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Abstract

Closed-Loop Control of Surface Preparation for Metallizing Fiber-Reinforced

Polymer Composites

by Shiva Shokri

To improve the surface properties of fiber-reinforced polymer composites, one method

is to employ thermal spray to apply a coating on the composite. For this purpose, it uses

a metal mesh serving as an anchor between the composite and the coating to increase

adhesion. However, the metal mesh is covered by resin, and getting an acceptable coat-

ing is only possible through an optimum exposure of the metal mesh by sand blasting

prior to coating. Therefore, this study aims to develop a closed-loop control system

to inspect and blast the parts properly. Specifically, this approach takes the top-view

images from a microscope as the inputs. A convolutional neural network (CNN) is

trained to correlate these images with the corresponding exposure levels of the metal

mesh, measured by a destructive method. Then, this trained CNN model can estimate

the exposure level by only analyzing the top-view images. Finally, it serves as a feed-

back mechanism to guide the subsequent sandblasting operations. The state-of-the-art

has only examined the sand-blasted composites manually, requiring expertise and ex-

perience. This method automates the inspection process efficiently with an inexpensive

portable digital microscope. The experimental results show that the method can dis-

tinguish the status of surface preparation successfully, and it is practical in closed-loop

control. This study also has applications to various fields of manufacturing for defect

detection and closed-loop control.
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1 Introduction

Fiber reinforced polymer composites (FRPCs) are getting more popular in a broad range

of applications, such as aircraft and spacecraft, watercraft, wind turbine, offshore plat-

form, automobile, recreational equipment, and chemical container [1]. FRPCs are attrac-

tive because of their significant specific strength, superior longevity, and corrosion re-

sistance. In addition, it is possible to manufacture complex geometries with fewer parts

using FRPCs and thus reduce the manufacturing cost [2]. However, FRPCs have some

limitations including lack of high-temperature resistance, deficient impact strength, and

relatively low thermal and electrical conductivity. These have caused in-service failures,

e.g., erosion of wind turbine blades [3], ice accumulation and lightening strike on air-

planes [4], impairment in aircraft caused by bashing of other flying objects such as birds,

and fire damages to navy ships. To enhance the performance of FRPCs, the state-of-

the-art technology [5] has implemented surface modification by deposition of metallic

coating on the composites employing thermal sprays. Thermal spray coatings on fiber-

reinforced polymer composites are often used to enhance their mechanical, thermal, or

protective properties. One real-life example can be found in the aerospace industry,

where thermal spray coatings are applied to fiber-reinforced polymer composites used

in aircraft components. For instance, aircraft engine components, such as turbine blades

or combustion chamber liners, are often subjected to extreme temperatures and harsh

environments. To improve their resistance to wear, corrosion, and thermal degradation,

thermal spray coatings can be applied to the surface of fiber-reinforced polymer com-

posite components. In the thermal spray coated turbine blades, the coating acts as a

thermal barrier, protecting the underlying polymer composite from the high temper-

atures generated during engine operation. Moreover, the coating provides resistance
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FIGURE 1.1: Illustration of preparing FRPC for surface metalization via the incorporation
of metal wire mesh on the surface of the composite.

against wear and corrosive elements present in the engine environment. The combina-

tion of fiber-reinforced polymer composites and thermal spray coatings enhances the

overall durability and performance of the turbine blades. In general, these coatings

can contribute to extending the service life of critical engine components [3]. Never-

theless, applying metallic surface coatings on FRPCs using thermal spraying methods

is a disputable process, primarily because of the sensitivity of the composite to high

temperature, as well as its low impact-strength [6].

Recent research [7] has substantiated the efficacy of a novel strategy for addressing

the limitations of FRPCs through the integration of a metal wire mesh onto the compos-

ite surface prior to the curing phase (see Fig. 1.1). This innovative technique establishes

a robust foundation for the subsequent deposition of metallic coatings, facilitating this

process without compromising composite integrity. During the curing stage, the resin

infiltrates the interstices of the metal mesh, fostering comprehensive integration within

the composite matrix. Subsequent to the curing process, the resin encapsulates the

metal mesh, necessitating a meticulous grit blasting procedure to eliminate superflu-

ous resin and achieve an optimal level of metal mesh exposure. This deliberate abrasion

augments surface roughness, thereby rendering it conducive for the subsequent depo-

sition of metallic particles, while simultaneously enhancing coating adhesion strength

through mechanical interlocking mechanisms. Grit blasting, although potent, harbors

inherent aggressiveness that potentially jeopardizes the structural integrity of FRPCs.

Accordingly, prior works have meticulously explored parameter optimization to miti-

gate potential damage. However, the inherent variability associated with both the test

samples and the grit blasting procedure introduces the possibility of over-blasted or
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under-blasted outcomes. Consequently, a comprehensive inspection of the grit-blasted

surface and its exposure level emerges as a prerequisite prior to embarking upon the

subsequent costly thermal spraying process. The challenge is further compounded by

the fact that the thickness of the excessive resin layer typically measures in the order

of 100 microns, rendering it barely discernible to the naked eye. The current method-

ology for inspecting grit-blasted FRPCs primarily involves extracting a small sample

from the component, followed by a microscopic analysis. Regrettably, this approach

is both destructive and manual in nature, making it impractical for widespread indus-

trial application. Furthermore, its accuracy is susceptible to fluctuations due to operator

expertise, fatigue, and other variables.

These imperatives serve as the driving force behind our research initiative aimed

at designing an in-situ closed-loop control system tailored to govern the grit blasting

process. The practicality of this system hinges on its ability to embody traits of afford-

ability, speed, robustness, and nondestructiveness. However, the requirement for non-

destructiveness implies that conventional cross-sectional analysis through sample cut-

ting is precluded, leaving us with the option to exclusively examine the samples from

a top-down perspective. During our preliminary investigation, it was observed that

the extent of exposure distinctly influences the surface texture attributes as observed

through a portable microscope. Consequently, we posit a hypothesis suggesting a dis-

cernible linkage between the patterns manifested on the surface and the corresponding

level of metal mesh exposure. Establishing such a correlation would permit the acqui-

sition of surface images solely from a top-view stance of the FRPC surface while retain-

ing the capability to govern the resin height within acceptable parameters during grit

blasting. The successful realization of this proposed system holds the potential to not

only address the aforementioned challenges but also to revolutionize surface prepara-

tion methodology by introducing a more methodical and intricate approach.

To examine this hypothesis, we adopt a methodical experimental approach. Ini-

tially, we create a series of FRPC samples, varying their exposure levels systematically

through controlled grit blasting. Subsequently, utilizing a cost-effective and portable
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digital microscope, we capture images of the upper surface of each sample. In the an-

alytical phase, we harness a convolutional neural network (CNN) to scrutinize the im-

ages and unveil potential meaningful connections between surface patterns and expo-

sure degrees. By training the CNN, it can comprehend texture attributes and establish

correlations with the documented exposure levels of the metal mesh across individual

samples. To delve deeper, we integrate the CNN with regression analysis (referred to

as CNN-R), allowing us to numerically gauge the intensity and characteristics of the

relationship. Successful validation of the hypothesis hinges on identifying a distinct

and statistically substantial correlation between surface patterns and exposure levels.

Should this validation materialize, the hypothesis could serve as a foundational com-

ponent for a closed-loop control mechanism during the grit blasting process. In this

context, the CNN-R fusion serves as an instrumental monitoring instrument. It esti-

mates the exposure level and conveys this data into a feedback control system. Within

this system, the measured exposure percentage is juxtaposed against a desired exposure

threshold (a set point). Consequent adjustments to the control parameter – specifically,

the grit blasting pressure – are iteratively executed until an optimal exposure level is

reached, striking a balance that avoids excessive treatment while achieving the desired

outcome. The study’s contributions are summarized as follows:

1. A meticulously crafted control system is introduced, leveraging an affordable and

portable digital microscope to capture top-surface images of FRPC samples. These

images are pivotal for the quantification of surface patterns and texture attributes.

2. The research employs a robust image analysis approach, utilizing convolutional

neural networks with regression (CNN-R), to establish a statistically significant

correlation between surface patterns and exposure levels of the underlying metal

mesh.

3. The incorporation of the CNN-R model for exposure level estimation contributes

to a closed-loop control system for grit blasting pressure. This innovative system

offers a streamlined and effective avenue for achieving meticulous surface prepa-

ration.
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The experimental results show that the correlation achieves an impressive accuracy rate

of 95%. The proposed system significantly curtails material wastage, ensures uniform

quality, and provides a practical solution for attaining precise outcomes. The thesis

is organized as follows: Chapter 2 first reviews the related works. Then, Chapter 3

presents the proposed method and the algorithms developed for analyzing the acquired

data. After that, Chapter 4 shows the results, and finally, Chapter 5 concludes the thesis.
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2 Literature Review

This work is related to composite coating, vision-based inspection, and closed-loop con-

trol. They are reviewed in this section.

2.1 Composite coatings

The manufacturing of FRPCs has garnered significant attention due to their versatility

in various applications [8]. Nevertheless, challenges persist regarding their in-service

performance [6, 4]. Many of these challenges are related to surface phenomena, which

can be addressed through surface engineering and functionalization [9]. It is worth

noting that the process of enhancing the properties of FRPCs through surface coatings

holds great promise for broadening the spectrum of applications for these composites

and simultaneously curbing waste and maintenance expenses. This, in turn, contributes

to the overarching goal of sustainable development. A significant facet of FRPCs that

has received relatively less attention from the scientific and industrial communities per-

tains to surface engineering and the application of coatings on this class of materials. In

the following section, we provide a concise overview of the prominent coating method

which has been utilized in this work, shedding light on its types, respective strengths

and limitations when it comes to depositing protective and functional films onto FRPC

substrates. This discussion aims to offer insights into the potential and challenges asso-

ciated with surface engineering in the context of FRPCs.

2.1.1 Thermal spraying methods

Thermal spraying is a well-established industrial technique employed for surfacing and

resurfacing engineered components. This method offers a versatile approach to deposit
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a wide range of materials, including metals, alloys, metal oxides, metal/ceramic blends,

carbides, wires, rods, and various composite materials, onto diverse substrate materials.

This results in the creation of unique coating microstructures or near-net-shape compo-

nents. Thermal spraying techniques use heat sources and for these processes, gases,

and in certain instances, air, are employed to facilitate the introduction of materials into

the gun and to generate the requisite heat for the melting process. The high velocities

of these gases lead to the material being expelled as fine molten droplets, which sub-

sequently impact the target part, undergo solidification, and adhere to its surface. The

bonding mechanism is primarily mechanical, although there are cases where metallur-

gical bonding also occurs. This results in each layer forming a robust connection with

the preceding layer, giving rise to a lamellar structure reminiscent of a "pancake-like"

splat. The properties of the resultant coating are intricately linked to the interplay be-

tween kinetic and thermal energy during the process. The primary objective of thermal

spray coatings is to furnish a functional surface that can either safeguard or modify the

behavior of a substrate material or component. This technology finds extensive applica-

tion across a multitude of industries worldwide. Its diverse range of functions includes

restoration and repair, corrosion protection, resistance against various forms of wear

like abrasion, erosion, and scuff, as well as heat insulation or conduction. Thermal spray

coatings are also applied in scenarios involving oxidation and hot corrosion, electrical

conductivity or insulation, near-net-shape manufacturing, seals, engineered emissivity,

abradable coatings, decorative purposes, and more. There are five fundamental thermal

spray processes, each with its unique characteristics:

1. Flame spray powder/wire, detonation, and High Velocity Oxygen Fuel (HVOF)

processes are combustion-based methods. Among these, HVOF and detonation

spraying are recognized for their high bond strength and exceptionally dense mi-

crostructures [10].

2. Plasma and wire arc processes employ electric energy to aid in melting consum-

able materials. Plasma coatings, when applied using Low-Pressure Plasma Spray
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(LPPS) or Vacuum Plasma Spray (VPS) Systems, exhibit high bond strength and

relatively dense, oxide-free microstructures.

Additionally, there is a relatively new process known as Cold Spray, which relies more

on high velocity and kinetic energy than thermal energy. In Cold Spray, particle tem-

peratures are lower than in HVOF, but velocities are significantly higher. This approach

results in coating structures that closely resemble bulk wrought materials [5]. Beyond

the material being deposited, the primary differentiating factor among these studies is

the method employed to enhance adhesion strength without compromising the sub-

strate.

Flame Spray

Flame spraying, considered the earliest thermal spray method, employs the high tem-

perature generated by gas combustion flames, which can reach approximately 3000 °C

(depending on the gas-oxygen ratio), as the heat source for melting powder or wire

feedstock. While this method is cost-effective, it presents certain limitations, including

relatively low coating adhesion, high porosity, and oxide content. Moreover, the in-

volvement of an open flame in the process restricts its application for Fiber-Reinforced

Polymer Composites (FRPCs), which can be flammable. The challenges with flame

spraying in the context of FRPCs are further compounded by the need to maintain a

minimal standoff distance between the spraying gun and the substrate (typically in the

range of 150-250 mm) to mitigate oxide content in the coating. This, in turn, reduces the

risk of compromising the integrity of the polymeric base substrate. However, research

has shown that applying a garnet sand/epoxy layer to the FRPC substrate before flame

spraying can limit heat transfer and hinder the degradation of the composite during the

flame spraying process, especially when applying materials like Al-Si and NiCrAlY on

FRPCs [11, 12].
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High Velocity Oxygen Fuel (HVOF)

Continuous ignition within a combustion chamber, where a mixture of liquid or gaseous

fuel combined with oxygen or ambient air is present, results in the generation of a high-

velocity stream of hot gas. This gas forms the basis for thermal spraying and is expelled

through a nozzle. HVOF (High-Velocity Oxygen Fuel) and HVAF (High-Velocity Air

Fuel) systems provide extreme temperatures reaching up to 3000 °C and accelerate the

feedstock particles to speeds ranging from 600-1200 m/s, depending on the type of fuel

and oxidant gas composition. These methods are known for depositing coatings with

remarkable density and superior adhesion when compared to plasma-sprayed coatings.

However, the high kinetic energy of semi-molten particles sprayed using HVOF and

HVAF may pose a risk to the surfaces of polymeric and FRPC substrates. Still, they

hold potential for applying coatings to surface-modified substrates through techniques

such as using a bond coat and/or metallic mesh. Recent research highlights successful

efforts to deposit Al-Si coatings on FRPCs by employing intermittent HVOF spraying

in combination with cooling the substrate using compressed air [10].

Twin-Wire Arc Spray

The twin wire arc spray gun operates by utilizing direct electrical current to create an

electric arc between two conductive consumable wires, reaching extremely high temper-

atures ranging from 4000 to 6000 °C. This intense heat source melts the wire feedstock,

while compressed air or noble gases (used to minimize oxidation) atomize the molten

wire feedstock, propelling particles at velocities between 50 and 150 m/s toward the

substrate. This method stands out due to its high spraying rate and low power con-

sumption, making it remarkably cost-effective. Furthermore, its ability to handle var-

ious materials in the form of cored wire feedstock extends its applicability [13]. Con-

trolling several key parameters is crucial when applying wire arc spraying to coat low

melting point substrates. These parameters include current, atmosphere, feeding rate,

substrate temperature, standoff distance, and surface treatment of the substrate. No-

tably, surface preparation through laser texturing on the substrate has proven effective
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in enhancing coating adhesion. This enhancement results from the mechanical anchor-

ing of particles on the textured surface [14]. Additionally, the deposition of a pure

zinc bond coat, which exhibits suitable wettability on non-metallic substrates, shows

promise for creating build-up coatings on Polymer Matrix Composites (PMCs) [15]. In

the context of thermoplastics, studies on employing wire arc spraying for coatings re-

veal challenges when depositing metals with low density and/or high melting points

onto thermoplastics with high impact strength. This challenge arises because the parti-

cles either lack the required momentum to adhere to the surface or they cause localized

melting without proper deposition [13].

Plasma Spray

Plasma spraying is a potent technique that relies on a DC-generated electric arc, bridg-

ing the gap between a copper anode and tungsten cathode, to ionize the primary plasma

gas (typically Ar or He). Once the gas reaches an energy level conducive to recombining

free electrons and gas ions, it forms a high-energy plasma jet. This plasma jet generates

a substantial amount of energy and light, elevating temperatures to levels as high as

15,000 °C. This intense heat serves a dual purpose: it acts as the heat source for melting

the feedstock and imparts a drag force to propel the molten particles toward the sub-

strate. Although plasma spraying is widely used in industry, it encounters challenges

related to torch arc instabilities and electrode wear, particularly with tungsten electrodes

[16]. To address these issues, it has been reported that, in addition to secondary plasma

gases such as H2 and N2, modulating the current can be employed instead of varying

the power input. This modulation helps better control arc fluctuations, subsequently

influencing the properties of the plasma jet and the resulting coatings [17]. When it

comes to feedstock, plasma spraying supports the use of various materials, including

dry powders, wires, suspensions (SPS), and solution precursors (SPPS). The limitations

associated with spraying nano and ultrafine dry powders have led to the development

of SPS and SPPS. One of the key advantages of plasma spray, aside from its low oxide

content, is its versatility in depositing coatings ranging from highly dense to porous
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while maintaining acceptable adhesion by adjusting spraying parameters. Beyond its

conventional use in depositing coatings, particularly thermal barrier coatings (TBCs) on

metallic substrates [18], recent research highlights the feasibility of metallizing poly-

mers and low melting point substrates using plasma spray methods [19]. In fact, the

inclusion of a powder filler layer, such as Cu powder [20], Al bond coat [14], or metal

wire mesh [21], before plasma spraying has proven effective for successfully depositing

coatings on FRPCs.

Cold Spray

Cold spray is a process that involves the utilization of heated, highly compressed gas.

This gas is directed into a converging-diverging nozzle, enabling it to reach supersonic

velocities. The high-speed gas serves to accelerate solid particles, propelling them with

significant kinetic energy. These particles, upon impact with the substrate, either de-

form plastically or penetrate it. As a result, optimizing key parameters, such as gas

pressure, temperature, particle size, and spraying distance, is crucial for achieving a

successful coating. Despite the fact that the sprayed particles are in solid form and rel-

atively cool, their kinetic energy is substantial enough to erode polymeric and FRPC

substrates, similar to HVOF and HVAF processes. However, it’s worth noting that suc-

cessful deposition of low-melting-point powders on thermoplastic substrates has been

reported, underscoring the potential use of cold spray for metallizing FRPCs. Several

studies have explored the deposition of tin (Sn) coatings on FRPCs using cold spray,

with findings indicating higher deposition efficiency at lower temperatures and pres-

sures (below 500 K and 60 psi). However, it’s important to be cautious, as increasing

certain cold spray parameters can lead to erosion of the composite and fracture of fibers

[22, 23, 24, 25].

2.1.2 Thermal spraying benefits and challenges

The attractiveness of thermal spray processes lies in their user-friendliness, cost-effectiveness,

and their advantageous attributes that cater to a wide array of industrial applications.
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The advantages typically encompass reduced costs, improved engineering performance,

and/or extended component lifespan. This makes thermal spray a valuable and versa-

tile technique, widely embraced by industries across the globe. Various thermal spray-

ing methods have not only evolved to facilitate the deposition of a diverse array of

materials but also to control specific factors such as particle temperature, velocity, and

size. The manipulation of these parameters enables the creation of coatings that fulfill

specific requirements, including considerations like porosity, adhesion, and function-

ality [17]. However, the coating or metallization process for FRPCs still presents un-

certainties. For instance, due to the properties of FRPCs, during contact with thermal

spray particles, the composite may experience erosion or deformation through partial

melting and re-solidification [22]. In this context, thermoplastic matrices have shown

greater suitability for direct surface metallization compared to thermosetting ones [23].

Nonetheless, the high viscosity of thermoplastic resin leads to manufacturing defects

that hinder proper fiber coverage [26]. Conversely, thermosetting composites, owing to

their low viscosity and resin flow, ensure thorough wetting of fibers, significantly reduc-

ing defects [27]. Nevertheless, various thermal spraying methods, including dynamic

cold spraying (CS), flame spraying, twin-wire arc spraying (TWAS), air-plasma spraying

(APS), and high-velocity oxygen fuel (HVOF), have successfully achieved surface met-

allization of FRPCs [10]. Notably, approaches such as electroplating or thermally spray-

ing a thin metallic bond coat [28], applying a blend of garnet grit/epoxy [12], spraying a

mixture of metal/thermoplastic powder [29], and more recently, incorporating a metal

wire mesh on the uppermost surface of the FRPC [7], have been systematically explored.

The latter approach, in particular, can provide a versatile anchor for the coating with ro-

bust adhesive strength, albeit contingent on the exposure level of the metal mesh. It is

important to note that achieving this exposure is accomplished through grit-blasting,

which must be carefully executed and inspected to ensure a uniform texture of rough-

ened metal mesh.
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2.2 Computer Vision-based Inspection Techniques

Up to date, all the inspections during grit-blasting for surface preparation have been

done manually by just taking a look at the grit-blasted surface through a microscope.

Followed by that, the decision making has always been affected by human eye errors

and long duration of manual analysis. In fact, vision is human’s most sophisticated and

advanced sense. This explains why images play the most important role in a human’s

perception. Imaging machines, in contrast to human, are not limited to the visual band

of the electromagnetic (EM) spectrum and can cover almost the entire EM spectrum,

ranging from gamma to radio waves [30]. Even though computer and human vision

are functionally similar, you cannot expect a computer vision system to exactly copy

the function of the human eye. Computer vision techniques have the capacity to repli-

cate and even enhance human vision systems [31]. These techniques find widespread

application in tasks such as classification [32], industrial automation, quality control,

and defect detection [33, 34], among others. In the preceding sections, we have delved

into some of the most prominent and widely adopted computer vision techniques in the

industry.

2.2.1 Feature Detection

Visual feature detection, encompassing elements like points, edges, and lines, serves as

the foundation for many computer vision (CV) algorithms. In certain scenarios, the fo-

cus is on specific regions within an image, such as human eyes, license plates, or corner

shapes, which we refer to as keypoint features. Conversely, other situations emphasize

identifying the edge features of objects present in an image. Some CV algorithms are de-

signed to detect and match both keypoint and edge features across different images. The

assessment of feature detection quality typically relies on several widely used evalua-

tion metrics. These metrics include the mean absolute error (MAE), mean-squared error

(MSE), peak signal-to-noise ratio (PSNR), and the structural similarity index measure

(SSIM). They provide a quantitative means of evaluating the accuracy and performance
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of feature detection algorithms, ensuring they meet the desired quality and precision

standards.

Keypoint detection

Keypoint detection methods can be broadly categorized into two primary types: local

search detection and global search detection. Within local search detection, there are

various techniques like correlation methods, least squares methods, and learning-based

methods [35]. Local search detection methods are particularly well-suited for scenarios

where images are captured continuously and at a high frequency, such as in video se-

quences. In contrast, global search detection methods take a different approach. These

methods involve searching the entire image comprehensively and then matching fea-

tures based on their appearance. As a result, global search methods are more apt for

situations characterized by substantial movement or changes in the appearance of the

scene [36]. This approach is effective in scenarios where you need to consider a broader

context or the entire image to identify relevant keypoints.

Edge detection

Edges within images frequently occur at the boundaries separating different objects,

manifesting as abrupt changes in color and intensity. One established technique for

detecting edges relies on assessing the image’s gradient [37], although this gradient

measurement can be sensitive to noise. Consequently, a low-pass filter, such as a Gaus-

sian filter, is commonly employed to preprocess the image before calculating the gradi-

ent. Edge recognition can involve horizontal and vertical convolution operations. An-

other technique involves the zero-crossing method, where the zero points of a second-

order derivative expression are identified to pinpoint edges [38]. Notably, deep-learning

methods, especially convolutional neural networks (CNNs), have gained significant

traction in the realm of edge detection [39]. These modern approaches leverage the

power of CNNs to enhance the accuracy and robustness of edge detection algorithms,
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allowing for more reliable results, even in the presence of complex and noisy image

data.

2.2.2 Recognition

Recognition is a pivotal task in computer vision (CV) techniques. When we consider

target objects, recognition problems can be categorized into three primary groups:

1. Instance Recognition

2. Class Recognition

3. General Category Recognition

4. Action Recognition

In assessing the performance of recognition algorithms, several common evaluation

metrics come into play, including accuracy, recall, precision, F1 Score, and ROC/AUC

curves. These metrics provide a quantitative means to measure the effectiveness of

recognition models [40].

Instance recognition

In the realm of instance recognition, the primary objective is to pinpoint and identify

a particular known object. Various strategies are employed to tackle this recognition

challenge:

1. Feature Matching: This involves comparing the distinctive features of the target

object with those in the scene to identify a match. Feature matching strategies are

commonly employed in this context [36].

2. Viewpoint-Invariant Feature-Based Strategies: These methods are designed to rec-

ognize objects regardless of changes in their viewpoint. They focus on identifying

consistent features that remain even when the object is viewed from different an-

gles [41].
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3. Sparse Feature Matching: In this approach, recognition relies on identifying and

matching only the most salient and discriminative features within an image or

scene, which is particularly useful for efficient instance recognition [42].

An illustrative application of instance recognition is found in the domain of face recog-

nition [43], where the aim is to identify specific individuals. These various techniques

and methods contribute to the diverse toolkit available for solving instance recognition

challenges, spanning from feature matching to advanced machine learning approaches.

Class recognition

In contrast to instance recognition, class recognition differs in that it doesn’t target spe-

cific individual objects. In class recognition, the objective is typically to identify whether

an image contains an instance of a specific object category, like cars or pedestrians. Class

recognition can be viewed as a specialized classification problem, where the input is an

image, and the output is the classification of that image. In the evolutionary timeline

of computer vision (CV), the proliferation of Convolutional Neural Networks (CNNs)

stands out as a pivotal advancement that has driven the recent rapid progress in CV

technologies. Over recent years, a multitude of CNN architectures have emerged and

found applications in classification tasks, with models progressively growing in com-

plexity [40].

General category recognition

General category recognition represents the most intricate challenge in the realm of

recognition, as it necessitates not only pinpointing the positions of diverse objects in

an image but also ascertaining the specific category to which each object belongs. This

task demands the recognition of a wide array of objects present in the image. In ad-

dressing the complexities of general category recognition, several approaches have been

employed, including bag-of-words models and part-based models. Bag-of-words mod-

els involve comparing the distribution of visual words within the target image to the

patterns identified during training [44]. In part-based models, the image is dissected
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into distinct parts, each examined separately to determine the presence and location of

objects of interest. Recent progress in this field has harnessed the power of deep residual

learning and deep neural networks [45] to enhance the performance of general category

recognition systems.

Action recognition

Another challenge in the field of recognition is action recognition, a task that humans

naturally excel at but poses significant difficulties for machines. The accurate identifi-

cation of actions and behaviors in videos holds tremendous importance across various

applications. For instance, it plays a vital role in scenarios like monitoring pedestrian

movements in autonomous driving systems and detecting falls among the elderly. In

the realm of the manufacturing industry, recognizing the behaviors of workers within a

workshop setting has proven to be a valuable approach for ensuring production safety

[46, 47].

2.2.3 Segmentation

Image segmentation, a fundamental task in the field of computer vision, is concerned

with assigning pixels to distinct groups based on the objects they belong to. This process

is akin to a clustering problem. Early segmentation methods often employed techniques

involving region division and merging. Later approaches integrated indicators of con-

sistency, including intraregional coherence and interregional dissimilarity. As an in-

stance, in a previous work [2], we designed a region growing technique for segmenting

and clustering the resin on FRPC surface images. Other segmentation techniques such

as mean shift, graph-based merging, graph cut-based Markov methods, and level sets

[48, 49, 50] have been developed. In learning-based segmentation algorithms, common

loss functions include the Dice loss, rooted in the Dice coefficient, and the intersection

over union (IoU) [51].
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2.2.4 3D modeling

In the realm of computer vision, 3-D modeling is typically categorized into two dis-

tinct problems: stereo correspondence and 3-D reconstruction. Stereo correspondence

pertains to the process of creating a 3-D model of an object by analyzing two or more

images of the same object or scene. Conversely, 3-D reconstruction aims to generate a

3-D model of an object based solely on a single image [52]. Assessing the quality of a

predicted 3-D point cloud in comparison to the ground truth poses a notable challenge,

often requiring the design of an effective loss function. One approach involves evaluat-

ing how well the projections of the predicted 3-D point clouds align with the silhouette

of the ground-truth object [53, 54].

2.3 Composite Surface Image Analysis

Image analysis plays a significant role in composite manufacturing and coating pro-

cesses by providing insights into the quality, defects, and characteristics of materials [34].

Here are some examples illustrating the role of image analysis in this context:

1. Fiber Orientation Analysis: Image analysis can determine the alignment of rein-

forcing fibers in composite materials. By analyzing microscopic images of com-

posite cross-sections, manufacturers can ensure that fibers are properly oriented,

which is crucial for the material’s strength and performance [55].

2. Porosity Detection: Image analysis can identify and quantify the presence of voids

and pores in composite structures. High-resolution images can reveal even tiny

defects that might weaken the material. This information is essential for quality

control [56].

3. Bond Line Inspection: In composite bonding processes, image analysis can check

the integrity of adhesive layers. It can identify any gaps or defects in the bond line

between composite parts [57].
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4. Coating Thickness Measurement: Image analysis can be used to measure the thick-

ness of coatings applied to composite surfaces. By analyzing the color or intensity

variations between the coating and the substrate, manufacturers can ensure coat-

ings meet the specified thickness requirements [58, 59].

5. Defect Detection: Image analysis helps in identifying defects such as cracks, blis-

ters, or delaminations in coatings. These defects can compromise the protective or

decorative functions of the coating [60].

6. Surface Roughness Assessment: Image analysis can evaluate the surface rough-

ness of coatings. Understanding the texture of the coating is essential in applica-

tions where smoothness or adhesion is critical [61].

7. Pattern Recognition: Image analysis can be used to recognize specific patterns or

features on composite materials, such as identifying product labels or barcodes.

This is particularly useful in tracking and tracing products throughout the manu-

facturing and distribution process [62].

8. Process Monitoring: Image analysis can monitor manufacturing processes in real

time. For example, in thermal spray coating, cameras can capture images of the

coating process, and image analysis software can detect anomalies or variations

that may affect the coating quality [63].

In a primary research on automatic FRPC surface inspection [2], we developed an image

analysis algorithm where the resin clusters distribution was compared by histograms

for determining the state of grit blasting. As depicted in Fig. 2.1, the surface image

is segmented into resin and metal regions and the resin-covered areas are mapped by

pseudo colors. The histograms indicate that the resin clusters change in size and distri-

bution as the grit blasting state changes from under-blasted to over-blasted and it can

be fitted by a Gaussian curve. In a later research, we developed an image processing

technique based on the experimental and manual results of [64] where the focus was on

calculating the metal wire lengths as a feature to determine the surface exposure level to

grit blasting. With respect to this approach, we fitted rectangles to metal mesh segments
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FIGURE 2.1: Statistical surface image analysis for three samples with histograms. (a) Under-
blasted. (b) Properly blasted. (c) Over-blasted

on the top view images of FRPCs and analyzed the distribution of wire segment lengths

in properly blasted and under-blasted samples by histograms. Fig. 2.2 is an overview of

our second methodology based on computer vision contributing towards an automatic

surface exposure calculation. In summary, image analysis is instrumental in ensuring

the quality and consistency of composite manufacturing and coating processes. It helps

detect defects, assess material properties, and monitor production, contributing to the

overall performance and reliability of composite materials and coated surfaces.

2.3.1 Machine learning in composite surface image analysis

Much of the ongoing research in this field focuses on devising effective methods for

extracting crucial information and features, such as distributions that accurately depict

the inner content and attributes of images [65, 2]. Notably, texture is one of these critical

features, playing a significant role in characterizing the quality of various products par-

ticularly in the realm of surface analysis for composites [66]. Despite the advancements
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FIGURE 2.2: Histogram results for wire segment lengths calculated in two random properly
blasted (up) and under-blasted (down) samples by our shape fitting method.

in surface texture analysis, the sensitivity and specificity of these methods remain sub-

optimal [67]. Image texture analysis systems that utilize ML techniques are fast evolving

in recent years. ML techniques include decision tree learning, clustering, support vec-

tor machines (SVMs), k-means nearest neighbor (KNN), restricted Boltzmann machines

(RBMs) and random forests (RFs) [68]. Still, the pre-requisite for ML techniques to work

efficiently is the extraction of discriminant features which are generally unknown, and

the tasks of manual feature extraction are always sensitive and challenging. Among

the most commonly utilized approaches is the deployment of Convolutional Neural

Networks (CNNs), which belong to the class of artificial neural networks (ANNs) [69].

CNNs have made substantial contributions to various domains within image analysis

due to their minimal need for preprocessing [70, 71, 72, 73]. These networks possess the

remarkable ability to autonomously optimize their filters (kernels) through a process of

automated learning [74].
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FIGURE 2.3: An example of CNN architecture

2.3.2 Convolutional Neural Networks

The Convolutional Neural Network (CNN) is a feedforward neural network designed

to automatically extract features from data using convolutional structures. In contrast

to conventional feature extraction methods [41], CNN eliminates the need for manual

feature extraction. The CNN architecture draws inspiration from the human visual sys-

tem [75], where artificial neurons correspond to biological neurons, CNN kernels act

as receptors responsive to various features, and activation functions simulate the trans-

mission of neural electric signals exceeding a certain threshold to the next neuron. A

basic CNN architecture is depicted in 2.3. Additionally, loss functions and optimizers

are introduced to train the CNN system to learn specific patterns. CNN offers several

advantages when compared to fully connected (FC) networks. These include:

1. Local Connections: Neurons are no longer connected to all neurons in the previous

layer but only to a limited set, effectively reducing parameters and expediting

convergence.

2. Weight Sharing: Groups of connections can share the same weights, further reduc-

ing parameters.

3. Dimension Reduction through Downsampling: Utilizing pooling layers, CNN

leverages the principle of local correlation in images to downsample, reducing

data volume while retaining valuable information. This process can also elimi-

nate trivial features.
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FIGURE 2.4: The general convolution and feature extraction procedure in a CNN

Convolution is a pivotal step in feature extraction, resulting in feature maps. However,

convolution can lead to information loss at the borders. Padding, introducing additional

zero values around the input, helps adjust sizes indirectly. Strides control the density

of convolution. Larger strides reduce density [76, 77]. Following convolution, feature

maps contain numerous features, which may lead to overfitting. To address this, pool-

ing (also known as downsampling) methods, such as max pooling and average pooling,

eliminate redundancy [78]. The entire CNN process is outlined in Fig. 2.4. In this ex-

ample, the input image is convolved with a 3x3 kernel in the convolutional layer which

is though of as the "eyes" of CNN. At each epoch, CNN updates its filters (kernels) to

progressively learn the patterns by analyzing small chunks of data acquired as feature

maps. In summary, CNNs are essential deep learning algorithms that automatically

extract features from data, inspired by the principles of biological vision and character-

ized by local connections, weight sharing, and downsampling to enhance efficiency and

reduce the risk of overfitting [79]. Consequently, a significant advantage of CNNs lies

in their independence from prior knowledge and the need for human intervention in

feature extraction. Therefore, CNNs are also employed in our work.
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FIGURE 2.5: The block diagram of a simple feedback control system

2.4 Closed-loop control in composite manufacturing

In many systems, especially those involving control, there’s often a specific variable that

needs to be maintained at a desired value. Consider the example of an inverted pendu-

lum control system, where the goal is to keep the pendulum in a vertical position by

moving a cart horizontally. Closed-loop control systems, like this one, typically consist

of three main components:

• Sensor: This component measures a key variable of interest, such as the angle of

the pendulum concerning the vertical position.

• Actuator: It’s the element that changes the system’s state to adjust the controlled

variable (e.g., an electric motor on the cart moves the cart to control the pendu-

lum).

• Controller or Processor: Often seen as the "brain" of the system, it utilizes data

from the sensor to compute the appropriate action to drive the actuator, thereby

achieving the desired control action [80].

Figure 2.5 depicts the block diagram of a simple closed-loop control system. The control

system’s logic, or "controller," can be implemented on a computing device, whether it’s
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a standard computer or a smaller, resource-constrained device like a microcontroller.

One crucial aspect of a closed-loop system is stability. System stability ensures that the

state variables remain close to their desired set points over time. Instability can lead

to problems like actuator saturation, oscillations, or, in the worst case, the system spi-

raling out of control [81, 82]. Closed-loop control in composite manufacturing refers to

a systematic approach where real-time data is continuously collected from the manu-

facturing process, analyzed, and then used to make immediate adjustments to ensure

that the final composite product meets the desired specifications. This approach pro-

vides a feedback mechanism that allows manufacturers to maintain consistent quality,

improve efficiency, and reduce waste [83]. The utilization of data analytics and machine

learning methods has emerged as a prominent trend in the pursuit of achieving optimal

feedback control. Here are some examples to illustrate closed-loop control in composite

manufacturing:

• Curing Process in Fiber-Reinforced Composites: In the manufacturing of fiber-

reinforced composites, the curing process is critical. Closed-loop control can be

applied to ensure that the temperature, pressure, and curing time are precisely

controlled. Sensors continuously monitor temperature and pressure within the

curing oven, and this data is sent to a controller. If the temperature deviates from

the setpoint, the controller can adjust the heating elements accordingly to bring

it back into the desired range. This results in the establishment of precise con-

trol over the curing environment, and the detection of flaws in composite materi-

als [84].

• Composite Layup in Automated Fiber Placement (AFP): Automated Fiber Place-

ment is a process where composite fibers are accurately placed on a mold or sub-

strate to create complex shapes. Closed-loop control involves monitoring the po-

sition and tension of the fibers in real-time. If the system detects any deviation

from the desired fiber placement, it can make immediate adjustments to correct it.

For example, if the tension in a fiber becomes too high, the system can slow down

the placement or adjust the tension to prevent breakage. As instance, in a study, a
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hybrid system encompassing both position and force control was employed. This

system communicates critical information to the industrial robot controller, allow-

ing for precise tool corrections and enhancing overall process accuracy [85]. This

approach demonstrated improved homogeneity, leading to enhanced mechanical

performance.

• Material Mixing in Resin Transfer Molding (RTM): In the RTM process, resins and

other additives are mixed to create the composite material. Closed-loop control

can be used to monitor the viscosity and composition of the resin mixture. If the

mixture deviates from the desired viscosity or composition, the system can adjust

the flow rates of the individual components to maintain the correct mixture. This

ensures that the composite material is consistent and meets the required specifica-

tions [86].

• Quality Inspection and Defect Detection: After the composite is manufactured,

closed-loop control can also be applied to quality inspection. Automated inspec-

tion systems use various sensors, such as cameras and ultrasound, to detect de-

fects or inconsistencies in the final product. If a defect is identified, the system can

trigger an alarm and, in some cases, even make real-time adjustments to correct

the issue. For instance, if a defect is detected during the automated trimming pro-

cess, the trimming tool’s path can be adjusted to remove the defect while preserv-

ing the good material [87, 88, 89]. In a recent study, a closed-loop framework was

introduced, which integrates advanced deep learning models into robot-based

composite additive manufacturing systems [90],. This framework facilitates the

development of a closed-loop adjustment system that corrects process parameters

upon detecting defects through deep learning.

Furthermore, the enhancement of various aspects of composite recycling has been ex-

plored through the use of artificial neural networks (ANNs) [91]. Researchers have also

delved into the application of advanced control algorithms to manage the complexities

of composite manufacturing [92]. Consequently, closed-loop control systems in com-

posite manufacturing help to ensure that the final products meet the required quality
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standards, reduce waste, and improve overall process efficiency. They play a crucial

role in achieving consistent, high-quality composite materials used in various indus-

tries, from aerospace to automotive and beyond. Despite these recent advancements,

research in this emerging field highlights a significant gap, emphasizing the absence of

a comprehensive and cohesive strategy aimed at facilitating automatic adjustments and

informed decision-making in the process of preparing FRPC surfaces for coating. Given

the novelty of this method, there is a limited body of work addressing the monitoring

and optimization aspects specific to this process.
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3 Methodology

To fabricate the metal mesh/FRPC assembly, CYCOM® 977-2 prepregs (carbon fibers

pre-impregnated with epoxy resin and partially cured) are combined with stainless steel

316 wires in a 200-mesh configuration. A unidirectional laminate comprising 20 layers

of CFRP prepreg ([0]20) is meticulously arranged on a prepared tool. Subsequently, a

cleaned metal mesh is overlaid onto the laminate, and the entire setup is enclosed in a

vacuum-sealed bag, ready for autoclave curing. Following fabrication, the top of the

polymer composite hosts a layer of resin that obscures the metal mesh. The challenge

is to selectively remove a portion of the resin, providing sufficient surface area on the

metal mesh for subsequent coating. In Fig. 3.1, a microscope view displays a FRPC sam-

ple featuring the metal mesh covered by resin. The objective is to ascertain the resin’s

depth and determine whether the sample is primed for coating. Ideally, the resin thick-

ness should be half the height of the metal mesh, ensuring that a significant portion

of the mesh remains exposed to serve as an anchor for the coating on the composite

surface. For analysis, a low-cost (∼ $100) USB microscope with 40× magnification and

1080×1920 resolution, commonly available in the market, is employed to capture im-

ages. These images are then subjected to machine learning techniques to ascertain the

level of exposure, enabling quantification of the percentage of metal mesh surface ex-

posed. The subsequent sections elaborate on the intricacies of this method.
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FIGURE 3.1: FRPC before grit blasting with metal mesh on its surface fully covered with
resin

3.1 Experimental setup and data generation

3.1.1 Grit Blasting

The experimental configuration is illustrated in Fig. 3.2. To achieve uniform grit blasting

across the surface, the procedure involves securing the sample onto a surface covered

by a protective film. This film acts as a safeguard for fixture components, mitigating

potential damage during the grit blasting process. For controlled and even motion, the

sample is set in motion along both the X and Y directions through the utilization of a X-Y

table. This setup is connected to an external controller situated outside the grit blasting

cabinet, facilitating the activation and deactivation of the motors during grit blasting.

Furthermore, to maintain a consistent position and angle, the grit blasting gun is af-

fixed to a fixture. During each pass of the grit blasting process, the sample undergoes

a prescribed sequence of movements. Initially, it experiences horizontal motion from

left to right along the X axis. Subsequently, it transitions to vertical movement, pro-

gressing from the bottom to the top while moving along the X axis. This choreographed

sequence of movements guarantees complete and thorough exposure of the sample’s
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FIGURE 3.2: Experimental setup for data generation: the sample and gun fixtures are placed
inside a cabinet covered with a protective film.

surface to the grit blasting process, ensuring a comprehensive treatment. The experi-

mental design encompasses a comprehensive spectrum of grit blasting states, ranging

from under-blasted to over-blasted conditions. This is accomplished by carefully ad-

justing three crucial parameters: air pressure, stand-off distance (SOD), and number of

passes. All other factors, such as gun angle, particle size, grit material, and speed, are

held constant with regards to the grit blasting procedure designed in [64]. Specifically,

the air pressure levels are set at 60, 80, and 100 psi; SODs at 3, 4, and 5 inches; and the

number of passes at 1, 2, and 3. Consequently, a total of 27 distinct grit-blasted samples

are generated. The exposure levels of these samples are quantified using a destructive
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FIGURE 3.3: Mesh in resin side view. An image of the coupons prepared for grit-blasting,
sample cut in half, and samples mounted for polishing and characterization by optical mi-
croscope.

approach involving an optical microscope (Fig. 3.3).

3.1.2 Ground Truth

Analyzing the cross-section of the initially produced samples and the surface of pol-

ished samples prompted the concept of establishing a correlation between the metal

wire mesh exposure level and the length of exposed wires when viewed from the top

[64]. Notably, a significant innovation in this study is the utilization of a compact, cost-

effective, portable digital microscope for the assessment of composites from a top-view

perspective, eliminating the need for destructive testing of the sample. The "Skybasic

handheld digital microscope," featuring a magnification range of 50-1000, is employed.

This microscope is equipped with 8 LEDs, allowing for adjustable light intensity, a valu-

able feature for achieving a clear contrast between metal and polymer due to their dis-

tinct light reflection properties. To achieve the correlation between the metal wire ex-

posure level and the length of exposed wires when viewed from the top, the average

height of exposed wires calculated from the cross-section view (h), was acquired as a
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function of the average length of exposed wires from the top view (x) which was manu-

ally calculated by ImageJ software. This correlation was achieved through interpolation

of coordinates of several points on the wire curve [64]. It’s important to note that in an

ideal scenario, where the metal wire mesh exhibits precise dimensions without any ir-

regularities, the maximum value of x would correspond to an exposure level of 50%. As

a result, referring to h(x), the exposure percentage for each top-view image is calculated

and recorded as the ground truth.

3.1.3 Image Data Generation

In fact, each sample is subjected to image capture at five different locations, yielding a

collection of 135 surface images. Without loss of generality, the samples are captured at

a right angle, ensuring that the metal mesh wires are positioned vertically and horizon-

tally in the images. Alternatively, automatic rotation can be implemented to align the

wires correctly if they are not initially well-oriented. Images are subsequently resized

by 50% to incorporate a more comprehensive mesh pattern within the receptive field.

These images are further cropped into smaller 256×256 resolution images, yielding 450

images per initial capture. Furthermore, we augmented the image data by incorporat-

ing various conceivable variations into the data set. Given that all samples are initially

positioned at right angles during capture, we apply rotations of 90, 180, and 270 de-

grees, as well as vertical and horizontal flips. This augmentation results in a total of

2,700 images for each captured image. These images are labeled according to their cor-

responding exposure level percentage (e.g., 29.9) which is the ground truth. In total,

this leads to 36,900 labeled images across 17 exposure levels. The data set is divided

into training and validation sets, with 32,400 images for training and 4,500 images for

validation. The division ensures an even distribution of exposure levels across both sets,

encompassing the entire spectrum from under-blasted to over-blasted samples.



3.2. Convolutional Neural Network with Regression 33

FIGURE 3.4: The proposed CNN Architecture

3.2 Convolutional Neural Network with Regression

Convolutional Neural Networks (CNNs) are a class of deep neural networks well-suited

for processing visual imagery due to their incorporation of convolutional computation.

They can be viewed as regularized versions of fully connected neural networks, as they

exploit hierarchical patterns in data by assembling intricate structures from smaller, sim-

pler patterns extracted using convolution filters [73]. Drawing on the proven success of

CNNs, we employ them to extract texture features from surface images captured from

the top view of grit-blasted FRPCs, aiding in estimating surface exposure levels. The

CNN model is implemented using Keras with TensorFlow backend on a Python IDE.

Keras preprocessing leverages the ImageDataGenerator class, generating tensor image

data batches with real-time augmentation. This class facilitates labeling image data and

creating training and testing sets for the CNN. The CNN architecture includes three

convolutional layers (as depicted in Fig. 3.4) for texture feature extraction. Each layer

performs dot-product multiplication of input vectors with trainable weights and biases

to uncover internal features. The output of the first layer flows into the second, and

then into the third for progressively higher-level feature extraction. Rectified linear unit

(ReLu) activation functions and average-pooling layers follow each convolutional layer.

Activation functions introduce non-linearity, while pooling layers down-sample input

data to extract distinctive features along the spatial dimension. To mitigate over-fitting,

a dropout layer randomly discards some of the first layer outputs. This prevents the

network from failing when predicting new data. The outputs of the final convolutional
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layer are flattened and fed into a fully connected layer. Given that the output is a con-

tinuous value estimating exposure percentage, a regression layer with a single unit and

a linear activation function is appended at the end.

Specifically, the input surface images are fed into the convolutional layers using fil-

ters (kernels) of size FW × FH × N, where FW, FH, and N denote the filter width,

height, and depth, respectively. The first convolutional layer, applied to the input im-

age (IW × IH), changes the output image shape to a size of

[
IW − FW + 2p

S
+ 1,

IH − FH + 2p
S

+ 1, N],

where IW and IH are the input width and height, while S and P represent the stride

and padding values, respectively. The forward computation of the CNN structure is

expressed as:

Xl
i+1 = fa(kl

i,i+1xl−1
i + bl

i+1),

where Xl
i+1 represents the output feature map i+1 in the lth layer, kl

i,i+1 signifies the

kernel linking feature map i in the (l − 1)th layer to the output feature map i + 1 in the

lth layer, bi is the bias matrix tied to the output feature map i + 1 in the lth layer, and

fa denotes the activation function, which is set as ReLU. ReLU is adopted due to its

capability in enforcing non-saturation and nonlinearity in both positive and negative

phase information of the CNN output [93]. The kernel of the CNN enhances the feature

representation of input data. The output layer is directed to a cost function, yielding

mean squared error (MSE):

y =
∑n

i=1(xl
i − ol

i)
2

n
.

In this equation, n represents the number of training data points, and ol
i is the observed

data. The entire learning process aims to minimize this loss function via the back-

propagation algorithm, which computes derivatives of the loss throughout the network.

The back-propagation phase employs the ADAM optimizer for training and minimiz-

ing the cost function. The average-pooling layer is independently applied to feature

maps for down-sampling and enhanced feature extraction. This layer computes mean
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values from a fixed region of the convolutional layer without multiple filter depths.

This downsizes the data and enhances feature extraction. The fast convergence and

improved feature generalization in the average-pooling layer are captured by

fm(xl) = Average(xl
i),

where fm(xl) denotes the average-pooling results of the lth CNN layer. In this study,

dropout is employed after the first convolutional layer and its subsequent activation

function for effective regularization and prevention of over-fitting. The dropout layer

randomly disregards output nodes from the previous layer. During training, the dropped

nodes are temporarily excluded by %10 in the forward network, resulting in the corre-

sponding weight and bias parameters remaining unaltered in the backward network.

Consequently, the network becomes less sensitive to irrelevant weight and bias val-

ues, leading to improved generalization on unseen data and a reduced risk of over-

fitting [76].

Prior to commencing training, it’s imperative to initialize weights and biases of the

network to activate neurons for propagation. As the proposed CNN employs ReLU acti-

vation functions, the He Normal technique is chosen for weight initialization [94]. More-

over, regularization is crucial to counter over-fitting, where a model becomes adept at

training data but fails with unseen test data. This is seen when training error drops, but

validation error remains high. It signifies learning specifics rather than trends. Model

complexity, tied to sensitivity to minor changes, leads to focusing on trivial details, caus-

ing misguided learning. By controlling complexity through regularization, influenced

by model weights and feature count, sensitivity can be managed [95]. Integrating a

regularization term minimizes complexity and loss simultaneously. In this context, L2

regularization is applied. It supplements the cost function with a penalty term com-

posed of the squared magnitude of coefficients:

J(θ) =
1
m

m

∑
i=1

Cost(hθ(xi), yi) +
λ

2m

n

∑
j=1

θj
2,
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where m represents data size, n denotes the number of features, and λ stands for the

weight decay regularization parameter, set at 0.005 for this CNN model. This tech-

nique minimizes the cost function and concurrently diminishes complexity, a princi-

ple referred to as structural risk minimization. [95]. In pursuit of model optimization,

hyper-parameter tuning has also been performed. In this work, TensorFlow’s random

search is employed, executing numerous trials with random parameter combinations.

Essentially, this algorithm independently selects values for each hyper-parameter using

a probability distribution. Subsequently, it evaluates the cost function based on these

randomly chosen hyper-parameter settings and ultimately identifies the most optimal

model structure for training.

3.3 Closed-Loop Control

The objective of this study is to implement a closed-loop control strategy for the proper

surface preparation of FRPC. This involves designing a feedback-based regulation mech-

anism to monitor resin height and adjust process parameters until the desired state is

achieved without causing damage. While our experiments involved varying air pres-

sure, SOD, and the number of passes, we have chosen to focus on controlling air pres-

sure for the control. This decision is made because altering the SOD would also impact

the blast width, and the number of passes is discrete. Therefore, establishing a connec-

tion between pressure and exposure level under controlled conditions is of significant

importance to achieve our objective. Without loss of generality, we have taken data from

experiments with one pass and an SOD of 3 inches, with each configuration repeated

five times. Plotting these data points on a chart, as depicted in Fig. 3.5, we observe a

logarithmic trend in the correlation between these two parameters:

P = 35.44 ln(E)− 59.89.

The logarithmic trendline is accurately applied to the pressure-exposure curve, resulting

in a coefficient of determination value of 0.952. This equation can also be interpreted as
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FIGURE 3.5: Exposure variations by grit blasting with three pressure values. Each data
point has a stand-off distance of 3 inches and is obtained in a single pass.

the amount of resin removed with each pass of the blasting process, and the proposed

closed-loop control system leverages utilizes this formulation to optimize the blasting

result.

Exposure levels exceeding a threshold of 55%, traditionally regarded as over-blasted,

result in wasted samples. Therefore, it is imperative to avoid reaching this state. Given

the aggressive and irreversible nature of grit-blasting, our proposal is to carry out the

process incrementally to ensure over-blasting is prevented. To accomplish this, we in-

troduce a closed-loop control system, as depicted in Fig. 3.6. The process commences

by capturing the surface image using a digital microscope. Subsequently, the CNN-R

assesses the image to determine the surface exposure level (Ei), which is then compared

to a set point representing the ideal exposure level (50%) within the control loop. This
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FIGURE 3.6: The proposed feedback control block diagram.

comparison yields the difference (∆E). An acceptability coefficient (A) is introduced to

safeguard against over-blasting. Taking inspiration from optimization algorithms that

leverage the Golden Ratio (ϕ ≈ 1.618) to search for optimal solutions, we divide the

computed removal amount by the Golden Ratio, denoted as ∆E/ϕ. In essence, the ac-

ceptability coefficient corresponds to the inverse of the Golden Ratio, i.e., 1/ϕ ≈ 0.618,

and it is multiplied by ∆E. This coefficient embodies a strategic approach aimed at

achieving a balance between optimal grit-blasting pressure and risk mitigation. Sub-

sequently, the next step utilizes the updated ∆E value to determine the pressure value

(Pi+1) for the subsequent round of grit blasting. After the completion of each round of

grit blasting, another surface image is captured, and the control loop persists until the

exposure level falls within an acceptable range (within ±5%).
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4 Results & Discussions

The provided algorithm has been executed using Python on a MacBook Pro equipped

with an Apple M1 Pro chip and 16GB of RAM. In this section, we will delve into the

validation and verification results, along with a detailed case study.

4.1 Performance Validation

To assess the performance of our proposed network, we conducted an in-depth analy-

sis by calculating regression errors at each epoch and presenting the results in Fig. 4.1.

This comprehensive evaluation allowed us to gain valuable insights into the network’s

performance over the training period. As we scrutinized the convergence behavior il-

lustrated in the figure, it became evident that the optimization process spanned a total

of 70 epochs. During this period, we closely monitored the error value, observing that it

reached a stable state when further changes were negligible. To gauge the network’s ac-

curacy, we opted for the Mean Absolute Error (MAE) function to quantify both training

and validation errors. This selection was made deliberately, as it enables a direct inter-

pretation of the error as a percentage deviation from the ground truth, representing the

observed exposure level. This choice aligns with our objective of obtaining error metrics

that closely mirror the real-world impact of deviations from the actual exposure level.

It’s important to emphasize that the significance of error metrics can vary depending

on the specific context and application. However, for the context of our research, we

established that an error within the range of ±5% is acceptable and does not lead to any

significant alteration in the state of the grit blasting process. This tolerance threshold is

practical and aligns with the objectives of our study. Upon scrutinizing the regression

outcomes, we discerned the network’s exceptional proficiency in forecasting the surface
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FIGURE 4.1: Mean Absolute Error (MAE) for training (Blue line) and test (Orange line) sets
in 70 epochs

exposure level with remarkable precision, showcasing an impressively low error rate

of approximately ±3.9% for both the training and validation datasets. To reiterate, our

dataset comprises a total of 36,900 labeled images, with the training set consisting of

32,400 images and the validation set containing 4,500 images. This level of accuracy

underscores the potential practical utility of the proposed network in real-world appli-

cations.

4.2 Feature Verification

CNNs excel in learning hierarchical features from image data, with their core compo-

nents being the convolutional layers. These layers consist of multiple filters (kernels)

designed to detect and extract features. In a typical CNN model, numerous layers of

convolutional filters play a pivotal role in constructing informative feature maps for the
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FIGURE 4.2: Visualization of activations at each convolutional layer

network’s classifier. Typically, the filters in the initial layer focus on identifying broad

and elementary features. As the network delves deeper, subsequent layers’ filters build

upon these basic features to detect increasingly intricate patterns [96]. To gain insights

into and interpret the inner workings of the CNN, ensuring the meaningfulness of the

learned features, we employ feature visualization techniques. These techniques gener-

ate images that maximally activate specific features within these layers. In Fig. 4.2, we

present activation maps produced by the optimizer for each convolutional layer. The

visualizations reveal that the first layer detects elements like blobs, edges, and varia-

tions in color between resin and metal regions, aiding in precise image segmentation.

Moving to the second layer, the network begins to discern surface textures alongside its

earlier knowledge of colors, lines, edges, and segments. At this stage, the CNN identi-

fies grid-like textures on the surface, a detail not evident in the initial layer. In the third

layer, the receptive field expands to unveil intricate surface patterns formed by metal

mesh segments. As demonstrated by the results, this layer accentuates lower-frequency

details with varying shades. These findings collectively verify the network’s capability

to learn and recognize dominant surface patterns at different levels of exposure to grit

blasting.
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FIGURE 4.3: A case of closed-loop control procedure.

4.3 Control Case Study

We illustrate the practicality of our control system through a detailed case study, as

visualized in Fig. 4.3.

The successful implementation of this approach involves a series of dynamic steps

that intelligently adjust the grit blasting process to attain the desired exposure level. As

depicted in the figure, the journey commences with the establishment of a target ex-

posure of 50%. This serves as the initial goal for a surface untouched by grit blasting

as it enters the control loop. However, the inherently aggressive nature of grit blasting

necessitates the integration of an acceptability coefficient, set at 0.618. This adjustment

reduces the target exposure to 31%, mitigating potential damage risks and preventing

excessive blasting. The calculated target exposure guides the determination of the grit

blasting pressure, resulting in a pressure of 0.51 MPa in this case. Grit blasting is then

executed for a single pass, and the resulting surface image is fed to the CNN-R. In this

scenario, CNN-R outputs an exposure of 27%, which falls below the acceptable range.

Consequently, a new target exposure is computed, taking into account the acceptability

coefficient, and the second round of grit blasting proceeds with the resulting pressure

(0.43 MPa). This time, CNN-R outputs an exposure of 36%, which still resides out-

side the acceptable exposure range. Thus, the exposure difference is calculated once

more, guiding the determination of a pressure of 0.41 MPa for the third round of grit
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blasting. Finally, CNN-R produces an exposure estimate of 48%, aligning within the ac-

ceptable range, thereby concluding the control loop. Throughout these iterative steps,

our approach demonstrates its remarkable ability to dynamically adapt the grit blast-

ing pressure with precision and accuracy. By employing target exposure modification

and leveraging CNN-R analysis, we effectively manage to achieve the desired exposure

level while concurrently minimizing the risks of over-blasting or damage to the sample

surface. This adaptable and responsive control mechanism has the potential to redefine

grit blasting processes, ushering in an era of enhanced efficiency and meticulous qual-

ity control in surface preparation applications. This innovation holds the promise of

revolutionizing surface preparation practices, optimizing outcomes, and ensuring con-

sistency in critical industrial processes.
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5 Conclusion

Coating fiber-reinforced polymer composites (FRPCs) directly with thermal spray poses

a dual challenge. Not only does it risk damaging the composite surface, but it also leads

to poor adhesion between the coating and the composite. To overcome these obstacles, a

crucial preliminary step is required before applying the coating: attaching a metal mesh

to the composite surface. This metal mesh serves two critical functions – it dissipates

heat effectively and acts as an anchor, firmly securing the bond-coat to the surface. This

process, involving the use of resin to affix the metal mesh to the composite, necessitates

a grit-blasting step. The purpose of grit-blasting is to precisely adjust the resin level,

ensuring an optimal exposure of the metal mesh. However, the conventional manual

inspection of the resin level is slow and prone to inaccuracies, varying from person to

person. In response to these challenges, this thesis presents a closed-loop control strat-

egy, leveraging deep learning techniques for automated composite surface inspection. A

Convolutional Neural Network for Regression (CNN-R) takes center stage in this study,

monitoring the surface’s exposure percentage by analyzing surface images captured

with a simple digital microscope. Impressively, the proposed CNN-R is capable of de-

termining the exposure percentage with a minimal error of approximately 4%, offering

a rapid and non-destructive solution. In the course of the control process, the CNN-R’s

role is pivotal, ensuring precise assessment of the exposure level. To prevent mate-

rial wastage, an acceptability coefficient is introduced, guaranteeing that over-blasting

is avoided. This thesis represents an initial step toward the development of an online

process monitoring and control system for composite manufacturing and coating. The

results obtained highlight the immense promise of this research direction, showcasing
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the potential for significant advancements in the realm of fast and real-time feedback-

based defect detection within composite manufacturing processes. This approach holds

the key to improved efficiency, enhanced product quality, and a more seamless manu-

facturing experience. Despite the promising outcomes, the current system remains only

partially automated, necessitating human operators to load and unload parts between

the grit-blasting machine and the vision inspection system. This manual involvement

could potentially introduce errors in positioning and handling. To enhance the flexibil-

ity and adaptability of our approach, our future endeavors will focus on the creation

of a fully automated machine. This will be accomplished by deploying high-speed mi-

croscopy cameras, strategically positioned by a robotic fixture specifically designed for

precise placement, secure fixation, and subsequent removal of grit-blasted components.

This fixture must possess a robust construction to enable seamless operation alongside

the grit-blasting tools, ensuring accurate positioning and securing of components in

front of the grit blasting gun. Additionally, it should facilitate the smooth transfer and

placement of grit-blasted parts for inspection by the cameras. The integration of this

advanced system holds the promise of significantly elevating both the quality and effi-

ciency of our manufacturing process.
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