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Abstract

Cerebrovascular Pathology Segmentation Using Weakly Supervised Deep Learning
Methods

Amirhossein Rasoulian

Intracranial hemorrhage (ICH) and unruptured intracranial aneurysm (UIA) are two important cere-

brovascular diseases that require prompt and precise diagnosis for effective treatment and improved

survival rates. While deep learning (DL) techniques have emerged as the leading approach for medi-

cal image analysis and processing, the most commonly employed supervised learning often requires

large, high-quality annotated datasets that can be costly to obtain, particularly for pixel/voxel-wise

image segmentation. To address this challenge and meet the need in cerebrovascular care, we pro-

posed and validated three novel weakly supervised segmentation methods for ICH using categorical

labels and for UIA with coarse image segmentation. For ICH, we first introduced a framework to

segment the lesion based on a hierarchical combination of self-attention maps obtained from a Swin

transformer, which was trained only for ICH detection, achieving a Dice score of 0.407. Subse-

quently, by employing novel head-wise gradient-weighing of self-attention maps in the same setup,

we further improved the mean Dice score to 0.444 for ICH segmentation. Our method that only

relies on categorical labels showed comparable performance against popular fully supervised meth-

ods, such as UNet and Swin-UNETR. Finally, for UIA segmentation, we achieved a Dice score of

0.68 and a 95% Hausdorff distance of ∼0.95 mm by proposing a new 3D focal modulation UNet,

called FocalSegNet. This novel DL architecture was trained with coarse manual segmentation,

providing an initial segmentation of aneurysms, which was then refined using dense conditional

random field (CRF) post-processing. Our proposed methods explored new avenues using weak la-

bels to mitigate a key bottleneck in medical DL with excellent performance and showcased their

promising potential in addressing challenging medical image segmentation tasks.
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Chapter 1

Introduction

1.1 What is a cerebrovascular disease?

Cerebrovascular disease refers to a group of medical conditions that affect the blood vessels in the

brain, such as strokes, aneurysms, and vascular malformations. A stroke is a sudden and often

severe neurological event that occurs when there is an interruption in the brain’s blood supply. This

interruption can be due to:

• Ischemic Stroke: blockage of brain blood vessels, typically by a blood clot or plaque, causing

reduced blood flow to a part of the brain and the death of brain cells.

• Hemorrhagic Stroke: rupture of a blood vessel within the brain, leading to bleeding in-

side the brain (intracerebral hemorrhage) or in the space surrounding the brain (subarachnoid

hemorrhage).

Strokes are a significant cause of morbidity and mortality worldwide and can have serious con-

sequences for brain function. According to World Stroke Organization (WSO) statistics, more than

12.2 million new strokes occur worldwide every year, and there is the annual demise of six and a

half million individuals. In the global population aged 25 and above, one out of every four indi-

viduals is expected to experience a stroke during their lifetime. Intracranial Aneurysm constitutes

another category of cerebrovascular disorder, involving an abnormal localized bulging or balloon-

ing of the blood vessels in the brain due to the weakened integrity of the blood vessel walls. It has
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the potential to result in a critical condition known as subarachnoid hemorrhage in case it ruptures.

While frequently without noticeable symptoms, larger aneurysms can give rise to manifestations

such as severe headaches, visual impairments, neurological deficiencies, and various other compli-

cations [1]. In this thesis, we opted to focus on hemorrhagic strokes, which are less prevalent than

ischemic strokes, but they are deadlier. Additionally, the document explores the topic of Intracranial

Aneurysms, which have the potential to result in subarachnoid hemorrhage.

1.2 Challenges

Hemorrhagic strokes are diagnosed using CT or MRI imaging in clinical settings. Timely and accu-

rate detection is crucial because rapid intervention is vital for minimizing brain damage and improv-

ing patient outcomes. However, manually analyzing these images for signs of hemorrhagic stroke

is time-consuming and requires expertise. Automatic detection methods are desired to expedite

the process and enable faster, more accurate diagnosis, which is particularly critical in stroke cases

where every minute counts. On the other hand, most deep learning-based medical image segmen-

tation methods rely heavily on training with large and meticulously annotated datasets. However,

this presents a formidable challenge in the field, as gathering such datasets is a time-consuming and

expensive process. It necessitates the expertise of medical professionals to accurately label images,

and accumulating a substantial number of diverse cases takes considerable effort and resources.

1.3 Proposed solution

In response to the challenge of insufficient high-quality annotated images for training deep learning

models, our approach involves the utilization of weakly supervised learning techniques. In this

methodology, the model is trained using less precise labels, but it is equipped with the capability

to generate accurate and high-quality predictions. To elaborate further, our method utilizes image

categorical labels or bounding boxes during training, and at the testing stage, it leverages these

techniques to produce voxel-wise segmentation, ensuring the production of precise and detailed

results.
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1.4 Thesis outline

This thesis is organized in 6 chapters. Chapter 2 offers the foundational knowledge necessary for

comprehending the remainder of the thesis. It covers the topics of medical image segmentation,

weakly supervised learning strategy, and transformer models. In Chapter 3, we propose a technique

that does intracranial hemorrhage (ICH) segmentation, employing a hierarchical combination of

attention maps derived from a Swin transformer trained on categorical labels. Moving on, in Chap-

ter 4, we enhance the previously introduced model by integrating the concept of class-activation

mapping and combining it with attention maps, featuring a specialized head-wise gradient-infused

self-attention mapping technique for precise ICH lesion segmentation. Chapter 5 shifts the focus to

the weakly supervised segmentation of intracranial aneurysms. Here, we propose a novel segmenta-

tion model using focal modulation, trained on weak labels represented as spheres encompassing the

target. This model provides an initial coarse segmentation, subsequently refined through conditional

random field post-processing to achieve voxel-wise aneurysm segmentation. Finally, in Chapter 6,

we conclude the thesis and discuss potential future improvements.
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Chapter 2

Background and Literature Review

In this chapter, we start by elucidating the concept of medical image segmentation, explaining di-

verse medical image modalities, prevalent pre-processing techniques, and metrics to evaluate the

performance of models. Following this, we introduce the deep learning methodologies serving as

the foundational architecture throughout this thesis. We then navigate into the domain of weakly

supervised learning, and we provide a detailed explanation of specific weakly supervised learning

methods applied in this thesis for the segmentation of hemorrhagic strokes. Lastly, we undertake a

thorough review of related papers employing weakly supervised techniques for the medical image

segmentation task.

2.1 Medical Image segmentation

Image segmentation involves dividing an image into disjoint homogeneous regions based on fea-

tures like intensity, spatial texture, and geometric shapes. This process extracts valuable information

by ensuring similarity within each area while highlighting clear differences between them. Medical

images play a pivotal role in clinical diagnosis, and automatic segmentation methods offer consis-

tent accuracy and enhanced speed compared to manual approaches. Applying computer-assisted

methods to segment medical images assists doctors in evaluating tumor/lesion size, quantifying

treatment effects, and significantly reducing their workload.

4



2.1.1 Introduction to Medical Imaging

Medical imaging is the procedure of capturing images of the internal structures of the body for clin-

ical examination, medical interventions, and visual illustrations of the functioning of certain organs

or tissues. Its primary objective is to unveil hidden internal structures beneath the skin, facilitating

the diagnosis and treatment of various diseases. Advancements in medical treatment have resulted

in the extensive adoption of imaging technologies, including Computed Tomography (CT), Mag-

netic Resonance Imaging (MRI), Positron Emission Tomography (PET), X-ray, and ultrasound in

clinics. Each modality possesses distinctive strengths and weaknesses, designed for specific appli-

cations. In contrast to RGB natural images, medical images are typically grayscale images with

diverse intensities. They come with specific metadata for each image, including patient information

and an affine matrix used to derive real-world coordinates of image voxels. Consequently, these

images are stored in formats like NIfTI, DICOM, and MINC, which are specifically designed to

store medical data. The predominant imaging modalities employed for brain imaging include CT

and MRI, both of which will be discussed in this section. To provide a comprehensive overview, a

detailed comparison between these modalities is outlined in Table 2.1, complemented by illustrative

examples of their images depicted in Fig. 2.1.

Magnetic Resonance Imaging

An MRI machine utilizes the interaction of magnetic fields and protons in biological tissues to

produce 3D/4D images. The scanner polarizes and excites hydrogen nuclei within water molecules

in body tissue by emitting a radio frequency (RF) pulse at the resonant frequency of hydrogen

atoms. This RF pulse, delivered through radio-frequency antennas, causes protons to absorb the

energy, altering their alignment with the primary magnetic field. Once the RF pulse is deactivated,

the protons return to their original alignment and emit radio waves. These emitted signals are then

detected and spatially encoded to reconstruct detailed images of the body. Fig. 2.1 (A) illustrates an

example of brain MRI image.

5



Computed Tomography

In CT imaging, a rotating beam of X-rays surrounds the object under examination, and sensitive ra-

diation detectors capture the X-rays after penetrating the object from multiple angles. The collected

data is then analyzed by a computer, which utilizes mathematical principles, particularly the Radon

transform, to construct a detailed 3D image of the object and its internal structures. To mitigate

potential health risks, it is crucial to restrict the frequency of repeated CT scans, as they subject the

patient to ionizing radiation emitted during X-ray projections. Fig. 2.1 (B) shows an example of

brain CT image.

Angiography Imaging

Angiography images offer a detailed visualization of blood vessels throughout the body, facilitating

a comprehensive assessment of their structure and function. Widely employed for evaluating blood

flow and identifying conditions like blockages and aneurysms, these images play a crucial role in

planning medical interventions such as surgeries or angioplasty. The imaging involves the injection

of a contrast agent into the blood vessels, and subsequent utilization of MRI or CT techniques

to capture detailed images, revealing any abnormalities present in the vasculature. Fig. 2.1 (C)

and Fig. 2.1 (D) depicts examples of brain MR Angiography (MRA) and CT Angiography (CTA)

images, respectively.

Table 2.1: Comparison of MRI and CT

MRI CT

Non-invasive and does not involve ionizing radiation,
making it safer for repeated use.

Exposes patients to ionizing radiation, raising the risk
of developing cancer.

Offers excellent soft tissue contrast for imaging organs,
muscles, and the nervous system.

Provides good contrast for bones but is less effective in
distinguishing between different soft tissues.

Scans can take longer, potentially limiting use for pa-
tients who have difficulty remaining still.

Relatively quick imaging, valuable in emergency situ-
ations.

Certain metallic implants can interfere with imaging. Versatile and applicable to various body parts, includ-
ing the head, chest, abdomen, and musculoskeletal sys-
tem.

Equipment and procedures tend to be more expensive,
limiting availability in some settings.

Widely available in hospitals and medical facilities, en-
suring accessibility.

6



Figure 2.1: Visualization example of different medical image modalities: A) MRI. B) CT. C) MRA.
D) CTA.

2.1.2 Medical Image Pre-processing

Image Registration

Image registration, involving image fusion, matching, and warping, is the process of spatially align-

ing multiple images. In the context of brain images, image fusion involves merging brain images

of a population to create a standard average image, commonly known as an atlas; image matching

involves determining a spatial transformation that aligns one brain image with a brain atlas (or an-

other brain image), enabling the extraction of landmark coordinates from the atlas on the new brain

image; and image warping involves applying a geometric transformation, such as registering a new

brain image to a brain atlas, ensuring spatial standardization for comprehensive analysis [2]. While

this thesis does not dive deep into the details of medical image registration techniques, it is still

relevant in pre-processing of the data used in the experiments. Classic image registration typically

begins with the initialization of a transformation matrix, followed by the iterative reduction of the

energy/loss function to achieve the optimal alignment.

Resampling

In medical imaging, the accurate size of each voxel (three-dimensional pixel) is critical as it directly

influences the assessment of lesions, pathologies, and disease progression. While the image dimen-

sion indicates the number of voxels in each dimension of the image grid, the physical resolution

7



specifies the actual size of each voxel in millimeters. For instance, in a 1 × 1 × 1mm resolution

image, if a lesion encompasses 10 voxels, its true volume is 10mm3. The resolution of medical

images varies based on factors like imaging modality, protocol, and scanner type. Consequently,

a common pre-processing step in medical images involves resampling all images to a standardized

template space with a unified resolution, ensuring comparability. Resampling entails interpolating

pixel values to create a new pixel grid with adjusted locations and/or resolutions.

MRI Bias Field Correction

MRI bias field, also known as intensity inhomogeneity, refers to low frequency and nonanatomic

intensity variations within the image domain of the same tissue. This artifact can arise from factors

like imaging instrumentation (e.g., radio-frequency nonuniformity, static field inhomogeneity). It

is characterized by significant intensity variations among pixels within the same tissue and notable

overlap in intensity values between pixels of different tissues, which can affect the accuracy of MR

image analysis. Fig. 2.2 (A) visually illustrates this artifact with two real MR images displaying the

impact of the MRI bias field.

Figure 2.2: Examples of MRI bias field artifact: A) original images. B) corrected images. C)
estimated inhomogeneity maps. [3]
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To address the inhomogeneity artifact, the image formation model is assumed as follows:

v(x) = u(x)f(x) + n(x) (1)

where v and u denote the original corrupted and corrected images, respectively; f represents the

bias field, and n signifies the noise. Typically, the noise in the equation is neglected, leading to a

simplified model:

log v(x) = log u(x) + log f(x) (2)

Subsequently, the bias field is estimated, and the corrected image is obtained through subtraction in

the log-domain. The state-of-the-art method for bias field correction is N4ITK [4]. It is an iterative

optimization process that aims to estimate a B-spline approximator of a smooth multiplicative field

that maximizes the high-frequency content within the distribution of tissue intensity.

CT Windowing

CT image intensities are expressed in Hounsfield Units (HU), named after the CT scan inventor,

reflecting the density and characteristics of different tissues. The HU scale ranges from −1000 HU

for air to over 3000 for metals. Due to this broad dynamic intensity range in CT scans, a windowing

technique is applied to enhance contrast for specific structures, selecting a window of HU values

corresponding to that structure. Eq. 3 illustrates how the windowing function W generates new

intensities for Image x.

min = WL − WW
2

(3a)

max = WL +
WW
2

(3b)

W (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min if x < min

x if min ≤ x ≤ max

max if max < x

(3c)
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The Window Level (WL) denotes the window center or midpoint HU value represented in the win-

dow setting, while the Window Width (WW) measures the range of HU values to be preserved in a

CT image. Adjusting these windowing parameters allows for optimal contrast for a specific tissue,

as illustrated in Fig. 2.3.

Figure 2.3: Examples of different brain CT windows: A) original CT image. B) brain win-
dow (WL=40, WW=80). C) stroke window (WL=40, WW=40). D) bone window (WL=400,
WW=1000).

Intensity Normalization

The range of pixel intensities in CT and MRI images can vary based on several factors, including

the imaging protocol and the specific characteristics of the scanner used. Thus, it is essential to

employ intensity normalization techniques during pre-processing to ensure that all images are on

a comparable scale and no single image dominates others in the segmentation model training or

statistical analyses. As depicted in Eq. 4, two common and simple methods, min-max normalization

N(x) and Z normalization Z(x), can be employed on the input image x to standardize its intensity

range for deep learning purposes.

N(x) =
x−min(x)

max(x)−min(x)
(4a)

Z(x) =
x− mean(x)

std(x)
(4b)

N(x) scales intensities to the range of [0, 1], whileZ(x) centers the new intensities around zero with

a standard deviation of one. In addition to these methods, histogram matching-based techniques can

also be employed to further adjust the intensity profile of the target image to help reduce the contrast
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differences across different scanners.

2.1.3 Model Overfitting and Data Augmentation

Overfitting in a model occurs when it memorizes the training set instead of understanding the un-

derlying function that maps input images to target classes. Building segmentation models that

generalize well requires a substantial amount of ground truth data with good diversity to prevent

overfitting. However, obtaining high-quality ground truth data in the medical image analysis field is

time-consuming, expensive, and heavily reliant on human input. Privacy regulations further prevent

the availability of publicly accessible datasets. Additionally, the majority of manually annotated

image sets are imbalanced, where certain classes have only a few examples, causing the model to

disregard them.

Nalepa et al. [5] conducted a comprehensive review of different data augmentation techniques

employed in the literature to address the limitations posed by restricted medical training sets.

These techniques involve generating synthetic training examples through various transformations

like affine image modifications, elastic transformations, pixel-level changes, and other methods,

artificially expanding the size of training sets. These approaches significantly improve the gener-

alization abilities of segmentation models, as illustrated in Figure 2.4, which demonstrates these

augmentations on a brain MRI.

Figure 2.4: An example of medical image augmentation. [5]
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2.1.4 Evaluation Methods

To assess the model’s efficacy in accurately delineating pathology, tumors, or lesions, various met-

rics are employed to provide a quantitative comparison across different models. Throughout this

thesis, we primarily utilize three segmentation metrics: Dice coefficient, Intersection over Union

(IoU), and Hausdorff distance (HD). The mathematical representation of these metrics is detailed in

Eq. 5.

Dice =
2|P ∩G|
|P |+ |G|

(5a)

IoU =
|P ∩G|
|P ∪G|

(5b)

HD(P,G) = max

(︃
max
p∈P

min
g∈G

∥p− g∥2,max
g∈G

min
p∈P

∥g − p∥2
)︃

(5c)

The Dice coefficient and IoU, both ranging from 0 to 1 where 0 signifies no overlap and 1 indicates

full intersection, serve as region-based metrics. They quantify the overlap ratio between the model’s

predictions (P ) and the corresponding ground truth (G). In addition to those, HD is a distance-based

metric that assesses the proximity of the prediction to the ground truth. The numerical value of HD

is computed as the maximum Euclidean distance from any point in P to the nearest point in G, and

vice versa.

2.2 Deep-Learning-Based Segmentation

Traditional image segmentation methods, such as threshold-based [6], region-based [7], and edge

detection-based [8] methods, rely on digital image processing and mathematics. While they offer

fast segmentation, the accuracy in capturing details is limited. In contrast, deep learning-based

segmentation methods have achieved significant advancements, surpassing traditional methods in

accuracy and effectiveness.

Training a Neural Network model (NN) is formulated as a sequential process, as expressed by

12



the equations in (6).

Y = F(X|θ) (6a)

L = L(Ŷ , Y ) (6b)

θk = θk−1 − ϵ
∂L

∂θ
(6c)

Initially, the model F , characterized by parameters θ, undergoes random initialization. Subse-

quently, at each iteration, the model processes the input X to yield a prediction Y . The discrepancy

between this prediction and the expected output Ŷ is quantified by the loss function L. The ob-

jective of the training process is to minimize this loss, thereby aligning the model’s predictions

more closely with the desired outputs. This optimization is achieved through iterative updates of

the model’s parameters using the gradient descent method, as delineated in (6c). The learning rate,

denoted by ϵ, plays a crucial role in determining the step size in the direction of the gradient of the

loss function with respect to the model’s weights, facilitating the convergence of the model towards

an optimal configuration [9].

The very basic block of a NN is a Fully Connected (FC) Layer, wherein each element of the

input vector x ∈ Rm is connected to every element of the output vector y ∈ Rn:

yi = G(
m∑︂
j

wi,jxj + bi); X = {x1, x2, ..., xm}, Y = {y1, y2, ..., yn}, ∀i, j;wi,j ∈ θ (7)

Here, G denotes an activation function that imparts non-linearity to the model F(θ), and b represents

a bias term. Using a stack of these FC layers, more elaborate functions can be modeled. However,

its full connectivity introduces two primary drawbacks. Firstly, the abundance of parameters de-

mands a substantial number of training samples for effective training. Secondly, it lacks invariance

to translation, scale, rotation, and other transformations, limiting its ability to robustly generalize

across variations in the input data.

By the remarkable success of AlexNet [10] in utilizing a deep Convolutional Neural Network
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(CNN), the past decade has witnessed the dominance of CNN as the predominant choice for com-

puter vision tasks [11]. Distinguished by its convolutional structures, CNN excels in feature extrac-

tion from data. In contrast to FC architectures, each output feature is no longer intricately connected

to all elements of the input; rather, it is locally linked to a small subset, resulting in a reduction of

parameters. This not only accelerates convergence, but also imparts transformation invariance to

the network, enhancing its adaptability across various spatial transformations like translation and

rotation.

2.2.1 U-Net

First introduced by Ronneberger et al. [12], the U-Net model was built upon the fully convolutional

network to do the semantic segmentation. It is a U-shaped architecture (see Fig 2.5) consisting of

a contracting path (left side) with repeated convolutions and downsampling, and an expansive path

(right side) with upsampling and convolutions. The contracting path extracts features, while the

expansive path recovers spatial information. The final layer uses 1× 1 convolution to map features

to the desired classes.

Figure 2.5: U-Net architecture. [12]
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The feature extraction path, known as the encoder, holds a crucial role in segmentation models

by capturing essential features from the high-dimensional input image and embedding them into a

low-dimensional latent-space vector. The expansive branch (also called the decoder) utilizes these

features to reconstruct the segmentation map, making the encoder performance crucial for overall

network output. In the following sections, we present state-of-the-art encoders employed throughout

this thesis.

2.2.2 Vision Transformer

The Transformer model, pioneered by Vaswani et al. [13], revolutionized natural language process-

ing (NLP) by outperforming traditional sequential models like Long Short-Term Memory (LSTM)

and Recurrent Neural Network (RNN). Entirely based on the self-attention mechanism, Transformer

empowers each sequence element to simultaneously focus and weigh different parts of the input

sequence, effectively capturing intricate relationships and long-range dependencies in the data. In-

spired by the success of Transformers in NLP, Dosovitskiy et al. [14] introduced Vision Transformer

(ViT) by directly applying a standard Transformer to images with minimal adjustments. This in-

volved treating image patches similarly to tokens (words) in NLP, as illustrated in Fig 2.6.

Figure 2.6: Vision Transformer architecture. [14]
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The detailed operations of ViT architecture are also outlined in Eq 8:

z0 = [xclass;x
1
pE;x2pE; ...;xNp E] + Epos, E ∈ R(P 2·C)×D, Epos ∈ R(N+1)×D (8a)

z
′
l = MSA(LN(zl−1)) + zl−1, l = 1...L (8b)

zl = MLP(LN(z
′
l)) + z

′
l , l = 1...L (8c)

y = LN(z0L) (8d)

In this architecture, first, the input image x ∈ RH×W×C is reshaped to a sequence of flattened

2D patches xp ∈ RN×(P 2·C), where (H,W ) and (P, P ) are the resolutions of original and patch

images, respectively; C is the number of channels, and N = HW/P 2 is the resulting number of

patches. Then, patches are linearly embedded by E, resulting in D dimensional embedding tokens.

A learnable embedding z00 = xclass is also prepended to patch tokens, whose state at the out-

put (zL0 ) determines the prediction class y (Eq. 8d). Since self-attention computes attention scores

based on pairwise relationships between tokens, without positional information, a positional em-

bedding Epos is also added to the patch embeddings to retain positional information of tokens in

the sequence (Eq. 8a). Next, these embeddings are passed through L Transformer layers consisting

of multiheaded self-attention (MSA) and multi-layer perceptron (MLP) blocks (Eq. 8b, 8c), with

layer normalization (LN) applied before each block and residual connections after each block. Ul-

timately, an image class is predicted using the representation zL0 through a dedicated classification

head [14].

Multihead Self-Attention

The standard qkv self-attention (SA, [13]) operation is shown in Eq. 9:

[q,k,v] = zUqkv, Uqkv ∈ RD×3Dh , [q,k,v] ∈ RN×D (9a)

A = softmax
(︂
qkT /

√︁
Dh

)︂
, A ∈ RN×N (9b)

SA(z) = Av (9c)

MSA(z) = [SA1(z);SA2(z); ...;SAk(z)] (9d)
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First, the self-attention unit linearly maps the input sequence z ∈ RN×D into query q, key k, and

value v vectors (Eq. 9a), where N is the number of D dimensional tokens. Then, it calculates

a weighted sum over all v (Eq. 9c). The attention weights Aij are determined by the pairwise

dot-product similarity between two elements of the sequence using their corresponding qi and kj

representations (Eq. 9b). As shown in Eq. 9d, Multihead self-attention (MSA) is an extension of SA

where k self-attention operations, known as ”heads”, are executed in parallel, and their concatenated

results are projected.

2.2.3 Swin Transformer

In the standard Transformer model [13], global self-attention (Eq. 9) computes the relationships

between each token and all others, resulting in quadratic complexity with respect to the number

of tokens (Eq. 10a). Directly applying this approach to vision, as in the Vision Transformer [14],

is inefficient due to the significantly higher resolution of pixels in an image compared to words in

text. To address this, Liu et al. introduced the Shifted Window (Swin) Transformer [15]. Swin

Transformer divides the C-channel input image with the resolution of (h,w) into non-overlapping

windows of size (M,M) patches and computes Window MSA (W-MSA) locally within each win-

dow. The fixed number of patches in each window results in linear complexity relative to the image

size (Eq. 10b). Performing self-attention globally is often impractical for a large number of patches

(h,w), whereas window-based self-attention is scalable.

O(MSA) = 3hwC2 + 2(hw)2C, (10a)

O(W-MSA) = 3hwC2 + 2(M)2hwC, (10b)

Shifted Window Approach

To allow for cross-window connections, Swin Transformer’s design involves shifting the partition-

ing of windows between successive self-attention layers, as depicted in Fig 2.7. These shifted

windows establish connections with the windows from the previous layer, substantially boosting

the model’s power.
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Figure 2.7: Swin Transformer window partitioning for two consecutive layers. [15]

Model Architecture

An overview of the Swin Transformer architecture is illustrated in Fig. 2.8. Similar to the Vision

Transformer (see Fig. 2.6), the input image is first split into patches, and their linear embeddings are

regarded as tokens. Subsequently, multiple modified self-attention computation blocks, known as

Swin Transformer blocks, are applied to these patch tokens. As the network deepens, hierarchical

representation is established through patch-merging layers that reduce the number of tokens by

combining 2 × 2 neighboring tokens channel-wise and embedding them into a single token with

half channels. Finally, the features from the last layer can be utilized by a classification head for

predictions.

Figure 2.8: Swin Transformer architecture. [15]

In the following, Eq. 11 shows how the output of two successive Swin Transformer blocks (zl+1) is
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computed based on their input (zl−1).

ẑl = W-MSA(LN(zl−1)) + zl−1, (11a)

zl = MLP(LN(ẑl)) + ẑl, (11b)

ẑl+1 = SW-MSA(LN(zl)) + zl, (11c)

zl+1 = MLP(LN(ẑl+1)) + ẑl+1, (11d)

Here, W-MSA and SW-MSA are Window MSA and Shifted-Window MSA units whose computa-

tions are exactly like Eq. 9, but they are only computed within non-overlapping windows as illus-

trated in Fig. 2.7.

2.2.4 Focal Modulation Network

Figure 2.9: Focal Modulation network architecture. [16]

Yang et al. [16] introduced an attention-free mechanism to efficiently compute visual tokens’ in-

teractions and dependencies. The proposed Focal Modulation network (FocalNet) resembles the

Swin Transformer (refer to Fig. 2.8), where the self-attention units are replaced by Focal modula-

tion blocks. Focal modulation, illustrated in Fig. 2.9, includes hierarchical contextualization using

a stack of depth-wise convolutional layers for encoding visual contexts across varying scales, gated
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aggregation for context selection based on the query content, and element-wise modulation to inte-

grate aggregated context into the query. In contrast to self-attention, Focal modulation distinctively

aggregates contexts at different granularities before modulating individual query tokens, providing

an attention-free approach for token interactions [16].

Focal Modulation vs. Self-attention

The key difference between Focal modulation and self-attention lies in the procedural approach:

self-attention employs a late aggregation method (see Eq. 12a), wherein aggregation M1 over the

contexts around query token xi in feature map X occurs after the computation of attention scores

between the query and target through interaction T1. In contrast, Focal modulation employs an early

aggregation technique (Eq. 12b), where context features are initially aggregated at each location i

using M2, followed by the interaction of the query with the aggregated feature based on T2 to yield

the refined representation yi [16].

yself-attention
i = M1(T1(xi, X), X), X ∈ RH×W×C , xi ∈ RC , yi ∈ RC , (12a)

yfocal modulation
i = T2(M2(i,X), xi), (12b)

Focal Modulation Operation

The detailed operation of Focal modulation is outlined in Eq. 13:

[Q,Z0, G] = XUQZG, UQZG ∈ RC×(C+C+(L+1)) (13a)

{Z l = f l(Z l−1)}Ll=1, Z
L+1 = Avg-Pool(ZL), f l(Z) ≜ GeLU(DW-Conv(Z, kl)) (13b)

M = Uh

(︄
L+1∑︂
l=1

Gl ⊙ Z l

)︄
, Uh ∈ RC×C (13c)

yi = Q⊙M, (13d)

It initiates with linear embedding of the input feature map X ∈ RH×W×C into Query Q ∈

RH×W×C , feature vector Z0 ∈ RH×W×C , and Gates G ∈ RH×W×(L+1) (Eq. 13a). Subsequently,

hierarchical contextualization is achieved through a stack of L depth-wise Convolutional layers with
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kernel sizes of kl = kl−1 +2 and GeLU activation function. Global average pooling is also applied

to the final context granularity ZL to obtain the global context ZL+1 (Eq. 13b). The acquired con-

texts {Z l}L+1
l=1 undergo selective aggregation using a Gating mechanism, and the Modulator M is

computed by applying the linear layer Uh to the aggregated result (Eq. 13c). Ultimately, the output

is attained through element-wise multiplication of the Query and Modulator (Eq. 13d) [16].

2.3 Weakly-supervised Learning

In the domain of medical image segmentation, a significant challenge lies in the acquisition of

fully annotated datasets. The process of manually delineating structures or abnormalities in medical

images requires expert knowledge and is both time-consuming and resource-intensive. This poses

a bottleneck in the development of robust segmentation models, restricting their performance and

generalizability to diverse clinical scenarios. Weakly supervised learning emerges as a valuable

solution to this challenge by using less detailed labels, like image-level categories, bounding boxes,

etc, to train models, skipping the need for precise pixel-wise annotations. This speeds up labeling,

allows for larger datasets, and makes medical image segmentation models more effective in diverse

real-world situations. This section will explore two prevalent label types utilized in this thesis,

bounding boxes and image-level categories, along with the corresponding methods employed for

weakly supervised medical image segmentation.

2.3.1 Bounding Boxes

The benefit of using bounding box annotation is its spatial constraints, ensuring that the object

of interest is confined within the specified boundaries. This ensures focused learning on relevant

regions, potentially leading to better segmentation accuracy. In this section, we delve into two

common weakly supervised techniques applied to bounding boxes. The first involves generating

pseudo-masks from a shallow segmentation model and refining these initial annotations for precise

foreground extraction, with Conditional Random Field (CRF) being a prevalent refinement method.

The second approach involves imposing constraints on the network output based on prior knowledge

about the target, facilitating end-to-end training.
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Conditional Random Field

If we consider the segmentation problem as an energy minimization task, we can define the energy

of assigning labeling f to each pixel i as [17]:

E(f) =
∑︂
i

ψu(fi) +
∑︂
i<j

ψp(fi, fj) (14a)

ψu(fi) = −logP (yi|x, θ) (14b)

ψp(fi, fj) = g(i, j)[fi ̸= fj ] (14c)

if a segmentation model with parameters θ generates a label assignment distribution yi over the input

image x, the unary term ψu(fi) is defined as the negative log-likelihood of the probability of this

distribution, assessing how well the label f fits at each pixel i. Moreover, the pairwise regularization

term ψp(fi, fj) imposes a penalty on label differences between any two-pixel locations i and j based

on the pixel information such as its location and intensity. By minimizing this energy function, the

new labels will have a greater likelihood of being assigned to the image.

DeepCut

DeepCut [18] is a weakly supervised DL medical image segmentation technique that leverages

bounding boxes to achieve refined tissue segmenation. An illustration of this method is depicted in

Fig 2.10. First, we need to emphasize that, on DeepCut, the segmentation is not directly performed

on input images. Instead, smaller patches are sampled from the input image, and a Two-Layer

CNN classifies these patches into foreground and background. In a naive approach, for training the

CNN, any patch inside the initial bounding box is considered the foreground, and patches inside

a halo bounding box encompassing the initial one are considered the background. Finally, the

coarse segmentation map is further refined using a dense CRF as explained before. However, in

DeepCut, this process is performed in multiple iterations, where each iteration further refines the

foreground proposals and finetunes the CNN with the new labels. Fig 2.11 shows an example of

brain segmentation using DeepCut.
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Figure 2.10: DeepCut foreground segmentation vs. Naive CNN segmentation [18]. ©2017 IEEE

Figure 2.11: DeepCut brain segmentation example: from left to right: (1) original image (2) manual
segmentation (red), (3) initial bounding box B with halo H, (4) naive learning approach (one itera-
tion, yellow), (5) DeepCut from bounding boxes (purple) [18]. ©2017 IEEE

Emptiness Constraint and Tightness Prior

Kervadec et al. [19] introduced three constraints on the segmentation network’s output based on

bounding boxes. The emptiness constraint, accounting for certainty outside the box, stipulates that

the predicted foreground size, computed over background pixels Ω0, should be equal to zero:

∑︂
p∈Ω0

sθ(p) ≤ 0, (15)
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Figure 2.12: A comparison between global constraint approach and DeepCut for weakly supervised
segmentation. [19]

Here, the size is defined as the sum of softmax probabilities (sθ) for ease of computation and differ-

entiability. Conversely, the tightness prior assumes the target region should be sufficiently proximate

to each side of the bounding box. It expects each horizontal or vertical line to intersect at least one

pixel of the target region, irrespective of its shape. Additionally, regrouping lines into segments of

width w, each containing w lines, allows the assumption that at least w pixels of the object will be

crossed by the segment: ∑︂
p∈sl

yp ≥ w, ∀sl ∈ SL (16)

where SL := {sl} represents the set of segments parallel to the sides of the bounding boxes. While

these constraints might yield trivial solutions — predicting the entire image as background for the

emptiness constraint or everything as foreground for the tightness constraint — additional informa-

tion from the boxes is exploited. The total size of the boxes provides an upper bound on the object
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size, and assuming a small fraction ϵ of the box belongs to the target region yields another lower

bound:

ϵ|ΩI | ≤
∑︂
p∈Ω

sθ(p) ≤ |ΩI | (17)

Integrating these global constraints into the network’s output, Kervadec et al. [19] conducted a com-

parative analysis between their weakly supervised approach and the DeepCut model, as illustrated

in Fig. 2.12, for prostate segmentation and brain lesion segmentation tasks.

2.3.2 Image Level Categories

Among various weak labels, image-level categories demand the least annotation effort, merely spec-

ifying the type of disease without requiring detailed localization like bounding boxes. This simplic-

ity makes it more practical to handle expansive and diverse medical image datasets. In essence, the

model is trained to categorize images, and weakly supervised techniques extract segmentation maps

from the model’s inherent features. In this section, we elaborate on two key approaches for weakly

supervised medical image segmentation based on categorical labels, namely class activation maps

and attention maps.

Class Activation mapping

Class Activation Mapping (CAM) is a technique demonstrated by Zhou et al. [20] that makes use

of the power of Convolutional Neural Networks (CNNs) in localizing the precise regions within an

image belonging to specific categories (e.g. Fig. 2.13).

Figure 2.13: An example of Class Activation Maps for two classes. [20]
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Figure 2.14: Class Activation Mapping technique [20]

As illustrated in Fig. 2.14, the approach involves training an end-to-end architecture primarily com-

prised of convolutional layers, incorporating global average pooling (GAP) on the final convolu-

tional feature maps. These pooled features then serve as inputs for a fully connected layer re-

sponsible for generating the desired classification output. The final convolutional layer consists of

{fk}nk=1 units, where fk(x, y) shows the activaton of unit k at spatial location of (x, y). Averaging

over all spatials (x, y) yields Fk, the global average of unit k (Eq. 18a). Then, the class c likelihood

yc is computed by softmax(WF ) (Eq. 18b, note that the bias is ignored). Each unit k is expected

to be triggered by a specific visual pattern within its receptive field, and consequently, fk serves

as a map indicating the presence of this visual pattern. As illustrated in Fig. 2.14 and Eq. 18c, the

class activation map Lc
CAM ∈ Ru×v for any class c is formed by a weighted linear combination of

these visual patterns across different spatial locations. The weight between Fk and class c neurons

is denoted as wc
k and it indicates the importance of Fk for class c. Finally, by upsampling the class

activation map to the size of the input image, we can identify the image regions most relevant to the

particular category.

Fk =
1

Z

∑︂
x,y

fk(x, y) (18a)

yc =
exp(

∑︁
k w

c
kFk)∑︁

c exp(
∑︁

k w
c
kFk)

(18b)

Lc
CAM(x, y) =

∑︂
k

wc
kfk (18c)
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Gradient-weighted Class Activation Mapping

The constraint of CAM is its exclusive application to specific CNN architectures that incorporate

global average pooling over convolutional maps right before the prediction stage. To overcome this

limitation, Selvaraju et al. introduced Gradient-weighted Class Activation Mapping (Grad-CAM)

[21]. This method produces visual explanations from any CNN-based network without necessitating

architectural modifications or re-training. It achieves this by leveraging the gradients of the target

category to weigh the final convolutional feature maps. As depicted in Eq.19 and Fig. 2.15, where

{fk}nk=1 denotes the kth feature map of the final convolutional layer, the Grad-CAM class discrim-

inative localization map Lc
Grad-CAM ∈ Ru×v is computed by applying ReLU activation to the linear

combination of fk maps, weighted by the average gradient of the class score yc concerning these

maps. The ReLU activation is employed to selectively retain features with a positive impact on the

target class, while ignoring the inclusion of negative values that may pertain to other categories.

αc
k =

1

Z

∑︂
x,y

∂yc

∂fk(x, y)
(19a)

Lc
Grad-CAM = ReLU

(︄∑︂
k

αc
kfk

)︄
(19b)

Figure 2.15: Gradient-weighted Class Activation Mapping technique [21]
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Pneumothorax Segmentation on Chest X-Ray Images

Leveraging the Grad-CAM approach, Viniavskyi et al. [22] achieved 0.7677 mean IoU for weakly

supervised segmentation of pneumothorax X-ray images using a three-step methodology:

(1) Class Activation Map generation: First, a fully supervised classification model is trained

based on image-level labels. This trained model is then employed to generate activation

maps using the Grad-CAM method, and the derived maps function as pseudo labels for the

segmentation task.

(2) Refinement: In the next step, the acquired pseudo labels undergo refinement via thresholding,

dense CRF post-processing, and application of the Inter-pixel Relations network (IRNet) [23].

IRNet leverages both background and foreground class activation maps to effectively enhance

the boundaries between them.

(3) Segmentation: In the last step, a fully supervised segmentation model, such as U-Net, is

trained using the maps generated in the preceding step to perform segmentation.

Fig. 2.16 illustrates an example of these three steps applied an an X-ray image.

Figure 2.16: Example of weakly supervised pneumothorax segmentation using CAM, IRNet, and
U-Net [22].
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Intracranial Hemorrhage Detection Explainability

Salehinejad et al. [24] trained a fully supervised classification model on CT images, targeting

five categories of distinct Intracranial Hemorrhage (ICH) subtypes: Intraventricular (IVH), Intra-

parenchymal (IPH), Subarachnoid (SAH), Epidural (EDH), and Subdural (SDH). Subsequently, to

illustrate the interpretability of this network, they visualized Grad-CAM maps for various hemor-

rhages, as depicted in Fig. 2.17, and they confirmed these maps with a radiologist.

Figure 2.17: Example of Grad-CAM maps derived from an ICH detection model [24].

Attention map

In an attention-based model such as ViT [14], attention maps provide interpretability by unveiling

the precise regions within an input image that the model deems critical for its decision-making

process. Figure 2.18 showcases eight examples where the attention map of the Vision Transformer

is superimposed onto the input images.

In an L layer Vision Transformer, the attention weight of layer l is defined as Al ∈ RN×N

(see Eq. 9), where N is the number of tokens (refer to Sec. 2.2.2), and the entry Ai,j signifies the

similarity between tokens i and j. Defining Â as the matrix multiplication of attention weights

across all layers (Â = ΠL
l=1Al), the resulting attention map is denoted as Â0, representing the

weight of the class-token. To the best of our knowledge, the utilization of self-attention maps
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Figure 2.18: Visualization of Vision Transformer Attention map [14]

derived from Transformer-based models for weakly supervised medical image segmentation has

not been investigated before our study in Chapter 3, motivating us to explore it in this thesis.
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Chapter 3

Intracranial Hemorrhage Segmentation

Using Hierarchical Combination of

Attention Maps

A version of this chapter was presented at the MLCN (Machine Learning for Clinical Neuroimag-

ing) 2022 joint workshop at the Medical Image Computing and Computer Assisted Interventions

(MICCAI) Conference.

• A. Rasoulian, S. Salari, and Y. Xiao, “Weakly supervised intracranial hemorrhage segmen-

tation using hierarchical combination of attention maps from a swin transformer,” in Ma-

chine Learning in Clinical Neuroimaging: 5th International Workshop, MLCN 2022, Held in

Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings, pp. 63–72,

Springer, 2022.

3.1 Introduction

Intracranial Hemorrhage (ICH) is the most deadly type of cerebrovascular disease, accounting for

10-15% of all stroke cases [25, 26]. The outcome is highly correlated with the hemorrhage volume,

which is susceptible to enlarge in the first three hours [27]. Thus, there is a high risk for ICH to
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turn into a secondary brain injury or even death if it is not treated in time. Depending on the lo-

cation of hemorrhage in the brain, ICH can be divided into five subtypes: Intraventricular (IVH),

Intraparenchymal (IPH), Subarachnoid (SAH), Epidural (EDH), and Subdural (SDH). Treatment

methods must be tailored towards specific ICH subtypes, and a surgery is done only if the location

of hemorrhage is favorable. Rapid and accurate detection and quantification of ICH is therefore

crucial in choosing correct treatments and thus reduction of patient mortality. With quick imaging

time and good accessibility, computerized tomography (CT) is commonly used in the clinic to as-

sess ICH.

Previous developments in convolutional neural networks (CNNs) have resulted in a great number

of fast and accurate solutions in computer-assisted diagnosis and treatment decisions, in the forms

of image classification and/or segmentation, including those for the care of ICH [28]. One issue

with the CNNs is their limited capacity to encode long-range spatial information, but it may affect

ICH detection/subtyping accuracy as the location of hemorrhage is directly relevant to the diagno-

sis. Recently, Dosovitskiy et al.[14] introduced the Vision Transformer (ViT), which has attracted

significant interests for vision tasks, especially in the context of medical imaging [29, 30], where

multi-head attention mechanisms are used to encode the contextual relationship between image

patches (as tokens). However, compared with CNNs, the ViT has low locality inductive biases (e.g.,

translational invariant features). As a recent variant to mitigate the drawback of the ViT, the Swin

transformer [15] is an efficient hierarchical transformer that gradually reduces the number of to-

kens by merging image patches and computing attentions in non-overlapping local windows. To the

best of our knowledge, the Swin transformer has not been used for ICH detection or segmentation.

For CNNs and especially transformer-based models, a large amount of training data is necessary.

However, annotating medical images is laborious and time-consuming, especially for segmentation

tasks. One way to mitigate this problem is through weak supervision [31], where more accessible

or coarse annotations (e.g., categorical labels or bounding boxes) are used to generate more refined

ones, such as segmentation masks.

In this work, we built a novel weakly supervised framework for ICH segmentation leveraging the

attention maps generated from a Swin transformer, which is trained using categorical labels for ICH

detection based on public databases. As an exploratory investigation, our study has three major
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contributions. First, the Swin transformer is used for ICH detection for the first time. Second, we

proposed a new method to obtain ICH segmentation by leveraging the hierarchical combination of

self-attention maps from the trained ICH detection transformer, and demonstrated its feasibility and

performance. Lastly, to examine the impact of learning tasks on self-attention maps and weakly

supervised segmentation, we compared the segmentation performance for two Swin transformers

based on (1) binary classification (presence of hemorrhage or not) and (2) multi-label classification

(detailed ICH subtypes and with/without ICH).

3.2 Related Works

Several techniques have been proposed for the detection and segmentation of ICH. An excel-

lent recent review is provided by Hssayeni et al. [28], with almost all using supervised learning

strategies in semi-automatic and automatic manners, achieving the area-under-the-curve (AUC) of

0.846∼0.975 for binary classification (ICH vs. without ICH) and 0.93∼0.96 for ICH subtyping.

For deep learning-based approaches, fully convolutional networks (FCNs) [32] and recurrent neural

networks (RNNs) [33] models were often used, and the accuracy in ICH vs. without ICH classifi-

cation was shown to be higher than ICH sub-typing in general [28]. With interests in explainable

CNNs, attention mechanisms have been deployed to enhance detection accuracy and visualize the

region of interest for the classification results [24]. The latter also inspired their application for

weakly supervised brain lesion/hemorrhage segmentation, which has been attempted by only a few

[34, 35]. Earlier, Wu et al. [34] employed refined 3D Class-Activation Maps (CAMs) to learn a

representation model for brain lesion segmentation and achieved a 0.3827 mean Dice score on the

Ischemic Stroke Lesion Segmentation (ISLES) dataset (multi-spectral MRI). Similarly, Nemcek et

al. [35] detected the location of ICH as bounding boxes in axial brain CT slices using the local ex-

trema of attention maps obtained from a ResNet-like binary classification CNN, and they achieved

a mean Dice of 0.58 for the lesion bounding boxes. So far, self-attention has not been experimented

for weakly supervised ICH segmentation, thus motivating us to explore it in this study.
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Figure 3.1: An overview of the proposed weakly supervised ICH segmentation algorithm

3.3 Proposed methods

An overview of the proposed weakly supervised segmentation technique is depicted in Fig. 3.1,

where it is divided into three components. First, we train a deep learning (DL) model with a Swin

transformer as the backbone for categorical classification of ICH. Then, during test time, we obtain

hierarchical layer-wise attention maps for the input image from the trained model. Finally, segmen-

tation is achieved by binarizing the hemorrhage localization map made by combining the window

attention maps and soft tissue intensity information. Note that one patient may have multiple ICH

subtypes. Since the CT data were from several clinical centers with different slice thicknesses, we

decided to implement our algorithm for 2D axial CT slices.

ICH classification:

For the proposed technique, we used the Swin-B transformer pretrained and finetuned on Ima-

geNet1K and ImageNet21K datasets [36]. Each two successive Swin transformer blocks have win-

dow multi-head self-attention (W-MSA) and shifted window multi-head self-attention (SW-MSA)

units for computing attention weights (see Fig.2a) [15]. Here, the shifted windowing scheme helps

establish connections between windows, in comparison to the ViT. To investigate the impact of dif-

ferent arrangments of categorical learning on the self-attention maps and thus the proposed weakly
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supervised segmentation, we trained two versions of the Swin transformer model for 1) binary clas-

sification (ICH vs. without ICH) and 2) multi-label classification (recognizing 5 ICH subtypes and

with/without ICH). To address the issue of the imbalanced dataset, we use the focal binary cross-

entropy [37] loss function to train our model:

loss =
1

N

N∑︂
k=1

Yk · (1− yk)
γ · log(yk) + (1− Yk) · yγk · log(1− yk) (20)

Here N, Y, y, and γ are batch size, ground-truth label, sigmoid of predicted output, and the focal loss

focusing parameter, respectively. As Lin et al. [37] suggested, we set the value of γ=2. For multi-

label classification, the overall loss is the weighted average of subtypes’ losses computed above,

where each of five subtypes’ weight is 1, and ICH vs. without ICH weight is 2.

Attention map generation:

For our technique, we decided to employ the raw attention weights of all layers to obtain the relevant

attention maps for weakly supervised segmentation, instead of the more commonly used visualiza-

tion of class activation mapping (CAM). This is due to two reasons. First, we would like to fully

leverage the relevant information from earlier layers considering the Swin transformer architecture.

Second, without gradient computation, the processing can be more efficient.

In previous attempts to visualize attention weights with the ViT, an additional classification token

was added to the image patches, and after multiplying the attention weights of all layers, only this

token’s weight was retrieved as the attention map [38, 14]. However, as the Swin transformer uses a

windowing method, adding another token corrupts the window division. Besides, attention weights

at every two successive MSA units correspond to regular and shifted image patches, and multiplying

them is meaningless. Hence, instead of multiplying weights, we compute the attention map at each

unit, and then we multiply their respective maps. Here, Fig. 3.2 shows the steps of producing the

layer-wise attention map from two successive Swin transformer blocks. First, we perform Global

Average Pooling (GAP) on all tokens’ attention weights; Then, a full-image map is reproduced by

concatenating window-wise maps. Note that an additional step of reverse shifting is needed for SW-

MSA units, and the results from W-MSA and SW-MSA are multiplied to produce the layer attention
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Figure 3.2: Generation of layer-wise attention maps from the Swin transformer

map. Inspired by [39, 40, 41], we finally combine different layers’ attention maps at the resolution

of the input image, and bilinear interpolation is used when matching the resolutions across the maps

at different layers/hierarchies. This technique helps produce more precise attention visualization

for segmentation purposes. Lastly, the hemorrhage localization map (see Fig. 3.3) is produced by

multiplying the resulting self-attention map with the “brain-tissue window” channel from the CT

slice to enhance the discriminative power for ICH identification.

Discrete segmentation:

The final discrete ICH segmentation is obtained by binarizing the hemorrhage localization map

(see Fig. 3.3). We experimented with three binarization techniques, including simple thresholding,

Otsu’s method, and k-means, and selected simple thresholding as the optimal choice due to its

performance. For simple thresholding, the threshold value is computed as t = S ×Mmax where

Mmax is the maximum intensity in the hemorrhage localization map, and S is a scalar. We used

10-fold cross-validation on the test data to find an appropriate value for S between 0 to 1 with a step

size of 0.01.

To compare with the proposed technique, we also implemented a similar weakly supervised ICH
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Figure 3.3: Procedure for generating ICH segmentation based on the combination of hierarchical
attention maps from the ICH detection transformer.

segmentation method based on binary ICH classification with the Swin transformer and GradCAM

[21], which was implemented in two versions: one only on the last layer and the other with a similar

hierarchical approach to obtain the attention maps.

3.4 Experiments and Results

3.4.1 Dataset

To implement and validate our proposed algorithm, we employed the public RSNA 2019 ICH [42]

and PhysioNet[28] CT datasets. The RNSA dataset contains 752,803 CT slices, with each slice an-

notated with ICH subtypes. On the other hand, the PhysioNet dataset has 2,814 CT slices, and ICH

was manually segmented while ICH subtypes are also provided. Only the RSNA dataset was used

for training, and we used the PhysioNet dataset as a separate testing set to examine the performance

of our model. For each CT slice, brain, subdural and bone windows created using the suggested pa-

rameters provided in the relevant data publications [42, 28] were stacked to create a three-channel

image and are downsampled to 384×384 pixels.

3.4.2 Imlpementation and evaluation

The training dataset (RSNA2019 ICH) was randomly split into 90% and 10% for the training and

validation sets. We employed the AdamW optimizer with an initial learning rate of 1e-5 for model
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training. In addition, an early stopping with patience=3 was used to stop training if the validation

loss did not decrease for three consecutive epochs. To improve the robustness of our model, data

augmentation techniques including random left-right flipping, image rotation, and Gaussian noise

addition were also used. The focal binary cross-entropy was used as the loss function to tackle

the imbalanced data in the training dataset, where much more CT slices without ICH exist. The

network was trained on a desktop computer with an Intel Core i9 CPU and a NVIDIA GeForce

RTX 3090 GPU with 24GB memory. To test the performance of the ICH detection accuracy and

the performance of hemorrhage segmentation, the PhysioNet-ICH data was used. The accuracy,

AUC, specificity, and F1-score were evaluated for the classification tasks, and for segmentation,

the Dice coefficient is reported. When assessing the multi-label classification model against the

binary classification one, an image is categorized as ICH if any subtypes are detected. Thus, the

differences in ICH detection between the two DL models were confirmed using a chi-square test,

and the Dice coefficients for segmentation performance between the two models were compared

using a two-sided paired-sample t-test.

3.4.3 Results

The results of our experiments are listed in Table 3.1 for the automatic detection and weakly su-

pervised segmentation of ICH when employing binary and multi-label classification tasks. In terms

of the quality of ICH detection, there is no significant difference between the two proposed DL

models for ICH vs. without ICH classification (p>0.05), while the binary classification achieves

an AUC of 0.974. Regarding ICH subtyping, we have achieved the AUCs of 0.941, 0.976, 0.996,

0.965, and 0.984 for EDH, IPH, IVH, SAH, and SDH, respectively. For hemorrhage segmentation,

the binary classification model yielded a mean Dice of 0.407 (with simple thresholding), which is

significantly higher than the multi-label counterpart (p<0.05). The same trend holds for the other

two image binarization methods (p<0.05). When comparing different binarization methods, simple

thresholding offers the best results, potentially due to the high imbalance between ICH and non-ICH

pixels. Furthermore, as an ablation study, the GradCAM-based methods, when applied to the final

layer and with a similar hierarchical approach, could achieve 0.187 and 0.100 mean Dice scores

(also using the simple thresholding method), respectively, which are far worse than our proposed
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Table 3.1: ICH detection and weakly supervised segmentation results for binary and multi-label
ICH classification models (reported values for Dice are mean±std)

ICH detection ICH segmentation - Dice

Accuracy AUC Specificity F1-score Simple
thresholding

Otsu’s
method k-means

Binary 0.953 0.974 0.973 0.791 0.407±0.225 0.383±0.228 0.326±0.228
Multi-label 0.952 0.975 0.979 0.776 0.324±0.237 0.316±0.246 0.268±0.229

Figure 3.4: Demonstration of weakly supervised ICH segmentation with five cases with close-up
views. Green=True Positive, Blue=False Negative, Red=False Positive.

method. Finally, a qualitative demonstration of the segmentation results is shown in Fig. 3.4 for

five different cases (each case per column) between the proposed method and the GradCAM ap-

proach. With the visual demonstrations, we can see that the final segmentation with the proposed

method produces better results than the GradCAM approach, which provides good coverage for the

hemorrhage regions, but often overestimates the extent.
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3.5 Discussion

As the first attempt to use the Swin transformer for ICH detection, we obtained an accuracy of

AUC=0.974. For both cases of binary and multi-label classifications, these results are in line

with or better than previous reports [28]. Since there were very few studies on weakly-supervised

pixel/voxel-wise ICH segmentation, it is difficult to assess our method against the state-of-the-art.

The closest prior work is the technique by [34], which was employed to segment stroke lesions from

multi-spectral MRI with a Dice score of 0.3827. For ICH segmentation, a similar but potentially

more challenging task due to the small size, irregular shape, and subtle contrast of the target in CT,

our technique has achieved a higher Dice score (0.407). As an additional reference, in the original

data paper of PhysioNet[28], a supervised U-Net achieved a Dice of 0.315 for ICH segmentation.

Although the overall performance of weakly supervised brain lesion/hemorrhage segmentation is

still inferior to the supervised counterparts, the relevant explorations, like the presented study are

valuable in mitigating the heavy reliance on detailed image annotations.

The attention mechanism has been popular to improve the transparency of deep learning algo-

rithms and has been the focus of many weakly supervised segmentation algorithms [34, 35]. Never-

theless, the impact of different learning strategies on attention maps was rarely investigated. In this

exploratory study, we examined such an impact through the example of ICH detection by comparing

binary and multi-label classifications. As our weakly-supervised ICH segmentation heavily relies

on the resulting self-attention maps, the segmentation accuracy also reflects how well the network

focuses on the relevant regions for the designated diagnostic task. Based on our observations using

the Swin transformer, binary classification offers better overlap between the network’s attention and

the relevant pathological region, while both strategies offer similar performance for ICH detection

(grouping all subtypes as ICH). Future exploration is still needed to better understand the observed

trend.

Several aspects can still be explored to further improve our segmentation performance in the

future. First, instead of 2D slice processing, inter-slice or 3D spatial information may be incorpo-

rated to enhance the performance of ICH detection and segmentation. Second, more efficient and

elaborate learning-based methods can be devised to further refine the initial segmentation obtained
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with self-attention maps to allow better segmentation accuracy.

3.6 Conclusion

In conclusion, leveraging the Swin transformer and public datasets, we have developed a framework

for weakly supervised segmentation of ICH based on categorical labels. To tackle the issue of

limited and expensive training data for ICH segmentation, we have showcased the feasibility of this

approach and further demonstrated the benefit of binary classification over multi-label classification

in weakly supervised segmentation. With these insights, future studies could further improve the

proposed technique’s accuracy and robustness.
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Chapter 4

Intracranial Hemorrhage Segmentation

Using Head-wise Gradient-infused

Self-attention Maps

A version of this chapter was published as an invited paper in the Machine Learning for Biomedical

Imaging (MELBA) journal.

• A. Rasoulian, S. Salari, and Y. Xiao, “Weakly supervised intracranial hemorrhage segmen-

tation using head-wise gradient-infused self-attention maps from a swin transformer in cate-

gorical learning,” Machine Learning for Biomedical Imaging, vol. 2, pp. 338–360, 2023.

4.1 Introduction

Intracranial Hemorrhage (ICH) is a potentially fatal cerebrovascular disorder that is responsible for

10-15% of all stroke cases and can be caused by various factors, such as head trauma, high blood

pressure, and blood clots [25, 26]. The outcome of ICH depends on the volume of bleeding, which

can enlarge rapidly within the first few hours [27], leading to a high risk of secondary brain injury

or even death if it is not treated promptly. In general, ICH can be classified into five subtypes based

on its location in the brain, including Intraventricular (IVH), Intraparenchymal (IPH), Subarachnoid
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(SAH), Epidural (EDH), and Subdural (SDH). Note that one patient may have more than one hem-

orrhage subtype. Each ICH subtype should receive customized treatment approaches, and surgery

is only considered if the location of the hemorrhage is advantageous. Upon admission at the hospi-

tal, early detection and accurate quantification of ICH are critical in selecting appropriate medical

interventions and reducing patient mortality. Thus, efficient and automated systems to asses ICH

are highly valuable. Compared to other medical imaging modalities, such as MRI, computerized

tomography (CT) is often used in the clinic to assess ICH due to its fast imaging time and good

accessibility. However, in addition to the morphological and spatial variabilities, the subtle contrast

of ICH within often noisy clinical CT scans can pose challenges in its detection and quantification.

Recent progresses in deep learning (DL) techniques, especially convolutional neural networks

(CNNs), have led to the development of efficient and accurate solutions for computer-assisted di-

agnosis and treatment decisions. For the care of intracranial hemorrhage, several automatic CNN-

based DL algorithms have been devised for the detection, subtyping, and volumetric segmentation

of intracranial hemorrhage based on clinical scans [28, 43, 24]. To overcome the limitations of

CNNs in encoding long-range spatial information due to limited field of view, which may impact

the accuracy of ICH detection and subtyping, particularly in cases where the spatial location of

hemorrhage is crucial for diagnosis, the Vision Transformer (ViT) [14] has emerged as a promis-

ing solution. The ViT utilizes multi-head attention mechanisms to capture contextual relationships

among spatially distributed image patches and has attracted great interest for vision tasks, includ-

ing medical imaging applications [29, 30]. However, by removing convolutions, the ViT possesses

low locality inductive biases, such as translation invariant features. To address this, a recent variant

called the Swin transformer [15] was introduced as an efficient hierarchical transformer, addressing

the need for both long-range spatial encoding and local feature representation. It achieves the goal

by gradually reducing the number of tokens by merging image patches and computing attention in

non-overlapping local windows to mitigate the drawback of the ViT.

Training CNNs and Transformer-based models require a significant amount of data, but an-

notating medical images is a laborious and time-consuming process, particularly for segmentation

tasks. Among various strategies, including semi-supervised learning, weakly supervised methods
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[31] offer alternative solutions to address such challenges by deriving fine-grained image segmen-

tation from coarse and more accessible image annotations, such as bounding boxes, scribbles, and

categorical labels. Among these typical choices, as categorical labels require the least time and

effort, obtaining pixel-wise segmentation from them is highly attractive. This is especially true for

our target application, where image classification is also needed, but such approaches have rarely

been attempted. In this study, we intend to propose and validate a novel weakly supervised ICH

segmentation technique by taking advantage of the Swin transformer.

In our previous work [44], we employed a Swin transformer to perform CT-based detection and

weakly supervised segmentation of ICH for the first time. More specifically, we obtained ICH seg-

mentation by fusing hierarchical self-attention maps generated from a Swin transformer that was

trained using categorical labels for ICH detection. Furthermore, comparing the proposed weakly

supervised ICH segmentation framework for two Swin transformers based on (1) binary classifica-

tion (presence of hemorrhage or not) and (2) multi-label classification (detailed ICH subtypes and

with/without ICH), we found that binary classification helped better focus the network attention on

the ICH regions. In this paper, we further extended our previous study [44] with three main con-

tributions. First, inspired by the gradient-weighted class activation mapping (Grad-CAM) [21], we

proposed a novel attention visualization technique, called HGI-SAM (Head-wise Gradient-infused

Self-Attention Mapping), by performing head-wise weighing of self-attention obtained from the

Swin transformer using the gradient of the target class. We further demonstrated the benefit of

incorporating HGI-SAM in our weakly supervised ICH segmentation framework over the original

proposal [44]. Second, by inspecting the characteristics of the gradient-weighted attention maps

obtained from ICH detection, we proposed tailored post-processing methods to optimize the seg-

mentation accuracy. Lastly, with the publicly available RSNA 2019 Brain CT hemorrhage [42] and

PhysioNet datasets [28], we conducted a comprehensive evaluation of the new method against our

previous approaches, popular U-Net and Swin-UNETR models with full supervision, and a similar

weakly supervised segmentation method leveraging the popular Grad-CAM technique, in the tasks

of ICH segmentation and detection.
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4.2 Related Works

There have been several variants of the Swin transformer model for medical image segmentation

tasks. Heidari et al. [45] introduced a model with an encoder that combines feature maps from a

CNN and a Swin transformer, to achieve accurate segmentation of skin lesions, multiple myeloma

cells, and abdominal CT scans. Cao et al. [46] proposed a Swin-based U-Net-like model to seg-

ment abdominal CT images and cardiac MRI scans. Hatamizadeh et al. [47] proposed a hybrid

Swin-encoder-CNN-decoder model to segment brain tumor MRI images. Finally, Lin et al. [48]

introduced a dual Swin transformer model with different patch sizes to segment endoscopic images.

Although all these methods showcase promising results to demonstrate the capability of the Swin

transformer architecture, they all require full supervision.

To overcome the challenge of limited, well-annotated training data in developing deep learning

techniques for medical image segmentation, a number of semi-supervised and weakly supervised

algorithms have been proposed [49, 50, 51]. Semi-supervised strategies leverage a small number of

images with refined labels, along with unlabeled or weakly labeled data. In this domain, Yurt et al.

[52] used Generative Adversarial Networks (GANs) for MRI contrast translation with undersampled

k-space data. Chen et al. [53] employed attention-based multi-task learning that simultaneously op-

timizes a supervised segmentation and an unsupervised reconstruction for brain tumor segmentation.

Finally, Zhou et al. [54] incorporated collaborative learning for diabetic retinopathy grading and le-

sion segmentation. On the other hand, weakly supervised techniques rely entirely on coarse labels

in the formats of bounding boxes [18], scribbles [55], points [56], or even categorical labels [57].

As these coarse-level labels are more economical to acquire, weakly supervised segmentation tech-

niques can further reduce the need for refined pixel/voxel-level annotations. With simple bounding

boxes, Rajchl et al. [18] proposed DeepCut, an approach that combined a CNN segmentation model

with a densely-connected conditional random field (CRF) in an iterative training process to achieve

pixel-level segmentation. Their method was tested on brain and lung segmentation for fetal MRI

datasets. Following the approach, Kervadec et al. [19] employed global constraints derived from

box annotations, including tightness prior and global background emptiness, to achieve improved

segmentation results over DeepCut [18] on the PROMISE12 dataset [58]. Previously, scribble and
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point annotations have been widely used in interactive segmentation. In weakly supervised seg-

mentation, Roth et al. [56] employed the random walker algorithm to generate coarse image-level

labels from anatomical landmarks, which were used in combination with the point clouds to refine

the segmentation results. More recently, Liu et al. [55] proposed a weakly supervised COVID-19

infection segmentation method based on image scribbles and an uncertainty-aware mean teacher

framework.

To further alleviate the need for pixel/voxel-wise manual annotation, weakly supervised seg-

mentation methods that solely rely on categorical labels are highly attractive. With the assumption

that deep neural networks in image classification tasks should have a local focus on the target ob-

jects, this type of approach was made possible by the latest techniques that provide an intuitive

visual explanation of the reasoning process for DL algorithms through saliency, class activation,

and attention maps. In this domain, Han et al. [59] proposed a weakly supervised segmentation

model based on class residual attention for the lung adenocarcinoma and breast cancer datasets.

Chen et al. [60] developed a novel class activation mapping for weakly supervised segmentation for

MRI datasets that achieves state-of-the-art accuracy, and similarly, Viniavskyi et al. [22] utilized

class activation maps (CAM) for Chest X-Ray segmentation. More recently, Yu et al. [61] further

modified CAMs by scale feature adaptation and soft-erase modules to segment thyroid ultrasound

images. With the transformer model, Li et al. [62] utilized a self-attention mechanism in multiple

instances learning for weakly supervised segmentation of histopathology images while Zhang et al.

[63] used CAM and a refinement segmentation decoder for the same task.

Almost all previous reports on automatic ICH detection and/or segmentation primarily relied

on supervised learning strategies. Hssayeni et al. [28] recently conducted a comprehensive review

of these techniques in both semi-automatic and automatic manners, and binary classification (ICH

versus non-ICH) achieved an area-under-the-curve (AUC) of 0.846∼0.975, while more fine-grained

ICH subtyping achieved an AUC of 0.93∼0.96. Deep learning-based approaches in ICH detection

typically used fully convolutional networks (FCNs) [32] and recurrent neural networks (RNNs)

[33], and their accuracy was generally higher for ICH versus non-ICH classification than for ICH

subtyping. Following the trend in explainable artificial intelligence (XAI), attention mechanisms

have been employed to both boost detection accuracy and visually illustrate classification results.
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Saab et al. [64] and Salehinejad et al. [24] utilized ResNet-like architectures for binary ICH detec-

tion with attention layers and Grad-CAM techniques, respectively, but they only visualized attention

and class activation maps for qualitative assessment of their methods. Furthermore, very limited at-

tempts were also made to apply the attention/class activation in weakly supervised brain lesion and

hemorrhage segmentation [34, 35, 65]. Specifically, Wu et al. [34] used refined 3D CAMs to seg-

ment stroke lesions from the Ischemic Stroke Lesion Segmentation (ISLES) dataset (multi-spectral

MRI), and achieved a 0.3827 mean Dice score. Liu et al. [65] used multi-scale CAMs and a Mixed-

UNet model with two decoder branches on top of a VGG-based binary classification CNN. They

trained the network based on a private MRI dataset and achieved a 0.56 mean Dice score for ICH

segmentation on a small CT dataset. Likewise, Nemcek et al. [35] found the location of ICH as

bounding boxes in axial brain CT slices based on the regional extrema of attention maps acquired

from a ResNet-like binary classification CNN. In their approach, a mean Dice of 0.58 was reached

for the lesion bounding boxes. Unfortunately, to the best of our knowledge, aside from our earlier

work [44], self-attention, especially with a Swin transformer, has not yet been explored for weakly

supervised ICH segmentation, and we intend to further improve our proposed framework to boost

the performance.

4.3 Methods

An overview of our proposed weakly supervised technique for ICH segmentation is depicted in

Fig. 4.1, which comprises two major components. First, a Swin transformer was trained through

an ICH detection task using categorical labels to classify input images into ICH vs. without ICH.

Then, during test time, the segmentation module utilized hierarchical attention maps from the Swin

transformer blocks along with their corresponding gradients to predict the hemorrhage segmentation

map. Due to the high variability in slice thicknesses among the CT data, we decided to implement

our algorithm based on 2D axial slices. The details of the methodology are provided in the following

sections.
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Figure 4.1: Overview of the proposed weakly supervised segmentation method using the hierarchi-
cal fusion of gradient-weighted self-attention maps.

4.3.1 ICH detection with a Swin transformer

In our proposed technique, we employed the Swin-Base transformer architecture, which divides

an input image into 4 × 4 patches before passing their embedding through 4 layers/hierarchies to

predict the existence of hemorrhages. Unlike the ViT, which computes the multi-head self-attention

(MSA) between all image patches, in Swin-Base transformer, self-attention is derived within non-

overlapping windows of 12×12 patches, which considerably reduces the computational cost. Here,

for simplicity, we will refer to the Swin-Base transformer as “Swin transformer” from this point on.

Two main mechanisms help establish the associations between patches across different windows.

First, the Patch-Merging module at the beginning of each Swin transformer layer combines and

encodes every 2 × 2 neighboring patches into one. Second, every two consecutive transformer

blocks apply window-based multi-head self-attention (W-MSA) and shifted window-based multi-

head self-attention (SW-MSA) units to input tokens (see Fig. 4.2a). The self-attention per head

within each window is computed as:

Attention (Qh,Kh, Vh) = wh × Vh,

wh = Softmax
(︃
QhK

T
h√
d

+Bh

)︃
,

(21)
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where Q, K, and V denote query, key, and value vectors, respectively. w is the window attention

weight that we use to derive the attention map, h denotes the head index of multi-head self-attention,

d is the dimension of the query or key, and B is the positional embedding matrix. Here, since the

dimension of the window is 12 × 12, the dimension of w is 144 × 144. Note that w shows the

relevance score of key tokens with query tokens. For more information on how the attention weight

within each window is computed, we refer the readers to the original Swin transformer paper [15].

In our earlier study [44], we discovered that providing additional information (hemorrhage sub-

types) to “ICH vs. without ICH” classification during training can distract the network attention in

the Swin transformer. As a result, for our new method with HGI-SAM, we decided to establish the

backbone of our algorithm based on simple binary ICH detection. To benefit from the target class

gradient, instead of using one output neuron to represent the classification outcome, we framed the

final network with a two-class setup (i.e., positive and negative ICH detection). Further information

on network training is detailed in Section 4.2.

4.3.2 Hemorrhage Segmentation

In our previous study [44], we have qualitatively demonstrated the superior performance of self-

attention maps than the class-activation maps obtained with Grad-CAM in visually explaining the

ICH detection process in Swin transformers. Therefore, we continued to take advantage of self-

attention maps, with a novel formulation to perform weakly supervised ICH segmentation.

Previous attempts to visualize attention weights in the ViT involved inserting an extra classi-

fication token into the image patches and then extracting the attention weight of this token after

multiplying the weights of all layers [38, 14]. However, this approach is not feasible for the Swin

transformer due to its window division mechanisms for both regular and shifted windows. Addi-

tionally, multiplying different attention weights is challenging due to two reasons. First, at different

layers/hierarchies, Patch-Merging results in a different feature map resolution and number of to-

kens. Second, every two successive Swin transformer blocks have attention weights corresponding

to regular and shifted image patches that do not match. To address these challenges, we calculated

the attention map at each block by averaging over all query tokens with additional operations of the

window and shift reversal, and then the interpolated maps at different layers are multiplied.
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Figure 4.2: Demonstration of head-wise gradient-infused layer attention map generation in the pro-
posed Swin transformer in categorical learning

Layer Attention Map Generation

There has been recent research that leverages model classification scores for attention explainability.

For instance, Chefer et al. [38] utilize the Taylor Decomposition principle to assign and propagate a

local relevance score through the layers of a ViT model. Similarly, Sun et al. [66] and Barkan et al.

[67] employ attention gradient weighting on ViT and BERT models, respectively. However, these

approaches primarily focused on the attention weight of the “cls” token, and the latter two methods

weighed each token’s attention weight through element-wise multiplication. In contrast, our work

places emphasis on weighing different heads in multi-head self-attention, and we performed the

operation on the more complex Swin Transformer for the first time.

The use of multiple heads in the self-attention mechanism enhances the representational capac-

ity and robustness of the transformer model, as each head can focus on different aspects of the input

and learn a unique set of attention weights, thus capturing more complex relationships among the

tokens. However, this critical fact was overlooked in most previous attention map generation meth-

ods [68], including our own previous work [44]. In the existing literature, naive averaging is often

applied to the attention weights of all heads to obtain an overall weight representation. However,
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as proved by Voita et al. [69], some heads have more contribution to the output prediction. In this

work, we weighed each head by the norm of its gradient regarding the classification score of positive

ICH detection, which caused the attention weights of the heads that are more strongly associated

with hemorrhage detection to have a heavier influence on the final attention weight representation.

This is similar to Grad-CAM, where the target class gradient is used to weigh the associated acti-

vation map to enhance its specificity. In a Swin transformer, attention weights are computed within

non-overlapping local windows while the W-MSA and SW-MSA units in two successive blocks es-

tablish cross-window connections. To encode the full attention information from local windows and

cross-window connections, we multiply the attention maps from the original and shifted versions.

Thus, we produce one map per every two consecutive blocks. As illustrated in Fig. 4.2, the layer

attention map is created as follows:

W i =
1

H

H∑︂
h=1

⃦⃦⃦⃦
∂Y 1

∂wi
h

⃦⃦⃦⃦
· wi

h,

M i =
1

Q

Q∑︂
k=1

W i
k,

L = BI
(︁
WR

(︁
W i
)︁
⊗ RS

(︁
WR(W i+1)

)︁)︁
(22)

where wi is the Multi-head window Self-Attention (MSA) weight of block i, H is the number of

heads in the MSA unit, M i is the window attention map of block i which is derived by averaging

the window attention weight over its query tokens’ dimension, and L is the layer attention map. BI

refers to bilinear interpolation, which is utilized to upsample the map to the image size. WR stands

for Window Reverse operation, which involves concatenating maps of all windows to create a full

image map. Also, RS denotes the reverse shift operation, which is used to reposition the shifted

patches of the SW-MSA unit to their original locations in the image. It is good to mention that for

Layer 3 in our Swin transformer, which consists of 18 blocks, the final layer map is obtained by

averaging the results of 9 maps computed as above.
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Figure 4.3: A comparison of the proposed head-wise gradient-infused self-attention mapping (HGI-
SAM) and the original self-attention maps (Swin-SAM) from the Swin transformer model is shown
for two axial CT slices. Along with the maps at different hierarchies, the fused attention maps and
the derived binary ICH segmentation (in red) are also shown over the ground truths (in green). Note
that the yellow color shows the overlapping area (true positive regions of segmentation results).

Segmentation Module

In the segmentation module, the final ICH segmentation was obtained by thresholding the pixel-wise

multiplication result of the attention maps from different hierarchical layers in the Swin transformer.

Note that the attention map generated by the last layer in the Swin transformer tends to be much

more coarse due to the interpolation of a 12 × 12 pixel map to the image size, resulting in reduced

resolution and potential loss of fine-grained details. Therefore, unlike our previous approach [44],

which used the attention of Layer 4 to compensate for its limited ability to capture relevant features

in earlier layers, with the new technique using HGI-SAM, we used the attention maps from the first

3 layers to generate the final ICH segmentation [70]. Furthermore, as demonstrated in Fig. 4.1,

we employed an additional post-processing step in our approach. This involved multiplying the

final fused attention map with a brain binary mask, removing any irrelevant attention weights to

ICH segmentation outside the brain region. The skull-stripping procedure was conducted following
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the recommended steps outlined by Muschelli et al. [71]. Lastly, the refined attention map was

binarized using a simple thresholding method, which was demonstrated to be more robust than K-

means or Otsu’s method in our previous study [44], resulting in a discrete segmentation mask. To

determine the optimal threshold value, we conducted a grid search using the validation data. More

specifically, to evaluate a fold in 5-fold cross-validation, we chose a best-performing threshold value

from 0 to 1 with a step size of 0.01 that obtained the best segmentation on the remaining folds based

on Dice scores.

4.4 Experiments and Evaluation

To investigate the performance of the proposed weakly-supervised ICH segmentation method using

our new HGI-SAM technique, in addition to the approaches from our previous publication [44],

we also implemented three baseline models, including a fully supervised U-Net, a fully super-

vised Swin-UNETR, and a similar weakly supervised segmentation method based on binary ICH

detection using class activation maps from Grad-CAM. To facilitate the discussion of these meth-

ods, we refer the weakly supervised segmentation techniques with Grad-CAM, self-attention maps

in multi-label learning (ICH subtyping), self-attention maps in binary ICH detection, and head-

wise gradient-infused self-attention maps in binary ICH detection as Swin-Grad-CAM, Swin-SAM

Multi-label, Swin-SAM Binary, and Swin-HGI-SAM, respectively. All our networks were trained

on a desktop computer with an Intel Core i9 CPU and an NVIDIA GeForce RTX 3090 GPU with

24 GB of memory. The following sections provide detailed information about the dataset, model

training techniques for various segmentation methods, and evaluation metrics.

4.4.1 Dataset

To train and evaluate our models, we used two public datasets, the RSNA ICH CT dataset [42]

and the PhysioNet CT dataset [28]. The RSNA dataset contains 752,803 CT slices, with each slice

annotated only with ICH subtypes, and the PhysionNet dataset has 2,814 CT slices (75 subjects)

with both manual ICH segmentation and ICH subtypes. For all weakly supervised methods, the

deep learning models were trained only using the RSNA dataset, which was randomly split into
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90% and 10% for training and validation sets. We used the validation set to early stop training

when its loss stops decreasing. Their testing was performed only using the PhysioNet dataset. To

train and test the fully supervised U-Net and Swin-UNETR networks [47], subject-wise five-fold

cross-validation was used on the PhysioNet dataset, where we ensure that no slices from the same

subject exist across different folds. Finally, we incorporated the same data splitting to evaluate all

techniques. We published our data splitting along with our code at https://github.com/

HealthX-Lab/HGI-SAM.

To prepare the data, for each CT slice, brain, subdural and bone windows created using the

suggested parameters provided in the relevant data publications [42, 28] were stacked to create a

three-channel image, downsampled to 384×384 pixels, and normalized using min-max scaling to

the range of [0,1].

4.4.2 Implementation details

ICH segmentation with Swin-SAM Multi-label and Swin-SAM Binary

In our previous work [44], two Swin transformers [36] were trained with categorical learning to

provide self-attention maps for ICH segmentation, with one for binary ICH detection and the other

for binary ICH detection and full subtyping. When training both models, we used the AdamW

optimizer with an initial learning rate of 1e-5 and early stopping with a patience of 3 to avoid over-

fitting. To address the class imbalance (ICH vs. without ICH) issue in the dataset, we used the

focal cross-entropy loss function. Finally, we employed data augmentation techniques, including

random left-right flipping, image rotation, and Gaussian noise addition, to improve the capacity and

robustness of the trained models. At test time using the PhysioNet data, the binary hemorrhage

segmentation was obtained using the same post-processing step as described in Section 3.2.2. More

specifically, a five-fold cross-validation approach was used to determine the optimal threshold to

generate binary ICH segmentation masks from the fused attention maps. The fold-wise average

of threshold values for Swin-SAM Multi-label and Swin-SAM Binary were 0.11 and 0.07, respec-

tively. Additionally, the division of the five folds was made consistent with the training and testing

of the supervised U-Net and Swin-UNETR models.
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ICH segmentation with HGI-SAM

The Swin transformer for our new weakly supervised ICH segmentation using HGI-SAM was estab-

lished based on that of the Swin-SAM Binary technique, following our previous insight regarding

the benefit of binary classification on self-attention maps [44]. To allow the computation of class-

specific gradients for HGI-SAM, instead of one neuron to represent binary ICH detection outcomes,

the new model was equipped with two output neurons to represent the ICH positive class and ICH

negative class. To take advantage of our existing work, the new model was fine-tuned based on

the Swin transformer backbone of Swin-SAM Binary, using the AdamW optimizer with a learning

rate of 1e-6 and early stopping. Here, data augmentation with random spatial transformations and

Gaussian noise addition was used during training. Furthermore, with the cross-entropy loss func-

tion, during training, we adopted data sampling that drew training data samples with probabilities

that were inversely proportional to their label frequencies to handle the class imbalance issue in the

datasets. Upon completing the training, pixel-wise ICH masks were obtained in the same manner as

described in the previous section to allow a consistent comparison for all techniques. The obtained

fold-wise average threshold value for this model was 0.06.

4.4.3 Baseline models

ICH segmentation with Grad-CAM

As most existing weakly supervised segmentation techniques relied on Grad-CAM [21], we imple-

mented a baseline technique of this category, where we employed the class activation map on the

same Swin transformer that we trained with the binary ICH detection task for Swin-HGI-SAM. Fol-

lowing the suggestion by Jacob et al. [72], we applied the Grad-CAM target layer to the output of the

first norm layer in the final block of the Swin transformer. Similar to the proposed self-attention-

based method, the activation map was first multiplied by the brain mask and then thresholded to

achieve the final hemorrhage segmentation as described in Section 4.2. The obtained fold-wise

average threshold value for this model was 0.80.
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Fully supervised U-Net

The U-Net is one of the most popular DL models in medical imaging applications. Therefore,

we implemented a fully supervised U-Net model with a lighter architecture than that in the Phys-

ioNet ICH data paper [28], which has four hierarchies in the encoding and decoding paths, but less

embedding dimension. Each hierarchy consists of two Convolutional layers with ReLU activation

function, a Max-Pooling layer in the encoding branch, and Transposed Convolutional layer in the

decoding branch. We used the AdamW optimizer with an initial learning rate of 1e-3, the same

sampling and augmentation strategy as our weakly supervised models, and a loss function made of

Dice coefficient and cross-entropy, in a five-fold cross-validation setup.

Fully supervised Swin-UNETR

Swin-UNETR [47] is one the most popular Swin-based segmentation models that takes advantage of

Swin transformer and CNN techniques at the same time. Specifically, it is a U-Net-like architecture,

where the encoder is a Swin transformer, the decoder is a CNN, and skip connections pass through

convolutional residual blocks. To mitigate overfitting considering the size of the PhysioNet dataset,

we adopted a lighter version of its original model that has 4 layers/hierarchies, an initial embedding

dimension of 12, and 2, 4, 8, and 16 heads in multi-head self-attention units of Layer 1 to 4. Here,

we used the same training parameters and strategies as the U-Net model, which also offers the best

outcome for this method, to train the network.

4.4.4 Evaluation metrics

For all the proposed and implemented methods, we evaluated their segmentation performance using

Dice coefficient and Intersection over Union (IoU). In addition, to assess the performance of binary

ICH detection, we also computed a range of metrics, including accuracy, area under the curve

(AUC), precision, F1-score, recall, and specificity for all algorithms. Note that for Swin-SAM

Multi-label, where the designated Swin transformer was trained for both binary ICH classification

and subtyping, the performance was assessed only based on the binary detection results. For the

U-Net and Swin-UNETR models, ICH detection was recorded as whether the network provided a
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hemorrhage segmentation for a given image since a similar approach was also used for assessing

aneurysm detection in the ADAM MICCAI Challenge [73]. It is worth mentioning that to make the

performance of these models in ICH detection more robust, we do not consider tiny foregrounds

as positive ICH (< 10 pixels). As the data division for five-fold cross-validations for different

techniques was the same, we reported the ICH segmentation and detection accuracy for all folds.

We also report the model’s overall performance by considering the accuracy of all slices. Lastly,

two-sided paired sample t-tests were performed to further confirm the performance of our newly

proposed segmentation method based on HGI-SAM against the rest of the comparing group.

4.5 Results

To demonstrate the impact of gradient-weighing for self-attention maps and thus the final hemor-

rhage segmentation, we illustrate the layer-wise attention maps, along with the combined map and

the binary segmentation in Fig. 4.3 for the axial CT slices of two patients. From Fig. 4.3, it is evident

that the proposed head-wise gradient-infused self-attention maps (HGI-SAM) provided more atten-

tion weights with higher specificity for the hemorrhage regions, especially at the first two layers

with higher resolutions. This, in turn, provided final binary segmentations with a better agreement

with the ground truths. To showcase the segmentation performance of the proposed method, the

results of all mentioned techniques are shown for four different patients in Fig. 4.4. When compar-

ing Swin-Grad-CAM and the self-attention-based results, we can see that while Swin-Grad-CAM

could focus on the general region-of-interest correctly, it often provided much larger segmentations

than needed. Between Swin-SAM Multi-label and Swin-SAM Binary, as we discovered in the pre-

vious study [44], binary classification helped better focus the model attention in the hemorrhage

region than the multi-label counterparts, thus offering more accurate segmentation. Finally, in con-

trast to the rest of the weakly supervised methods, Swin-HGI-SAM gave the most similar results

to the fully supervised models, and notably, in Cases 2 and 4, the U-Net missed the small ICH that

Swin-HGI-SAM and Swin-UNETR were able to identify.

Following the qualitative demonstration of the segmentation performance, the Dice coefficient

and IoU metric for all methods are listed in Table 4.1 for all five folds from the experiments, with
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their overall slice-wise mean±SE. While the Swin-UNETR achieved a Dice of 0.455±0.019 and

an IoU of 0.355±0.016 in a fully supervised setting, Swin-HGI-SAM was able to offer the second

best results, with a 0.444±0.014 Dice. With Swin-Grad-CAM as the worst method, Swin-SAM

multi-label and Swin-SAM binary performed worse than the newly proposed technique. In terms

of statistical tests for segmentation metrics, Swin-HGI-SAM outperformed all weakly supervised

methods (p = 10−37 < 0.05 compared with Swin-Grad-CAM, p = 10−29 < 0.05 compared with

Swin-SAM Multi-label, p = 0.0029 < 0.05 compared with Swin-SAM Binary) while producing

similar segmentation accuracy as the fully supervised U-Net (p = 0.829 > 0.05) and fully super-

vised SwinUNETR (p = 0.6184 > 0.05)

Finally, in Table 4.2, we listed the full assessment of ICH detection for Swin-SAM multi-label,

Swin-SAM binary, Swin-HGI-SAM, U-Net, and Swin-UNETR. Despite the strong performance of

fully supervised U-Net and Swin-UNETR models in ICH segmentation, their ICH detection accu-

racy falls short when compared to weakly supervised models trained with categorical labels. For

all Swin transformer models, they offered similar ICH detection performance across all evaluation

metrics. By comparing Table 4.1 and Table 4.2 across different data folds, we noticed that the detec-

tion results align with segmentation performance, especially for weakly supervised based models.

This is expected due to the nature of the proposed weakly supervised segmentation framework.

4.6 Discussion

In recent years, the urgent need to enhance the transparency of deep learning algorithms has en-

couraged the development of various techniques to visualize network activation/attention maps in

vision tasks. Among them, Grad-CAM [21] has gained popularity to reveal the regions of interest

in image classification tasks for CNNs, thanks to its simplicity and flexibility. Furthermore, extend-

ing its original purpose, it has also been adopted in weakly supervised image segmentation based

on categorical and metric learning to generate pixel-level semantic labels [60], including applica-

tions for stroke lesion segmentation [34, 35]. Compared with Grad-CAM and its variants, the more

recent attention mechanisms, especially self-attention from transformer models, can identify more
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Table 4.1: Assessment of ICH segmentation performance for Swin-Grad-CAM, Swin-SAM Multi-
label, Swin-SAM Binary, Swin-HGI-SAM, U-Net, and Swin-UNETR algorithms, using Dice co-
efficient and Intersection over Union (IoU). All results are reported as mean±SE. Note the overall
metrics are reported based on all cases across the folds.

Fold Dice Coefficient

Swin-Grad-CAM Swin-SAM
Multi-label

Swin-SAM
Binary Swin-HGI-SAM Fully supervised

U-Net
Fully supervised

Swin-UNETR
1 0.174 ± 0.025 0.223 ± 0.029 0.337 ± 0.031 0.354 ± 0.040 0.302 ± 0.045 0.281 ± 0.044
2 0.219 ± 0.024 0.319 ± 0.021 0.433 ± 0.025 0.505 ± 0.026 0.336 ± 0.036 0.434 ± 0.044
3 0.189 ± 0.032 0.276 ± 0.032 0.347 ± 0.033 0.414 ± 0.034 0.442 ± 0.047 0.399 ± 0.045
4 0.268 ± 0.022 0.322 ± 0.025 0.400 ± 0.025 0.451 ± 0.029 0.555 ± 0.036 0.571 ± 0.034
5 0.307 ± 0.026 0.338 ± 0.029 0.407 ± 0.022 0.481 ± 0.030 0.491 ± 0.040 0.522 ± 0.037

Overall
slice-wise 0.237 ± 0.012 0.299 ± 0.012 0.387 ± 0.012 0.444 ± 0.014 0.438 ± 0.019 0.455 ± 0.019

Fold Intersection over Union

Swin-Grad-CAM Swin-SAM
Multi-label

Swin-SAM
Binary Swin-HGI-SAM Fully supervised

U-Net
Fully supervised

Swin-UNETR
1 0.107 ± 0.017 0.143 ± 0.020 0.226 ± 0.024 0.255 ± 0.031 0.228 ± 0.036 0.210 ± 0.035
2 0.136 ± 0.017 0.200 ± 0.015 0.295 ± 0.020 0.360 ± 0.022 0.238 ± 0.029 0.338 ± 0.038
3 0.127 ± 0.023 0.185 ± 0.024 0.240 ± 0.026 0.294 ± 0.027 0.352 ± 0.041 0.308 ± 0.038
4 0.171 ± 0.015 0.214 ± 0.018 0.275 ± 0.019 0.328 ± 0.024 0.453 ± 0.033 0.458 ± 0.030
5 0.199 ± 0.019 0.226 ± 0.022 0.270 ± 0.018 0.347 ± 0.026 0.381 ± 0.035 0.403 ± 0.033

Overall
slice-wise 0.151 ± 0.008 0.196 ± 0.009 0.263 ± 0.010 0.319 ± 0.012 0.343 ± 0.016 0.355 ± 0.016

Table 4.2: Assessment of ICH detection performance for Swin-SAM Multi-label, Swin-SAM Bi-
nary, Swin-HGI-SAM, U-Net, and Swin-UNETR algorithms, using accuracy, AUC, precision, F1-
score, recall, and specificity. Note the overall metrics are reported based on all cases across the
folds.

Fold Accuracy AUC
Swin-SAM
Multi-label

Swin-SAM
Binary Swin-HGI-SAM U-Net Swin-UNETR Swin-SAM

Multi-label
Swin-SAM

Binary Swin-HGI-SAM U-Net Swin-UNETR

1 0.948 0.953 0.946 0.572 0.654 0.821 0.874 0.904 0.731 0.785
2 0.958 0.964 0.958 0.751 0.816 0.851 0.891 0.902 0.830 0.845
3 0.934 0.928 0.928 0.674 0.589 0.712 0.701 0.731 0.765 0.732
4 0.967 0.965 0.953 0.692 0.685 0.932 0.950 0.948 0.805 0.810
5 0.959 0.954 0.938 0.515 0.660 0.935 0.939 0.937 0.721 0.788

Overall
slice-wise 0.953 0.953 0.945 0.639 0.679 0.858 0.879 0.891 0.770 0.793

Fold Precision F1-score
Swin-SAM
Multi-label

Swin-SAM
Binary Swin-HGI-SAM U-Net Swin-UNETR Swin-SAM

Multi-label
Swin-SAM

Binary Swin-HGI-SAM U-Net Swin-UNETR

1 0.735 0.724 0.657 0.166 0.201 0.699 0.750 0.742 0.282 0.331
2 0.894 0.870 0.803 0.304 0.369 0.792 0.832 0.817 0.458 0.520
3 0.862 0.800 0.737 0.226 0.191 0.575 0.545 0.583 0.359 0.315
4 0.893 0.849 0.784 0.322 0.319 0.888 0.888 0.856 0.482 0.483
5 0.767 0.731 0.652 0.183 0.238 0.830 0.814 0.768 0.308 0.381

Overall
slice-wise 0.830 0.796 0.725 0.231 0.253 0.780 0.789 0.770 0.370 0.398

Fold Recall (Sensitivity) Specificity
Swin-SAM
Multi-label

Swin-SAM
Binary Swin-HGI-SAM U-Net Swin-UNETR Swin-SAM

Multi-label
Swin-SAM

Binary Swin-HGI-SAM U-Net Swin-UNETR

1 0.667 0.778 0.852 0.926 0.944 0.976 0.970 0.956 0.537 0.625
2 0.712 0.797 0.831 0.932 0.881 0.989 0.985 0.974 0.728 0.808
3 0.431 0.414 0.483 0.879 0.914 0.992 0.988 0.980 0.651 0.551
4 0.882 0.929 0.941 0.965 0.988 0.982 0.971 0.955 0.645 0.632
5 0.903 0.919 0.935 0.984 0.952 0.966 0.958 0.938 0.457 0.624

Overall
slice-wise 0.736 0.783 0.821 0.940 0.940 0.981 0.974 0.960 0.600 0.645
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Figure 4.4: Qualitative comparison of segmentation performance for the proposed weakly super-
vised ICH segmentation methods (Swin-Grad-CAM, Swin-SAM Multi-label, Swin-SAM Binary,
and Swin-HGI-SAM), fully supervised U-Net, and fully supervised Swin-UNETR for four differ-
ent cases. Here, red=automatic segmentation, green=ground truths, and yellow=true positives.

discriminative, task-related regions and features while improving the performance of the DL mod-

els [74, 14]. This was confirmed in this study when comparing the segmentation performance of

the proposed weakly supervised ICH segmentation approaches with Grad-CAM and self-attention

maps. As for the self-attention mechanism, different learning strategies may influence the position-

ing and tightness of network attention with respect to the target objects, and thus the downstream

segmentation outcomes in the proposed framework. As an ablation study of our previous work [44],

we examined the impact of binary (presence of hemorrhage or not) versus multi-label classifications

(ICH subtypes and with/without ICH) on self-attention maps from Swin transformers. Using seg-

mentation accuracy as a metric, we found that binary classification helped the network better focus

on the hemorrhage regions while both strategies offer similar performance for ICH detection. In the

new segmentation method with HGI-SAM, we followed our earlier insights to build our algorithm.

Inspired by the popular Grad-CAM technique [21], we incorporated head-wise gradient-weighing
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for self-attention maps to boost the presentation of the weights relevant to specific class activation

for the first time. Compared with other attention mapping techniques [38, 66] that relied on the

ViT, we were also the first to implement it on the more complex Swin transformer that was intended

to improve upon the ViT. The enhanced visualization of the attention maps and ICH segmentation

accuracy are evident in Fig. 4.3 and Fig. 4.4, respectively. Among the obtained attention maps

at different hierarchies, those from the earlier layers contained the relevant attention weights at

higher resolutions, and thus were more helpful to delineate the regions of interest (i.e., hemorrhages)

through the ICH classification task. In our experiment, the head-wise gradient-infused self-attention

map (HGI-SAM) from Layer 4 possesses relatively less discriminative power primarily due to much

lower resolution and the adverse cascading effect of transformer architecture [70]. Therefore, we

chose to fuse those from the first three layers for our proposed method. In fact, with a few cases,

we found that the fused attention map from the first 3 layers offered better segmentation accuracy

than using those from all 4 layers. In our original study that relied on self-attention maps alone,

fusing all 4 layers was more beneficial. To obtain discrete ICH segmentation from the HGI-SAM,

we applied additional post-processing steps. One major procedure that was different from our orig-

inal article was multiplying the brain mask before ICH mask binarization. When closely inspecting

the attention maps from ICH classification, we noticed that skull fractures were also identified in

addition to the hemorrhage. This is likely because, for many ICH patients, the condition may result

in accidental falls that cause additional injury, such as skull or spine fractures. This phenomenon

perfectly showcased the power of attention visualization in explaining the decision-making process

in DL models. By constraining the post-processing in the brain region, we intended to exclude the

attention weights regarding skull fractures and were able to further improve the segmentation ac-

curacy. Finally, different from our previous approach [44], where the denoised brain window was

multiplied to the attention map, our new method directly performed thresholding on the gradient-

weighted map to avoid potential intensity inconsistency within the hemorrhage and multi-center

imaging protocols. This also allowed us to directly probe the quality of activation/attention maps

with respect to their specificity in focusing on ICH.

To provide baselines for our weakly supervised segmentation framework, we have trained a
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U-Net and a Swin-UNETR with full supervision using the PhysioNet data to perform ICH segmen-

tation. By using data sampling to tackle class imbalance in training, our U-Net model has achieved

an improved mean Dice score of 0.438 over that of 0.315 reported for the U-Net in the original

data paper [28]. In comparison, our proposed method has achieved similar results to our baseline

supervised U-Net and Swin-UNETR (p > 0.05) with the mean Dice scores slightly lower than

the Swin-UNETR and higher than the U-Net, showcasing the feasibility and excellent potential of

weakly supervised segmentation with much more accessible categorical labels. In terms of compu-

tational cost, U-Net was the most efficient model, taking only around 10ms/sample, likely due to its

simple convolutional layer architecture. On the other hand, Swin-UNETR took around 15ms/sam-

ple, Swin-SAM models took around 30ms/sample, and Swin-HGI-SAM and Swin-Grad-CAM took

approximately 60ms and 90ms per sample, respectively. The longer inference time is because the

latter two required backward operations for gradient computation, which is a key step for the pro-

posed framework. However, all these models are still relatively fast and suitable for clinical setups,

offering practical benefits.

While there is still room for improvement in our future work, ICH segmentation from clinical

scans remains a challenging task at the moment. In our proposed framework, extracting mean-

ingful pixel-wise attention maps is crucial. We admit that the exploration of self-attention in this

study may be data-, application- and model-specific while the baseline supervised models have

been tested in various applications. By using categorical learning to obtain attention and saliency

maps for segmentation, depending on the data and application, it is possible that the local regions

that the network focuses on for image classification may not fully overlap with the segmentation

ground truths. In our application, the derived self-attention maps focused on both ICH lesions and

skull fractures in some cases, and we used skull stripping to tackle this. In the future, we will

continue to investigate the characteristics of self-attention in different learning strategies, extended

applications, and other Transformer models. These would be greatly beneficial to improve weakly

supervised medical image segmentation based on categorical labels. Incorporating inter-slice or 3D

spatial information may be beneficial to the designated tasks, especially for 2D slices that contain

a few pixels of ICH, but the high variability of CT slice thickness in the public datasets has posed
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challenges in the 3D approach. Recent developments in resolution-agnostic brain image segmenta-

tion [75] and image super-resolution [76] through generative DL models have allowed high-quality

interpretation of clinical scans with diverse imaging protocols (e.g., different image resolutions). We

will seek to adapt these frameworks for CT images in the task of ICH detection and segmentation

in future work.

4.7 Conclusion

To mitigate the requirement of expensive training data for intracranial hemorrhage segmentation, we

have proposed a weakly supervised framework by using a novel hierarchical combination of head-

wise gradient-infused self-attention maps from a Swin transformer through categorical learning.

By using two public CT databases, we further demonstrated the benefits of head-wise gradient-

weighing of derived attention maps to further boost ICH segmentation performance for the first

time. In the future, we will further explore the proposed HGI-SAM technique and the application

of the proposed weakly supervised segmentation framework in extended applications and other

Transformer models.
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Chapter 5

Intracranial Aneurysm Segmentation

Using A Novel Focal Modulation UNet

and Conditional Random Fields

A version of this chapter is uploaded to Arxiv as a preprint, and submitted to the 15th International

Conference on Information Processing in Computer-Assisted Interventions.

• A. Rasoulian, S. Salari, Y. Xiao, ”Weakly supervised segmentation of intracranial aneurysms

using a 3D focal modulation UNet,” ArXiv:2308.03001, 2023.

5.1 Introduction

An intracranial aneurysm is an abnormal focal bulging or ballooning of the vasculature in the brain

due to weakened blood vessel walls. Although often asymptomatic, large aneurysms can cause

headaches, visual disturbance, neurological deficits, and other issues [1]. Furthermore, a ruptured

aneurysm can lead to life-threatening subarachnoid hemorrhage, a severe stroke subtype. Typical

treatments for unruptured intracranial aneurysms (UIAs) include endovascular coiling and surgical

clipping. When screening for UIAs and determining the treatment plans, risk assessment of UIA

growth and rupture is crucial. Thanks to modern medical imaging techniques, such as computed
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tomography (CT) and magnetic resonance imaging (MRI), the ability to accurately and reliably

identify and measure aneurysms can ensure therapeutic outcomes. Compared with CT angiography

(CTA), time-of-flight magnetic resonance angiography (TOF-MRA) does not expose the patients to

radiation or adverse reactions toward contrast agents. It thus is better suited for routine follow-up

imaging.

Manual identification and measurements of UIAs can be difficult and time-consuming, espe-

cially for those that are of small sizes (<5mm), and it is estimated that 10% of all UIAs are missed

during screening [77]. Therefore, automatic algorithms that allow detection and especially 3D seg-

mentation of the aneurysms from medical scans can greatly facilitate the clinical workflow and

enable more fine-grained risk analysis based on UIA shapes. To date, many techniques [78, 79]

have been proposed for UIA detection, but only a few reported performance for 3D UIA segmen-

tation from CTA/MRA. Notably, the ADAM Challenge [78] hosted in conjunction with MICCAI

2020 attracted nine DL-based UIA segmentation algorithms. Among these, various approaches of

convolutional neural networks (CNNs), especially variants of the UNet have been proposed, with the

winning algorithm achieving an average Dice score of 0.64 and a mean 95% Hausdorff distance (95-

HD) of 2.62mm for correctly detected UIAs. However, most existing techniques were developed

based on private clinical data with refined manual annotations, and many focused on CTA. Further

investigation is still needed for this challenging task, especially for MRA with weaker contrast. The

lack of large well-annotated databases, which are costly to acquire and demand high domain exper-

tise, poses significant challenges in developing deep learning methods in medical imaging applica-

tions, particularly for anatomical segmentation. To mitigate this, weakly supervised segmentation

[18, 80, 44, 81] leverages coarse annotations that are easier to obtain (e.g., rough segmentation and

categorical image labels) to derive refined segmentation. In this paper, we employ coarse segmen-

tation ground truths of UIAs from TOF-MRA to detect and segment the pathology by using a novel

3D focal modulation UNet, called FocalSegNet, and post-processing with a fully connected condi-

tional random field (CRF) model. In summary, our work has three major novel contributions. First,

inspired by the recent focal modulation technique [16] and the UNet architecture [82], we proposed

a novel 3D UNet with focal modulation; Second, we thoroughly compared the performance of self-

attention [13] and focal modulation [16] in weak segmentation of UIAs; Lastly, we revealed the
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key factors that contribute to UIA segmentation for the proposed method through various ablation

studies.

5.2 Methodology

5.2.1 Network architecture of FocalSegNet

While 3D UNet was a common choice for UIA detection and segmentation [78], the newer Vision

Transformer (ViT) and its variants (e.g., Swin Transformer) that leverage self-attention mechanisms

[13, 15] have become increasingly popular in medical imaging applications, providing superior

performance. More recently, to better encode contextual information with a lighter model, Yang et

al. [16] proposed focal modulation for DL in vision tasks, and demonstrated that it performed better

than the Swin Transformer. In focal modulation networks, self-attention is replaced by a stack of

depth-wise convolutional layers that focally encode visual contexts and selectively gather them into

a modulator using a gated aggregation. Next, the modulator is injected into the query and passed

to the next block. Both self-attention and focal modulation techniques involve linearly determining

the key, query, and value based on input tokens. Nevertheless, the primary distinction lies in their

operational sequence: in self-attention, a query-key interaction occurs before aggregation with the

value, whereas in focal modulation, the value is first aggregated with contexts around each key, and

subsequently, the result is adaptively modulated with the query. Despite excellent performance in

classification and segmentation of natural images, focal modulation’s performance in 3D medical

images is yet to be verified. Recently, Naderi et al. [83] proposed a 2D UNet-like architecture with

focal modulation blocks as the encoder and decoder for abdominal CT segmentation. It offered a

higher mean Dice score (not confirmed by statistical tests) than the Swin-Unet [46], another UNet-

like model with Swin Transformers as the encoder and decoder. Different from [83], we followed

the approach of the recent 3D Swin-UNETR [47], a popular Swin-CNN hybrid model to build a new

architecture by replacing the Swin Transformer with 3D focal modulation for the encoder. At the

encoder branch, each layer’s output, consisting of image tokens and their embeddings, is reshaped

to a volumetric patch and passed through a residual block to work as skip connections. Starting

from the bottleneck, each feature map is expanded using a transposed convolutional block and then
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Figure 5.1: Network architecture of the proposed FocalSegNet

concatenated with the corresponding skip connection before passing through another residual block

to the next layer. The detailed architecture is depicted in Fig. 5.1.

5.2.2 Post-processing with fully connected CRF

As the proposed deep learning (DL) models (i.e., FocalSegNet) were trained on rough segmentations

that overestimate the true aneurysm shapes, we used a fully connected CRF [84] to further refine our

model’s initial prediction (P (xi)). If we define Xi as a random variable representing the assigned

label to pixel i (foreground/background), and Ii as a global observation characterizing the pixel

information in the input image, the CRF is modeled as the pair of (I,X) which follows a Gibbs

distribution of the form P (X = x|I) = 1
Z(I)exp(−E(x|I)) [85]. Here, Z(I) is a normalization

factor, and E(x|I) is the energy function of assigning labels x to the image. Through minimizing

this energy function, the new labels will have a greater likelihood of being assigned to the image.

Inspired by [17], we define the energy function as:

E(x|I) =
∑︂
i

ψu(xi) +
∑︂
i<j

ψp(xi, xj) (23)

ψu(xi) = −logP (xi)
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ψp(xi, xj) = µ(xi, xj)

[︃
ω1exp(− ||pi−pj ||2

2σ2
α

− ||Ii−Ij ||2

2σ2
β

) + ω2exp(− ||pi−pj ||2
2σ2

γ
)

]︃
µ(xi, xj) = 1 if xi ̸= xj and 0 otherwise

Here, ψu(xi) is the unary term measuring the cost of assigning label xi to pixel i, and ψp(xi, xj) is

the pairwise term that shows the cost of assigning labels xi and xj to pixels i and j simultaneously.

The unary term is derived from our FocalSegNet output logits, and the pairwise term is computed

by applying a bilateral kernel and a Gaussian kernel on the original MRA patch image. The first

kernel forces the pixels with similar positions (p) and intensities (I) to have similar labels, and the

second enforces the smoothness of prediction by only considering the spatial proximity. ω1 and

ω2, σα, σβ , and σγ are hyper-parameters that control the weight and scale of these kernels and

are chosen empirically. We used connected-component analysis [86] to identify different clusters

when the algorithms predict multiple UIAs, and each connected component was treated as an indi-

vidual detected aneurysm. To further remove noise, any cluster that had lower than 10 voxels was

discarded.

5.3 Experiments and Evaluation

5.3.1 Dataset and pre-processing

Unfortunately, we were not given access to the ADAM challenge dataset [78]. Instead, we re-

lied on a publicly accessible TOF-MRA dataset of UIAs described in [87] to develop and validate

our algorithms. It contains 284 subjects (170 females, 127 healthy controls/157 patients with 198

aneurysms). For 246 subjects, coarse spheres that enclose a whole aneurysm were manually labeled,

while 38 subjects have voxel-wise segmentation. All scans were pre-processed with skull-stripping

and bias field correction [88], and finally resampled to a median resolution of 0.39 × 0.39 × 0.55

mm3. To allow efficient computation, we performed segmentation based on 3D image patches in-

stead of the entire brain volume. Furthermore, we followed the “anatomically informed” approach

in [87] to extract image patches of 64 × 64 × 64 voxels guided by a probabilistic cerebrovascular

atlas with anatomical landmarks on the most probable locations of having an aneurysm, resulting in
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∼50 patches per subject. In summary, several positive patches with different offsets around every

aneurysm were extracted, and for negative patches, a variety of vessel-like, landmark-centered, and

random patches were obtained. For more details and the script for image patch extraction, we refer

the readers to the original data paper [87]. It is worth mentioning that we used the same patch-

extracting strategy for train and test sets. Finally, for DL model training and inferencing, all image

patches were normalized with z-transformation. Note that the cases with coarse labels were divided

subject-wise for training (95%) and validation (5%), and those with refined segmentation masks

were saved for model testing only.

5.3.2 Implementation details and baseline models

In our proposed FocalSegNet, we utilized a 3D version of the original Focal modulation network

[16] as the encoder. Each layer of the encoder consists of two Focal Modulator Blocks, compris-

ing hierarchical depth-wise convolutional layers with kernel sizes of 3, 5, and 7, alongside GELU

activation functions. For the baseline models to compare against the FocalSegNet, we also imple-

mented a 3D Residual-UNet that unlike the simple UNet used in the original data paper [87], takes

advantage of residual connections for better gradient and information flow, and a Swin-UNETR with

default parameters [47] to compare two similar mechanisms, self-attention and focal modulation.

The only difference between Swin-UNETR and FocalSegNet is their encoders, which makes our

comparison valid. All networks had four layers/hierarchies, equal embedding dimensions, and were

trained with a batch size of 12 and an AdamW optimizer (weight decay for L2 regularization=1e-6

and initial learning rate=1e-3). We used a step learning scheduler that reduces the learning rate by

2% every 100 iterations. Furthermore, we used sampling, data augmentation, and a combination of

different loss functions to tackle the class imbalance problem. Early stopping is also used to avoid

model overfitting.

Sampling and data augmentation:

The ratio of patches without and with UIAs is 9:1, which can cause the model to be biased toward

the negative class. To tackle this, each patch in the training set is assigned a probability distribution

inversely proportional to its label’s frequency of occurrence. Then, each batch is randomly sampled
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from this distribution with replacement, ensuring the number of positive and negative patches in a

batch is almost the same. Although some samples may not be seen in one epoch, there is a high

likelihood that the network will see all of them after several epochs. We also use online image

augmentation techniques, including random flipping, rotation of up to 15 degrees along x-, y-, and

z-directions, and the addition of random Gaussian noise to mitigate overfitting.

Loss function

Since the small sizes of UIAs can cause a large class imbalance, we composed our total loss function

with likelihood-based cross-entropy loss (CE), regional-based generalized Dice loss (GD) [89], and

distance-based boundary loss (Boundary) [90] as:

Loss = αCE + βGD + γBoundary (24)

CE = −
∑︂
c

gc · log(pc)

GD = 1− 2×
∑︂
c

ωc
pc ⊙ gc
pc + gc

Boundary = p1 · ϕ(g1)

where g and p are ground-truth and prediction logits of a pixel, respectively. The ω is a weight

assigned to each class inversely proportional to its frequency, and ϕ(g1) is the distance map of the

foreground class, and its value at each pixel equals the Euclidean distance between that point and

the closest background point. α = β = 2γ = 0.40 were determined empirically. These individual

loss functions help improve the detection and segmentation of UIAs for the proposed and baseline

models.

5.3.3 Evaluation metrics

For the outcomes of the proposed algorithm and its counterparts, as well as the associated ablation

studies, we included five different metrics to evaluate their performance in detecting and segmenting

the aneurysm based on the test dataset on a per-image-patch basis. Specifically, for UIA detection
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quality, we measured the sensitivity and false positive (FP) rate. Note that within the same image

patch, it is feasible to contain multiple UIAs. Thus, we separated distinct connected components in

the prediction map and ground truth, and evaluated them per aneurysm. Here, a correct aneurysm

detection is defined as when the centroid of the predicted segmentation component lies within the

boundary of an aneurysm and is considered a false positive otherwise. Next, for all the correctly

identified aneurysms, we further evaluated the segmentation accuracy using the Dice coefficient, In-

tersection over Union (IoU), and 95-% Hausdorff distance (95-HD) measured in voxels to verify the

quality of region and boundary overlaps. Because an aneurysm may be detected by one model and

missed by the other, we performed an unpaired two-sided t-test to compare the performance between

different experimental setups. A p-value < 0.05 was used to indicate a significant difference.

5.4 Results

5.4.1 UIA detection and segmentation

The UIA detection and segmentation performance for all three DL models (i.e., Residual-UNet,

Swin-UNETR, and FocalSegNet) with CRF finetuning is listed in Table 5.1, with segmentation

results for two subjects illustrated in Fig. 5.2. In terms of aneurysm detection, for FP rate, our Fo-

calSegNet well outperformed the other two networks (p < 0.05), while for sensitivity, all methods

perform similarly (p > 0.05). This implies that FocalSegNet is better at distinguishing true/false

UIAs, which could be hard even for human raters at times. Although FocalSegNet has the best mean

segmentation metrics, the difference with Swin-UNETR was not significant (p > 0.05). However,

both outperform the Residual-UNet (p < 0.05).

5.4.2 Ablation studies

Besides comparing the performance of the full setup, where fully-connected CRF was used to refine

the initial results of the DL models, including FocalSegNet, Swin-UNETR, and Residual-UNet, we

also conducted ablation studies to test the impact of CRF post-processing, as well as each com-

ponent of the full loss function for the proposed FocalSegNet. We evaluated the metrics for UIA

detection and segmentation for all the experiments to gain the required insights.
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Table 5.1: UIA detection and segmentation performance (mean±std) of different deep learning mod-
els with and without CRF post-processing.

FP rate Sensitivity Dice IoU 95-HD (voxels)

Residual-UNet 0.322 ± 0.537 0.793 ± 0.405 0.587 ± 0.144 0.430 ± 0.140 2.870 ± 1.262

Residual-Unet + CRF 0.277 ± 0.500 0.778 ± 0.415 0.668 ± 0.129 0.515 ± 0.137 2.315 ± 1.125

Swin-UNETR 0.476 ± 0.596 0.866 ± 0.340 0.625 ± 0.137 0.468 ± 0.137 2.495 ± 0.957

Swin-UNETR + CRF 0.403 ± 0.560 0.841 ± 0.366 0.668 ± 0.144 0.518 ± 0.149 2.214 ± 1.032

FocalSegNet 0.231 ± 0.488 0.827 ± 0.379 0.638 ± 0.130 0.481 ± 0.132 2.504 ± 1.140

FocalSegNet + CRF 0.212 ± 0.464 0.801 ± 0.399 0.677 ± 0.141 0.527 ± 0.144 2.148 ± 1.082

From Table 5.1, we observe that CRF filtering has a positive impact in boosting the accuracy

of the initial segmentation of all models (p < 0.05) while FocalSegNet offers the best performance

without CRF (p < 0.05). Table 5.2 demonstrates the impact of design choices in terms of the loss

function on FocalSegNet. The network trained solely with the Cross-Entropy loss function performs

poorly due to the aneurysm size being negligible compared to background voxels, leading to a bias

toward negative predictions. Incorporating Generalized Dice Loss enhances performance, but the

false positive (FP) rate remains high. To address this, boundary loss is added, enforcing closer

proximity between predictions and ground truths. Ultimately, post-processing with a CRF further

enhances segmentation performance.

Table 5.2: Influence of loss functions and CRF post-processing on the proposed FocalSegNet in
UIA detection and segmentation results (mean±std)

FP rate Sensitivity Dice IoU 95-HD (voxels)

Cross-Entropy loss 0.002 ± 0.048 0.006 ± 0.075 0.018 ± 0.007 0.009 ± 0.004 4.215 ± 0.121

+ Generalized Dice loss 0.527 ± 0.729 0.864 ± 0.343 0.604 ± 0.143 0.447 ± 0.144 2.854 ± 1.291

+ Boundary loss 0.231 ± 0.488 0.827 ± 0.379 0.638 ± 0.130 0.481 ± 0.132 2.504 ± 1.140

+ CRF 0.212 ± 0.464 0.801 ± 0.399 0.678 ± 0.141 0.527 ± 0.144 2.148 ± 1.082
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Residual-UNet Residual-UNet+CRF Swin-UNETR Swin-UNETR + CRF FocalSegNet FocalSegNet + CRF

Figure 5.2: Comparison of segmentation results of different techniques for two different patients
(one patient per row).Red label=ground truths and green label=automatic segmentation.

5.5 Discussion

Cerebral aneurysm segmentation is still challenging due to its high similarity in adjacent vessel

structures and typically small sizes in contrast to the full brain volume. As previous reports [87, 78]

primarily focus on binary detection and/or localization of cerebral aneurysms, the relevant reports

on the assessment of segmentation algorithms are very limited. Many earlier primary works rely on

contrast-enhanced CT angiographies, which have sharper contrast for vasculatures than TOF-MRA,

and in-house collected data with refined annotations. Compared with the best segmentation results

from the ADAM Challenge (for detected true UIAs) with a 0.64 mean Dice score and 95-HD of

2.62 mm [78], our proposed FocalSegNet, together with CRF post-processing has achieved a Dice

score of 0.677±0.141 and a 95-HD of 2.15 voxel (∼0.95mm), only by leveraging rough voxel-wise

annotations of the aneurysms. Regarding UIA detection/localization, our proposed method obtained

a sensitivity of 0.801 and an FR rate of 0.212, which are also excellent results. Note that since our

UIA detection performance was assessed on a per image-patch basis, the resulting metrics may not

be directly comparable to some of those previous reports that were done subject-wise.

In almost all previous reports on the relevant topic, the UNet and its variants have been widely

adopted. Here, we employed the 3D Residual-UNet as a baseline model to properly assess the

segmentation quality against the FocalSegNet and Swin-UNETR, whose general architectures were
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also inspired by the UNet, but with the encoding branch modified with Transformer or focal mod-

ulation blocks, respectively. This comparison also allows us to probe the characteristics and per-

formance of these two new DL techniques that model long-range contextual information through

different mechanisms. For our application in a 3D weakly supervised segmentation, we confirm the

claim of [16] for the benefit of focal modulation, with Swin-UNETR ranking the second. This is

likely because aneurysms, especially the small ones, are often attached to the main arteries near the

branching points, and thus contextual knowledge of anatomy will be beneficial. This is in addition

to the anatomical prior-based approach that we adopted from Di Noto et al. [87] in training data

sampling.

In terms of GPU memory usage during training, FocalSegNet, Swin-UNETR, and Residual-

UNet took 11.2GB, 17.4GB, and 9.7GB respectively, based on the batch size of 12. For all networks,

the inference time per patch is around 70ms based on a desktop computer with Intel Corei9 CPU,

Nvidia GeForce RTX 3090 GPU, and 24GB RAM. This offers a glance of the efficiency of the

proposed network. Compared to [16, 83], we further extended the 2D focal modulation to 3D in a

new UNet-like architecture for segmentation tasks for the first time. In future works, we will further

examine the proposed FocalSegNet for other supervised and weakly supervised segmentation tasks

in other anatomical structures.

For all the DL models, we used a combination of different loss functions, including cross-

entropy loss, generalized Dice loss, and boundary loss. While generalized Dice loss and cross-

entropy loss have been popular for many medical image segmentation tasks, boundary loss [90] is

helpful in segmenting structures with high-class imbalance, such as the case of aneurysms segmen-

tation. With the intention to reduce the reliance on carefully annotated manual segmentation, many

have attempted different strategies in weakly or semi-supervised learning [91], among which CRFs

have often been used either in pre-processing pseudo ground truth labels or post-processing results

from DL models trained on weak labels. In our case, we designed the system using a fully connected

CRF model as a post-processing step, which further improved the accuracy of the initial automatic

segmentation based on the spatial and intensity consistency of the aneurysms. Some other works

have also reported the application of a subsequent refinement neural network [92], but this approach

often requires a small number of refined manual segmentations and will lead to a semi-supervised
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framework instead.

5.6 Conclusion

In conclusion, we have proposed a novel 3D focal modulation UNet called FocalSegNet in combi-

nation with CRF for weakly supervised segmentation and detection of brain aneurysms from TOF-

MRA. By leveraging coarse segmentation ground truths, the proposed technique was able to achieve

excellent performance. By comparing its performance with the popular Residual-UNet and the most

recent Swin-UNETR, we demonstrated its superior performance and will extend its application to

other domain tasks in the near future.

75



Chapter 6

Conclusion and Future Work

In this thesis, we explored the application of weakly supervised deep learning methods for cere-

brovascular pathology segmentation, with three novel methods. In our first method, we explored

the use of self-attention maps to segment intracranial hemorrhages (ICH). Two Swin transformer

models were trained based on categorical labels for binary ICH detection and full ICH subtyping.

Subsequently, we developed a framework that combines attention maps from different layers of

these Swin transformers in a hierarchical manner to produce a hemorrhage localization map. This

map was then subjected to thresholding to generate a discrete segmentation map. Our experiments

demonstrated that training the Swin transformer with binary labels (with/without ICH) enhances the

concentration of attention maps on relevant hemorrhagic regions. We also compared three thresh-

olding techniques - k-means, Otsu’s method, and simple thresholding - and found that the simple

thresholding is the most advantageous.

With these insights, we further introduced a more robust framework called head-wise gradient-

infused self-attention mapping (HGI-SAM) to perform weakly supervised ICH segmentation. HGI-

SAM utilizes a Swin transformer model for binary ICH detection and continue to use simple thresh-

olding to obtain discrete segmentation maps. Specifically, it improves the quality of hemorrhage

localization map by performing head-wise weighing of self-attention obtained from the Swin trans-

former using the gradient of the target class. This approach resulted in enhanced segmentation

accuracy and interpretability of the Swin transformer, with similar performance in comparison with

popular fully supervised DL segmentation methods, thus highlighting the strength of our proposed
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framework.

In the last contribution of the thesis, we shifted our focus to the segmentation of unruptured

intracranial aneurysms, another cerebrovascular disorder that may lead to ICH, and explored a dif-

ferent weakly supervised learning technique that involves coarse segmentations. Specifically, we

proposed a novel 3D focal modulation UNet, named FocalSegNet that was trained with rough con-

touring of the aneurysms as segmenation ground truths, in conjunction with conditional random

field post-processing to enable refined segmentation of the pathology. We conducted comprehen-

sive ablation studies on our design choices and compared the performance of the newly proposed

FocalSegNet against the popular UNet and Swin-UNETR model to confirm the superiority of the

proposed framework.

Looking ahead, a few perspectives of the presented methods can be further extended. For the

case of weakly supervised ICH segmenation, our proposed methods are based on 2D CT slice pro-

cessing while leveraging the inter-slice or 3D anatomical context could potentially boost the accu-

racy of the methods. However, to do so, additional exploration is required to allow accomodation

of the variations in image slice thickness from clinical CT scans. To obtain the final segmentation,

we have opted to use simple thresholding. Future studies could also be directed to the investiga-

tion of extra light-weight refinement networks and iterative training schemes to furhter improve the

quality of segmentation. For aneurysm segmentation, we have demonstrated the advantage of focal

modulation when being trained on coarse image segmentation. Instead of using conditional random

field as a post-processing step, one potential future direction for our work could be exploring rel-

evant regularization functions to guide the training process that allows direct production of refined

segmentation results. Finally, in addition to weakly supervised techniques, self-supervised and un-

supervised learning methods have also emerged recently as exciting avenues to help mitigate the

limited training data in medical deep learning. These methods may also greatly contribute to the

care of cerebravascular care, which emphasizes both accuracy and fast uptake.
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learning of mri synthesis without fully-sampled ground truths,” IEEE Transactions on Medical

Imaging, vol. 41, no. 12, pp. 3895–3906, 2022.

[53] S. Chen, G. Bortsova, A. Garcı́a-Uceda Juárez, G. Van Tulder, and M. De Bruijne, “Multi-
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U. Walińska, X. Yang, Y. Yang, Y. Yin, B. K. Velthuis, and H. J. Kuijf, “Comparing meth-

ods of detecting and segmenting unruptured intracranial aneurysms on tof-mras: The adam

challenge,” Neuroimage, vol. 238, p. 118216, 2021.

[79] M. Din, S. Agarwal, M. Grzeda, D. A. Wood, M. Modat, and T. C. Booth, “Detection of

cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis,” J

Neurointerv Surg, vol. 15, no. 3, pp. 262–271, 2023.

[80] G. Yang, C. Wang, J. Yang, Y. Chen, L. Tang, P. Shao, J.-L. Dillenseger, H. Shu, and L. Luo,

“Weakly-supervised convolutional neural networks of renal tumor segmentation in abdominal

cta images,” BMC Medical Imaging, vol. 20, no. 1, p. 37, 2020.

[81] A. Rasoulian, S. Salari, and Y. Xiao, “Weakly supervised intracranial hemorrhage segmenta-

tion using head-wise gradient-infused self-attention maps from a swin transformer in categor-

ical learning,” Machine Learning for Biomedical Imaging, vol. 2, pp. 338–360, 2023.
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