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Abstract

Visualization, Quantification, And Analysis Of Inter-rater Variability To Enhance Deep
Learning-based Medical Image Segmentation Of Paraspinal Muscles

Parinaz Roshanzamir

Deep learning-based medical image segmentation has revolutionized healthcare diagnostics.

While the accuracy offered by these models is important, ensuring their practical implementation

requires a comprehensive reliability assessment. Among the sources of uncertainty, inter-rater vari-

ability, which reflects natural disagreements among annotators, has been historically overlooked.

Studying this variability can be a key factor in improving the robustness and reliability of models.

Basing our experiments on paraspinal muscle segmentation, which has significant value in stud-

ies related to low back pain, in this dissertation, we first proposed a novel multi-task TransUNet

model to accurately segment paraspinal muscles while predicting inter-rater labeling variability

visualized using a variance map of raters’ annotations. Benefiting from the transformer mecha-

nism and convolution neural networks, our algorithm was shown to perform better or similar to the

state-of-the-art methods while predicting and visualizing multi-rater annotation variance per muscle

group in an intuitive manner. Subsequently, we studied the relationship between inter-rater variabil-

ity and aleatoric/epistemic uncertainties, in the context of DL model architecture and label fusion

methods. Specifically, we measured aleatoric and epistemic uncertainties using test-time augmen-

tation, test-time dropout, and deep ensemble to explore their relationship with inter-rater variability.

Furthermore, we compared UNet and TransUNet to study the impacts of Transformers on model

uncertainty with two label fusion strategies. This thesis provides novel frameworks for visualiz-

ing, understanding and quantifying inter-rater variability to better inform relevant deployment and

implementation of DL models for medical image segmentation.
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Chapter 1

Introduction

In recent years, advancements in deep learning (DL) have reshaped the landscape of various

fields. From the developments in natural language processing [45] to revolutionizing healthcare

with groundbreaking applications in medical imaging and disease diagnosis [27, 67], deep learning

has emerged as a driving force behind cutting-edge technological innovations.

Among all of the medical applications of deep learning, medical image segmentation is con-

sidered to be a core step in many automatic image analyses. The segmentation process consists of

creating precise boundaries within complex imaging data to identify distinct structures and anoma-

lies. An example of an automatic medical image segmentation is demonstrated in Fig. 1.1, where

brain tumors are segmented from MRIs. This process is crucial for accurate diagnosis and prog-

nosis, treatment planning, and continuous monitoring of medical conditions. Segmenting certain

anatomical features in medical images and showing their spatial boundaries can assist clinicians

in detecting abnormalities and facilitate more comprehensive and precise monitoring of patients’

health. Manual image segmentation is very time-consuming. Moreover, segmenting medical im-

ages requires the raters to have a certain level of expertise which makes it even more challenging to

find eligible raters for the task. Automatic image segmentation, especially through deep learning-

based models can mitigate these issues and produce accurate results by incorporating the opinions

of multiple experts in a significantly shorter amount of time. These advancements play a vital role

in the development of sophisticated computer-aided diagnostic tools, accelerating the speed and

improving the accuracy of medical assessments.
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Figure 1.1: An example of a brain tumor segmentation task, showing model predictions along with
the uncertainty maps thresholded at multiple levels [37]

Paraspinal muscles provide essential support to the spine, and abnormalities in their composition

or function have been closely linked to various musculoskeletal disorders, including low back pain

which is a leading cause of global disability. A more detailed description of low back pain and

its relation to paraspinal muscles is provided in section 1.1. Due to the importance of automatic

paraspinal muscle segmentation for studying the top musculoskeletal disorder in adults, we decided

to base our experiments on this segmentation task in the presented thesis. We used a dataset of

axial MRI scans of patients with low back pain, collected in a collaboration between Concordia

and Western Universities. More details regarding the dataset have been provided in the following

chapters.

As the DL-based models increasingly find applications in critical decision-making processes,

understanding and quantifying uncertainties associated with their predictions becomes a necessity

for their practical implementation. The importance of uncertainty assessment in medical applica-

tions cannot be overstated, as it plays a critical role in enhancing the reliability and interpretability

of deep learning models. In the realm of healthcare, where decisions directly impact patients’ well-

being, understanding the confidence and limitations of DL model predictions is extremely important

and can facilitate trust and transparency in the integration of these models into clinical workflows.

Uncertainty estimation can serve as a valid assessment of the reliability of computer-facilitated

diagnostic results and enable clinicians to make more informed decisions, eventually resulting in

optimizing patient care and clinical decision-making.
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1.1 Paraspinal Muscle Segmentation and Its Importance in Low Back

Pain-related Studies

Low Back Pain (LBP) is the most common skeletomuscular disorder in adults and has a lifetime

prevalence of more than 80% [43]. Understanding the underlying reason for LBP can facilitate its

effective treatment and prevention. Many recent studies suggest an association between the mor-

phological and composition (e.g., the fat vs. muscle ratio) changes of the muscles attaching to the

spine (i.e., paraspinal muscles) and LBP [10]. Precise segmentation of these muscles plays a crit-

ical role in quantifying muscle morphology and composition and allows clinicians and researchers

to detect changes, identify potential abnormalities, and tailor targeted interventions for individuals

experiencing low back pain. Therefore, the study and refinement of paraspinal muscle segmentation

pave the way for more effective diagnostics and personalized treatments for conditions associated

with low back pain. The segmentation of paraspinal muscles is usually done using axial MRI scans

of the lumbar spine at multiple disc levels (see Fig. 1.2(a) and (b)). The high variations in individual

muscle morphology and composition, an example of which is shown in Fig. 1.2(c), is one of the

challenges of paraspinal muscle segmentation, and it can also affect the uncertainty.

Figure 1.2: (a) An illustration of the location of disc levels L3-L4, L4-L5, and L5-S1; (b) is an
example of Multifidus (MF) and Erector Spinae (ES) paraspinal muscles at level L3-L4 and (c)
shows variations of paraspinal muscles in the same disc levels between individuals

3



1.2 A Deeper Look Into Uncertainty

As discussed earlier, understanding uncertainty has a vital role in demonstrating the limitations

and reliability of DL-based model performance. Uncertainty in this context is often classified into

two main classes: aleatoric and epistemic uncertainties. Epistemic uncertainty in deep learning

models pertains to the lack of knowledge or uncertainty arising from limitations in the model it-

self, and it can be reduced by changing the model architecture, more comprehensive training, or

acquiring more diverse and relevant training data. It reflects the model’s ignorance about certain

less-represented cases of the data and can be measured through techniques, such as model ensem-

bling and Bayesian approaches. Mitigating epistemic uncertainty is essential for enhancing model

reliability and confidence, as it involves refining the model’s understanding of the relevant features

of the data and minimizing uncertainties that arise from inadequate or incomplete knowledge during

the training process.

On the other hand, aleatoric uncertainty in DL models refers to the unpredictability arising from

the inherent randomness or noise in the data itself. Unlike epistemic uncertainty, which can be

reduced with more training data or better model architecture, aleatoric uncertainty is irreducible.

Understanding and quantifying aleatoric uncertainty is crucial for creating robust models that can

acknowledge and appropriately respond to the variability present in real-world datasets.

While both types of uncertainties are reflected collectively in the results of the trained DL mod-

els at inference time, better understanding and quantifying these distinct forms of uncertainty is

crucial to refine the interpretability and robustness of deep learning models. Specifically, the explo-

ration into uncertainty not only provides a deep theoretical understanding of model behavior, but

also establishes the groundwork for more informed decision-making, particularly in critical domains

like healthcare, where the consequences of uncertainties bear significant weight.

Within the realm of DL models and their associated uncertainties, aleatoric and epistemic un-

certainties stand as primary considerations. However, additional factors can also contribute to un-

certainty, depending on the nature of the task at hand. One very important factor that significantly

influences uncertainty is inter-rater variability, which emerges from defining the ground truths from

multiple experts when differences in visual perception, domain expertise, and personal preferences

4



exist across raters [3]. Addressing the diversity of opinions among raters becomes particularly cru-

cial in domains like medical tasks, where model bias towards a single expert is often undesirable,

and obtaining consensus among multiple raters can help ensure the quality of ground truth labels

to better guide the model training. Nevertheless, since the precise origin of inter-rater variability is

still not fully understood and is difficult to quantify precisely, further research is required to unravel

its precise relationship with other forms of uncertainties and distinctions. To gain insights regard-

ing inter-rater variability and take good advantage of it, it is instrumental to determine the most

effective way to present it and maximize its positive impact on enhancing the interpretability of the

DL models. However, despite the importance and complexity of inter-rater variability, it has often

been overlooked in the majority of studies within this field, and therefore, further exploration and

investigation are indeed necessary.

Figure 1.3: Segmentation of abnormalities in chest X-rays at different levels of agreement. Blue and
yellow areas correspond to abnormalities annotated by Annotator 1 and Annotator 2, respectively.
No agreement is observed in (a) and (b) while certain levels of agreement between the annotators
are observed in (c) and (d). [66]
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1.3 Inter-rater Variability: A Potential Cause of Uncertainty That Is

Overlooked

In the context of medical image segmentation, inter-rater variability becomes evident when ex-

perts draw boundaries around structures in different ways, an example of which is shown in Fig.

1.3 for identification of abnormalities in lung X-rays. These differences in rater opinions regarding

the shape of the boundaries around the structures and their spatial location within the image can

significantly impact deep learning models and introduce a layer of uncertainty into the model pre-

dictions. The variation in annotations can be due to various factors, such as differences in the level

of expertise among the raters or in the general annotation style that they tend to follow. In medical

imaging tasks, these disagreements can also be caused by anatomical variations and image noise,

which can potentially affect other types of uncertainty and result in a correlation between them. An

overview of these relations is illustrated in Fig. 1.4. Similar to other types of uncertainty, recogniz-

ing and addressing inter-rater variability is essential for enhancing the robustness and reliability of

deep learning models, particularly in domains where precision is crucial, such as medical imaging.

Figure 1.4: An overview of some of the factors effective in inter-rater variability and how they relate
to uncertainty in model predictions.
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1.4 Thesis Contribution

In summary, in this thesis, we first propose a novel multi-task TransUNet model to perform

paraspinal muscle segmentation and predict the inter-rater variability, visually presented as the vari-

ance of rater annotations. Subsequently, our study extends to exploring the relationship between

inter-rater variability and aleatoric/epistemic uncertainties, and the effect of model architecture and

label fusion methods on them. The major contributions of our first work which is presented in

Chapter 3 are as follows:

• We use the TransUNet model for paraspinal muscle segmentation for the first time.

• The proposed algorithm was trained and validated using a large dataset of paraspinal muscle

MRIs with multi-rater annotations, and it has shown excellent segmentation performance in

comparison to the state-of-the-art techniques and a newly proposed multi-task U-Net model.

• We proposed to use variance maps of soft labels from multiple raters to offer intuitive and

easily comprehensible measures and visualization of inter-rater variability.

• Lastly and most importantly, to the best of our knowledge, we are the first to propose a

multi-task DL model for joint paraspinal muscle segmentation and prediction of inter-rater

variability, with the framework easily adaptable to other anatomical segmentation tasks.

Our second work, presented in Chapter 4 has the following main contributions:

• First, we are the first to compare Transformers and CNNs for their impacts on model uncer-

tainties and the encoding of inter-rater variability, especially in a multi-class segmentation

setting.

• Second, we explore the effect of label fusion methods during network training on DL model

uncertainty (aleatoric and epistemic) for the first time.

• Lastly and most importantly, we explore the relationship between inter-rater variability and

aleatoric/epistemic uncertainties, which has not been done so far.

7



1.5 Outline

The structure of this thesis is as follows. In the upcoming chapter, we offer an overview of

deep segmentation models, with an emphasis on the incorporation of transformer and self-attention

blocks into existing architectures. Additionally, we delve deeper into the uncertainty categories

and the methodologies for their quantification. Finally, we investigate optimal approaches for label

fusion in multi-rater datasets and the effective presentation of inter-rater variability. Chapter 3 intro-

duces a novel multi-task model that is designed for simultaneous paraspinal muscle segmentation

and inter-rater variability prediction. Moving on to Chapter 4, we explore the sources of inter-rater

variability and how they affect the potential interplay of inter-rater variability with other uncertainty

types. This section investigates how model architecture and label fusion methods influence these

correlations and the preservation of inter-rater variability. The concluding chapter summarizes the

thesis and considers potential avenues for future enhancements to the developed systems.

8



Chapter 2

Materials and Methodology

In this chapter, we start with an introduction to deep segmentation models and the advantages

of the addition of transformers and attention blocks to them. Thereafter, our primary focus is on

delivering a brief literature review on the uncertainty measurement techniques and explaining the

methods deployed throughout our study. Subsequently, we provide insights into label fusion tech-

niques and the formation of a consensus in multi-rater datasets.

2.1 Deep Learning-based Segmentation Models

Deep learning-based segmentation models have seen significant advancements and notable suc-

cesses across diverse applications. A foundational work in this domain is the UNet architecture

proposed by Ronneberger et al. [47]. UNet introduced a novel encoder-decoder structure with skip

connections, facilitating the precise segmentation of medical images (see Fig. 2.1). Building upon

this architecture, subsequent studies have delved into refining segmentation models for different

applications [34, 44, 38].

9



Figure 2.1: UNet model architecture [47]

Originally designed for natural language processing, transformers found their way into image

classification through the introduction of the Vision Transformer (ViT) model [14]. In a ViT, each

image is divided into multiple patches and then the sequence of the linear embeddings of these

patches is fed to a transformer, as shown in Fig. 2.2. Compared to purely Convolutional Neural

Networks (CNNs), ViTs are able to more effectively capture long-range dependencies and have

outperformed CNNs in several classification tasks.

10



Figure 2.2: ViT model architecture [14]

After the ground-breaking introduction of UNet models to the segmentation field, the incorpo-

ration of transformer architectures has become a noteworthy advancement in segmentation models,

showcasing improved performance and refined feature extraction capabilities [7, 65]. Among the

proposed models that combine the encoder-decoder style of the UNet models with transformers,

TransUNet [9] is a widely used one. The TransUNet model presents notable advantages over the

traditional UNet architecture. Due to the integration of ViT in its encoder and also, benefiting from

the encoder-decoder architecture of the UNet, TransUNet is able to capture long-range dependen-

cies and contextual information effectively. The model architecture is shown in Fig. 2.3. This

enhanced ability to consider global context contributes to improved segmentation accuracy, espe-

cially in scenarios where intricate spatial relationships and contextual understanding are crucial.

The TransUNet model’s attention to global context and adaptability to diverse scales enhances its

robustness and generalizability, positioning it as a compelling advancement over the UNet architec-

ture in tasks demanding subtle spatial understanding and complex feature relationships.
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Figure 2.3: TransUNet model architecture [9]

Prior research has consistently compared models incorporating additional transformer blocks,

such as TransUNet, exclusively in terms of accuracy, often focusing solely on Dice scores. How-

ever, an overlooked aspect in these studies is the exploration of the impact of these architectural

enhancements on uncertainties. One of our goals in this study is to bridge this gap by investigat-

ing the influence of model architecture on uncertainty. Specifically, we conducted a comparative

analysis between TransUNet and UNet to confirm whether the favorable outcomes observed in seg-

mentation accuracy extend to a reduction in uncertainty. Additionally, we aim to determine if other

factors contribute to the observed differences in the uncertainty as well.

2.2 Measuring Segmentation Accuracy

In the context of segmentation, several metrics are used to measure the accuracy of the results.

Provided below is a short explanation of some of the most commonly used methods.

• Dice Score Coefficient (DSC): This score quantifies the degree of overlap between the pre-

dicted segmentation and the ground truth. Ranging from 0 to 1, DSC is calculated as twice

the intersection of the segmented and reference regions divided by the sum of their volumes,

as summarized in Eq. 1.
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DSC =
2 × Area of overlap

Area of prediction + Area of ground truth
(1)

• Intersection over Union (IoU): Similar to the Dice score, the Jaccard index measures the

overlap between the predicted and ground truth regions, but with a slightly different method.

This metric is calculated as the area of the overlap between the segmented and reference

regions divided by the area of their union and is shown in Eq. 2.

IOU =
Area of overlap

Area of union
(2)

• Hausdorff Distance (HD): This distance metric quantifies the maximum distance between

two segmentation boundaries.

• Precision: This metric assesses the accuracy of positive predictions and is calculated as the

number of true positives (TP) divided by the sum of true positives and false positives (FP), as

shown in Eq. 3.

Precision =
TP

TP + FP
(3)

• Recall: This metric quantifies the ability of a segmentation algorithm to correctly identify

positive instances. It is calculated as the ratio of true positives to the sum of true positives and

false negatives (FN), as indicated by Eq. 4.

Recall =
TP

TP + FN
(4)

Among the above-mentioned metrics, the Dice score is more commonly used in medical image

segmentation due to its effectiveness in capturing the spatial agreement between predicted and true

regions.
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2.3 Uncertainty Quantification Methods

2.3.1 Bayesian Deep Learning

In a traditional deep learning model, parameters are treated as fixed values which limits the

ability to calculate the uncertainty arising from both the model and the data. Bayesian deep learning

combines conventional deep learning techniques with Bayesian statistical methods, introducing a

probabilistic framework to the existing models. In this approach, the model parameters are treated

as distributions rather than fixed values, and we try to estimate these distributions through model

training. This approach of having distributions instead of fixed values helps facilitate uncertainty

estimations and increases the accuracy of the models.

The concept of Bayesian deep learning and uncertainty measurement has gained significant

attention in the research community, with several studies contributing to its development and appli-

cation. Blundell et al. [5] introduced the “Bayes by Backprop” algorithm, which efficiently learns

a probability distribution on the weights of a neural network, enabling uncertainty measurement in

deep learning models. This pioneering work laid the basis for integrating Bayesian principles into

deep learning, allowing for the quantification of uncertainty in model predictions.

Today, Bayesian deep learning continues to be used by researchers, serving as a method to

train probabilistic models for a diverse range of both medical and non-medical tasks [12, 4, 35,

55]. However, Bayesian methods can be challenging to scale for large neural networks due to

the computational cost of sampling from complex probability distributions. Therefore, estimation

methods have been proposed to perform Bayesian model averaging; two widely used methods are

Monte Carlo (MC) dropout and Model Ensembles.

2.3.2 Monte Carlo Dropout

Monte Carlo (MC) dropout, also known as test-time dropout (TTD), has gained popularity as

a method for Bayesian approximation and uncertainty estimation within deep learning models, ad-

dressing challenges associated with pure Bayesian deep learning. Following the introduction of

”Bayes by Backprop” by Blundell et al. [5], Gal and Ghahramani [17] proposed leveraging dropout
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during inference as an approximation method in Bayesian neural networks, providing a robust the-

oretical basis for uncertainty estimation. The utilization of dropout during inference introduces

randomness, by deactivating random nodes with each iteration through the model. This results in a

slightly different model in each iteration, which acts similarly to sampling from the weights’ distri-

bution. Consequently, iterations with the same input yield different outputs, allowing us to interpret

these variations as a means to measure uncertainty. In a medical image multi-class segmentation

task, the averaging process for every voxel can be summarized as follows:

E(yc) =
1

T

T∑
t=1

P (y = c|θt) (5)

where y represents an image voxel, c is one of the possible classes present in the image, yc is the

expected probability of voxel y belonging to class c, θt represents the model parameters in iteration

t, and T is the total number of iterations through the model with the same input, using dropout

during inference.

With the incorporation of MC dropout during inference, a pivotal consideration arises: how to

interpret the resulting average and determine the type of uncertainty it encapsulates. Particularly in

segmentation tasks, the most widely used approaches include computing metrics such as entropy,

variance, or mutual information (MI) of the outputs and utilizing them as representations of epis-

temic uncertainty. In a comprehensive study conducted by Camarasa et al. [6], the accuracy of these

widely used epistemic uncertainty metrics was examined. The findings indicated that, overall, en-

tropy and variance outperformed other measures, yielding uncertainty maps that more closely align

with the errors present in the model outputs. A simple illustration of the process of using test-time

dropout with entropy for segmentation is shown in Fig. 2.4. Using the entropy of the resulting

average, the epistemic uncertainty is calculated as:

H(y) =
C∑
c=1

P (y = c)log(P (y = c)) (6)

where y is a voxel in the image, C is the total number of classes, and P(y=c) is the probability of the

voxel output belonging to class c.
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Figure 2.4: An overview of test-time dropout used for epistemic uncertainty estimation in a seg-
mentation task

In summary, the utilization of MC dropout during test time has become a widely adopted tech-

nique among researchers, serving as an approximation method for Bayesian networks to estimate

uncertainty [8, 1, 50, 2]. Nevertheless, the determination of the optimal and accurate metric for

uncertainty measurements remains an open and ongoing research topic.

While certain studies have proposed methods to estimate both aleatoric and epistemic uncertain-

ties from TTD samples [36], the majority of the studies estimate these uncertainties separately. One

notable technique for aleatoric uncertainty estimation is test-time augmentation, which will be fur-

ther discussed in the subsequent sections. In addition to MC dropout, another frequently employed

approach for Bayesian approximation involves training an ensemble of independent models, a topic

we will explain in the following section.

2.3.3 Model Ensembles

In another effort to perform Bayesian approximation and uncertainty estimation, Lakshmi-

narayanan et al. [30] introduced a method to predict uncertainty through the use of an ensemble

of independently trained models. In this method, an ensemble of neural networks is trained with

shared architecture but different initialization, and at test time, by combining the predictions of mul-

tiple models, accurate uncertainty estimates can be obtained, similar to MC dropout. The method is

considered scalable and straightforward, making it applicable to various deep learning architectures

and tasks. Calculating uncertainty from a deep ensemble in a segmentation task is shown in Fig.

2.5. To measure the epistemic uncertainty with this averaging method, we can use Eq. 5 and 6,
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similar to test time dropout.

Figure 2.5: An overview of deep ensembles used for epistemic uncertainty estimation in a segmen-
tation task

Model ensembles have become a widely adopted and effective technique for uncertainty mea-

surement in deep learning, offering enhanced predictive performance and robust quantification of

uncertainty [51, 1]. While, in general, ensembling tends to yield superior results compared to test-

time dropout, it is not a universal rule and can vary based on factors such as the specific task, the

model architecture, the training methods employed, and the characteristics of the dataset.

2.3.4 Test-time Augmentation

As previously discussed, aleatoric uncertainty arises from the inherent factors of the data and

is affected by the variability of the dataset. Therefore, by generating multiple augmented versions

of the inputs, we can simulate the variability of the data, and measure the aleatoric uncertainty as

the variations of the model output when given the augmented versions of the same input data. This

method is called test-time augmentation (TTA), and was used by Wang et al [59] to estimate the

aleatoric uncertainty of a model trained for a medical image segmentation task. In employing test-

time augmentation (TTA), augmentation techniques like geometric transformations are systemati-

cally applied to input data during the inference phase. By generating multiple augmented versions

of the same input, TTA provides the model with diverse perspectives, allowing it to capture the
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inherent variability in the data. Ideally, the model’s output should remain consistent across all aug-

mented versions for the same input. Consequently, any observed variability in the model’s outputs

can be interpreted as the uncertainty arising from the inherent variability in the data, i.e., aleatoric

uncertainty. An illustration of the application procedure of TTA in a medical image segmentation

task is illustrated in Fig. 2.6.

Figure 2.6: An overview of test-time augmentation used for aleatoric uncertainty estimation in a
segmentation task

The model outputs for the augmented versions of the same input can be formulated in a similar

fashion to the outputs of TTD or model ensembles. Therefore, the aleatoric uncertainty can be

calculated using Eq. 5 and 6 as well.

2.3.5 Inter-rater Variability

In a multi-rater segmentation dataset, revealing and quantifying disagreement among raters is

often achieved through the entropy of their opinions [32]. The potential dissimilarity in the ground

truth annotations may signal challenging-to-segment areas within an image, indicating the need for

additional attention to these areas in the model’s output as well. To effectively identify and highlight

regions with higher rater disagreement, the model needs to reflect such disagreement in its predic-

tions, ideally aligning the entropy of the ground truth with that of the predictions. Consequently, the

entropy of the predictions becomes a valuable representation of inter-rater variability in the model

outputs. By comparing the entropies of the ground truth and the prediction, we can estimate how

well a model preserves inter-rater variability through its predictions.

While employing entropy proves sufficient for quantifying inter-rater variability, alternative
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methods may offer improved visual representations of these disagreements, enhancing user com-

prehension of variability maps. In Chapter 4, we opted for utilizing the variance of the signed

distance maps, followed by a sigmoid function, to portray inter-rater variability for each image,

as illustrated in Fig. 3.3. This approach yields smoother maps, enhancing visual interpretability,

particularly in datasets with a limited number of annotators, which is common for pixel/voxel-wise

medical image annotations.

2.4 Interpreting Inter-rater Variability: How to Find A Consensus

When dealing with multi-rater segmentation datasets, the establishment of a dependable ground

truth is pivotal for training and assessing deep learning models. Various methodologies have been

devised to aggregate annotations from multiple raters and derive a consensus, each presenting dis-

tinct characteristics and applications. One straightforward method involves employing the majority

vote, where the label most commonly agreed upon among the raters is chosen as the ground truth.

This simplistic yet robust method is effective, especially when a clear majority consensus exists.

It can also efficiently be implemented for multi-class segmentation datasets. Alternatively, the Si-

multaneous Truth and Performance Level Estimation (STAPLE) algorithm includes refining the es-

timation of true segmentation by iteratively considering observed segmentations and the estimated

performance levels of each rater [61]. This algorithm is particularly valuable when dealing with

diverse levels of expertise among raters.

While majority vote and STAPLE have been widely used in classic and DL-based image seg-

mentation methods, for DL models, random sampling involves randomly selecting one of the raters’

annotations as the ground truth during each epoch [24, 32] is another technique to allow the inte-

gration of multi-rater opinions. Furthermore, this approach is shown to generate better-calibrated

outputs and uncertainty maps.

Each of these approaches possesses unique merits and should be selected based on the specific

characteristics of the dataset, the nature of the annotations, and the desired properties of the derived

ground truth for subsequent model training and evaluation in deep learning tasks.
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2.5 Quantification of Inter-Rater Variability

As we mentioned earlier (section 2.3.5), inter-rater variability can be quantified and visualized

through the entropy or the variance of the rater annotations. In an ideal model, the entropy of the

model predictions for each voxel should be representative of the underlying inter-rater variability in

the ground truths. For example, in a 3-class segmentation task with 3 different raters, if the average

ground truth for a specific voxel is [0.33, 0.33, 0.33] (i.e., each rater has placed this voxel in a

different class), then ideally we want to see model predictions that are close to this ground truth.

Therefore, one way to measure the inter-rater variability preservation is to compare the average

ground truths and the probabilistic outputs. One of the metrics used for this comparison is the Brier

score. Inter-rater variability preservation and the Brier score are explained in detail in Chapter 4.
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Chapter 3

Joint Paraspinal Muscle Segmentation

and Inter-rater Labeling Variability

Prediction with Multi-task TransUNet

A version of this chapter was presented at the 25th International Conference on Medical Image

Computing and Computer Assisted Intervention – MICCAI 2022 during the Uncertainty for Safe

Utilization of Machine Learning in Medical Imaging (UNSURE) workshop.

• Roshanzamir, P., Rivaz, H., Ahn, J., Mirza, H., Naghdi, N., Anstruther, M., Battié, M.C.,

Fortin, M. and Xiao, Y., 2022, September. Joint paraspinal muscle segmentation and inter-

rater labeling variability prediction with multi-task transunet. In International Workshop on

Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (pp. 125-134).

Cham: Springer Nature Switzerland. [48]
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3.1 Introduction

Paraspinal muscles are critical to stabilizing the spinal column [60] and many recent studies

[16, 64] have suggested a link between the morphological and composition (e.g., fatty infiltration)

changes of these muscles and painful spinal disorders that lead to low back pain (LBP), such as

disc herniation and lumbar spinal stenosis (LSS), with a high prevalence in the adult population

worldwide. With superior soft tissue contrast, magnetic resonance imaging (MRI) has become a

staple for the relevant investigations, with the new trend to leverage recent computational and imag-

ing techniques to explore image-based biomarkers for more accurate diagnosis and prognosis. To

achieve this, good MRI segmentation of paraspinal muscles, especially at different spinal levels

plays a critical role. While manual image segmentation is known to be time- and labor-consuming,

the high variations in muscle morphology and composition across individuals and spinal levels cre-

ate additional challenges for segmentation in comparison to other anatomical structures such as the

brain. While automatic segmentation algorithms, especially deep learning (DL) methods [44, 52]

have been shown to mitigate these issues, only a few were proposed for paraspinal muscle segmen-

tation. Furthermore, most DL methods only offer deterministic outcomes, making it impossible to

assess the reliability of their results, which is important in practice. Different from epistemic and

aleatoric uncertainties that are used to evaluate the reliability of automatic segmentation [15, 41],

methods that predict and visualize inter-rater disagreement in DL-based segmentation, which also

offer important insights regarding the reliability of the results, are unfortunately often overlooked.

Thus, new techniques are necessary to address this gap.

Automatic paraspinal muscle segmentation has its unique challenges, and only a few techniques

[23, 33, 63] were proposed, focusing primarily on deep learning techniques using a single rater’s

annotation. Earlier, Li et al. [33] proposed a U-Net based model with additional residual blocks at

each layer and a feature pyramid attention module added to the bottleneck. They obtained a Dice

score coefficient (DSC) of 94.9% in multifidus segmentation at three spinal levels. Xia et al. [63]

combined conditional random fields as recurrent neural networks with a U-Net model to add spa-

tial constraints for labels and achieved a DSC of 95% on the segmentation of the multifidus and

erector spinae. Most recently, Huang et al. [23] proposed a two-stage coarse-to-fine segmentation
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framework with attention gates and achieved the best DSC of 94.4±3.5% on multifidus identifi-

cation. However, none of the relevant existing works explored the prediction and visualization of

inter-rater segmentation variabilities, and all used convolutional neural networks (CNNs). While

advantageous in extracting low-level image features, CNNs often fail to capture long-range depen-

dencies in the input data, which can be leveraged to improve segmentation performance, especially

in the context of high anatomical variabilities. To address this concern, attention gates have been

employed to improve U-Net [44] Most recently, exploiting self-attention and long-range dependen-

cies, Transformers, which were first proposed in machine translation [57] also lend their powers in

vision tasks [14] To benefit from both CNNs and Vision Transformers (ViT), TransUNet [9] is a

recent encoder-decoder-style model that combines a U-Net with a Transformer. This DL model can

capture long-range dependencies while extracting the high-resolution features captured by a CNN.

To the best of our knowledge, it has not been used for paraspinal muscle segmentation.

To enhance the quality of segmentation ground truths, it is often desirable to employ multiple

raters, and a number of techniques have been proposed to explore inter-rater variability. Mirikharaji

et al. [39] used an ensemble of DL models for lesion segmentation, with each trained on a single

rater’s annotation, and averaged the results to produce the final output. Ji et al. [25] proposed a

CNN with embedded modules for encoding raters’ expertise levels, generating one prediction per

rater and then fusing the predictions based on their uncertainties. Finally, Lemay et al. [32] explored

the advantages of soft segmentation for training segmentation models to reflect inter-rater variabil-

ity. They concluded that relying solely on discrete labels as outputs will generate overconfident

results and, in these cases, soft segmentation performs better. These prior works often train an en-

semble of DL models or use a large model with many learnable parameters, which could be costly.

Furthermore, they employed soft or probabilistic segmentation through averaging to represent the

inter-rater annotation variability, which may not be visually intuitive or informative.
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Figure 3.1: An overview of the proposed multi-task TransUNet

In this paper, we proposed a novel multi-task deep learning technique (see Fig. 3.1) to address

the aforementioned issues and allow accurate segmentation of paraspinal muscles (i.e., multifidus

muscles and erector spinae, left and right separated as shown in Fig. 3.2) and prediction and vi-

sualization of inter-rater segmentation inconsistency. As a design choice, we require the represen-

tation of variability across multiple raters to allow efficient training through deep learning models

and be easily interpreted. Therefore, instead of averaging multiple segmentations to reflect the

inconsistency, we decided to estimate the variance across multi-rater segmentations. Thus, our fi-

nal algorithm consists of a multi-task TransUNet with shared convolutional layers to produce the

patch embeddings from the input images, which are then fed into two task-specific transformers to

produce the desired outputs. In Task 1, the features are decoded and up-sampled to produce the seg-

mentations, and a similar decoding process is repeated for Task 2 to produce the pixel-wise variance

map of multi-rater annotations.
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Figure 3.2: Axial MRIs of paraspinal muscles at four spinal levels (L3-L4, L4-L5, L5-S1, and S1).
The names of the four muscles, the left and right multifidus (MF) and erector spinae (ES) muscles,
along with their color-coded manual segmentations are shown in the top left image.

Our work has four major contributions: First, we use the TransUNet model for paraspinal mus-

cle segmentation for the first time. Second, the proposed algorithm was trained and validated using

a large dataset of paraspinal muscle MRIs with multi-rater annotations, and it has shown excellent

segmentation performance in comparison to the state-of-the-art techniques and a newly proposed

multi-task U-Net model. Third, we proposed to use variance maps of soft labels from multiple

raters to offer intuitive and easily comprehensible measures and visualization of inter-rater vari-

ability. Lastly and most importantly, to the best of our knowledge, we are the first to propose a

multi-task DL model for joint paraspinal muscle segmentation and prediction of inter-rater variabil-

ity, with the framework easily adaptable to other anatomical segmentation tasks.

25



3.2 Materials and Methodology

3.2.1 Image Pre-processing and Multi-rater Annotation

From the European research consortium project, Genodisc, on commonly diagnosed lumbar

pathologies (physiol.ox.ac.uk/genodisc), lumbosacral T2-weighted (T2w) MR images of 118 pa-

tients (59 male, age=30∼59y) were selected, with the factors of sex and age roughly equally dis-

tributed among the subjects. Axial MRI slices of the L3-L4, L4-L5, L5-S1, and S1 spinal levels that

are often affected by painful spinal disorders were acquired for analysis. In total, we have 444 MRI

slices, including 105 scans at L3-L4, 117 scans at L4-L5, 118 scans at L5-S1, and finally 104 scans

at S1. Note that due to imaging artifacts and cropping, not all patients have usable axial slices at

all spinal levels. All axial MR images were first processed with N4 inhomogeneity correction [56]

to remove field non-uniformity in the image. Then, the multifidus (MF) and erector spinae (ES)

muscles were manually segmented for all patients (using the software ITK-SNAP (itksnap.org)) in-

dependently by three different raters, who have good knowledge in musculoskeletal anatomy and

ITK-SNAP. As all raters have similar levels of expertise and experience in paraspinal muscle seg-

mentation, we decided to use a majority voting scheme to fuse multi-rater annotations, and the final

results were used for training and testing the proposed algorithm in terms of discrete anatomical

segmentation. To produce the variance maps of multi-rater segmentations for inter-rater variability,

instead of directly using discrete labels, we decided to first generate soft label maps by following

the steps in [46] . In short, for a multi-class segmentation (4 classes in our case), each class was first

binarized, and then transformed into a signed distance map. Then, a sigmoid function was applied

to convert the signed distance map into a soft probabilistic label, and the variance across three raters

was computed in a pixel-by-pixel manner. Thus, for each image, there are four variance maps, one

for each muscle group. The steps for generating the variance map are shown in Fig. 3.3.
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Figure 3.3: The steps of calculating the variance maps for assessing inter-rater variability.

3.2.2 Model Architecture

In this section, we provide a detailed description of the proposed TransUNet model which con-

sists of 3 main parts: (1) The convolutional network (CNN) (2) Transformer and (3) Decoder. The

goal of the CNN is to encode important image features and produce the most relevant flattened

patch embeddings that can be fed to the task-specific transformers. In our model, the CNN has a

ResNet34 backbone with 3 skip connections that feed the ResNet layer outputs to the decoders. In

summary, the CNN produces N flattened P × P patches for each image of dimensions C × H × W

where N = (HW )/P 2 and C is the number of channels. As the encoded information is usable in

both segmentation and variance map prediction, the two tasks in our model share the CNN layers.

Next, the patches are simultaneously fed into two transformers. Similar to the encoder-decoder

architecture of U-Net, the output of each transformer then goes through an up-sampler, where the

task-specific information is decoded with the help of the feature maps provided by the skip connec-

tions from the ResNet. Finally, the discrete muscle segmentation is generated, as well as a 4-channel

output, with each channel corresponding to the variance of the rater annotations of one muscle (left

and right multifidus & erector spinae). The schematic of the proposed model is shown in Fig. 3.1.

As previously mentioned, we trained our model in a multi-task manner. The cost function for

model training is a weighted sum of the losses of the individual tasks. For segmentation, we use a

combination of Dice and cross-entropy loss and for variance estimation, we use the mean squared

error (MSE). In summary, the total model loss is:
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Lmodel = 0.4LDiceCE + 0.6LMSE (7)

where LMSE is the mean squared loss of Task 2 and LDiceCE is the segmentation loss which is a

weighted sum of Dice loss and cross-entropy:

LDiceCE = 0.4LDice + 0.6LCE (8)

As TransUNet performs better in terms of generalization and capturing the global context, it can

be more resistant to overfitting compared to other models like U-Net. This is especially helpful for

both muscle segmentation and variance map estimation.

3.3 Experiments and Results

3.3.1 Experimental Set-up and Implementation Details

To better demonstrate the benefits of combining CNN and transformer architectures, besides

the proposed multi-task TransUNet, we also devised a multi-task U-Net to perform the same joint

tasks. The accuracy of image segmentation and variance prediction were assessed with DSC and

MSE, respectively. Two-sided paired-sample t-tests were performed to compare the performance of

the two proposed techniques, which were trained and tested in the same manner. More specifically,

from the acquired 444 MRI slices, 20% of them are randomly sampled as the test set to report the

algorithms’ performance. For the remaining data, 80% and 20% served as training and validation

sets, respectively. To improve the robustness of the networks, data augmentation was performed

for the training data, where we applied random rotation, image mirroring (label IDs were also

swapped accordingly), Gaussian noise, and Gaussian blurring, resulting in 1420 MRI slices in total.

Furthermore, in each of the train, validation, and testing sets, there are approximately the same

proportion of images from each spinal level. Finally, all MRI scans, discrete manual segmentation,

and variance maps are resized to 256 × 256 pixels for network training. We trained the proposed

multi-task DL models on an Alienware Aurora PC with Intel(R) Core(TM) i7-8700 CPU and 12

GB NVIDIA TITAN V GPU for 150 epochs, with a batch size of 2 and stochastic gradient descent
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(SGD) optimization. The initial learning rate was 0.00125, and it was decreased gradually after

each iteration. As mentioned in the previous section, a loss function (Eq. 7 & 8) that integrates

cross-entropy and Dice losses, as well as MSE was used.

3.3.2 Quantitative and Qualitative Results

The quantitative assessments of the two proposed techniques (multi-task TransUNet and U-Net),

as well as two recent paraspinal segmentation methods [23, 63] are listed in Table 3.1 for both the

paraspinal muscle segmentation and the associated multi-rater variance map prediction. As shown

in Table 3.1, the Dice scores of the proposed multi-task TransUNet are higher than the U-Net coun-

terpart for 3 of the 4 muscles (p<0.01). Compared with previous reports [23, 33, 63], the proposed

TransUNet has better or nearly similar accuracy in automatic identification of paraspinal muscles

on average. For inter-rater segmentation variance map estimation, the multi-task TransUNet out-

performs the U-Net for the left multifidus (p<0.01) and has lower mean errors for the left and right

erector spinae muscles. To further demonstrate the results qualitatively, the outcomes of segmen-

tation and variance prediction for one subject are shown in Fig 3.4 and 3.5, respectively. For the

segmentation, we can see that TransUNet provides smoother tissue boundaries without “island la-

bels” (see L5-S1 level segmentation of Fig. 3.4) produced in U-Net segmentations. Furthermore,

U-Net produces variance maps with overall higher errors within the target muscle and background

than the multi-task TransUNet.

Table 3.1: Quantitative evaluation of automatic segmentation (in DSC) and inter-rater labeling vari-
ance prediction (in MSE) for the proposed techniques. Here, superior performance of Multi-task
TransUnet than the Multi-task U-Net is indicated by ∗(p < 0.01). L represents Left and R is Right.

Metric
Task 1 – segmentation (DSC (%)) Task 2 – variance prediction (MSE×105)

LMF RMF LES RES LMF RMF LES RES

Multi-task U-Net 93.3±4.5 93.6±3.7 92.4±3.9 91.8±4.5 7.37±10.60 5.37±6.67 11.20±16.54 9.81±18.02

Multi-task TransUNet *94.3±4.1 *94.5±3.4 92.8±4.5 *92.8±4.1 *6.41±9.62 5.57±8.62 10.83±16.03 9.66±17.87

Xia et al. (2019) [63] 95.0±2.3 94.5±1.9 90.6±5.8 91.3 ±4.6 N/A N/A N/A N/A

Huang et al. (2020) [23] 94.4±3.5 94.9±3.0 94.4±3.4 94.4±3.4 N/A N/A N/A N/A
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Figure 3.4: Automatic paraspinal muscle segmentation results at different spinal levels of a LBP
patient, with arrows indicating the differences between results from the TransUNet and U-Net.

3.4 Discussion

With both quantitative and qualitative assessments, we can see that it is advantageous to combine

CNN and Transformer architectures in comparison to using CNNs alone. More specifically, Tran-

sUNet offers smoother tissue boundaries in segmentation while nicely handles individual anatom-

ical variabilities (see S1 level segmentation in Fig. 3.4). On the other hand, the U-Net model can

introduce island labels and rough tissue borders. Previous approaches leverage additional condi-

tional random fields as a post-processing step [63] or devise more complex hierarchical processing

pipelines [23]. The capacity to encode long-range spatial information while extracting local features

allows the proposed technique to achieve similar or better outcomes for tissue labeling with a sim-

pler setup. This benefit also extends to the estimation of inter-rater annotation variability. Compared

with the U-Net, the proposed method has significantly lower prediction error for the left multifidus

and lower mean errors for the erector spinae muscles. In general, higher rater disagreements usually

occur at the borders of the muscles, especially at the borders of muscles vs. bones, the posterior

borders of erector spinae, and the posterior division between erector spinae and multifidus. This is

because these regions have higher individual variability. For both proposed multi-task TransUNet

and U-Net models, the mean errors in the predicted variance maps are higher for the erector spinae

than the multifidus, likely because the anatomical variabilities are greater. For the same reason, the

automatic segmentation for the erector spinae also has lower Dice scores than that of the multifidus.
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For this study, multi-task learning allows us to estimate inter-rater disagreement without the need

for model ensembles or other complex additional modules. Previous studies [29] also showed that

multi-task learning is beneficial to enhance the training and performance of the DL tasks involved.

The inter-rater variance maps have low pixel values that lead to small MSEs in the loss function,

making training challenging for Task 2. We solved this by scaling the metric to a greater range

(multiplying the values by 70) in the training process and received good results. The outputs are

re-scaled to their original range at test time.

There are still several aspects of the proposed framework that can be improved in the future.

First, more data will be incorporated to further enhance the performance against anatomical vari-

abilities due to dividual differences and diseases. Second, we will further investigate the composi-

tion of different loss functions and the weights involved to help improve the performance. Lastly,

we will experiment with different set-ups for the main architecture to verify their impacts on the

accuracy of the desired tasks.

Figure 3.5: Results of the variance map estimation of one image at the L4-L5 level with different
models. The arrows point to the areas with errors in inter-rater variance map prediction. The overall
errors from multi-task U-Net are higher than those from multi-task TransUNet.
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3.5 Conclusion

In this paper, we proposed a novel multi-task TransUNet for simultaneous paraspinal muscle

segmentation at multiple spinal levels and prediction of the variance from multiple raters’ anno-

tations. While demonstrating the benefit of combining CNN and transformer architectures for the

target tasks against the popular U-Net, the proposed technique offers similar or better segmentation

accuracy than previous works. The resulting framework offers user-friendly and complementary

information in addition to conventional uncertainty estimation, and can be easily extended to other

segmentation tasks.
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Chapter 4

How Inter-rater Variability Relates to

Aleatoric and Epistemic Uncertainty: A

Case Study with Deep Learning-based

Paraspinal Muscle Segmentation

A version of this chapter was presented at the 26th International Conference on Medical Image

Computing and Computer Assisted Intervention – MICCAI 2023 during the Uncertainty for Safe

Utilization of Machine Learning in Medical Imaging (UNSURE) workshop.

• Roshanzamir, P., Rivaz, H., Ahn, J., Mirza, H., Naghdi, N., Anstruther, M., Battié, M.C.,

Fortin, M. and Xiao, Y., 2023, October. How inter-rater variability relates to aleatoric and

epistemic uncertainty: a case study with deep learning-based paraspinal muscle segmenta-

tion. In International Workshop on Uncertainty for Safe Utilization of Machine Learning in

Medical Imaging (pp. 74-83). Cham: Springer Nature Switzerland. [49]
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4.1 Introduction

In recent years, deep learning (DL) techniques have shown remarkable success in various fields,

including medical domains. However, using DL models in safety-critical applications, such as med-

ical diagnosis and treatment, requires not only high accuracy but also a proper understanding of

the model’s uncertainty, which is crucial for the safety and adaptability of medical DL algorithms.

In general, a DL model’s uncertainty can be classified into two main categories: epistemic and

aleatoric [13]. Epistemic uncertainty is related to the model’s lack of knowledge about the data and

can be reduced by collecting more data or optimizing the model’s architecture and training process.

On the other hand, aleatoric uncertainty is related to inherent factors of the data (e.g., noise) and

cannot be reduced. Additionally, in image segmentation tasks, where supervised learning is widely

used, another important factor that can affect uncertainty is inter-rater variability. Supervised seg-

mentation algorithms require training data with well-annotated ground truth (GT) masks. While GT

masks obtained by fusing annotations of multiple experts are commonly recommended, it is still

costly and the best practice to combine different annotations is still being explored. Various factors

can affect inter-rater variability in manual medical image segmentation, including differences in ex-

pertise, rater style [58], image noise, extreme anatomical variations among individuals, and so on.

In turn, inter-rater variability propagates the influences of these factors to the resulting DL models

through training as uncertainties of the algorithms. For example, image noise and measurement er-

rors (e.g., due to partial volume effects) can result in aleatoric uncertainty while extreme individual

anatomical variations, which may not be sufficiently represented in the data, can contribute to epis-

temic uncertainty. Therefore, knowledge regarding the relationship of inter-rater variability with

aleatoric and epistemic uncertainties in DL models can help better understand their performance

and reliability and inform the dataset design and learning strategies to improve them.

To date, various methods have been proposed to measure aleatoric and epistemic uncertainties

of DL models. In terms of epistemic uncertainty, Bayesian DL estimates a distribution for each

weight in the network and uses these distributions to measure epistemic uncertainty [28, 62]. As

Bayesian networks can bear high computational costs, more efficient approaches have been reported

for uncertainty estimation. Gal and Ghahramani [18] proposed dropout at test-time to approximate
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Bayesian neural networks for uncertainty estimation while deep ensemble trained multiple versions

of the same DL model to derive epistemic uncertainty [30]. Finally, variational inference [26] has

also been used but limits the types of DL models in application. Different approaches have been

reported ever since to improve the quality of the uncertainties obtained from these methods [31].

Another important aspect in accurate uncertainty quantification is the metric. Camarasa et al. [6]

performed an extensive study on different metrics for measuring epistemic uncertainty using test-

time dropout (TTD). They concluded that the measure of entropy produces uncertainty maps that are

in correspondence with the misclassification in the model. Utilizing a sampling strategy similar to

TTD, Wang et al. [59] proposed test-time augmentation (TTA) for aleatoric uncertainty assessment,

which samples from the data distribution by using input data augmentation at inference time.

In training data, inter-rater variability can be measured as the entropy of the rater annotations.

Lemay et al. [32] showed the superiority of random sampling and STAPLE in inter-rater variability

preservation and image segmentation accuracy with a UNet. Jensen et al. [24] discovered that

random sampling leads to higher classification accuracy and better-calibrated results. Vincent et al.

[58] characterized rater style in terms of bias and variance of raters’ annotations and explored the

relationship between rater bias and data uncertainty. Nichyporuk et al. [42] proposed a segmentation

model that can learn the bias in the annotations for better results. However, previous studies haven’t

explored the impact of label fusion methods on aleatoric and epistemic uncertainties, or the potential

relationship between inter-rater variability and these uncertainties. In addition, most of them only

used a conventional UNet as the base model. In recent years, Transformers that better model long-

range dependencies via self-attention have gained popularity in vision tasks [14], and the hybrid

Transformer-convolutional neural network (CNN) models that complement their merits, such as

TransUNet [9], have shown better segmentation accuracy [48]. With a different mechanism, the

addition of Transformers can have potential effects on the uncertainty of a segmentation model,

which has not been investigated, but can be highly valuable.

To address the aforementioned knowledge gaps, In this study, we investigate inter-rater vari-

ability in relation to DL model uncertainties using commonly employed TTA, TTD, and deep en-

semble techniques for MRI-based paraspinal muscle segmentation, with a comparison of UNet

and TransUNet. Our work has three main novel contributions: First, we are the first to compare
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Transformers and CNNs for their impacts on model uncertainties and the encoding of inter-rater

variability, especially in a multi-class segmentation setting. Second, we explore the effect of label

fusion methods during network training on DL model uncertainty (aleatoric and epistemic) for the

first time. Lastly and most importantly, we explore the relationship between inter-rater variability

and aleatoric/epistemic uncertainties, which has not been done so far. We hope the article will offer

instrumental insights to facilitate the design and selection of DL datasets, training strategies, and

model architectures.

4.2 Materials and Methodology

4.2.1 Inter-rater Variability

To measure inter-rater variability, we use the entropy of the average GT annotations for each

image [32]. The pixel-wise entropy is calculated as:

H(yi) = −
C∑
c=1

P (yi = c) log(P (yi)) (9)

where C is the number of classes, and yi is the GT annotation at voxel i, obtained by simply

averaging the one-hot GT masks from all raters. Similarly, the entropy of the model predictions can

be calculated as the entropy of the softmax layer outputs before binarization. This entropy can be

considered as the prediction inter-rater variability. An ideal model should preserve the inter-rater

variability during inference and produce prediction entropies similar to the GT entropy. To quantify

the perseverance of inter-rater variability in a model, we calculated the class-wise Brier score [32]

as:

BrierScore =
1

Nimage

Nimage∑
k=1

(
1

Nvoxel

Nvoxel∑
i=1

(yi,k − ˆyi,k)
2) (10)

where Nimage is the total number of images in the test set, Nvoxel is the number of voxels in each

image, yi,k is the average GT, and ˆyi,k is the prediction for voxel i of image k (the softmax proba-

bility). A Brier score close to zero indicates perfect preservation of inter-rater variability in model

predictions [32].
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4.2.2 Aleatoric and Epistemic Uncertainty Assessment

In this study, we compare TTD and deep ensemble for epistemic uncertainty assessment, and

use TTA for measuring aleatoric uncertainty for both the UNet and TransUNet. In each experiment,

we acquire 10 samples. In TTA and TTD, these samples are obtained through 10 forward passes

through the model for each image, and in deep ensembles, each image is fed to 10 independently

trained models of the same architecture. The obtained samples are then averaged to produce a final

prediction for each image. This prediction is then used to calculate the entropy based on 9. To

compare the quality of the resulting uncertainty maps of TTD and deep ensembles, we measure the

association between uncertainties and misclassifications, using the framework provided by Mobiny

et al. [40]. Conventionally, in a confusion matrix the term “positive” is used for “capturing a target

label/class”, but here, we define it as “capture a high uncertainty”. An ideal model should be uncer-

tain only when making a wrong prediction. Thus, a “false positive” means that the model is highly

uncertain about a correct classification. Identifying a voxel as “uncertain” requires thresholding an

uncertainty map. We perform the operation at multiple values, calculate the corresponding preci-

sion and recall metrics, and finally use the area under the precision-recall curve (AUC-PR) as an

indicator of the quality of an uncertainty map.

4.2.3 Network Architectures and Label Fusion

Lemay et al [32] showed that the method used for label fusion in a multi-rater dataset can

affect the model calibration and how well it preserves inter-rater variability. In this study, we used

two different methods for integrating multi-rater annotations into our training framework: 1) The

majority vote of all raters is used as the GT for each image; 2) The annotation of one rater is

randomly selected at each epoch during training (refer to as random sampling). In order to explore

the impact of self-attention modules on uncertainty, we train two sets of models, using TransUNet

and UNet as the base model architectures. The TransUNet model has four upsampling layers with

two convolution blocks at each layer. For a fair comparison, we used a UNet model with the same

number of layers as the TransUNet (4 layers). With these two architectures and two label fusion

methods, we trained four models for TTA and TTD-related analysis. To achieve deep ensembles for
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measuring epistemic uncertainty, we also trained a set of 10 UNets and a set of 10 TransUNets with

majority vote GT.

4.2.4 Dataset

Our dataset consists of a total of 673 lumbosacral T2-weighted (T2w) MR images of 119 pa-

tients (59 male, age=30∼59y) from the European research consortium project, Genodisc, on com-

monly diagnosed lumbar pathologies. The subjects were selected with the factors of sex and age

roughly equally distributed. Our study was approved by local research ethics board. The MRI scans

are from 6 different disc levels. However, due to imaging artifacts and cropping, not all patients have

usable axial slices at all spinal levels. All axial MR images were processed with non-local means

denoising [11] and N4 inhomogeneity correction [56] to improve image quality. Then, the left and

right multifidus (MF) and erector spinae (ES) muscles were manually segmented for all patients

independently by three different raters to study low back pain [64], resulting in four segmentation

classes for each image (see Fig. 4.1). All raters had two training sessions to ensure the quality and

consistent protocol of the segmentation.

Figure 4.1: Left to right: axial MRI of paraspinal muscles, along with the majority vote label and
the individual rater annotations. The arrows indicate the differences among rater annotations.

4.3 Experiments and Results

4.3.1 Experimental Set-up and Implementation Details

Each model is trained to segment four paraspinal muscles. We divide the dataset subject-wise

into training, validation, and test sets with respect to age group and sex. Specifically, 24 subjects
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are selected for testing, 76 for training, and 19 for validation. For TTD, we add a dropout layer to

each of the convolution blocks in the upsampling layers of UNet and TransUNet, resulting in the

addition of a total of 8 dropouts in each model. Both models are trained for 250 epochs with early

stopping applied to avoid overfitting. We applied random rotation, translation, intensity shift, and

Gaussian noise during the training and applied the same augmentations at test time for TTA [59].

As mentioned in the previous section, we use entropy for measuring uncertainties in this study (Eq.

9). In order to explore the correlation between aleatoric and epistemic uncertainties with inter-rater

variability, we calculate the Pearson correlation coefficients and conduct a variance partitioning

analysis to verify the percentage of variance explained by the uncertainties for inter-rater variability

(i.e., GT entropy).

4.3.2 Results

The Brier scores for inter-rater variability preservation assessment are listed in Table 4.1 for

all the models and all segmented muscle groups. Additionally, we also plotted the prediction en-

tropy against GT entropy with the associated correlations in Fig 4.2(a). These results indicate that

compared with UNet, TransUNet better preserves inter-rater variability with lower Brier scores and

higher “prediction entropy vs. GT entropy” correlations. Also, we observe that training with random

sampling results in lower Brier scores than using majority vote for the same models. To evaluate

the quality of epistemic uncertainty estimation, the AUC-PR results are detailed in Table 4.2, where

TransUNet outperforms its UNet counterpart in both TTD and deep ensemble approaches. Here,

random sampling, TTD, and deep ensemble show similar performance so for the rest of the exper-

iments to compare random sampling and majority vote, we only trained the deep ensemble model

with majority vote GT. Table 4.3 contains the correlations of inter-rater variability with aleatoric

and epistemic uncertainties, and the evidence shows that in our case study, inter-rater variability is

more strongly associated with epistemic uncertainty than the aleatoric one, and the phenomenon is

stronger for TransUNet. The superiority of TransUNet is further demonstrated in Table 4.4, where

the models’ performance is evaluated with Dice score. According to the scatter plots of Fig 4.2(b),

we also see that higher correlation is produced with random sampling training, and the UNet model

contains higher epistemic uncertainties. Finally, from the variance partitioning analysis (see Table
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4.5), we observe that epistemic uncertainty accounts for ∼ 35% of the GT entropy variance with

TransUNet and ∼ 12% with UNet. Additionally, we observe that aleatoric uncertainty only explains

a very small portion of the variance.

Table 4.1: Quantitative assessment of inter-rater variability preservation in the trained models.

Average Brier Score (×103)

Right MF Left MF Right ES Left ES

TransUNet (majority vote) 1.324 1.209 1.936 1.890

UNet (majority vote) 2.071 1.973 3.286 3.146

TransUNet (random sampling) 1.179 1.103 1.742 1.758

UNet (random sampling) 1.769 1.670 2.866 2.912

Table 4.2: AUC-PR for epistemic uncertainty. Each column shows a method for measuring the
uncertainty and the training method, while the rows indicate the utilized models.

AUC-PR

TTD-majority vote TTD-random sampling Deep Ensemble

TransUNet 0.3753 0.3737 0.3831

UNet 0.3387 0.3337 0.3265

Table 4.3: Correlation of epistemic and aleatoric uncertainties with inter-rater variability. Majority
vote is shown as “Maj” while random sampling is shown as “Rand”.

Pearson Correlation Coefficient

TTD–Maj TTD-Rand Deep Ensemble TTA-Maj TTA-Rand

TransUNet 0.5874 0.6165 0.5985 0.0500 0.1028

UNet 0.3380 0.3635 0.3574 0.0719 0.0163
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4.4 Discussion

With the experiments, the results of the Brier scores and “prediction entropy vs. GT entropy”

correlations indicate that both the TransUNet architecture and random sampling have positive im-

pacts on preserving inter-rater variability. Furthermore, as Fig 4.2(b) shows, TransUNet produces

lower epistemic uncertainty with tighter distribution. Our results confirm the conclusion of Lemay

et al. [32] on the benefit of random sampling in preserving inter-rater variability. Furthermore,

we observe that it also results in higher prediction entropies (Fig. 4.2(a)) with more uncertain

results. When assessing AUC-PR, TransUNet offers a better quality of epistemic uncertainty esti-

mation while the advantages of different estimation techniques and training strategies are not clear.

When comparing the correlations of inter-rater variability (i.e., GT entropy) with aleatoric and epis-

temic uncertainties, the results in Table 4.3 demonstrate that epistemic uncertainty has a stronger

association in our segmentation task and database while no significant correlations with aleatoric

uncertainties were found, regardless of the DL model choice. This may be partially explained by

the fact that manual segmentations were performed based on pre-processed images with similar

noise levels, reducing the chance of inter-rater variability being affected by image noise. Future

studies to explore the impact of image noise levels and artifacts (e.g., bias fields) can further verify

this hypothesis, but require a more extensive and costly experimental setup with human raters. In

addition, there is also a higher correlation between inter-rater variability and epistemic uncertainty

with TransUNet and random sampling as shown in Table 4.3, proving that model uncertainty can

be network-dependent and better preservation of inter-rater variability leads to a stronger link to the

model uncertainty. Although better “epistemic uncertainty vs. inter-rater variability” correlation

and preservation of inter-rater variability are desirable as they can result in more effective reduc-

tion of uncertainty through lowering inter-rater variability, the overall higher prediction entropy and

epistemic uncertainty may be a price to pay in the case of random sampling compared to majority

vote. As a final evaluation, we used variance partitioning (Table 4.5) to quantify the contributions

of aleatoric and epistemic uncertainties toward inter-rater variability. This way, we leverage the DL

models to understand the source of inter-rater variability, which is difficult to quantify from human

raters [20]. The results indicate a partial influence of epistemic uncertainty that may be due to the
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factors of anatomical variability (common in pathological paraspinal muscles) and difference in vi-

sual perception, and minimum contribution from aleatoric uncertainty. This suggests the benefit of

preprocessing and systematic training for expert labeling. For all experiments, the incorporation of

Transformers has positive impacts in lowering the uncertainty and encoding inter-rater variability,

potentially leading to better segmentation accuracy. Their ability to encode long-range content over

the image may play a key role in the observed behaviors.

4.5 Conclusion

In this paper, we explored the relationship of inter-rater variability with aleatoric and epistemic

uncertainties, using two DL models and two label fusion methods. Our case study indicated that

inter-rater variability has a high correlation with epistemic uncertainty and no significant correlation

with aleatoric uncertainty. Moreover, we showed that TransUNet better preserves inter-rater vari-

ability and its correlation with epistemic uncertainty, and it also has lower epistemic uncertainty and

prediction entropy than UNet, potentially explaining its segmentation accuracy. Finally, our results

showed that the label fusion method not only affects the preservation of inter-rater variability but it

also affects epistemic uncertainty as well.

Table 4.4: Model performance measured by Dice Score. The superior performance of TransUNet
compared to the UNet counterpart is indicated by ∗∗(p < 0.01) and ∗(p < 0.05).

Average Dice Score (%)

Right MF Left MF Right ES Left ES

TransUNet (majority vote-TTD) **94.36±2.74 **94.77±2.37 **94.29±3.35 **94.18±3.77

UNet (majority vote-TTD) 92.41±8.9 92.77±8.52 92.21±9.52 92.06±9.31

TransUNet (random sampling-TTD) 94.15±3.14 94.44±2.53 *94.08±3.38 *93.87±3.94

UNet (random sampling-TTD) 92.76±8.86 93.07±8.67 92.49±9.06 91.92±10.04

TransUNet (ensemble) *94.72±2.38 *94.80±2.49 **94.75±3.26 **94.50±3.18

UNet (ensemble) 92.83±8.73 93.23±8.56 92.79±8.96 92.05±10.12
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Table 4.5: Variance partitioning analysis for inter-rater variability. The values show the percentage
of inter-rater variability variation related to the epistemic and aleatoric uncertainties.

Epistemic (%) Aleatoric (%) Joint (%)

TransUNet

TTA+TTD(majority vote) 34.506 0.251 34.896

TTA+TTD(random sampling) 38.007 0.251 38.360

TTA+Ensemble 35.803 0.251 35.986

UNet

TTA+TTD(majority vote) 11.422 0.517 11.517

TTA+TTD(random sampling) 12.772 0.517 12.919

TTA+Ensemble 13.215 0.517 13.385

Figure 4.2: (a) Assessment of preservation of inter-rater variability, along with the average entropy
and Pearson correlation coefficient shown in the graphs. (b) Comparison of epistemic uncertainty
with inter-rater variability, along with the average uncertainties shown in the graphs. Significant
correlation is denoted by ∗∗(p < 0.01).
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we first introduced a segmentation model designed not only for accurate segmen-

tation but also capable of predicting pixle-wise inter-rater variability. Then, extending our focus

on inter-rater variability, we further explored the potential correlations of inter-rater variability with

aleatoric and epistemic uncertainties while investigating the impact of factors including model ar-

chitecture and label fusion methods on these relationships. These studies revealed the critical role

of inter-rater variability in medical image segmentation accuracy, described methods for visualiz-

ing and predicting inter-rater variability, and elucidated considerations for estimating uncertainties

of DL models. In addition, through the experiments, we highlighted the advantages of integrating

transformers into the CNN UNet model.

In Chapter 3, we proposed a multi-task TransUNet to simultaneously predict the paraspinal

muscle segmentation maps and the inter-rater variability, presented as the pixel-wise variance of the

raters’ opinions. Highlighting the advantages of integrating CNN and transformer architectures for

the specified tasks over the widely adopted UNet, our proposed technique showcases comparable

or improved segmentation accuracy for individual paraspinal muscles compared to prior studies.

Moreover, our model provides user-friendly visualization about rater disagreements and can be

easily extended to other segmentation tasks.

Chapter 4 provides details of our study on the relationship of inter-rater variability with aleatoric
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and epistemic uncertainties. Our case study indicated that there is a noticeable correlation be-

tween inter-rater variability and epistemic uncertainty, which could mean that the effect of extreme

anatomical variations is higher in rater disagreements compared to that of data noise. Our results

could also be an indicator of the positive impact of the initial denoising of the dataset on lower-

ing rater disagreements and, subsequently, the uncertainty of DL model outcomes. Moreover, we

showed that TransUNet better preserves inter-rater variability and its correlation with epistemic un-

certainty, and it also has lower epistemic uncertainty and prediction entropy than UNet. Finally, our

results showed label fusion methods not only influence inter-rater variability preservation but also

epistemic uncertainty.

5.2 Future Work

In our first work, where we proposed the multi-task TransUNet, our experiments focused on

paraspinal muscle segmentation. Expanding these experiments to include other datasets would pro-

vide a more comprehensive validation of our model’s advantages over other state-of-the-art models.

However, large public datasets with multi-rater segmentation are still rare and are the primary barrier

for more comprehensive evaluations and extension of the proposed method.

One of the key conclusions of our second work to quantify the relationship between inter-rater

variability and uncertainty was that initial denoising of the dataset (prior to manual segmentation

by raters) can effectively reduce the impact of data noise on rater disagreements and, therefore,

possibly lead to lowering the correlation values between aleatoric uncertainty and inter-rater vari-

ability. To confirm and generalize these findings and prove the claims about correlation decrease,

future exploration could involve conducting experiments with datasets with various image noise

characteristics to confirm the reproducibility of observed phenomena. An interesting avenue here

is to perform experiments on ultrasound datasets such as the recently released breast cancer-related

lymphedema dataset [21] because of the unique noise characteristics in ultrasound images.

One of the key fundamental factors in our uncertainty study in Chapter 4 is the methodologies

employed for uncertainty measurement. To further analyze our current strategies, which rely on

sampling from the output distribution for estimating aleatoric and epistemic uncertainties, it can
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be beneficial to propose an investigation into the impact of increasing the number of samples (i.e.,

forward iterations through the network for each image) on the measured correlation between inter-

rater variability and the two types of uncertainties. Additionally, expanding the study to include

alternative uncertainty estimation methods could provide valuable insights into potential variations

in uncertainty values. One alternative to estimating the values of aleatoric and epistemic uncertain-

ties is using evidential deep learning [53] to directly learn the underlying distribution parameters

from which the model outputs are sampled. This approach is less studied compared to the other

estimation approaches due to the computational complexity. However, comparing the results of this

method against more conventional estimation approaches could provide further and more compre-

hensive insights into the accuracy of uncertainty measurement techniques.

Convolutional neural networks are not shift invariant because of the max-pooling step common

in these networks [54, 68]. Therefore, the segmentation maps, especially around the borders of

the object are affected by the network structure. The impact of the network’s shift-invariance on

segmentation uncertainties is another area of future work.

Finally, in our second study, we only compared TransUNet and UNet models. As various vari-

ants of U-shaped models with different attention mechanisms have emerged [22, 19, 7], experi-

menting with other model architectures can further prove the validity of our findings. Note that

when exploring different model architectures, particularly concerning the preservation of inter-rater

variability, one critical aspect to investigate is model calibration, which evaluates the alignment be-

tween the probabilistic outputs of the DL model (model confidence) and its actual accuracy to best

take advantage of uncertainty measures as a surrogate to safeguard unreliable outcomes from the

DL algorithms. In other words, a DL model that exhibits a misalignment between accuracy and

confidence levels cannot be considered satisfactory, even if it outperforms other models in preserv-

ing inter-rater variability and accuracy. To further complement our investigations in Chapter 4, we

conducted a calibration analysis for the UNet and TransUNet models that we trained, and the results

are provided in Appendix A.
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Appendix A

Calibration of TransUNet and UNet

Models Trained with Different Label

Fusion Methods

This section shows the calibration of the UNet and TransUNet models trained in Chapter 4 with

accuracy-confidence plots (see Fig. A.1). Following the same method as Lemay et al. [32], we

divided the full confidence range of 0 to 1 into 10 intervals, calculated the average accuracy and

confidence of voxels in each interval for every image separately, and then obtained the average

confidence and accuracy for each bin in the entire test dataset (please refer to Chapter 4 for details).

Here, confidence for each voxel is defined as the maximum of output probabilities. For example,

if the output probabilities for a specific voxel in a 3-class segmentation are [0.1, 0.2, 0.7] then the

model’s confidence about its prediction is 0.7. For each image, voxels are divided into 10 bins

according to their output confidence, and then the average accuracy and confidence were calculated

for each bin. As an example, in a well-calibrated model, if the average confidence of a group of

voxels is 0.82, the model’s accuracy in those voxels should also be close to 80 percent. In our study,

TransUNet results in better model calibration compared to UNet, and random sampling outperforms

majority voting in model calibration quality. Our calibration analysis suggests that training models

with majority voting results in over-confident models in general, which is in line with the previous
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findings in this field [32].

Figure A.1: Calibration of the UNet and TransUNet models trained with majority vote (maj) and
randomly sampled (rand) ground truths
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Anstruther, Michele C Battié, Maryse Fortin, and Yiming Xiao. Joint paraspinal muscle seg-

mentation and inter-rater labeling variability prediction with multi-task transunet. In Interna-

tional Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging,

pages 125–134. Springer, 2022.

[49] Parinaz Roshanzamir, Hassan Rivaz, Joshua Ahn, Hamza Mirza, Neda Naghdi, Meagan
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