has comparable execution time compared to PPO and

GCN, thus not affecting the speed of learning. Therefore, studying the number of iterations

to convergence has the same effect as measuring the time in seconds when comparing to

different baselines in the following subsections. Besides, the implemented CNN network

architecture contains three 2D Convolutional layers. The first layer considers the input size

as the input channel extracted from the environment snapshot. The second layer uses 32 as

the input channel. Finally, the third layer uses the size of the action space as the channel

size to compute the Q-value. As shown in Section 6.3.3, this architecture is enough for

achieving improved performance when using VIN-RS as a reward shaping solution in the

tabular, Atari and MuJoCo environments.

6.3.3 Performance Analysis

In our evaluations, we consider three different environments to test the performance of

the proposed VIN-RS. First is the Tabular with the four rooms game, second is the Atari

2600, and third is the MuJoCo. All these environments are similar to the evaluation criteria

followed in [16] that proposes the use of GCN to perform message passing and predict the

shaping value. In addition, it is important to study the performance on tabular, discrete,

and continuous action spaces. In discrete action space, it is easier for the agent to perform

and explore the finite set of discrete actions. Henceforth, the decision of deciding upon the

nature of the action space (discrete or continuous) can directly affect the performance of

the RL algorithm. Even-though the ϕCNN (using VIN-RS) approach for reward shaping

achieves considerable improvement over the PPO algorithm in [16], we still provide a

comparison with A2C and PPO as baselines.

137



Tabular Learning

In this experiment, we present two setups of the Four Rooms game to evaluate the per-

formance of VIN-RS ϕCNN that uses A2C. The analysis conducted on VIN-RS is compared

to A2C, ϕGCN , and ϕαβ . In ϕαβ , message passing is computed due to the small environment

spaces. Furthermore, λ-return is used as the critic part of A2C. A tabular RL solution is

enough for the four rooms game shown in Figure 6.4a. In such an environment, it is possi-

ble to compute the actual message passing value ϕαβ . However, in larger environment sizes

and dimensions, it is not feasible to compute those messages. The two games we evaluate

are the Four Rooms (Figure 6.4a) and its variant Four Rooms Traps (Figure 6.5a), where

negative rewards are scattered across the four rooms as traps. Moreover, the exploration

rate is maintained by setting the probability of random action selection to 0.1, thus allow-

ing the agent to explore new series of actions. The results showing the cumulative steps are

presented in Figures 6.4b and 6.5b. As shown in Figure 6.4b, ϕCNN has faster convergence

(a) Four Rooms (b) Convergence Speed

Figure 6.4: Cumulative steps over the number of iterations in Four Rooms

speed indicated by less number of cumulative steps compared to A2C, ϕαβ , and ϕGCN . In
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(a) Four Rooms Traps (b) Convergence speed

Figure 6.5: Cumulative steps over the number of iterations in Four Rooms Traps

particular, after 300 episodes, VIN-RS, helps the agent plan the optimum trajectory by con-

sidering long-term dependencies and making well-informed decisions benefiting from the

message passing technique of HMM utilized by CNN. This approach leads to more effi-

cient learning and faster convergence to an optimal policy with fewer training iterations.

The planning factor is not possible when using message passing through GCN as the po-

tential function, because (1) a subset of the states is only considered when training, and (2)

value iteration is not performed to ensure planning. Similarly, the proposed ϕCNN solu-

tion is able to converge in fewer number of steps compared to the benchmarks for the four

rooms traps, as shown in Figure 6.5b. Henceforth, we can observe that ϕCNN is performing

better than A2C, ϕαβ , and ϕGCN in the tabular settings.

Atari 2600

The Gym library [97] offers environments for twenty different Atari 2600 games. The

main property of these games is that the action space is discrete. In this section, we evaluate

the performance of our proposed solution ϕCNN in each of the games compared to four
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baselines, which are PPO [84], ϕGCN [16], LIRPG [62], RND [63], and ICM [64]. In

terms of VIN-RS implementation, we use the states which are raw pixel representation

as input to the CNN. Furthermore, the number of channels at the Q̄ layer is equal to the

number of actions of the game.

We experiment with the twenty different Atari 2600 games using ϕCNN , ϕGCN , LIRPG,

RND, ICM, and PPO. We execute each algorithm on every game for ten million steps, the

same parameters are used as shown in Table 6.2.

Table 6.2: VIN-RS and RL configuration for the Atari 2600 games

Hyperparameter Value

Learning rate 2.5e-4

γ 0.99

λ 0.95

Entropy Coefficient 0.01

PPO steps 128

PPO Clipping Value 0.1

# of minibatches 4

# of processes 8

CNN: α 0.9

CNN: η 1e1

GCN: α 0.9

GCN: η 1e1

In Figure 6.6a, we show the improvement achieved by ϕCNN using VIN-RS over PPO.

In addition, we present the improvement of each of the baselines ϕGCN , LIRPG, RND, and

ICM compared to PPO in Figures 6.6b, 6.6c, 6.6d, and 6.6e respectively. The results in

these figures are shown in logarithmic scale. The mean difference between each solution
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and PPO is computed, then a log is applied.

As shown in Figure 6.6a, the proposed ϕCNN is able to improve the performance of 13

different Atari games compared to PPO as a baseline. In the games of Venture, Qbert, Up-

NDown, MsPacman, and SpaceInvaders, ϕCNN is not performing well compared to PPO.

In contrast, the performance of ϕGCN in these game is better compared to PPO. On the

other hand, in most of the other games, ϕCNN is outperforming ϕGCN and improving over

PPO. These information are extracted from Figures 6.6a and 6.6b. Furthermore, the pro-

posed ϕCNN has the best results in terms of the number of games where the performance

is better than PPO compared to the rest of the baselines. More specifically, the number of

games with an improvement of PPO are classified as ϕCNN : 13, ϕGCN : 9, LIRPG: 11,

RND: 7, ICM: 12.

In Figure 6.7, we present in more details the performance of ϕCNN compared to ϕGCN

and PPO as baselines. In particular, we present a separate graph per Atari game showing

the evolvement of the reward score over the number of learning steps, with a total of 10

million.

These results highlight the capabilities of performing value iteration or message pass-

ing using the proposed CNN architecture. Compared to ϕCNN , LIRPG does not guarantee

invariance for the optimal policy, thus it is not potential-based. On the other hand, RND

and ICM provide reward shaping through exploration and can only support discrete action

spaces. In the sequel, we analyse the performance of ϕCNN compared to the baselines by

comparing the games in every row of Figure 6.7. In Figures 6.7a, 6.7b, 6.7c, and 6.7d, we

can see that the performance of ϕCNN is better compared to ϕGCN and PPO for the Alien

and Frostbite games, while it is comparable to them in the Assault and Asteroids games.

In the Alien and Frostbite games, the proposed ϕGCN is better than the other benchmarks

due to its underlying effective planning behavior using the VIN mechanism to update the
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(a) ϕCNN (b) ϕGCN

(c) LIRPG (d) RND

(e) ICM

Figure 6.6: Performance comparison of each learning and reward shaping algorithm on Atari games
in log scale over ppo
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(a) Alien (b) Assault (c) Asteroids (d) Frosbite

(e) Gopher (f) Jamesbond (g) Hero (h) Kangaroo

(i) Krull (j) MontezumaRevenge (k) MsPacman (l) NameThisGame

(m) Qbert (n) RoadRunner (o) Seaquest (p) SpaceInvaders

(q) UpNDown (r) Venture (s) WizardOfWar (t) Zaxxon

Figure 6.7: Results on 20 Atari games comapring the performance of ϕCNN to ϕGCN and PPO.
The x-axis shows the number of steps×103.
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shaping network. In particular, Alien is more challenging when it comes to obtaining the

optimal behavior due to the need of exploring the environment for finding the hidden ob-

jects. Similarly, the frostbite game requires the agent to learn to jump over the obstacles

and avoid falling into the water. In contrast, the Assault and Asteroids games required

more straightforward behaviors that can be easily expressed without the need for a reward

shaping function, which might add unnecessary complexity. This analysis explains why

sometimes ϕCNN is either performing similar or worse compared to PPO. Similar to our

previous analysis, the proposed ϕCNN performs better than existing baselines in the Gopher

and Kangaroo games of Figures 6.7e and 6.7h due to the need for a reward shaping solu-

tion that can help the agent in collecting items in the case of Gopher, while jumping over

obstacles to avoid enemies in the Kangaroo game. However, only a simple reward signal

is sufficient for the Jamesbond and Hero games in Figures 6.7f and 6.7g, thus performing

very closely to PPO or ϕGCN . The same concept applies for the rest of the games shown

from Figure 6.7i to Figure 6.7t.

In certain Atari games, the behavior differences between ϕCNN , ϕGCN , and PPO can

be explained by the games’ complexity and the unique characteristics of each algorithm.

For Hero, where a simple reward signal is sufficient, ϕCNN and PPO perform similarly,

while ϕGCN shows fluctuating behavior due to potential limitations in its graph-based ap-

proach. In games like Kangaroo and Zaxxon, ϕCNN outperforms the other solutions, as

its value iteration approach enables better planning and decision-making in more complex

environments, resulting in faster learning and higher rewards at early stages.

In summary, ϕCNN achieves an average increase of approximately 20% in learning

speed and higher rewards at early stages of learning in 9 out of 20 games.
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Mujoco

We evaluate the performance of VIN-RS in continuous action space on the MuJoco

games compared to baselines. In the CNN implementation of VIN-RS, we deal with the

continuous action space by discretizing that space. The values of two actions at the output

layer resemble the range of the continuous actions inM. The rest of the implementation

is similar to the Atari games. In terms of baselines comparison, we compare with PPO

and ϕGCN . It is not possible to compare with RND and ICM because these solutions do

not support continuous control. We only compare with ϕGCN as a reward shaping solution

because it is the closest to our work in terms of potential-based solution and the use of mes-

sage passing. The results comparing the performance of each game to the other baselines

are shown in Figure 6.8. The different settings related to this experiment are provided in

Table 6.3. We use the same parameters as in [16] for evaluating the different techniques

and baselines for fair comparison. The experiments were executed for three million steps

for each game. We performed the experiment for each solution on each game for five times.

The results in Figure 6.8 show the mean for each of the games in terms of rewards with

respect to the number of steps in the environment.

As shown in the results of Figure 6.8, the proposed ϕCNN solution using VIN-RS out-

Table 6.3: VIN-RS and RL configurations for the MuJoCo games

Hyperparameter Value
Learning rate 3e-4

γ 0.99
λ 0.95

Entropy Coefficient 0.0
PPO steps 2048

PPO Clipping Value 0.1
# of minibatches 32

# of processes 1
CNN/GCN (Walker and Ant): α 0.6

CNN/GCN (Hopper and HalfCheetah): α 0.6
CNN/GCN: η 1e1
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(a) Ant (b) HalfCheetah

(c) Hopper (d) Walker2d

Figure 6.8: Performance comparison between different reward shaping mechanisms and PPO in
Mujoco environments.

performs PPO and ϕGCN in all the MuJoCo games. This improvement is measured by the

convergence speed and the ability to reach high rewards at early stages of learning. In ad-

dition, the planning capability of ϕCNN is reflected in the performance by reaching high

rewards that are not observed by the other solutions. Starting with the Ant game, the per-

formance of PPO and ϕGCN is close, while reaching a maximum reward of around 1700

after 1400 steps of learning. Using the proposed ϕCNN , the RL agent is able to reach the

1700 reward score following 700 steps, which is half the number of steps needed by PPO

and ϕGCN . Afterward, the score of 2500 was reached at around 1200 steps. After 1400
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steps, we can observe that ϕCNN is able to converge to a score ranging between 2000 and

2300. This performance illustrates the ability of ϕCNN to reach higher rewards at early

stages and converge faster compared to the benchmarks. The second MujoCo game we

study is the HalfCheetah. In this game, the performance of ϕGCN is better than PPO during

the first stages of learning up to 1000 steps. Following the 1000 steps, the performance

of ϕGCN degrades on average to converge to around 2500 as reward score. On the other

hand, ϕCNN can is able to reach higher rewards compared to PPO and ϕGCN , reaching

around 3700 as reward score at the 1000 steps of learning. Furthermore, ϕCNN further con-

verges at the 1000 steps, leading to the same conclusion for faster convergence and higher

rewards. In the results of the Hopper game of Figure 6.8c, ϕCNN reaches higher rewards,

which is at least two times better than ϕGCN and PPO at early stages, with a reward score

exceeding 2500 at 800 steps. On the other hand, PPO and ϕGCN do not exceed 1200 as the

reward score after 1400 steps. Finally, the fourth MuJoCo game Walker ensures that the

performance of ϕCNN is better than PPO and ϕGCN in terms of convergence speed while

reaching higher rewards at early stages. Specifically, PPO reaches 3000 as the reward score

at the 1400 step, while ϕGCN can only reach around 2000 score at the 1400 step. However,

ϕCNN is able to exceed 3000 steps after 1000 steps. In summary, ϕCNN is able to achieve

approximately 30% increase in learning speed on average over PPO and ϕGCN in the four

MuJoCo games.

6.4 Discussion

Our VIN-RS results show a substantial improvement over previous work’s limitations

in potential-based reward shaping. By leveraging message passing and CNN, VIN-RS en-

hances learning speed and decision quality in various MDP environments, especially in

dynamically changing and time-sensitive domains like autonomous driving [15], resource
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management [88, 98], health applications, Blockchain [86, 99, 100], and financial applica-

tions [101]. This integration also enables more efficient learning and faster convergence to

an optimal policy, addressing challenges faced by traditional potential-based reward shap-

ing methods in complex environments with continuous action spaces. Overall, VIN-RS

offers a promising and flexible approach with significant potential for real-world applica-

tions.

The results provide promising evidence of its effectiveness. However, we recognize

certain limitations that warrant consideration. Specifically, further investigations on larger-

scale environments and more complex action spaces are necessary to enhance the generaliz-

ability and robustness of our approach. Addressing these aspects will strengthen the overall

understanding and applicability of VIN-RS in a wider range of real-world applications.

6.5 Conclusion

In this chapter, we propose VIN-RS, a potential-based reward shaping mechanism that

employs a novel CNN architecture as a potential function. VIN-RS performs planning in

the environment by implementing a value iteration functionality. The loss function of CNN

for value iteration is computed using the message passing mechanism that embeds forward

and backward messages, resulting in an effective potential function for reward shaping.

The training of CNN is performed on a sample of transitions. Our solution embeds the

look-ahead advice mechanism inside the design of CNN for VIN-RS. We then propose the

use of CNN as the potential function to produce shaping values. The resulting shaping

values from sampled trajectories at each action are passed to the RL algorithm to update

the policy. In our evaluations, we showed that the complexity of combining VIN-RS with

other RL solutions is minimal. Furthermore, we evaluated the performance of VIN-RS

compared to other baselines in Tabular, Atari 2600, and MuJoCo environments.

In the Atari experiments, VIN-RS achieves significant improvements over PPO and

148



ϕGCN in several games, while demonstrating comparable performance in others. Moreover,

the statistical analysis reveals that VIN-RS leads to an average increase of 20% in learning

speed and cumulative reward at earlier stages of learning across 9 out of 20 Atari games.

Furthermore, the proposed ϕCNN solution outperforms these benchmarks in four of the

MuJoCo games with continuous action space with approximately 30% increase in learning

speed. In summary, VIN-RS achieves state-of-the art results in various games. Besides,

through planning, the CNN for reward shaping can converge faster and reach high rewards

that are not observable by other solutions in some of the games which introduce additional

complexity to compute an effective policy.
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Chapter 7

Conclusion and Future Direction

7.1 Conclusion

In this thesis, we have explored the challenges and opportunities presented by the

rapidly evolving landscape of computing resource management in the context of edge and

fog computing. We have addressed the critical need for effective Intelligent Computing Re-

source Management (ICRM) solutions to ensure efficient resource allocation, service place-

ment, and proactive scaling in dynamic and diverse application environments. Through a

comprehensive literature review, we identified gaps in existing approaches and proposed

a novel framework that leverages the power of Deep Reinforcement Learning (DRL) to

overcome these limitations. We have also focused on addressing the problems of slow

convergence speed of DRL though potential-based reward shaping solutions.

Our research contributions have been diverse and aimed at providing robust, adaptive,

and efficient solutions to the complex resource management problems. We have designed
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and developed the Intelligent Fog and Service Placement (IFSP) algorithm, which com-

bines DRL with offline learning to enable proactive and intelligent service placement deci-

sions. IFSP demonstrated superior performance compared to existing heuristic and DRL-

based solutions, effectively adapting to changing user demands and achieving higher Qual-

ity of Service (QoS).

Following our IFSP contribution, we augmented the IFSP solution by proposing IScaler.

In IScaler, we have addressed different limitations related to placement while accounting

to changes in the available resources. Furthermore, IScaler is able to perform horizontal

and vertical scaling to better utilize the computing resources based on the change in avail-

abilities. In addition, we presented as part of this architecture the solution switch, which

supports the DRL agent during the first stages of learning through the use of an Evolution-

ary Memetic algorithm solution. Through a series of simulations, we illustrated the ability

of IScaler to outperform existing auto-scaling solutions for intelligent and heuristic-based

computing resource management.

To address the challenge of slow learning in DRL algorithms, we introduced the Graph

Convolutional Recurrent Network (GCRN) and the Value Iteration Network for Reward

Shaping (VIN-RS). These innovations provided significant improvements in convergence

speed and decision-making quality, showcasing the potential of combining reinforcement

learning with novel reward shaping techniques. In the case of GCRN, we presented a

shaping function that combines GCN and RNN with the use of message passing to train

the network. On the other hand, we presented the use of the VIN network architecture as

the shaping function. The VIN was also trained using the message passing algorithm and

takes an image as input. Both potential-based reward shaping approaches were tested on

tabular, Atari, and MuJoCo games. Through our simulations, we have presented superiority

of each of the solutions compared to state of the art work in terms of convergence speed

and reaching higher rewards at early stages of learning.
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7.2 Future Directions

Throughout this thesis, we have showcased the effectiveness of our proposed solutions

through rigorous experiments and evaluations on real-world datasets, emphasizing their

potential to transform the field of computing resource management. However, it is im-

portant to acknowledge that the journey of intelligent computing resource management is

ongoing. The field continues to evolve, and new challenges and opportunities are likely to

emerge. Our work opens opportunities for further research and development, including the

exploration of hybrid solutions that combine the strengths of DRL for resource manage-

ment and reward shaping for form more sophisticated learning algorithms, in addition to

the integration of AI-driven resource management into diverse application domains.

In summary, this thesis has made significant contributions in advancing the field of In-

telligent Computing Resource Management for edge and fog computing. By harnessing

the capabilities of Deep Reinforcement Learning, we have contributed novel solutions that

offer adaptability, intelligence, and efficiency in resource allocation and service placement.

Furthermore, the reward shaping techniques presented have opened new opportunities for

DRL solutions to be applied for solving time-sensitive real-work problems, such as comput-

ing resource management. As technology continues to evolve and the demands of modern

applications grow, our research provides a foundation upon which future innovations can

build to ensure optimal computing resource utilization and improved user experiences and

quality of service across various domains. We summarize in the following list the main

persisting research gaps that we believe are worth investigating in the future:

• Hybrid DRL and Reward Shaping Techniques: There is still no work done in the

literature that combines and effective DRL-based solution with reward shaping and

a complete framework. In Figure 7.1, we present a promising architecture where

we combine our state-of-the-art ICRM solution with both GCRN and VIN-RS algo-

rithms for reward shaping. In this figure, we elaborate an augmented ICRM solution

152



Figure 7.1: Combining IScaler, GCRN, and VIN-RS to build and ICRM.

that combines DRL and two effective reward shaping solutions. The first reward

shaping based on GCRN measures the dependencies between the services to provide

a better understanding of the current placement and demands. The second uses VIN-

RS which studies the grid representation of the historical resource availability and

utilization for each host.

Collectively, this augmented ICRM solution showcases a sophisticated approach to

fog/edge resource management. By seamlessly integrating DRL with the GCRN

and VIN-RS reward shaping techniques, the system offers an intelligent, holistic,

and adaptable means of allocating resources. This ultimately results in enhanced

operational efficiency, improved service delivery, and maximized utilization of cloud

resources in a dynamically changing computing environment.

• AI-Driven Resource Management Integration: Extending the application of AI-

driven resource management beyond edge and fog computing opens avenues for in-

novation. Investigating how these techniques can be seamlessly integrated into cloud
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computing, data centers, and Internet of Things (IoT) networks provides an oppor-

tunity to tailor existing algorithms to diverse application domains. Adapting and

customizing resource management strategies to accommodate domain-specific con-

straints and requirements is pivotal to enhancing resource efficiency across a wide

spectrum of real-world scenarios.

• Real-World Deployment and Evaluation: To validate the practicality and effective-

ness of the proposed solutions, extensive real-world deployment and evaluation are

essential. Thoroughly testing the Intelligent Fog and Service Placement (IFSP) algo-

rithm and IScaler in varied application scenarios and dynamic environments can shed

light on their scalability, reliability, and feasibility for large-scale distributed systems.

This empirical exploration helps bridge the gap between theoretical advancements

and their tangible impact in improving resource utilization and user experiences.

• Adaptive Learning and Transferability: A promising direction involves develop-

ing mechanisms that enable DRL agents to swiftly adapt to evolving environments,

dynamic application demands, and fluctuating resource availability. The adaptable

learning strategies empowers agents to maintain optimal resource allocation even

through unpredictable changes. Additionally, investigating techniques to transfer

learned policies or knowledge across diverse resource management contexts has the

potential to expedite learning and enhance the agents’ ability to generalize insights.

• Exploration of Other Deep Learning Architectures: Beyond Graph Convolu-

tional Recurrent Networks (GCRN) and Value Iteration Networks (VIN), explor-

ing alternative deep learning architectures for reward shaping and resource man-

agement introduces exciting possibilities. Delving into the utility of architectures
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like Transformers, Variational Autoencoders (VAEs), or Generative Adversarial Net-

works (GANs) holds the potential to uncover novel ways of enhancing learning effi-

ciency and decision-making quality in resource management tasks.
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