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Abstract

Automatic Evaluation of Collaterals in Ischemic Stroke

Mumu Aktar, Ph.D.
Concordia University, 2023

Ischemic stroke, caused by blocked arteries in the brain, is one of the leading causes
of death and disability worldwide. Endovascular thrombectomy treatment (EVT) is one
of the best treatment strategies for restoring blood flow through blocked arteries, but its
success rate depends on a number of factors, including the extent of a patient’s collateral
circulation. Collateral circulation is a subsidiary vascular network that gets activated when
the main conduits fail due to ischemic stroke. It helps viable brain tissues to get oxygen
and nutrients temporarily.

Evaluation of collaterals by visual inspection of radiologists is time-consuming and
prone to inter and intra-rater variability. Thus, computer-aided systems can provide more
consistent and reliable assessments of collaterals. Four-dimensional computed tomography
angiography (4D CTA) is a reliable method for detailed cerebral vasculature imaging,
preventing inaccurate collateral estimation compared to single-phase CTA. Alongside 4D
CTA, readily available non-contrast computed tomography (NCCT) serves as a frontline
diagnostic tool, free from contrast agents’ potential adverse effects. Hence, we propose
computer-aided systems for automatic collateral evaluation in ischemic stroke using 4D
CTA and NCCT imaging.

We propose an automatic quantification method considering low-rank decomposition,
a classic machine learning (ML) method as well as deep learning (DL) methods for
the automatic evaluation of collaterals. DL models, while capable of automatic feature
extraction unlike classic ML models, face challenges due to limited ischemic stroke data. To
overcome data scarcity and class imbalance, we employ transfer learning with focal loss and
Siamese network. Furthermore, for efficient 3D vasculature segmentation without extensive
slice annotation, we introduce few-shot learning for cerebral blood vessel segmentation which
can be a preprocessing step to collateral evaluation.
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Chapter 1

Introduction

1.1 Ischemic Stroke
Stroke is one of the leading causes of disability as well as death worldwide. Statistics from
the World Heart Federation show that each year, 15 million people suffer from stroke, among
which 5 million become permanently disabled and 6 million people die 1. People can suffer
from two kinds of stroke: ischemic and hemorrhagic. Ischemic stroke occurs due to blood
clots that are either formed in a cerebral artery of the brain or travel from somewhere else
in the blood system. In contrast, in hemorrhagic stroke, a cerebral artery ruptures and
bleeds into the brain.

Ischemic stroke is much more frequent, with 8 out of 10 stroke cases suffering from
it. When diagnosis and treatment of stroke are not performed in time, patients become
disabled due to a lack of blood and oxygen flow, which causes neuronal cell death in the
affected part of the brain. Recanalization, which restores blood flow to the affected part of
the brain, is the most important modifiable predictor in ischemic stroke for positive clinical
outcome [5].

1.2 Treatment Strategies of Ischemic Stroke
Ischemic stroke treatments vary between intravenous tissue plasminogen activator (IV-tPA)
and endovascular thrombectomy treatment (EVT). The treatment strategy is based on the
time window and the patient’s condition. A review of ischemic treatment strategies starting
from thrombolysis to thrombectomy was presented in the study of Sharma et al. [6]. Clinical
studies led by the National Institute of Neurological Disorders and Stroke in 1995 provided
convincing evidence that recombinant tissue plasminogen activator (tPA) can treat patients
and achieve neurological recovery [7]. However, recombinant tPA often fails to treat patients
with ischemic stroke because it needs to be administrated within 3 hours of symptom onset.
Patients often fail to meet this requirement, resulting in recombinant tPA failing to break
large clots and sometimes causing bleeding into the brain. The Third European Cooperative
Acute Stroke Study III [8] in 2008 and the American Heart Association/American Stroke
Association [9] in 2009 have reported that treatment with IV-tPA can be extended to 4.5h of
stroke symptoms onset. Unfortunately, most patients do not reach hospitals within 4.5h of
onset and thus are not eligible for the IV-tPA as it can lead to hemorrhagic transformation.

1http://www.world-heart-federation.org/cardiovascular-health/stroke/
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Figure 1.1: Techniques for mechanical thrombectomy. A stent retriever alone (left) is
deployed within the clot, then retrieved. With the direct aspiration technique (center), an
aspiration catheter is brought to the clot interface, and suction is initiated. The “Solumbra”
technique (right) involves the use of a stent retriever with concomitant aspiration [11].
This image is from Wolters Kluwer Health, Inc. publisher under the license number:
5670830072701.

In 2017, a multi-centered clinical trial, the “Diffusion-Weighted Imaging or
Computerized Tomography Perfusion Assessment with Clinical Mismatch in the Triage
of Wake Up and Late Presenting Strokes Undergoing Neurointervention With Trevo," or
simply the DAWN trial [10], found that selected patients can be treated within 6h-24h of
symptom onset by endovascular treatment. The endovascular treatment uses a catheter
with a mechanical device attached to the tip to remove the clot. Different mechanical
thrombectomy techniques can be applied in this strategy, as shown in Fig. 1.1.

Mechanical thrombectomy techniques allow blood, as well as oxygen and nutrients that
flow through the blood system, to be restored and reduce disability quickly. However, not
all stroke patients are suitable candidates for endovascular treatment due to its associated
risks. A subgroup of patients with specific indications, including small infarct volume, large
penumbra size, and sufficient collateral circulation, should undergo such interventions [5].

1.2.1 Collateral Circulation

Collateral circulation is a dynamic vascular network activated as an alternative blood flow
path when an occlusion or clot hinders primary blood circulation. It provides nutrients and
the oxygen necessary for the survival of neurons in the failure of the primary conduits due
to ischemic stroke. Collateral circulation in the brain can be distinguished into two routes:
the primary route is the Circle of Willis, which anastomoses the anterior cerebral artery
(ACA) with the posterior cerebral artery (PCA) and the nearby main cerebral arteries to
each other; the secondary route includes all external to internal carotid artery connections.
One of the essential pial arterioles of the latter route is the leptomeningeal collaterals, which
connect the middle cerebral artery (MCA) territories with ACA and PCA [12]. The extent
of collateral flow through these routes is proved as a radiologic surrogate predicting the
response of revascularization therapy. Fig. 1.2 shows the Circle of Willis along with other
main cerebral arteries.

2https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1.2: Intracranial vessels. Yellow: Circle of Willis. This image is adapted from [12]
which is under the license2.

Fig. 1.3 shows the collateral circulation network with good and poor collaterals.
As described above, patients with good collateral circulation are strong candidates for
revascularization in acute ischemic stroke because collateral circulation allows for tissue
viability and leads to a positive response and favorable functional outcomes in reperfusion
therapies. In contrast, patients recanalized with poor collaterals can be affected by
symptomatic hemorrhagic transformation (sHT), which may lead to death caused by
reperfusion injury [13]. EVT is one of the most potent treatments for ischemic stroke,
which can provide improved functional outcomes and reduce mortality, but only in patients
with good and sometimes moderate collateral status. The benefits are less or sometimes
even absent in the case of patients with poor collaterals [14][15][16].

1.2.2 The Ischemic Penumbra

In ischemic stroke, there are two zones of injury: (1) the core zone where a severe injury
occurs and blood and nutrient flow are below 10% to 20%, and (2) the penumbra which
is mild to moderately ischemic (i.e. there is a deficient supply of blood) and lies in the
area between the normally perfused tissue and the area of infarction (dead tissue due to
oxygen and nutrients lacking) (see Fig. 1.4). While approximately two million neurons die
each minute around the occluded artery, which enlarges the infarct growth, the penumbral
zone can remain viable for several hours while collateral circulation supplies the necessary
nutrients and oxygen [12]. Ischemic stroke reperfusion therapies by EVT and intravenous

3http://creativecommons.org/licenses/by/4.0/
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Figure 1.3: Left: Schematic drawing of the collateral network showing anastomoses between
the MCA and ACA. Middle: In a stroke patient with a poor collateral network, the
collaterals fail to fill and insufficiently compensate for the flow reduction after arterial
occlusion, leading to neuronal death. Right: A collateral enhancement is occurring in
patients showing a good collateral network. The flow in the collaterals changes direction
and allows the thrombolytic to reach the drug from different sides. Image is taken from [17]
which is under the license3.

thrombolysis (IVT) are based on this penumbral zone. But if the timely revascularization
of the occluded artery is not performed by EVT or IVT, the penumbra will be at risk of
irreversible infarction as collaterals cannot flow indefinitely [18].

Figure 1.4: The dynamic ischemic penumbra. Shortly after the MCA occlusion (left) two
regions of brain become manifest: the small core and the larger penumbra. With the passage
of time (right), there is shrinkage of the ischemic penumbra and a corresponding growth of
the core4. This image is used through the agreement to Springer Nature with the license
number: 5670840527687.

The whole penumbra concept and reperfusion therapy depend on the energy supply
by the collateral network, which gets activated quickly after occlusion in brain ischemia.
Although the extent of collaterals varies significantly between individuals, Fig. 1.5 depicts

4https://sbrsport.me/2017/08/01/hyperbaric-therapy-stroke-recover
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(using digital subtraction angiography (DSA) imaging) how, in general, collateral networks
start working in ischemic stroke. After introducing the contrast agent (Fig. 1.5 A1) into
the internal carotid artery, the proximal (closer to the occlusion) MCA occlusion marked
by a red arrow can be seen. The activation of leptomeningeal collaterals (i.e., collaterals
within the two innermost layers of the meninges) can be seen after 2.5 seconds in Fig. 1.5
A2, indicating it is fed by the anterior (above and right of the blue line) and posterior
circulation (below the blue line). Collateral flow fills the superior (red dots) and inferior
branch (green dots) of the occluded MCA after 5.2 sec (Fig. 1.5 A3 and A3 zoomed). This
alternate flow direction is named retrograde filling. The MCA retrograde filling is shown
in Fig. 1.5 (B). After reperfusion therapy, the branches filled retrogradely with collaterals
previously are filled anterogradely (the regular direction) (Fig. 1.5 C).

Figure 1.5: Visualization of leptomeningeal collaterals in the occluded MCA. This image is
taken from [12] which is under the license5.

1.3 4D Computed Tomography Imaging
Diversified imaging methods have been used for the visualization and assessment of
collaterals like transcranial doppler (TCD), transcranial color-coded duplex sonography
(TCCD), traditional single-phase computed tomography angiography (CTA), timing-
invariant CTA (TI-CTA) and multiphase CTA (mCTA) or dynamic CTA (dCTA), triphase
CT perfusion imaging (CTP), magnetic resonance imaging (MRA), phase-contrast MRA,
quantitative MRA (QMRA), and digital subtraction angiography (DSA), in both clinical
practices and relevant research [19]. CT imaging is the combination of X-rays and computed
tomography, which can be captured without contrast or with contrast, in a single-phase or

5https://creativecommons.org/licenses/by-nc-nd/4.0/
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multi-phases, capturing the peak, venous, and late venous phases. CTA gives detailed
pictures of the brain’s blood vessels through contrast injection and CT scanning. DSA is
post-processed from conventional angiographic images, where a pre-contrast mask image
is subtracted from the post-contrast images to obtain only the blood vessels removing the
extraneous structures. Although DSA is considered as a gold standard for the assessment of
collaterals, it is avoided as it is invasive and costly. Four-dimensional computed tomography
angiography (4D CTA) is a non-invasive method, and it gives detailed hemodynamic
information. 4D CTA is advantageous over single-phase CTA because it captures the
delayed blood flow along with the regular flow by performing scanning over multiple volumes
from the arterial to the slower venous phase. Because of the advantages of 4D CTA over
the other imaging methods, we focused on it for our research.

4D CTA is also known as TI-CTA for the combination of its characteristics like non-
invasive conventional CTA with a dynamic nature like catheter DSA. To capture the
magnitude as well as the directional flow of vessels through 4D CTA, various techniques,
such as toggling-table, shuttle, or volume mode scanning, can be used to obtain the whole
brain coverage. Although the decision of choosing acquisition mode to ensure adequate brain
coverage depends on the CT detector width, volume mode is the most versatile option to
allow complete or partial coverage of the whole brain during one rotation [20]. This volume
mode acquisition of dynamic 4D CTA can be continuous or discontinuous. The continuous
acquisition scanning is performed continuously during a pre-specified period of time and
can be reconstructed at any time interval, whereas for discontinuous acquisition, the time
interval typically ranges from 1 to 4sec, and finally, all the acquisitions are overlaid to obtain
the 4D CTA images. To image the vasculature, a contrast bolus is delivered intravascularly
and then imaged in real-time when flowing through the arterial area of interest. Although
it depends on the acquisition protocols, normally, 19 volumes are captured while scanning
a subject to obtain a 4D CTA, with the first volume obtained before the contrast agent
(which is non-contrast computed tomography (NCCT)).

4D CTA can be reconstructed from the CTP dataset, which captures multiple CT
datasets in different time intervals following the injection of intravenous contrast [21]. Thus,
4D CTA contains both the vasculature and cerebral perfusion information. MIPs can also
be constructed from multiple volumes of the 4D CTA data to provide an overview of the
whole temporal information of the vasculature in one 3D volume. A disadvantage of 4D
CTA is radiation dose, which is accumulated for each additional volume compared to a
single-phase CTA. However, this can be reduced by faster gantry rotation time at identical
milliampere-second settings, which leads to the increase of noise [20] but can be mitigated
using filtering approaches that reduce noise.

1.4 Motivation
EVT is one of the best treatment strategies for restoring blood flow through blocked
arteries. Still, its success rate depends on a number of factors, including the extent of
a patient’s collateral circulation. As described above, collateral circulation works as a
radiologic surrogate predicting the response of revascularization therapy, which temporarily
helps viable brain tissues get oxygen and nutrients. Assessment of collateral circulation in
ischemic stroke, which can identify patients for the most appropriate treatment strategies,
is currently conducted with visual inspection by a radiologist. Yet, numerous studies have
shown that visual inspection suffers based on the experience, training, and specialty of
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radiologists, as well as, intra- and inter-rater variability. This leads to time-consuming,
inefficient results, which might affect the treatment decision adversely. Intra- and inter-
raters’ variability is shown to be an issue in several studies (e.g. [22, 23, 24]), among
which Grotta et al. [22] concluded that it is difficult to get the agreement in recognizing
and quantifying early ischemic changes even by experienced clinicians. A recent study
by Grunwald et al. [25] showed that between individual neuroradiologists, the intraclass
correlation coefficient ranges from 0.42 to 0.86 and score agreements range from 36.2% to
81.6%.

In recent years, automatic computer-based collateral grading techniques have become
an active area of research to mitigate the shortcomings of visual assessment of
collateral evaluation. Automatic approaches analogous to the radiologists’ grading criteria
can evaluate collaterals more robustly than human-rater scoring and are more easily
understandable in the clinical environment. Computer-aided decision support systems by
deep learning can improve performance while a large dataset is available. Unfortunately,
ischemic stroke datasets are rare and imbalanced, affecting the classification performance.
The objective of our research is thus to develop systems for automatic assessment of
collateral scoring in ischemic stroke using computer-based approaches while mitigating the
issues of small and imbalanced datasets.

1.4.1 Contributions

Our research aims to develop novel automated quantitative approaches, specifically machine
learning and deep learning-based approaches for collateral evaluation in ischemic stroke,
which mitigate the problems that arise through visual assessment. Traditional machine
learning (ML) methods have proven effective in achieving generalizability and exemplary
performance in collateral assessment. However, they require extensive manual feature
engineering, which can be time-consuming and demanding in domain expertise. In contrast,
deep learning (DL) models can automatically extract relevant features from data, reducing
the need for manual intervention. However, one of the primary challenges with DL is the
requirement for abundant training data. Unfortunately, there is a scarcity of open and large
labeled stroke datasets, especially those focusing on collaterals.

In this dissertation, we developed computer-aided decision support algorithms for
collateral evaluation in ischemic stroke. Our contributions are centered around the same
4D CTA dataset, considering two key phases: (1) 2D images from 3D MIPs of the 4D CTA
and (2) NCCT extracted from the 4D CTA before the contrast agent.

1. Collateral evaluation based on 4D CTA:

• We have devised a novel method for quantitative collateral scoring, emphasizing
the radiological assessment of filled vessels in the affected area versus the unfilled
vessels over time, using 4D CTA. The ratio of filled to unfilled collaterals
constitutes the final score in this approach. (Chapter 3)

• Recognizing the potential of deep learning in automating feature extraction, we
have implemented a deep learning-driven automatic evaluation system using 4D
CTA. This approach leverages knowledge transfer from a pre-trained network to
alleviate the substantial manual engineering typically associated with classical
ML and quantitative methods. (Chapter 4)

2. Collateral evaluation based on NCCT:
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• Given that radiologists compare an ischemic patient’s affected and unaffected
sides to determine collateral scores, we have introduced an approach that
enhances the efficacy of the automated evaluation through machine learning.
This method focuses on the radiomic features extracted from ischemic damage
using NCCT images of both sides of the brain. (Chapter 5)

• We have developed a technique employing Siamese networks to validate further
our previous method, which addresses the challenges of small and imbalanced
NCCT datasets in collateral evaluation. This approach enhances adaptability to
data-scarce medical tasks. (Chapter 6)

3. Segmentation of cerebrovasculature:

• The extraction of brain vasculature can be an important prerequisite for
improved collateral evaluation. However, accurate segmentation typically
demands extensive label annotation, especially in 3D scenarios, which is both
time-consuming and labor-intensive and requires domain expertise. Furthermore,
pre-trained weights for deep learning models in the medical domain are often
limited.

• To address these challenges, we have introduced a 3D blood vessel segmentation
approach using few-shot learning. This method requires only a few annotated
samples to segment the entire 3D brain vasculature. It can be utilized as a
pre-processing step to enhance collateral evaluation. (Chapter 7)

In summary, our work presents novel automated collateral evaluation methods, effectively
mitigating inter and intra-rater variability issues. While existing methods primarily
focus on automating collateral assessment, our contributions stand out by introducing
innovative techniques for identifying collateral scores from ischemic damage, whether
observed in NCCT or 4D CTA. These approaches exhibit robustness even with limited and
imbalanced data, and they harness the power of transfer learning to make use of pre-trained
weights. Additionally, applying Siamese networks extends our methodology to the broader
context of similarity-based problem-solving with minimal data requirements. Furthermore,
our cerebrovasculature segmentation technique offers versatility beyond collateral scoring,
contributing to performance enhancement in various applications.

1.5 Thesis Overview
The thesis organization is as follows. Chapter 2 highlights the existing methods of collateral
evaluations performed both manually and automatically. Further, in Chapter 3, 4, 5, 6
and 7, the developed methods are described. Chapter 3 presents an automatic collateral
evaluation approach using the low-rank and sparse decomposition method with 4D CTA. In
Chapter 4, the deep learning-based method utilizing transfer learning to handle imbalanced
data in automatic collateral evaluation is described. Chapter 5 and chapter 6 represent
sequentially the radiomic-based machine learning approach and Siamese deep learning-
based method for automatic collateral evaluation using NCCT with small imbalanced data.
Chapter 7 describes the few-shot learning-based cerebrovasculature segmentation approach
with a few annotated 3D data, which is an important prerequisite in collateral evaluation.
Chapter 8 summarizes the thesis and comments on future research directions.
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Chapter 2

Related Work

In the following chapter, we describe the methodologies used in assessing collaterals as
discussed in the existing literature. Our primary focus is a comprehensive exploration of
manual collateral grading systems. We give details of existing methods, their associated
evaluation tools, and the merits and drawbacks of each. We categorize the described
techniques into two groups: manual methods, which involve human raters utilizing visual
inspection, and automatic methods, which use computer algorithms. Detailed discussions
on automated methods will be elaborated on in subsequent chapters as new approaches
emerge that are relevant to our research.

2.1 Clinical Techniques for Collateral Grading
As EVT and IVT treatments for ischemic stroke only result in positive outcomes for
a subgroup of patients with good to moderate collateral scores, grading the extent of
collateral circulation is an important factor before choosing a treatment strategy. Different
reliable approaches are used for the grading, e.g., ASPECTS [26], the collateral score of the
Society of NeuroInterventional Surgery (formerly the American Society of Interventional
and Therapeutic Neuroradiology (ASITN)/Society of Interventional Radiology (SIR) based
on conventional angiography [27], the scores of Christoforidis et al. [28], the Miteff System
[29], the Mass System [30], the modified Tan Scale [31], regional leptomeningeal collateral
(rLMC) score [32], and ASPECTS on collaterals (not to be confused with ASPECTS on
ischemic parenchymal changes in non-enhanced CT) [33].

Among all these approaches, ASPECTS is one of the most reliable, systematic, and
robust methods to have a favorable clinical outcome. Several studies have examined
ASPECTS for scoring collaterals because of their reliability. It considers 10 regions in
the MCA territory, and the ischemic change is considered in each region, and one point is
subtracted based on focal swelling or parenchymal hypoattenuation compared to the relative
region of the contralateral side (See Figure 2.1). An ASPECTS score of 7 or less defines
the disability or death.

1Micheau A, Hoa D, e-Anatomy, www.imaios.com, DOI: 10.37019/e-anatomy
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Figure 2.1: ASPECTS Score in acute stroke1

2.2 Collateral Assessment by Visual Inspection
Collateral circulation has played an important role in clinical trials where it has been used
to determine treatment strategies as well as predict cerebral infarction growth and extent.
Kim et al. [34] graded collaterals in acute symptomatic MCA occlusion using 15-point
regional grading criteria guided by ASPECTS [26] to predict the anatomic infarction. This
angiography-based collateral grading system was highly predictive of anatomic infarction
using a receiver operating characteristic (ROC) curve; the area under the curve (AUC)
was found to be 0.87 (95% CI: 0.83 to 0.91) for 42 patients. The authors concluded that a
higher extent of collaterals results in lower infarction and higher clinical outcomes. Cerebral
collaterals can alter the risk of stroke and transient ischemic attack (TIA) (i.e., temporary
period of similar symptoms to stroke) in symptomatic severe internal carotid artery (ICA)
stenosis due to improved cerebral perfusion where the collaterals are graded as present to
indicate the appearance of collateral pathways and absent if they are not visualized on the
angiogram [35].

Along with collateral score (CS) (scores of 0-3 based on the collateral extent), Tan et
al. [31] showed that clot burden score (CBS), which is a number from 0-10 that is based
on the extent of thrombus (i.e., blood clot) found in the proximal anterior circulation, can
be a significant predictor of clinical outcome. This study achieved a good inter-observer
correlation for CBS (ICC, 0.97; 95% CI, 0.95–0.98) and CS (ICC, 0.87; 95% CI, 0.80–0.91)
and found that both collateral circulation and clot extent can help to predict stroke outcome.
A recent study by Alves et al. [36] also stated that a higher CBS (B = 0.063; 95% confidence
interval (CI), 0.008˘0.118) as well as higher thrombus attenuation increase (B = 0.014; 95%
CI, 0.003˘0.026) (i.e., the permeability of letting more fluids passing through the thrombus)
are associated with higher collateral score (based on a study with 192 subjects).

Miteff et al. [29] proved the influence of collateral status in penumbra tissue, delineated
by CT perfusion scanning (CTP), to maintain the penumbra until reperfusion takes place.
In a study on collateral grading with two observers who had an agreement in 88 out of
92 patients (k = 0.93), they found that although a large CTP mismatch ratio (mean-
transit-time (MTT) lesion/cerebral blood volume (CBV) lesion) can be a pre-requisite for
clinical outcome, only collateral status can determine functional outcomes. The independent
predicting power of collateral circulation (CC) was further evaluated by Flores et al. [37]
using multiphase CTA (mCTA). This study showed a relationship between malignant
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middle cerebral artery infarction (mMCAi) and poor CC (using a univariate analysis).
Furthermore, a multivariate analysis showed a relationship between mMCAi and age, vessel
occlusion, baseline National Institutes of Health Stroke Scale (NIHSS), and recanalization.
Both investigations proved that only poor collateral circulation can predict mMCAi with
an odds ratio of 9.72 (95% CI, 1.387˘92.53; P = 0.048).

Although multiple studies have shown that collateral circulation can be an independent
predictor of functional outcomes, the study by Saarinen et al. [38] emphasized thrombus
location along with collateral circulation (P = 0.003 and P = .001). This study used
5-scale grading to assess collaterals and hypothesized that proximal occlusions result in
poorer collateral filling compared to distal occlusions. Not only does thrombus location
play a significant role in the functional outcome of ischemic stroke, but also the origin
of leptomeningeal collateral flow. The study by Menon et al. [39] suggested that the
interterritorial leptomeningeal collaterals originated from PCA-MCA resulted in better
functional outcomes than those originating from ACA-MCA territories. This study,
which performed collateral grading based on dCTA, considered the anatomical extent and
prominence of pial arteries compared to the opposite side and the time of retrograde filling of
the collateral circulation from the two origins, PCA-MCA and ACA-MCA. The significance
of leptomeningeal collaterals maintaining tissue viability has also been proved in the study of
Menon et al. [40], which has shown collaterals as the significant predictor of clinical outcomes
(p < .05) and a strong correlation (interrater reliability with an intraclass correlation
coefficient of 0.87, (95%CI, 0.77% − 0.95%) is obtained between the functional outcome
in endovascular treatments with good and moderate collateral score using the collateral
grading based on regional leptomeningeal collateral (rLMC) scores [32].

In a later study by Menon et al. [33], ASPECTS was used for evaluating collaterals on
mCTA, where six-point grading was employed to score collaterals based on the comparison
between ipsilateral and contralateral hemispheres. The vasculature captured in the peak
arterial phase, peak venous, and late venous phase in the mCTA was used to score the
collaterals and showed modest performance (C statistic = 0.56, 95% CI: 0.52, 0.63 for
≥50% decrease in NIHSS over 24 hours; C statistic = 0.6, 95% CI: 0.53, 0.68 for 90-day
mRS score of 0−2) in predicting clinical outcome, but better performance than single-phase
CTA and CTP. An automatic mCTA tool 2 is available for this collateral scoring approach
which obtained excellent interrater reliability (n = 30, κ = 0.81, P < .001).

To measure the correlation between early infarct core and mismatch ratio, Sekar et al.
[41] performed a study with dynamic as well as single-phase CTA using the four different
scoring methods of the ASITN/SIR [27], Christoforidis et al. [28], ASPECTS on collaterals
[33] and the Miteff System [29]. An excellent cross-correlation (rho = 0.901, p < 0.001) was
obtained between the scores of ASITN/SIR and ASPECTS, which focused on evaluating
the extent and delay of vascular enhancement in the affected territory rather than the
Christoforidis et al. [28] method and Miteff System [29] which considered backflow of
contrast medium to the occlusion in scoring collaterals. Table 2.1 summarizes the scoring
terminologies used by different researchers to evaluate collaterals in clinical uses.

2http://aspectsinstroke.com/casepacs/assess-mcta-collateral-score
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Table 2.1: Commonly used collateral scoring terminologies with CTA

Approach Scoring Criteria
ASPECTS
[26]

10 ROIs in the MCA territory are scored based on the extent of ischemic
changes compared to the contralateral side.

ASITN/
SIR [27]

Scoring from 0-4:
0: non-existent or barely visible pial collaterals on the ischemic site at
any time point
1: partial collateralization of the ischemic site until the late venous phase
2 : partial collateralization of the ischemic site before venous phase
3: complete collateralization of the ischemic site by the late venous phase
4: complete collateralization of the ischemic site before the venous phase.

Regional
grading [34]

Grades of collaterals based on a scale from 0 to 3 with:
0: no collaterals visible to the ischemic site (absence of any capillary
blush)
1: collaterals to the periphery of the ischemic site
2: complete irrigation of the ischemic bed via collateral flow
3: normal antegrade flow.

Evaluation
of
mCTA [37]

On a scale of 0-5 and graded as poor collateral circulation (0-3) and
good collateral circulation (4-5).

Semi-
quantitative
rLMC [32]

Scores collaterals in a scale of 0 − 2:
0 : artery not seen
1 : less prominent
2 : equal or more prominent
Scored by comparing with a matching region in the opposite hemisphere
based on the extent of contrast opacification in the arteries distal to an
M1 MCA+− ICA occlusion.

mCTA-
based
collateral
evalua-
tion [33]

Collaterals are graded as:
0 : for no vessels visibility in any phase of the occluded vascular territory
compared to the asymptomatic contralateral hemisphere.
1 − 4 : based on the extent and phase delays of their prominence in the
occluded site compared to the healthy vascular site.
5 : for the normal extent of collaterals without any delay in the occluded
site compared to the asymptomatic site.

Pial
collateral
score [28]

Scoring between 0 − 4 based on the retrograde reconstitution of
collaterals in the MCA segments.

Miteff Sys-
tem [29]

Collaterals are good or reduced based on areas of MCA reconstituted
by contrast.
Good collaterals: MCA reconstitution along with branches with a small
abruption in the reconstituted vessels at the distal end within M1 or
proximal of M2.
Reduced collaterals: moderate vessels visible at Sylvian fissure and poor
ones reconstituting only superficial branches of MCA.
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Mass
System [30]

Compares symptomatic hemisphere against the contralateral hemisphere
to score collaterals into five categories:
1: absence of collateral
2: for lower extent from the normal contralateral side
3: equal amount to contralateral
4: greater than contralateral
5: for exuberant collaterals.

Tan System
[31]

0%: no collateral in the occluded MCA territory, score 0
> 0 and < 50%: collateral score is 1
> 50%: collateral score is 2
100%: collateral score is 3.

2.3 Automatic Collateral Grading Methods
The terminologies of collateral grading in ischemic stroke highlighted in Table 2.1 have been
used by different studies described in Section 2.2 to score collateral circulation and obtain
functional clinical outcomes. Automated scoring systems aim to provide robust methods
that do not suffer from inter- and intra-rater inconsistencies. This section highlights the
computer-aided automatic and semi-automatic systems proposed in studies for collateral
grading in ischemic stroke treatment.

A number of automatic and semi-automatic methods [42, 43, 44, 45, 13] have been
developed to facilitate treatment decisions in ischemic stroke.

Machine learning excels over traditional quantitative approaches in classification tasks
by enabling automatic feature selection, handling high-dimensional data, and uncovering
non-linear relationships that can capture complex patterns, resulting in more accurate and
adaptable classification models. Due to the advantages of machine learning over traditional
methods, several studies [5, 46, 25, 47], The e-ASPECTS® software from Brainomix Ltd.
(Oxford, UK) and RAPID ASPECTS® by iSchemaView (Menlo Park, USA) ] focused on
the automatic evaluation of collaterals with ML methods.

The proposed collateral assessment and ASPECTS automation methods helped achieve
generalizability to new data and good performance. However, one potential drawback of
machine learning is the extensive hand engineering required, which can be a time-consuming
and challenging process requiring significant domain expertise.

Recently, DL has become a popular and powerful tool for solving complex problems
in medical imaging. Unlike traditional machine learning methods, DL models can
automatically learn and extract relevant features from data, reducing the need for manual
feature engineering. Therefore, current studies (e.g., [4, 48, 49, 50, 51, 52] used DL models
to evaluate collaterals automatically.

In the greater context of stroke, DL models have been used in automating ASPECTS
score based on ischemic damage on NCCT [53, 54, 55, 56] since NCCT is more commonly
used in these studies, being widely used in emergent settings and, thus, more accessible.

The issues that arise with deep learning are when available training data are scarce.
There are very limited open and large labeled datasets in the case of stroke data. Transfer
learning [57] can be used to mitigate the lack of training data.

EfficientNet [58] outperformed state-of-the-art CNNs in transfer learning. This
architecture scales the model’s depth, width, and resolution in a balanced way through
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a compound coefficient, enhancing the network’s performance. Since EfficientNet [58]
outperforms the existing transfer learning network, we considered this model to achieve
our goal of automatic evaluation mitigating the issues of small imbalanced datasets.

The challenge with transfer learning in the medical domain stems from the limited
availability of pre-trained weights, which leads to performance deficiencies. The Siamese
network, introduced by Bromley et al. [59], is a potential alternative to transfer learning
with more robustness as it needs a minimal training set.

Based on the concept of the Siamese network, calculating the similarity with good
performance and the robust power of handling imbalanced issues, we incorporated the
network into one of our proposed methods for the automatic evaluation of collaterals.

Table 2.2 summarizes the main highlights of the existing approaches (based on
quantitative measurement, classic machine learning, and deep learning) for collateral
grading. Details about all the studies are discussed in the following manuscript-based
chapters.

2.4 Summary
This chapter delineates manual and automated collateral evaluation approaches, employing
various scoring terminologies. The comprehensive overview highlights the superior efficacy
of automated methods compared to manual processes. Furthermore, we explore the
advantages and limitations of computerized techniques, including quantitative, traditional
machine learning, and deep learning-based approaches.
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Table 2.2: State-of-the-art methods for automatic collateral evaluation

Types
of
meth-
ods

Ref Data Scoring Cases Methods and results

Q
ua

nt
ita

tiv
e

m
et

ho
ds

Sheih et
al. [44]

NCCT ASPECTS 103 Automatic contralateral
comparative method;
AUC of 90.2%

Frolich et
al. [45]

4D CTA rLMC 82 tMIPs best for collat-
eral prediction; intra-
class correlation of 0.78

Zhang et
al. [13]

4D CTA rLMC 80 CGS used by combining
velocity & extent of
collaterals; AUC of 0.80

Kersten et
al. [42]

4D CTA ASPECTS 29 Intensity differences be-
tween left & right hemi-
sphere; Correlation of
method to radiologist
had r2 = 0.71

Boers et
al. [43]

CTA Tan [31] 422 Vascular ratio
between left &
right hemispheres;
Correlation of 0.75
between visual &
quantitative score

C
la

ss
ic

M
L

m
et

ho
ds

Xiao et al.
[5]

4D CTA ASPECTS 37 Machine learning
method based on SVM;
Overall accuracy of
82.2%

Kuang et
al. [46]

NCCT ASPECTS 257 Random forest
classifier; ICC between
method & experts was
0.76

Grunwald
et al. [25]

CTA Tan [31] 98 Automated e-CTA; 90%
agreement with radiolo-
gist, ICC=0.93

Su et al.
[47]

CTA 4-grade Tan
[31]

269 Multi-class
classification; Overall
accuracy 0.80 &
dichotomized collateral
accuracy 0.90
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D
L

m
et

ho
ds

Tetteh et
al. [48]

3D MR
Perfusion

Direct and
cascaded
3-class
collateral
scoring

183 ROI extraction followed
by feature extraction
and classification with
CNN, SVM, RF, and
KNN; an overall ac-
curacy of 0.72 with
CNN+MLP

Ali et
al. [51]

Cone
beam CT
(CBCT)

collateral
scoring by
radiologists
into 3-classes

30
(4368
CBCT
im-
ages)

2D ResNet-50 as a clas-
sifier to evaluate good
and poor collaterals;
Average sensitivity and
specificity of 0.79 and
0.96 respectively

Rava et
al. [50]

Peak
arterial CT
perfusion
volumes

ESCAPE
trial and Tan
score [31]

200 A CNN model to eval-
uate collaterals auto-
matically; Average sen-
sitivity of 0.88 and
0.80 for dichotomized
and multi-class collater-
als respectively

Huang et
al. [52]

Multiphase
CTA

Positive
(good +
intermediate)
and negative
(poor)
collaterals

82 CNN model; Accuracy
of 0.75 in the validation
group with an AUC of
0.70

Tan et
al. [49]

Multiphase
CTA

Tan score [31] 173 Feature fusion from four
phases with hybrid at-
tention mechanism; Ac-
curacy of 90.43%
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Chapter 3

Automatic collateral circulation scoring in
ischemic stroke using 4D CT angiography
with low-rank and sparse matrix
decomposition

Preface
This chapter is based on our published paper [60].

This chapter aims to achieve our first goal of evaluating collaterals automatically using
the same visual indications (e.g., filled versus unfilled vessels) that radiologists use. This
is important as it allows clinicians to better understand the computerized methods, thus
enabling clinical acceptance. The proposed method, ACCESS, estimates the extent of
unfilled cerebrovasculature in CT angiogrpahy scans by identifying areas lacking contrast
agents due to clotting. We apply the fast Robust Matrix Completion (fRMC) algorithm
with in-face extended Frank-Wolfe optimization to a group of healthy subjects and a target
patient. This enables us to model the patient’s unfilled vessels as sparse components and
the estimated complete vasculature as low-rank components. The collateral score is then
determined as the ratio of unfilled vessels to the full vasculature, mirroring established
clinical protocols. This work has been published in the International Journal of Computer-
Assisted Radiology and Surgery (IJCARS), and the GitHub code is available at: https:
//github.com/mumuaktar/ACCESS
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Abstract
Sufficient collateral blood supply is crucial for favorable outcomes with endovascular
treatment. The current practice of collateral scoring relies on visual inspection and thus
can suffer from inter and intra-rater inconsistency. We present a robust and automatic
method to score cerebral collateral blood supply to aid ischemic stroke treatment decision-
making. The developed method is based on 4D CTA and the ASPECTS scoring protocol.
The proposed method, ACCESS (Automatic Collateral Circulation Evaluation in iSchemic
Stroke) estimates a target patient’s unfilled cerebrovasculature in contrast-enhanced CTA
using the lack of contrast agent due to clotting. To do so, the fast Robust Matrix Completion
(fRMC) algorithm with in-face extended Frank-Wolfe optimization is applied to a cohort
of healthy subjects and a target patient, to model the patient’s unfilled vessels and the
estimated full vasculature as sparse and low-rank components, respectively. The collateral
score is computed as the ratio of the unfilled vessels to the full vasculature, mimicking
existing clinical protocols. ACCESS was tested with 46 stroke patients and obtained an
overall accuracy of 84.78%. The optimal threshold selection was evaluated using a receiver
operating characteristics (ROC) curve with the leave-one-out approach and a mean area
under the curve (AUC) of 85.39% was obtained. ACCESS automates collateral scoring to
mitigate the shortcomings of the standard clinical practice. It is a robust approach, which
resembles how radiologists score clinical scans and can be used to help radiologists in clinical
decisions of stroke treatment.

3.1 Introduction
Stroke is one of the leading causes of disability and death worldwide. Statistics from the
World Heart Federation show that each year 15 million people suffer from stroke among
which 5 million become permanently disabled and 6 million people die 1. There are two
kinds of stroke: ischemic, where a blood clot forms in a cerebral artery, and hemorrhagic,
where a cerebral vessel ruptures and bleeds into the brain. Ischemic stroke is much more
frequent with 8 out of 10 stroke-affected patients suffering from it.

When diagnosis and treatment of stroke are not performed in time, patients become
disabled due to a lack of blood and oxygen, which causes neuronal cell death in the affected
part of the brain. Treatment strategies are chosen based on a number of factors, including
time window, infarct volume, penumbra size, and collateral circulation. A patient can be
treated after 6 hours of symptoms onset with endovascular treatment, where a catheter
with a mechanical device attached to the tip is used to remove the clot. This mechanical
intervention allows blood flow to quickly be restored. However, not all stroke patients
are suitable candidates for endovascular treatment, due to the risks associated with it.
One important indication for successful endovascular treatment is the presence of sufficient
collateral circulation (i.e., collaterals) [61].

Grading the extent of collateral circulation is an important factor for treatment decision-
making, and a number of approaches have been developed to visually quantify collateral
circulation, including ASITN/SIR Collateral Score, Miteff System, Mass System, modified
Tan Scale, and ASPECTS (Alberta Stroke Program Early CT Score) [62]. With these
approaches, performance depends on the experience, training, and specialty of radiologists,
and thus can result in inter- and intra-rater inconsistency which have been shown to

1http://www.world-heart-federation.org/cardiovascular-health/stroke/.
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be an issue in a number of studies [22, 23, 24]. Grotta et al. [22] concluded that it
is difficult to get agreement in recognizing and quantifying early ischemic changes even
by experienced clinicians. A recent study by Grunwald et al. [25] showed that between
individual neuroradiologists, the intraclass correlation coefficient ranges from 0.42 to 0.86
and score agreements range from 36.2% to 81.6%. Automated scoring systems aim to
provide robust methods that do not suffer from inter- and intra-rater inconsistencies.

3.2 Related Work
A number of automatic and semi-automatic methods have been developed to facilitate
treatment decisions in ischemic stroke. Kersten-Oertel et al. [42] developed a method
that considered differences of mean intensities on the left and right hemispheres. The
results of this method showed a good correlation ( r2 = 0.71) between the radiologist and
computed score but the method itself had difficulty dealing with individual variations, e.g.
from calcification, as well as, normal vasculature asymmetry between hemispheres. Boers
et al. [43] also considered the ratio between left and right hemispheres for quantitative
measurement of collateral status and obtained a good correlation, ρ of 0.75 (p < .001)
between visual and quantitative collateral score. In their work, multiscale segmentation
was done on baseline CTA with better result for arteriovenous acquisition phase to obtain
the vasculature before the collateral evaluation. In the work by Xiao et al. [5], support
vector machines (SVM) were used to score collateral supply after extracting blood vessels
automatically using low-rank decomposition. The results of this method showed good
separation between good and intermediate versus poor collaterals with an overall accuracy of
82.2%. The drawback of this machine learning-based method is that performance is affected
by limited training data. A random-forest-based classifier was developed by Kuang et al.
[46], where non-contrast CT (NCCT) was used to automate the ASPECTS assessment. The
intra-class correlation coefficient between the automated ASPECTS method and the DWI
ASPECTS score by experts was found to be 0.76, but NCCT may not be sensitive enough
for those with good collaterals. Shieh et al. [44] developed a computer-aided decision system
for thrombolysis therapy using NCCT. Their scoring based on a contralateral comparative
method is independent of ground truth and obtained an area under the curve (AUC) of
90.2%. Collateral assessment with 4D CTA was performed by Frolich et al. [45] using the
semi-quantitative regional leptomeningeal collateral score (rLMC), proving that temporally
fused maximum intensity projections (tMIPs) can better depict the collateral flow. Their
study obtained an inter-rater agreement with an intraclass correlation coefficient of 0.78.
However, their experiments were limited to certain time points rather than the entire 4D
CTA series and confined to only subjects with good collaterals. Zhang et al. [13] have
integrated the velocity and extent of collaterals in the peak phase and tMIPs to obtain a
collateral grading score (CGS) using 4D CTA. Using the rLMC semi-quantitative approach
to set the CGS cutoff, the method resulted in an AUC of 0.80. Table 3.1 summarizes the
main highlights of the existing approaches for collateral grading.

In this chapter, we describe an automated image-processing approach ACCESS
(Automatic Collateral Circulation Evaluation in iSchemic Stroke) for evaluating collateral
circulation with the ASPECTS protocol as the reference, which has been shown to be a
reliable, systematic and robust approach. The ASPECTS score is based on the extent of
contrast opacification in arteries distal to the occlusion clot [26]. Our goal is to use robust
low-rank and sparse decomposition to obtain unenhanced collaterals in a patient from the
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Table 3.1: A brief survey of existing collateral scoring techniques using CTA.

Ref Data Scoring Cases Method and Results
Shieh et
al. [44]

NCCT ASPECTS 103 Contralateral automatic comparative
method; AUC of 90.2%

Frolich et
al. [45]

4D
CTA

rLMC 82 Manual grading; tMIP best for collateral
prediction; intra-class correlation of 0.78

Zhang et
al. [13]

4D
CTA

rLMC 80 CGS used by combining velocity & extent of
collaterals; AUC of 0.80

Kersten et
al. [42]

4D
CTA

ASPECTS 29 Intensity differences between left & right
hemisphere; Correlation of method to radi-
ologist had r2 = 0.71

Xiao et
al. [5]

4D
CTA

ASPECTS 37 Machine learning method based on SVM;
Overall accuracy of 82.2%

Kuang et
al. [46]

NCCT ASPECTS 257 Random forest based classifier; Intra-class
correlation coefficient between proposed
method & experts was 0.76

Boers et
al. [43]

CTA Tan
System
[31]

422 Vascular ratio between left & right hemi-
spheres; Correlation of 0.75 between visual
and quantitative score

Grunwald
et al. [25]

CTA Tan
System
[31]

98 Automated e-CTA score; 90% agreement
with radiologist, intra-class correlation coef-
ficient of 0.93

ACCESS
(proposed
method)

4D
CTA

ASPECTS 54 Automatic collateral circulation scoring; An
average AUC of 85.39%

group behavior of normal controls. The developed model is based on the assumption
that from the group of normal controls and one target patient taken as columns in a
low-rank matrix completion framework, the unfilled collaterals of a stroke patient can be
reconstructed in the sparse component whereas the unchanged full vasculature appears
in the low-rank component. Based on this concept, we developed a novel automated
approach for collateral scoring which considers the ratio of unenhanced collaterals to the
full vasculature and determines the collateral score using this ratio. ACCESS uses the
fast robust matrix completion (fRMC) method [63] to extract blood vessels benefiting from
the in-face extended Frank-Wolfe algorithm [64], a method for solving a defined convex
optimization problem.

3.3 Materials and Methods
The ACCESS pipeline is shown in Fig. 3.1 and described in detail in the following section.

3.3.1 Scanning Protocol

Eight healthy subjects were used as reference scans, and 46 subjects with ischemic stroke
were used to evaluate our method. All subjects underwent imaging at the Montreal
Neurological Hospital (Montreal, Canada). The 4D CTA images were captured on
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Figure 3.1: The overall workflow of the ACCESS method.

a Toshiba’s Aquilion ONE 320-row detector 640-slice cone-beam CT (Toshiba Medical
Systems, Tokyo, Japan). The scanner provides whole-brain perfusion and dynamic
vasculature information in one single examination with a single rotation of the gantry.
The routine stroke protocol performs a series of intermittent volume scans over a period of
60 seconds with a scanning speed of 0.75 s/rotation. A total of 19 volumes are captured
for each patient with low-dose scanning for every 2s during the arterial phase and 5s during
the venous phase. Isovue-370 (Iopamidol) was used as a non-ionic and low osmolar contrast
medium (Iodine content, 370 mg/ml).

3.3.2 Pre-processing

Prior to evaluating collateral supply for each stroke patient, we followed a number of pre-
processing steps to (1) register all the subjects (healthy and with stroke) to a standard
template space, (2) extract blood vessels (3) refine group-wise blood vessel alignment and
(4) enhance vessels using probabilistic segmentation.

3.3.2.1 Image Registration

To process all the subjects in the same space we performed image registration in two stages.
In the first stage, all 18 CTA volumes of an individual subject are rigidly registered to
that of the first time point. Next, the first volume is registered non-linearly to a CTA
brain template using the symmetric image normalization method (SyN) [65] from ANTs
(Advanced Normalization Tools)2. Then, the non-linear transformation is applied to all

2stnava.github.io/ANTs
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other volumes of that subject. Thus all subject volumes are registered first to each other and
then to the template. The CTA brain template was created following the unbiased group-
wise registration approach [66] using 12 healthy subjects’ brains. A brain mask was created
from the template using active contour segmentation in ITK-SNAP (www.itksnap.org) and
used to remove the skulls of all subjects for further analysis. In the second registration
stage, we further refine the vessel alignment, in order to estimate the unfilled blood
vessels in the patient through low-rank and sparse decomposition. Therefore, additional
nonlinear registration using SyN is performed in this stage between a randomly selected
healthy subject’s temporal 3D average taken as a template and the rest of the 3D subjects
participated in further experiments. Note that the temporal 3D average of each subject
(averaging along multiple time points) for vessel alignment is obtained after blood vessel
extraction described in Section 3.3.2.2.

3.3.2.2 Blood Vessel Extraction

To evaluate collaterals, it is necessary to determine how blood flows over time for each
subject. Thus, the static background with grey and white matter, as well as, any
calcification, which can affect the scoring are not considered. Similar to the approach
proposed by Xiao et al. [5], the flow of the contrast agent in the blood vessels are separated
from the static background with calcification. However, rather than using the augmented
Lagrange multiplier method by Lin et al. [67] to recover low-rank and sparse components,
we use the more robust fRMC method [63]. This method does not require any parameter
tuning and converges very quickly [68] whereas [67] is sensitive to parameter tuning and
has a slower convergence rate. For applying low-rank decomposition to a 4D CTA scan, a
matrix, D = [C1

s , C2
s , . . . ..C19

s ] is considered with all the volumes taken as columns of the
matrix. The low-rank representation is as below:

min rank(B) s.t. D = B + V (1)

The minimization of ranks of background, B as in equation (1) for separating the correlated
and static background features from the dynamic blood vessels, V is performed by,

min ∥B − D∥2
F s.t. ∥B∥∗ < δ (2)

where ∥.∥F indicates the Frobenius norm, ∥.∥∗ represents the nuclear norm of a matrix and
δ is the constraining upper bound for the nuclear norm of low-rank matrix, B. We can
see from Equation 2 that there is no tunable parameter to obtain the low-rank and sparse
matrix for fRMC. Since D is a large non-singular matrix with multiple volumes as columns,
the square of its Frobenius norm is greater than both its nuclear norm and the nuclear norm
of its component, B. Therefore, δ can be comfortably set to any value greater or equal to the
square of the Frobenius norm of D. Similar to the study of Ashikuzzaman et al. [68] and the
reference study of fRMC by Rezaei et al. [63] for background subtraction, we set it to ten
times the Frobenius norm of D. Thus, we do not need to set any parameters manually for
extracting blood vessels and further unfilled collaterals using fRMC. The rank minimization
in fRMC is solved using the extended Frank-Wolfe optimizer [64] which requires a lower
number of iterations and less computation in each iteration that makes the fRMC method
fast. The choice of its convergence parameters, γ1 and γ2 mostly affect the convergence
speed and rank of the matrix with 0 ≤ γ1 ≤ γ2 ≤ 1 [63]. We provide further insight of these
parameters in Section 3.5. Finally, we extracted the sparse matrix containing blood vessels
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by subtracting the background from the original data matrix. The columns obtained in the
sparse matrix represent the blood flow in each volume over time. Given this, we can then
take the average of the 19 volumes containing blood flow over time to perform collateral
scoring in 3D.

3.3.2.3 Enhancement of Vascular Structures

Vessel enhancement is an important prerequisite for computer-aided clinical procedures to
highlight the blood vessels and suppress noise and other non-vascular structures. There
is much literature on vessel segmentation. Here, we review a few recent techniques, but
interested readers can refer to [69]. Yang et al. [70] developed a vessel segmentation
technique following contrast enhancement, boundary refinement, and content-aware regions
of interest adjustment by checking shape consistency and connectivity. Rather than
considering a region-based method that may be sensitive to unnatural intensity variations,
Meijs et al. [71] segmented full cerebral vasculatures in 4D CT using weighted temporal
variance and local histogram features as inputs to a random forest classifier and obtained an
overall accuracy of 0.995. Vessel segmentation by Jin et al. [72] utilized the low-rank and
sparse decomposition technique to segment vessels from group behavior of the sequence of
XCA images and further removed spatially varying noisy residuals through local-to-global
adaptive threshold filtering.

In our approach, we used the vessel enhancement by Jermen et al. [73] to increase
the visibility of the blood vessels in MIPs as well as to make the contrast agent response
uniform. This enhancement method outperforms traditional vesselness filtering approaches
by enhancing rounded structures along with elongated ones. The filter allows local
structures to be distinguished by analyzing the eigenvalues of the Hessian matrix at each
point in the image. Let, λi, i = 1, 2, 3 denote the three eigenvalues of the Hessian matrix of
a 3D image with the ideal eigenvalue relationship λ2 ≈ λ3 ∧ |λ2,3| >> |λ1|. This relation,
however, can’t be maintained if the magnitudes of λ2, λ3 are very low. So, to ensure
robustness in case of lower eigenvalues, a regularization on the value of λ3 at multiple
scales is done by:

λρ(s) =

⎧⎪⎪⎨⎪⎪⎩
λ3 if λ3 > τmaxxλ3(x, s),
τmaxxλ3(x, s) if 0 < λ3 ≤ τmaxxλ3(x, s),
0 otherwise

where s is the vessel scale and τ is the cutoff threshold (value between 0 to 1), which results
in a uniform response. Finally, the elliptic cross-section structures are confined to the ratio
λ2 ≥ λρ/2 > 0 and the vessel enhancement function is defined as:

Vp =

⎧⎪⎪⎨⎪⎪⎩
0 ifλ2 ≤ 0 ∨ λρ ≤ 0,

1 ifλ2 ≥ λρ/2 > 0,

λ2
2(λρ − λ2)

[︂
3

λ2+λρ

]︂3
otherwise

Vp can be computed for both bright and dark structures and the filter response is between
0 and 1 but ideally 0 for non-vascular and 1 for vascular structures.

Using this vessel enhancement method, we segmented vessels in all subjects before using
them to estimate unfilled collaterals via the second low-rank and sparse decomposition.
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Figure 3.2: Example MIP CTAs of different collateral circulation scores.

3.3.3 Collateral Circulation Evaluation

For evaluating collateral circulation, the score is categorized into three types: good,
intermediate and poor. These scores are defined based on the collateral supply in the
occluded MCA territory according to ASPECTS [26]. The ASPECTS score, which we used
as ground truth in our experiments, is based on the agreement of the visual assessment of
the acquired 4D CTA scans by two radiologists. A score of good means 100% collaterals,
intermediate means greater than 50% and lower than 100% and poor means below 50% and
greater than zero (Fig. 3.2). Since fRMC uses an optimizer to minimize the rank, more
variability between individuals can affect the results. To mitigate individual variability, we
blurred the data with a Gaussian kernel (σ = 2mm). Among our 54 subjects, we had 8
normal controls, 14 poor, 17 intermediate, and 15 good subjects.

To measure collateral supply, we compare filled vessels (by contrast agent) with unfilled
ones. To obtain the unfilled vessels in a patient, a group of 8 normal subjects and a target
subject is created. Normal subjects are considered as healthy with 100% collateral supply.
The target collateral score can then be defined using the normal controls. We used the same
robust approach fRMC with extended Frank-Wolfe solver in order to obtain the unfilled
vessels of a target case into a sparse matrix from the group behavior. Since all the normal
controls contain very similar vasculature, the full vasculature is obtained into the low-rank
matrix. The data matrix here is defined as, D = [C1

s , C2
s , . . . ..C8

s , C9
s ] where columns, C1

s

to C8
s are the normal subjects and C9

s is the test case. Next, low-rank minimization is
performed as in Equation (2) which is defined here as:

min ∥f_vasc − D∥2
F s.t. ∥f_vasc∥∗ < δ (3)

where f_vasc stands for full vasculature from where we obtain the unfilled collaterals by,
uf_colls=D-f_vasc. Finally, the collateral score is measured as below:

Ratio, r = uf_colls/f_vasc (4)

and collateral score in the target subject,

Score, s = (1 − r) × 100. (5)
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Figure 3.3: Example of low-rank decomposition. Left: original sagittal view of a subject
(red arrow points to a calcification). Middle: sparse image containing blood vessels. Right:
low-rank image with calcification.

Figure 3.4: Left: a healthy subject used as a reference image. Right: an individual registered
to the reference image.

3.4 Experimental Results

3.4.1 Blood Vessel Extraction

To overcome the inter-volume intensity differences within a scan session, the intensity
profiles of all the volumes of a subject are normalized (using Minmax) with respect to
the first volume. The fRMC approach is then applied to separate blood vessels from the
background which results in the removal of any calcification (e.g. Fig. 3.3).

3.4.2 Image Registration

A two-stage registration was performed by Huck et al. [74] to create a cerebral vascular
atlas, which used standard parameters from the ANTs tool to align segmented vessels in fine
details. Similar to their work, we found that the standard parameters for the SyN algorithm
from ANTs worked well for registration to the template as well as the alignment of blood
vessels. To align the blood vessels, a SyN deformation on 4 scale levels was done (with
iterations of 100x100x50x20). We evaluated the alignment by checking the overlap of blood
vessels in multiple subjects extracted by applying low-rank and sparse decomposition. Areas
with fewer than 40 connected pixels were ignored to avoid the smallest vessels, which are
quite different in each individual and can cause scoring error. The registration performance
of an individual subject’s blood vessel to a healthy subject is shown in Fig. 3.4.
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Figure 3.5: Vessel enhancement of a subject (axial, sagittal and coronal view).

3.4.3 Vessel Enhancement

The blood vessels of an example subject segmented by scaling responses between 0 to 1 using
Jermen vessel enhancement function [73] is shown below in (Fig. 3.5). The scale, s, ranging
from 0.5mm to 2.5mm with a 0.5mm interval was chosen based on the work of Jermen et
al. [73] on 3D DSA cerebral vasculature segmentation. The regularization parameter, τ , is
varied over the chosen scales from 0.5 to 1 to show the effect on the segmentation outcome
in Section 3.4.5; τ= 0.5 resulted in a uniform response in our dataset.

3.4.4 Automatic Collateral Circulation Evaluation

To reduce computational complexity and for better visibility, the 2D MIP of the sparse
and low-rank matrices in axial directions were taken. Demonstration of low-rank matrix
completion to obtain the unfilled vessels in an individual with respect to the cohort of
normal subjects is shown in Fig. 3.6.

From the sparse images, we can see that there are a lot of unenhanced vessels obtained.
This is due to the variability of the small vessels in individual subjects which appear as
changes in the sparse matrix. Post-processing is performed with thresholding in order to
ignore the small vessels’ variability, as well as some unwanted portions obtained in the
sparse component due to contrast variations. To remove very small vessels, all connected
components with fewer than 40 pixels were removed from the binary images obtained by
thresholding. To overcome the effect of manual thresholding and make ACCESS more
robust, we performed a sensitivity analysis in Section 3.4.5 to obtain this optimal threshold.
Furthermore, the main sinus and arteries are removed before collateral scoring.

The images in Fig. 3.7 show the binary of the sparse and low-rank components after
thresholding.

Finally the collateral score is calculated according to the formula of Equations 4 and 5
using the optimal parameters obtained by the sensitivity analysis. Since there is variability
between vessels of individual subjects, which cannot be registered perfectly and the final
operation is performed on 2D, the radiologists’ scores can be conflicting to use here directly.
Thus the scoring performance of ACCESS was evaluated after determining the optimal
threshold for each class by computing ROC curves [75] (Fig. 3.8). A ROC curve is drawn
with the experimental scores and the true class labels. The sensitivity and specificity
for different threshold settings, which are varied between 0-100, based on the scores were
calculated. Choosing for the optimal points on the curve for the thresholds to define the
good, intermediate and poor collaterals, we found scores under 55.45% should be considered
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Figure 3.6: 2D MIP representation for Low-rank and sparse decomposition for a poor,
intermediate and good subject. The overlaid image is shown for better visibility of unfilled
vessels (green) with the original collaterals (pink).

as poor, between 55.45 and 70.5% intermediate and above 70.5% good. To overcome the
effect of over-estimation, we performed a leave-one-out approach to draw the ROC curves
and the final curve is drawn from the average of 46 iterations of true positive and false
positive rates. An AUC of 85.39% was obtained from the ROC, with AUC of 90.95%,
83.53% and 81.70% for good, intermediate and poor classes respectively. Table 3.2 shows
the confusion matrix. An overall accuracy of 84.78% is obtained from the true positive and
true negative results.

Table 3.2: Confusion Matrix showing ACCESS Results.

Automatic score
Radiologist score Good Intermediate Poor

Good 13 2 0
Intermediate 1 14 2

Poor 1 1 12
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Figure 3.7: Post-processing results of 2D MIP of poor, intermediate and good collaterals.
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Figure 3.8: ROC curves for Good, Intermediate and Poor Collateral Scores Evaluation.

3.4.5 Sensitivity Analysis

In this section, we perform sensitivity analysis for our pipeline on parameter choices of
vessel enhancement. Since we do not have any ground truth data for direct segmentation
performance analysis, we assessed the impact of parameters in vessel enhancement
(regularization parameter, τ and thresholding value) on the overall performance of ACCESS.
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Figure 3.9: Average AUC of three classes for varying threshold values.

The reference study by Jermen’s enhancement filtering [73] has shown that probabilistic
segmentation of blood vessels can be obtained by setting τ to a value between 0.5 to 1
for a uniform response. Therefore, we tested the scoring results for multiple τ values. We
achieved the best result for τ=0.5. In every experiment with different τ , we varied the
threshold value within 0.01 to 0.09 (chosen based on the mean intensity of low-rank and
sparse images) to obtain the best sensitivity and specificity with the highest AUC in the
ROC. Table 3.3 shows the AUC for each τ with the optimum threshold value.

Table 3.3: Influence of τ on the Final Evaluation.

τ AUC Good AUC Intermediate AUC Poor AUC Average
0.5 0.909 0.823 0.816 0.849
0.6 0.875 0.798 0.839 0.837
0.7 0.914 0.656 0.843 0.804
0.8 0.909 0.641 0.843 0.798
0.9 0.923 0.637 0.816 0.792
1 0.904 0.660 0.825 0.797

Since τ=0.5 shows the best performance, we achieved the segmentation with this value.
Fig. 3.9 shows how the scoring is sensitive to the varied threshold values. Note that the final
ROC curve shown in Fig. 3.8 from the cross-validation results is done using the optimum
threshold value.

3.4.6 Inter and Intra-rater Variability Analysis

A subset of 27 test cases from the data were rated individually by the two separate
radiologists. To show the effect of visual inspection and human rater’s variability, we used
the consensus ground truth and the separate ratings by the radiologists as well as one of
the authors (MA), who served as the third independent rater. The rating is performed
based on ASPECTS by assessing the degree of collaterals visually. The subjects’ collaterals
are scored as “good” if both sides have equal extent of collaterals in any of the phases
from arterial to venous with contrast. The same criteria are followed for intermediate and
poor subjects with medium and very low extent of collaterals in the affected side of MCA
territory compared to the healthy side respectively.
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To evaluate the inter-rater variability of the two radiologists and the author in the
subset of 27 cases, we computed Fleiss’ Kappa (κ) statistics [76], which ranges between 0
and 1, (with values from 0.0 to 0.2 indicating slight agreement, 0.21 to 0.40 indicating fair
agreement, 0.41 to 0.60 indicating moderate agreement, 0.61 to 0.80 indicating substantial
agreement, and 0.81 to 1.0 indicating almost perfect or perfect agreement based on the
guidelines of Landis et al. [77]) for three raters. With an overall κ=0.455 (p < 0.0005), the
result represents moderate strength of agreement among the raters. The two radiologists’
rating variability on the same subset of cases is obtained by computing a paired Cohen’s
kappa (κ) statistics [78], yielding κ=0.471 (p < 0.001). It should be noted that the collateral
score influences the clinical outcome significantly. For example, a “poor” case misclassified
as being “good” can cause excessive bleeding leading to hemorrhagic stroke with EVT while
a “good” case being misclassified as “poor” ignores a patient from EVT. Due to the raters’
variability, poor treatment decisions might be made, which would adversely impact patients.
In the subset, the two radiologists have disagreement in scoring poor vs. intermediate in
10% of cases, 11% for poor vs. good and 35% for good vs. intermediate cases. These
findings (56% of cases misclassified) fall in the middle of the range of what Grunwald et
al. [25] found where score agreements range from 36.2% to 81.6%. Further, to show the
agreement between ACCESS and radiologists’ scores, we computed Cohen’s kappa [78]
with κ=0.771 (p < .0005) and obtained a substantial agreement between the automated
approach and radiologists’ score. To verify the scoring quality of the independent rater
(MA), we computed Cohen’s kappa coefficient [78] between the independent rater and
the consensus of two expert raters and obtained a substantial agreement with κ=0.649
(p < 0.0005). Finally, to assess intra-rater variability, two separate ratings were performed
with an interval of 5 days by the same rater MA to compute kappa statistics with κ=0.530
(p < 0.0005). Based on the statistics, we can see how the inter- and intra-rater variability
between human raters potentially affect the collateral scoring.

3.4.7 Computation Times

Processing was done on a Windows 7 machine equipped with an Intel(R) Core(TM) i7-
4770 CPU @ 3.40GHz and 28 GB of RAM. Registration using ANTS took an average
of 19 minutes to register an individual to the template and a further 16 minutes for
vessel alignment. The other processing steps are faster, calcification removal takes under
2 minutes, vessel enhancement for individual 3D scans takes 10 seconds and the overall
scoring from the sequence of 8 patients is completed within 25 seconds. In order to reduce
the processing time of registration, in the future, we will port the pipeline to the GPU.

3.5 Discussion
The novelty of ACCESS is using the group behavior of normal controls to score the
collaterals in ischemic stroke patients. We used the robust fRMC approach to obtain the
sparsity and low-rank metrics of blood vessels in 4D CTA. Most previous methods used
other imaging techniques or did not consider the fRMC approach to score collaterals, and
thus, direct comparisons with the state-of-the-art methods are beyond the scope of the
work.

Our proposed method has several advantages over previous techniques. First, very few
automated techniques rely on 4D CTA which gives detailed and dynamic filling information
of collaterals. The automatic approaches that do exist for collateral supply evaluation use
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Figure 3.10: Demonstration of γ1 and γ2 choices on AUC of the overall system.

single-phase CTA, which may result in inaccurate estimation of collaterals due to suboptimal
selection of a time point for scanning. Second, our approach is less dependent on feature
selection and training data, potentially making it more robust in practice. Specifically,
machine learning-based automatic approaches can be reliable only when there is a large
dataset to overcome overfitting. In contrast, the developed ACCESS method is reliable as
it is less independent of training. Thus not only does our method take advantage of full
dynamic flow information from 4D CTA but it is also automatic and yields results inline or
better than previous methods. Furthermore, the assessment of the final score resembles the
definition of collateral circulation status, which is more intuitive for physicians to employ.

Experiments as well as existing studies [74] have proved that the reference parameters
from the state-of-the-art medical imaging registration toolkit, ANTs, used in the registration
blocks of the pipeline are robust for our applications (i.e., registration to the template
and fine alignment of vessels). To test the impact of vessel segmentation parameters and
the threshold used in post-processing, a sensitivity analysis was performed to obtain the
optimal parameters for final evaluation. Based on the optimal parameters, collateral grading
performance is analyzed using an ROC curve to find cutoffs for scores from different cutoff
value settings in a leave-one-out approach. The experimental design of parameter choices
with the best sensitivity and specificity gives a satisfactory AUC for scoring collateral
circulation. This also makes our method more robust.

As noted previously, fRMC is independent of tunable parameters. To assess the impacts
of the convergence parameters, γ1 and γ2 in the extended Frank-Wolfe optimizer, we evaluate
the performance of ACCESS varying γ1 and γ2 in the step size of 0.1 following the range
of 0 ≤ γ1 ≤ γ2 ≤ 1 with best τ obtained from previous sensitivity analysis. It can be seen
in Fig. 3.10 that ACCESS performance in terms of AUC is fairly stable across different γ1
and γ2. Note that when only γ1 is set to 0, the AUC decreases slightly (from 0.85 to 0.81).

Although our method does not require much data for the evaluation, in the future,
the cohort of normal subjects can be enriched for better performance. A more thorough
validation of ACCESS is still needed, with a larger dataset from different CT scanners and
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acquisition protocols, and this will be explored in future work.
The extent of collaterals in intermediate and good subjects was very similar in some

cases. Since inter- and intra-rater variability still remains for scoring those subjects, we will
seek further validation of our method with ground truth labels collected from the consensus
of more raters to improve data annotation quality.

3.6 Conclusion
In this work, we proposed the ACCESS method for automatic scoring of collateral
circulation in the context of treatment decision-making in ischemic stroke. To the best of our
knowledge, it is the first approach with low-rank and sparse decomposition for collateral
score evaluation in ischemic stroke using 4D CTA. With an analog to existing collateral
scoring protocols and being less reliant on machine learning methods that require large
amounts of training data, the approach may be more robust than human-rater scoring and
more easily comprehensible in the clinical environment.
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Chapter 4

Deep Learning for Collateral Evaluation
with Imbalanced Data

Preface
This chapter is based on our published paper [79].

In the previous chapter 3, we performed an automatic assessment of collaterals following
radiologists’ criteria of scoring using a quantification method. Recognizing the inherent
benefits of deep learning, which excels in automatic feature extraction, our goal was to
integrate it into the development of our collateral scoring process. Therefore, in this chapter,
we extend our efforts by using deep learning to automatically extract features from the
4D CTA. More specifically, our objective is to assess collaterals from 4D CTA scans by
harnessing the power of deep-learning networks, which have gained significant popularity
due to their ability to tackle complex problems and offer advantages in automatic feature
learning. However, a notable scarcity of large, publicly available databases containing data
from ischemic stroke patients has constrained the effective utilization of deep learning
techniques in making treatment decisions. Our contribution here lies in addressing the
challenges of limited dataset size through applying transfer learning.

To achieve this, we have employed transfer learning by leveraging a pre-trained
EfficientNet B0 network to enhance the evaluation of collaterals, employing both slice-based
and subject-level classification. Our approach involves the stacking and overlapping of 2D
slices extracted from a patient’s 4D computed tomography angiography (CTA) scans, and
we determine the patient’s final collateral grade through a majority voting scheme based
on the classification results of all these 2D Maximum Intensity Projections (MIPs).

Furthermore, we have incorporated a mechanism to handle class imbalance during the
evaluation process. Specifically, we utilize focal loss with class weights, which penalizes
the majority class appropriately, ensuring a more balanced and accurate assessment. This
work has been published in the International Journal of Computer-Assisted Radiology and
Surgery (IJCARS), and the GitHub code is available at: https://github.com/mumuaktar/
DL_imbalanced
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Abstract
Collateral evaluation is typically done using visual inspection of cerebral images and thus
suffers from intra- and inter-rater variability. Large open databases of ischemic stroke
patients are rare, limiting the use of deep learning methods in treatment decision-making.
We adopted a pre-trained EfficientNet B0 network through transfer learning to improve
collateral evaluation using slice-based and subject-level classification. Our method uses
stacking and overlapping of 2D slices from a patient’s 4D computed tomography angiography
(CTA) and a majority voting scheme to determine a patient’s final collateral grade based
on all classified 2D MIPs. Class imbalance is handled in the evaluation process by using
the focal loss with class weight to penalize the majority class. We evaluated our method
using a 9-fold cross-validation performed with 83 subjects. A mean sensitivity of 0.71,
specificity of 0.84, and a weighted F1 score of 0.71 in multi-class (good, intermediate, poor)
classification were obtained. Considering the treatment effect, a dichotomized decision is
also made for collateral scoring of a subject based on two classes (good/intermediate and
poor), which achieves a sensitivity of 0.89, and specificity of 0.96 with a weighted F1 score
of 0.95. An automatic and robust collateral assessment method that mitigates the issues
with the small imbalanced dataset was developed. Computer-aided evaluation of collaterals
can help decision-making of ischemic stroke treatment strategy in clinical settings.

4.1 Introduction
Ischemic stroke, caused by blockage of an artery that supplies blood to the brain, is one of the
leading causes of disability and death worldwide. To limit neuronal cell death due to a lack
of oxygen and nutrient flow and avoid patient disability, diagnosis and treatment of stroke
must be expedient. Restoring blood flow to the blocked arteries, known as recanalization
through endovascular thrombectomy, is one of the best treatment options for patients that
have a small infarct volume, large penumbra size, and sufficient collateral circulation (a
secondary vascular network activated when the primary arteries fail to supply sufficient
blood flow to the ischemic area of the brain) [5]. Patients with good collateral circulation
are strong candidates for revascularization as collateral circulation allows for tissue viability
and leads to favorable functional outcomes in reperfusion therapies [13]. Conversely,
patients recanalized with poor collaterals can be affected by symptomatic hemorrhagic
transformation (sHT), which may lead to death caused by reperfusion injury [13]. Thus,
evaluating the extent of collateral circulation is an important factor in ischemic stroke
treatment decision-making.

The evaluation of collaterals is most often performed by radiologists using visual
inspection of computed tomography (CT) images and thus has several drawbacks, including
intra- and inter-rater variability [22]. A recent study by Grunwald et al. [25] showed that
between individual neuroradiologists, the intraclass correlation coefficient ranges from 0.42
to 0.86 and score agreements range from 36.2% to 81.6%. Furthermore, the impact of
intra- and inter-raters’ variability through statistical analysis with moderate to substantial
agreement between raters has adverse effects on clinical outcomes, particularly when
misclassifying good and poor categories [60].

We aim to develop an automatic and efficient assessment of collateral scoring in ischemic
stroke using a CNN with transfer learning to mitigate the issues of intra- and inter-rater
variability and small and imbalanced datasets. To mitigate the issue of data deficit, we use:
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(1) a pre-trained network with fine-tuning to classify collateral scores using 4D computed
tomography angiography (CTA) data and (2) boosting of data samples by using 2D axial
maximum intensity projections (MIPs) obtained by stacking and overlapping 2D slices from
the patient’s 4D CTA.

4.2 Related Work
With the growing popularity of deep learning, recent studies [53, 54, 47, 80, 48, 81, 4]
have used convolutional neural networks (CNNs) in collateral evaluation, ischemic damage
detection, as well as in stroke classification. Do et al. [54] proposed to evaluate
ASPECTS [26] based on DWI by using a recurrent residual convolutional neural network
(RRCNN) and obtained an accuracy of 87.3%. This approach outperforms their previous
approach [53] based on a 3D CNN with an overall accuracy of 81%. More recently, Su
et al. [47] performed deep-learning-based vessel extraction from 3D CTA and automatic
collateral scoring with the best overall accuracy obtained at 80% in 4-grade scoring and 90%
with dichotomized classification using a random forest classifier. The study by Tetteh et
al. [48] proposed an automatic collateral grading approach distinguishing no flow, moderate,
and good collateral flow in 183 patients using CNN with better performance over the classic
machine learning approaches with an overall accuracy of 0.72. A 3D CNN was used by
Neethi et al. to classify ischemic, and hemorrhagic stroke patients and normal subjects
using 234 NCCT brain images. Kim et al. [4] used a deep CNN model to evaluate collaterals
automatically into good or poor categories using a larger dataset of 327 patients. The study
obtained an accuracy of 0.78, a sensitivity of 0.68, and a specificity of 0.84 along with a
good agreement with experts’ manual grading evaluating 72 patients.

Deep learning methods require a large training set, but unfortunately, large CTA-labeled
databases of ischemic stroke patients are not publicly available. Transfer learning [57]
can be used to mitigate the lack of training data. The capability of transfer learning
to mitigate the issue of overfitting due to limited medical data was shown in the study
by Swati et al. [82] who classified brain tumors and obtained an average accuracy of
94.82% using pre-trained VGG19 network. Jung et al. [80] proposed an adaptive transfer
learning approach using a SEResNext model to classify ischemic stroke in NCCT. With the
proposed pre-processing and adaptive transfer learning, they achieved an improvement of
18.72% in performance over an existing approach using a dataset of 356 patients. Recently,
EfficientNet [58] outperformed state-of-the-art CNNs in transfer learning. This architecture
scales the model’s depth, width and resolution in a balanced way through a compound
coefficient, enhancing the network’s performance. Since EfficientNet [58] outperforms the
existing transfer learning network, in this study, this model has been utilized to evaluate
collaterals automatically mitigating the issues of small imbalanced dataset.

4.3 Materials and Method

4.3.1 CTA Data

The dataset includes 83 patients with 4D CTA imaging captured on a Toshiba Aquilion
ONE 320-row detector 640-slice cone-beam CT (Toshiba medical systems, Tokyo, Japan).
Each 4D CTA case consists of 19 intermittent volume scans performed for 60 seconds with
a scanning speed of 0.75 s/rotation. Following the ASPECTS [26] protocol, two radiologists
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Figure 4.1: Our network architecture of EfficientNet B0 with transfer learning. MBConv
Blocks(B1-B7) are the basic building blocks of EfficientNet B0 which stand for inverted
residual blocks originally applied in MobileNetV2 [1].

graded collaterals visually using the 4D CTAs and considering the middle cerebral artery
(MCA) territory. Based on the extent of collateral circulation, each patient was labeled as
having good (100%), intermediate (> 50% & < 100%) or poor (< 50%) collaterals. We had
a total of 53 good, 21 intermediate, and 9 poor cases.

4.3.2 Pre-processing

All images were first registered non-linearly to a template space which was created following
an unbiased group-wise registration approach [66] with 12 healthy subjects’ CTAs using
the symmetric image normalization method (SyN) [65]. Low-rank decomposition was
used to remove any vessel calcification and white and grey matter and to extract blood
vessels from the background as in [60]. After low-rank decomposition, the volumes with
visible vasculature filling in the MCA territory have a transition of total non-zero pixel
counts compared to volumes without contrast agents in these areas (As shown in Fig. S1
of supplemental Section 4.6). For each subject, the relevant (i.e. those that have flow
information) CTA volumes were extracted automatically. From the filtered 4D volumes, a
3D maximum intensity projection (MIP) blue created, and 2D MIPs obtained by stacking
and overlapping 2D slices from the 3D MIP in the axial plane were considered as independent
samples during the training and testing of the network.

4.3.3 Network Architecture

We used EfficientNet B0, which was pre-trained on the ImageNet dataset [83]. Since the last
layers of the network are trained specifically for the 1000 classes of the ImageNet dataset,
those were replaced with a new dense layer. Adding an extra layer with an optimal number
of filters helped avoid the misclassification of intermediate cases. The output size of the last
layer was changed to classify good, intermediate, and poor cases of collaterals in the place
of 1000 units from ImageNet (see Fig. 4.1).

4.3.4 Training Details

As in [84], the images were resized to 224×224 with 3 channels to be compatible with the
EfficientNet architecture. We performed 9-fold stratified cross-validation to confirm the
same distribution of data from each class in every fold. The splitting was performed at the
subject level before the model training with slices to avoid any data leakage in testing new
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cases. Before running cross-validation to evaluate all the subjects’ classification accuracy,
the parameter set for training the model was evaluated through an ablation study performed
at the slice level using a subset of the whole dataset in both dichotomized and multi-class
classification. A batch size of 16, filter size of 128 for multi-class, and 256 for dichotomized
were identified through the ablation study (additional details available in supplemental
Section 4.6 in Fig. S2 and Fig. S3, respectively). The Adam optimizer with a learning
rate scheduler was used. The learning rate was reduced from 0.01 by a factor of 0.5 if
there were no improvement after 7 epochs (Example curve in Fig. S4 in supplemental
Section 4.6). Early stopping and dropout (rate=0.2) were used to prevent overfitting, and
vertical flipping, random rotations, translations, and contrast changes were applied during
training for data augmentation.

4.3.5 Effect of Loss Function

Focal loss, which reshapes the standard cross-entropy loss as in Equation (10) [85], was used
to weigh down the contribution of the good class in training the model as the data is highly
imbalanced:

Focal loss, Fl = −(1 − pb)γlog(pb) (6)
where the term (1 − pb)γ works as a modulating factor to adjust the cross-entropy loss
using γ=2 based on the higher or lower value of probability, pb. Along with this, higher
class weights (calculated based on the total number of samples) were assigned to poor
and intermediate class samples compared to the good class to prevent the easy examples
from oppressing the model training. The final loss function considering the class weight is
expressed as follows, akin to the approach in the reference study [85], where the authors
introduced an α-balanced variant of the focal loss to enhance accuracy:

Focal loss, Fl = −αt(1 − pb)γ log(pb) (7)

Here, αt represents the class weight under consideration in our specific case.
An example is used (See Fig. S5 in the supplemental Section 4.6) to demonstrate that

for both types of classification, the focal loss is minimized more than the traditional cross-
entropy loss.

4.3.6 Collateral Circulation Evaluation

Collateral scoring was performed in two stages: (1) slice-based classification with the
EfficientNet B0 using transfer learning and (2) subject-level classification with majority
voting. Collateral assessment was performed using both multi-class classification as good,
intermediate, and poor collaterals and dichotomized classification combining good and
intermediate to one class and poor as another class of collaterals. This dichotomized
evaluation was performed similarly to the study of Su et al. [47] where the Tan score [31]
is converted into two groups: 0-1 (no collaterals-poor collaterals) and 2-3 (moderate-good
collaterals) since the first group did not affect treatment whereas the second group showed a
substantial effect in treatment in the MR CLEAN trial. We thus looked at both a multi-class
and dichotomized assessment using the same settings of model and parameters.

4.3.6.1 Slice-based Classification

For slice-based classification, 2D slices were used from 4D CTA using a stacking and
overlapping strategy to increase the data samples. Previous studies have followed various
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slicing techniques, for example, strided slicing by Neethi et al. [81]). Among the total 160
2D axial slices of the dimension of 221×221 from the 3D MIP of a 4D CTA subject, slices 1
to 20 and 146 to 160, which contain little to no vascular information, were discarded similar
to the study by Sarraf et al. [86]. For slices between 21 and 145, 2D MIPs of the slices being
stacked and overlapped were used so that features related to blood flow through the vessels
could be better captured. The final strategy for obtaining 2D MIPs was decided through
sensitivity analysis (Further details available in supplemental Section 4.6 Table S1).

4.3.6.2 Subject-level Classification

To classify each subject as good, intermediate, or poor, the best model was applied to all
the 2D MIPs of that subject. To determine the class of the test subject, a majority voting
approach was used, as described in Sarraf et al. [86] which works as follows: considering
a test subject, Ts with a total number of N 2D MIPs which are classified at first by the
proposed model as good, intermediate or poor classes. The probability of a class being
good, intermediate, or poor blue calculated based on the total number of 2D MIPs that
belong to that class, Nc such that Pc = Nc

N . The final class for each subject, Ts is thus the
class with the highest probability.

4.3.7 Transfer Learning Strategy

To perform slice-based classification with the EfficientNet B0, we used the weights from
the pre-trained ImageNet dataset. Only the weights in the top layers (layers close to the
output) were tweaked to extract specific features from our dataset. Fine-tuning performance
varies based on the dataset and problem domain as shown in the studies by [87] and [88]
where layer-wise tuning and fine-tuning a pre-trained network rather than the full network
respectively showed more robustness. According to the study by [89], the earlier layers of
the pre-trained network mainly concentrate on image edge and color information whereas
the top layers focus on details of the specific class label which needs more fine-tuning over
the pre-trained weights. Similar to these studies, in our case, rather than fine-tuning the
convolutional layers’ weights, adding a dense layer along with batch normalization and
dropout and tweaking the weights of the dense layer with the output layer helped balance
the performance of each class given the few examples in the poor class.

4.3.8 Performance Metrics

As the dataset is imbalanced (typical in the domain), accuracy is not an appropriate metric
to evaluate performance; therefore, sensitivity, specificity, and weighted F1 score are used
(Table 4.1). Specificity is reported to show the true negative rate which has a significant
impact on treatment decision-making for ischemic stroke.

4.3.9 Experimental Setup

Training and testing were done with an Intel(R) Core(TM) i5-7500 CPU @ 3.40GHz and
48 GB of RAM processor with an NVIDIA TITAN Xp GPU with 12 GB of RAM. The
whole processing of training and testing a subject took around 1.5 hours for dichotomized
and around 2 hours for multi-class classification.
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Figure 4.2: Fine-tuning experiments. Left: Multi-class, Right: Dichotomized. FN: Full
network; L_10: Last 10 layers; L_20: Last 20 layers; L_40: Last 40 layers; DL: Dense
layer. For multi-class, unfreezing any layer except the added dense layer failed to classify
any sample from the poor class. In dichotomized, the poor cases are classified unfreezing
different blocks of layers with best performance obtained by tuning dense layer only.

4.4 Results

4.4.1 Fine-tuning

We ran five experiments unfreezing different blocks of layers of the EfficientNet B0 network.
This was done by tuning only the added dense layer, training the last 10 layers along with
the added dense layer, making the last 20 layers trainable, making 40 layers trainable along
with the added dense layer, and finally, training the whole EfficientNet B0 model. We have
shown the performance of fine-tuning experiments unfreezing different numbers of layers
of the EfficientNet B0 network at the slice level (Fig. 4.2) using a subset of the dataset.
In the case of both classifications (Fig. 4.2), unfreezing the full network failed to classify
any sample of poor cases. This is because the full network training caused the loss of the
general image features obtained from the pre-trained convolutional layers, thereby leading
to overfitting the small number of poor cases. The maximum number of slices from good,
intermediate, and poor classes are classified, tuning only the added dense layer for both
types of classification. To obtain the optimal result at the subject level, we have analyzed
the performance of slice-based classification over 9-folds with a mean sensitivity of 0.66
for multi-class and 0.71 for dichotomized classification. The mean sensitivity of individual
classes was 0.69 (and SD= 0.11), 0.64 (and SD=0.10), and 0.64 (and SD=0.17) for good,
intermediate, and poor classes respectively (with a minimum average sensitivity of 0.57
and a maximum average sensitivity of 0.74) for multi-class classification. For dichotomized
classification, the mean sensitivity of 0.67 (and SD=0.1) for the good class and 0.75 (and
SD= 0.15) for the poor class were obtained with a minimum average sensitivity value of 0.60
and a maximum average sensitivity value of 0.80. Although the slice-based classification
showed moderate performance with a slightly higher deviation over 9-folds in case of poor
cases (due to lack of training samples) by using majority voting, a good performance in
subject-level is achieved.

Since our main target is to evaluate individual subjects with majority voting based
on slice training, the fine-tuning result was checked at the subject level as well. Fine-
tuning in the dichotomized classification performed on the last 20 layers of the network
gave better results for the good (sensitivity = 0.81) class but caused overfitting of the poor
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cases (sensitivity = 0.56) due to a lack of samples.

4.4.2 Performance Comparison

We compared our model to a pre-trained VGG16 network and a recent study using a CNN
by Kim et al. [4] applied to our dataset. To evaluate the VGG16 model’s performance for
both dichotomized and multi-class classification of collaterals, the best parameter settings
obtained from the EfficientNet B0 hyperparameter tuning were used. The last 2-fully
connected layers of VGG16 were replaced by a dense layer of filter_size=128 for multi-class
and filter_size=256 for dichotomized classification following a dropout layer. The study of
automatic grading into good and poor collaterals by Kim et al. [4] utilized 255 patients’
data to train and 72 external data for validation. To prepare data for training their method,
arterial, capillary, and venous phase images were extracted using the scanning protocol of
our 4D dataset (peak phase of volumes 5-10 for the arterial, 11-14 for the capillary and
15-19 for the venous phase) to make the 3 channel image. The DL architecture used in the
study of Kim et al. [4] comprised of 4 convolutional layers with ReLu activation following
max pooling layers and 2 fully connected layers. Since the number of filters used in each
layer of the study is not mentioned, we have fine-tuned the network and obtained a best
model with 16,32,64,128,256 and 512 filters sequentially for the 6 layers. Using similar
data augmentation and learning rate as in [4], the model did not perform well, and thus to
match with our proposed model for comparison, the same augmentation and learning rate
scheduler were applied as our model.

Table 4.1 shows the results of all classification models in the subject level. As can
be seen, VGG16 has a reasonable performance in the case of dichotomized classification
with a sensitivity of 0.91 (the proposed method’s sensitivity is 0.96) while for multi-class
classification, it has an average sensitivity of 0.58 (our proposed method has an average
sensitivity of 0.71). The performance of the proposed model as well as VGG16 for classifying
intermediate cases in multi-class classification has poor sensitivity compared to other classes.
This is due to the less evident visual difference between good and intermediate cases which
leads the model to classify intermediate cases as good. It is evident that our proposed
approach has shown better performance (weighted F1-score=0.95) over the CNN Proposed
by Kim et al. [4] (weighted F1-score=0.72) in dichotomized classification and therefore, for
all cases, our proposed method has the highest sensitivity, specificity and weighted F1-score
over the other compared methods. The method of Kim et al. [4] performed worse due to the
lack of necessary training samples for both classes as the DL method needs a large amount
of data such as was used in their study [4].

4.5 Discussion and Conclusions
We proposed an automatic approach to collateral scoring using the pre-trained EfficientNet
B0 network and transfer learning with a limited and imbalanced training dataset. This is
a novel method for automatic collateral evaluation using 4D CTA, which overcomes the
problem of the unavailability of large stroke datasets. The concept of considering 2D MIPs
following the overlapping and stacking strategy of 2D axial slices also helps to attenuate
the effect of lack of data as well as provide significant sequential distinguishing features.

Deep networks have an advantage over traditional machine learning approaches in that
specific features are extracted automatically rather than being hand-crafted. Extracting
generic image features from the pre-trained EfficientNet B0 network can also speed up
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Table 4.1: Performance comparison of the proposed model at subject-level with pre-trained
VGG16 network and recent study of collateral grading by Kim et al. [4]

Type of
collateral
Grading

Network Collateral
Grades

Sensitivity Specificity Weighted
F1-Score

Multi-class
classification

EfficientNet
B0

Good 0.72 0.80
0.71Intermediate 0.62 0.82

Poor 0.78 0.89

VGG16
Good 0.68 0.63

0.61Intermediate 0.38 0.79
Poor 0.67 0.88

Dichotomized
classification

EfficientNet
B0

Good/ inter-
mediate

0.96 0.89 0.95

Poor 0.89 0.96

VGG 16 Good/ inter-
mediate

0.91 0.67 0.89

Poor 0.67 0.91
Proposed
CNN by Kim
et al. [4]

Good/ inter-
mediate

0.66 0.55 0.72

Poor 0.55 0.66

convergence. Although the study by Do et al. [53] considered 3D CNN models to assess
ASPECTS automatically with DWI, the study needed a larger dataset of 312 subjects
to detect early ischemic changes whereas our proposed approach can evaluate collaterals
using a small number of samples with 2D MIPs by taking advantage of transfer learning.
The performance of our study is also comparable to the study by Su et al. [47] where
collaterals were scored automatically using random forest after vessel extraction through
DL. However, their approach used hand-engineered features based on the ratios of vessel
length and volume. The recent study by Kim et al. [4] to grade collaterals into good and
poor categories with which the proposed model is compared, performed the classification
with CNN using a large dataset of 327 patients and it failed to distinguish the two classes
with less training samples.

Our method has shown that tuning only the output layer along with a new dense
layer, which mostly helped in evaluating intermediate cases, yields better performance over
tweaking weights of the convolutional layers. This is because the convolutional layers of
EfficientNet B0 mostly extract low-level features [89] whereas fine-tuning the last layers
helps extract the distinguishing features of the 3 classes. This finding matches the outcome
by the study of Tajbakhsh et al. [87]. Although layer-wise tuning showed better performance
in that study, tuning the last fully connected layers can be sufficient when using transfer
learning since those layers can extract problem-specific distinguishing high-level features.
Starting from the pre-trained weights with general low-level features can save the network
from the undesirable local minimum which is caused by iterative random weight updates
in a small labeled dataset [87]. The robustness of the fine-tuned pre-trained network to the
size of the training dataset over the full-trained network was also supported in the study
of Mehra et al. [88] where the pre-trained VGG16 yielded the best performance with the
highest accuracy as a feature extractor.
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The developed method is able to handle extremely imbalanced class samples through
the use of focal loss where the majority class is penalized. This allowed us to classify
most cases correctly in the dichotomized experiment. The dichotomized classification
shows better performance over the multi-class and clinically is more important in terms
of endovascular treatment decision-making. Further, we can utilize temporal information
to better distinguish good and intermediate cases to enhance the performance of multi-class
collateral evaluation, too.

Although 2D MIPs from 4D CTA helped overcome the lack of training data and stacking
strategy provided significant vascular flow, considering the 3D MIPs further from 4D CTA
with 3D deep transfer learning networks should be considered in the future work. Since some
important vascular features can be missing while using 2D samples from 4D temporal data,
3D Siamese network as few-shot learning can be an interesting extension to this research to
handle small and imbalanced dataset similar to the study of Osama et al. [90] and Liu et
al. [91].

Our method has shown to be effective in the case of small databases, which is common in
some medical imaging domains. The developed method shows better generalization ability
due to using data augmentation and an extra dropout layer on top of the EfficientNet
architecture. Thus, the developed method has the potential to mitigate the issues in current
visual inspection-based assessments, potentially benefiting both the patients and clinical
workflow.
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4.6 Supplementary material for Chapter 4

4.6.1 Extraction of relevant CTA volumes

Fig 4.3 refers to the automatic extraction of significant volumes from a 4D CTA.

Figure 4.3: Curve showing the continuous flow of contrast agent in informative volumes
(v7-v15) and separated non-informative volumes (v1-v6, v16-v19) of a subject extracted
automatically based on non-zero pixel count.

Since the timing in contrast filling to MCA varies between subjects, the number of
selected relevant volumes varied (e.g. for one subject, 7-15 (total: 9 volumes) were the
relevant volumes whereas for another subject it was volumes 8-13 (total: 6 volumes)).

4.6.2 Ablation study

A subset of the training set is at first considered to identify the batch size for both types
of classification. As seen in Fig. 4.4, although the performance fluctuates with batch size
(and more so in the case of dichotomized classification), for a batch size 16 both types of
classification have the highest performance.

we ran several experiments for both dichotomized and multi-class classification to
identify the filter size for the dense layer. The result can be found in Fig. 4.5 which shows

Figure 4.4: Determination of final batch size based on sensitivity obtained from the
experiment of a small subset for both types of classification.
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Figure 4.5: Sensitivity for varying filter sizes (Left: multi-class with filter_size=128 and
Right: dichotomized with filter_size=256 shows best average performance for classes).

Figure 4.6: Effect of learning rate scheduler in loss minimization.

that best performance is obtained for multi-class and dichotomized classification with 128
and 256 filters respectively.

4.6.3 Selection of Learning rate

Fig 4.6 shows the changes of loss with varying learning rate. As epoch increases, loss is
minimized. In epoch around 55, there is a transition of learning rate reduction to improve
loss minimization further. It can be seen that at around epoch 90, with the reduced learning
rate, the loss is minimized to 0.23.

4.7 Advantage of focal loss over cross-entropy loss
A curve 4.7 is drawn to see the performance of focal loss over cross-entropy loss. For
both multi-class and dichotomized classification, focal loss starts from a lower value and
minimizes more than the cross-entropy loss

4.7.1 Sensitivity analysis of slicing strategy

We evaluated four different methods (Table 4.2) for deciding the final slice stacking strategy.
Each method uses slices 71 to 126 individually as this is the area that contains the
important contrast filling information. On top of this we consider (1) using only single
slices throughout, (2) merging every 10 sequential slices, (3) merging 10 sequential slices
along with overlapping using an interval of 5 slices to increase the number of samples, and
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Figure 4.7: Example curve showing performance of focal loss over cross-entropy loss. For
both cases, focal loss starts from a lower value and minimizes more than the cross-entropy
loss.

Table 4.2: Slicing for 2D MIPs based on stacking and overlapping strategy

2D MIPs Collateral Grading Number of Samples Sensitivity

Single Slices from 3D
MIPs

Good 6625 0.63
Intermediate 2625 0.51

Poor 1125 0.39

Slices (10) merging;
No overlapping

Good 2968 0.56
Intermediate 1176 0.70

Poor 504 0.56

Slices (7) merging
with overlapping (5)

Good 3621 0.65
Intermediate 1504 0.74

Poor 721 0.69
Slices (10) merging
with overlapping
(5)

Good 3498 0.68
Intermediate 1386 0.77

Poor 598 0.78

(4) merging 7 slices with the same overlapping to check the performance. Based on the
analysis and performance, the final slicing strategy of merging 10 slices and overlapping
with an interval of 5 was done as follows:

• Slices 21 to 70 & 127 to 145: Every 10 slices stacked together into one MIP with an
overlap of 5 slices (e.g. 21 to 30, 26 to 35, 127 to 136, etc.)

• Slices 71 to 126: used following the same overlapping strategy as well as individually
(these contain the most distinguishing features between the three classes with the
contrast agent filling the MCA territory.)

Based on this stacking, from a total of 83 subjects, there were 3498 2D axial MIPs for
good, 1386 for intermediate, and 594 for poor cases.
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Table 4.2 shows that although single slices helped increase the total number of training
and testing samples, this has poor performance in collateral grading. We posit this is
because the single slices provide fewer vasculature features. The best performance was
obtained with merging and overlapping slices which helps increase data samples as well as
provide better 3D vasculature information. Although 7 slices merging increased the data
samples, it failed to supply more valuable vasculature features.
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Chapter 5

A Radiomics-based Machine Learning
Approach to Assess Collateral Circulation
in Ischemic Stroke on Non-contrast
Computed Tomography

Preface
This chapter is based on our published paper [92].

Our previous methods described in chapters 3 and 4 implemented automatic collateral
evaluation approaches using 4D CTA, whereas this chapter demonstrates the use of non-
contrast computed tomography (NCCT) scans, which are readily available and safe for
clinical use for the collateral scoring with machine learning. The focus is on assessing
collaterals from ischemic damage in stroke using the ASPECTS terminology. Collaterals
were assessed using 4D CTA as a ground truth with radiologist observations. Radiomic
features were extracted separately from the left and right hemispheres to capture non-
symmetry between them and to categorize collaterals as good, intermediate, or poor using
support vector machines (SVM). The method leverages NCCT to detect tissue degeneration
and identify regions with insufficient collateral circulation. This work was presented in the
Multimodal Learning for Clinical Decision Support and Clinical Image-Based Procedures
(CLIP) MICCAI workshop in 2020. The Github link for the implementation code is available
at: https://github.com/mumuaktar/MICCAI-CLIP
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Abstract
Assessment of collateral circulation in ischemic stroke, which can identify patients for
the most appropriate treatment strategies, is currently conducted with visual inspection
by a radiologist. Yet numerous studies have shown that visual inspection suffers from
inter and intra-rater variability. We present an automatic evaluation of collaterals using
radiomic features and machine learning based on the ASPECTS scoring terminology
with non-contrast computed tomography (NCCT). The method includes ASPECTS region
identification, extraction of radiomic features, and classification of collateral scores with
support vector machines (SVM). Experiments are performed on a dataset of 64 ischemic
stroke patients to classify collateral circulation as good, intermediate, or poor and yield
an overall area under the curve (AUC) of 0.86 with an average sensitivity of 80.33%
and specificity of 79.33%. Thus, we show the feasibility of using automatic evaluation
of collateral circulation using NCCT when compared to the ASPECTS score by radiologists
using 4D CT angiography as ground truth.

5.1 Introduction
Acute ischemic stroke (AIS) caused by blocked arteries in the brain is one of the leading
causes of death worldwide. Treatment strategies of AIS vary from intravenous tissue
plasminogen activator (IV-tPA) to endovascular thrombectomy treatments (EVT) based
on the time window and patients’ conditions. EVT is one of the best treatments for
restoring blood flow through blocked arteries but its success rate depends on the extents
of a patient’s collateral circulation. Collateral circulation is a secondary vascular network
that is recruited temporarily that allows for the survival of viable brain tissues when the
main conduits fail due to ischemic stroke. The extent of leptomeningeal collateral flow
from the middle cerebral artery (MCA) flowing to the anterior cerebral artery (ACA) and
posterior cerebral artery (PCA) has been shown to be a radiologic surrogate predicting
the response of revascularization therapy [12]. However, scoring of the collaterals manually
following conventional radiologic strategy suffers from the intra- and inter-rater variability
[60, 22, 25], less reliable results, and is time-consuming. Some studies have compared the
automated approach with visual inspection based on ASPECTS evaluation having greater
agreement (κ = 0.90) than neuroradiologists [93] or slightly worse agreement than human
expert ratings [94]. Therefore, developing automatic and robust approaches to collateral
evaluation in AIS based on systematic radiologic criteria and methods is important. A
number of different approaches have been proposed to score collaterals, for example,
ASPECTS (Alberta Stroke Program Early CT Score) [26], the collateral score of the Society
of NeuroInterventional Surgery/Society of Interventional Radiology (ASITN/SIR) based
on conventional angiography [27] which is adapted to be applicable to dynamic computed
tomography angiography (CTA) further in the study of Sekar et al. [41], the scores of
Christoforidis et al. [28], Miteff System [29], Mass System [30], modified Tan Scale [31],
regional leptomeningeal collateral score (rLMC) [32], collateral evaluation with 4D-CTA
based on ASPECTS [42], [5], and ACCESS [60].

ASPECTS is one of the most reliable, systematic and robust approaches shown to have
positive clinical outcomes in ischemic damage detection in many studies (e.g. [95, 96, 41, 97,
98, 99]) with baseline CTA source images(CTA-SI), CT perfusion images(CTP), contrast-
enhanced CT (CECT), non-contrast CT (NCCT), and timing invariant CTA (TiCTA)
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modalities respectively. Although some studies [100, 101, 95] show that contrast-enhanced
CT has superior performance delineating brain vasculature, these are limited to manual
intervention or semi-quantitative approaches.

Different studies (Brainomix: e-ASPECTS, e-CTA, iSchemaView: Rapid CTA, Rapid
ASPECTS, Syngo.via Frontier ASPECT Score Prototype V2: not clinically approved) have
focused on automating ASPECTS using artificial intelligence and feature-based machine
learning. The e-ASPECTS® software from Brainomix Ltd. (Oxford, UK) and RAPID
ASPECTS® by iSchemaView (Menlo Park, USA) are the only two certified clinical software
for ischemic damage detection using ASPECTS on NCCT. Although they are not intended
yet to be used as stand-alone diagnostic tools, both suggested NCCT as an alternative to
CTP for ischemic damage quantification [102]. The ability of NCCT to work as the stand-
alone diagnostic tool extracting much clinical information was shown by Sheih et al. [98].
In their work, the authors compared diffuse hypoattenuation and focal hypoattenuation on
contralateral hemispheres in 10-ASPECTS regions and obtained an area under the curve
(AUC) of 90.2% for a total of 103 subjects. The study by Kuang et al. [97] also performed
contralateral analysis using a machine learning-based approach to assess early ischemic
changes by classifying the 10-ASPECTS regions based on the differences of contralateral
texture features. Taking diffusion-weighted imaging (DWI) as ground truth, this study with
257 patients obtained an AUC of 0.89 between the proposed method and experts’ reading.
Our work resembles Kuang et al. [97] in that it uses contralateral radiomic features, however
unlike their work we evaluate collateral circulation rather than early ischemic damage.

Since NCCT is easily available and used as a front-line diagnostic tool in clinical settings,
also being free from contrast agent that can cause adverse effects to some patients, we used
NCCT to automatically assess scoring in acute ischemic stroke based on the ASPECTS
terminology. Unlike most of the state-of-the-art methods of automating ASPECTS to
obtain ischemic damage by assessing hypoattenuation using DWI as ground truth, we used
4D CTA as ground truth to evaluate collaterals scored through observing multiple phases by
radiologists. We aim to evaluate collaterals using NCCT with radiomic feature extraction
in the MCA territory of left/right hemispheres and classify them into good, intermediate, or
poor categories with support vector machines (SVM). Since brain collaterals vary between
individuals and represent symmetric characteristics between left/right hemispheres of the
same individual, we extracted radiomic features from each side of the hemispheres of a
subject separately and took the difference between them to obtain the non-symmetry.
Fig. 5.1 shows the different collateral categories in contrast-enhanced CTA. To the best of
our knowledge, this is the first study using NCCT to evaluate the collateral circulation. The
underlying assumption of our novel approach is that we can identify regions with insufficient
collateral circulation using radiomic features based on tissue degeneration which may be
captured on NCCT and score the extent of collaterals using these features.

5.2 Materials and Methods

5.2.1 Scanning Protocols

We have evaluated our method with 8 poor, 17 intermediate, and 39 patients with good
collaterals. All 64 subjects underwent imaging at the Montreal Neurological Hospital
(Montreal, Canada). A Toshiba Aquilion ONE 320-row detector 640-slice cone-beam CT
(Toshiba medical systems, Tokyo, Japan) scanner, which provides whole-brain perfusion
and dynamic vasculature information in one single examination with a single rotation of
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Figure 5.1: From left to right, an example of good, intermediate and poor collaterals on
contrast-enhanced CTA. The blue arrow indicates the occlusion on the MCA.

the gantry, was used to capture the 4D CTA. A series of intermittent volume scans are
performed for 60 seconds with a scanning speed of 0.75 s/rotation to capture a total of 19
volumes for each patient with low-dose scanning for every 2s during the arterial phase and
5s during the venous phase. The 19 volumes are divided into 5 groups according to the
tube current. The first volume, which we used in our method, was captured before contrast
arrival. Isovue-370 (Iopamidol) was used as the non-ionic and low osmolar contrast medium
to visualize the vessels in the remaining volumes.

5.2.2 Ground Truth Labels

The ground truth for collateral circulation was based on scoring by two radiologists
examining the 4D CTA images. Following the ASPECTS scoring terminology, the
radiologists’ defined patients with 0-50% collaterals as poor, greater than 50% and less
than 100% as intermediate and 100% collaterals as good.

5.2.3 Mapping of ASPECTS Regions

Prior to the collateral evaluation, we employed atlas registration to align the 10-ASPECTS
regions in all patients. The atlas is generated by extracting the ASPECTS regions from
the MNI structural atlas and Harvard Oxford atlas using FSL. Following the ASPECTS
score in acute stroke1 and the study of Pexman et al. [26], we extracted the insular
ribbon (I), caudate (C), Lentiform nucleus (L), internal capsule (IC), M1 (anterior to the
anterior end of the Sylvian fissure including frontal operculum), M2(anterior temporal lobe),
M3(posterior temporal lobe), M4 (Anterior MCA territory), M5 (Lateral MCA territory)
and M6 (Posterior MCA territory). These are rostral to basal ganglia and approximately
2cm superior to M1, M2 and M3, respectively.

Three steps were performed to map the atlas to the subject brain. First, as the atlas we
extracted is in MNI template space, it was mapped onto an average CT template (created
using 12 healthy subjects’ brains following the unbiased group-wise registration approach
by Fonov et al. [66]) using affine registration. Next, the CT template was registered to the
subjects’ native space using symmetric normalization (SyN). Finally, the transformations
obtained from the previous steps were used to map the atlas to each subject to delineate
specific ASPECTS regions in all subjects. All registration steps were done using ANTs

1http://aspectsinstroke.com/
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(Advanced Normalization Tools)2. We extracted the brain from each subject using FSL
following the study of Muschelli et al. [103]. Fig. 5.2 shows the ASPECTS regions mapped
onto a subject.

Figure 5.2: The 10-ASPECTS regions mapped to an individual patient’s brain

5.2.4 Pre-processing

The skull was removed from the NCCT images following the study of Muschelli et al. [103].
In this work each image is thresholded within the brain tissue range of 0-100 Hounsfield
units (HU) before skull stripping thus removing any calcifications with very high-intensity
values, which were present in some of our patients. Further, a Gaussian pyramid from the
multi-scale image representation approach using the kernel from the study of Burt et al.
[104] was applied to perform smoothing and sub-sampling by one level to all subjects.

5.2.5 Image Features

The study of Shieh et al. [98] shows that ischemic damage can be identified through focal and
diffuse hyper attenuation occurring in any ASPECTS region. Following the study of Shieh
et al., a deviation and a contrast map were extracted from each side of the brain in order
to highlight the areas with insufficient collaterals due to ischemic damage. The deviation
and contrast degradation in the areas with less collaterals can be obtained comparing the
difference between affected and unaffected sides of the brain. Therefore, the deviation map,
Dmap is generated from each side of brain by subtracting each voxel’s intensity, V (x, y, z)
from the mean voxel intensity, Vµ and normalizing it with the standard deviation, Vσ using
the equation 10.

Dmap = V (x, y, z) − Vµ

Vσ
(8)

On the other hand, a contrast map is obtained from each side choosing the edges with
maximum gradient using the Sobel operator. Rather than comparing the deviation and
contrast map between both sides using threshold as the study of Shieh [98], radiomic features
are extracted automatically from the maps separately to obtain the spatial relation of voxels
and finally the difference between features from each hemisphere is taken (Fig. 5.3 shows

2stnava.github.io/ANTs
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the feature maps with the radiomic features). The feature classes used include radiomic
features for the 3D subjects from the study of Van et al. [105], as described below.

5.2.5.1 Gray Level Co-occurrence Matrix (GLCM):

The co-occurrence of voxels for specific values are used to examine the textures of the images
by statistical measurement of energy, contrast, entropy, homogeneity, correlation, variance,
sum average, autocorrelation, and dissimilarity.

5.2.5.2 Gray Level Size Zone Matrix (GLSZM):

The gray level zone of each subject is quantified by computing the number of voxels that
share the same gray level intensity in a 26-connected region.

5.2.5.3 Global Features:

Along with GLCM and GLSZM, the global features of mean, energy, entropy, variance,
skewness, and kurtosis of the entire MCA territory from both sides were considered.

In total, 56 features are extracted from the deviation and contrast maps from each side
of the brain.

Figure 5.3: Feature maps with occlusion and radiomic features (a) Original brain image (b)
Deviation maps of left and right hemispheres with highlighted occlusion (c) Contrast maps
of both sides with the degradation shown in a polygon (d) Radiomic features

5.2.6 Classification of Collaterals

Before feeding the radiomic features obtained from the difference of the hemispheres into a
classifier, they were ranked using Principal Component Analysis (PCA) with 97% variance.
Fig. 5.3 (d) shows the radiomic features’ correlation with the first two principal components
where the color bar represents the weight of correlation. For example, the GLCM features:
d_Entropy, d_Homogeneity from the first principal component have the highest correlation
of 0.19 with the principal component which is also visible from the color bar range. The
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Figure 5.4: ROC curve showing classification performance of good, intermediate, and poor
collaterals.

feature names are distinguished starting with ’d’ for the deviation map and ’c’ for the
contrast map. These are then fed into the One-Vs-Rest SVM classifier with the radial basis
function (RBF) kernel using balanced class weight (to penalize the majority class) to classify
collaterals into good, intermediate, or poor cases.

5.3 Results
We applied k-fold (k=10) cross-validation and the performance of the developed method
was evaluated using receiver operating characteristic (ROC). We obtained an overall area
under the curve (AUC) of 0.86 for best sensitivity and specificity with AUC of 0.85 for
poor, 0.90 for intermediate, and 0.83 for good collaterals (Fig. 5.4). An average sensitivity
of 80.33% and specificity of 79.33% were obtained by taking the mean true positive and false
positive rates of the three classes. The feature ranking and classification were performed
using scikit-learn [106].

Further, we compared SVM performance with the Random Forest (RF). However, due
to our small sample size and imbalanced dataset, RF performed extensive model selection
which led to over-fitting. Thus although we had a high training accuracy (98%), the testing
accuracy was 55% in the case of RF.

All the experiments were performed on a Windows 7 machine equipped with an Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz and 28 GB of RAM. The robust and automatic
approach grades collaterals quickly (i.e. in approximately 10 minutes with 3 minutes for
the registration step, less than 6 minutes for feature extraction and 1 minute to classify a
single patient).
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5.4 Discussion
In the current study, we developed an automatic approach for collateral grading based
on ASPECTS terminology using NCCT. This is a novel modality for assessing collaterals
which are an independent predictor of good clinical outcomes. Most of the studies use
dynamic CTA to assess the collateral grading whereas we proposed classifying collaterals
based on ischemic damage from NCCT which requires less time, no bolus, and less radiation.
To analyze the relationship between ischemic damage and collateral status, the agreement
between e-CTA, which assesses collaterals with machine learning using CTA-CS [31] and
e-ASPECTS from e-STROKE SUITE (Brainomix Ltd.,) is shown in the study of Grunwald
et al. [25]. Our method uses 4D CTA as ground truth to obtain the collateral status from
multiple phases and assesses it automatically from single-phase NCCT which resembles
radiologists’ scores and methodology.

The proposed method automatically scores collaterals using SVM based classifier, which
is a popular classification method used in many other ischemic stroke analysis studies and
more insights can be found in the study of Kamal et al. [107]. Since each subject’s
bilateral sides resemble each other, the collateral extent can be identified from the non-
symmetry of both sides. Following this idea, the difference of radiomic features between
each side helps to identify ischemic damages automatically without manual intervention,
indicating insufficient collateral regions in the MCA territory. The atlas-based ASPECTS
regions mapping to individual patients helps to improve the performance of the classifier
and validate our method based on the popular ASPECTS scoring terminology.

A limitation of this study is the small dataset, which is the main challenge of training
a classifier. To have a reasonable ratio of train test data, we used 10-fold cross-validation.
Since we have only 8 poor cases, this splitting does not confirm a poor case to test in each
fold. In future work, we will validate our method’s performance with more data before
applying it to clinical trials.

5.5 Conclusion
In conclusion, we have implemented a machine learning-based collateral grading method
using NCCT that may replace high-contrast and radiation-based CTA. By using 4D CTA-
based collateral scoring as ground truth, this novel approach can evaluate collaterals from
the tissue degeneration extracted by radiomic features in NCCT. Our results show the
feasibility of using NCCT to help physicians identify suitable patients for revascularization
in AIS.
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Chapter 6

SCANED: Siamese Collateral Assessment
Network for Evaluation of Collaterals
from Ischemic Damage

Preface
This chapter is based on our submitted paper [108].

This chapter presents the use of Siamese networks in automatic collateral evaluation for
ischemic damage cases, particularly when dealing with small and imbalanced datasets. Our
method, Siamese Collateral Assessment Network (SCANED), is engineered to automatically
assess collaterals in non-contrast computed tomography (NCCT) images, frequently used in
emergencies. What sets SCANED apart is its utilization of Siamese networks, which excel
in computing similarities and are exceptionally effective at managing imbalanced data.
By harnessing the Siamese network’s inherent ability to calculate similarity, SCANED
extracts distinctive features from affected and healthy regions of the NCCT brain scans
using the 3D ResNet network. It then employs Euclidean distance as the similarity metric
to pinpoint areas of ischemic damage. Rather than relying on the conventional 0.5 thresholds
often associated with Sigmoid-based methods, SCANED determines the optimal threshold
through ROC analysis. Collaterals are subsequently categorized as either good/intermediate
or poor based on the dissimilarity observed between the left and right hemispheres, reflecting
the impact of ischemic damage on the affected side. In contrast to our previous study 5
collaterals from ischemic damage are identified in NCCT using a small imbalanced dataset
without hand-engineering of radiomic features. Instead, we employ a deep learning-based
Siamese network approach. This work is under review on Computerized Medical Imaging
and Graphics.
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Abstract
This study performs collateral evaluation automatically from ischemic damage using the
deep learning-based Siamese network, mitigating the issues of a small imbalanced dataset.
The collateral network provides an alternative pathway for oxygen and nutrient supply in
ischemic stroke cases, influencing treatment decisions. The ongoing vibrant area of research
focuses on automated collateral assessment using deep learning (DL) methods to expedite
decision-making processes and enhance accuracy. Our study employed a 3D ResNet-based
Siamese network, referred to as SCANED, to classify collaterals as good/intermediate
or poor. Utilizing non-contrast computed tomography (NCCT), the network automates
collateral identification and assessment by analyzing tissue degeneration around the
ischemic site. Relevant features from the left/right hemispheres were extracted and
Euclidean Distance (ED) was employed for similarity measurement. Finally, dichotomized
classification of good/intermediate or poor collateral is performed by SCANED using an
optimal threshold derived from ROC analysis. SCANED provides a sensitivity of 0.88, a
specificity of 0.63, and a weighted F1 score of 0.86 in the dichotomized classification. The
GitHub code will be made available.

6.1 Introduction
Collateral circulation networks are alternative paths for blood flow when main arteries
become blocked due to ischemic stroke (caused by a clot). The network comprises small
blood vessels that become active when the major vessels constrict and blood flow is reduced.
Collateral circulation plays a crucial role in predicting the clinical outcome of ischemic
stroke since good collaterals are a positive factor in providing endovascular thrombectomy
treatment. This is one of the best treatment strategies for ischemic stroke patients, which
cannot apply to all patients, particularly those with poor collaterals. Poor collaterals can
lead to hemorrhagic stroke caused by excess bleeding to the brain during endovascular
treatment. Therefore, determining the extent of collaterals is an obvious step to guide
radiologists in the further treatment of ischemic stroke patients.

Collateral assessment by radiologists, through visual inspection, suffers from inter and
intra-rater variability due to a myriad of factors, including the intricate nature of manually
assessing 3D images [60, 25]. Thus, as well as being time-consuming, manual evaluation can
lead to wrong treatment decisions. On the other hand, automatic evaluation of collaterals
by computer-aided techniques can give a quick decision and be more accessible in acute
clinical stroke. Therefore, developing robust automated scoring methods of collaterals is
active research.

Deep learning (DL) is increasingly being studied in the medical image domain due to
its capabilities of handling complex data, automatic and sophisticated feature extraction
steps, and more accurate and consistent measurement criteria. DL approaches have been
proposed for evaluating collaterals [79, 49, 50, 51], identifying ischemic damage [55, 56],
and detecting stroke [109, 110]. The issues that arise with deep learning are when available
training data are scarce. There are very limited open and large labeled datasets in the case
of stroke data.

The Siamese network, introduced by Bromley et al. [59], is a potential alternative as it
needs a minimal training set. This network has shown the outstanding performance of an
AUC of 0.91 in detecting stroke in the study by Barman et al. [110] using the inception
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Figure 6.1: An example brain with ischemic damage shown in NCCT (left) and the poor
collaterals caused by tissue degeneration (right)

module as the twin network to distinguish between left/right hemispheres. Stroke detection
is also performed with a Siamese network considering the difference of feature vectors of the
left/right hemispheres in the study by Vieira et al. [109] which achieved an F1 score of 0.72.
Furthermore, Siamese networks have shown robustness in handling imbalance data issues
by computing mRS scores (An accuracy of 0.67 for minority class and 0.61 for majority
class) in stroke by Osama et al. [90] with a 6% higher AUC for the minority class over the
majority class. Based on the concept of the Siamese network calculating the similarity with
good performance and the robust power of handling imbalanced issues, we incorporated
the network into our proposed method for the automatic evaluation of collaterals. To the
best of our knowledge, this is the first use of Siamese networks for collateral circulation
evaluation.

The developed method, Siamese Collateral Assessment Network (SCANED), aims to
score collaterals automatically from non-contrast computed tomography (NCCT) images,
which are most commonly used in an emergency setting (Figure 6.1). The distinguishing
features from the affected and good sides of the NCCT brain are extracted using the 3D
ResNet network. The main goal is to identify changes from NCCT due to ischemic damage,
resulting in tissue degeneration and further lack of collaterals. In summary, the method
performs the following steps: (1) extracts significant features with twin 3D Resnet Siamese
networks, (2) uses Euclidean distance as the similarity metric to identify ischemic damage,
(3) determines the optimal threshold by ROC analysis rather than 0.5 as a traditional
threshold based on Sigmoid, and (4) classify collaterals into good/intermediate and poor
categories based on the difference between left/right hemisphere caused by the ischemic
damage in the affected side. The robustness of the proposed approach over our previous
study [92] is to score collaterals from ischemic damage identified in NCCT using a small
imbalanced dataset without hand-engineering of radiomic features. Instead, it employs a
deep learning-based Siamese network approach.
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6.1.1 Related Work

Collateral assessment is essential in determining the optimal treatment approach for
ischemic stroke. As manual evaluation suffers from inter and intra-rater variabilities [60, 25],
current studies focus on computer-aided systems to assess the extent of collaterals. In
Table 6.1, we summarize the most related works to collateral circulation scoring, which we
describe in more detail below.

Table 6.1: Recent automatic collateral scoring techniques

Ref Data Prediction
criteria

Cases Method Results

[48] 3D MR
Perfusion

Direct and
cascaded
3-class
collateral
scoring done
by trained
neuroradiol-
ogists

183 ROI extraction fol-
lowed by feature ex-
traction with denois-
ing, autoencoder and
local image descrip-
tor and classification
with CNN, SVM, RF
and KNN

Best
performance
with
CNN+MLP
with an overall
accuracy of 0.72

[51] Cone
beam CT
(CBCT)

Quantification
of collateral
scoring by
radiologists
into 3-classes

30
(4368
CBCT
im-
ages)

2D ResNet-50 as a
classifier to evaluate
good and poor col-
laterals

Average
sensitivity
and specificity
of 0.79 and 0.96
obtained are
obtained

[50] Peak
arterial
CT
perfusion
volumes

ESCAPE
trial and Tan
score [31]

200 A CNN model to
evaluate collaterals
automatically
using axial and
anteroposterior
views into
dichotomized as
well as multiclass

Average
sensitivity of
0.88 and 0.80
for dichotomized
and multi-
class collaterals
respectively

[52] Multiphase
CTA

Positive
(good + in-
termediate)
and negative
(poor)
collaterals

82 CNN model Accuracy of 0.75
in the validation
group with an
AUC of 0.70

[25] CTA Tan System
[31]

98 Automated e-CTA
score

90% agreement
with radiologist,
intra-class corre-
lation coefficient
of 0.93
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[47] CTA 4-grade Tan
[31]

269 Deep-learning-based
vessel extraction
followed by
automatic collateral
scoring with best
results obtained by
the random forest
classifier

Overall accuracy
0.80 &
dichotomized
collateral
accuracy 0.90

[60] 4D CTA ASPECTS 54 Quantification of
filled versus unfilled
vessels

An average AUC
of 85.39%

[92] NCCT ASPECTS 64 SVM with radiomic
features of left/right
to identify ischemic
damage

Overall AUC
of 0.86 with
an average
sensitivity of
80.3% and
specificity of
79.3%.

[79] 4D CTA ASPECTS 83 Pre-trained
EfficientNet B0
network/transfer
learning

Mean sensitivity
of 0.71 in multi-
class and 0.89
in dichotomized
classification

[49] Multiphase
CTA

Tan
score [31]

173 Feature fusion from
four phases with hy-
brid attention mech-
anism

Accuracy of
90.43%

The study by Frolich et al. [45] proposed a semi-quantitative approach for collateral
assessment with 4D CTA proving tMIPs as the best indicator of regional leptomeningeal
collateral rLMC scoring [32]. The method obtained an inter-rater agreement with an intra-
class correlation coefficient of 0.78, limited to only good collaterals. Using 4D CTA and
considering the difference of intensities between left and right hemispheres, Kersten et
al. [42] found a correlation ratio of r2 = 0.71 to radiologists’ scoring. A low-rank and
sparse decomposition method that quantified the ratio of filled vs. unfilled collaterals from
left and right hemispheres resulted in an average AUC of 85.39% for three classes (good,
intermediate, poor) [60].

Due to the advantages of machine learning over traditional methods, several studies
focused on the automatic evaluation of collaterals with machine learning methods. Xiao et
al. [5] developed an automatic method for scoring collaterals in ischemic stroke by applying
support vector machines (SVM) to features extracted from 4D CTA images by PCA. The
study was performed with 37 good, intermediate, and poor collateral patients’ data with an
accuracy of 82.2%. The e-CTA software tool is based on feature-based machine learning,
validated by the study of Grunwald et al. [25]. Su et al. [47] evaluated collaterals using 4-
grade Tan score [31] with an overall accuracy of 0.80 and dichotomized collateral accuracy

59



of 0.90. The proposed collateral assessment methods helped achieve generalizability to
new data and good performance. However, one potential drawback of machine learning is
the extensive hand engineering required, which can be a time-consuming and challenging
process requiring significant domain expertise.

DL has become a popular and powerful tool for solving complex problems in medical
imaging. Unlike traditional machine learning methods, DL models can automatically learn
and extract relevant features from data, reducing the need for manual feature engineering.
Therefore, current studies (e.g., [79, 49, 50, 51, 48, 52]) focus on DL-based methods to
evaluate collaterals automatically. The proposed approach by Tetteh et al. [48] used a direct
and cascaded 3-class collateral scoring method on 3D MR perfusion images. The study
performed ROI extraction, feature extraction, and classification with traditional (SVM,
RF, and KNN) and DL methods (CNN+MLP), showing a better overall accuracy of 0.72
with CNN+MLP. A CNN model is implemented in the study of Huang et al. [52] that
scores good+intermediate and poor collaterals with an accuracy of 0.75. A computer-aided
diagnostic technique using CNN named CCA4CTA based on a feature fusion network with
a hybrid attention mechanism was proposed in the study by Tan et al. [49] for the automatic
scoring of collateral circulation via multiphase cranial CTA. This study achieved 90.43%
accuracy with a sample set of 173 subjects. A 2D CNN model and a 2D ResNet-50 are
used by Rava et al. [50] and Ali et al. [51] respectively to evaluate collaterals automatically,
which achieves promising results while using a large number of train dataset.

In the greater context of stroke, DL models have been used in automating ASPECTS
score based on ischemic damage on NCCT [53, 54]. Chiang et al. [55] developed an
architecture consisting of a 2D slice encoder, a slice feature aggregator, and a fully connected
classifier for ASPECTS scoring with an accuracy of 80%. Cao et al. [56] performed
ASPECTS scoring by developing a deep asymmetry network that compares the left/right
hemispheres to identify ischemic status in NCCT. NCCT is more commonly used in these
studies, being widely used in emergent settings and, thus, more accessible. Therefore, in
our previous study [92], we developed a novel method of collateral evaluation from ischemic
damage identified from NCCT, which causes tissue degeneration and, as a result, lack of
collaterals in the affected side. The study obtained an overall AUC of 0.86 in classifying
good, intermediate, and poor collaterals. Recently, we performed a DL-based collateral
evaluation [79] in 4D CTA using the EfficientNet B0 network for transferring knowledge
from the ImageNet dataset to our small dataset of 83 patients. This method used focal loss
to overcome the issue of imbalanced datasets and achieved an overall sensitivity of 0.89 in
the dichotomized classification of collaterals. As the Siamese network is designed to handle
imbalanced data by identifying similar samples from the majority (good/intermediate)
and minority (poor) classes, we evaluated a Siamese network architecture for collateral
circulation scoring in this work.

6.2 Methods
The overview of the SCANED method, which was developed for automatic collateral scoring
in the context of an absence of large open ischemic stroke datasets, is shown in Figure 6.2.

6.2.1 Scanning Protocol

We have used 4D CTA data as our ground truth to evaluate the collateral circulation. The
imaging was performed at the Montreal Neurological Institute and Hospital with a Toshiba
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Figure 6.2: An overview of SCANED.

Aquilion ONE 320-row detector 640-slice cone beam CT (Toshiba medical systems, Tokyo,
Japan). The 4D CTA images captured the dynamic vascular flow over 19 volumes, where
the first volume is before applying contrast. Further, three-volume groups were captured
to have early and peak arterial and venous phases. In each volume, axial CT scan images
were acquired with imaging parameters of 0.5mm section thickness, 512x512 matrix, 240
mm axial scan field of view, and 160 mm scan length. Standard 80-kVp tube voltage was
applied to all volumes. The first volume is an NCCT which is more widely available and
commonly used in emergency rooms. Therefore, our study aims to evaluate the collaterals
from ischemic damage identified in NCCT from the 4D CTA ground truth images.

6.2.2 Dataset Description

Our dataset comprises 64 subjects with NCCT (39 good, 17 intermediate, and 8 poor cases).
Two radiologists scored them into three categories: good (100% collaterals), intermediate
(above 50% to less than 100%), and poor (below 50%). In different studies [79, 51], only two
groups are considered: good/intermediate and poor since the treatment benefits are either
minimal or nonexistent for the latter group, as demonstrated in the MR CLEAN Trial [16].
This is because good collaterals can be a favorable factor in endovascular treatment, working
as a robust blood flow network during blockage. In contrast, poor collaterals can adversely
affect the treatment leading to excess bleeding. Therefore, in this study, we focused on the
dichotomized classification of collaterals: good/intermediate-class 0 and poor-class 1 rather
than multi-class classification similar to our previous study [79] as well as the study by Su
et al. [47].

6.2.3 Pre-processing Steps

Before feeding the left/right hemispheres to the Siamese network, the NCCT brain went
through a number of pre-processing steps: (1) skull and any calcification were removed from
each brain using the FSL tool following the study of Muschelli et al. [103], (2) 10-ASPECTS
regions were mapped to each brain which allows better assessment of ischemic damage in
the ASPECTS regions as in [92], (3) left/right hemispheres were separated using the ANTs
tool, and (4) the left side was flipped to overcome any left/right biases so that the model
learns similar features from each side and accounts for any asymmetry between them.
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6.2.4 Pairs Generation for Siamese Network

We must provide pairs of input to the twin network, implying the need for two input
samples sharing identical weights and parameters. To follow this criterion, we made pairs
of input as positive and negative samples using each brain’s left and right hemispheres.
Let us consider the left side, L, and the right side, R are denoted as Laffected, Raffected,
Lgood, and Rgood for the affected stroke sides and the normal unaffected sides, respectively.
In general, the label can be considered zero if both the inputs are from the Laffected and
Raffected or Lgood, and Rgood, on the other hand, the label should be one if the input
combinations are either Laffected, and Rgood or Raffected and Lgood. Since the brains are
categorized into three classes and the affected side is unknown from the ground truth, it is
not feasible to create arbitrary pairs using the left/right side terminology described above.
Therefore, pairs are considered in the case of dichotomized classification as either positive
or negative pairs. Specifically, similar/positive pairs are those where the left and right
hemispheres of the brains have more than 50% of collaterals (good and intermediate). These
are denoted with zero and named class 0 since these brains should have a higher similarity
(with more collaterals) between both sides. In contrast, dissimilar/negative pairs are
those where the collaterals (poor) are below 50% denoted with one and named class 1 with
higher dissimilarity between good and affected sides.

6.2.5 Feature Extraction

The input pair was further fed into the twin network, where 3D ResNet was used as a
backbone for feature extraction. Rather than starting with random weights, the proposed
approach used the pre-trained weights [87] of ResNet-50 from 23 medical domain datasets
following the study of Chen et al. [111]. Since the pre-trained model [111] is for segmentation
purposes, we replaced the last decoder layer with 2-fully connected layers in our study. The
first layer comprises 512 filters, followed by a batch norm and a ReLU; the last layer has
64 filters. Two feature vectors, F1 and F2, are obtained from the network from input1 and
input2, respectively, which were further used for similarity and classification purposes.

6.2.6 Similarity and Collateral Scoring

The Euclidean distance (ED) was used as a similarity metric between F1 and F2 to output a
distance value. The higher the distance, the less similar the two sides of the brain, suggesting
poor collaterals in dichotomized classification and vice versa. This distance value played a
role in the training loss function to shape the optimal model. During testing, each brain
consists of multiple overlapping patches with a sliding window of stride size half to the
patch size to cover the whole brain. Since different regions between the left/right sides,
especially the areas surrounding the boundaries of the brains could be similar even in the
case of poor collaterals, the distance values from all patches are not significant. Therefore,
we chose the top three distance values, computed their median, and adopted it as the
definitive distance measure. Further, median distance values from the validation set were
employed to establish a threshold using Youden’s index. This index is based on the Receiver
Operating Characteristics (ROC) curve, which aims to identify the optimal cutoff point by
balancing the best sensitivity and specificity.
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6.2.7 Loss Function

A contrastive loss function [112] was used in this study rather than the traditional binary
cross-entropy to classify two classes. The Siamese network is a metric learning problem
mainly focused on identifying similarities between pairs of inputs rather than classifying
them. The contrastive loss function is designed as Equation (10) [112] in such a way that
it encourages the model to learn to maximize the distance between dissimilar samples and
vice versa. Also, it is more robust to the imbalances between majority and minority classes,
where the binary cross-entropy can be sensitive. The contrastive loss L is defined as:

L = (1 − label) · 1
2D2 + label · 1

2 max{0, margin − D}2 (9)

where label stands for either 0 (similar) or 1 (dissimilar) input images. D is the distance
metric that we named ED before and margin = 1.0 which is the maximum margin
considered in our case. The equation demonstrates that if the collaterals are from class
0 (good/intermediate), the D between them will be minimized, whereas if the left/right
inputs are dissimilar, meaning poor collaterals, the right side of the loss function will be
penalized trying to keep the maximum distance within the margin. If the D is more than
the margin, then the loss would be zero, and it is not necessary to try to move dissimilar
points farther than the maximum margin.

6.2.8 Training

The NCCT data were downsampled to 221x221x160 voxels, and Gaussian filtering was
applied to retain the most significant information. Subsequently, the left/right hemispheres
were separated, and zeros were eliminated from each side, resulting in images with
dimensions of 70x170x140 voxels. We utilized 3D patches of size 64x64x64 voxels, following
a similar approach to the study by Roy et al. [113], where patch extraction improved
results despite using a small dataset. Further, patches help to increase the models’
generalization capability by learning more robust and variable features. Since the 3D model
is computationally expensive, extracting small patches rather than the whole image leads to
faster training and lower memory requirements. Further, to boost our imbalanced dataset,
only augmentation was used in poor collaterals. Random rotation, flipping, zooming, and
Gaussian noise were applied during training to the poor collateral brains to increase the
model’s generalizability. The patch extraction and data augmentation was performed using
the MONAI open-source framework for deep learning [114]. In every epoch, one patch is
considered for training.

Our evaluation employed 5-fold cross-validation, maintaining an identical data
distribution for each class, consisting of a 70% training set, 10% validation set, and 20% test
set. A testing set was initially isolated within each fold, followed by a train-validation split.
The best model obtained from the validation process was then utilized to assess the test
set. The final results were computed as an average over the 5-fold process. For the creation
of the F1-64 and F2-64 feature vectors from 3D ResNet through fine-tuning, a selection of
64 filters was made. We employed the Adam optimizer with an exponential learning rate
scheduler initialized at 0.001. All experiments commenced with an initial epoch count of
300 while continuously monitoring the best validation loss to obtain the optimal model from
each fold.
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6.3 Experimental Analysis and Results
To assess collaterals using SCANED, we established various experimental setups to evaluate
the performance of dichotomized classification. As the patch size is a hyperparameter, we
trained the network using patch sizes 16, 32, 45, and 64 to observe the results of 5-fold cross-
validation. Our findings indicate that the model achieved the highest performance when
trained with a patch size of 64 (refer to Table 6.2). The table shows that increasing the
patch size improves performance for classes 1 (poor collaterals) and 0 (good collaterals).
Notably, although the overall accuracy for patch size 45 is lower compared to sizes 16
and 32, it demonstrates a higher ability to classify poor collaterals. Given the significant
impact of poor collaterals on treatment outcomes, our method prioritizes their accurate
identification. Consequently, a patch size that can effectively differentiate and classify both
classes is significant for our research objectives. The hypothesis from these results suggests
that smaller patches with similarities can potentially confuse the loss function. This is
because when ischemic damage occurs, the resulting degenerated tissue may be localized
to a small region within the brain. However, since we have knowledge of the ground truth
label for the entire 3D brain, other areas that exhibit similarities may still be present, even
in cases with poor collateral circulation. Further, with the best-performing models using a

Table 6.2: Analyzing patch size in model training

Patch-
size

Accuracy Sensitivity
of Class 0

Sensitivity
of Class 1

16 0.78 0.77 0.13
32 0.64 0.70 0.25
45 0.61 0.63 0.50
64 0.84 0.88 0.63

patch size 64, we tested each brain by dividing it into 12 overlapping patches, encompassing
the entire area. The final distance value for each brain obtained as described in Section 6.2.6
is compared to the threshold to decide the final class of the test brain.

Table 6.3 shows the confusion matrix for dichotomized classification of collaterals based
on the average of five-fold cross-validation. From the matrix, the overall accuracy is
0.84. But for the imbalanced dataset, accuracy is not the best metric to consider since
it can mislead the interpretation of the result. Therefore, the precision, recall (sensitivity),
specificity, and weighted F1 score are reported considering the good/intermediate collaterals
as the true positive class of 0.94, 0.88, 0.63, and 0.86 respectively.

Furthermore, to compare the performance, we conducted a patch-based evaluation by
directly measuring the distance between two feature vectors, F1 and F2, instead of using ED.
This approach involved using a fully connected layer to determine the output class rather
than employing ROC analysis. However, our proposed method yielded higher performance
compared to this alternative approach.

To assess the performance of the backbone network, we conducted experiments using
ResNet-101 to analyze its impact. While ResNet-101 demonstrated improved performance
in classifying good/intermediate collaterals (sensitivity: 0.89) due to its ability to learn from
more layers, it struggled with accurately classifying poor collaterals (specificity: 0.38). This
difficulty arose from the need for more samples for poor collaterals, resulting in overfitting.

Due to the scarcity of literature on collateral evaluation using NCCT, direct comparisons

64



Table 6.3: Confusion matrix for dichotomized collateral scoring

True Class
Predicted Class

Total

Class 0 Class 1

Class 0 49 7 56

Class 1 3 5 8

Total 52 12 64

with related methods are beyond our current capabilities. Therefore, we compared our
method with a recent approach proposed by Ali et al. [51]. Their method involved classifying
collaterals into good and poor categories using 2D cone beam CT (CBCT) images and
ResNet-50. They conducted their study on 4368 CBCT images from 30 ischemic stroke
patients, achieving an overall accuracy of 76.79%, a sensitivity of 79.33%, and a specificity
of 96.02%.

To apply the 2D ResNet-50 following their methodology, we considered 2D slices from
each brain as separate images, excluding the first and last ten slices that contained no
relevant information. By employing the same data augmentation and cross-validation
setting, we obtained an overall accuracy of 0.76 and an average sensitivity of 0.58 for our
experiment, with mostly good/intermediate collaterals correctly classified. This discrepancy
can be attributed to the imbalanced dataset, with insufficient samples representing poor
collaterals compared to the good/intermediate ones. Based on the findings from our
experiments with both 3D ResNet and 2D ResNet, as presented in the study by Ali et
al. [51], it can be concluded that while ResNet performs well as a classifier for balanced
datasets, for imbalanced data, a Siamese network with ResNet as a feature extractor proves
to be more effective. The addition of sequential features by the use of 3D rather than 2D
further enhances the classification process. The results for different experiments are shown
in Table 6.4.

Table 6.4: Performance comparison of different experimental settings

Methods Sensitivity Specificity Weighted F1
score

SCANED (backbone:
ResNet-50)

0.88 0.63 0.86

SCANED (backbone:
ResNet-101)

0.89 0.38 0.82

SCANED (direct distance) 0.77 0.5 0.77
2D ResNet-50 proposed by

Ali et al. [51]
0.58 0.25 0.71

Table 6.4 shows that SCANED achieves the best weighted F1 score. This demonstrates
the effectiveness of our approach, particularly in addressing the challenges posed by
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Figure 6.3: 1-fully connected layer(1-FC)
vs. 2-fully connected layers(2-FC)

Figure 6.4: Determination of best filter
size

imbalanced and small datasets. Additionally, our method considers the importance of both
good/intermediate and poor collateral evaluations, which is important for making treatment
decisions related to ischemic stroke.

Moreover, by considering 3D brain analysis instead of 2D analysis, our method leverages
the advantages of capturing sequential information between slices. In contrast, 2D analysis
treats each slice as a separate image, disregarding the valuable contextual information
present in the sequential nature of brain scans.

6.3.1 Ablation Study

Before the final evaluation step, an ablation study defines the optimal model for further
validation. Two fully connected layers are considered in the final model, which is decided
based on an experiment on a subset of the dataset. After the backbone output of 2048 filters,
the first fully connected layer is with 512 filters, followed by BatchNorm and ReLU layers.
The second and final top layer consists of 64 filters. Through two separate experiments with
only 1-fully connected layer and 2-fully connected layers, respectively, an improvement of
15% from the average sensitivity of 0.71 to 0.86 is obtained in the case of good collaterals
with more true positive results (Fig. 6.3).

We found that a 2-fully connected layer added to the backbone provides the optimal
overall performance, although the performance is the same for the poor collaterals. The
hypothesis here is that the 2-fully connected layers with BatchNorm and ReLU layers
analyzed features in a more sophisticated way and helped to classify more good collateral
cases while poor cases’ performance was unaffected.

To fine-tune the model, the top layer of the network was tweaked in a subset of the
dataset with different filter sizes: 32, 64, 128, and 256 (Fig. 6.4), which demonstrates
that with higher values of filter, the performance is increased for the majority Class 0 but
deteriorated for the minority Class 1 whereas a reasonable performance for both classes is
obtained with the filter size of 64. Therefore, to balance the performance for both classes
and consider the significance of distinguishing the poor cases in the treatment of ischemic
stroke, a filter size of 64 is chosen. The hypothesis is that for the minority class samples,
a larger filter size can lead to overfitting due to a lack of samples to learn, which matches
our previous study [79].
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6.4 Discussion
We propose SCANED for collateral evaluation using NCCT. The approach shows robustness
in handling the scarcity of stroke data and imbalanced class issues. Using 3D patch-based
classification helps to extract significant sequential features considering different regions of
the brain, which can be missed using 2D patches.

This study builds upon our previous work [92] by incorporating DL-based automatic
extraction instead of traditional machine learning-based radiomic feature extraction tasks.
DL-based methods need many training samples, which are rare in the medical domain,
especially in the case of stroke data. The Siamese network can handle limited and
imbalanced data since it focuses on the distance between two inputs. Therefore, the
network can identify similarities using a few samples from each class. Since our collateral
classification is based on the left/right hemispheres’ similarity, the Siamese network is a
natural fit. Further, it has a higher generalization capability and is less sensitive to variations
of input samples, and as such, it helped mitigate the imbalanced issue that can arise easily
from the traditional DL methods. Lastly, Siamese networks are more computationally
efficient than traditional DL methods as they share the same weights and parameters for
both inputs.

Compared to our previous study [92] for collateral evaluation from ischemic damage and
the same dataset, the current study has shown efficacy over it. While our previous study [92]
focused on radiomic features GLCM, GLSZM, and global features and classification with
SVM, our recent study expands upon this by considering ResNet-50 as a backbone for
automatic feature extraction rather than hand engineering of features. Furthermore, the
idea of a Siamese network gives more robustness than the previous study [92] since it solves
the imbalance issue. Although the same number of data, 64 and poor: 8, are used in this
study, the previous study used a 10-fold cross-validation, which did not confirm a poor case
to test in each fold. On the other hand, the recent study considered 5-fold cross-validation,
which ensures at least one test case in each fold. Also, the dataset is split into training,
validation, and test sets in the current work with only four poor cases, even in the case
of the training set in a fold. This proves the Siamese network could distinguish between
the majority and minority class samples based on similarity metrics with very few samples.
These confirm that the current work is more robust than the previous study [92].

In general, if we consider the performance metric for different recent studies (for example,
the study by Tetteh et al. [48], Huang et al. [52] and Tan et al. [49]) for automatic evaluation
of collaterals, our method has a better performance. Although the study by Tetteh et al.
has obtained a reasonable accuracy of 0.81 in cascaded two-class classification, they used
183 patients for training, whereas our study used 64 patients only and also obtained a higher
sensitivity. If we consider the study by Huang et al. [52] in the CNN model’s positive and
negative collateral evaluation, their accuracy is 0.75, which needs further experiments and
validation to obtain higher performance. Our previous study [79] for collateral evaluation
with 4D CTA as ground truth obtained a promising performance of sensitivity=0.89 in
dichotomized classification using transfer learning. The study addressed the imbalanced
issue by employing focal loss. However, it should be noted that this method may exhibit
sensitivity in different domains due to the utilization of transfer learning with pre-trained
weights from non-matching domains. In contrast to the previous study [79], our current
research leverages pre-trained weights specifically from the medical domain. Additionally,
it incorporates a Siamese network, demonstrating superior generalizability compared to
traditional transfer learning methods. Moreover, the use of focused 3D patches facilitates
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the extraction of finer details and sequential 3D features from each brain. While our
study achieved a performance 6% lower than the collateral evaluation conducted by Tan et
al. [49], wherein they presented a promising method involving feature fusion and achieved
an accuracy of 90.43%, our approach demonstrated a closer performance even with a smaller
dataset of only 64 patients, compared to their usage of 173 patients’ data.

In our current work, we acknowledge certain limitations. While testing new cases, we
utilized multiple crops (overlapping patches covering the entire brain). However, during
training, we relied on a single crop, using one patch with a size of 64 in each epoch.
Incorporating multi-crops directly into training poses challenges due to tissue degeneration
from ischemic stroke, which may only appear in specifically larger regions of the brain
rather than affecting the entire brain. This situation can lead to confusion in the loss
function when multiple overlapping/non-overlapping patches are assigned the same label
as the whole brain. To address this issue in future research, we propose following the
approach presented by Gessert et al. [115]. Specifically, we suggest integrating a patch-
based attention mechanism to capture the global context between patches. Additionally,
applying patch regularization, as seen in that study [115] on skin lesion classification, could
prove beneficial.

SCANED can be further validated to another dataset, if available. Another interesting
research could be considering each ASPECTS region to obtain similarity between left/right
hemispheres and calculate the final score based on all regions as it is done for ASPECTS
scoring.

6.5 Conclusion
In summary, SCANED is a promising approach for the assessment of collaterals, which is
less prone to human errors. Siamese networks with a deep model as the backbone to perform
feature extraction help the approach to be more robust and faster and have the potential for
ischemic stroke diagnosis while handling the scarcity of data and acquisition cost. SCANED
can evaluate collaterals from ischemic damage identified from NCCT imaging, which is
lower cost and more commonly available than CTAs. With further validation of patients,
the study can significantly impact the treatment outcomes of ischemic stroke patients.

68



Chapter 7

VesselShot: Few-shot learning for cerebral
blood vessel segmentation

Preface
This chapter is based on our accepted conference paper [116].

While the previous chapters (3, 4, 5, and 6) introduced methods for automatic collateral
scoring, this chapter presents a novel approach for segmenting 3D cerebral blood vessels,
even in the absence of large annotated training data.

Cerebral blood vessel segmentation serves as a crucial prerequisite for the assessment of
collateral circulation in ischemic stroke, as discussed in 3. To effectively extract blood
vessels with contrast flow and distinguish them from other brain components, such as
white and grey matter and calcifications, it is important to have reliable segmentation
methods. However, the performance of this segmentation can be significantly hindered in
the absence of ground truth data. Creating manually annotated 3D brain imaging data is
labor-intensive, requiring expert annotation and substantial time investment. In light of
these challenges, this chapter endeavors to tackle the blood vessel segmentation task using
a limited set of annotated data to enhance the performance in computer-aided collateral
evaluation. The proposed method, named "VesselShot" utilizes a publicly available dataset
with a pre-existing ground truth of segmented cerebrovasculature. This work was presented
in Machine Learning in Clinical Neuroimaging (MLCN) workshop in MICCAI, 2023.
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Abstract
Angiography is widely used to detect, diagnose, and treat cerebrovascular diseases. While
numerous techniques have been proposed to segment the vascular network from different
imaging modalities, deep learning (DL) has emerged as a promising approach. However,
existing DL methods often depend on proprietary datasets and extensive manual annotation.
Moreover, the availability of pre-trained networks specifically for medical domains and 3D
volumes is limited. To overcome these challenges, we propose a few-shot learning approach
called VesselShot for cerebrovascular segmentation. VesselShot leverages knowledge from a
few annotated support images and mitigates the scarcity of labeled data and the need for
extensive annotation in cerebral blood vessel segmentation. We evaluated the performance
of VesselShot using the publicly available TubeTK dataset for the segmentation task,
achieving a mean Dice coefficient (DC) of 0.62±0.03.

7.1 Introduction
Cerebral blood vessel segmentation plays a vital role in various applications, such as
diagnosing cerebrovascular diseases (e.g., stroke), planning surgical interventions for
conditions such as aneurysms and arteriovenous malformations, studying brain functions,
and assessing the impact of new treatments for cerebrovascular disorders. However, publicly
labeled data in this domain is limited, hindering the progress of deep learning-based research
on cerebral blood vessel segmentation. Since 2017, numerous deep learning-based methods
have been proposed for cerebral blood vessel segmentation. However, most of the previous
work has been performed on data from private sources as there is very little publicly available
labeled data [117]. Traditionally, deep learning (DL) models for semantic segmentation
require a large amount of training data with manual annotation, which is time-consuming
and labor-intensive, particularly in 3D, where many slices must be inspected. The need for
more annotated data negatively impacts DL models’ training and generalization capabilities.

To address this challenge, few-shot learning emerges as a promising alternative that
reduces the need for extensive manual annotation. For semantic image segmentation,
few-shot learning aims to enable DL models to learn underlying visual patterns and
semantics from a limited set of labeled examples. This also allows them to generalize
effectively to unseen object categories during the segmentation process. To date, few-
shot segmentation has been explored in several medical imaging contexts. In the study
of Roy et al. [118], the authors proposed a two-armed few-shot architecture to extract
support and query images with squeeze-and-excitation modules for the segmentation of
abdominal organs (each organ type is considered as a separate class) using 3D volumetric
scans, obtaining an average Dice coefficient (DC) of 48.5% [118]. Similarly, Tang et al. [119]
used a few-shot framework to refine the segmentation masks with a recurrent module and
achieved a mean DC of 81.91%. To eliminate expert annotation for training medical
image segmentation algorithms, Ouyang et al. [120] employed a super-pixel-based self-
supervised segmentation approach with few-shot learning. Preserving the local information
to alleviate the foreground vs. background imbalance issue with an adaptive local prototype
pooling, their study achieved a maximum DC of 78.84%. Semi-supervised segmentation was
also incorporated in a few-shot paradigm by considering a generative adversarial network
(GAN) [121]. This method had comparable performance to fully supervised approaches
in multi-modal 3D medical image segmentation. Few-shot learning techniques have also
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shown efficacy in cardiac image sequence segmentation tasks following a multi-level semantic
adaptation, with a DC of 92.43% [122]. Lastly, Xu et al. [123] proposed a few-shot learning
method with a multi-scale class prototype and attention module for 2D retinal blood vessel
segmentation.

In this chapter, we aimed to develop a few-shot learning approach called "VesselShot"
for segmenting cerebral blood vessels. Building upon the PANet few-shot segmentation
method introduced by Wang et al. [3] for natural image segmentation based on metric
learning, VesselShot leverages DL models’ ability to learn a consistent embedding space
that minimizes the distance between support and query prototypes (see Section 7.2.2). To
the best of our knowledge, our method is the first attempt to employ few-shot learning
for 3D segmentation of brain vascular images. The proposed VesselShot technique aims
to overcome the limitations of the existing deep-learning models for cerebral blood vessel
segmentation and explore the potential of few-shot learning in this domain.

7.2 Methodology

7.2.1 Dataset and Pre-processing

We used the publicly available TubeTK dataset 1. The dataset contains T1 and T2 acquired
at 1x1x1 mm3, Magnetic Resonance Angiography (MRA) acquired at 0.5 x 0.5 x 0.8 mm3,
and Diffusion Tensor Imaging (DTI) using 6 directions and a voxel size of 2x2x2 mm3 from
where we used the MRA images. Among the 100 MRA of healthy subjects, a subset of
42 have manual segmentation of the intracranial vasculature. The original dimension of
the images is 448x448x128 voxels at a resolution of 0.5×0.5×0.8 mm3. The images were
pre-processed as follows. First, all images were down-sampled to a resolution of 1x1x1
mm3, resulting in a dimension of 230x230x102 voxels. To allow spatial consistency, all the
brains were registered to one subject’s image as a template with affine transformations.
Fifteen patches that contain blood vessels were randomly extracted from each brain using
the technique introduced in the study of Wang et al. [124], with a size of 64x64x16 voxels
to fit the GPU memory.

7.2.2 Problem Definition

To segment cerebral blood vessels with a small amount of annotated training data, we built
upon the few-shot segmentation method proposed by Wang et al. [3]. In general, few-shot
learning involves training and testing episodes with support and query sets, following a
“C-way K-shot" paradigm. The support set comprises labeled examples that a DL model
can use to learn about target classes, while the query set contains unseen test cases to be
classified during inference. In C-way K-shot segmentation, we obtain K {image, mask}
pairs per semantic class in the support set, with a total of C classes. The training episodes
consist of Si,k, Mi,k and Qi,k, denoting support, mask, and query sets, respectively with
i = 1, 2, ....c for c classes and k = 1, 2, ...s for s samples/shots. Both the support and query
sets share knowledge extracted by the DL model to perform the final segmentation. In our
experiments, following the problem framing of Roy et al. [118], who categorized classes with
the designated segmentation tasks, we primarily focused on building our algorithm based
on one class (i.e., blood vessel segmentation) or a 1-way K-shot approach. Furthermore, to
account for individual vascular differences between subjects, we also considered the problem

1https://public.kitware.com/Wiki/TubeTK/Data
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framing from the work of Xu et al. [123], who treated each subject as a separate class with
its image patches as members of the class for retinal vessel segmentation. In this case, the
segmentation was extended to a C-way K-shot setting.

7.2.3 Model Design

To perform support-to-query segmentation, we built robust prototypes from the target class
of the support set. We used the nn-UNet [2] architecture as a backbone network to extract
deep features from support and query images. Upsampling along with masked average
pooling [3] was performed to obtain the final segmentation. Figure 7.1 shows an example
of a 1-way 3-shot learning paradigm for query mask generation.

Figure 7.1: VesselShot 1-way 3-shot learning: 1 brain with 3 sample patches is considered
for the support set. Knowledge is shared between support and query set by extracting deep
features using nn-UNet [2] which are further embedded into foreground and background
prototypes using masked average pooling [3]. Cosine similarity is used between support and
query prototypes to obtain the segmented query mask.

To generate a prototype from a class, the feature map, FI of an image, I was extracted
from the support set, S and by masked average pooling (Equation 10), the obtained feature
maps were compared across different class indices of I, similar to the prototype extraction
approach used in PANet [3].

prototypeclass = 1
Ns

Ns∑︂
i=1

∑︁
x,y,z F

(x,y,z)
I,class 1[Mask

(x,y,z)
I,class == class]∑︁

x,y,z 1[Mask
(x,y,z)
I,class == class]

(10)

where Ns is the total number of support images, and 1[·] takes a value of 1 when the
condition [Mask

(x,y,z)
I,class == class] is true and 0 otherwise. The background prototype was

built following the same equation with the constraint of [MaskI,class ̸= class], which means
the feature map values do not belong to the corresponding class index. For the evaluation,
all brain class indices were assigned a value of 1 for foreground blood vessels (our main
target) and 0 for the background. After prototype extraction, the feature map of the query
image was compared with the support prototypes using cosine similarity. Each voxel at
the spatial location (x, y, z) was classified based on the maximum similarity between the
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query feature map and the support prototypes. Finally, a segmentation mask was predicted
for the query image based on the maximum probability values obtained by Softmax that
was applied to the distance map. Note that our 3D segmentation was performed similarly
to the work of Roy et al. [118], but we experimented with the scenarios of 1-way K-shot
and C-way K-shot as mentioned in Section 7.2.2. During inference time, we extracted 54
non-overlapping patches from a test MRA, where each was a query image at a given time
and was paired with the support set to obtain the final segmentation. For our experiments,
the support sets were created from the training data.

For training, a combination of both cross-entropy loss, CEloss and Dice loss, Dloss

was used. Our approach emphasized the Dice loss since blood vessels occupy a minimal
area considering the brain space, which can significantly affect learning with a high-
class imbalance. The Dice loss only focuses on the agreement of an image’s predicted
segmentation and ground truth label. However, it is not ideal to overlook the background
entirely, as this can affect the robustness of significant features of the network [125].
Therefore, the following hybrid loss function was used to handle both class imbalance and
increase the strength of features: Loss = 0.6 ∗ CEloss + 0.7 ∗ Dloss. Note that the weights
were determined empirically.

7.3 Experimental Setup
We employed the nn-UNet [2] model to extract deep features from the support and query
images. Since some fine-grained image features are lost while downsampling in feature
extraction [123], upsampling is an important step and pre-requisite for further background
and foreground prototype extraction. Unlike Wang et al. [3], our preliminary testing showed
that nn-UNet [2] was more effective as a decoder than trilinear upsampling for our 3D data
(PANet used bilinear upsampling for 2D images [3]).

To perform training in our few-shot blood vessel segmentation, a maximum iteration of
20,000 was used while monitoring the best DC value for early stopping. A learning rate (lr)
scheduler with an SGD optimizer was used at an initial lr=0.01 and momentum of=0.99.
For data augmentation, random flipping, random Gaussian blurring, noise addition, and
contrast changes were applied during training. To evaluate the performance of our method,
different metrics, including DC, precision, sensitivity, and Intersection over Union (IoU)
were computed. We performed multiple experiments to prove the efficacy of the proposed
few-shot segmentation method. These experiments encompassed various settings, namely
1-way 1-shot, 1-way 4-shot, 1-way 5-shot, and 3-way 5-shot learning. In addition, we also
used a fully supervised UNet with four layers of hierarchies as a baseline to assess the
performance of the proposed method using the same patch size and data augmentation
techniques. It was trained using the Dice loss with an Adam optimizer (lr = 0.0001) and
a CosineAnnealingLR scheduler (Tmax = 5, etamin = 0.000001). To compare the different
few-shot learning settings, as well as the UNet baseline, we divided the data into three
subsets: a training set (78%, 33 cases), a validation set (7%, 3 cases), and a test set (15%,
6 cases). The best setting was determined from their performance based on the test set.
Subsequently, we used the best setting to conduct a full 4-fold cross-validation. This way,
we could obtain segmentation results for all the subjects to offer a more comprehensive
evaluation.
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7.4 Results
Table 7.1 presents the performance for various few-shot segmentation settings. It is
important to note that the reported performance in the table was obtained from patch-based
evaluations, where the averages of all classes in the test set were considered. The highest
average DC of 0.67 was obtained with 1-way 1-shot learning. In terms of the mean values,
1-way 4-shot and 1-way 5-shot give similar results in all the evaluation criteria. However,
the performance of the 3-way 5-shot method was notably inferior. This discrepancy may
be attributed to the inclusion of three classes represented by distinct brains characterized
by significant similarities. Excess prototype generation in this approach likely contributed
to overfitting, resulting in the observed decline in performance. The results of the 1-way
1-shot proved that the few-shot paradigm could offer sufficient segmentation performance
with even a single sample from a single class, which makes faster convergence and mitigates
the issue of a small annotated dataset.

It is essential to note that while the single-split result indicated a slight advantage for
the 1-way 1-shot model in the case of DC, the more comprehensive evaluation through cross-
validation provided a more precise and more reliable picture of the model’s performance.
Therefore, considering all performance metrics, the 1-way 5-shot setting emerged as the
top-performing setting among the options tested in this study. Based on the 1-way 5-
shot setting, a full 4-fold cross-validation was performed. The metrics of DC, sensitivity,
precision, and IoU were obtained as 0.62±0.03, 0.53±0.02, 0.72±0.02, and 0.43±0.02,
respectively. For qualitative evaluation, segmentation maps of four random patches are
shown in Fig. 7.2 for the 1-way 5-shot setting. Furthermore, by recombining segmented
image patches from the same brain spatially, we also demonstrate a case in Fig. 7.3 for
the same setting. Finally, the fully supervised UNet performed poorly with the limited
annotated data and achieved a DC of 0.27±0.27. UNet typically requires a larger, well-
labeled dataset to achieve reasonable performance, as demonstrated by the study of Livne
et al. [126].

Table 7.1: Performance metrics of VesselShot for different settings with the UNet as a
baseline, including DC, Sensitivity, Precision, and IoU.

Methods DC (SD) Sensitivity(SD) Precision(SD) IoU(SD)
1-way 1-shot 0.67(0.02) 0.50 (0.03) 0.68 (0.02) 0.40 (0.02)
1-way 4-shot 0.66 (0.02) 0.54 (0.03) 0.68 (0.02) 0.41 (0.02)
1-way 5-shot 0.66 (0.02) 0.58 (0.02) 0.71 (0.03) 0.45 (0.02)
3-way 5-shot 0.52 (0.04) 0.39 (0.04) 0.57 (0.08) 0.23 (0.03)
UNet 0.27 (0.27) 0.47 (0.09) 0.35 (0.06) 0.15 (0.04)

7.5 Discussion
This chapter proposed a novel few-shot learning approach for 3D cerebral blood vessel
segmentation. The method achieves the segmentation by building robust prototypes with
masked average pooling based on embedded features that are extracted from an nn-UNet [2].
Inspired by the PANet [3], we adopted foreground and background prototypes and used
them to compare the query feature map with the support set’s prototypes for blood vessel
segmentation. To further enhance generalizability, Wang et al. [3] performed prototype
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Figure 7.2: Segmentation maps of four samples, where red represents the original cerebral
blood vessels, blue shows the prediction, and purple represents the overlap.

Figure 7.3: From left to right: 3D segmentation result with the overlap of GT and predicted
labels (yellow = overlap, green = GT and red = prediction). 2D Maximum intensity
projections (MIPs) of 10 slices in Slice 15-25, 25-35, and 35-45 from a total of 102 brain
slices, with the overlay of the original MRA and segmentation (in red). The blue circles
show the wrong prediction of large vessels and the yellow circles indicate missed blood
vessels.

alignment regularization (PAR) of the predicted query mask with the support mask through
additional information extraction. We have also experimented with this technique for our
application, but unfortunately, it did not lead to performance gains during evaluation and
resulted in slower convergence in model training.

In our approach, we considered two scenarios: (1) a single class (blood vessel
segmentation) in a 1-way K-shot setting and (2) a C-way K-shot setting with each brain
as a separate class. While the first case aligns with the approach of Roy et al. [118], the
latter resembles the problem framing of Xu et al. [123]. In the 1-way K-shot setting, the best
results came from the 1-way 5-shot setting, which was superior to treating different brains as
their own classes. We hypothesize that this was due to the high structural similarity between
MRAs after spatial normalization, which emphasizes the primary vasculature networks.
This is in contrast to the results of Xu et al. [123]. Since the core task involves only
two classes, blood vessels, and the background, the C-way K-shot paradigm may lead to
overfitting and compromise performance. In the future, we will continue to explore different
framings of the C-way K-shot setup for improved accuracy. For example, treating 3D image
patches from consistent spatial locations in a stereotactic space as distinct classes to allow
enhanced feature encoding.

We found that misclassifications predominantly occurred near the brain surface, where
surface veins and the dura (both with bright signals) reside. This was partially due to
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the fact that the manual ground truths of the MRA segmentation primarily focus on the
main arteries rather than the surface vasculatures, which is of interest in neurosurgical
planning [127, 128]. The misclassifications may also be caused by training the model with
random patches that were mostly taken from the center of the brain. In the future, we will
incorporate random patches that consider both vessel and non-vessel regions, along with an
increased number of patches.

The recent work by Li et al. [129] introduced a global vascular context network (GVC-
Net) with a hybrid loss to address over-segmentation issues caused by sparse labels and
skull vessels. They also utilized the TubeTk dataset by training on 42 data points and
testing on 10 data points, achieving a sensitivity of 61.24%, precision of 75.58%, DC of
67.66%, intersection over the union of 51.13%, and centerline Dice coefficient of 83.79%.
Although their method has a 5% higher Dice coefficient, it is important to note that their
reported result is based on a single fold while our method’s performance was from a full 4-
fold cross-validation. In a separate study, Tang et al. [119] compared their proposed RPNet
approach to PANet [3] in 3D abdominal image segmentation. RPNet outperformed PANet,
achieving approximately 33% higher performance. Given these promising results, it would
be worthwhile to investigate RPNet’s application for 3D cerebral blood vessel segmentation
task.

One major benefit of few-shot learning is the capacity to allow high flexibility and
adaptability for unseen classes, which can include new classification/segmentation tasks and
image contrasts. Our proposed approach shows sufficient generalizability to new classes as
only a few image patches in the support set allowed the segmentation of the whole brain
volume. In contrast, Holroyd et al. [130] developed tUbe net, a model that achieved high
performance in segmenting new blood vessels through transfer learning. However, tUbe
net requires a large training dataset, which may not always be available. Our method is
independent of pre-trained weights and can be potentially applicable to diverse applications.

Despite efforts to utilize limited annotated data, the current performance of VesselShot
is not sufficiently accurate for clinical deployment. However, we will explore the strategies
mentioned above to improve the accuracy and robustness of few-shot cerebral vascular
segmentation. Despite its limitations, our proposed method represents a preliminary step
in addressing limited annotated data in the challenging task of 3D cerebral blood vessel
segmentation.

7.6 Conclusion
Our novel method utilizes few-shot learning to address the challenges of limited labeled
datasets in 3D cerebral blood vessel segmentation. This approach shows promise in
overcoming the bottleneck of limited manually annotated datasets and could aid in clinical
tasks with further improvement in the future. While the present achievement may not yet
find direct application in clinical environments, it signifies an advancement in this domain.
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Chapter 8

Conclusions and Future Work

Determining the best treatment strategies for ischemic stroke patients is vital. IV-tPA
medication can only help when patients reach the hospital within 3 to 4.5 hours of symptom
onset; thus, EVT is considered one of the best ways of treating ischemic stroke patients
that is still possible after 6 hours of symptom onset. However, not all patients are suitable
candidates, and the decision depends on several factors. Collateral circulation is one of
the most important independent predictors, as good collateral circulation is correlated to
positive clinical outcomes. For these reasons, evaluating the collateral circulation in ischemic
stroke patients before choosing the appropriate treatment strategy is necessary. Numerous
grading approaches with different imaging modalities have been used to score collateral
circulation, providing no gold standard for the best collateral grading approach. However,
it has been shown that manual interpretation by visually evaluating collaterals can be time-
consuming, inaccurate, and suffer from inter- and intra-rater variability.

For this reason, automatic computer-based collateral grading techniques have become
more prevalent in recent years. The automated approaches with an analog to the
radiologists’ grading criteria can evaluate collaterals more robustly than human-rater
scoring, and these are more easily understandable in the clinical environment. This thesis
explored different methods to automatically assess collaterals, overcoming the issues of
small, imbalanced datasets, a common problem in the case of ischemic stroke datasets.

8.1 Summary of Findings
The thesis focused on evaluating collaterals in ischemic stroke automatically. Five computer-
based automatic methods were developed, focusing on machine learning and deep learning
approaches. All the methods’ significance and limitations are summarized in Table 8.1.

Our first method, ACCESS, evaluates collaterals by quantifying the percentage of
unfilled versus filled vessels in a test brain. ACCESS leverages 4D CTA for collateral
assessment, providing detailed and dynamic information, which is superior to single-phase
CTA, potentially leading to more accurate results. Additionally, it is less dependent on
feature selection and training data, and the fRMC approach used to obtain the sparsity
and low-rank metrics of blood vessels is independent of tunable parameters. Despite these
advantages, the method has some limitations. Since the final evaluation is performed using
2D in contrast to the 3D scoring done by radiologists, the direct scoring terminology was
inappropriate for our method. Therefore, we used the ROC curve to determine the optimal
thresholds to decide the final collateral classes. The experiment’s sample size was also
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Table 8.1: Highlights of the proposed research studies

Method Significance Limitations
ACCESS [60]: Low-
rank and sparse decom-
position

Visual indications (e.g. filled
versus unfilled vessels) that
radiologists use

Lack of validation due to
shortage of data

Deep transfer
learning[79]

Handles small & imbalanced
datasets

Performance can be enhanced
with more data and pre-
trained weights from medical
domain

SVM with radiomic fea-
tures of both sides of the
brain [92]

NCCT is quick, no bolus, less
radiation, more frequently in
ERs

Hand-engineering of features
and limited performance as-
sessment

SCANED: Siamese net-
work with Resnet3D as
a backbone [108]

Robust in handling imbal-
anced and small dataset

Performance limitation of
poor class which has a
significant impact

VesselShot [116]: Few-
shot learning with nn-
UNet as a backbone

Novel method for 3D complex
blood vessels segmentation,
which requires few annotated
slices to segment the whole
3D brain; can further improve
collateral evaluation’s perfor-
mance.

Performance needs to be im-
proved by advanced feature
learning before applying to
clinical settings.

quite small (46 patients), therefore, further validation is needed before considering clinical
application.

The next developed method aimed to assess collaterals using deep learning, specifically
focusing on the sequential contrast flow data. We utilized the same dataset with a larger
sample size for automatic collateral scoring through deep neural networks with feature
extraction. While we employed 2D MIPs in this method, they encapsulate a sequence of
contrast flow information. To address the data-hungry nature of deep neural networks, we
applied transfer learning, leveraging pre-trained weights. We enhanced the effectiveness
of this automatic method by using focal loss with class weights, particularly benefiting
minority class samples. Consequently, our approach demonstrates greater robustness than
the previous one, efficiently evaluating collaterals while addressing imbalanced small dataset
challenges. Unlike the previous method, we compared our work with state-of-the-art
(SOTA) methods and found efficacy over them. However, although the dichotomized
classification shows efficacy over the SOTA methods, the multi-class classification still
requires better performance. The reason behind this could be due to missing features
as the whole 3D MIP of a brain was not used in training.

Our target was to implement automatic evaluation systems for collaterals using both
4D CTA and NCCT. NCCT can help determine collateral scoring from identified ischemic
damage and we utilized this imaging to evaluate collaterals using both classic machine
learning and deep learning methods. The radiomic features significantly impact ischemic
damage, and these features from the affected and non-affected sides of ischemic patients
can play an essential role in identifying non-symmetry between both sides. This non-
symmetry results in tissue degeneration, which represents the lack of collaterals. This
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idea is implemented in Chapter 5, which evaluated collaterals based on ischemic damage,
feeding the radiomic features to SVM. The method distinguishes itself from most studies
that rely on dynamic CTA by classifying collaterals based on ischemic damage from
NCCT, saving time, avoiding the need for bolus injection, and reducing radiation exposure.
Additionally, the method employs popular machine learning techniques, such as SVM, and
leverages bilateral symmetry in contrast to the above two methods and radiomic features to
automatically identify insufficient collateral regions, aligning more with radiologists’ scores
and methodology. A notable limitation of this study is the relatively small dataset, which
poses a challenge for training a classifier. To mitigate this limitation, we employed 10-
fold cross-validation with only eight poor cases; therefore, future work should assess the
method’s performance more comprehensively.

Unlike the previous method described in Chapter 5, the method described in Chapter 6
considered deep learning with a Siamese network, which has several advantages over the
previous method. It does not need any manual intervention/hand engineering of features
because it uses deep learning rather than classic machine learning methods. Also, the
previous method does not consider the imbalanced issue, which is the primary concern of
this method. Using the Siamese network, we developed a more robust approach that gives
reasonable performance and handles imbalanced and small dataset issues. Comparison to
the SOTA method showed the efficacy of our developed method to evaluate collaterals from
3D NCCT brains with a small imbalanced dataset.

Finally, our VesselShot method, presented in Chapter 7, is developed to segment cerebral
vasculature from a small annotated labeled dataset. This novel method to extract blood
vessels from the 3D brain requires a small number of annotated slices as ground truth.
Using the few-shot approach with nn-UNet as a backbone, this novel method can segment
3D cerebral blood vessels with a few annotated slices. This method can help as a preliminary
step in blood vessel extraction, which can be a prerequisite for collateral evaluation using
4D CTA. The method has limited performance and needs more validation before applying
it to clinical settings.

8.2 Future Work
The limitations discussed above create opportunities for further research. In the future, the
study can be extended, focusing on the limitations of the current work.

SCANED is a robust method to evaluate collaterals with deep learning while handling
imbalanced and minor dataset issues. However, the performance is limited to assessing the
poor collaterals, which play a significant role in the treatment decision. Therefore, some new
approaches, for example, few-shot learning with prototypical networks, can be explored.
A prototypical network [131] offers a more straightforward yet practical approach that
creates a metric space, making classification as precise as measuring distances to prototype
representations of each class. Few-shot settings with prototypical networks can help classify
new, unseen classes with only a handful of examples. With this concept, poor collateral
cases can be classified as an unseen class with few examples.

Although slice-based classification with 2D MIPs from 4D CTA helped us mitigate the
problem of fewer training samples, 2D MIPs can still miss some critical sequential features
from 3D. Thus, automatic approaches that directly use 3D volumes/3D MIPs may be more
robust. A contralateral comparison can be performed by applying the 3D CNN separately
to the left/right hemisphere in the MCA territory to investigate performance improvement.
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For this purpose, a 3D CNN can be trained from scratch or using some existing renowned
pre-trained networks; for example, EfficientNet, VGG, AlexNet, and ResNet with fine-
tuning can be performed to get an optimal model for testing. Here, we can explore freezing
some network layers given the limited training data [132, 133].

The pre-trained networks can be applied directly for classification. They can be
considered feature extractors to feed the extracted features into classic machine learning
algorithms, e.g., SVM, to see the performance. The ensemble of the pre-trained networks
to mitigate issues by one single network following the sum rule introduced in the study
by Nanni et al. [134] can also be explored. Following the findings of Su et al. [47], where
the ratio of the number of collaterals between affected and non-affected sides as well as the
vessel length are identified as significant features, these features can be incorporated further
into pre-trained deep learning models or traditional machine learning classifiers to assess
their performance.

Another research direction could be to explore the performance of the 3D collateral
evaluation by extracting the vasculature through our proposed VesselShot [116] method
presented in Chapter 7 rather than low-rank decomposition as used in our current works.
Since VesselShot [116] needs few-annotated data to segment the cerebral blood vessels and
ground truth is absent in our ischemic stroke dataset, this approach could be extended
to self-supervised segmentation approach before using it as a pre-processing step in the
collateral evaluation. In addition, test-time augmentation [135] can be used to both improve
the results and provide uncertainty estimates.

Additionally, considering 3D volumes from 4D CTA directly provides temporal
information, which can help distinguish between the collateral classes more significantly.
The study by Liet al. [136] proposed a c3D-LSTM model that extracts spatial features from
each 3D volume by combining a series of 3D CNN and further input those to a long short-
term memory (LSTM) which can capture time-varying information. To consider temporal
information in collateral evaluation, following the study by Liet al. [136], direct 3D volumes
from the 4D CTA can be considered to utilize the contrast flow timing.

Another approach could be considering a Siamese network between the 3D volumes
of a patient’s 4D CTA to identify the differences between those with time. This way,
the temporal flow of each case can be obtained, which could be a significant feature to
distinguish it from other patients. Since multiple CNNs can be computationally expensive,
four phases, arterial, arterio-venous, venous, and late venous, can be considered from the
19 volumes of 4D CTA. This phase extraction could be similar to the study by Huang et
al. [52] or Tan et al. [49] who used the multiphase CTA to evaluate collaterals using deep
learning.

In the thesis, a consensus of two neuroradiologists was used as the ground truth. Further,
a better ground truth can also consider the clinical outcome, especially for intermediate
collateral circulation cases where classification into poor and good circulation is challenging
based on the imaging data alone.

Finally, validating our proposed methods in a larger dataset or comparing them with a
small imbalanced dataset relevant to our problem-setting or obtained from another scanning
protocol could be another research direction before applying those methods in clinical
environments.
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