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Abstract

On the Convergence of Three Applied Stochastic Models related to Reflected
Jump Diffusions, Fast-Slow Dynamical Systems, and Optimistic Policy Iteration

Giovanni Zoroddu, Ph.D.
Concordia University, 2023

This dissertation explores three stochastic models: additive functionals of reflected jump-
diffusion processes, two-time scale dynamical systems forced by α-stable Lévy noise, and a
variant of the Optimistic Policy Iteration algorithm in Reinforcement Learning. The con-
necting thread between all three projects is in showing convergence of these objects whose
results have direct applied implications.

A large deviation principle is established for general additive processes of reflected jump-
diffusions on a bounded domain, both in the normal and oblique setting. A characterization
of the large deviation rate function, which quantifies the rate of exponential decay for the
rare event probabilities of the additive processes, is provided. This characterization relies
on a solution of a partial integro-differential equation with boundary constraints that is
numerically solved with its implementation provided. It is then applied to a few practical
examples, in particular, a reflected jump-diffusion arising from applications to biochemical
reactions.

We derive the weak convergence of the functional central limit theorem for a fast-slow
dynamical system driven by two independent, symmetric, and multiplicative α−stable noise
processes. To do this, a strong averaging principle is established by solving an auxiliary
Poisson equation where the regularity properties of the solution are essential to the proof.
The latter allow for the order of convergence to the averaged process of 1− 1

α
to be established

and subsequently used to show weak convergence of the scaled deviations of the slow process
from its average. The theory is then applied to a Monte Carlo simulation of an illustrative
example.

In the Optimistic Policy Iteration algorithm, Monte Carlo simulations of trajectories for
some known environment are used to evaluate a value function and greedily update the policy
which we show converges to its optimal value almost surely. This is done for undiscounted
costs and without restricting which states are used for updating. We employ the greedy
lookahead policies used in previous results thereby extending current research to discount
factor α = 1. The first-visit variation of this algorithm follows as a corollary and we further
extend previous known results when the first state is picked for updating.
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Introduction

Can we show it converges?
Each of the three stochastic processes studied in this dissertation take on a different

form: one is an additive process of a jump-diffusion, another the scaled deviations of a
two-time scale dynamical system, and the third the path an algorithm takes within some
random environment; yet they all ask the same fundamental question. There is a secondary
common element connecting the three projects. They each deal with an applied model.
Establishing the limit has direct applications to non purely mathematical questions in a
variety of fields. Satisfy the model’s assumptions and one can now say something about its
long term behavior. The mode of convergence might change, the context might be different,
but given some random object: what can we say about its limit?

The remainder of this chapter is dedicated to introducing the three projects and putting
them into context.1

Large Deviations for Additive Functionals of Reflected Jump-Diffusions
Many applied stochastic systems in finance, economics, queueing theory, and electri-

cal engineering are modeled by jump-diffusions [Kou07; Run03; Tan03; WG03a; WG03b;
DM+15]. Some important properties of climate systems were explained by the addition of
jumps in modeling [Dit99; DD09]. In many biological models, the inclusion of jumps in
diffusion models has been useful: in neuronal systems [Jah+11; SG13], as well as in ecology
and evolution [JMW12; CFM06]. Our motivation comes from problems in systems biol-
ogy, where basic intracellular processes are modeled by chemical reaction networks [Bal+06;
Wil09; Wil18; GAK15]. Due to the complexity of multi-scale features in chemical reaction
systems, the most appropriate approximation of their inherent stochasticity may require
jump-diffusion models.

Although many practical results for Lévy processes are well explored, relatively fewer
are available for the more general jump-diffusions. In some applications, modeling by pure
Lévy processes is inadequate as both jump and diffusion rates will genuinely depend on
the current state of the system. For example, in chemical reaction networks, jump rates
and diffusion coefficients are derived from rates of interactions between different molecular
species, and these rates inherently depend on the amount of species types presently in the
system. Consequently, one needs to consider stochastic differential equations driven by
Poisson random measures. Many systems also take values on positive and bounded spaces,
because of the natural constraints on the amounts of species in the system. For chemical

1The text introducing the first project was taken from the published paper [PZ22]. The subsequent two
introductions are proposed for their related papers.



reaction models, the counts of molecules often satisfy some conservation relations in the
system which keep these counts bounded above. The same is true for ecological constraints
based on carrying capacities, and for some financial and engineering models with restrictions.
The reflection of the process when it reaches the boundary of its domain may be built into
model dynamics. For example, jump-diffusions modeling chemical reaction systems need to
have oblique reflections at the boundaries defined in order to match the same behaviour of
jump Markov models [And+19].

Long term behaviour of these models reveals their stability and equilibria, and the por-
tion of time spent in different parts of the state space. Ergodic theory quantifies averages of
integrated functions of process paths, martingale methods provide standard deviations from
these averages, and large deviation theory provides more detailed results on rare departures
from average behaviour. Large deviation rate functions quantify the values of dominant
terms in integrated exponential functions of the process. Our study is motivated by the fact
that many important biological mechanisms rely on the occurrence of rare events. In some
mechanisms they lead to transitions to a new stable state and these transitions typically
arise from the intrinsic stochasticity of the system [BVOC11; BQ10]. Due to population
proliferation (cell growth+division, or species demography) rare events have many opportu-
nities to occur and, though rare on the level of an individual molecule, occur with reasonable
probability on the scale of the whole population. Time additive functionals of the process,
or dynamical observables, are of particular interest for experimental studies with limited ac-
cess to precise values at specific time points, and easier access to empirical distributions. In
chemical reaction network models, occupation measures can be used to distinguish the orders
of magnitudes of certain subsets of reactions within the system, and thus help determine
which approximating model is most appropriate [MP14].

We are interested in computing long time statistics for time additive functionals of re-
flected jump-diffusions. Exact and explicit expressions can be found only in very special
cases, and for most processes of interest one has to rely on numerical methods of evalu-
ation. While long-term averages and standard deviations can be simulated using Monte
Carlo methods [AG07], large deviations are non-trivial to assess numerically. For Markov
processes and small noise diffusions one can devise simulation methods of rare events us-
ing large deviation rate functions and importance sampling techniques [BB04; VEW12], the
efficiency of which is dependent on the application in question ([RT+09], e.g. in climate
modeling [RWB18])). For chemical reaction dynamics there are several numerical methods
for simulating functional large deviations of complete paths in small noise diffusion models
(e.g. [WRVE04; VEW12]), or in pure jump Markov processes (e.g. [AWTW05]). However,
large deviations of time-integrated additive functionals should be less arduous than func-
tional large deviation paths. The framework for additive functionals relies on taking a limit
as the time of integration approaches infinity, rather than a limit in which the noise of the
model vanishes.

The first theoretical results for large deviations of occupation times and empirical mea-
sures for ergodic Markov processes date back to Donsker-Varadhan [DV76; DV83], with
additional approaches established by Gärtner [Gär77] and Stroock [Str12]. In Chapter 1
we use the results of Fleming-Sheu-Soner [FSS87] to get the large deviation principle for
additive functionals of reflected jump-diffusion processes assuming they are ergodic. This
technique ensures the existence and uniqueness of a solution to a boundary value partial
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INTRODUCTION

integro-differential equation (PIDE), which identifies the limiting logarithmic moment gen-
erating function of the additive process (for fixed parameter value in the generating function)
as an eigenvalue for a second order linear operator paired with its eigenfunction. Only in
some special cases is the explicit form for this eigenvalue available (c.f. [FKZ15] for reflected
one-dimensional Brownian motion and its local time on the boundary).

For one-dimensional reflected diffusions and Lévy processes, a similar boundary value
PIDE was obtained to characterize the limiting logarithmic moment generating function for
additive functionals in ([GW15], [And+15] Sec 14.4). Our results cover the more general
reflected jump-diffusions in multi-dimensional space, and provide sufficient assumptions for
the existence and uniqueness of a solution to this PIDE, in order to establish the large
deviation principle for the process. We thus achieve more general theoretical conclusions
with the potential of a greater range of applicability.

In order to use our result in practice, we additionally provide a numerical technique for
calculating the limiting logarithmic moment generating function based on numerically solv-
ing the eigenvalue problem associated to the PIDEs. We do this by way of finite-differences
to approximate the derivatives and numerical quadrature or weighted sums for the integral
term. Similar methods can be implemented for multidimensional problems with a small
number of variables, with some care regarding an efficient evaluation of the integral term.
We test our results and their numerical implementation on two special cases, a reflected
Brownian motion and a reflected birth-death process, for which a comparison with ana-
lytic solutions is possible. We then use our results on an application that is analytically
intractable: an example of a jump-diffusion model that approximates a system of chemical
reactions. We use our large deviation results to calculate the long term mean local time at
its two deterministic stable states, and the probability of departures from it. We then use
this additive functional to compare the long-term behaviour of two types of approximate
models for this system: a reflected diffusion process (based on the Constrained Langevin
approximation developed in [LW19]), and a reflected jump-diffusion process that allows a
subset of its dynamics to have sizeable noise.

Functional Central Limit Theorem for a Fast-Slow Dynamical System Driven by
Symmetric and Multiplicative α-Stable Noise

Multiscale dynamical systems are natural models for systems whose dynamics evolve on
different time scales; specifically for Chapter 2, a fast time scale and a slow time scale. Such
systems may be found in numerous applications such as atmospheric and oceanic sciences,
molecular dynamics, mathematical finance, nonlinear PDEs, material science, chemical engi-
neering, etc (see the introductory applied text [PS08] and references therein). The separation
between the two time scales is dictated by a separation of time scales parameter ϵ ∈ (0, 1);
the smaller ϵ becomes, the faster the fast process evolves relative to the slow process. To
study the asymptotic behavior of the slow process as ϵ→ 0, one averages out or eliminates
the effects of the fast process thereby exposing an averaged system. Intuitively, one may
think of such a limit as a functional law of large numbers where the entire process limits to
its average. This makes the original system more amenable to analytic methods.

One such tractable analytic result that motivates the development to come is to establish
a functional central limit theorem between the slow process and the averaged process. The
objective is to characterize the asymptotic behavior between the scaled deviations of these

3



two processes via weak convergence of processes. Having the order of convergence of the
slow process to the averaged process available, and applying it to an appropriate asymptotic
expansion, is one way to proceed with the functional central limit theorem and the method
used herein. Examples of previous work in establishing functional central limit theorems can
be found in [KY05; LX22; PV01; WR12; Yan+22] etc. However, before discussing a central
limit theorem, one needs an average to consider deviations from.

In the Gaussian setting, Khasminskii pioneered a time discretization technique to estab-
lish the averaging principle, or, the asymptotic behavior of the slow process as ϵ vanishes
[Kha68]. Rigorous treatments of various techniques in this setting can be found in the
standard reference by [FMJWA12]. Subsequently, many other techniques involving the mar-
tingale problem [Pap77], perturbation analysis and the use of Kolmogorov’s equation [PS08]
were developed. Each technique allows for different conclusions. For example, if one is
interested in establishing convergence rates for the averaging principle, time discretization
approaches could potentially allow one to discuss strong convergence rates, whereas asymp-
totic expansions of Kolmogorov’s equations are usually tied to weak convergence rates.

It is not always possible to attain sharp enough strong convergence rates by using the
methods discussed in the previous paragraph. Therefore, the approach taken here involves a
technique pioneered in [PV01; PV03; PV05] which uses the solution to an auxiliary Poisson
equation, but developed upon to show the order of convergence. The treatment follows past
results which commonly use the same method to establish this type of theorem, e.g. [RSX19;
RSX21; SXX22; SX23; Zha+20] just to name a few. One freezes the dependence of the slow
process within the fast process and studies the ergodic properties of this frozen equation.
These properties allow for a solution to a related Poisson equation, but, more importantly,
the study of its regularity properties. The latter are then applied to prove the necessary
bounds which provide a strong order of convergence of 1− 1

α
between the slow process and its

averaged process. Finally, making use of this order of convergence, some bounds established
in the averaging proof, and a martingale convergence argument, one may conclude with the
functional central limit theorem result.

Such problems have been studied in many cases including the Brownian case, jump
diffusions, fractional Brownian motion, stochastic partial differential equations, and driven
by jump processes, e.g. [BYY17; BDS23; Liu12; WR12; YY04]. The focus here will be
in adding to the literature with respect to fast-slow systems driven by symmetric α-stable
motion, e.g. [SXX22; Yan+22; Zha+20]. These processes have independent increments that
are α-stable distributed, i.e. Sα((dt)

1
α , 0, 0). At α = 2, one recovers Brownian motion, but

for general α, one loses square integrability. They are 1
α

self-similar, that is, for c > 0, the
Lévy motion has the same finite dimensional distribution as {c 1

αXt}t≥0 (see [Sam17] for more
details).

To conclude the chapter, an example of a fast-slow dynamical system is studied nu-
merically. The chapter’s assumptions are checked for the example and a Euler-Maruyama
iterative scheme is employed to simulate the paths of the two-time scale process. These are
used to show convergence to the averaged system and to approximate the scaled deviations.
The latter are shown to converge weakly to a limiting process constructed from the numerical
discretization of the Poisson equation and its application within the context of the functional
central limit theorem. In essence, all the theory developed within the chapter is made visual
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INTRODUCTION

for purely illustrative purposes on a toy example, but one can imagine such techniques used
within an applied setting.

On Convergence of Undiscounted Optimistic Policy Iteration without State Up-
date Restrictions

In recent years, reinforcement learning has received a great deal of applied interest.
With the advent of superhuman capabilities in games of perfect information through neural
networks and Monte Carlo Tree Search methods, e.g. [Sil+16; Sil+17a; Sil+17b], in games
of imperfect information, e.g. [BS19; Bro+20], and more recently using human feedback
to align model outputs, e.g. [Zie+19; Ouy+22; Fer+23], reinforcement learning has been
advancing quickly at a practical level. This provides ample motivation to address some of
the long standing open theoretical problems, one of which is the main concern of Chapter 3.

Reinforcement learning algorithms generally deal with finding an optimal policy from an
agent interacting within some system. Given a model of the environment, one possibility is to
employ a Monte Carlo simulation of the environment and observe costs (or rewards) resulting
from completed trajectories to update the value function. This is then used in a greedy
update of the policy. If the variation of the algorithm is valid, the policy will eventually
converge optimally. The exploring starts condition requiring that any state could be picked
as the initial state for updating the value function ensures every state is visited infinitely
often. Monte Carlo simulations and exploring starts together give us the famous algorithm
initially presented in [Sut99] and described fully in the classic textbook where the authors
claim that establishing convergence of this algorithm is "one of the most fundamental open
theoretical questions in reinforcement learning" (pg 99, [SB18]). The algorithm is closely
related to Optimistic Policy Iteration in the Dynammic Programming literature [BT96;
Tsi02]. In contrast to its non-optimistic variants, we do not wait for the policy evaluation
step to converge before updating the policy, rather in the Monte Carlo setting, we simply
update greedily upon termination of each trajectory.

There have been many variations of this algorithm studied in the literature to progress
the settlement of this open problem. The first case shown to converge can be found in
[Tsi02] under the assumption that every state is updated synchronously and each trajectory
has discount factor α ∈ (0, 1). They used the stochastic iterative techniques of Chapter 4
in [BT96]. This is in contrast to the probabilistic graph arguments of [Wan+20]. In the
latter paper, they establish convergence of the original algorithm without the assumptions
of [Tsi02] but with the condition of an optimal policy feed-forward environment for the
dynamics of the model. In [Che18], they extend [Tsi02] to the stochastic shortest path
setting under the assumption that every policy leads to termination, also known as the
proper policy assumption. This is further relaxed in [Liu21]. They prove convergence for the
same undiscounted case but without the proper policy assumption and for an asynchronous
version where a single trajectory is used to update a, possibly, non-uniformly distributed
selection for the initial state used in the update procedure. Therefore, the problem has
been fully solved for all discount factors α ∈ (0, 1] when the first state is used for updating.
Finally, following the work in [Efr+18a; Efr+18b; Efr+19; EGM20] on lookahead policies,
[WS23] established convergence of the first-visit variation. In this case, provided sufficient
lookahead, a single trajectory is simulated and the discounted costs following a first-visit to
a state is used for updating.
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The variation we will study in Chapter 3 is the stochastic shortest path, or undiscounted
Monte Carlo case with no restriction on the set of states that are updated within a trajectory.
This allows for the first-visit variation to follow as a corollary. We generalize the exploring
starts assumption and claim the proper policy assumption can be relaxed as done in [Liu21].
To carry all this out, we use the greedy lookahead policy technique proposed in [WS23] with
the modifications [Liu21] used to generalize [Tsi02]. That is, we use the contracting factor
β emanating from the dynamic programming operators to be introduced. These serve the
same purpose as the discount factor α in the discounted case. Putting all this together, we
arrive at a general result for this simulation based reinforcement learning algorithm. The
main limitation of the result is that it requires sufficient lookahead to work, but it is not
likely to be resolvable otherwise (see Example 5.11 in [BT96] or Example 18 in [Liu21] which
suggest an assumption-less algorithm would fail to converge).

Each chapter will start with its outline followed by preliminaries and assumptions, the
main result, and end with any related results or applications. The concluding chapter
summarizes the thesis and discusses possible future avenues of research.
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Chapter 1

Large Deviations for Additive Functionals of
Reflected Jump-Diffusions1

Outline

§1.1 Introduces the reflected jump-diffusion model, the associated boundary process,
and the additive functional.

§1.2 Presents the derivation of the partial-integro differential equation (PIDE) which
is followed by the main result for the large deviations of the additive process,
and specializes to the one-dimensional case.

§1.3 Two derived analytical examples for the rate function are compared to their
numerical approximation. Then we give numerical results for an application to
a system of chemical reactions given by a jump Markov model.

§1.4 A full description of the numerical scheme used to solve the PIDE for the exam-
ples is presented.

1This chapter is the full presentation of the published article [PZ22] with minor aesthetic modifications
to create uniformity between chapters.



1.1. PRELIMINARIES

§1.1 Preliminaries

Let (Ω,F , {F(t)}t≥0,P) be a filtered probability space and let m ≥ 0 and d ≥ 1. Denote
the Skorokhod space of right-continuous functions with finite left-hand limits (RCLL) by
D ≡ D[0,∞)(Rd) and the set of RCLL functions in S by D(S) = {Z ∈ D : Z(t) ∈ S, t ≥ 0},
where S ⊂ Rd will be made precise in the context of normal or oblique reflections later in
this section. Consider a d-dimensional jump diffusion X = {X(t)}t≥0 to be a D-measurable
process that satisfies and

X(t) =X(0) +

∫︂ t

0

µ(X(s))ds+

∫︂ t

0

σ(X(s))dB(s)

+

∫︂ t

0

∫︂
M
γ(X(s−), y)N(ds, dy), X(0) = x0 ∈ Rd, (1.1)

where B = {B(t)}t≥0 is an m-dimensional Brownian motion, adapted to, and a martingale
with respect to {F(t)}t≥0;M is a Borel measurable subset of Rn; and the random counting
measure N(t,M) =

∑︁
0<s≤t 1{γ(X(s−),y)̸=0:y∈M} is adapted to {F(t)}t≥0, independent of B,

and has state-dependent, time-homogenous intensity measure dt · νX(t−)(A), A ⊆ M such
that

∫︁
|y|≤1
|y| supz∈Rd νz(dy) < ∞ [GM04]. Since the jumps of (1.1) are assumed to be

of finite variation on finite time intervals, the sum of all jumps is well defined and we
may rewrite the jump integral term in its canonical form

∫︁ t
0

∫︁
M γ(X(s−), y)N(ds, dy) =∑︁

0<s≤t:∆X(s)̸=0∆X(s) where ∆X(s) = X(s) − X(s−) = γ(X(s−), y). Note that, after
compensating for the mean, we have that for each z ∈ Rd, A ⊆ M, ˜︁N(t, A) = N(t, A) − t ·
νz(A) is a martingale-valued measure.

We assume that the measurable functions µ : Rd → Rd, σ : Rd → Rd×m, and γ :
Rd ×M→ Rd are Lipschitz in order to ensure the existence of a unique strong solution to
the stochastic differential equation (SDE) (1.1) (c.f. Theorem V.7, [PP05]). We additionally
impose a linear growth condition on the coefficients, that is, we assume ∃C1 > 0 such that
for all x1, x2 ∈ Rd

||µ(x1)− µ(x2)||2 + ||σ(x1)− σ(x2)||2

+

⃓⃓⃓⃓⃓⃓⃓⃓∫︂
M
γ(x1, y)νx1(dy)−

∫︂
M
γ(x2, y)νx2(dy)

⃓⃓⃓⃓⃓⃓⃓⃓2
≤ C1||x1 − x2||2, (1.2)

and ∃C2 > 0 such that for all x ∈ Rd

||µ(x)||2 + ||σ(x)||2 +
∫︂
M
||γ(x, y)||2νx(dy) ≤ C2(1 + |x|2), (1.3)

where || · || denotes the appropriate Euclidean norm.
We next introduce a solution to the stochastic differential equation with reflection (SDER).

It is related to the Skorokhod problem (SP), which for a given process ϕ defines an associated
boundary process η, with finite variation on finite time intervals, whose variation increases
only when ϕ is on the boundary of a given domain, in such a way that ensures the reflected
process φ = ϕ+η remains in the domain. The SP has been established for various processes

8



CHAPTER 1. LARGE DEVIATIONS

in different domains including: multidimensional diffusions in convex domains [Tan79], in
general domains satisfying conditions (A), (B) (defined below) and admissibility conditions
[LS84], where the latter conditions were relaxed in [Sai87]. It was also extended to processes
with RCLL paths in convex polyhedra [DI91], for general semimartingales in convex regions
[AL91], and in non-smooth domains [Cos92].

We consider processes with both normal and oblique reflections, with slightly different
sets of assumptions that ensure the respective SDER is well-defined. Let S ⊂ Rd be a
bounded convex set, and Nx be the set of all inward unit normal vectors at x ∈ ∂S: Nx =
∪r>0Nx,r, Nx,r = {n ∈ Rd : |n| = 1, B(x − rn, r) ∩ S = ∅}, where B(z, r) = {y ∈ Rd :
|y− z| < r, z ∈ Rd, r > 0} is the ball with radius r > 0 around a point z ∈ Rd. Consider the
following assumptions on S from [Slo93; LS84; Sai87]:

(A) There exists a constant r0 > 0 such that Nx = Nx,r0 ̸= ∅ for every x ∈ ∂S;

(B) There exist constants δ > 0, β ≥ 1 such that for every x ∈ ∂S and for every n ∈
∪y∈B(x,δ)∩∂SNy, there exists a unit vector ex such that ⟨ex, n⟩ ≥ 1

β
, where ⟨·, ·⟩ denotes

the inner product.

Condition (A) guarantees the existence of a unit normal vector at each point on the boundary
with a uniform sphere about itself. This condition is satisfied by the boundedness assumption
on S (c.f. [AL91], [Tan79]) and r0 = +∞ by the convexity of S (c.f. Remark 1(iii),
[Slo93]). Condition (B) is equivalent to defining a uniform cone on the interior of S at each
boundary point. Call V ∈ D(S) a solution to the stochastic differential equation with normal
reflection if there exists an associated boundary process L ∈ D(R) such that L(0) = 0, and
L(t) =

∫︁ t
0
1{V (s)∈∂S}dL(s), that is L is equal to its own total boundary variation on [0, t],

and for all t ≥ 0, V (t) satisfies the equation

V (t) =V (0) +

∫︂ t

0

µ(V (s))ds+

∫︂ t

0

σ(V (s))dB(s)

+

∫︂ t

0

∫︂
M
γ(V (s−), y)N(ds, dy) +

∫︂ t

0

n(V (s))dL(s), V (0) ∈ S. (1.4)

Intuitively, L captures the precise amount by which V would escape S due to the evolution
of X and reflects this excess normally on the boundary of S keeping V within S. If we
assume that µ, σ, and γ are bounded on S, it was shown (Theorem 5, [Slo93]) by a step
function approximation that there exists a solution of the SP with normal reflection and a
unique strong solution to the SDER (1.4).

We also consider oblique reflections at the boundary as they are used in chemical reaction
approximations to match the combined behaviour of all the reactions that are active on the
boundaries (c.f. [LW19]). An analogous reflected process exists if we impose some additional
assumptions. Let S ⊂ Rd be a bounded simply connected region with a smooth, connected
and orientable boundary ∂S (the condition on the boundary can be relaxed, c.f. Remark 5
[MR85]). Define a twice continuously differentiable vector field ρ in a neighborhood of S such
that −ρ(x) · n(x) ≥ ϵ > 0,∀x ∈ ∂S. Assume that for all x ∈ S, y ∈M, x+ γ(x, y) ∈ S, that
is, all jumps from S remain in S (c.f. Section 2, [MR85]). Call V ∈ D(S) a solution to the
stochastic differential equation with oblique reflection if there exists a continuous associated

9
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boundary process L such that L(0) = 0 and L(t) =
∫︁ t
0
1{V (s)∈∂S}dL(s), and for all t ≥ 0 V (t)

satisfies the equation

V (t) =V (0) +

∫︂ t

0

µ(V (s))ds+

∫︂ t

0

σ(V (s))dB(s)

+

∫︂ t

0

∫︂
M
γ(V (s−), y)N(ds, dy) +

∫︂ t

0

ρ(V (s))dL(s), V (0) ∈ S. (1.5)

The existence and uniqueness of a solution to (1.5) was shown in [MR85] by first establishing
a solution for normal reflection by a penalization argument and then constructing a diffeo-
morphism between S and a closed unit ball where ρ is mapped to an outward normal vector
to extend existence and uniqueness to appropriate oblique reflections as well. Note that by
setting ρ ≡ n, we get the normally reflected process (1.4) as a special case of (1.5), but with
more restrictions imposed on S and L for the oblique case.

Solutions to SDERs have been established under different assumptions on its driving
processes and domains. The first results [Tan79] are for a diffusion process in a convex
domain with normal reflection, extended by [LS84] for a diffusion with normal and arbitrary
reflections in their domain. It was further shown in [DI93] that obliquely reflected diffusions
also exist in non-smooth domains with corners. For RCLL processes, it was shown that there
exists a unique solution in the positive half-space [CMEKM80], and more recently [ŁS03]
established existence of arbitrarily reflected semimartingales allowing jumps at the boundary
of the domain, using convergence of approximating processes in the S-topology.

We next introduce the additive functional of the reflected jump-diffusion process V . Let
f be a bounded continuous function on S, and define the additive functional Λ as

Λ(t) =

∫︂ t

0

f(V (s))ds+

∫︂ t

0

f(V (s)) dLc(s), (1.6)

where Lc is the continuous part of the associated boundary process L,

Lc(t) = L(t)−
∑︂

0<s≤t:∆L(s) ̸=0

∆L(s). (1.7)

Using a sequence of continuous functions approximating the step function f = 1A, we can
recover (by convergence of associated additive functionals) the total occupation time of V
in an arbitrary A ⊂ S. For A ⊂ ∂S, we can also recover the total variation over A of the
continuous part of the associated boundary process Lc. Many other quantities of interest
may be studied by an appropriate choice of f .

§1.2 Main Results

Our main result considers the large deviation principle for the additive functional Λ in terms
of a PIDE for calculating its logarithmic moment generating (spectral radius) function.

We make the following assumptions on the transition semigroup of the reflected jump-
diffusion V (which by uniqueness of solutions to the SDER is a Markov process). These

10
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ensure V is a Feller process whose occupation measure converges to the invariant measure
exponentially fast (c.f. [DV83] p.187 I-II, [FSS87] (2.1)-(2.3)). Assume there exists a prob-
ability measure µ on S such that for all t > 0:

(i) the semigroup Tt of V has a density p(t, x, y) relative to µ, i.e.,
Ttu(x) =

∫︁
S
u(y)p(t, x, y)µ(dy);

(ii) 0 < a(t) ≤ p(t, x, y) for some strictly positive function a(t) and for all x, y ∈ S; and

(iii) lim
x→x0

||p(t, x, ·)− p(t, x0, ·)||L1(S,µ) = 0.

Theorem 1.1 pide & exponential martingale

For all θ ∈ R there exists a unique, up to a constant, positive twice continuously
differentiable function uθ(·) ∈ C2

+(S) on S, and a scalar ψθ ∈ R such that the pair
(uθ(·), ψθ) satisfies the partial-integro differential equation

d∑︂
i=1

∂xiuθ(x)µi(x) +
1

2

d∑︂
i,j=1

∂2xixjuθ(x)(σσ
T )ij(x) (1.8)

+

∫︂
M
[uθ(r(x, y))− uθ(x)]νx(dy) + uθ(x)(θf(x)− ψθ) = 0, ∀x ∈ S

subject to boundary conditions (if Lc ̸≡ 0)

θf(x)uθ(x) +
d∑︂
i=1

∂xiuθ(x)ρi(x) = 0, ∀x ∈ ∂S (1.9)

and such that
Mθ(t) = eθΛ(t)−ψθtuθ(V (t)) (1.10)

is a martingale.

Proof. We start by identifying the equations that uθ and ψθ would need to satisfy in order
for Mθ to be a martingale. We use of the following notation for ease of exposition. For x ∈ S,
y ∈ M, let [x + γ(x, y)]

∂S
denote the projection onto ∂S resulting from a jump exceeding

the region S. Define r : S ×M→ S

r(x, y) =

{︃
x+ γ(x, y) if x+ γ(x, y) ∈ S
[x+ γ(x, y)]

∂S
if x+ γ(x, y) /∈ S .

As V is a semi-martingale we can apply Itô’s formula (Theorem II.33, [PP05]) toMθ(t). Since
L has paths of finite variation on finite intervals we have that [Λ, V ]c(t) = [Λ,Λ]c(t) = 0
and [V, V ]c(t) =

∫︁ t
0
σσT (V (s))ds where [·, ·]ct denotes the continuous part of the quadratic

covariation between the two processes. Itô’s formula on (1.10) gives

11
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Mθ(t)−Mθ(0) =

∫︂ t

0

eθΛ(s−)−ψθs−(−ψθ)uθ(V (s−))ds+
∫︂ t

0

eθΛ(s−)−ψθs−θuθ(V (s−))dΛc(s)

+

∫︂ t

0

eθΛ(s−)−ψθs−
d∑︂
i=1

∂xiuθ(V (s−))dV c(s)

+
1

2

∫︂ t

0

eθΛ(s−)−ψθs−
d∑︂

i,j=1

∂2xixjuθ(V (s−))(σσT )ij(V (s−))ds

+
∑︂

0<s≤t:∆V (s)̸=0

eθΛ(s−)−ψθs− (uθ(V (s))− uθ(V (s−)))

Replacing Λc, V c with their definitions, compensating the jumps, collecting all like integra-
tors, and replacing the summation by it’s Poisson representation, we have

Mθ(t)−Mθ(0) =

∫︂ t

0

eθΛ(s−)−ψθs−
(︃
(θf(V (s−))− ψθ)uθ(V (s−))

+
d∑︂
i=1

∂xiuθ(V (s−))µi(V (s−)) + 1

2

d∑︂
i,j=1

∂2xixjuθ(V (s−))(σσT )ij(V (s−))

+

∫︂
M

(uθ(r(V (s−), y))− uθ(V (s−))) νV (s−)(dy)

)︃
ds

+

∫︂ t

0

eθΛ(s−)−ψθs−
(︃
θf(V (s−))uθ(V (s−)) +

d∑︂
i=1

∂xiuθ(V (s−))ρi(V (s−))
)︃
dLc(s)

+

∫︂ t

0

eθΛ(s−)−ψθs−
d∑︂
i=1

∂xiuθ(V (s−))
d∑︂
j=1

σij(V (s−))dBj(s)

+

∫︂ t

0

∫︂
M
eθΛ(s−)−ψθs− (uθ(r(V (s−), y))− uθ(V (s−)))

(︁
N(ds, dy)− νV (s−)(dy)ds

)︁
.

For any pair (uθ(·), ψθ) satisfying the equations (1.8)-(1.9) we then get

Mθ(t)−Mθ(0) =

∫︂ t

0

eθΛ(s−)−ψθs−
d∑︂
i=1

∂xiuθ(V (s−))
d∑︂
j=1

σij(V (s−))dBj(s)

+

∫︂ t

0

∫︂
M
eθΛ(s−)−ψθs− (uθ(r(V (s−), y))− uθ(V (s−)))

(︁
N(ds, dy)− νV (s−)(dy)ds

)︁
.

For uθ(·) ∈ C2
+(S) the term

∑︁d
i=1 ∂xiuθ(·) is bounded on S. Likewise σ is assumed Lipschitz

continuous and so it is bounded on S. Since f is continuous, we also have

sup
0<s≤t

⃓⃓
eθΛ(s)

⃓⃓
≤ eθt·∥f∥∞,S+Ct·∥f∥∞,S <∞

for some constant C satisfying Lc(t) ≤ Ct and where ∥f∥∞,S = sup{|f(x)| : x ∈ S}. Then
we have

12
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∫︂ t

0

∫︂
S

E
[︁
eθΛ(s−)[uθ(r(V (s−), y))− uθ(V (s−))]

]︁
νV (s−)(dy)ds < 2teθ

˜︁Ct∥f∥∞,S∥uθ∥∞,S <∞,

for some constant ˜︁C large enough. We can conclude that both the integral with respect to
Brownian motion and the integral with respect to the compensated Poisson random measure
are martingales since any uniformly bounded local martingale is a martingale. Hence their
sum with Mθ(0), i.e. Mθ(t), is a martingale.

For the existence and uniqueness of uθ and ψθ satisfying (1.8)-(1.9) we next summarize
the arguments from Theorem 4.1 in [FSS87]. Let ˜︁Tt be the strongly continuous semigroup
defined by ˜︁Ttu(x) = E[eθΛ(t)u(V (t))|V (0) = x].

Let L be the second order linear operator on u ∈ C2(S) given by

Lu(x) =
d∑︂
i=1

∂xiu(x)µi(x)+
1

2

d∑︂
i,j=1

∂2xixju(x)(σσ
T )ij(x)+

∫︂
M
[u(r(x, y))−u(x)]νx(dy). (1.11)

Similarly to our earlier calculation, Itô’s formula gives

eθΛ(t)u(V (t))−u(V (0)) =

∫︂ t

0

eθΛ(s−)
(︁
Lu(V (s−)) + θf(V (s−))u(V (s−))

)︁
ds

+

∫︂ t

0

eθΛ(s−)

(︃
θf(V (s−))u(V (s−)) +

d∑︂
i=1

∂xiu(V (s−))ρi(V (s−))
)︃
dLc(s)

+

∫︂ t

0

eθΛ(s−)

d∑︂
i=1

∂xiu(V (s−))
d∑︂
j=1

σij(V (s−))dBj(s)

+

∫︂ t

0

∫︂
M
eθΛ(s−) (u(r(V (s−), y))− u(V (s−)))

(︁
N(ds, dy)− νV (s−)(dy)ds

)︁
.

Taking expectations, and as the last two integrals are martingales, we get that ˜︁Tt u − u =∫︁ t
0
˜︁Ts ˜︁Lu ds holds with the infinitesimal generator of ˜︁Tt given by the second order operator˜︁L = L+ θf , on the set of functions

D( ˜︁L) = {u ∈ C2(S) : θf(x)u(x) +
d∑︂
i=1

∂xiu(x)ρi(x) = 0,∀x ∈ ∂S}.

Assumptions (i)-(iii) on the semigroup of V imply that the semigroup ˜︁Tt also has a density˜︁p(t, x, y) with respect to µ for each t > 0 and satisfies (ii)-(iii), which can be easily verified.
For each t > 0 this ensures existence and uniqueness ([Kra12] Theorems 2.8, 2.10) of a pair
(uθ,t, ψθ,t) of a positive continuous function uθ,t on S and ψθ,t ∈ R, such that˜︁Ttuθ,t = eψθ,tuθ,t and max

x∈S
uθ,t(x) = 1.

One can further show (c.f. the argument in [FSS87] p.7), that there exist a probability
measure ηθ and ψθ ∈ R independent of t, such that for all v ∈ C(S) and all t > 0∫︂

x∈S

˜︁Tv(x)ηθ(dx) = eλθ·t
∫︂
x∈S

v(x)ηθ(dx).
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Integrating ˜︁Ttuθ,t with respect to ηθ, together with uniqueness of ψθ,t then imply that ψθ,t =
ψθ t. Iterating the semigroup property gives ˜︁Tntuθ,t = eψθ ntuθ,t, and then uniqueness of uθ,t
implies uθ,t = uθ,1 ∀t rational. Since ˜︁Ttuθ,1 ∈ D( ˜︁L) and is positive, we have uθ,1 ∈ D+( ˜︁L).
Furthermore, ˜︁Luθ,1 = ψθuθ,1, so that uniqueness of uθ,1 implies uniqueness, up to a constant,
of this positive eigenfunction for ˜︁L = L+ θf .

A positive eigenfunction and eigenvalue of the problem ˜︁Luθ(x) = ψθuθ(x) with eigen-
function satisfying the boundary constraint of D( ˜︁L) are the desired solution (uθ, ψθ) of
(1.8)-(1.9).

Remark 1.1. The proof above identifies, for each θ ∈ R and f ∈ C(S) bounded, the constant
ψθ as the principal eigenvalue of the operator ˜︁L = L + θf , where L is the generator of the
reflected jump-diffusion V as in (1.11). The next result will show it is the limit of log-moment
generating function of the additive process Λ. Donsker-Vardhan theory [DV76; DV83] then
implies it can also be expressed in terms of a variational problem (c.f. Theorem 1.1. in
[FSS87]).

Viewed as a function of θ ∈ R the eigenvalue ψθ is used to establish the large deviations for
Λ defined as follows. {Λ(t)}t≥0 is said to satisfy the large deviation principle (LDP) with rate
t and good rate function I if: I ̸≡ ∞; I has compact level sets (so is lower-semicontinuous);

lim sup
t→∞

1

t
logP(Λ(t) ∈ C) ≤ inf

x∈C
I(x), ∀C ⊂ R closed,

and
lim sup
t→∞

1

t
logP(Λ(t) ∈ O) ≤ inf

x∈O
I(x), ∀O ⊂ R open.

Using the result of Theorem 4.1 in [FSS87] one can prove this LDP using their Theorem 1.1,
or one can use the Gärtner-Ellis theorem (c.f. [DZ09] Theorem 2.3.6, [Hol00] Theorem V.6)
as below.

Corollary 1.1 (Log mgf and Gärtner-Ellis). For all θ ∈ R the logarithmic moment
generating function of Λ satisfies

lim
t→∞

1

t
logE

[︁
eθΛ(t)

]︁
= ψθ, (1.12)

and Λ satisfies the LDP with rate t and good rate function I = ψ∗ given by the Legendre
transform of ψ

ψ∗(x) = sup
θ
[θx− ψθ]. (1.13)

Proof. Since Mθ(t) is a martingale E
[︁
eθΛ(t)−ψθtuθ(V (t))

]︁
= uθ(V (0)). By the positivity and

boundedness of uθ(x), it follows that

e−ψθtE[eθΛ(t)] inf
x∈S

uθ(x) ≤ uθ(V (0)) ≤ e−ψθtE[eθΛ(t)] sup
x∈S

uθ(x),
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which implies
1

t
logE

[︁
eθΛ(t)

]︁
+

1

t
log inf

x∈S
uθ(x) ≤ ψθ +

1

t
log uθ(V (0)) ≤ 1

t
logE

[︁
eθΛ(t)

]︁
+

1

t
log sup

x∈S
uθ(x).

(1.14)
Therefore, (1.12) follows by taking t→∞.

The Gärtner-Ellis theorem requires that the following properties of ψθ as a function of θ
are satisfied:
(a) 0 ∈ int(Dψ) where Dψ = {θ ∈ R : ψθ < ∞}; (b) ψ is lower semi-continuous in θ; (c) ψθ
is differentiable with respect to θ on int(Dψ); and (d) Dψ = R or limθ∈Dψ→∂Dψ |∇ψθ| =∞.

By Theorem 1.1, there exists a finite eigenvalue ψθ for each fixed θ ∈ R, so Dψ = R.
Since ψ0 = 0, the origin is in the interior of Dψ.

Since ψθ is the eigenvalue associated with a unique positive eigenfunction of L+ θf , its
differentiability with respect to θ follows by use of the implicit function theorem (c.f. [FSS87]
p.2, [KM03] Prop 4.8).

Let Dψ,c = {θ ∈ R : ψθ ≤ c} denote sublevel sets of ψ· with respect to θ, and let θ ∈ Dψ,c.
There exists a sequence {θn}n≥0 ⊂ Dψ,c such that θn ↑ θ. Then,

lim
n→∞

ψθn = lim
n→∞

lim
t→∞

1

t
logE

[︁
eθnΛ(t)

]︁
= lim

t→∞

1

t
logE

[︁
eθΛ(t)

]︁
= ψθ ≤ c,

where the interchange of limits and the passage of the limit through the expectation follows
from the monotone convergence theorem and monotonicity in n. Then θ ∈ Dψ,c which implies
Dψ,c ⊂ Dψ,c. As all sublevel sets of ψθ are closed, we have that ψθ is lower semicontinuous
in θ.

Remark 1.2. Our main goal was characterizing the logarithmic moment generating function
ψθ by solving a boundary value PIDE, from which we can also obtain the long term mean
and variance for Λ. From the martingale Mθ (1.10) we have

E
[︁
eθΛ(t)uθ(V (t))

]︁
= eψθtuθ(V (0)). (1.15)

Assuming uθ is C2 as a function of θ, taking derivatives with respect to θ, and using domi-
nated convergence gives

1

teψθtuθ(V (0))
E
[︃
Λ(t)eθΛ(t)uθ(V (t)) + eθΛ(t)

d

dθ
uθ(V (t))

]︃
=
dψθ
dθ

+
1

t

d
dθ
uθ(V (0))

uθ(V (0))
.

Evaluating at θ = 0, and using the fact that at θ = 0 (u0(·), ψ0) ≡ (1, 0) solves the PIDE
(1.8)-(1.9), we get

1

t
E
[︃
Λ(t) +

d

dθ
uθ(V (t))

⃓⃓
θ=0

]︃
=
dψθ
dθ

⃓⃓
θ=0

+
1

t

d

dθ
uθ(V (0))

⃓⃓
θ=0

.

Taking the limit as t→∞, one gets for the long term mean of Λ that

lim
t→∞

1

t
E [Λ(t)] =

dψθ
dθ

⃓⃓
θ=0

.

Taking second derivatives in (1.15) with respect to θ, one similarly gets for the long term
variance of Λ that

lim
t→∞

1

t
V [Λ(t)] =

d2ψθ
dθ2

⃓⃓
θ=0

.
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One dimensional reflected jump-diffusion

In the case of a jump-diffusion in one dimension, much of the general theory simplifies to
more explicit formulae. In particular, there is only one possible direction of reflection at
each boundary, and there is an explicit formula for the SP mapping taking X to (V, L) that
provides a direct construction of the reflected process V .

Without loss of generality, let us assume S = [0, b] for some b <∞. Since L is a process
on ∂S = {0, b}, we can decompose L = L0 − Lb where we define L0 as the associated
boundary process at 0 and Lb as the associated boundary process at b, in the sense that, for
all t > 0: ∫︂ t

0

1{V (s)>0}dL0(s) = 0,

∫︂ t

0

1{V (s)<b}dLb(s) = 0. (1.16)

The explicit formula for (V, L) was constructed in [Kru+07; Kru+08] providing V (t) =
L[0,b](X)(t) via the following Skorokhod map

L[0,b](X)(t) := X(t)−
[︃
(X(0)− b)+ ∧ inf

0≤u≤t
X(u)

]︃
∨ sup

0≤s≤t

[︃
(X(s)− b) ∧ inf

s≤u≤t
X(u)

]︃
(1.17)

using the notation (x− b)+ = (x− b)∨ 0. It was also shown in [Kru+07] that the associated
boundary processes satisfy

L0(t) = sup
0≤s≤t

(Lb(s)−X(s))+, Lb(t) = sup
0≤s≤t

(X(s) + L0(s)− b)+, (1.18)

and that this formula with V = X + L0 − Lb is equivalent to the one in (1.16).
With S = [0, b], the additive functional becomes

Λ(t) =

∫︂ t

0

f(V (s))ds+ f(0)Lc0(t) + f(b)Lcb(t) (1.19)

where Lc0 and Lcb are the continuous parts of the increasing processes L0 and Lb, respectively.
We can recover them by using continuous approximations to the function f = 10 to get
Λ(t) = Lc0(t); and continuous approximations to f = 1b to get Λ(t) = Lcb(t).

By Theorem 1.1 we have that Mθ(t) = eθΛ(t)−ψθt is a martingale, and for each θ ∈ R
there exists a unique positive function uθ(x) and constant ψθ satisfying the PIDE

∂xuθ(x)µ(x) +
1

2
∂2xxuθ(x)σ

2(x) +

∫︂
M
[uθ(r(x, y))− uθ(x)]νx(dy) + uθ(x)(θf(x)− ψθ) = 0

(1.20)

subject to the boundary conditions, if Lc ̸≡ 0

θuθ(0)f(0) + ρ0∂xuθ(0) = 0, θuθ(b)f(b)− ρb∂xuθ(b) = 0. (1.21)

Without the jump part, the resulting PDE would be more straightforward to solve nu-
merically. We construct a numerical approximation scheme for uθ(x) based on the PIDE
(1.20)-(1.21) that allows for jumps (c.f. Section 1.4 for full details), and test it on two
examples of PIDEs whose solution we can derive analytically.
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§1.3 Examples

The partial integro-differential equation (1.8)-(1.9) for the pair (uθ(x), ψθ) can be solved
analytically only in a few special cases; even then the expression for ψ is implicit. In general,
one has to use numerical methods to solve this PIDE. We next provide a numerical scheme
to approximate its solution using d = 1 and S = [0, b].

Fix θ ∈ R, and let ˜︁L be the second order linear operator defined by ˜︁Luθ(x)−ψθuθ(x) = 0

in (1.20) on the subset of C2([0, b]) functions D( ˜︁L) defined by the boundary constraint
(1.21). Since the limit of the logarithmic moment generating function is the eigenvalue
ψθ of the operator ˜︁L with corresponding eigenfunction uθ(·), we will numerically solve the
eigenvalue problem ˜︁Luθ(x) = ψθuθ(x). We subdivide S = [0, b] into N + 1 equal sub-
intervals and approximate ˜︁L as a matrix. We treat the derivatives by finite differences
and the integral by composite trapezoidal quadrature on intervals with continuous support
and as a weighted sum on intervals with discrete support. The boundary conditions are
approximated by forward and backward finite-difference schemes and substituted into the
matrix where appropriate. Full details of the numerical method are contained in Section 1.4.

We now apply this numerical scheme to two special cases for which we can also derive
analytical implicit solutions to the limiting cumulant generating function, in order to test our
numerical scheme. We then apply the numerical estimation to our application of interest: a
biochemical reaction model and its jump-diffusion approximation.

Reflected Brownian motion with Drift

Let X be a standard Brownian motion in d = 1 on [0, b] with drift µ, diffusion σ2 (and ν ≡ 0)
and V be this process normally reflected at the boundaries. Let Λ = Lc0 be the local time
of X at 0 (so f = continuised version of 10 as described below (1.7)). Then (1.20)-(1.21)
becomes the partial differential equation with boundary constraints

1

2
σ2∂2xxuθ(x) + µ∂xuθ(x)− ψθuθ(x) = 0

θuθ(0) + ∂xuθ(0) = 0, uθ(b) = 1, ∂xuθ(b) = 0

(as uθ is unique only up to a constant, we are allowed to chose its value at x = b). When
the characteristic polynomial β2 + 2µ

σ2β − 2ψθ
σ2 = 0 has repeated roots, ψθ = −µ2/2σ2, then

uθ(x) = e
µ(b−x)
σ2

(︃
−bµ+ σ2 + µx

σ2

)︃
, θ = − µ2b

σ2(σ2 − bµ)
.

When the polynomial has real roots, ψθ > −µ2/2σ2, then for α =
√︁
µ2 + 2σ2ψθ

uθ(x) = e
b(µ−α)−x(α+µ)

σ2

(︄
(α− µ)e

2αb
σ2 + (α + µ)e

2αx
σ2

2α

)︄
, θ =

2σ2ψθe
2αb
σ2

σ2((α− µ)e
2αb
σ2 + (α + µ))

.
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1.3. EXAMPLES

When the polynomial has complex roots, ψθ < −µ2/2σ2, then for α =
√︁
−(µ2 + 2σ2ψθ)

uθ(x) = e
µ(b−x)
σ2

⎛⎝α cos
(︂
α(b−x)
σ2

)︂
− µ sin

(︂
α(b−x)
σ2

)︂
α

⎞⎠ , θ =
2σ2ψθ sin(

αb
σ2 )

σ2(µ sin(αb
σ2 )− α cos(αb

σ2 ))
.

In the special case of µ = 0, σ2 = 1: ψθ is given implicitly by θ =
√
2ψθ tanh(b

√
2ψθ) with

ψ0 = 0. A similar result was obtained by other analytic methods in [FKZ15].
For the numerics, we set b = 1 and approximate f by using continuous linear piecewise

functions f(x) = (1−(N+1)x)1{x< 1
N+1

} on [0, 1], for the choice of mesh stepsN to be defined.
Figure 1.1 shows the convergence of the proposed numerical scheme to the analytical solution
as the number of mesh steps are increased from N = 10 to N = 110 for various values of
θ. Table 1.1 compares the analytical result of ψθ against its numerical approximation, ˆ︂ψθ
for θ close to 0. In this approximation the interval S = [0, 1] is subdivided N + 1 = 1001
sub-intervals.

Figure 1.1: Convergence of ˆ︂ψθ for θ ∈ { i
10
}101

as {N}11010 increases for a reflected standard
Brownian Motion.

θ ψθ
ˆ︂ψθ |ψθ − ˆ︂ψθ|

0 0 3.761 × 10−10 3.761 × 10−10

0.001 5.003 × 10−4 5.002 × 10−4 9.816 × 10−8

0.002 1.001 × 10−3 1.001 × 10−3 3.942 × 10−7

0.003 1.502 × 10−3 1.502 × 10−3 8.859 × 10−7

0.004 2.004 × 10−3 2.003 × 10−3 1.573 × 10−6

0.005 2.507 × 10−3 2.504 × 10−3 2.457 × 10−6

0.006 3.010 × 10−3 3.006 × 10−3 3.536 × 10−6

0.007 3.513 × 10−3 3.508 × 10−3 4.809 × 10−6

0.008 4.017 × 10−3 4.011 × 10−3 6.277 × 10−6

0.009 4.521 × 10−3 4.514 × 10−3 7.937 × 10−6

0.01 5.027 × 10−3 5.017 × 10−3 9.792 × 10−6

Table 1.1: Comparison between ψθ and ˆ︂ψθ
when θ is near 0 for a reflected standard
Brownian Motion.

Reflected birth-death process

Let X be a pure birth-death process in d = 1 on S = {0, 1, 2, ..., b} with overall jump rate
λ, so νx(±1) = λ

2
(and µ = σ ≡ 0) and V be this process but it reflects on itself at the

boundaries: νx(±1) = λ
2

for x ∈ {1, . . . , b− 1} and ν0(+1) = ν0(0) =
λ
2
, νb(−1) = νb(0) =

λ
2
.

Let Λ =
∫︁ t
0
1Vs∈[0,1)ds and f(x) = 10≤x<1− 1

N+1
+ (N + 1)(1− x)1{1− 1

N+1
≤x<1} approximating

the function 1[0,1). Then (1.20)-(1.21) becomes the recurrence relation equation

−(λ+ ψθ − θf(x))uθ(x) +
λ

2
(uθ(r(x, 1))) +

λ

2
(uθ(r(x,−1))) = 0

⇐⇒

⎧⎨⎩
−(λ

2
+ ψθ − θ)uθ(0) + λ

2
uθ(1) = 0, x = 0

−(λ+ ψθ)uθ(x) +
λ
2
uθ(x+ 1) + λ

2
uθ(x− 1) = 0, x = {1, 2, ..., b− 1}

−(λ
2
+ ψθ)uθ(b) +

λ
2
uθ(b− 1) = 0, x = b.

with sole constraint uθ(b) = 1 (Lc ≡ 0, since X is a pure jump process).
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The recurrence equation on x = {1, 2, ..., b − 1} is a linear difference equation and may
be solved by standard methods. Namely, let uθ(x) = βx then the characteristic equation is

−(λ+ ψθ)β
x +

λ

2
βx+1 +

λ

2
βx−1 = 0 ⇐⇒ β2 − 2

λ
(λ+ ψθ)β + 1 = 0.

Solving for β, we have β = 1
λ

(︂
(λ+ ψθ)±

√︁
ψθ(2λ+ ψθ)

)︂
. Consequently,

uθ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C1

(︁
1
λ
(λ+ ψθ)

)︁x
+ C2x

(︁
1
λ
(λ+ ψθ)

)︁x
,

if ψθ ∈ {0,−2λ}
C1

(︂
1
λ

(︂
(λ+ ψθ) +

√︁
ψθ(2λ+ ψθ)

)︂)︂x
+ C2

(︂
1
λ

(︂
(λ+ ψθ)−

√︁
ψθ(2λ+ ψθ)

)︂)︂x
,

otherwise.

Using the boundary condition uθ(b) = 1, we can derive from the third recurrence relation
that uθ(b − 1) = 1 + 2

λ
ψθ, and using this in the second recurrence relation with x = b − 1,

we have uθ(b− 2) = 1 + 6
λ
ψθ +

4
λ2
ψ2
θ . Now we may solve for C1 and C2 to find that

uθ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
λ3

(︁
λ+ψθ
λ

)︁1−b+x
(λ3 + (5b− 3− 5x)λ2ψθ + 10(b− 1− x)λψ2

θ + 4(b− 1− x)ψ3
θ) ,

ψθ ∈ {0,−2λ}

1
2

⎛⎝(︃λ+ψθ−
√
ψθ(2λ+ψθ)

λ

)︃x−b
+

ψθ

(︃
λ+ψθ−

√
ψθ(2λ+ψθ)

λ

)︃x−b
√
ψθ(2λ+ψθ)

+

(︃
λ+ψθ+

√
ψθ(2λ+ψθ)

λ

)︃x−b
+

ψθ

(︃
λ+ψθ+

√
ψθ(2λ+ψθ)

λ

)︃x−b
√
ψθ(2λ+ψθ)

⎞⎠ ,

otherwise.

We equate the first recurrence equation to the second recurrence equation when x = 1
to derive the identity

uθ(0) =
λ
2

λ
2
+ ψθ − θ

uθ(1) =
2

λ
(λ+ ψθ)uθ(1)− uθ(2),

which can now be used to solve for ψθ implicitly. Namely for ψθ ̸∈ {0,−2λ}, θ = A
B

where

A =ψθ

⎛⎝λ
⎛⎝(︄−√︁ψθ(2λ+ ψθ) + λ+ ψθ

λ

)︄b

−

(︄√︁
ψθ(2λ+ ψθ) + λ+ ψθ

λ

)︄b
⎞⎠

+ψθ

⎛⎝(︄−√︁ψθ(2λ+ ψθ) + λ+ ψθ
λ

)︄b

−

(︄√︁
ψθ(2λ+ ψθ) + λ+ ψθ

λ

)︄b
⎞⎠

−
√︁
ψθ(2λ+ ψθ)

⎛⎝(︄−√︁ψθ(2λ+ ψθ) + λ+ ψθ
λ

)︄b

+

(︄√︁
ψθ(2λ+ ψθ) + λ+ ψθ

λ

)︄b
⎞⎠⎞⎠ ,
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B =ψθ

⎛⎝(︄−√︁ψθ(2λ+ ψθ) + λ+ ψθ
λ

)︄b

−

(︄√︁
ψθ(2λ+ ψθ) + λ+ ψθ

λ

)︄b
⎞⎠

−
√︁
ψθ(2λ+ ψθ)

⎛⎝(︄−√︁ψθ(2λ+ ψθ) + λ+ ψθ
λ

)︄b

+

(︄√︁
ψθ(2λ+ ψθ) + λ+ ψθ

λ

)︄b
⎞⎠ .

For the purposes of the numerical approximations, we will arbitrarily set λ = 50 and
b = 3. With this choice, ψθ is given implicitly by θ =

ψθ(62500+6250ψθ+150ψ2
θ+ψ

3
θ)

15625+3750ψθ+125ψ2
θ+ψ

3
θ

. Similarly,
using uθ(x) when ψθ ∈ {0,−2λ}, we deduce that with this choice of λ and b we have that
ψ0 = 0 and ψ−50 = −100. Given that S is discrete, numerical approximations of ψθ, ˆ︁ψθ, can
be made by solving for the largest real eigenvalue of the matrix⎡⎢⎢⎣

−50
2
+ θ 50

2
0 0

50
2

−50 50
2

0
0 50

2
−50 50

2

0 0 50
2
−50

2

⎤⎥⎥⎦
for each θ. Table 1.2 compares the analytical result of ψθ against its numerical approximation,ˆ︂ψθ, for various values of θ close to 0.

θ ψθ
ˆ︂ψθ |ψθ − ˆ︂ψθ|

0 0 −6.476 × 10−317 6.476 × 10−317

0.001 2.503 × 10−4 2.500 × 10−4 3.410 × 10−7

0.002 5.007 × 10−4 5.000 × 10−4 6.646 × 10−7

0.003 7.510 × 10−4 7.501 × 10−4 9.706 × 10−7

0.004 1.001 × 10−3 1.000 × 10−3 1.259 × 10−6

0.005 1.252 × 10−3 1.250 × 10−3 1.530 × 10−6

0.006 1.502 × 10−3 1.500 × 10−3 1.784 × 10−6

0.007 1.752 × 10−3 1.750 × 10−3 2.020 × 10−6

0.008 2.003 × 10−3 2.001 × 10−3 2.238 × 10−6

0.009 2.253 × 10−3 2.251 × 10−3 2.439 × 10−6

0.01 2.503 × 10−3 2.501 × 10−3 2.623 × 10−6

Table 1.2: Comparison between ψθ and ˆ︂ψθ when θ is near 0 for a reflected birth-death
process.

Biochemical reaction model2

Our main motivating example comes from jump-diffusion approximation of a biochemical
reaction model. The full model is a pure Markov jump process tracking the amount XA(t)
and XB(t) of molecular species A and B within a cell that also undergoes cellular growth
and division. The simplified representation of reactions between A and B is:

2The output figures for this model are collected on the last three pages of this subsection.
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A
˜︁κ10−1→ B

B
˜︁κ011→ A

A+B
˜︁κ11−1→ 2B

2A+B
˜︁κ211→ 3A

where all external factors are captured by reaction constants ˜︁κijk . At the time of cellular
division an assignment of one half of doubled molecules results in a Bernoulli(1

2
) random

error of ±1 in the amount of species A compensated by species B, occurring at a rate that
is proportional to their product and a division constant ˜︁γ. The jump Markov process for
the evolution of this system has the generator:

Gg(xA, yB) = ˜︁κ10−1xA[g(xA − 1, yB + 1)− g(xA, yB)] + ˜︁κ011 yB[g(xA + 1, yB − 1)− g(xA, yB)]
+ ˜︁κ11−1xAyB[g(xA − 1, yB + 1)− g(xA, yB)] + ˜︁κ211 x2AyB[g(xA + 1, yB − 1)− g(xA, yB)]

+
1

2
˜︁γxAyB[g(xA − 1, yB + 1)− g(xA, yB)] +

1

2
˜︁γxAyB[g(xA + 1, yB − 1)− g(xA, yB)]

for g ∈ C(N× N). This reaction and division dynamics has two relevant features:
(1) There is a conservation law in the total sum of species A and B, and letting n denote

the initial overall total of both species, XA = xA
n
, XB = yB

n
denote the proportions (out of

n) of species A,B respectively, all the reactions preserve the initial total XA(0)+XB(0) = 1
so that XB(t) = 1 − XA(t),∀t > 0 reduces the model to d = 1. This allows us to express
the rates of reactions, which are proportional to the product of source types masses and
the chemical reaction constants, where the latter are assumed to scale as ˜︁κ = nν−1κ with
ν=number of sources in the reaction. The generator of the process XA = xA

n
for g ∈ C([0, 1])

is:

Gng(x) = n
(︁
κ10−1x+ κ11−1x(1− x)

)︁[︁
g(x− 1

n
)− g(x)

]︁
+ n
(︁
κ011 (1− x) + κ211 x

2(1− x)
)︁[︁
g(x+

1

n
)− g(x)

]︁
+

1

2
γnx(1− x)

[︁
g(x− 1

n
)− g(x)

]︁
+

1

2
γnx(1− x)[g(x+

1

n
)− g(x)]

showing the overall reaction rates of decreasing and increasing proportions of A as nr−(x) =
nκ10−1x+ nκ11−1x(1− x) and nr+(x) = nκ011 (1− x) + nκ211 x

2(1− x), respectively. The division
rates for both increasing and decreasing proportions of A are ξn(x) = 1

2
γnx(1 − x), where

the relationship of γn to n will be explored in the two approximations of the jump Markov
chain to follow.

(2) The long term dynamics exhibits a form of noise induced bistability in the proportion
of species A, under appropriate assumptions on the constants {κ··· } (c.f. (⋆) below). The
rate of change of the mean is:

d

dt
E [XA(t)|XA(t) = x] = µ(x) := −κ10−1x+κ

01
1 (1−x)−κ11−1x(1−x)+κ211 x2(1−x), x ∈ [0, 1]

(1.22)
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and since µ(x) is a cubic, assuming (⋆) that it has all real roots in [0, 1], then the dynamics
of E[XA(t)] has two stable equilibria and one unstable equilibrium point creating potential
barriers on either side of the domain of attraction of the two equilibria. Freidlin-Wentzel
theory (Chapter 6, [FW98]) for path properties of Markov processes with O(n) rates and
O( 1

n
) jump sizes imply that this process will spend most of its time in the stable equilibria

with rare transitions between small neighbourhoods around them created by perturbations
due to randomness in the system. The occupation measure process will reflect this and
increasingly concentrate at the deterministic stable points. For more details on sample path
properties on finite time intervals of biochemical reaction models with division errors (c.f.
Section 3.3., [MP14]).

To estimate the mean local time at the two stable equilibria, as well as the large deviations
away from this mean, we numerically solve the PIDE for the limiting cumulant generating
function ψθ, which again reduces to solving for the largest eigenvalue of an (n+1)× (n+1)
matrix. Set n = 100, and κ011 = 1, κ211 = 32

3
, κ10−1 = 1, κ11−1 = 16

3
(for which (⋆) is satisfied as

the cubic has all real roots), then the two stable equilibria are x1 = 0.25 and x2 = 0.75 on
S = [0, 1], and we will define f(x) as the continuised version of 1x∈B1/(N+1)(0.25)∪B1/(N+1)(0.75),
so that the additive functional Λ(t) measures the time spent around the two stable equilibria.

The jump Markov process parameters are νx(+ 1
n
) = ξn(x)+nr+(x) and νx(− 1

n
) = ξn(x)+

nr−(x) (and µ = σ2 ≡ 0). On the two boundaries the rates of the reaction dynamics and
division errors at x ∈ {0, 1} have only inward jumps (r−(0) = r+(1) = 0, ξn(0) = ξn(1) = 0),
so no additional reflection is needed to keep the process within S = [0, 1], and Vn = Xn

A.
When γn = n, the rate of division errors ξn(x) = 1

2
nx(1 − x) is of the same order as

the rate of reactions. Hence, a rigorous approximation of Xn
A(t) in terms of n can be made

in terms of the constrained Langevin process (c.f. [LW19; And+19]) which is a reflected
diffusion Vn on [0, 1] with small noise

dVn(t) =µ(Vn(t))dt+
1√
n

√︁
r+(Vn(t)) + r−(Vn(t)) + Vn(t)(1− Vn(t))dW (t)

+
1√
n

(︁
ρ0dL0(t)− ρ1dL1(t)

)︁
. (1.23)

Its drift is equal to µ(x) = −κ10−1x+κ
01
1 (1−x)−κ11−1x(1−x)+κ211 x2(1−x) from (1.22) as the

division error is unbiased, the diffusion coefficent σ2(x) = r+(x) + r−(x) + x(1− x) is equal
to the sum of all rates as the square of all jumps are of size (± 1

n
)2 = 1

n2 , and the reflection
directions are ρ0 = ρ1 = 1 on associated boundary processes L0 and L1 respectively. Large
deviation theory for path properties of small noise diffusions (Chapter 5, [DZ09] and Chapter
5, [FW98]) also implies this process spends most of its time in the neighbourhood of stable
equilibria with rare excursions transitioning between them. The occupation measure of the
process will concentrate near the stable equilibria in the long term limit. To estimate the
numerical solution for the limiting cumulant generating function ψθ of the same additive
functional Λ(t) as above, we set the jump-diffusion parameters to µ(x), σ2(x) as above (and
νx ≡ 0), and we define a sequence of continuous linear piecewise functions f by:

22



CHAPTER 1. LARGE DEVIATIONS

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ x < 0.25− 1
N+1

(N + 1)x+ 1− 0.25(N + 1) 0.25− 1
N+1
≤ x < 0.25

−(N + 1)x+ 1 + 0.25(N + 1) 0.25 ≤ x < 0.25 + 1
N+1

0 0.25 + 1
N+1
≤ x < 0.75− 1

N+1

(N + 1)x+ 1− 0.75(N + 1) 0.75− 1
N+1
≤ x < 0.75

−(N + 1)x+ 1 + 0.75(N + 1) 0.75 ≤ x < 0.75 + 1
N+1

0 0.75 + 1
N+1
≤ x ≤ 1.

We use ψθ,JMP to denote the numerical solution to the PIDE for the limiting cumulant
generating function ψθ of the jump Markov process Xn

A(t), and ψNθ,JDA for the reflected
diffusion approximation Vn(t) in (1.23), where we use n = 100 in the first set of results and
n = 1000 in the second. We empirically verify the stability of the numerical approximation in
mesh size in Figure 1.2: surfaces (a) and (b) approximate ψNθ,JDA for 0 ≤ θ ≤ 1, {N}15050 and
{N}1500500 , respectively; the bottom plots (c) and (d) compare the approximations of ψθ,JMP

(in red) and ψNθ,JDA (in blue), for n = N = 100 and n = N = 1000, respectively.
To estimate the mean ψ′(0) and variance ψ′′(0) of local times for fixed n = N = 1000,

we consider centered finite difference approximations using θ = {−0.01, 0, 0.01} and obtain:

ψ′
0,JMP ≈ 1.2× 10−3, ψ′′

0,JMP ≈ 1.6× 10−5;

ψ′
0,JDA ≈ 2.6× 10−3, ψ′′

0,JDA ≈ 5.2× 10−5.

Comparing the results for n = 100 with n = 1000 shows the numerical approximation
is more stable as the rescaling parameter n increases, since then the magnitude of noise
decreases in both processes. However, the long-term mean local time differs in the two
models regardless of the increase in scaling parameter. This is in contrast with the finite
time results which say that the paths of the two processes become closer in n, but can be
reasoned by the fact that the sup-norm of the path difference features a multiplying constant
that is a function of the length of the time interval [Kur78; KKP14], and that our results are
based on taking limits as the time of integration goes to infinity, and not as the noise size
goes to zero. Our numerical results indicate that the mean of the local time at equilibria are
smaller for the jump Markov model than for the reflected diffusion, indicating a tighter long
term concentration of the stationary distribution of the reflected JDA at equilibria compared
to that of the JMP. This is in full agreement with the results of [MP14] Theorem 3.1 which
say that the functional path large deviation rate of jumps between the two stable equilibria
is higher for the jump Markov model than for the reflected diffusion. Since more frequent
transitions result in a less concentrated measure our present observation follows.

We next consider the case when division errors occur at higher rate γn ≫ n (e.g. γn =
10n2) than the rates of reactions. The ± 1

n
errors from division now dominate the noise and

it is more suitable to approximate the model instead by a process in which only the reaction
contributions are modeled by a constrained Langevin equation with small noise while the
error division contributions are still modeled by pure jumps. The jump-diffusion model
in part reduces computation, but also allows a comparison with the approximate diffusion
model in the case γn = n. We now define ˜︁Vn to be the following reflected jump-diffusion
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d˜︁Vn(t) =µ(˜︁Vn(t))dt+ 1√
n

√︂
r+(˜︁Vn(t)) + r−(˜︁Vn(t))dW (t)± 1

n
dY

ξ(˜︁Vn)
± (t)

+
1√
n

(︁
ρ0dL0(t)− ρ1dL1(t)

)︁
, (1.24)

where each Y ξ(˜︁Vn)
− and Y ξ(˜︁Vn)

+ are counting processes with intensity measure ξn(˜︁Vn) = 1
2
γn˜︁Vn(1−˜︁Vn). We use γn = 10n2 and present the results for the local time at the same two equilibria

{0.25, 0.75} in Figure 1.3.
Derivatives of ψθ near θ = 0 inferred from our results for n = N = 1000 using centered

finite differences at points θ = {−0.01, 0, 0.01}:

ψ′
0,JMP ≈ 7.1× 10−3, ψ′′

0,JMP ≈ 2.9× 10−5;

ψ′
0,JDA ≈ 9.1× 10−3, ψ′′

0,JDA ≈ 6.9× 10−2

indicate that in this scenario the reflected jump-diffusion is a closer approximation of the long
term behaviour of the original model. This is a consequence of the fact that the dominant
noise comes from jumps that are now present in the same (un-approximated) form in the
reflected jump-diffusion as specified in the original model.

Since the magnitude of division error rates is not influenced by the rates of chemical
reactions in the system, it is crucial to have a way to distinguish their order of magnitude,
which we argue can be done using time-additive functionals (dynamical observables) within
experiments. One possible indicator is the local time at the deterministic stable equilibria:
when γn ≫ n (e.g. γn = 10n2) both the jump Markov model and the reflected jump-diffusion
from (1.24) spend less time near equilibria, as the stronger noise from division errors coun-
teracts the pull towards the stable equilibria of the drift µ which is defined by the system
of reactions [MP14]. Since we have numerically obtained the limiting cumulant generating
function for the model with γn = n, we can argue that the comparison of the average value
of this local time with that of its average value for the model with γn = 10n2 provides a
distinction between the two cases.

To establish a quantifiable indicator of distinction between the two cases, we also measure
the long term local times of the jump Markov model and of the reflected jump-diffusion (1.24)
in a neighborhood of the boundary B1/(N+1)({0, 1}). All the numerical algorithm parameters
are the same as above, except that the piecewise linear continuous functions f approximating
1x∈B1/(N+1)(0)∪B1/(N+1)(1) are now:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 0 ≤ x ≤ 1
N+1

2− (N + 1)x 1
N+1
≤ x < 2

N+1

0 2
N+1
≤ x < 1− 2

N+1

2 + (N + 1)(x− 1) 1− 2
N+1
≤ x < 1− 1

N+1

1 1− 1
N+1
≤ x ≤ 1.

An extra mesh point was used to account for the asymmetry of the neighborhood around
the boundary points, which results in more numerically stable outputs.
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Figure 1.4 displays the results, and the derivatives near θ = 0 for this ψθ using n = N =
1000 and centered finite differences at θ = {−0.01, 0, 0.01} are approximately:

ψ′
0,JMP ≈ 2.6× 10−1, ψ′′

0,JMP ≈ 6.6× 10−3;

ψ′
0,JDA ≈ 1.8× 10−1, ψ′′

0,JDA ≈ 5.2× 10−2.

This confirms that the jump-diffusion approximation also accurately reflects the fact that
the original process spends substantially more time reflecting at the boundaries than staying
near its stable equilibria. In fact, since the noise in the model (after rescaling time) is not
small, as the rescaling parameter n increases the paths of the process in finite time are not
converging closer to a deterministic path. Instead they exhibit fast passages through the
interior of (0, 1) spending most of the time waiting for a reaction on the boundary {0, 1} to
push it away from the boundary back into the interior. This fully matches the observations
of the functional path behaviour of this model in Proposition 4.1 and Figure 3 in Section
4.2 in [MP14]. This type of behaviour has also been called ‘discreteness-induced transitions’
when analyzed in related models (c.f. [TK01; BDM14; BKW20]).

A comparison of the average long term local time near the boundaries versus the average
time at the stable equilibria then presents a quantifiable indicator for distinguishing the
order of magnitude of division error intensity, and for retaining jumps in the reflected jump-
diffusion approximation of the original model as crucial in the second case. Our example
illustrates that numerical estimates of local times constitute valuable dynamic observables
for reflected processes with drift of this form. They can be used to assess the closeness of
approximating processes to the original model in the long-term (infinite time), as well as to
distinguish the order of magnitude of an unbiased source of noise unseen by the drift of the
process.

A last comment on the stability of our numerical scheme in this example: we found that
mesh sizes comparable to jump sizes in the process work well, while further refinements can
lead to numerical instabilities.
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1.3. EXAMPLES

(a) ψNθ,JDA plot for n = 100, 0 ≤ θ ≤ 1 as
{N}15050 increases (reflected diffusion)

(b) ψNθ,JDA plot for n = 1000, 0 ≤ θ ≤ 1 as
{N}1500500 increases (reflected diffusion)

(c) ψθ,JMP and ψNθ,JDA plots for n = N = 100,
0 ≤ θ ≤ 100.

(d) ψθ,JMP and ψNθ,JDA plots for n = N = 1000,
0 ≤ θ ≤ 100.

Figure 1.2: Numerical estimate of the limiting cumulant generating function ψθ for the
long-term local time of {0.25, 0.75} of the jump Markov process ψθ,JMP and of the reflected
diffusion ψNθ,JDA (case γn = n).
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(a) ψNθ,JDA plot for n = 100, 0 ≤ θ ≤ 1 as
{N}15050 increases (reflected jump diffusion)

(b) ψNθ,JDA plot for n = 1000, 0 ≤ θ ≤ 1 as
{N}1500500 increases (reflected jump diffusion)

(c) ψθ,JMP and ψNθ,JDA plots for n = N = 100,
0 ≤ θ ≤ 100.

(d) ψθ,JMP and ψNθ,JDA plots for n = N = 1000,
0 ≤ θ ≤ 100.

Figure 1.3: Numerical estimates of ψθ for the long-term local time of {0.25, 0.75} of the
jump Markov process ψθ,JMP and of the reflected jump-diffusion ψNθ,JDA (case γn = 10n2).
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1.3. EXAMPLES

(a) ψNθ,JDA plot for n = 100, 0 ≤ θ ≤ 1 as
{N}15050 increases

(b) ψNθ,JDA plot for n = 1000, 0 ≤ θ ≤ 1 as
{N}1500500

(c) ψθ,JMP and ψNθ,JDA plots for n = N = 100,
0 ≤ θ ≤ 100.

(d) ψθ,JMP and ψNθ,JDA plots for n = N = 1000,
0 ≤ θ ≤ 100.

Figure 1.4: Numerical estimates of ψθ for long-term local time of {0, 1} of the jump Markov
process ψθ,JMP and of the reflected jump-diffusion ψNθ,JDA (γn = 10n2).
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§1.4 Numerical Solution to pide

Fix θ ∈ R. Let ˜︁L be the operator

˜︁Luθ(x) = µ(x)∂xuθ(x) +
σ2(x)

2
∂2xxuθ(x) + θf(x)uθ(x) +

∫︂
M
[uθ(r(x, y))− uθ(x)]νx(dy);

with D( ˜︁L) := {uθ ∈ C2([0, b]) : θf(0)uθ(0) + ρ0∂xuθ(0) = 0, θf(b)uθ(b)− ρb∂xuθ(b) = 0}.

We will numerically solve for the eigenvalue problem ˜︁Luθ(x) = ψθuθ(x), x ∈ [0, b] subject
to the boundary conditions of D( ˜︁L), by replacing each derivative by an appropriate finite-
difference quotient and the integral term by an appropriate sum.

Select an integer N > 0 and divide the length of [0, b] into (N + 1) equal subintervals
whose endpoints are the mesh points xi = ih, for i = 0, 1, ..., N + 1, where h = b

N+1
. At

the interior mesh points, xi, for i = 1, 2, ..., N − 1, N , the PIDE to be approximated is˜︁Luθ(xi) = ψθuθ(xi).
Since νx(dy) may be discrete, continuous, or some combination of both, M as a series

of disjoint continuous and discrete intervals. We call the continuous intervals Mc
jc for jc =

1, 2, ..., nc and the discrete intervals Md
dc

for jd = 1, 2, ..., nd. Then we may rewrite the
integral term as∫︂

M
[uθ(r(x, y))− uθ(x)]νx(dy) =

∑︂
jc

∫︂
Mc

jc

[uθ(r(x, y))− uθ(x)]νx(dy)

+
∑︂
jd

∫︂
Md

jd

[uθ(r(x, y))− uθ(x)]νx(dy).

The discrete measure may be interpreted as∑︂
jd

∫︂
Md

jd

[uθ(r(x, y))− uθ(x)]νx(dy) =
∑︂
jd

∑︂
y∈Md

jd

[uθ(r(x, y))− uθ(x)]νx(y).

To approximate the continuous integral, we apply the Composite Trapezoidal rule over each
intervalMc

jc ≡ [ajc , bjc ]. Define the integrand as gx(y) ≡ [uθ(r(x, y))−uθ(x)]νx(y). For each
jc, select an integer Njc > 0 and divide the length ofMc

jc , (bjc − ajc), into Njc subintervals.
So we have step size hjc =

bjc−ajc
Njc

and yjck = ajc + khjc for each k = 0, 1, ..., Njc . Then the
first sum can be written as

∑︂
jc

∫︂
Mc

jc

gx(y)dy =
∑︂
jc

⎛⎝hjc
2

⎛⎝gx(ajc) + 2

Njc−1∑︂
jc=1

gx(yjck ) + gx(bjc)

⎞⎠− bjc − ajc
12

h2jc(g
x)′′(κjc)

⎞⎠
for some κjc in [ajc , bjc ].

We approximate the derivatives on (0, b) by a centered-difference scheme where ηi and ξi
are some values in (xi−1, xi+1). Putting all the approximations together results in the finite
difference equation
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µ(xi)

(︃
u(xi+1)− u(xi−1)

2h
− h2

6
u(3)(ηi)

)︃
+
σ2(xi)

2

(︃
u(xi+1)− 2u(xi) + u(xi−1)

h2
− h2

12
u(4)(ξi)

)︃

+ θf(xi)u(xi) +
∑︂
jc

⎛⎝hjc
2

⎛⎝gxi(ajc) + 2

Njc−1∑︂
jc=1

gxi(yjck ) + gxi(bjc)

⎞⎠− bjc − ajc
12

h2jc(g
xi)′′(κjc)

⎞⎠
+
∑︂
jd

∑︂
y∈Md

jd

[u(r(xi, y))− u(xi)]νxi(y) = ψθu(xi).

We choose forward and backward finite-difference schemes with O(h2) truncation error
to approximate the boundary conditions:

−3
2
u0 + 2u1 − 1

2
u2

h
= −f(0)θu0

ρ0
⇐⇒ u0 =

4ρ0u1 − ρ0u2
3ρ0 − 2θf(0)h

,

3
2
uN+1 − 2uN + 1

2
uN−1

h
=
f(b)θuN+1

ρb
⇐⇒ uN+1 =

ρbuN−1 − 4ρbuN
2θf(b)h− 3ρb

.

After truncating and rearranging together with the boundary conditions, we define the
system of linear equations

ψθui =

(︃
−µ(xi)

2h
+
σ2(xi)

2h2

)︃
ui−1 +

(︃
−σ

2(xi)

h2
+ θf(xi)

)︃
ui +

(︃
µ(xi)

2h
+
σ2(xi)

2h2

)︃
ui+1

+
N+1∑︂
l=0

˜︁gul(xi)ul,
where each function ˜︁gul(xi) represents the sum of all terms in the integral approximations
that are factors of ul, for each i = 1, 2, ..., N . Every time u0 or uN+1 is a term in the equation,
we replace it with the appropriate boundary condition. This allows us to define the system
of equations as an N × N matrix, with a1(xi) ≡ −µ(xi)

2h
+ σ2(xi)

2h2
, a2(xi) ≡ −σ2(xi)

h2
+ θf(xi),

and a3(xi) ≡ µ(xi)
2h

+ σ2(xi)
2h2

, as
(A + G)u = ψθu,

where

A =

⎡⎢⎢⎣
4ρ0a1(x1)

3ρ0−2θf(0)h
+ a2(x1) − ρ0a1(x1)

3ρ0−2θf(0)h
+ a3(x1) 0 · · · 0 0

a1(x2) a2(x2) a3(x2) · · · 0 0

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 a1(xN−1) a2(xN−1) a3(xN−1)

0 · · · 0 0 a1(xN ) +
ρba3(xN )

2θf(b)h−3ρb
a2(xN ) − 4ρba3(xN )

2θf(b)h−3ρb

⎤⎥⎥⎦ ,

G =

⎡⎢⎢⎢⎣
˜︁gu1(x1) ˜︁gu2(x1) ˜︁gu3(x1) · · · ˜︁guN (x1)˜︁gu1(x2) ˜︁gu2(x2) ˜︁gu3(x2) · · · ˜︁guN (x2)

. . . . . . . . . . . . . . .˜︁gu1(xN) ˜︁gu2(xN) ˜︁gu3(xN) · · · ˜︁guN (xN)

⎤⎥⎥⎥⎦ , and u =

⎡⎢⎢⎢⎣
u1
u2
...
uN

⎤⎥⎥⎥⎦ .

Finally, we compute ψθ by solving for the eigenvalues of A+G and selecting the one with
largest value, then its associated eigenvector is the solution u to the PIDE.
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Chapter 2

Functional Central Limit Theorem for a
Fast-Slow Dynamical System driven by Symmetric

and Multiplicative α−Stable Noise

Outline

§2.1 The model with its associated assumptions and definitions are setup. An intro-
duction to the main theorem statements follows.

§2.2 Exponential ergodicity is discussed and the regularity properties of the Poisson
equation needed for the main results are studied.

§2.3 The averaging and functional central limit theorem results are proved.

§2.4 Provides an illustrative practical example in a simulation study that illustrates
the results of this chapter.

§2.5 Collects some a priori results and repetitive proofs for lemmas that would oth-
erwise detract from the exposition.

Notation
Let k be some positive integer and δ ∈ (0, 1).

C· constant dependent on ·
| · | Euclidean vector norm
⟨·, ·⟩ Euclidean inner product
|| · || Matrix norm
Ck(Rd) {ϕ : Rd → R|ϕ and all its partial derivatives up to order k are continuous}
Ck
b (Rd) {ϕ ∈ Ck(Rd)| for 1 ≤ i ≤ k, the i-th partial derivatives are bounded}

Ck+δ
b (Rd) {ϕ ∈ Ck

b (Rd)| all the k-th partial derivatives are δ-Hölder continuous}



2.1. PRELIMINARIES

In general, β is reserved for use with multi-index notation, understood as a d-dimensional
tuple. So |β| = |(β1, β2, ..., βd)| = β1+β2+...+βk, β! = β1!β2!...βk!, and for any d-dimensional
vector xβ = xβ11 x

β2
2 ...x

βd
d . Let δ1, δ2 ∈ (0, 1) and k1, k2 be positive integers with the real valued

function ϕ : Rd1 ×Rd2 . The notation ϕ ∈ Ck1+δ1,k2+δ2
b reproduced from [SXX22] means that:

(i) let β1, β2 be d1, d2-tuples, respectively, with |β1|+ |β2| ≥ 1 such that 0 ≤ |β1| ≤ k1, 0 ≤
|β2| ≤ k2, then all partial derivatives ∂β1x ∂β2y ϕ are bounded continuous;

(ii) for any |β1| = k1 and 0 ≤ |β2| ≤ 1, ∂β1x ∂β2y ϕ is δ1-Hölder continuous with respect to x
and index δ1 uniformly in y;

(iii) and for any |β2| = k2, ∂β2y ϕ is δ2-Hölder continuous with respect to y with index δ2
uniformly in x.

§2.1 Preliminaries

Fix 0 < ϵ < 1 and consider the following fast-slow dynamical system in Rd1×d2 driven by
multiplicative α-stable processes:{︄

dXϵ
t = f(Xϵ

t , Y
ϵ
t )dt+ ϵρc (Xϵ

t , Y
ϵ
t ) dLt,1, Xϵ

0 = x ∈ Rd1 ,

dY ϵ
t = ϵ−1g(Xϵ

t , Y
ϵ
t )dt+ ϵ−

1
α b (Xϵ

t , Y
ϵ
t ) dLt,2, Y ϵ

0 = y ∈ Rd2 ,
(2.1)

where {Lt,1}t≥0 and {Lt,2}t≥0 are independent d1, d2-dimensional symmetric α-stable Lévy
motions, with stability index ˜︁α ∈ (1, 2], and α ∈ (1, 2), respectively, and the parameter
ρ > 1− 1

α
. The coefficient functions are assumed to be Borel measurable and satisfy:

f ∈ C2+γ,2+δ
b : Rd1 × Rd2 → Rd1 ,

g ∈ C1+γ,2+γ
b : Rd1 × Rd2 → Rd2 ,

c ∈ C1,1
b : Rd1 × Rd2 → Rd1 × Rd1 ,

b ∈ C1+γ,2+γ
b : Rd1 × Rd2 → Rd2 × Rd2 ,

(A1)

where γ ∈ (α − 1, 1) and δ ∈ (0, 1). Call {Xϵ
t }t≥0 the slow process and {Y ϵ

t }t≥0 the fast
process; a simple substitution t← ϵt shows that Y ϵ

t evolves at an order 1
ϵ

faster than Xϵ
t by

the 1
α

self-similarity property of α-stable motion.

Remark 2.1. All first derivatives of the functions f, g, c, b are bounded. Therefore, each of
these functions is globally Lipschitz and consequently satisfies the necessary growth condition.
It then follows that there exists a unique solution {(Xϵ

t , Y
ϵ
t )}t≥0 to (2.1) (see Theorem 6.2.3,

[App09]).

Due to the lack of square integrability related to the Lévy measure of Lt,2 and the
generator to be introduced, it is not possible to include α = 2 in the interval (1, 2) or the
calculations would not follow. In practice, much has already been studied with respect to
dynamical systems forced by Brownian motion and so this does not pose a great limitation
in application. By understanding that when ˜︁α = 2 then Lt,1 is Brownian motion, no such
issue arises in the noise of the slow process.
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Furthermore, notice that the function c does not depend on ϵ and so cannot be made to
vanish in ϵ (see I3 in eq 2.60 below). The case ρ = 1 − 1

α
would lead to a constant which

is not sufficient to control the U ϵ
t term below and the slow process noise could escape to

infinity. The strict inequality is necessary.
Define the frozen process as the equation that satisfies

dY x,y
t = g(x, Y x,y

t ) + b(x, Y x,y
t )dLt,2, Y x,y

0 = y ∈ Rd2 . (2.2)

Intuitively, this equation describes the evolution of the fast process if the slow process were
held fixed on the fast process’ time scale. That is,

Y ϵ
ϵt = g(Xϵ

ϵt, Y
ϵ
ϵt)dt+ b(Xϵ

ϵt, Y
ϵ
ϵt)dLt,2,

by the 1
α

self-similarity property, and then fixing x = Xϵ
ϵt. The generator of the frozen

process acts as the Poisson equation operator and of great interest to the proof of the
averaging principle.

Remark 2.2. Recall the generator of the α-stable Lévy motion is given by the fractional
Laplacian −(−∆)

α
2 which has the following definition for some function ϕ : Rd → R

−(−∆)
α
2 ϕ(y) :=

α2α−1Γ(d+α
2
)

π
d
2Γ(1− α

2
)

∫︂
Rd\{0}

ϕ(y + z)− ϕ(y)− 1{|z|<1}⟨z,∇ϕ(y)⟩
|z|d+α

dz.

Consider the Lévy-Itô decomposition, with small jumps less than 1, for the α-stable Lévy
motion

dLt,2 =

∫︂
|z|≤1

z ˜︁N2(dt, dz) +

∫︂
|z|>1

zN2(dt, dz).

Then one may rewrite Y x,y
t as

dY x,y
t = g(x, Y x,y

t )dt+

∫︂
|z|≤1

b(x, Y x,y
t )zd ˜︁N2(dt, dz) +

∫︂
|z|>1

b(x, Y x,y
t )zdN2(dt, dz),

where the Poisson random measure is given by N2(t, ζ) =
∑︁
s≤t

1ζ(Ls,2 − Ls−,2) and the com-

pensated Poisson random measure is given by ˜︁N2(t, ζ) = N2(t, ζ) − tν2(ζ), with the Lévy
measure ν2(dz) =

Cα,ddz

|z|d2+α where the normalizing constant is given by Cα,d =
α2α−1Γ( d+α

2
)

π
d
2 Γ(1−α

2
)

.

In this form, it is easy to read the generator (Theorem 6.7.4, [App09]),

Lϕx(y) =⟨g(x, y),∇ϕx(y)⟩

+ Cα,d

∫︂
Rd2\{0}

ϕx(y + b(x, y)z)− ϕx(y)− 1|z|<1⟨b(x, y)z,∇ϕx(y)⟩
|z|d2+α

dz.

Now substitute u := b(x, y)z to see an equivalent, more compact form for the generator
of Y x,y

t involving the fractional Laplacian,

Lϕx(y) = ⟨b(x, y)α,−(−∆)
α
2 ϕx(y)⟩+ ⟨g(x, y),∇ϕx(y)⟩. (2.3)
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Consider the following definitions which recur throughout the chapter. For any bounded
measurable function ϕ : Rd2 → R, define the transition semigroup of Y x,y

t by

P x
t ϕ(y) := Eϕ(Y x,y

t ), y ∈ Rd2 , t ≥ 0. (2.4)

Associated to the semigroup is the invariant probability measure which satisfies

µx(P x
t ϕ) = µx(ϕ). (2.5)

{P x
t }t≥0 is said to be φ-uniformly exponentially ergodic if there are constants C, κ > 0 and

a measurable function φ : Rd2 → [1,∞) such that

sup
ϕ≤φ
|P x
t ϕ(y)− µx(ϕ)| ≤ Ce−κtφ(y), t ≥ 0, y ∈ Rd2 . (2.6)

Assume that there exists a κ > 0 such that for all x ∈ Rd1 and y1, y2 ∈ Rd2 ,
sup
x∈Rd1

|f(x, 0)| <∞ and the following drift condition holds:

⟨g(x, y1)− g(x, y2), y1 − y2⟩+
∫︁
|z|≥1
⟨(b(x, y1)− b(x, y2)) z, y1 − y2⟩ν2(dz)

+
∫︁
Rd2 |b(x, y1)− b(x, y2)|

2z2ν2(dz) ≤ −κ|y1 − y2|2.
(A2)

This assumption will be necessary to establish exponential ergodicity in Lemma 2.2 below;
but first, one must show that there exists a unique invariant probability measure for {P x

t }t≥0.

Remark 2.3. Let

q :=
24+2απ

d2
2 Γ
(︁
d2+α

2

)︁
Γ
(︁
d2
2

)︁2
Γ
(︁
2−α
2

)︁ (︃
α

2− α
+

α

(α− p)p

)︃
.

Since g ∈ C1+γ,2+γ
b , b ∈ C1+γ,2+γ

b , there exists a constant C > 0 such that for all ξ ∈ Rd2 and
locally bounded measurable functions ϕ1, ϕ2 on Rd2,

C−1|ξ| ≤ |b(x, y)ξ| ≤ C|ξ|, and (2.7)

|g(x, y + h)− g(x, y)| ≤ ϕ1|h|γ, |b(x, y + h)− b(x, y)| ≤ ϕ2|h|γ. (2.8)

Furthermore, from condition (A2),

⟨g(x, y), y⟩+ ϵ0ϕ1|y|+ q (|b(x, y)|+ ϵ0ϕ2)
α |y|2−α

=⟨g(x, y)− g(x, 0), y⟩

+

∫︂
|z|≥1

⟨(b(x, y)− b(x, 0)) z, y⟩ν2(dz) +
∫︂
Rd2
|b(x, y)− b(x, 0)|2 z2ν2(dz)

−
∫︂
Rd2
|b(x, y)− b(x, 0)|2 z2ν2(dz)−

∫︂
|z|≥1

⟨(b(x, y)− b(x, 0)) z, y⟩ν2(dz)

+ ϵ0ϕ1|y|+ ⟨g(x, 0), y⟩+ q (|b(x, y)|+ ϵ0ϕ2)
α |y|2−α

≤− κ|y|2 + 2C||b||2 + 2C||b|||y|+ ϵ0ϕ1|y|+ |g||y|+ q (||b||+ ϵ0ϕ2)
α (1 + |y|)

=− κ|y|2 + (2C||b||+ ϵ0ϕ1 + |g|+ q(||b||+ ϵ0ϕ2)
α) |y|+

(︁
2C||b||2 + q(||b||+ ϵ0ϕ2)

α
)︁
.
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Then by Young’s inequality,

=− κ|y|2 + κ|y|2

2
+

(2C||b||+ ϵ0ϕ1 + |g|+ q(||b||+ ϵ0ϕ2)
α)2

2κ
(2.9)

+
(︁
2C||b||2 + q(||b||+ ϵ0ϕ2)

α
)︁

≤− κ

2
|y|2 + C. (2.10)

(2.7) and (2.8) satisfy assumption (Hloc) and (2.9) satisfies assumption (Hr,q
glo) with r = 0 and

p ∈ [1, α) in Theorem 1.2 of [ZZ23]. Therefore, there exists a unique invariant probability
measure µx associated to {P x

t }t≥0.

Lastly, the next remark establishes another quick inequality that is derived directly from
the assumption (A2) which will prove useful in the lemmas to come.

Remark 2.4. Let ϵ0 > 0 and set y1 = y, y2 = y + ϵ0 in (A2) for some fixed d ∈ Rd2. Then,

⟨(g(x, y + ϵ0d)− g(x, y))
ϵ0d

ϵ0d
, ϵ0d⟩+

∫︂
|z|≥1

⟨
(︃
(b(x, y + ϵ0d)− b(x, y))

ϵ0d

ϵ0d

)︃
z, ϵ0d⟩ν2(dz)

+

∫︂
Rd2

⃓⃓⃓⃓
(b(x, y + ϵ0d)− b(x, y))

ϵ0d

ϵ0d

⃓⃓⃓⃓2
z2ν2(dz)

≤ −κ|ϵ0d|2

=⇒ ϵ20

(︃
⟨(g(x, y + ϵ0d)− g(x, y))

d

ϵ0d
, d⟩+

∫︂
|z|≥1

⟨
(︃
(b(x, y + ϵ0d)− b(x, y))

d

ϵ0d

)︃
z, d⟩ν2(dz)

+

∫︂
Rd2

⃓⃓⃓⃓
(b(x, y + ϵ0d)− b(x, y))

d

ϵ0d

⃓⃓⃓⃓2
z2ν2(dz)

)︄
≤ −κ|ϵ0d|2.

Now take ϵ0 → 0,

⟨∇yg(x, y)d, d⟩+
∫︂
|z|≥1

⟨∇yb(x, y)zd, d⟩ν2(dz) +
∫︂
Rd2
|∇yb(x, y)d|2z2ν2(dz) ≤ −κ|d|2. (2.11)

The following two results will be proved in Section 2.3, the second of which is the main
objective of this chapter. The proposition related to the Poisson equation is interesting in
its own right, but the application of the result is the main concern, and therefore will be
introduced in Section 2.2.
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Theorem 2.1 Averaging Principle

For any initial conditions (x, y) ∈ Rd1 × Rd2, T > 0 and p ∈ [1, α), there exists a
constant Cp,T,x,y > 0 such that

E

[︄
sup
t∈[0,T ]

⃓⃓
Xϵ
t −X t

⃓⃓p]︄ ≤ Cp,T,x,yϵ
p(1− 1

α
), (2.12)

where X is the solution to the averaged equation

X t := x+

∫︂ t

0

f
(︁
Xs

)︁
ds, (2.13)

and f(x) :=
∫︁
Rd2 f(x, y)µ

x(dy) is the averaged drift where µx is the unique invariant
measure for frozen equation 2.2.

A Poisson equation involving the generator and the drift terms of the slow and averaged
process will be used to establish the rate of convergence in Theorem 2.1. This rate hints at
how to appropriately scale the deviations for the next theorem. Furthermore, the solution
to the Poisson equation itself aids in fully characterizing the limit of the scaled deviations
(eq (2.17) below). In short, this auxiliary Poisson equation provides a technical foundation
upon which the main theory rests. It will be introduced and solved shortly (see Section 2.2).

Theorem 2.2 Functional Central Limit

Define the scaled deviations between the slow process and its averaged process by

V ϵ
t := ϵ

1
α
−1
(︁
Xϵ
t −X t

)︁
, (2.14)

and let L be the generator of Y x,y
t . Suppose h(x, y) is the unique solution of the Poisson

equation

−Lh(x, y) = f(x, y)− f(x). (2.15)

Then for any T > 0

V ϵ
t ⇒ Vt, t ∈ [0, T ], (2.16)

where V0 = 0 and Vt solves

Vt =

∫︂ t

0

∇xf
(︁
Xs

)︁
Vsds+Mt (2.17)

where

Mt :=

∫︂ t

0

∫︂
Rd2

∫︂
Rd2

h
(︁
Xs, y + b

(︁
Xs, y

)︁
z
)︁
− h

(︁
Xs, y

)︁
µXs(dy) ˜︁N2(ds, dz). (2.18)
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The main difficulties involved relate to the lack of square integrability of α-stable Lévy
noise. Finite p-th moments require a little more care in the calculations. Ensuring the
solution to the non-local Poisson equation exists and that this solution satisfies all the
necessary regularity properties, in the presence of the noise pre-factors, leads to a number of
technical lemmas with extra terms to address (see Section 2.5). Before the proofs of the main
results, the above mentioned regularity properties for the Poisson equation are addressed.

§2.2 Poisson Equation

This section addresses the non-local Poisson equation in Rd2 . The lemmas and corollar-
ies necessary for Proposition 2.1 are stated but proved in Section 2.5 as they only serve
a technical function and are often repetitive in nature. Lemmas 2.2, 2.5, and 2.8 are di-
rectly referenced in the proposition, but each lemma and corollary is important as they all
progressively build on each other.

This first lemma establishes a bound between two frozen processes which is used often
within other corollaries and lemmas.

Lemma 2.1. For any t ≥ 0, x1, x2 ∈ Rd1 , y1, y2 ∈ Rd2, there exists a constant C > 0 such
that

E |Y x1,y1
t − Y x2,y2

t | ≤ e−
κt
2 |y1 − y2|+ C|x1 − x2|. (2.19)

Proof. See Section 2.5.

These gradient estimates are a first quick application of Lemma 2.1.

Corollary 2.1. For any t ≥ 0, there exists a constant C > 0 such that

sup
x∈Rd1 ,y∈Rd2

E ||∇yY
x,y
t || ≤ Ce−

κt
2 , sup

t≥0,x∈Rd1 ,y∈Rd2
E ||∇xY

x,y
t || ≤ C. (2.20)

Proof. See Section 2.5.

The following lemma says that the semigroup associated to the frozen process is (1 +
|y|)-uniformly exponentially ergodic. Exponential ergodicity is crucial in establishing the
regularity properties of the Poisson equation.

Lemma 2.2. For any function ϕ ∈ C1
b , there exists a constant C > 0 such that for any

t ≥ 0 and y ∈ Rd2,

sup
x∈Rd1

|P x
t ϕ(y)− µx(ϕ)| ≤ C||ϕ||1e−

κt
2 (1 + |y|), (2.21)

where ||ϕ||1 := sup
x ̸=y

|ϕ(x)−ϕ(y)|
|x−y| .
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Proof. From the definition of the transition semigroup and invariant measure for the frozen
process

|P x
t ϕ(y)− µx(ϕ)| = |Eϕ(Y

x,y
t )− µx (P x

t ϕ)|

=

⃓⃓⃓⃓
Eϕ (Y x,y

t )−
∫︂
Rd2

Eϕ (Y x,z
t )µx(dz)

⃓⃓⃓⃓
≤ ||ϕ||1

∫︂
Rd2

E |Y x,y
t − Y x,z

t |µx(dz),

which by Lemma 2.1 is

≤||ϕ||1ϵ−
κt
2

∫︂
Rd2
|y − z|µx(dz) ≤ C||ϕ||1ϵ−

κt
2 (1 + |y|), (2.22)

since sup
x∈Rd1

∫︁
Rd2 |z|

pµx(dz) <∞ for p ∈ [1, α) (see eq (2.39) in Section 2.5).

Similarly to Lemma 2.1 and Corollary 2.1 above, but for the gradient with respect to x.

Lemma 2.3. For any t ≥ 0, x1, x2 ∈ Rd1 , y1, y2 ∈ Rd2, there exists a constant C > 0 such
that

E ||∇xY
x1,y1
t −∇xY

x2,y2
t || ≤ C (|x1 − x2|γ + |x1 − x2|) + Ce−

κt
4 |y1 − y2|. (2.23)

Proof. See Section 2.5.

Corollary 2.2. For any t ≥ 0, there exists a constant C > 0 such that

sup
x∈Rd1 ,y∈Rd2

E ||∇y∇xY
x,y
t || ≤ Ce−

κt
4 . (2.24)

Proof. See Section 2.5.

This definition, used to simplify the notation, is frequently encountered throughout the
remainder of this section. Define

ˆ︁f(x, y, t) := E [f (x, Y x,y
t )] and ˜︁ft0(x, y, t) := ˆ︁f(x, y, t)− ˆ︁f(x, y, t+ t0). (2.25)

The following two lemmas establish bounds for these expectations.

Lemma 2.4. For any θ ∈ (0, 1] there exists a Cθ > 0 such that for any t ≥ 0, x ∈ Rd1 , y1, y2 ∈
Rd2, ⃓⃓⃓⃓⃓⃓

∇x
ˆ︁f(x, y1, t)−∇x

ˆ︁f(x, y2, t)⃓⃓⃓⃓⃓⃓ ≤ Cθe
−κθt

4 |y1 − y2|θ. (2.26)

Proof. See Section 2.5.

Lemma 2.5. For any θ ∈ (0, 1], there exists a Cθ > 0 and η > 0 such that for any
t0 > 0, x ∈ Rd1 , y ∈ Rd2, ⃓⃓⃓⃓⃓⃓

∇x
˜︁ft0(x, y, t)⃓⃓⃓⃓⃓⃓ ≤ Cθe

−ηt (︁1 + |y|θ)︁ . (2.27)
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Proof. See Section 2.5.

Again, the following lemma-corollary pair bound the difference for the gradient in y.

Lemma 2.6. For any t ≥ 0, x1, x2 ∈ Rd1 , y1, y2 ∈ Rd2,

E ||∇yY
x1,y1
t −∇yY

x2,y2
t || ≤ C (|x1 − x2|γ + |x1 − x2|) + Ce−

κt
4 |y1 − y2|. (2.28)

Proof. See Section 2.5.

Corollary 2.3. For any t ≥ 0, there exists a constant C > 0 such that

sup
x∈Rd1 ,y∈Rd2

E
⃓⃓⃓⃓
∇2
yY

x,y
t

⃓⃓⃓⃓
≤ Ce−

κt
4 . (2.29)

Proof. See Section 2.5.

Lastly, one final estimate used in Lemma 2.8 to bound the difference of the gradients
with respect to x for the expectations in Lemma 2.8:

Lemma 2.7. For any t ≥ 0, x1, x2 ∈ Rd1 , y1, y2 ∈ Rd2,

sup
y∈Rd2

E ||∇y∇xY
x1,y
t −∇y∇xY

x2,y
t || ≤ Ce−

κt
4 |x1 − x2|γ

(︁
1 + |x1 − x2|1−γ

)︁
. (2.30)

Proof. See Section 2.5.

Lemma 2.8. For any θ ∈ (0, 1], there exists a Cθ > 0 and η > 0 such that for any
t0 > 0, x ∈ Rd1 , y ∈ Rd2,⃓⃓⃓⃓⃓⃓
∇x
˜︁ft0(x1, y, t)−∇x

˜︁ft0(x2, y, t)⃓⃓⃓⃓⃓⃓ ≤ Ce−ηt|x1 − x2|γ
(︁
1 + |x1 − x2|1−γ

)︁
(1 + |y|). (2.31)

Proof. See Section 2.5.

The following proposition is the main theorem for this section. The existence of the solu-
tion to the Poisson equation and its regularity properties are established. These properties
help bound various terms when proving the rate of convergence for the averaging principle
and that builds into the functional central limit theorem result.
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Proposition 2.1 Poisson Equation

Let L be the generator of the frozen process Y x,y
t (see eq 2.3 above). Define

h(x, y) :=

∫︂ ∞

0

[︁
E [f (x, Y x,y

t )]− f(x)
]︁
dt. (2.32)

Then h(x, y) is a solution of the Poisson equation,

−Lh(x, y) = f(x, y)− f(x). (2.33)

Furthermore, there exists a C > 0 such that

sup
x∈Rd1

|h(x, y)| ≤ C(1 + |y|), sup
x∈Rd1 ,y∈Rd2

||∇yh(x, y)|| ≤ C, (2.34)

and for any θ ∈ (0, 1], there exists Cθ > 0 such that for any x1, x2 ∈ Rd1 , y ∈ Rd2,

sup
x∈Rd1

||∇xh(x, y)|| ≤ Cθ
(︁
1 + |y|θ

)︁
, (2.35)

||∇xh(x1, y)−∇xh(x2, y)|| ≤ C|x1 − x2|γ
(︁
1 + |x1 − x2|1−γ

)︁
(1 + |y|). (2.36)

Proof. Using the exponential ergodicity of Lemma 2.2, h(x, y) is well defined since

|h(x, y)| =
⃓⃓⃓⃓∫︂ ∞

0

E [f (x, Y x,y
t )]− f(x)dt

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂ ∞

0

P x
t f(y)− µx(f)dt

⃓⃓⃓⃓
≤ C||f ||1(1 + |y|)

∫︂ ∞

0

e−
κt
2 dt <∞.

Notice that the right hand side does not depend on x, therefore, just as easily one may
establish the first estimate of (2.34). Namely,

sup
x∈Rd1

|h(x, y)| ≤ C(1 + |y|).

By the properties of semigroups, h(x, y) satisfies the Poisson equation (2.33) since

Lh(x, y) =L
(︃
lim
t→∞

∫︂ t

0

E [f (x, Y x,y
s )]− f(x)ds

)︃
= lim

t→∞
L
(︃∫︂ t

0

E [f (x, Y x,y
s )]− f(x)ds

)︃
,

where the interchanges follows due to dominated convergence,

= lim
t→∞

P x
t

[︁
f(x, ·)− f(x)

]︁
(y)− (f(x, y)− f(x))

=− (f(x, y)− f(x)).
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It follows that

∇yh(x, y) =

∫︂ ∞

0

E [∇yf (x, Y
x,y
t ) · ∇yY

x,y
t ] dt

where

d∇yY
x,y
t = ∇yg (x, Y

x,y
t ) · ∇yY

x,y
t dt+∇yb (x, Y

x,y
t ) · ∇yY

x,y
t dLt,2, ∇yY

x,y
t = I.

By Corollary 2.1 and the boundedness of ∇yf , the second estimate of (2.34) is

∇yh(x, y) ≤ C

∫︂ ∞

0

e−
κt
2 dt =⇒ sup

x∈Rd1 ,y∈Rd2
||∇yh(x, y)|| ≤ C.

We have from Lemma 2.2 and the definition of f in terms of the invariant measure,

lim
t0→∞

˜︁ft0(x, y, t) = lim
t0→∞

ˆ︁f(x, y, t)− ˆ︁f(x, y, t+ t0)

= lim
t0→∞

E [f (x, Y x,y
t )]− E

[︁
f
(︁
x, Y x,y

t+t0

)︁]︁
=E [f (x, Y x,y

t )]− f(x).

This further implies,

lim
t0→∞

∇x
˜︁ft0(x, y, t) = ∇x

[︁
E [f (x, Y x,y

t )]− f(x)
]︁
.

By consequence, Lemma 2.5 gives

||∇xh(x, y)|| ≤
∫︂ ∞

0

⃓⃓⃓⃓⃓⃓
∇x
˜︁ft0(x, y, t)⃓⃓⃓⃓⃓⃓ dt ≤ Cθ(1 + |y|θ)

∫︂ ∞

0

e−ηtdt ≤ Cθ(1 + |y|θ),

which is estimate (2.35).
Finally, for estimate (2.36),

||∇xh(x1, y)−∇xh(x2, y)|| =
⃓⃓⃓⃓⃓⃓⃓⃓∫︂ ∞

0

∇x

[︁
E [f (x1, Y

x1,y
t )]− f(x1)

]︁
dt

−
∫︂ ∞

0

∇x

[︁
E [f (x2, Y

x2,y
t )]− f(x2)

]︁
dt

⃓⃓⃓⃓⃓⃓⃓⃓
≤
∫︂ ∞

0

⃓⃓⃓⃓⃓⃓
∇x
˜︁ft0(x1, y, t)−∇x

˜︁ft0(x2, y, t)⃓⃓⃓⃓⃓⃓ dt
≤C|x1 − x2|γ

(︁
1 + |x1 − x2|1−γ

)︁
(1 + |y|)

∫︂ ∞

0

e−ηtdt

≤C|x1 − x2|γ
(︁
1 + |x1 − x2|1−γ

)︁
(1 + |y|),

which follows from Lemma 2.8.
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§2.3 Proofs of Main Results

The following section details the proofs of the main theorems of this chapter: the averaging
principle and the functional central limit theorem. The proof of the averaging principle was
inspired by [SXX22]. For the most part, it is identical with the obvious modifications for the
additional multiplicative noise term, differing drift condition and keeping the dependence on
T explicit. This was done to make it more convenient to show the functional central limit
theorem and has the benefit of making explicit why the results hold on the bounded interval
[0, T ]. The proofs of the following moment estimates can be found in Section 2.5.

Lemma 2.9. For any p ∈ [1, α) and T ≥ 1, there exists a constants Cp > 0 such that

sup
ϵ∈(0,1)

E

[︄
sup
t∈[0,T ]

|Xϵ
t |
p

]︄
≤ CpT

peCpT (1 + |x|p + |y|p) (2.37)

and

sup
ϵ∈(0,1)

sup
t≥0

E |Y ϵ
t |
p ≤ Cp(1 + |y|p). (2.38)

Proof. See Section 2.5.

Remark 2.5. The same steps used to derive (2.38) may be used to derive the estimate

sup
t≥0

E |Y x,y
t |

p ≤ Cp(1 + |y|p). (2.39)

Lemma 2.10. For any p ∈ [1, α) and T ≥ 1, there exists a constant Cp > 0 such that,

E

[︄
sup
t∈[0,T ]

|Y ϵ
t |
p

]︄
≤ CpT

pϵ−
p
α + |y|p . (2.40)

Proof. See Section 2.5.

Lemma 2.11. For any x ∈ Rd1, (2.13) has a unique solution X t. Also, for any T ≥ 1,
there exists a constant Cp > 0 such that for any p ∈ [1, α),

E

[︄
sup
t∈[0,T ]

⃓⃓
X t

⃓⃓p]︄ ≤ Cp,T (1 + |x|p) . (2.41)

Proof. See Section 2.5.

Proof of Theorem 2.1. Begin by writing

Xϵ
t −X t =

∫︂ t

0

f (Xϵ
s, Y

ϵ
s )− f

(︁
Xs

)︁
ds+ ϵρ

∫︂ t

0

c (Xϵ
s, Y

ϵ
s ) dLs,1

=

∫︂ t

0

f (Xϵ
s, Y

ϵ
s )− f (Xϵ

s) ds+

∫︂ t

0

f (Xϵ
s)− f

(︁
Xs

)︁
ds+ ϵρ

∫︂ t

0

c (Xϵ
s, Y

ϵ
s ) dLs,1
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=

∫︂ t

0

−Lh(Xϵ
s, Y

ϵ
s )ds+

∫︂ t

0

f (Xϵ
s)− f

(︁
Xs

)︁
ds+ ϵρ

∫︂ t

0

c (Xϵ
s, Y

ϵ
s ) dLs,1.

The proof of Lemma 2.11 in Section 2.5 establishes the Lipschitz property of f . Deduce

E

[︄
sup
t∈[0,T ]

⃓⃓
Xϵ
t −X t

⃓⃓p]︄ ≤CpE[︄ sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

−Lh(Xϵ
s, Y

ϵ
s )ds

⃓⃓⃓⃓p]︄

+ CpT
p

∫︂ T

0

E

[︄
sup
s∈[0,T ]

⃓⃓
Xϵ
s −Xs

⃓⃓p]︄
ds

+ E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓
ϵρ
∫︂ t

0

c (Xϵ
s, Y

ϵ
s ) dLs,1

⃓⃓⃓⃓p]︄
.

Then by Gronwall’s inequality and eq (2.88) in Section 2.5,

E

[︄
sup
t∈[0,T ]

⃓⃓
Xϵ
t −X t

⃓⃓p]︄ ≤ Cpe
CpT p+1

(︄
E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

−Lh(Xϵ
s, Y

ϵ
s )ds

⃓⃓⃓⃓p]︄
+ T pϵρp

)︄
. (2.42)

Apply Itô’s formula with small jumps of size ϵ
1
α for the fast process,

h (Xϵ
t , Y

ϵ
t )− h(x, y) =

∫︂ t

0

⟨f (Xϵ
s, Y

ϵ
s ) ,∇xh (X

ϵ
s, Y

ϵ
s )⟩ds

+

∫︂ t

0

⟨ϵ−1g (Xϵ
s, Y

ϵ
s ) ,∇yh (X

ϵ
s, Y

ϵ
s )⟩ds

+

∫︂ t

0

∫︂
|z|≥1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s )N1 (ds, dz)

+

∫︂ t

0

∫︂
|z|≥ϵ

1
α

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s )N2 (ds, dz)

+

∫︂ t

0

∫︂
|z|<1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s ) ˜︁N1 (ds, dz)

+

∫︂ t

0

∫︂
|z|<ϵ

1
α

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s ) ˜︁N2 (ds, dz)

+

∫︂ t

0

∫︂
|z|<1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s )

− ⟨ϵρc (Xϵ
s, Y

ϵ
s ) z,∇xh (X

ϵ
s, Y

ϵ
s )⟩ν1(dz)ds

+

∫︂ t

0

∫︂
|z|<ϵ

1
α

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s )

− ⟨ϵ−
1
α b (Xϵ

s, Y
ϵ
s ) z,∇yh (X

ϵ
s, Y

ϵ
s )⟩ν2(dz)ds.

Compensate for the small jumps,
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=

∫︂ t

0

⟨f (Xϵ
s, Y

ϵ
s ) ,∇xh (X

ϵ
s, Y

ϵ
s )⟩ds+

∫︂ t

0

⟨ϵ−1g (Xϵ
s, Y

ϵ
s ) ,∇yh (X

ϵ
s, Y

ϵ
s )⟩ds

+

∫︂ t

0

∫︂
Rd1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s ) ˜︁N1 (ds, dz)

+

∫︂ t

0

∫︂
Rd2

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s ) ˜︁N2 (ds, dz)

+

∫︂ t

0

∫︂
|z|≥1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s ) ν1(dz)ds

+

∫︂ t

0

∫︂
|z|≥ϵ

1
α

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s ) ν2(dz)ds

+

∫︂ t

0

∫︂
|z|<1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s )

− ⟨ϵρc (Xϵ
s, Y

ϵ
s ) z,∇xh (X

ϵ
s, Y

ϵ
s )⟩ν1(dz)ds

+

∫︂ t

0

∫︂
|z|<ϵ

1
α

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s )

− ⟨ϵ−
1
α b (Xϵ

s, Y
ϵ
s ) z,∇yh (X

ϵ
s, Y

ϵ
s )⟩ν2(dz)ds.

Make the substitution ϵ−
1
α z to arrive at

=

∫︂ t

0

⟨f (Xϵ
s, Y

ϵ
s ) ,∇xh (X

ϵ
s, Y

ϵ
s )⟩ds+

∫︂ t

0

⟨ϵ−1g (Xϵ
s, Y

ϵ
s ) ,∇yh (X

ϵ
s, Y

ϵ
s )⟩ds

+

∫︂ t

0

∫︂
Rd1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s ) ˜︁N1 (ds, dz)

+

∫︂ t

0

∫︂
Rd2

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s ) ˜︁N2 (ds, dz)

+

∫︂ t

0

∫︂
|z|≥1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s ) ν1(dz)ds

+ ϵ−1

∫︂ t

0

∫︂
|z|≥1

h (Xϵ
s, Y

ϵ
s + b (Xϵ

s, Y
ϵ
s ) r)− h (Xϵ

s, Y
ϵ
s ) ν2(dr)ds

+

∫︂ t

0

∫︂
|z|<1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s )

− ⟨ϵρc (Xϵ
s, Y

ϵ
s ) z,∇xh (X

ϵ
s, Y

ϵ
s )⟩ν1(dz)ds

+ ϵ−1

∫︂ t

0

∫︂
|z|<1

h (Xϵ
s, Y

ϵ
s + b (Xϵ

s, Y
ϵ
s ) r)− h (Xϵ

s, Y
ϵ
s )

− ⟨b (Xϵ
s, Y

ϵ
s ) r,∇yh (X

ϵ
s, Y

ϵ
s )⟩ν2(dr)ds.

Finally,

=

∫︂ t

0

LXϵ

h (Xϵ
s, Y

ϵ
s ) ds+ ϵ−1

∫︂ t

0

Lh (Xϵ
s, Y

ϵ
s ) ds+M ϵ

t,1 +M ϵ
t,2, (2.43)
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where

LXϵ

h (x, y) := ⟨f (x, y) ,∇xh (x, y)⟩+
∫︂
|z|≥1

h (x+ ϵρc (x, y) z, y)− h (x, y) ν1(dz)

+

∫︂
|z|<1

h (x+ ϵρc (x, y) z, y)− h (x, y)− ⟨ϵρc (x, y) z,∇xh (x, y)⟩ν1(dz), (2.44)

and

M ϵ
t,1 :=

∫︂ t

0

∫︂
Rd1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s ) ˜︁N1 (ds, dz) , (2.45)

M ϵ
t,2 :=

∫︂ t

0

∫︂
Rd2

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s ) ˜︁N2 (ds, dz) , (2.46)

are Ft−martingales. Rearrange the terms,∫︂ t

0

−Lh (Xϵ
s, Y

ϵ
s ) ds = ϵ

(︃
h(x, y)− h (Xϵ

t , Y
ϵ
t ) +

∫︂ t

0

LXϵ

h (Xϵ
s, Y

ϵ
s ) ds+M ϵ

t,1 +M ϵ
t,2

)︃
,

(2.47)

and continue from (2.42),

E

[︄
sup
t∈[0,T ]

⃓⃓
Xϵ
t −X t

⃓⃓p]︄ ≤CpeCpT p+1

ϵp

(︄
E

[︄
sup
t∈[0,T ]

|h(x, y)− h (Xϵ
t , Y

ϵ
t )|

p

]︄

+E
[︃∫︂ T

0

⃓⃓
LXϵ

h (Xϵ
s, Y

ϵ
s )
⃓⃓p
ds

]︃
+E

[︄
sup
t∈[0,T ]

⃓⃓
M ϵ

t,1

⃓⃓p]︄
+ E

[︄
sup
t∈[0,T ]

⃓⃓
M ϵ

t,2

⃓⃓p]︄)︄
+ Cpe

CpT p+1

T pϵρp

=:Cpe
CpT p+1

ϵp
4∑︂
i=1

Ji + Cpe
CpT p+1

T pϵρp. (2.48)

Apply estimates (2.34), (2.40) to J1,

E

[︄
sup
t∈[0,T ]

|h(x, y)− h (Xϵ
t , Y

ϵ
t )|

p

]︄
≤ Cp (1 + |y|p) + Cp

(︄
1 + E

[︄
sup
t∈[0,T ]

|Y ϵ
t |
p

]︄)︄
≤Cp (1 + |y|p) + CpT

pϵ−
p
α + |y|p ≤ CpT

p (1 + |y|p) ϵ−
p
α . (2.49)

Notice

|f (Xϵ
s, Y

ϵ
s )| ≤ |f (Xϵ

s, Y
ϵ
s )− f (Xϵ

s, 0)|+ |f (Xϵ
s, 0)− f(0, 0)|+ |f(0, 0)|

≤ (||∇yf || |Y ϵ
s |+ ||∇xf || |Xϵ

s|+ C)

≤C(1 + |Xϵ
s|+ |Y ϵ

s |).
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By (2.35), (2.36), and Lemma 2.9, then for J2,

E
[︃∫︂ T

0

⃓⃓
LXϵ

h (Xϵ
s, Y

ϵ
s )
⃓⃓p
ds

]︃
≤ CpT

pE
[︃∫︂ T

0

|⟨f (Xϵ
s, Y

ϵ
s ) ,∇xh (X

ϵ
s, Y

ϵ
s )⟩|

p ds

]︃
+ CpT

pE
[︃∫︂ T

0

⃓⃓⃓⃓∫︂
|z|≥1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s ) ν1(dz)

⃓⃓⃓⃓p
ds

]︃
+ CpT

pE
[︃∫︂ T

0

⃓⃓⃓⃓∫︂
|z|<1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s )

−⟨ϵρc (Xϵ
s, Y

ϵ
s ) z,∇xh (X

ϵ
s, Y

ϵ
s )⟩ν1(dz)|

p ds]

≤CpT pE
[︃∫︂ T

0

(1 + |Xϵ
s|
p + |Y ϵ

s |
p)Cθ

(︂
1 + |Y ϵ

s |
θ
)︂
ds

]︃
+ CpT

pE
[︃∫︂ T

0

⃓⃓⃓⃓∫︂
|z|≥1

sup
x∈Rd1

||∇xh (x, Y
ϵ
s )|| |ϵρc (Xϵ

s, Y
ϵ
s ) z| ν1(dz)

⃓⃓⃓⃓p
ds

]︃
+ CpT

pE
[︃∫︂ T

0

⃓⃓⃓⃓∫︂
|z|<1

⟨ϵρc (Xϵ
s, Y

ϵ
s ) z,∇xh (X

ϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )⟩

−⟨ϵρc (Xϵ
s, Y

ϵ
s ) z,∇xh (X

ϵ
s, Y

ϵ
s )⟩ν1(dz)|

p ds]

≤CpT pE
[︃∫︂ T

0

(1 + |Xϵ
s|
p + |Y ϵ

s |
p)
(︂
1 + |Y ϵ

s |
θ
)︂
ds

]︃
+ CpT

pE
[︃∫︂ T

0

⃓⃓⃓⃓∫︂
|z|≥1

|ϵρc (Xϵ
s, Y

ϵ
s ) z| ν1(dz)

⃓⃓⃓⃓p
(1 + |Y ϵ

s |
p) ds

]︃
+ CpT

pE
[︃∫︂ T

0

⃓⃓⃓⃓∫︂
|z|<1

|ϵρc (Xϵ
s, Y

ϵ
s ) z|

γ+1 (︁1 + |ϵρc (Xϵ
s, Y

ϵ
s ) z|

1−γ)︁ ν1(dz)⃓⃓⃓⃓p (1 + |Y ϵ
s |
p) ds

]︃
≤CpT p+1

(︃
1 + |x|p′ + |y|

θp′
p′−p∨(p+θ)

)︃
, (2.50)

where p < p′ < α and θ is small enough such that θp′

p′−p ∨ (p + θ) < α (see [SXX22]) and
follows by Young’s inequality.

For the first martingale term J3, apply the Burkholder-Davis-Gundy inequality,

E

[︄
sup
t∈[0,T ]

⃓⃓
M ϵ

t,1

⃓⃓p]︄ ≤
CpE

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

∫︂
|z|≤1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s ) ˜︁N1 (ds, dz)

⃓⃓⃓⃓p]︄

+ CpE

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

∫︂
|z|>1

h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s ) ˜︁N1 (ds, dz)

⃓⃓⃓⃓p]︄

≤CpE
[︃∫︂ T

0

∫︂
|z|≤1

|h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s )|

2N1 (ds, dz)

]︃ p
2

+ CpE
[︃∫︂ T

0

∫︂
|z|>1

|h (Xϵ
s + ϵρc (Xϵ

s, Y
ϵ
s ) z, Y

ϵ
s )− h (Xϵ

s, Y
ϵ
s )|

p ν1 (dz) ds

]︃
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≤CpE
[︃∫︂ T

0

∫︂
|z|≤1

sup
x∈Rd1

||∇xh (x, Y
ϵ
s )||

2 |ϵρc (Xϵ
s, Y

ϵ
s ) z|

2N1 (ds, dz)

]︃ p
2

+ CpE
[︃∫︂ T

0

∫︂
|z|>1

sup
x∈Rd1

||∇xh (x, Y
ϵ
s )||

p |ϵρc (Xϵ
s, Y

ϵ
s ) z|

p ν1 (dz) ds

]︃
.

Apply regularity condition (2.35) and (2.38) for any choice of θ ∈ (0, 1
2
]

≤Cpϵ2γ||c||pE

[︄∫︂ T

0

∫︂
|z|≤1

|z|2 ν1 (dz)Cθ

(︄
1 + sup

ϵ∈(0,1)
sup
s≥0
|Y ϵ
s |

2θ

)︄
ds

]︄ p
2

+ Cpϵ
2γ||c||pE

[︄∫︂ T

0

∫︂
|z|>1

|z|p ν1 (dz)Cθ

(︄
1 + sup

ϵ∈(0,1)
sup
s≥0
|Y ϵ
s |
pθ

)︄
ds

]︄
≤CpT (1 + |y|p). (2.51)

Similarly for the second martingale term J4,

E

[︄
sup
t∈[0,T ]

⃓⃓
M ϵ

t,2

⃓⃓p]︄ ≤
CpE

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

∫︂
|z|≤1

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s ) ˜︁N2 (ds, dz)

⃓⃓⃓⃓p]︄

+ CpE

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

∫︂
|z|>1

h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s ) ˜︁N2 (ds, dz)

⃓⃓⃓⃓p]︄

≤CpE
[︃∫︂ T

0

∫︂
|z|≤1

⃓⃓⃓
h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s )
⃓⃓⃓2
N2 (ds, dz)

]︃ p
2

+ CpE
[︃∫︂ T

0

∫︂
|z|>1

⃓⃓⃓
h
(︂
Xϵ
s, Y

ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− h (Xϵ

s, Y
ϵ
s )
⃓⃓⃓p
ν2 (ds) dz

]︃
≤CpE

[︃∫︂ T

0

∫︂
|z|≤1

||∇yh||2
⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓2
ν2(dz)ds

]︃ p
2

+ CpE
[︃∫︂ T

0

∫︂
|z|>1

||∇yh||2
⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓p
ν2(dz)ds

]︃
.

Apply regularity condition (2.34),

≤Cpϵ−
p
α ||b||pE

[︃∫︂ T

0

∫︂
|z|≤1

|z|2 ν2(dz)ds
]︃ p

2

+ Cpϵ
− p
α ||b||pE

[︃∫︂ T

0

∫︂
|z|>1

|z|p ν2(dz)ds
]︃

≤CpTϵ−
p
α . (2.52)

Putting (2.49),(2.50),(2.51), and (2.52) into (2.48), conclude for some k > 0 that

E

[︄
sup
t∈[0,T ]

⃓⃓
Xϵ
t −X t

⃓⃓p]︄ ≤ CT kpeT
kp

(1 + |x|p + |y|p)ϵp(1−
1
α
) → 0 as ϵ→ 0.
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Remark 2.6. Rather than fix the noise scaling ϵ−
1
α for the fast process, it is possible to

introduce a, say, ˜︁ρ ≥ − 1
α

and use ϵ˜︁ρ for the scaling. But when one traces the proof with a

variable choice for ˜︁ρ, it becomes necessary to impose an upper bound ˜︁ρ ≤ 1
α
logϵ

(︂
ϵ−1 − ϵ− 1

α

)︂
so that all terms converge with the correct order. If one takes ϵ → 0, the upper bound
converges to − 1

α
. Since ˜︁ρ customarily does not depend on ϵ, it seems clear that the choice

for scaling should be fixed at ϵ−
1
α .

This concludes the discussion on the averaging principle. In the second half of this
section, the functional central limit theorem is proved where some results within the above
proof are applied. First, the following lemma establishes tightness since weak convergence
follows from tightness of measures and convergence of finite dimensional distributions.

Lemma 2.12 (tightness). For any T ≥ 0, there exists some constant C > 0 such that

E

[︄
sup
t∈[0,T ]

|V ϵ
t |

]︄
≤ CT . (2.53)

Furthermore, {V ϵ
t }t≥0 is tight.

Proof. It is easy to see that (2.53) holds by using the averaging rate of convergence (2.12)
with p = 1,

E

[︄
sup
t∈[0,T ]

|V ϵ
t |

]︄
= ϵ

1
α
−1E

[︄
sup
t∈[0,T ]

⃓⃓
Xϵ
t −X t

⃓⃓]︄
≤ Cx,yT

keT
k

,

and where the dependence on T is left explicit, as done at the end of the proof for Theorem
2.1.

Let τ ∈ [0, T − δ0] be a stopping time. By the Markov property, for any λ > 0 and˜︁δ ∈ (0, δ0),

P
(︂⃓⃓⃓
V ϵ
τ+˜︁δ − V ϵ

τ

⃓⃓⃓
> λ

)︂
=E

[︂
P
(︂⃓⃓⃓
V ϵ
s+˜︁δ − v

⃓⃓⃓
> λ

⃓⃓⃓
(s, v) = (τ, V ϵ

τ )
)︂]︂

≤P (|V ϵ
τ | > R) + E

[︂
P(s,v)

(︂⃓⃓⃓
V ϵ
s+˜︁δ − v

⃓⃓⃓
> λ

)︂]︂
≤E [|V ϵ

τ |]
R

+
E
[︂
E(s,v)

[︂⃓⃓⃓
V ϵ
s+˜︁δ − v

⃓⃓⃓]︂]︂
λ

≤
E

[︄
sup
t∈[0,T ]

|V ϵ
t |

]︄
R

+

E

[︄
E(s,v)

[︄
sup

s≤t≤s+˜︁δ |V
ϵ
t − v|

]︄]︄
λ

≤Cx,yT
keT

k

R
+

E

[︄
sup
0≤t≤˜︁δ |V

ϵ
t |

]︄
λ

≤Cx,yT
keT

k

R
+
Cx,y˜︁δke˜︁δk

λ
. (2.54)
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Let ˜︁δ → 0 and then R→ 0,

lim˜︁δ→0
lim sup
ϵ→0

sup
τ≤τ+˜︁δ P

(︂⃓⃓⃓
V ϵ
τ+˜︁δ − V ϵ

τ

⃓⃓⃓
≥ λ

)︂
= 0.

Furthermore, by Markov’s inequality,

lim
R→∞

P

(︄
sup
t∈[0,T ]

|V ϵ
t | ≥ R

)︄
≤ lim

R→∞

1

R
E

[︄
sup
t∈[0,T ]

|V ϵ
t |

]︄
= 0. (2.55)

Conditions (2.54) and (2.55) imply tightness by Theorem VI-4.5 [JS13].

Proof of Theorem 2.2. Decompose V ϵ
t into

V ϵ
t = ϵ

1
α
−1

(︃∫︂ t

0

f (Xϵ
s, Y

ϵ
s )− f

(︁
Xs

)︁
ds+ ϵρ

∫︂ t

0

c (Xϵ
s, Y

ϵ
s ) dLs,1

)︃
= ϵ

1
α
−1

(︃∫︂ t

0

Lh (Xϵ
s, Y

ϵ
s ) ds+

∫︂ t

0

∇xf
(︁
Xs

)︁
ϵ1−

1
αV ϵ

s ds

+

∫︂ t

0

f
(︂
Xs + ϵ1−

1
αV ϵ

s

)︂
− f

(︁
Xs

)︁
−∇xf

(︁
Xs

)︁
ϵ1−

1
αV ϵ

s ds

+

∫︂ t

0

f (Xϵ
s, Y

ϵ
s )− f (Xϵ

s)− Lh (Xϵ
s, Y

ϵ
s ) ds+ ϵρ

∫︂ t

0

c (Xϵ
s, Y

ϵ
s ) dLs,1

)︃
. (2.56)

For ease of notation, define ζϵt := ϵ
1
α
−1
∫︁ t
0
Lh (Xϵ

s, Y
ϵ
s ) ds. Consider the simplified equation

Zϵ
t = ζϵt +

∫︂ t

0

∇xf
(︁
Xs

)︁
V ϵ
s ds, (2.57)

and the difference U ϵ
t = V ϵ

t − Zϵ
t . The following shows that as ϵ → 0, Zϵ ⇒ V and that

E

[︄
sup
t∈[0,T ]

|U ϵ
t |

]︄
→ 0.

Recall from (2.47) that

ζϵt = ϵ
1
α

(︃
h (Xϵ

t , Y
ϵ
t )− h (x, y)−M ϵ

t,1 −M ϵ
t,2 −

∫︂ t

0

LXϵ

h(Xϵ
s, Y

ϵ
s )ds

)︃
.

It is immediate from estimates (2.51) that ϵ
1
αE

[︄
sup
t∈[0,T ]

⃓⃓
M ϵ

t,1

⃓⃓]︄
≤ Cϵ

1
α (1 + |y|), from (2.50)

that ϵ
1
αE

[︄
sup
t∈[0,T ]

⃓⃓⃓∫︁ t
0
LXϵ

h(Xϵ
s, Y

ϵ
s )ds

⃓⃓⃓]︄
≤ Cϵ

1
α (1 + |x|+ |y|), and from (2.34) that

ϵ
1
α sup
x∈Rd1

|h(x, y)| ≤ Cϵ
1
α (1 + |y|).

Let η > 0. Notice that by equations (2.34) and (2.38), there exists a constant Cy > 0

such that for all K ≥ Cy
η

,
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P
(︂
ϵ

1
α |h (Xϵ

t , Y
ϵ
t )| > K

)︂
≤ϵ

1
α
E |h (Xϵ

t , Y
ϵ
t )|

K
≤ ϵ

1
α
C(1 + E|Y ϵ

t |)
K

≤ϵ
1
α

C(1 + sup
ϵ∈(0,1)

sup
t≥0

E|Y ϵ
t |)

K
≤ ϵ

1
α
C(1 + C(1 + |y|))

K
≤ Cy
K
.

This implies 1− P(ϵ 1
α |h(Xϵ

t , Y
ϵ
t )| > K) ≥ 1− Cy

K
. Consequently,

inf
ϵ∈(0,1)

P(ϵ
1
α |h(Xϵ

t , Y
ϵ
t )| ≤ K) ≥ 1− Cy

K
≥ 1− η.

So for every η > 0, t ∈ [0, T ], there exists a compact set [0, K] satisfying the compact
containment condition ([EK09], Remark 7.3). Furthermore, one may identify the limit from
the same computation

ϵ
1
αE |h (Xϵ

t , Y
ϵ
t )| ≤ ϵ

1
αCy → 0.

Once tightness is established over small intervals of the path, one may conclude that
ϵ

1
αh (Xϵ

t , Y
ϵ
t )⇒ 0. To this effect, let ˜︁η ∈ (0, 1).

sup
0<t≤˜︁η |h(X

ϵ
t , Y

ϵ
t )− h(x, y)| ≤ sup

0<t≤˜︁η |h(X
ϵ
t , Y

ϵ
t )− h(x, Y ϵ

t ) + h(x, Y ϵ
t )− h(x, y)|

≤ sup
0<t≤˜︁η

(︃
sup
x∈Rd1

||∇xh(x, Y
ϵ
t )|||Xϵ

t − x|

+ sup
x∈Rd1 ,y∈Rd2

||∇yh(x, y)|||Y ϵ
t − y|

)︄
.

By equations (2.34), (2.35), for any θ ∈ (0, 1− 1
α
),

≤ sup
0<t≤˜︁η

(︁
Cθ(1 + |Y ϵ

t |θ)|Xϵ
t − x|+ C|Y ϵ

t − y|
)︁

= sup
0<t≤˜︁η

(︁
Cθ|Xϵ

t − x|+ Cθ|Y ϵ
t |θ|Xϵ

t − x|+ C|Y ϵ
t − y|

)︁
.

Choose p = 1
θ
> 1 and q = 1

1−θ > 1, the by Young’s inequality

≤ sup
0<t≤˜︁η

(︁
Cθ|Xϵ

t − x|+ Cθ,p|Y ϵ
t |pθ + Cθ,q|Xϵ

t − x|q + C|Y ϵ
t − y|

)︁
≤C sup

0<t≤˜︁η (|X
ϵ
t |+ |Xϵ

t |q + |x|+ |x|q + |Y ϵ
t |+ |y|) .

From Lemma 2.9 and Lemma 2.10, it follows that

ϵ
1
αE
[︃
sup
0<t≤˜︁η |h(X

ϵ
t , Y

ϵ
t )− h(x, y)|

]︃
≤CE

[︃
sup
0<t≤˜︁η (|X

ϵ
t |+ |Xϵ

t |q + |x|+ |x|q + |Y ϵ
t |+ |y|)

]︃
≤Cϵ

1
α

(︁
C˜︁ηeC˜︁η(1 + |x|+ |y|) + C˜︁ηqeCq˜︁η(1 + |x|q + |y|q)

+|x|+ |x|q + C˜︁ηϵ− 1
α + 2|y|

)︂
.
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Take ϵ→ 0 and then ˜︁η → 0 to conclude that it is tight. Weak convergence to zero has been
established as desired.

For the term ϵ
1
αM ϵ

t,2, recall (2.46) and notice from the mean value theorem and the
boundedness of ∇yh

E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓
ϵ

1
α

∫︂ t

0

∫︂
Rd2

h
(︂
Xϵ
s, Y

ϵ
s + b (Xϵ

s, Y
ϵ
s ) ϵ

− 1
α z
)︂
− h (Xϵ

s, Y
ϵ
s ) ˜︁N2(ds, dz)

−
∫︂ t

0

∫︂
Rd2

∫︂
Rd2

h
(︁
Xs, y + b

(︁
Xs, y

)︁
z
)︁
− h

(︁
Xs, y

)︁
µXs(dy) ˜︁N2(ds, dz)

⃓⃓⃓⃓]︃
≤ ||∇yh||E

[︃∫︂ T

0

∫︂
Rd2
|z|
⃓⃓⃓⃓
b (Xϵ

s, Y
ϵ
s )−

∫︂
Rd2

b
(︁
Xs, y

)︁
µXs(dy)

⃓⃓⃓⃓ ˜︁N2(ds, dz)

]︃
≤ ||∇yh||

(︃
E
[︃∫︂ T

0

∫︂
Rd2
|z|
⃓⃓
b (Xϵ

s, Y
ϵ
s )− b

(︁
Xs, Y

ϵ
s

)︁⃓⃓ ˜︁N2(ds, dz)

]︃
+ E

[︃∫︂ T

0

∫︂
Rd2
|z|
⃓⃓⃓
b
(︁
Xs, Y

ϵ
s

)︁
− E

[︂
b
(︂
Xs, Y

Xs,y
s
ϵ

)︂]︂⃓⃓⃓ ˜︁N2(ds, dz)

]︃
+E

[︃∫︂ T

0

∫︂
Rd2
|z|
⃓⃓⃓⃓
E
[︂
b
(︂
Xs, Y

Xs,y
s
ϵ

)︂]︂
−
∫︂
Rd2

b
(︁
Xs, y

)︁
µXs(dy)

⃓⃓⃓⃓ ˜︁N2(ds, dz)

]︃)︃
≤ ||∇yh||

(︃
E
[︃∫︂ T

0

∫︂
Rd2
|z| ||∇xb||

⃓⃓
Xϵ
s −Xs

⃓⃓ ˜︁N2(ds, dz)

]︃
+ E

[︃∫︂ T

0

∫︂
Rd2
|z| ||∇yb||

⃓⃓⃓
Y
Xϵ
s ,y

s
ϵ
− Y Xs,y

s
ϵ

⃓⃓⃓ ˜︁N2(ds, dz)

]︃
+E

[︃∫︂ T

0

∫︂
Rd2
|z| sup

x∈Rd2

⃓⃓⃓⃓
E
[︂
b
(︂
x, Y x,y

s
ϵ

)︂]︂
−
∫︂
Rd2

b (x, y)µx(dy)

⃓⃓⃓⃓ ˜︁N2(ds, dz)

]︃)︃
≤ ||∇yh||

(︃
C ||∇xb|| ϵ1−

1
αE
[︃∫︂ T

0

∫︂
Rd2
|z| ˜︁N2(ds, dz)

]︃
+ ||∇yb||E

[︃∫︂ T

0

∫︂
Rd2
|z|C

⃓⃓
Xϵ
s −Xs

⃓⃓ ˜︁N2(ds, dz)

]︃
+E

[︃∫︂ T

0

∫︂
Rd2
|z|C ||b||1 e

−κs
ϵ (1 + |y|) ˜︁N2(ds, dz)

]︃)︃
≤Cϵ1−

1
α + CE

[︃∫︂ T

0

∫︂
Rd2
|z|e−

κs
ϵ ˜︁N2(ds, dz)

]︃
,

which converges to zero as epsilon becomes small by dominated convergence. Furthermore
by estimate (2.52), ϵ

1
αM ϵ

t,2 are martingales satisfying

sup
ϵ∈(0,1)

ϵ
1
αE

[︄
sup
t∈[0,T ]

⃓⃓
∆M ϵ

t,2

⃓⃓]︄
≤ sup

ϵ∈(0,1)
2ϵ

1
αE

[︄
sup
t∈[0,T ]

⃓⃓
M ϵ

t,2

⃓⃓]︄
≤ CT <∞.

Then by Corollary 6.30 [JS13], convergence of the stochastic integrals is established. There-
fore, as ϵ→ 0 conclude that

ζϵt ⇒
∫︂ t

0

∫︂
Rd2

∫︂
Rd2

h
(︁
Xs, y + b

(︁
Xs, y

)︁
z
)︁
− h

(︁
Xs, y

)︁
µXs(dy) ˜︁N2(ds, dz) =: ζt. (2.58)
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Now consider the continuous mapping G : ζϵ ↦→ Zϵ. The weak convergence established
in (2.58) and the continuous mapping theorem imply

Zϵ = G (ζϵ)⇒ G (ζ) = V. (2.59)

Proceeding to the second part of the proof,

E

[︄
sup
t∈[0,T ]

|U ϵ
t |

]︄

≤ Cp,T ϵ
1
α
−1

(︄
E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

f
(︂
Xs + ϵ1−

1
αV ϵ

s

)︂
− f

(︁
Xs

)︁
−∇xf

(︁
Xs

)︁
ϵ1−

1
αV ϵ

s ds

⃓⃓⃓⃓]︄

+ E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

f (Xϵ
s, Y

ϵ
s )− f (Xϵ

s)− Lh (Xϵ
s, Y

ϵ
s ) ds

⃓⃓⃓⃓]︄

+ E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓
ϵρ
∫︂ t

0

c (Xϵ
s, Y

ϵ
s ) dLs,1

⃓⃓⃓⃓]︄)︄
= Cp,T ϵ

1
α
−1

3∑︂
i=1

Ii. (2.60)

The Poisson equation implies that I2 is equal to zero and estimate (2.88) in Section 2.5
may be used to show ϵ

1
α
−1I3 vanishes in the limit. I1 is recognized as a first order Taylor

expansion. For each k = 1, ..., d1, Ik1 is equal to

E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓
⃓
∫︂ t

0

d1∑︂
i,j=1

∫︂ 1

0

(1− ξ) ∂2

∂xi∂xj
f
k (︁
Xs + ξ

(︁
Xϵ
s −Xs

)︁)︁
dξ
(︂
Xϵ,i
s −X

i

s

)︂(︂
Xϵ,j
s −X

j

s

)︂
ds

⃓⃓⃓⃓
⃓
]︄
.

From the assumption that f ∈ C2+γ,2+δ
b , all second partial derivatives of

f(x) =
∫︁
Rd2 f(x, y)µ

x(dy) are bounded. Therefore, by the Cauchy-Schwarz inequality and
estimate (2.53)

≤ Cp,TE

[︄
sup
t∈[0,T ]

⃓⃓
V ϵ,i
t

⃓⃓]︄ 1
2

E

[︄
sup
t∈[0,T ]

⃓⃓⃓
Xϵ,j
t −X

j

t

⃓⃓⃓]︄ 1
2

≤ Cp,T ϵ
1
2(1−

1
α) → 0.

Conclude that (2.60) converges to zero. Combining this with (2.59), then the finite
dimensional distributions of V ϵ converge to V . Having shown tightness in Lemma 2.12, this
completes the proof of Theorem 2.2.

Remark 2.7. Notice that this result implies the following trivial case: if the drift of the slow
process f(x, y) ≡ f(x) is independent of y then f(x) = f(x) and by eq (2.88), V ϵ

t ⇒ 0.
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§2.4 Numerical Study

This section illustrates the above theory through a numerical implementation of the results.
The example will depict visually the main components of the theory, that is, the reader will
experimentally see that the rate of convergence of Xϵ

t to X t is bounded by Cϵ
1
α
−1, the time

scaling effect on Y ϵ
t as ϵ vanishes, the graph of the solution to the Poisson equation with

all the the regularity properties, and the weak convergence of V ϵ
t to Vt. Furthermore, a full

explanation of the numerical scheme used is provided and the full code can be found in the
following Section 2.4 to allow the reader to verify the implementation’s validity.

Before presenting the simulations, the numerical scheme is discussed. There are two
types of objects that are numerically approximated. The first are the stochastic pro-
cesses {Xϵ

t }t≥0, {Y ϵ
t }t≥0, and {X t}t≥0 for which a Euler-Maruyama type numerical scheme

is employed. Fix N to represent the number of temporal grid points between 0 and T ,
where ∆t = T

N
represents a single step. Generate N α-stable random variables with

the appropriate parameters for dL1
t and dL2

t , or in other words simulate N instances of
∆L1

n ∼ S˜︁α((∆t) 1˜︁α , 0, 0),∆L2
n ∼ Sα((∆t)

1
α , 0, 0). Set Xϵ

0 = x, Y ϵ
0 = y,X0 = x and for each

n = 1, 2, ..., N simulate the evolution with the following iterative scheme

Xϵ
n+1 = Xϵ

n + f (Xϵ
n, Y

ϵ
n )∆t+ ϵρc (Xϵ

n, Y
ϵ
n )∆L

1
n,

Y ϵ
n+1 = Y ϵ

n + ϵ−1g (Xϵ
n, Y

ϵ
n )∆t+ ϵ−

1
α b (Xϵ

n, Y
ϵ
n )∆L

2
n,

Xn+1 = Xn + f
(︁
Xn

)︁
∆t.

And, of course, V ϵ
n := ϵ

1
α
−1(Xϵ

n − Xn). That is, once finished simulating the paths for the
slow process and the averaged process, use this scaled difference to approximate a path for
V ϵ
t . When simulating, the random noise components are fixed with the same random seed so

that all comparisons between different values of ϵ are driven by the same random processes
and thus comparable.

The second object to numerically approximate is the solution to the Poisson equation
−Lh(x, y) = f(x, y)−f(x). This is done on a large enough discretization domain (a, b) such
that all values of y ∈ (a, b) for a < b ∈ R. Choose K grid points and define the mesh size
hy = (b− a)/K. Each grid point is given by yi = a+ ihy for i = 0, 1, 2, ..., K. Let the vector
y = (y0, y1, y2, ..., yK)

T . The following notation is used for the various vectors:

hx := (h(x, y0), h(x, y1), h(x, y2), ..., h(x, yK−1), h(x, yK))
T

fx := (f(x, y1), f(x, y2), ..., f(x, yK−1))
T

bx := (b(x, y1), b(x, y2), ..., b(x, yK−1))
T

gx := (g(x, y1), g(x, y2), ..., g(x, yK−1))
T

e := (1, 1, ..., 1)T .

To discretize the fractional Laplacian, fix the splitting parameter ˜︁γ = 1 + α
2
, which

is experimentally suggested to lead to best convergence (see, [DWZ18]) and controls the
accuracy of the discretization scheme by partitioning the problem in an optimal way. This
requires the numerical parameter κ˜︁γ to be set to 1. Furthermore, define the normalizing
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constant Ch
α,˜︁γ =

2α−1αΓ(α+1
2 )

√
πΓ(1−α

2 )˜︁νhαy with ˜︁ν := ˜︁γ − α. Then by equation (2.10) in [DWZ18],

discretize the fractional Laplacian using the following matrix definition reproduced here for
convenience,

Aij = C
hy
α,˜︁γ
⎧⎪⎨⎪⎩
∑︁K−1

k=2
(k+1)˜︁ν−(k−1)˜︁ν

k˜︁γ + K˜︁ν−(K−1)˜︁ν
K˜︁γ + (2˜︁ν + κ˜︁γ − 1) + 2˜︁ν

αKα j = i,

− (|j−i|+1)˜︁ν−(|j−i|−1)˜︁ν
2|j−i|˜︁γ j ̸= i, i± 1,

−1
2
(2˜︁ν + κ˜︁γ − 1) j = i± 1,

for i, j = 1, 2, ..., K − 1. Denote by A := [A]ij the discretized matrix. Similarly, denote the
discretized derivative operator by D, which can be done by standard centered differencing
of an appropriate order.

Let I be the identity matrix. Then

hx =

{︄
(diag(bαx)A + diag(gx)D)−1 (︁f(x)I− diag(fx))︁ e i={1,2,...,K-1}
0 i={0,K}

is the approximate numerical solution to the Poisson equation.
This numerical solution for h is then used to approximate the integral with respect to

the Poisson random measure using the following steps. First apply numerical quadrature to
approximate the inner integral with respect to the invariant measure µx. Denote by I(z) the
integral’s approximation as

Ix(z) ≈
∫︂
R
h (x, y + b(x, y)z)− h (x, y)µx(dy).

One can search for the closest element yi in y and use the index to evaluate hx at the
specified points. Then interpret the Poisson integral as the sum of the realized jumps less its
average; the latter of which is again approximated via quadrature with respect to the Lévy
measure over a large enough interval, this time denoted by Jx,

Jx ≈
∫︂
R
I(z)ν(dz).

Finally, use the following iteration to simulate a path for Vt,

Vn+1 = Vn + Df
(︁
Xn

)︁
∆t+ IXn

(∆Ln)− JXn
∆t.

The chosen application to illustrate the theory is{︄
dXϵ

t =
(︁
r − 1

2
Y ϵ
t

)︁
dt+

√
ϵdWt

dY ϵ
t = −ϵ−1Ytdt+ ϵ−

1
αdLt

,

where {Wt}t≥0 is standard Brownian motion (˜︁α = 2), {Lt}t≥0 is the driving symmetric Lévy
motion with stability parameter α = 3

2
, r = 0.03, Xϵ

0 = 0, and Y ϵ
0 = 0. Numerically, this is

simulated with the following iterative scheme for fixed 0 < ϵ < 1, and n ∈ {0, 1, 2, ..., N−1}:{︄
Xϵ
n+1 = Xϵ

n +
(︁
0.03− 1

2
Y ϵ
n

)︁
∆t+

√
ϵ∆Wn,

Y ϵ
n+1 = Y ϵ

n − ϵ−1Y ϵ
n∆t+ ϵ−

1
α∆Ln

,
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where {∆Wn} are standard normal random variables and {∆Ln} are 3
2
−stable random

variables.
Notice that ρ = 1

2
> 1 − 1

α
= 1

3
. As all derivatives are constant, the assumptions (A1)

are all satisfied. It is also easy to see that sup
x∈R
|r| = r <∞ and

⟨−y1 + y2, y1 − y2⟩ ≤ −|y1 − y2|2;

therefore assumption (A2) is also satisfied.
The frozen equation is given by

dY x,y
t = −Y x,y

t dt+ dLt,

which admits a unique invariant measure µ ∼ Sα(α− 1
α , 0, 0) (see Proposition B.1, [Che+23]).

The invariant measure is not analytically expressible, however it is still possible to numeri-
cally approximate f ≈

∫︁
R

(︁
r − 1

2
y
)︁
µ(dy) via quadrature. Note that it does not depend on

x and so only needs to be approximated once. Furthermore, the approximation to Xn will
be a linear function in n. Another advantage is that one may solve for the Poisson equation
using the simplified form

h = (−A− I)−1 (fI− diag(re− 1

2
y))e, for i = 1, 2, ..., K − 1.

This is one of a number of small code specializations that become possible with access to
the invariant measure. The fact that the system does not depend on x allows for various
quantities to be approximated only once (rather than for each x), allowing for a much quicker
runtime of the simulations.

For the purpose of the simulation, the model’s parameters are fixed at T = 1, K =
102, N = 105, a = −0.5, and b = 0.5. Due to the sequential nature of the Euler-Maruyama
scheme, it can be slow for large values of N . Therefore, it is important to choose mesh sizes
that are fine enough to illustrate the numerical scheme, but not so fine that they would
take too much time to run on a personal computer. After running many tests, increasing
K did not add much to the approximation because as ϵ becomes small, Yn+1 − Yn takes on
increasingly large values. Thus the step size for y need not be all that small at all. This is
not true for N which discretizes time and is very much tied to ϵ. Empirically, N at 105 was
found to be large enough to show convergence. It is important to make sure ϵ ≥ ∆t or else
numerical instabilities arise because the theoretical scaling in t is of the order ϵ.

In Figure (2.1a), it is visually clear that Xϵ
t and X t are converging as ϵ tends to 0.

Three paths of Xϵ
t are plotted at ϵ = 1.0, ϵ = 0.00167, and ϵ = 0.00001. The last of

which is very close to X t (the orange dotted line) thus confirming convergence. To make it
more explicit, Theorem 2.1 on averaging gives the order of convergence of ϵ1−

1
α . In Figure

(2.1b) the supremum is approximated by the maximum on [0, T ] of |Xϵ
t − X t|. As can be

seen, for all ϵ < 10−2, this maximum stays below the theoretical order of convergence with
an approximation of a constant constructed by averaging the implied constant for each ϵ
(orange dotted line).

The two plots of Figure (2.1c) and Figure (2.1d) confirm that Y ϵ
t is behaving as expected.

Recall the same random seed is used for each ϵ and so the paths are the same but the scale
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of Y ϵ
t is faster relative to Xϵ

t (Figure (2.1c)), i.e., the random variable Yn+1 − Yn takes
increasingly large values. Lemma 2.10 also gives an upper bound as to how fast Y ϵ

t should
grow as ϵ→ 0 and it can be seen in Figure (2.1d) that it does not, in fact, exceed this upper
bound (orange dotted line).

Figure (2.1e) plots the numerical solution to the Poisson equation. As expected, it is
continuous and satisfies the boundary conditions at {a, b} of 0. It is a curve rather than a
surface since it does not depend on x, and by consequence it is very easy to see visually that
it satisfies all the regularity properties set out in Proposition 2.1.

Figures (2.1f) and (2.1g) are meant to be interpreted together. Figure (2.1f) is an empir-
ical state frequency distribution of ten runs of Vt, but the scale of the states is so small when
compared to V ϵ

t for large ϵ that it appears as a small block in Figure (2.1g) (in brown). Its
distribution is hardly discernible from Figure (2.1g) and so Figure (2.1f) was provided for
comparison. Having said this, it is evident from Figure (2.1g), that as ϵ becomes smaller,
the empirical state frequency distribution of ten path simulations of V ϵ

t (for each ϵ) are con-
verging to Vt, as the weak convergence result from Theorem 2.2 would imply. One can see
the longer tail on the right side with two areas of increased frequency and a slower falloff on
the left side being depicted in both Figures (2.1g) and (2.1f).

Ten path simulations were generated to collect enough data to build the distribution.
When only a single path was generated, there was too little information to see the conver-
gence and simulating more would be beneficial, but quite slow. The empirical transition
probability matrix is estimated from these path simulations of V ϵ

t at various values of ϵ and
compared to the empirical transition probability matrix of Vt using Jensen-Shannon diver-
gence in Figure (2.1h). Specifically, each row of the transition probability matrix specifies
a probability distribution and the distance between these distributions was compared and
then all distances for each row were averaged. As expected, as ϵ becomes small, the average
distance between these distributions decreases.

These plots empirically illustrate the validity of this approach to using the theory in
practice since the outputs line up nicely with what is expected. Having said this, it is
definitely not an efficient approach to simulating the results and it would be interesting to
find better ways to derive the same results. In the following section, the reader will find the
code used to simulate the various paths and solve the Poisson equation.

Simulation Code

By specializing the code to this particular example, one can take advantage of certain con-
veniences that speed up the runtime, which is particularly useful when simulating N = 105

iterations on a personal computer.
In particular, since there is a known form for the invariant measure, not only is it not

necessary to estimate it from runs of the simulation, but one can make use of the numerical
approximations of the averaged drift and use that to avoid a potentially computationally
costly integral calculation. Also, the fact that the integral does not depend on x when simu-
lating X t allows for a quick cumulative sum calculation rather than an iterative calculation.
Indeed, any time either µx or ν is required to perform an integral calculation (for exam-
ple, function I_mu and variable J), one simply uses pre-built packages to approximate the
integrals, which are both convenient and fast.

56



CHAPTER 2. FUNCTIONAL CENTRAL LIMIT THEOREM

(a) Convergence Xϵ
t path to Xt as ϵ→ 0.

(b) Maximum Deviation between Xϵ
t and Xt

as ϵ→ 0.

(c) Evolution of Y ϵ
t as ϵ→ 0.

(d) Maximum Y ϵ
t vs theoretical maximum as

ϵ→ 0.

(e) Numerical Solution to the Poisson equa-
tion: h(x, y).

(f) Empirical frequency distribution of states
for Vt.

(g) Convergence of state distributions for V ϵ
t

to Vt as ϵ→ 0.
(h) Average row divergence between transi-
tion probability matrices as ϵ→ 0.

Figure 2.1: Illustrative Plots: The Averaging Principle, Poisson Equation Solution, and the
Functional Central Limit Theorem.
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Furthermore, the fact that none of the functions depend on x, dramatically speeds up
computations since only the solution of a single Poisson equation for an arbitrary value of
x is necessary, rather than for each x. That is, a single call to solve_poisson_equation
rather than potentially N = 105 (or, more likely, some subsample of it). Likewise, the lack of
dependence on x also means that J need only be approximated once, rather than for each x
and that Vt may be simulated by taking the cumulative sum of the random variables coming
from the martingale term rather than having to simulate it iteratively since ∇f(x) = 0 ∀x.

Python Code

de f simulate_xy ( eps , dL , dW) :
’ ’ ’ s imu la t e s a path f o r X, Y’ ’ ’
xt , yt = np . z e r o s (N+1) , np . z e r o s (N+1)
xt [ 0 ] , yt [ 0 ] = x0 , y0
f o r n in range (1 , N+1):

x , y = xt [ n−1] , yt [ n−1]
xt [ n ] = x + ( r−y/2)∗ dt + eps ∗∗ rho∗dW[ n−1]
yt [ n ] = y − eps ∗∗(−1)∗y∗dt + eps ∗∗(−1/ alpha )∗dL [ n−1]

re turn xt , yt

de f mu(y ) :
’ ’ ’ r e tu rn s i nva r i an t measure ’ ’ ’
r e turn levy_stab le . pdf (y , alpha=alpha , beta=0, l o c =0, s c a l e=alpha ∗∗(−1/ alpha ) )

fbar = i n t e g r a t e . quad ( lambda y : ( r−y/2)∗mu(y ) , −np . in f , np . in f , \
epsabs =10∗∗(−3) , l im i t =50) [0 ]

xbar = np . concatenate ( ( [ x0 ] , x0 + np . cumsum ( [ fbar ∗dt ] ∗N) ) , ax i s =0)

de f d i s c r e t e_ f r a c t i o n a l_ l ap l a c i a n ( ) :
’ ’ ’ d i s c r e t i z e s the f r a c t i o n a l l a p l a c i a n on the i n t e r i o r o f domain ’ ’ ’
gamma = 1+alpha /2
kappa_gamma = 2 i f gamma == 2 e l s e 1
normal iz ing_constant = 2∗∗( alpha −1)∗alpha ∗math .gamma( ( alpha +1)/2)\

/(math . s q r t (math . p i ∗∗1)∗math .gamma(1−alpha /2))
C = normal iz ing_constant / ( (gamma−alpha )∗hy∗∗ alpha )
A = np . z e r o s ( (K+1,K+1) , dtype=f l o a t )
summation = np . sum ( [ ( ( k+1)∗∗(gamma−alpha ) − (k−1)∗∗(gamma−alpha ) )\

/(k∗∗gamma) f o r k in range (2 ,K) ] )
f o r i in tqdm( range (1 ,K) , desc=’ d i s c r e t i z i n g f r a c t i o n a l l ap l a c i an ’ ) :

f o r j in range (1 ,K) :
i f i == j :

A[ i , j ] = summation \
+ (K∗∗(gamma−alpha ) − (K−1)∗∗(gamma−alpha ) )\
/(K∗∗gamma) + (2∗∗(gamma−alpha)+kappa_gamma−1)\
+ (2∗(gamma−alpha ) ) / ( alpha ∗K∗∗ alpha )

e l i f j == i+1 or j == i −1:
A[ i , j ] = −0.5∗(2∗∗(gamma−alpha)+kappa_gamma−1)

e l s e :
A[ i , j ] = −((abs ( j−i )+1)∗∗(gamma−alpha )−(abs ( j−i )−1)\

∗∗(gamma−alpha ) )/ (2∗ abs ( j−i )∗∗gamma)
return C∗A[ 1 :K, 1 :K]

# so l v e po i s son equat ion
A = d i s c r e t e_ f r a c t i o n a l_ l ap l a c i a n ( )
h_vec = np . z e r o s (K+1)
h_vec [ 1 :K] = np . matmul (np . l i n a l g . inv(−A−np . i d e n t i t y (K−1)) ,\

np . matmul ( fbar ∗np . i d e n t i t y (K−1)−np . diag ( [ ( r−y/2) f o r y in y_vec [ 1 :K] ] ) , \
[ 1 ] ∗ l en ( y_vec [ 1 :K] ) ) )

de f I_mu( z ) :
’ ’ ’ approximates the i n t e g r a l with r e sp e c t to the i nva r i an t measure ’ ’ ’
r e turn i n t e g r a t e . quad ( lambda y : ( h_vec [ np . abs ( y_vec − (y + z ) ) . argmin ( ) ] \

− h_vec [ np . abs ( y_vec − y ) . argmin ( ) ] ) ∗mu(y ) , −np . in f , np . in f , \
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epsabs =10∗∗(−3) , l im i t =50) [0 ]

de f simulate_v (dL ) :
’ ’ ’ s imu la t e s a path f o r V’ ’ ’
normal iz ing_constant = 2∗∗( alpha −1)∗alpha ∗math .gamma( ( alpha +1)/2)\

/(math . s q r t (math . p i ∗∗1)∗math .gamma(1−alpha /2))
J = i n t e g r a t e . quad ( lambda z : normal iz ing_constant ∗I_mu( z )\

/( abs ( z )∗∗(1+ alpha ) ) , −np . in f , np . in f , epsabs =10∗∗(−3) , l im i t =50) [0 ]
r e s u l t s = Pa r a l l e l ( n_jobs=8)( delayed (I_mu) ( i ) f o r i in tqdm(dL ) )
re turn np . concatenate ( ( [ 0 ] , np . cumsum(np . array ( r e s u l t s )−J∗dt ) ) , ax i s =0)

de f empi r i ca l_trans i t i on_matr ix ( l s t , a l l_ s t a t e s ) :
t r a j e c t o r i e s = np . round (np . array ( l s t ) , b ins )
poss ib le_states_tm = a l l_ s t a t e s
num_states = len ( poss ib le_states_tm )
trans i t i on_matr ix = np . ones ( ( num_states , num_states ) , dtype=f l o a t )
f o r t r a j e c t o r y in t r a j e c t o r i e s :

f o r i in range ( l en ( t r a j e c t o r y ) −1):
current_state = t r a j e c t o r y [ i ]
next_state = t r a j e c t o r y [ i +1]
t rans i t i on_matr ix [ poss ib le_states_tm == current_state , \

poss ib le_states_tm == next_state ] += 1 .
row_sums = trans i t i on_matr ix . sum( ax i s =1)
row_sums [ row_sums == 0 ] = 1
trans i t i on_matr ix /= row_sums [ : , np . newaxis ]
r e turn t rans i t i on_matr ix

de f g ene ra t e_d i s t r i bu t i on ( l s t ) :
’ ’ ’ e s t imate s a s t a t e d i s t r i b u t i o n and a t r a n s i t i o n p r obab i l i t y matrix ’ ’ ’
t r a j e c t o r i e s = np . round (np . array ( l s t ) , b ins )
po s s i b l e_s t a t e s = np . unique ( t r a j e c t o r i e s )
state_counts = np . z e r o s ( l en ( po s s i b l e_s t a t e s ) )
f o r t r a j e c t o r y in t r a j e c t o r i e s :

unique_states , counts = np . unique ( t r a j e c t o r y , return_counts=True )
unique_states = unique_states [~np . i snan ( unique_states ) ]
f o r s t a t e in unique_states :

t ry :
state_counts [ p o s s i b l e_s t a t e s == s t a t e ] +=\

in t ( counts [ unique_states == s t a t e ] )
except :

pass
state_probs = state_counts / ( t r a j e c t o r i e s . shape [ 0 ] ∗ t r a j e c t o r i e s . shape [ 1 ] )
r e turn pos s i b l e_s ta t e s , state_probs

§2.5 Computations

The following section collects the technical proofs of Sections 2.2 and 2.3 that would otherwise
take away from the flow of the text.

Poisson Equation Lemmas

Proof of Lemma 2.1. The difference between two frozen processes is given by the process

Y x1,y1
t − Y x2,y2

t =(y1 − y2) +
∫︂ t

0

g (x1, Y
x1,y1
s )− g (x2, Y x2,y2

s ) ds

+

∫︂ t

0

b (x1, Y
x1,y1
s )− b (x2, Y x2,y2

s ) dLs,2.
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Apply Itô’s formula to the function x2,

(Y x1,y1
t − Y x2,y2

t )2 = (y1 − y2)2 + 2

∫︂ t

0

⟨g (x1, Y x1,y1
s )− g (x2, Y x2,y2

s ) , Y x1,y1
s − Y x2,y2

s ⟩ds

+

∫︂ t

0

∫︂
Rd2

(Y x1,y1
s − Y x2,y2

s + (b (x1, Y
x1,y1
s )− b (x2, Y x2,y2

s )) z)2 − (Y x1,y1
s − Y x2,y2

s )2 ˜︁N2(ds, dz)

+

∫︂ t

0

∫︂
Rd2

(Y x1,y1
s − Y x2,y2

s + (b (x1, Y
x1,y1
s )− b (x2, Y x2,y2

s )) z)2 − (Y x1,y1
s − Y x2,y2

s )2

− 1|z|<12⟨(b (x1, Y x1,y1
s )− b (x2, Y x2,y2

s )) z, Y x1,y1
s − Y x2,y2

s ⟩ν2(dz)ds.

Take expectations,

E
[︂
(Y x1,y1

t − Y x2,y2
t )2

]︂
= (y1 − y2)2 +

∫︂ t

0

E [2⟨g (x1, Y x1,y1
s )− g (x2, Y x2,y2

s ) , Y x1,y1
s − Y x2,y2

s ⟩

+

∫︂
Rd2

(Y x1,y1
s − Y x2,y2

s + (b (x1, Y
x1,y1
s )− b (x2, Y x2,y2

s )) z)2 − (Y x1,y1
s − Y x2,y2

s )2

−1|z|<12⟨(b (x1, Y x1,y1
s )− b (x2, Y x2,y2

s )) z, Y x1,y1
s − Y x2,y2

s ⟩ν2(dz)
]︁
ds,

to arrive at

d

dt
E
[︂
(Y x1,y1

t − Y x2,y2
t )2

]︂
= E [2⟨g (x1, Y x1,y1

t )− g (x2, Y x2,y2
t ) , Y x1,y1

t − Y x2,y2
t ⟩

+

∫︂
Rd2

(Y x1,y1
t − Y x2,y2

t + (b (x1, Y
x1,y1
t )− b (x2, Y x2,y2

t )) z)2 − (Y x1,y1
t − Y x2,y2

t )2

−1|z|<12⟨(b (x1, Y x1,y1
t )− b (x2, Y x2,y2

t )) z, Y x1,y1
t − Y x2,y2

t ⟩ν2(dz)
]︁
.

By condition (A2),

d

dt
E |Y x1,y1

t − Y x2,y2
t |2 = E [2⟨g (x1, Y x1,y1

t )− g (x2, Y x2,y2
t ) , Y x1,y1

t − Y x2,y2
t ⟩

+ 2

∫︂
|z|≥1

⟨(b (x1, Y x1,y1
t )− b (x2, Y x2,y2

t )) z, Y x1,y1
t − Y x2,y2

t ⟩ν2(dz)

+

∫︂
Rd2
|b (x1, Y x1,y1

t )− b (x2, Y x2,y2
t )|2 z2ν2(dz)

]︃
≤E [2⟨g (x1, Y x1,y1

t )− g (x1, Y x2,y2
t ) , Y x1,y1

t − Y x2,y2
t ⟩

+2

∫︂
|z|≥1

⟨(b (x1, Y x1,y1
t )− b (x1, Y x2,y2

t )) z, Y x1,y1
t − Y x2,y2

t ⟩ν2(dz)

+

∫︂
Rd2
|b (x1, Y x1,y1

t )− b (x1, Y x2,y2
t )|2 z2ν2(dz)

+ 2⟨g (x1, Y x2,y2
t )− g (x2, Y x2,y2

t ) , Y x1,y1
t − Y x2,y2

t ⟩

+ 2

∫︂
|z|≥1

⟨(b (x1, Y x2,y2
t )− b (x2, Y x2,y2

t )) z, Y x1,y1
t − Y x2,y2

t ⟩ν2(dz)

+

∫︂
Rd2
|b (x1, Y x2,y2

t )− b (x2, Y x2,y2
t )|2 z2ν2(dz)

]︃
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≤E
[︂
−2κ |Y x1,y1

t − Y x2,y2
t |2

+C||∇xg|||x1 − x2| |Y x1,y1
t − Y x2,y2

t |+ C||∇xb|||x1 − x2| |Y x1,y1
t − Y x2,y2

t |

+C||∇xb||2|x1 − x2|2
∫︂
Rd2

z2ν2(dz)

]︃
.

Apply Young’s inequality and simplify to get (e.g. letting C||∇xg|| = ˜︁C√2κ and take
p = q = 2 in Young’s inequality),

d

dt
E |Y x1,y1

t − Y x2,y2
t |2 ≤ −κE |Y x1,y1

t − Y x2,y2
t |2 + C|x1 − x2|2.

Then by Gronwall’s inequality, for any t ≥ 0,

E |Y x1,y1
t − Y x2,y2

t |2 ≤ e−κt|y1 − y2|2 + C|x1 − x2|2

as desired.

Proof of Corollary 2.1. Lemma 2.1 implies that for any d > 0,

E
⃓⃓⃓
Y x,y+d
t − Y x,y

t

⃓⃓⃓
≤ e−

κt
2 |d| , E

⃓⃓⃓
Y x+d,y
t − Y x,y

t

⃓⃓⃓
≤ C|d|.

Then the results follow immediately by taking d to 0.

Proof of Lemma 2.3. Consider

d∇xY
x,y
t =∇xg (x, Y

x,y
t ) dt+∇yg (x, Y

x,y
t )∇xY

x,y
t dt

+∇xb (x, Y
x,y
t ) dLt,2 +∇yb (x, Y

x,y
t )∇xY

x,y
t dLt,2,

∇xY
x,y
0 =0.

Then

∇xY
x1,y1
t −∇xY

x2,y2
t =

∫︂ t

0

∇xg (x1, Y
x1,y1
s )−∇xg (x2, Y

x2,y2
s ) ds

+

∫︂ t

0

∇yg (x1, Y
x1,y1
s )∇xY

x1,y1
s −∇yg (x2, Y

x2,y2
s )∇xY

x2,y2
s ds

+

∫︂ t

0

∇xb (x1, Y
x1,y1
s )−∇xb (x2, Y

x2,y2
s ) dLs,2

+

∫︂ t

0

∇yb (x1, Y
x1,y1
s )∇xY

x1,y1
s −∇yb (x2, Y

x2,y2
s )∇xY

x2,y2
s dLs,2.

Apply Itô’s formula to the function x2,

(∇xY
x1,y1
t −∇xY

x2,y2
t )2 = 2

∫︂ t

0

⟨∇xg (x1, Y
x1,y1
s )−∇xg (x2, Y

x2,y2
s )

+∇yg (x1, Y
x1,y1
s )∇xY

x1,y1
s −∇yg (x2, Y

x2,y2
s )∇xY

x2,y2
s ,∇xY

x1,y1
s − Y x2,y2

s ⟩ds
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+

∫︂ t

0

∫︂
Rd2

(∇xY
x1,y1
s −∇xY

x2,y2
s + (∇xb (x1, Y

x1,y1
s )−∇xb (x2, Y

x2,y2
s )

+∇yb (x1, Y
x1,y1
s )∇xY

x1,y1
s −∇yb (x2, Y

x2,y2
s )∇xY

x2,y2
s ) z)2

− (∇xY
x1,y1
s −∇xY

x2,y2
s )2 ˜︁N2(ds, dz)

+

∫︂ t

0

∫︂
Rd2

(∇xY
x1,y1
s −∇xY

x2,y2
s + (∇xb (x1, Y

x1,y1
s )−∇xb (x2, Y

x2,y2
s )

+∇yb (x1, Y
x1,y1
s )∇xY

x1,y1
s −∇yb (x2, Y

x2,y2
s )∇xY

x2,y2
s ) z)2 − (∇xY

x1,y1
s −∇xY

x2,y2
s )2

− 1|z|<12⟨(∇xb (x1, Y
x1,y1
s )−∇xb (x2, Y

x2,y2
s )

+∇yb (x1, Y
x1,y1
s )∇xY

x1,y1
s −∇yb (x2, Y

x2,y2
s )∇xY

x2,y2
s ) z,∇xY

x1,y1
s − Y x2,y2

s ⟩ν2(dz)ds.

Take expectations,

E ||∇xY
x1,y1
t −∇xY

x2,y2
t ||2 =

∫︂ t

0

E [2⟨∇xg (x1, Y
x1,y1
s )−∇xg (x2, Y

x2,y2
s )

+∇yg (x1, Y
x1,y1
s )∇xY

x1,y1
s −∇yg (x2, Y

x2,y2
s )∇xY

x2,y2
s ,∇xY

x1,y1
s − Y x2,y2

s ⟩

+

∫︂
Rd2

(∇xY
x1,y1
s −∇xY

x2,y2
s + (∇xb (x1, Y

x1,y1
s )−∇xb (x2, Y

x2,y2
s )

+∇yb (x1, Y
x1,y1
s )∇xY

x1,y1
s −∇yb (x2, Y

x2,y2
s )∇xY

x2,y2
s ) z)2 − (∇xY

x1,y1
s −∇xY

x2,y2
s )2

− 1|z|<12⟨(∇xb (x1, Y
x1,y1
s )−∇xb (x2, Y

x2,y2
s )

+∇yb (x1, Y
x1,y1
s )∇xY

x1,y1
s −∇yb (x2, Y

x2,y2
s )∇xY

x2,y2
s ) z,∇xY

x1,y1
s − Y x2,y2

s ⟩ν2(dz)] ds,

to arrive at
d

dt
E ||∇xY

x1,y1
t −∇xY

x2,y2
t ||2 = E [2⟨∇xg (x1, Y

x1,y1
t )−∇xg (x2, Y

x2,y2
t )

+∇yg (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yg (x2, Y

x2,y2
t )∇xY

x2,y2
t ,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩

+

∫︂
Rd2

(∇xY
x1,y1
t −∇xY

x2,y2
t + (∇xb (x1, Y

x1,y1
t )−∇xb (x2, Y

x2,y2
t )

+∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ) z)2 − (∇xY

x1,y1
t −∇xY

x2,y2
t )2

− 1|z|<12⟨(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )

+∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ) z,∇xY

x1,y1
t − Y x2,y2

t ⟩ν2(dz)]
=E [2⟨∇xg (x1, Y

x1,y1
t )−∇xg (x2, Y

x2,y2
t ) ,∇xY

x1,y1
t − Y x2,y2

t ⟩
+ ⟨∇yg (x1, Y

x1,y1
t )∇xY

x1,y1
t −∇yg (x2, Y

x2,y2
t )∇xY

x2,y2
t ,∇xY

x1,y1
t − Y x2,y2

t ⟩

+

∫︂
|z|≥1

2⟨(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )

+∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ) z,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

((∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )

+∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ) z)2 ν2(dz)

]︂
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=E [2⟨∇xg (x1, Y
x1,y1
t )−∇xg (x2, Y

x2,y2
t ) ,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩

+

∫︂
|z|≥1

2⟨(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )) z,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t ))2 z2ν2(dz)

+

∫︂
Rd2

2⟨(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )) z,

∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ⟩ν2(dz)

+ 2⟨∇yg (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yg (x2, Y

x2,y2
t )∇xY

x2,y2
t ,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩

+

∫︂
|z|≥1

2⟨(∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ) z,

∇xY
x1,y1
t −∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

(∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t )2 z2ν2(dz)

]︃
=:

7∑︂
i=1

Di.

By the assumption that g ∈ C1+γ,2+γ
b , mean value theorem, and Young’s inequality,

D1 =2⟨∇xg (x1, Y
x1,y1
t )−∇xg (x2, Y

x1,y1
t ) ,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩

+ 2⟨g (x2, Y x1,y1
t )−∇xg (x2, Y

x2,y2
t ) ,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩

≤2 |∇xg (x1, Y
x1,y1
t )−∇xg (x2, Y

x1,y1
t )| ||∇xY

x1,y1
t −∇xY

x2,y2
t ||

+ |g (x2, Y x1,y1
t )−∇xg (x2, Y

x2,y2
t )| ||∇xY

x1,y1
t −∇xY

x2,y2
t ||

≤2C |x1 − x2|γ |∇xY
x1,y1
t −∇xY

x2,y2
t |

+ 2||∇y∇xg|| |Y x1,y1
t − Y x2,y2

t | ||∇xY
x1,y1
t −∇xY

x2,y2
t ||

≤2C

(︄
|x1 − x2|2γ

2
+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄

+ 2||∇y∇xg||

(︄
e−

κt
2
|y1 − y2|2

2
+ C
|x1 − x2|2

2
+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄
≤C

(︂
|x1 − x2|2γ + |x1 − x2|2 + |e−

κt
2 y1 − y2|2 + ||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

)︂
. (2.61)

Similarly, noting that
∫︁
|z|≥1
|z|ν2(dz) <∞,

D2 =

∫︂
|z|≥1

2⟨(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x1,y1
t )) z,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
|z|≥1

2⟨(∇xb (x2, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )) z,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩ν2(dz)
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≤2C

(︄
|x1 − x2|2γ

2
+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄

+ 2C||∇y∇xb||

(︄
e−

κt
2
|y1 − y2|2

2
+ C
|x1 − x2|2

2
+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄
≤C

(︂
|x1 − x2|2γ + |x1 − x2|2 + e−

κt
2 |y1 − y2|2 + ||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

)︂
; (2.62)

and noting that
∫︁
Rd2 |z|

2ν2(dz) <∞,

D3 ≤
∫︂
Rd2
||∇xb (x1, Y

x1,y1
t )−∇xb (x2, Y

x1,y1
t )||2 z2ν2(dz)

+

∫︂
Rd2
||∇xb (x2, Y

x1,y1
t )−∇xb (x2, Y

x2,y2
t )||2 z2ν2(dz)

≤C|x1 − x2|2γ + C||∇y∇xb||2 |Y x1,y1
t − Y x2,y2

t |2

≤C
(︂
|x1 − x2|2γ + |x1 − x2|2 + e−

κt
2 |y1 − y2|2

)︂
. (2.63)

By Corollary 2.1, D4 is equal to∫︂
Rd2

2⟨(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x1,y1
t )) z,

∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

2⟨(∇xb (x2, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )) z,

∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ⟩ν2(dz)

≤
∫︂
Rd2

2⟨(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x1,y1
t )) z,

∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x1, Y

x1,y1
t )∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

2⟨(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x1,y1
t )) z,

∇yb (x1, Y
x1,y1
t )∇xY

x2,y2
t −∇yb (x1, Y

x2,y2
t )∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

2⟨(∇xb (x1, Y
x1,y1
t )−∇xb (x2, Y

x1,y1
t )) z,

∇yb (x1, Y
x2,y2
t )∇xY

x2,y2
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

2⟨(∇xb (x2, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )) z,

∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x1, Y

x1,y1
t )∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

2⟨(∇xb (x2, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )) z,

∇yb (x1, Y
x1,y1
t )∇xY

x2,y2
t −∇yb (x1, Y

x2,y2
t )∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

2⟨(∇xb (x2, Y
x1,y1
t )−∇xb (x2, Y

x2,y2
t )) z,

∇yb (x1, Y
x2,y2
t )∇xY

x2,y2
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ⟩ν2(dz)
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≤
∫︂
Rd2

2C|x1 − x2|γ|z| ||∇yb|| ||∇xY
x1,y1
t −∇xY

x2,y2
t || ν2(dz)

+

∫︂
Rd2

2C|x1 − x2|γ|z|
⃓⃓⃓⃓
∇2
yb
⃓⃓⃓⃓
|Y x1,y1
t − Y x2,y2

t | ||∇xY
x2,y2
t || ν2(dz)

+

∫︂
Rd2

2C|x1 − x2|γ|z|C|x1 − x2|γ ||∇xY
x2,y2
t || ν2(dz)

+

∫︂
Rd2

2 ||∇y∇xb|| |Y x1,y1
t − Y x2,y2

t | |z| ||∇yb|| ||∇xY
x1,y1
t −∇xY

x2,y2
t || ν2(dz)

+

∫︂
Rd2

2 ||∇y∇xb|| |Y x1,y1
t − Y x2,y2

t | |z|
⃓⃓⃓⃓
∇2
yb
⃓⃓⃓⃓
|Y x1,y1
t − Y x2,y2

t | ||∇xY
x2,y2
t || ν2(dz)

+

∫︂
Rd2

2 ||∇y∇xb|| |Y x1,y1
t − Y x2,y2

t | |z|C|x1 − x2|γ ||∇xY
x2,y2
t || ν2(dz)

≤C|x1 − x2|γ ||∇xY
x1,y1
t −∇xY

x2,y2
t ||+ C|x1 − x2|γ

(︂
e−

κt
2 |y1 − y2|+ C|x1 − x2|

)︂
+ C|x1 − x2|2γ + C

(︂
e−

κt
2 |y1 − y2|+ C|x1 − x2|

)︂
||∇xY

x1,y1
t −∇xY

x2,y2
t ||

+ C
(︂
e−

κt
2 |y1 − y2|+ C|x1 − x2|

)︂2
+ C

(︂
e−

κt
2 |y1 − y2|+ C|x1 − x2|

)︂
|x1 − x2|γ.

And by Young’s inequality

≤C

(︄
|x1 − x2|2γ

2
+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄

+ C

(︃
|x1 − x2|2γ

2
+ e−

κt
2
|y1 − y2|2

2
+ C
|x1 − x2|2

2

)︃
+ C|x1 − x2|2γ + C

(︄
e−

κt
2
|y1 − y2|2

2
+ C
|x1 − x2|2

2
+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄

+ C

(︃
e−

κt
2
|y1 − y2|2

2
+ C
|x1 − x2|2

2

)︃
+ C

(︃
e−

κt
2
|y1 − y2|2

2
+ C
|x1 − x2|2

2
+
|x1 − x2|2γ

2

)︃
≤C

(︂
|x1 − x2|2γ + |x1 − x2|2 + e−

κt
2 |y1 − y2|2 + ||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

)︂
. (2.64)

Lastly,

D5 +D6 +D7 ≤
2⟨∇yg (x1, Y

x1,y1
t )∇xY

x1,y1
t −∇yg (x1, Y

x1,y1
t )∇xY

x2,y2
t ,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩

+ 2⟨∇yg (x1, Y
x1,y1
t )∇xY

x2,y2
t −∇yg (x2, Y

x1,y1
t )∇xY

x2,y2
t ,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩

+ 2⟨∇yg (x2, Y
x1,y1
t )∇xY

x2,y2
t −∇yg (x2, Y

x2,y2
t )∇xY

x2,y2
t ,∇xY

x1,y1
t −∇xY

x2,y2
t ⟩

+

∫︂
|z|≥1

2⟨(∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x1, Y

x1,y1
t )∇xY

x2,y2
t ) z,

∇xY
x1,y1
t −∇xY

x2,y2
t ⟩ν2(dz)
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+

∫︂
|z|≥1

2⟨(∇yb (x1, Y
x1,y1
t )∇xY

x2,y2
t −∇yb (x2, Y

x1,y1
t )∇xY

x2,y2
t ) z,

∇xY
x1,y1
t −∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
|z|≥1

2⟨(∇yb (x2, Y
x1,y1
t )∇xY

x2,y2
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t ) z,

∇xY
x1,y1
t −∇xY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

(∇yb (x1, Y
x1,y1
t )∇xY

x1,y1
t −∇yb (x1, Y

x1,y1
t )∇xY

x2,y2
t )2 z2ν2(dz)

+

∫︂
Rd2

(∇yb (x1, Y
x1,y1
t )∇xY

x2,y2
t −∇yb (x2, Y

x1,y1
t )∇xY

x2,y2
t )2 z2ν2(dz)

+

∫︂
Rd2

(∇yb (x2, Y
x1,y1
t )∇xY

x2,y2
t −∇yb (x2, Y

x2,y2
t )∇xY

x2,y2
t )2 z2ν2(dz)

]︃
.

And by (2.11), g ∈ C1+γ,2+γ
b , and Young’s inequality,

≤− 2κ ||∇xY
x1,y1
t −∇xY

x2,y2
t ||2 + 2 (|x1 − x2|γ ||∇xY

x2,y2
t || ||∇xY

x1,y1
t −∇xY

x2,y2
t ||)

+ 2
⃓⃓⃓⃓
∇2
yg
⃓⃓⃓⃓
|Y x1,y1
t − Y x2,y2

t | ||∇xY
x1,y1
t || ||∇xY

x1,y1
t −∇xY

x2,y2
t ||

+ 2

∫︂
|z|≥1

|z||x1 − x2|γ ||∇xY
x2,y2
t || ||∇xY

x1,y1
t −∇xY

x2,y2
t || ν2(dz)

+ 2

∫︂
|z|≥1

|z|
⃓⃓⃓⃓
∇2
yb
⃓⃓⃓⃓
|Y x1,y1
t − Y x2,y2

t | ||∇xY
x2,y2
t || ||∇xY

x1,y1
t −∇xY

x2,y2
t || ν2(dz)

+

∫︂
Rd2
|z|2|x1 − x2|2γ ||∇xY

x2,y2
t ||2 ν2(dz)

+

∫︂
Rd2
|z|2

⃓⃓⃓⃓
∇2
yb
⃓⃓⃓⃓2 |Y x1,y1

t − Y x2,y2
t |2 ||∇xY

x2,y2
t ||2 ν2(dz) (2.65)

≤− 2κ ||∇xY
x1,y1
t −∇xY

x2,y2
t ||2

+ 2 sup
t,x,y
||∇xY

x,y
t ||

(︄
|x1 − x2|2γ

2
+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄

+ 2 sup
t,x,y
||∇xY

x,y
t ||

⃓⃓⃓⃓
∇2
yg
⃓⃓⃓⃓ (︄

e−
κt
2
|y1 − y2|2

2
+ C
|x1 − x2|2

2
+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄

+ 2

∫︂
|z|≥1

|z|ν2(dz)

(︄
sup
t,x,y
||∇xY

x,y
t ||

(︄
|x1 − x2|2γ

2
+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄)︄

+ 2

∫︂
|z|≥1

|z|ν2(dz)
(︃
sup
t,x,y
||∇xY

x,y
t ||

⃓⃓⃓⃓
∇2
yb
⃓⃓⃓⃓ (︃

e−
κt
2
|y1 − y2|2

2
+ C
|x1 − x2|2

2

+
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2

2

)︄)︄
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+

∫︂
Rd2
|z|2ν2(dz) sup

t,x,y
||∇xY

x,y
t ||

2 |x1 − x2|2γ

+

∫︂
Rd2
|z|2ν2(dz)

⃓⃓⃓⃓
∇2
yb
⃓⃓⃓⃓2

sup
t,x,y
||∇xY

x,y
t ||

2
(︂
e−

κt
2 |y1 − y2|2 + C|x1 − x2|2

)︂
≤C

(︂
||∇xY

x1,y1
t −∇xY

x2,y2
t ||2 + |x1 − x2|2γ + |x1 − x2|2 + e−

κt
2 |y1 − y2|2

)︂
. (2.66)

The result follows by putting (2.61), (2.62), (2.63), (2.64), and (2.65) together with
Gronwall’s inequality.

Proof of Corollary 2.2. Lemma 2.3 implies for any d > 0,

E
⃓⃓⃓⃓⃓⃓
∇xY

x,y+d
t −∇xY

x,y
t

⃓⃓⃓⃓⃓⃓
≤ Ce−

κt
4 |d|.

Then the result follows immediately by taking d to 0.

Proof of Lemma 2.4.⃓⃓⃓⃓⃓⃓
∇x
ˆ︁f(x, y1, t)−∇x

ˆ︁f(x, y2, t)⃓⃓⃓⃓⃓⃓ = ||∇xEf (x, Y
x,y1
t )−∇xEf (x, Y

x,y2
t )||

≤E ||∇xf (x, Y
x,y1
t ) +∇yf (x, Y

x,y1
t )∇xY

x,y1
t −∇xf (x, Y

x,y2
t )−∇yf (x, Y

x,y2
t )∇xY

x,y2
t ||

≤E ||∇xf (x, Y
x,y1
t )−∇xf (x, Y

x,y2
t )||

+ E ||∇yf (x, Y
x,y1
t )∇xY

x,y1
t −∇yf (x, Y

x,y2
t )∇xY

x,y2
t ||

≤E ||∇xf (x, Y
x,y1
t )−∇xf (x, Y

x,y2
t )||

+ E ||∇yf (x, Y
x,y1
t )∇xY

x,y1
t −∇yf (x, Y

x,y2
t )∇xY

x,y1
t ||

+ E ||∇yf (x, Y
x,y2
t )∇xY

x,y1
t −∇yf (x, Y

x,y2
t )∇xY

x,y2
t ||

=:
3∑︂
i=1

Ei.

By the generalized mean value theorem, there exists a Cθ for any θ ∈ (0, 1] such that

E1 ≤Cθ ||∇y∇xf ||E ||Y x,y1
t − Y x,y2

t ||θ ≤ Cθe
−κθt

2 |y1 − y2|θ. (2.67)

Likewise,

E2 ≤ Cθ ||∇xY
x,y1
t ||

⃓⃓⃓⃓
∇2
yf
⃓⃓⃓⃓
E ||Y x,y1

t − Y x,y2
t ||θ ≤ Cθe

−κθt
2 |y1 − y2|θ. (2.68)

Lastly, apply estimate (2.23),

E3 ≤ Cθ ||∇yf ||E ||∇xY
x,y1
t −∇xY

x,y2
t ||θ ≤ Cθe

−κθt
4 |y1 − y2|θ. (2.69)

Clearly, the result follows from (2.67), (2.68), and (2.69).
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Proof of Lemma 2.5. By the Markov Property

˜︁ft0(x, y, t) = ˆ︁f(x, y, t)− ˆ︁f(x, y, t+ t0)

= ˆ︁f(x, y, t)− Ef (︁x, Y x,y
t+t0

)︁
= ˆ︁f(x, y, t)− E [︁E [︁f (︁x, Y x,y

t+t0

)︁⃓⃓
Ft0
]︁]︁

= ˆ︁f(x, y, t)− E ˆ︁f (︁x, Y x,y
t0 , t

)︁
.

Therefore,

∇x
˜︁ft0(x, y, t) = ∇x

ˆ︁f(x, y, t)− E [︂∇x
ˆ︁f (︁x, Y x,y

t0 , t
)︁]︂
− E

[︂
∇y
ˆ︁f (︁x, Y x,y

t0 , t
)︁
· ∇xY

x,y
t0

]︂
, (2.70)

where ∇xY
x,y
t satisfies

d∇xY
x,y
t =∇xg (x, Y

x,y
t ) dt+∇yg (x, Y

x,y
t )∇xY

x,y
t dt

+∇xb (x, Y
x,y
t ) dLt,2 +∇yb (x, Y

x,y
t )∇xY

x,y
t dLt,2,

∇xY
x,y
0 =0.

In view of Corollary 2.1,

sup
x∈Rd1 ,y∈Rd2

⃓⃓⃓⃓⃓⃓
∇y
ˆ︁f(x, y, t)⃓⃓⃓⃓⃓⃓ = sup

x∈Rd1 ,y∈Rd2
||E [∇yf (x, Y

x,y
t ) · ∇yY

x,y
t ]|| ≤ Ce−

κt
2 . (2.71)

Then by Lemma 2.4,⃓⃓⃓⃓⃓⃓
∇x
˜︁ft0(x, y, t)⃓⃓⃓⃓⃓⃓ ≤E [︂∇x

ˆ︁f(x, y, t)−∇x
ˆ︁f (︁x, Y x,y

t0 , t
)︁]︂

+ Ce−
κt
2

≤Cθe−
κθt
4 E|y − Y x,y

t0 |
θ + Ce−

κθt
4 .

By estimate (2.39), conclude

≤Cθe−
κθt
4

(︁
1 + |y|θ

)︁
.

So, for any θ ∈ (0, 1], choose η = κθt
4
.

Proof of Lemma 2.6. Consider

d∇yY
x,y
t = ∇yg (x, Y

x,y
t ) · ∇yY

x,y
t dt+∇yb (x, Y

x,y
t ) · ∇yY

x,y
t dLs,2

∇yY
x,y
0 = I.

Then

∇yY
x1,y1
t −∇yY

x2,y2
t =

∫︂ t

0

∇yg (x1, Y
x1,y1
s ) · ∇yY

x1,y1
s −∇yg (x2, Y

x2,y2
s ) · ∇yY

x2,y2
s ds

+

∫︂ t

0

∇yb (x1, Y
x1,y1
s ) · ∇yY

x1,y1
s −∇yb (x2, Y

x2,y2
s ) · ∇yY

x2,y2
s dLs,2.
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Apply Itô’s formula to the function x2,

(∇yY
x1,y1
t −∇yY

x2,y2
t )2 =

∫︂ t

0

2⟨∇yg (x1, Y
x1,y1
s ) · ∇yY

x1,y1
s −∇yg (x2, Y

x2,y2
s ) · ∇yY

x2,y2
s ,

∇yY
x1,y1
s −∇yY

x2,y2
s ⟩ds

+

∫︂ t

0

∫︂
Rd2

(∇yY
x1,y1
s −∇yY

x2,y2
s

+(∇yb (x1, Y
x1,y1
s ) · ∇yY

x1,y1
s −∇yb (x2, Y

x2,y2
s ) · ∇yY

x2,y2
s ) z)2

− (∇yY
x1,y1
s −∇yY

x2,y2
s )2 ˜︁N2(ds, dz)

+

∫︂ t

0

∫︂
Rd2

(∇yY
x1,y1
s −∇yY

x2,y2
s

+(∇yb (x1, Y
x1,y1
s ) · ∇yY

x1,y1
s −∇yb (x2, Y

x2,y2
s ) · ∇yY

x2,y2
s ) z)2

− (∇yY
x1,y1
s −∇yY

x2,y2
s )2

− 1|z|<12⟨(∇yb (x1, Y
x1,y1
s ) · ∇yY

x1,y1
s −∇yb (x2, Y

x2,y2
s ) · ∇yY

x2,y2
s ) z,

∇yY
x1,y1
s −∇yY

x2,y2
s ⟩ν2(dz)ds.

Take expectations to arrive at

d

dt
E ||∇yY

x1,y1
t −∇yY

x2,y2
t ||2

=E [2⟨∇yg (x1, Y
x1,y1
t ) · ∇yY

x1,y1
t −∇yg (x2, Y

x2,y2
t ) · ∇yY

x2,y2
t ,∇yY

x1,y1
t −∇yY

x2,y2
t ⟩

+

∫︂
Rd2

(∇yY
x1,y1
t −∇yY

x2,y2
t

+(∇yb (x1, Y
x1,y1
t ) · ∇yY

x1,y1
t −∇yb (x2, Y

x2,y2
t ) · ∇yY

x2,y2
t ) z)2

− (∇yY
x1,y1
t −∇yY

x2,y2
t )2

−1|z|<12⟨(∇yb (x1, Y
x1,y1
t ) · ∇yY

x1,y1
t −∇yb (x2, Y

x2,y2
t ) · ∇yY

x2,y2
t ) z,

∇yY
x1,y1
t −∇yY

x2,y2
t ⟩ν2(dz)]

=E [2⟨∇yg (x1, Y
x1,y1
t ) · ∇yY

x1,y1
t −∇yg (x1, Y

x1,y1
t ) · ∇yY

x2,y2
t ,∇yY

x1,y1
t −∇yY

x2,y2
t ⟩

+ 2⟨∇yg (x1, Y
x1,y1
t ) · ∇yY

x2,y2
t −∇yg (x2, Y

x2,y2
t ) · ∇yY

x2,y2
t ,∇yY

x1,y1
t −∇yY

x2,y2
t ⟩

+

∫︂
|z|≥1

2⟨(∇yb (x1, Y
x1,y1
t ) · ∇yY

x1,y1
t −∇yb (x2, Y

x2,y2
t ) · ∇yY

x2,y2
t ) z,

∇yY
x1,y1
t −∇yY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

(∇yb (x1, Y
x1,y1
t ) · ∇yY

x1,y1
t −∇yb (x2, Y

x2,y2
t ) · ∇yY

x2,y2
t )2 z2ν2(dz)

]︃
≤E [2⟨∇yg (x1, Y

x1,y1
t ) · (∇yY

x1,y1
t −∇yY

x2,y2
t ) ,∇yY

x1,y1
t −∇yY

x2,y2
t ⟩

+

∫︂
|z|≥1

2⟨∇yb (x1, Y
x1,y1
t ) z · (∇yY

x1,y1
t −∇yY

x2,y2
t ) ,∇yY

x1,y1
t −∇yY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

(∇yb (x1, Y
x1,y1
t ) · (∇yY

x1,y1
t −∇yY

x2,y2
t ))2 z2ν2(dz)

+ 2⟨(∇yg (x1, Y
x1,y1
t )−∇yg (x2, Y

x2,y2
t )) · ∇yY

x2,y2
t ,∇yY

x1,y1
t −∇yY

x2,y2
t ⟩
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+

∫︂
|z|≥1

2⟨(∇yb (x1, Y
x1,y1
t )−∇yb (x2, Y

x2,y2
t )) · ∇yY

x2,y2
t z,∇yY

x1,y1
t −∇yY

x2,y2
t ⟩ν2(dz)

+

∫︂
Rd2

((∇yb (x1, Y
x1,y1
t )−∇yb (x2, Y

x2,y2
t )) · ∇yY

x2,y2
t )2 z2ν2(dz)

]︃
=:

6∑︂
i=1

Fi.

From (2.11)

F1 + F2 + F3 ≤ −κCE ||∇yY
x1,y1
t −∇yY

x2,y2
t ||2 . (2.72)

F4 ≤2E [||∇yg (x1, Y
x1,y1
t )−∇yg (x1, Y

x2,y2
t )|| ||∇yY

x2,y2
t || ||∇yY

x1,y1
t −∇yY

x2,y2
t ||]

+ 2E [||∇yg (x1, Y
x2,y2
t )−∇yg (x2, Y

x2,y2
t )|| ||∇yY

x2,y2
t || ||∇yY

x1,y1
t −∇yY

x2,y2
t ||]

≤2
(︁⃓⃓⃓⃓
∇2
yg
⃓⃓⃓⃓
E |Y x1,y1

t − Y x2,y2
t |+ C|x1 − x2|γ

)︁
e−

κt
2 E ||∇yY

x1,y1
t −∇yY

x2,y2
t ||

≤2Ce−
κt
2

(︂
e−

κt
2 |y1 − y2|+ C|x1 − x2|+ |x1 − x2|γ

)︂
E ||∇yY

x1,y1
t −∇yY

x2,y2
t ||

≤C
(︂
E ||∇xY

x1,y1
t −∇xY

x2,y2
t ||2 + |x1 − x2|2γ + |x1 − x2|2 + e−

κt
2 |y1 − y2|2

)︂
, (2.73)

where the last line follows by Young’s inequality.
In the same way and noting that

∫︁
|z|≥1
|z|ν2(dz) <∞ and

∫︁
Rd2 z

2ν2(dz) <∞,

F5 ≤2CE [||∇yb (x1, Y
x1,y1
t )−∇yb (x1, Y

x2,y2
t )|| ||∇yY

x2,y2
t || ||∇yY

x1,y1
t −∇yY

x2,y2
t ||]

+ 2CE [||∇yb (x1, Y
x2,y2
t )−∇yb (x2, Y

x2,y2
t )|| ||∇yY

x2,y2
t || ||∇yY

x1,y1
t −∇yY

x2,y2
t ||]

≤C
(︂
E ||∇xY

x1,y1
t −∇xY

x2,y2
t ||2 + |x1 − x2|2γ + |x1 − x2|2 + e−

κt
2 |y1 − y2|2

)︂
, (2.74)

and

F6 ≤C
(︂
E ||∇yb (x1, Y

x1,y1
t )−∇yb (x1, Y

x2,y2
t )||2

+E ||∇yb (x1, Y
x2,y2
t )−∇yb (x2, Y

x2,y2
t )||2

)︂
E ||∇yY

x2,y2
t ||2

≤C
(︂
e−

κt
2 |y1 − y2|2 + C|x1 − x2|2 + |x1 − x2|2γ

)︂
. (2.75)

The result follows by summing (2.72), (2.73), (2.74), and (2.75) together and using Gronwall’s
inequality.

Proof of Corollary 2.3. Lemma 2.6 implies for any d > 0,

E
⃓⃓⃓⃓⃓⃓
∇yY

x,y+d
t −∇yY

x,y
t

⃓⃓⃓⃓⃓⃓
≤ Ce−

κt
4 |d|.

Then the result follows immediately by taking d to 0.
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Proof of Lemma 2.7. Consider

d∇y∇xY
x,y
t =

(︁
∇y∇xg (x, Y

x,y
t ) · ∇yY

x,y
t +∇2

yg (x, Y
x,y
t ) ⟨∇yY

x,y
t ,∇xY

x,y
t ⟩

+∇yg (x, Y
x,y
t ) · ∇y∇xY

x,y
t ) dt

+
(︁
∇y∇xb (x, Y

x,y
t ) · ∇yY

x,y
t +∇2

yb (x, Y
x,y
t ) ⟨∇yY

x,y
t ,∇xY

x,y
t ⟩

+∇yb (x, Y
x,y
t ) · ∇y∇xY

x,y
t ) dLt,2,

∇y∇xY
x,y
0 = 0.

Then

∇y∇xY
x1,y
t −∇y∇xY

x2,y
t

=

∫︂ t

0

∇y∇xg (x1, Y
x1,y
s ) · ∇yY

x1,y
s −∇y∇xg (x2, Y

x2,y
s ) · ∇yY

x2,y
s ds

+

∫︂ t

0

∇2
yg (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x1,y
s ⟩ − ∇2

yg (x2, Y
x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩ds

+

∫︂ t

0

∇yg (x1, Y
x1,y
s ) · ∇y∇xY

x1,y
s −∇yg (x2, Y

x2,y
s ) · ∇y∇xY

x2,y
s ds

+

∫︂ t

0

∇y∇xb (x1, Y
x1,y
s ) · ∇yY

x1,y
s −∇y∇xb (x2, Y

x2,y
s ) · ∇yY

x2,y
s dLs,2

+

∫︂ t

0

∇2
yb (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x1,y
s ⟩ − ∇2

yb (x2, Y
x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩dLs,2

+

∫︂ t

0

∇yb (x1, Y
x1,y
s ) · ∇y∇xY

x1,y
s −∇yb (x2, Y

x2,y
s ) · ∇y∇xY

x2,y
s dLs,2

=

∫︂ t

0

[∇y∇xg (x1, Y
x1,y
s ) · ∇yY

x1,y
s −∇y∇xg (x2, Y

x2,y
s ) · ∇yY

x2,y
s

+∇2
yg (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x1,y
s ⟩ − ∇2

yg (x2, Y
x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩

+ ∇yg (x1, Y
x1,y
s ) · ∇y∇xY

x1,y
s −∇yg (x2, Y

x2,y
s ) · ∇y∇xY

x2,y
s ] ds

+

∫︂ t

0

[︃∫︂
|z|≤1

(∇y∇xb (x1, Y
x1,y
s ) · ∇yY

x1,y
s −∇y∇xb (x2, Y

x2,y
s ) · ∇yY

x2,y
s

+∇2
yb (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x1,y
s ⟩ − ∇2

yb (x2, Y
x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩

+ ∇yb (x1, Y
x1,y
s ) · ∇y∇xY

x1,y
s −∇yb (x2, Y

x2,y
s ) · ∇y∇xY

x2,y
s ) z] ˜︁N2(dz, ds)

+

∫︂ t

0

[︃∫︂
|z|>1

(∇y∇xb (x1, Y
x1,y
s ) · ∇yY

x1,y
s −∇y∇xb (x2, Y

x2,y
s ) · ∇yY

x2,y
s

+∇2
yb (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x1,y
s ⟩ − ∇2

yb (x2, Y
x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩

+ ∇yb (x1, Y
x1,y
s ) · ∇y∇xY

x1,y
s −∇yb (x2, Y

x2,y
s ) · ∇y∇xY

x2,y
s ) z]N2(dz, ds).

Take expectations,

E ||∇y∇xY
x1,y
t −∇y∇xY

x2,y
t || ≤∫︂ t

0

E ||∇y∇xg (x1, Y
x1,y
s ) · ∇yY

x1,y
s −∇y∇xg (x2, Y

x2,y
s ) · ∇yY

x2,y
s || ds
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+

∫︂ t

0

E
⃓⃓⃓⃓
∇2
yg (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x1,y
s ⟩ − ∇2

yg (x2, Y
x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩

⃓⃓⃓⃓
ds

+

∫︂ t

0

E ||∇yg (x1, Y
x1,y
s ) · ∇y∇xY

x1,y
s −∇yg (x2, Y

x2,y
s ) · ∇y∇xY

x2,y
s || ds

+

∫︂ t

0

∫︂
|z|>1

E ||∇y∇xb (x1, Y
x1,y
s ) · ∇yY

x1,y
s −∇y∇xb (x2, Y

x2,y
s ) · ∇yY

x2,y
s || |z|ν2(dz)ds

+

∫︂ t

0

∫︂
|z|>1

E
⃓⃓⃓⃓
∇2
yb (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x1,y
s ⟩

−∇2
yb (x2, Y

x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩

⃓⃓⃓⃓
|z|ν2(dz)ds

+

∫︂ t

0

∫︂
|z|>1

E ||∇yb (x1, Y
x1,y
s ) · ∇y∇xY

x1,y
s −∇yb (x2, Y

x2,y
s ) · ∇y∇xY

x2,y
s || |z|ν2(dz)ds

=:
6∑︂
i=1

∫︂ t

0

Gids.

To bound each Gi, make use of the previously established Lemmas 2.1, 2.3, 2.6, and
Corollaries 2.1 and 2.2 and the fact that g, b ∈ C1+γ,2+γ

b .

G1 ≤E ||∇y∇xg (x1, Y
x1,y
s ) · ∇yY

x1,y
s −∇y∇xg (x1, Y

x1,y
s ) · ∇yY

x2,y
s ||

+ E ||∇y∇xg (x1, Y
x1,y
s ) · ∇yY

x2,y
s −∇y∇xg (x1, Y

x2,y
s ) · ∇yY

x2,y
s ||

+ E ||∇y∇xg (x1, Y
x2,y
s ) · ∇yY

x2,y
s −∇y∇xg (x2, Y

x2,y
s ) · ∇yY

x2,y
s ||

≤CE ||∇yY
x1,y
s −∇yY

x2,y
s ||+ CE ||∇y∇xg (x1, Y

x1,y
s )−∇y∇xg (x1, Y

x2,y
s )|| e−

κs
2

+ CE ||∇y∇xg (x1, Y
x2,y
s )−∇y∇xg (x2, Y

x2,y
s )|| e−

κs
2

≤C (|x1 − x2|γ + |x1 − x2|) + CE |Y x1,y
s − Y x2,y

s |γ e−
κs
2 + C|x1 − x2|γe−

κs
2

≤C (|x1 − x2|γ + |x1 − x2|) + C|x1 − x2|γe−
κs
2 . (2.76)

G2 ≤E
⃓⃓⃓⃓
∇2
yg (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x1,y
s ⟩ − ∇2

yg (x1, Y
x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x2,y
s ⟩

⃓⃓⃓⃓
+ E

⃓⃓⃓⃓
∇2
yg (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x2,y
s ⟩ − ∇2

yg (x1, Y
x1,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩

⃓⃓⃓⃓
+ E

⃓⃓⃓⃓
∇2
yg (x1, Y

x1,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩ − ∇2

yg (x1, Y
x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩

⃓⃓⃓⃓
+ E

⃓⃓⃓⃓
∇2
yg (x1, Y

x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩ − ∇2

yg (x2, Y
x2,y
s ) ⟨∇yY

x2,y
s ,∇xY

x2,y
s ⟩

⃓⃓⃓⃓
≤E

⃓⃓⃓⃓
∇2
yg (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s ,∇xY

x1,y
s −∇xY

x2,y
s ⟩

⃓⃓⃓⃓
+ E

⃓⃓⃓⃓
∇2
yg (x1, Y

x1,y
s ) ⟨∇yY

x1,y
s −∇yY

x2,y
s ,∇xY

x2,y
s ⟩

⃓⃓⃓⃓
+ CE [|Y x1,y

s − Y x2,y
s |γ ||∇yY

x2,y
s || ||∇xY

x2,y
s ||] + C|x1 − x2|γE [||∇yY

x2,y
s || ||∇xY

x2,y
s ||]

≤Ce−
κs
2 (|x1 − x2|γ + |x1 − x2|) + Ce−

κs
2 |x1 − x2|γ + Ce−

κs
2 |x1 − x2|γ

≤Ce−
κs
2 (|x1 − x2|γ + |x1 − x2|) . (2.77)
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G3 ≤E ||∇yg (x1, Y
x1,y
s ) · ∇y∇xY

x1,y
s −∇yg (x1, Y

x1,y
s ) · ∇y∇xY

x2,y
s ||

+ E ||∇yg (x1, Y
x1,y
s ) · ∇y∇xY

x2,y
s −∇yg (x1, Y

x2,y
s ) · ∇y∇xY

x2,y
s ||

+ E ||∇yg (x1, Y
x2,y
s ) · ∇y∇xY

x2,y
s −∇yg (x2, Y

x2,y
s ) · ∇y∇xY

x2,y
s ||

≤2CE ||∇y∇xY
x2,y
s ||+ CE [|Y x1,y

s − Y x2,y
s |γ ||∇y∇xY

x2,y
s ||] + C|x1 − x2|γE ||∇y∇xY

x2,y
s ||

≤Ce−
κs
4 + C|x1 − x2|γe−

κs
4 . (2.78)

From (2.76), (2.77), (2.78), and noticing that G4, G5, G6 are identical except they are
multiplied by a constant arising from

∫︁
|z|>1
|z|ν2(dz), conclude that

sup
y∈Rd2

E ||∇y∇xY
x1,y
t −∇y∇xY

x2,y
t || ≤ Ce−

κt
4 |x1 − x2|γ

(︁
1 + |x1 − x2|1−γ

)︁
.

Proof of Lemma 2.8. From (2.70),⃓⃓⃓⃓⃓⃓
∇x
˜︁ft0(x1, y, t)−∇x

˜︁ft0(x2, y, t)⃓⃓⃓⃓⃓⃓
=
⃓⃓⃓⃓⃓⃓(︂
∇x
ˆ︁f(x1, y, t)− E [︂∇x

ˆ︁f (︁x1, Y x1,y
t0 , t

)︁]︂
− E

[︂
∇y
ˆ︁f (︁x1, Y x1,y

t0 , t
)︁
· ∇xY

x1,y
t0

]︂)︂
−
(︂
∇x
ˆ︁f(x2, y, t)− E [︂∇x

ˆ︁f (︁x2, Y x2,y
t0 , t

)︁]︂
− E

[︂
∇y
ˆ︁f (︁x2, Y x2,y

t0 , t
)︁
· ∇xY

x2,y
t0

]︂)︂⃓⃓⃓⃓⃓⃓
≤
⃓⃓⃓⃓⃓⃓(︂
∇x
ˆ︁f(x1, y, t)− E [︂∇x

ˆ︁f (︁x1, Y x1,y
t0 , t

)︁]︂)︂
−
(︂
∇x
ˆ︁f(x2, y, t)− E [︂∇x

ˆ︁f (︁x2, Y x1,y
t0 , t

)︁]︂)︂⃓⃓⃓⃓⃓⃓
+
⃓⃓⃓⃓⃓⃓
E
[︂
∇x
ˆ︁f (︁x2, Y x2,y

t0 , t
)︁]︂
− E

[︂
∇x
ˆ︁f (︁x2, Y x1,y

t0 , t
)︁]︂⃓⃓⃓⃓⃓⃓

+
⃓⃓⃓⃓⃓⃓
E
[︂
∇y
ˆ︁f (︁x1, Y x1,y

t0 , t
)︁
· ∇xY

x1,y
t0

]︂
− E

[︂
∇y
ˆ︁f (︁x2, Y x2,y

t0 , t
)︁
· ∇xY

x2,y
t0

]︂⃓⃓⃓⃓⃓⃓
=:

3∑︂
i=1

Qi.

Notice ∇x
ˆ︁f(x, y, t) = E [∇xf (x, Y

x,y
t )] + E [∇yf (x, Y

x,y
t ) · ∇xY

x,y
t ] . With this, consider⃓⃓⃓⃓⃓⃓

∇x
ˆ︁f (x1, y1, t)−∇x

ˆ︁f (x1, y2, t)− [︂∇x
ˆ︁f (x2, y1, t)−∇x

ˆ︁f (x2, y2, t)]︂⃓⃓⃓⃓⃓⃓
= ||E [∇xf (x1, Y

x1,y1
t )] + E [∇yf (x1, Y

x1,y1
t ) · ∇xY

x1,y1
t ]

− E [∇xf (x1, Y
x1,y2
t )]− E [∇yf (x1, Y

x1,y2
t ) · ∇xY

x1,y2
t ]

− E [∇xf (x2, Y
x2,y1
t )]− E [∇yf (x2, Y

x2,y1
t ) · ∇xY

x2,y1
t ]

+E [∇xf (x2, Y
x2,y2
t )] + E [∇yf (x2, Y

x2,y2
t ) · ∇xY

x2,y2
t ]||

≤ ||E [∇xf (x1, Y
x1,y1
t )−∇xf (x1, Y

x1,y2
t )− (∇xf (x2, Y

x1,y1
t )−∇xf (x2, Y

x1,y2
t ))]||

+ ||E [∇xf (x2, Y
x1,y1
t )− E [∇xf (x2, Y

x2,y1
t )]− (∇xf (x2, Y

x1,y2
t )− E [∇xf (x2, Y

x2,y2
t )])]||

+ ||E [∇yf (x1, Y
x1,y1
t ) · ∇xY

x1,y1
t −∇yf (x2, Y

x2,y1
t ) · ∇xY

x2,y1
t ]

− E [∇yf (x1, Y
x1,y2
t ) · ∇xY

x1,y2
t −∇yf (x2, Y

x2,y2
t ) · ∇xY

x2,y2
t ]||

=:
3∑︂
i=1

Q1i.
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Since f ∈ C2+γ,2+δ
b and by Lemma 2.1,

Q11 ≤E
⃓⃓⃓⃓⃓⃓⃓⃓∫︂ 1

0

∇x∇yf (x1, ξY
x1,y1
t + (1− ξ)Y x1,y2

t ) dξ · (Y x1,y1
t − Y x1,y2

t )

−
∫︂ 1

0

∇x∇yf (x2, ξY
x1,y1
t + (1− ξ)Y x1,y2

t ) dξ · (Y x1,y1
t − Y x1,y2

t )

⃓⃓⃓⃓⃓⃓⃓⃓
≤C|x1 − x2|γE |Y x1,y1

t − Y x1,y2
t |

≤Ce−
κt
2 |x1 − x2|γ|y1 − y2|. (2.79)

Similarly,

Q12 ≤E
⃓⃓⃓⃓⃓⃓⃓⃓∫︂ 1

0

∇x∇yf (x2, ξY
x1,y1
t + (1− ξ)Y x2,y1

t ) dξ · (Y x1,y1
t − Y x2,y1

t )

−
∫︂ 1

0

∇x∇yf (x2, ξY
x1,y2
t + (1− ξ)Y x2,y2

t ) dξ · (Y x1,y2
t − Y x2,y2

t )

⃓⃓⃓⃓⃓⃓⃓⃓
≤E

⃓⃓⃓⃓⃓⃓⃓⃓∫︂ 1

0

∇x∇yf (x2, ξY
x1,y1
t + (1− ξ)Y x2,y1

t ) dξ · (Y x1,y1
t − Y x2,y1

t )

−
∫︂ 1

0

∇x∇yf (x2, ξY
x1,y2
t + (1− ξ)Y x2,y2

t ) dξ · (Y x1,y1
t − Y x2,y1

t )

+

∫︂ 1

0

∇x∇yf (x2, ξY
x1,y2
t + (1− ξ)Y x2,y2

t ) dξ · (Y x1,y1
t − Y x2,y1

t − Y x1,y2
t + Y x2,y2

t )

⃓⃓⃓⃓⃓⃓⃓⃓
≤
⃓⃓⃓⃓
∇x∂

2
yf
⃓⃓⃓⃓
E

[︃∫︂ 1

0

|ξ (Y x1,y2
t − Y x1,y2

t ) + (1− ξ) (Y x2,y1
t − Y x2,y2

t )| dξ · |Y x1,y1
t − Y x2,y1

t |
]︃

+ E |Y x1,y1
t − Y x2,y1

t − Y x1,y2
t + Y x2,y2

t | ,

and estimating the second term using Taylor’s theorem again with Lemma 2.3,

≤CE [(|Y x1,y2
t − Y x1,y2

t |+ |Y x2,y1
t − Y x2,y2

t |) |Y x1,y1
t − Y x2,y1

t |]

+ E

⃓⃓⃓⃓∫︂ 1

0

∇xY
ξx1+(1−ξ)x2,y1
t dξ · (x1 − x2)−

∫︂ 1

0

∇xY
ξx1+(1−ξ)x2,y2
t dξ · (x1 − x2)

⃓⃓⃓⃓
≤Ce−

κt
2 |y1 − y2||x1 − x2|+ Ce−

κt
2 |y1 − y2||x1 − x2|

≤Ce−
κt
2 |y1 − y2||x1 − x2|. (2.80)

It is necessary to further decompose Q13,

Q13 ≤E ||(∇yf (x1, Y
x1,y1
t )−∇yf (x2, Y

x1,y1
t )) · ∇xY

x1,y1
t

− (∇yf (x1, Y
x1,y2
t )−∇yf (x2, Y

x1,y2
t )) · ∇xY

x1,y2
t ||

+ E ||(∇yf (x2, Y
x1,y1
t )−∇yf (x2, Y

x2,y1
t )) · ∇xY

x1,y1
t

− (∇yf (x2, Y
x1,y2
t )−∇yf (x2, Y

x2,y2
t )) · ∇xY

x1,y2
t ||

+ E ||∇yf (x2, Y
x2,y1
t ) · (∇xY

x1,y1
t −∇xY

x2,y1
t )

−∇yf (x2, Y
x2,y2
t ) · (∇xY

x1,y2
t −∇xY

x2,y2
t )||
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=:
3∑︂
i=1

Q13i.

From Lemma 2.3,

Q131 ≤E
⃓⃓⃓⃓⃓⃓⃓⃓∫︂ 1

0

∇x∇yf (ξx1 + (1− ξ)x2, Y x1,y1
t ) · ⟨x1 − x2,∇xY

x1,y1
t ⟩

−
∫︂ 1

0

∇x∇yf (ξx1 + (1− ξ)x2, Y x1,y2
t ) · ⟨x1 − x2,∇xY

x1,y2
t ⟩

⃓⃓⃓⃓⃓⃓⃓⃓
≤E

⃓⃓⃓⃓⃓⃓⃓⃓∫︂ 1

0

∇x∇yf (ξx1 + (1− ξ)x2, Y x1,y1
t ) · ⟨x1 − x2,∇xY

x1,y1
t ⟩

−
∫︂ 1

0

∇x∇yf (ξx1 + (1− ξ)x2, Y x1,y2
t ) · ⟨x1 − x2,∇xY

x1,y1
t ⟩

+

∫︂ 1

0

∇x∇yf (ξx1 + (1− ξ)x2, Y x1,y2
t ) · ⟨x1 − x2,∇xY

x1,y1
t −∇xY

x1,y2
t ⟩

⃓⃓⃓⃓⃓⃓⃓⃓
≤
⃓⃓⃓⃓
∇x∇2

yf
⃓⃓⃓⃓
|x1 − x2|E [|Y x1,y1

t − Y x1,y2
t |] ||∇xY

x1,y1
t ||

+ C|x1 − x2|E ||∇xY
x1,y1
t −∇xY

x1,y2
t ||

≤C|x1 − x2|e−
κt
2 |y1 − y2|+ Ce−

κt
2 |y1 − y2||x1 − x2|

≤Ce−
κt
2 |x1 − x2||y1 − y2|. (2.81)

Q132 ≤E
⃓⃓⃓⃓⃓⃓⃓⃓∫︂ 1

0

∇2
yf (x2, ξY

x1,y1
t + (1− ξ)Y x2,y1

t ) dξ · ⟨Y x1,y1
t − Y x2,y1

t ,∇xY
x1,y1
t ⟩

−
∫︂ 1

0

∇2
yf (x2, ξY

x1,y2
t + (1− ξ)Y x2,y2

t ) dξ · ⟨Y x1,y2
t − Y x2,y2

t ,∇xY
x1,y2
t ⟩

⃓⃓⃓⃓⃓⃓⃓⃓
≤E

⃓⃓⃓⃓⃓⃓⃓⃓∫︂ 1

0

∇2
yf (x2, ξY

x1,y1
t + (1− ξ)Y x2,y1

t ) dξ · ⟨Y x1,y1
t − Y x2,y1

t ,∇xY
x1,y1
t ⟩

−
∫︂ 1

0

∇2
yf (x2, ξY

x1,y2
t + (1− ξ)Y x2,y2

t ) dξ · ⟨Y x1,y1
t − Y x2,y1

t ,∇xY
x1,y1
t ⟩

+

∫︂ 1

0

∇2
yf (x2, ξY

x1,y2
t + (1− ξ)Y x2,y2

t ) dξ · ⟨Y x1,y1
t − Y x2,y1

t ,∇xY
x1,y1
t −∇xY

x1,y2
t ⟩

+

∫︂ 1

0

∇2
yf (x2, ξY

x1,y2
t + (1− ξ)Y x2,y2

t ) dξ·

·⟨Y x1,y1
t − Y x2,y1

t − Y x1,y2
t + Y x2,y2

t ,∇xY
x1,y2
t ⟩||

≤CE
(︂
|Y x1,y1
t − Y x1,y2

t |δ + |Y x2,y1
t − Y x2,y2

t |δ
)︂
|Y x1,y1
t − Y x2,y1

t | ||∇xY
x1,y1
t ||

+ CE [|Y x1,y1
t − Y x2,y1

t | ||∇xY
x1,y1
t −∇xY

x1,y2
t ||]

+ CE [|Y x1,y1
t − Y x2,y1

t − Y x1,y2
t + Y x2,y2

t | |∇xY
x1,y2
t |]
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≤CE
(︂
|Y x1,y1
t − Y x1,y2

t |δ + |Y x2,y1
t − Y x2,y2

t |δ
)︂
|Y x1,y1
t − Y x2,y1

t | ||∇xY
x1,y1
t ||

+ CE [|Y x1,y1
t − Y x2,y1

t | ||∇xY
x1,y1
t −∇xY

x1,y2
t ||]

+ C sup
x∈Rd1

E [|∇xY
x,y1
t −∇xY

x,y2
t | |x1 − x2| |∇xY

x1,y2
t |]

≤Ce−
κδt
2 |y1 − y2|δ|x1 − x2|+ C|x1 − x2|e−

κt
2 |y1 − y2|+ Ce−

κt
2 |y1 − y2||x1 − x2|

≤Ce−
κδt
2 |x1 − x2||y1 − y2|δ

(︁
1 + |y1 − y2|1−δ

)︁
. (2.82)

Finally, apply Lemma 2.7 to get

Q133 ≤E ||(∇yf (x2, Y
x2,y1
t )−∇yf (x2, Y

x2,y2
t )) · (∇xY

x1,y1
t −∇xY

x2,y1
t )||

+ E ||∇yf (x2, Y
x2,y2
t ) · (∇xY

x1,y1
t −∇xY

x2,y1
t −∇xY

x1,y2
t −∇xY

x2,y2
t )||

≤C
⃓⃓⃓⃓
∇2
yf
⃓⃓⃓⃓
E ||Y x2,y1

t − Y x2,y2
t || (|x1 − x2|γ + |x1 − x2|)

+ C sup
y∈Rd2

E ||∇y∇xY
x1,y
t −∇y∇xY

x2,y
t || |y1 − y2|

≤Ce−
κt
2 |y1 − y2| (|x1 − x2|γ + |x1 − x2|) + Ce−

κt
4 |x1 − x2|γ

(︁
1 + |x1 − x2|1−γ

)︁
|y1 − y2|

≤Ce−
κt
4 |x1 − x2|γ

(︁
1 + |x1 − x2|1−γ

)︁
|y1 − y2|. (2.83)

Add up (2.81), (2.82), and (2.83) to conclude that

Q13 ≤ Ce−
(κ∧2δ)t

4 |x1 − x2|γ|y1 − y2|δ
(︁
1 + |y1 − y2|1−δ

)︁ (︁
1 + |x1 − x2|1−γ

)︁
. (2.84)

And (2.79), (2.80), and (2.84) gives

Q11 +Q12 +Q13 ≤Ce−
κt
2 |y1 − y2||x1 − x2|+ Ce−

κt
2 |y1 − y2||x1 − x2|

+ Ce−
(κ∧2δ)t

4 |x1 − x2|γ|y1 − y2|δ
(︁
1 + |y1 − y2|1−δ

)︁ (︁
1 + |x1 − x2|1−γ

)︁
≤Ce−

(κ∧2δ)t
4 |x1 − x2|γ|y1 − y2|δ

(︁
1 + |y1 − y2|1−δ

)︁ (︁
1 + |x1 − x2|1−γ

)︁
.

Therefore, by equation (2.39)

Q1 ≤Ce−
(κ∧2δ)t

4 |x1 − x2|γ|y − Y x1,y
t0 |δ

(︁
1 + |y − Y x1,y

t0 |1−δ
)︁ (︁

1 + |x1 − x2|1−γ
)︁

≤Ce−
(κ∧2δ)t

4 |x1 − x2|γ
(︁
1 + |x1 − x2|1−γ

)︁
(1 + |y|). (2.85)

From Corollaries 2.1, 2.2, and f ∈ C2+γ,2+δ
b then

∇y∇x
ˆ︁f(x, y, t) =∇y (E [∇xf (x, Y

x,y
t )] + E [∇yf (x, Y

x,y
t ) · ∇xY

x,y
t ])

=E [∇x∇yf (x, Y
x,y
t ) · ∇yY

x,y
t ] + E

[︁
∇2
yf (x, Y

x,y
t ) ⟨∇xY

x,y
t ,∇yY

x,y
t ⟩

]︁
+ E [∇yf (x, Y

x,y
t ) · ∇x∇yY

x,y
t ]

≤Ce−
κt
4 .
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Therefore,

Q2 ≤
⃓⃓⃓⃓⃓⃓
∇y∇x

ˆ︁f ⃓⃓⃓⃓⃓⃓E ⃓⃓Y x2,y
t0 − Y x1,y

t0

⃓⃓
≤ Ce−

κt
4 |x1 − x2|. (2.86)

Similarly, but with the addition of Corollary 2.3,

∇y
ˆ︁f(x, y, t) =E [∇yf (x, Y

x,y
t ) · ∇yY

x,y
t ] ≤ Ce−

κt
2

and

∇2
y
ˆ︁f(x, y, t) =E [︁∇2

yf (x, Y
x,y
t ) ⟨∇yY

x,y
t ,∇yY

x,y
t ⟩

]︁
+ E

[︁
∇yf (x, Y

x,y
t ) · ∇2

yY
x,y
t

]︁
≤ Ce−

κt
4 .

Therefore,

Q3 ≤
⃓⃓⃓⃓⃓⃓
E
[︂
∇y
ˆ︁f (︁x1, Y x1,y

t0 , t
)︁
· ∇xY

x1,y
t0

]︂
− E

[︂
∇y
ˆ︁f (︁x1, Y x1,y

t0 , t
)︁
· ∇xY

x2,y
t0

]︂⃓⃓⃓⃓⃓⃓
+
⃓⃓⃓⃓⃓⃓
E
[︂
∇y
ˆ︁f (︁x1, Y x1,y

t0 , t
)︁
· ∇xY

x2,y
t0

]︂
− E

[︂
∇y
ˆ︁f (︁x1, Y x2,y

t0 , t
)︁
· ∇xY

x2,y
t0

]︂⃓⃓⃓⃓⃓⃓
+
⃓⃓⃓⃓⃓⃓
E
[︂
∇y
ˆ︁f (︁x1, Y x2,y

t0 , t
)︁
· ∇xY

x2,y
t0

]︂
− E

[︂
∇y
ˆ︁f (︁x2, Y x2,y

t0 , t
)︁
· ∇xY

x2,y
t0

]︂⃓⃓⃓⃓⃓⃓
≤
⃓⃓⃓⃓⃓⃓
∇y
ˆ︁f ⃓⃓⃓⃓⃓⃓ ⃓⃓⃓⃓∇xY

x1,y
t0 −∇xY

x2,y
t0

⃓⃓⃓⃓
+
⃓⃓⃓⃓⃓⃓
∇2
y
ˆ︁f ⃓⃓⃓⃓⃓⃓ ⃓⃓⃓⃓Y x1,y

t0 − Y x2,y
t0

⃓⃓⃓⃓ ⃓⃓⃓⃓
∇xY

x2,y
t0

⃓⃓⃓⃓
+
⃓⃓⃓⃓⃓⃓
∇x∇y

ˆ︁f ⃓⃓⃓⃓⃓⃓ |x1 − x2| ⃓⃓⃓⃓∇xY
x2,y
t0

⃓⃓⃓⃓
≤Ce−

κt
2 (|x1 − x2|γ + |x1 − x2|) + Ce−

κt
4 |x1 − x2|+ Ce−

κt
4 |x1 − x2|

≤Ce−
κt
4 (|x1 − x2|γ + |x1 − x2|) . (2.87)

(2.85), (2.86), and (2.87) together imply the result.

Averaging Lemmas

Proof of Lemma 2.9. Notice that the multiplicative noise component of the slow process is
bounded:

E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

ϵρc (Xϵ
s, Y

ϵ
s ) dLs,1

⃓⃓⃓⃓p]︄

=ϵρpE

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

∫︂
|z|≤1

c (Xϵ
s, Y

ϵ
s ) z ˜︁N1(ds, dz) +

∫︂ t

0

∫︂
|z|>1

c (Xϵ
s, Y

ϵ
s ) zN1(ds, dz)

⃓⃓⃓⃓p]︄

≤ϵρpE

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

∫︂
|z|≤1

c (Xϵ
s, Y

ϵ
s ) z ˜︁N1(ds, dz)

⃓⃓⃓⃓p]︄
+ T p

∫︂
|z|>1

E [|c (Xϵ
s, Y

ϵ
s )|

p] |z|pν1(dz)

+ E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

∫︂
|z|>1

c (Xϵ
s, Y

ϵ
s ) zN1(ds, dz)

⃓⃓⃓⃓p]︄
,
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which by the Burkholder-Davis-Gundy inequality gives,

≤ϵρpCp||c||pE

[︄⃓⃓⃓⃓∫︂ T

0

∫︂
|z|≤1

|z|2N1(ds, dz)

⃓⃓⃓⃓ p
2

]︄
+ ||c||pT p

∫︂
|z|>1

|z|pν1(dz)ds

+

[︃∫︂ T

0

∫︂
|z|>1

||c|||z|ν1(dz)ds
]︃p

≤ϵρpCp||c||pT
p
2

[︃∫︂
|z|≤1

|z|2ν1(dz)
]︃ p

2

+ ||c||pT p
∫︂
|z|>1

|z|pν1(dz)ds+ ||c||pT p
[︃∫︂

|z|>1

|z|ν1(dz)
]︃p

≤CpT pϵρp. (2.88)

Notice that

|f (Xϵ
s, Y

ϵ
s )| ≤ |f (Xϵ

s, Y
ϵ
s )− f (Xϵ

s, 0)|+ |f (Xϵ
s, 0)− f (0, 0)|+ |f (0, 0)|

≤||∇yf || |Y ϵ
s |+ ||∇xf || |Xϵ

s|+ |f | ≤ C (1 + |Xϵ
s|+ |Y ϵ

s |) .

Use this and (2.88) to see that

E

[︄
sup
t∈[0,T ]

|Xϵ
t |
p

]︄
≤CpT p(1 + |x|p) + Cp

∫︂ T

0

E

[︄
sup
r∈[0,s]

|Xϵ
r |
p

]︄
ds+ Cp

∫︂ T

0

E |Y ϵ
s |
p ds. (2.89)

Then by Gronwall’s inequality,

E

[︄
sup
t∈[0,T ]

|Xϵ
t |
p

]︄
≤
(︃
CpT

p(1 + |x|p) + Cp

∫︂ T

0

E |Y ϵ
s |
p ds

)︃
eCpT

≤CpT peCpT
(︄
1 + |x|p + sup

ϵ∈(0,1)
sup
t≥0

E |Y ϵ
t |
p

)︄
. (2.90)

An estimate of (2.38) is necessary to complete (2.37). Define the scalar valued function
U : Rd2 → R as

U(y) :=
(︁
|y|2 + 1

)︁ p
2 .

Consider the vector of first-order partial derivatives∇ = [∂y1 , .., ∂yd2 ]
T and to correspond-

ing matrix of second-order partial derivatives ∇2 =

⎡⎣ ∂2y1,y1 ...∂
2
y1,yd2

...
∂2yd2 ,y1

...∂2yd2 ,yd2

⎤⎦ . A quick calculation

gives for any y ∈ Rd2 (see [SXX22]),

|∇U(y)| =

⃓⃓⃓⃓
⃓⃓ py(︁
|y|2 + 1

)︁1− p
2

⃓⃓⃓⃓
⃓⃓ ≤ Cp |y|p−1 (2.91)

and

⃓⃓⃓⃓
∇2U(y)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ pId2×d2(︁
|y|2 + 1

)︁1− p
2

− p (p− 2) y ⊗ y(︁
|y|2 + 1

)︁2− p
2

⃓⃓⃓⃓
⃓⃓
⃓⃓⃓⃓
⃓⃓ ≤ Cp

(|y|2 + 1)1−
p
2

≤ Cp. (2.92)
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Apply Itô’s formula with small jumps of size ϵ
1
α ,

U (Y ϵ
t )− U(y)

=

∫︂ t

0

⟨ϵ−1g(Xϵ
s, Y

ϵ
s ),∇U(Y ϵ

s )⟩ds+
∫︂ t

0

∫︂
|z|≥ϵ

1
α

U
(︂
Y ϵ
s + ϵ−

1
α b(Xϵ

s, Y
ϵ
s )z
)︂
− U (Y ϵ

s )N2 (ds, dz)

+

∫︂ t

0

∫︂
|z|<ϵ

1
α

U
(︂
Y ϵ
s + ϵ−

1
α b(Xϵ

s, Y
ϵ
s )z
)︂
− U (Y ϵ

s ) ˜︁N2 (ds, dz)

+

∫︂ t

0

∫︂
|z|<ϵ

1
α

U
(︂
Y ϵ
s + ϵ−

1
α b(Xϵ

s, Y
ϵ
s )z
)︂
− U (Y ϵ

s )− ⟨ϵ−
1
α b(Xϵ

s, Y
ϵ
s )z,∇U (Y ϵ

s )⟩ν2(dz)ds

=

∫︂ t

0

ϵ−1⟨g(Xϵ
s, Y

ϵ
s ),∇U(Y ϵ

s )⟩ds+
∫︂ t

0

∫︂
|z|≥ϵ

1
α

U
(︂
Y ϵ
s + ϵ−

1
α b(Xϵ

s, Y
ϵ
s )z
)︂
− U (Y ϵ

s ) ˜︁N2 (ds, dz)

+

∫︂ t

0

∫︂
|z|<ϵ

1
α

U
(︂
Y ϵ
s + ϵ−

1
α b(Xϵ

s, Y
ϵ
s )z
)︂
− U (Y ϵ

s ) ˜︁N2 (ds, dz)

+

∫︂ t

0

∫︂
|z|<ϵ

1
α

U
(︂
Y ϵ
s + ϵ−

1
α b(Xϵ

s, Y
ϵ
s )z
)︂
− U (Y ϵ

s )− ⟨ϵ−
1
α b(Xϵ

s, Y
ϵ
s )z,∇U (Y ϵ

s )⟩ν2(dz)ds

+

∫︂ t

0

∫︂
|z|≥ϵ

1
α

U
(︂
Y ϵ
s + ϵ−

1
α b(Xϵ

s, Y
ϵ
s )z
)︂
− U (Y ϵ

s ) ν2(dz)ds.

Take expectations on both sides and make the substitution r = ϵ−
1
α z,

E [U (Y ϵ
t )− U(y)] = E

[︃∫︂ t

0

ϵ−1⟨g(Xϵ
s, Y

ϵ
s ),∇U(Y ϵ

s )⟩ds
]︃

+ E
[︃∫︂ t

0

∫︂
|z|<ϵ

1
α

U
(︂
Y ϵ
s + ϵ−

1
α b(Xϵ

s, Y
ϵ
s )z
)︂
− U (Y ϵ

s )− ⟨ϵ−
1
α b(Xϵ

s, Y
ϵ
s )z,∇U (Y ϵ

s )⟩ν2(dz)ds
]︃

+ E
[︃∫︂ t

0

∫︂
|z|≥ϵ

1
α

U
(︂
Y ϵ
s + ϵ−

1
α b(Xϵ

s, Y
ϵ
s )z
)︂
− U (Y ϵ

s ) ν2(dz)ds

]︃
=ϵ−1E

[︃∫︂ t

0

⟨g(Xϵ
s, Y

ϵ
s ),∇U(Y ϵ

s )⟩ds
]︃

+ ϵ−1E
[︃∫︂ t

0

∫︂
|r|<1

U (Y ϵ
s + b(Xϵ

s, Y
ϵ
s )r)− U (Y ϵ

s )− ⟨b(Xϵ
s, Y

ϵ
s )r,∇U (Y ϵ

s )⟩ν2(dr)ds
]︃

+ ϵ−1E
[︃∫︂ t

0

∫︂
|r|≥1

U (Y ϵ
s + b(Xϵ

s, Y
ϵ
s )r)− U (Y ϵ

s ) ν2(dr)ds

]︃
.

This implies

dE [U (Y ϵ
t )]

dt
=ϵ−1E [⟨g(Xϵ

t , Y
ϵ
t ),∇U(Y ϵ

t )⟩]

+ ϵ−1E
[︃∫︂

|r|<1

U (Y ϵ
s + b(Xϵ

s, Y
ϵ
s )r)− U (Y ϵ

s )− ⟨b(Xϵ
s, Y

ϵ
s )r,∇U (Y ϵ

s )⟩ν2(dr)
]︃

+ ϵ−1E
[︃∫︂

|r|≥1

U (Y ϵ
s + b(Xϵ

s, Y
ϵ
s )r)− U (Y ϵ

s ) ν2(dr)

]︃
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=:
3∑︂
i=1

Ai.

Condition (A2) and (2.91) imply

⟨g(Xϵ
t , Y

ϵ
t ),∇U(Y ϵ

t )⟩

=
1(︁

|Y ϵ
t |

2 + 1
)︁1− p

2

[︃
⟨g (Xϵ

t , Y
ϵ
t )− g (Xϵ

t , 0) , pY
ϵ
t ⟩+

∫︂
|z|≥1

⟨(b (Xϵ
t , Y

ϵ
t )− b (Xϵ

t , 0)) z, pY
ϵ
t ⟩ν2(dz)

+ p

∫︂
Rd2
|b (Xϵ

t , Y
ϵ
t )− b (Xϵ

t , 0)|
2 z2ν2(dz) + ⟨g (Xϵ

t , 0) , pY
ϵ
t ⟩

−
∫︂
|z|≥1

⟨(b (Xϵ
t , Y

ϵ
t )− b (Xϵ

t , 0)) z, pY
ϵ
t ⟩ν2(dz)

−p
∫︂
Rd2
|b (Xϵ

t , Y
ϵ
t )− b (Xϵ

t , 0)|
2 z2ν2(dz) + ⟨g (Xϵ

t , 0) , pY
ϵ
t ⟩
]︃

≤
−κp |Y ϵ

t |
2 + 2||b||p |Y ϵ

t |
∫︁
|z|≥1

zν2(dz) + p||b||2
∫︁
Rd2 z

2ν2(dz) + |g|p |Y ϵ
t |(︁

|Y ϵ
t |

2 + 1
)︁1− p

2

≤−κp |Y
ϵ
t |

2 + Cp (1 + |Y ϵ
t |)(︁

|Y ϵ
t |

2 + 1
)︁1− p

2

≤ −η
(︁
|Y ϵ
t |

2 + 1
)︁ p

2 + Cp

for some η > 0. This implies the estimate

A1 ≤ −
ηE [U (Y ϵ

t )]

ϵ
+
Cp
ϵ
. (2.93)

By (2.92),

A2 ≤ϵ−1E
[︃∫︂

|r|<1

∫︂ 1

0

(1− ξ)∇2U (Y ϵ
s + ξb(Xϵ

s, Y
ϵ
s )r) dξ |b(Xϵ

s, Y
ϵ
s )r|

2 ν2(dr)

]︃
≤ϵ−1Cp||b||2E

[︃∫︂
|r|<1

|r|2 ν2(dr)
]︃
≤ Cp

ϵ
. (2.94)

Similarly, but using (2.91) instead,

A3 ≤ϵ−1E
[︃∫︂

|r|≥1

∫︂ 1

0

|∇U (Y ϵ
s + ξb(Xϵ

s, Y
ϵ
s )r)| dξ|b(Xϵ

s, Y
ϵ
s )r|ν2(dr)

]︃
≤ϵ−1CpE

[︃∫︂
|r|≥1

∫︂ 1

0

|Y ϵ
s + ξb(Xϵ

s, Y
ϵ
s )r|

p−1 dξν2(dr)

]︃
≤ϵ−1CpE

[︃∫︂
|r|≥1

|Y ϵ
s |
p−1 + |r|p−1 ν2(dr)

]︃
≤ ηE [U (Y ϵ

t )]

2ϵ
+
Cp
ϵ
. (2.95)

Putting (2.93),(2.94), and (2.95) together,

dE [U (Y ϵ
t )]

dt
≤− ηE [U (Y ϵ

t )]

ϵ
+
Cp
ϵ

+
Cp
ϵ

+
ηE [U (Y ϵ

t )]

2ϵ
+
Cp
ϵ
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≤− ηE [U (Y ϵ
t )]

2ϵ
+
Cp
ϵ
.

Which implies by Gronwall’s inequality,

E [U (Y ϵ
t )] ≤ e−

ηt
2ϵ

(︃
U(y) +

Cpt

ϵ

)︃
≤ Cp (1 + |y|p) .

Therefore,

E [|Y ϵ
t |
p] ≤ E

[︂(︁
|Y ϵ
t |

2 + 1
)︁ p

2

]︂
= E [U (Y ϵ

t )] ≤ Cp (1 + |y|p) ,

which implies (2.38) and in conjunction with (2.90) gives (2.37).

Proof of Lemma 2.10. Similarly to Lemma 2.9, define the scalar function U ϵ : Rd2 → R by

U ϵ(y) :=
(︂
|y|2 + ϵ−

2
α

)︂ p
2
. (2.96)

Deduce the following estimates (see [SXX22]),

|∇U ϵ(y)| =

⃓⃓⃓⃓
⃓⃓⃓ py(︂
|y|2 + ϵ−

2
α

)︂1− p
2

⃓⃓⃓⃓
⃓⃓⃓ ≤ Cp|y|p−1, (2.97)

⃓⃓⃓⃓
∇2U ϵ(y)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ pId2(︂
|y|2 + ϵ−

2
α

)︂1− p
2

− p(p− 2)y ⊗ y(︂
|y|2 + ϵ−

2
α

)︂2− p
2

⃓⃓⃓⃓
⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ ≤ Cpϵ

− 2
α
( p
2
−1). (2.98)

Apply Itô’s formula,

U ϵ(Y ϵ
t )− U ϵ(y) =

∫︂ t

0

ϵ−1⟨g (Xϵ
s, Y

ϵ
s ) ,∇U ϵ(Y ϵ

s )⟩ds

+

∫︂ t

0

∫︂
|z|<1

U ϵ
(︂
Y ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− U ϵ (Y ϵ

s ) ˜︁N2(ds, dz)

+

∫︂ t

0

∫︂
|z|≥1

U ϵ
(︂
Y ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− U ϵ (Y ϵ

s )N2(ds, dz)

+

∫︂ t

0

∫︂
|z|<1

U ϵ
(︂
Y ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− U ϵ (Y ϵ

s )− ⟨ϵ−
1
α b (Xϵ

s, Y
ϵ
s ) z,∇U ϵ(Y ϵ

s )⟩ν2(dz)ds

=:
4∑︂
i=1

Bi. (2.99)

By (A2) and Young’s inequality, for some C > 0,
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⟨g(x, y), y⟩ = ⟨g(x, y)− g(x, 0), y − 0⟩+
∫︂
|z|≥1

⟨(b(x, y)− b(x, 0)) z, y − 0⟩ν2(dz)

+

∫︂
Rd2
|b(x, y)− b(x, 0)|2 z2ν2(dz) + ⟨g(x, 0), y⟩ −

∫︂
|z|≥1

⟨(b(x, y)− b(x, 0)) z, y⟩ν2(dz)

−
∫︂
Rd2
|b(x, y)− b(x, 0)|2 z2ν2(dz)

≤− κ|y|2 + |g||y|+ 2||b|||y|
∫︂
|z|≥1

zν2(dz) + ||b||2
∫︂
Rd2

z2ν2(dz)

≤− κ|y|2 +
(︃√

κ
C√
κ

)︃
|y|+ C ≤ −κ|y|2 + κ

2
|y|2 + C2

κ
+ C ≤ −κ

2
|y|2 + C.

Derive the following,

E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓∫︂ t

0

⟨g (Xϵ
s, Y

ϵ
s ) ,∇U ϵ(Y ϵ

s )⟩ds
⃓⃓⃓⃓]︄
≤ E

⎡⎢⎣∫︂ T

0

⃓⃓⃓⃓
⃓⃓⃓ p⟨g (Xϵ

s, Y
ϵ
s ) , Y

ϵ
s ⟩(︂

|Y ϵ
s |2 + ϵ−

2
α

)︂1− p
2

⃓⃓⃓⃓
⃓⃓⃓ ds
⎤⎥⎦

≤E

⎡⎢⎣∫︂ T

0

⃓⃓⃓⃓
⃓⃓⃓ p (︁−κ

2
|Y ϵ
s |

2 + C
)︁(︂

|Y ϵ
s |2 + ϵ−

2
α

)︂1− p
2

⃓⃓⃓⃓
⃓⃓⃓ ds
⎤⎥⎦ ≤ E

[︃∫︂ T

0

⃓⃓⃓⃓
Cp

ϵ−
2
α
(1− p

2
)

⃓⃓⃓⃓
ds

]︃
≤ CpTϵ

2
α
(1− p

2
).

Therefore,

E

[︄
sup
t∈[0,T ]

|B1|

]︄
≤CpTϵ−1+ 2

α(1−
p
2) ≤ CpTϵ

− p
α . (2.100)

From the remainder term of Taylor’s expansion, E

[︄
sup
t∈[0,T ]

|B2|

]︄
is

≤E
[︃∫︂ T

0

∫︂
|z|<1

∫︂ 1

0

⃓⃓⃓
∇U ϵ

(︂
Y ϵ
s + ξϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂⃓⃓⃓
dξ
⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓ ˜︁N2(ds, dz)

]︃
,

and by the Burkholder-Davis-Gundy inequality with estimate (2.97),

≤CpE
[︃∫︂ T

0

∫︂
|z|<1

∫︂ 1

0

⃓⃓⃓
Y ϵ
s + ξϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓2(p−1)

dξ
⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓2
N2(ds, dz)

]︃ 1
2

≤CpE
[︃∫︂ T

0

∫︂
|z|<1

|Y ϵ
s |

2(p−1)
⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓2
+
⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓2(p−1) ⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓2
N2(ds, dz)

]︃ 1
2

≤1

4
E

[︄(︄
sup
t∈[0,T ]

|Y ϵ
t |
p−1

)︄(︃
16Cp

∫︂ T

0

∫︂
|z|<1

⃓⃓⃓
ϵ−

1
α z
⃓⃓⃓2
N2(ds, dz)

)︃ 1
2

]︄
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+ CpE
[︃∫︂ T

0

∫︂
|z|<1

⃓⃓⃓
ϵ−

1
α z
⃓⃓⃓2p
N2(ds, dz)

]︃ 1
2

.

Now apply Young’s inequality within the left expectation,

≤1

4
E

[︄
sup
t∈[0,T ]

|Y ϵ
t |
p

]︄
+ Cp

(︃∫︂ T

0

∫︂
|z|<1

⃓⃓⃓
ϵ−

1
α z
⃓⃓⃓2
ν2(dz)ds

)︃ p
2

+ Cp

(︃∫︂ T

0

∫︂
|z|<1

⃓⃓⃓
ϵ−

1
α z
⃓⃓⃓2p
ν2(dz)ds

)︃ 1
2

≤1

4
E

[︄
sup
t∈[0,T ]

|Y ϵ
t |
p

]︄
+ CpT

p
2 ϵ−

p
α . (2.101)

In the same way,

E

[︄
sup
t∈[0,T ]

|B3|

]︄
≤ CE

[︃∫︂ T

0

∫︂
|z|≥1

⃓⃓⃓
U ϵ
(︂
Y ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂
− U ϵ (Y ϵ

s )
⃓⃓⃓
ν2(dz)ds

]︃
≤CE

[︃∫︂ T

0

∫︂
|z|≥1

∫︂ 1

0

⃓⃓⃓
∇U ϵ

(︂
Y ϵ
s + ξϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

)︂⃓⃓⃓
dξ
⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓
ν2(dz)ds

]︃
≤CpE

[︃∫︂ T

0

∫︂
|z|≥1

⃓⃓⃓
Y ϵ
s + ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓p−1 ⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓
ν2(dz)ds

]︃
≤CpE

[︃∫︂ T

0

∫︂
|z|≥1

|Y ϵ
s |
p−1
⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓
ν2(dz)ds

]︃
+ CpE

[︃∫︂ T

0

∫︂
|z|≥1

⃓⃓⃓
ϵ−

1
α b (Xϵ

s, Y
ϵ
s ) z

⃓⃓⃓p
ν2(dz)ds

]︃
≤CpE

[︄
sup
t∈[0,T ]

|Y ϵ
t |
p−1

∫︂ T

0

∫︂
|z|≥1

⃓⃓⃓
ϵ−

1
α z
⃓⃓⃓
ν2(dz)ds

]︄
+ Cpϵ

− p
αE
[︃∫︂ T

0

∫︂
|z|≥1

|z|p ν2(dz)ds
]︃

≤1

4
E

[︄
sup
t∈[0,T ]

|Y ϵ
t |
p

]︄
+ Cp

(︃∫︂ T

0

∫︂
|z|≥1

⃓⃓⃓
ϵ−

1
α z
⃓⃓⃓
ν2(dz)ds

)︃p
+ Cpϵ

− p
α

∫︂ T

0

∫︂
|z|≥1

|z|p ν2(dz)ds

≤1

4
E

[︄
sup
t∈[0,T ]

|Y ϵ
t |
p

]︄
+ CpT

pϵ−
p
α . (2.102)

For the last term, Taylor’s expansion again, but with (2.98) gives

E

[︄
sup
t∈[0,T ]

|B4|

]︄
≤ E

[︃∫︂ T

0

∫︂
|z|<1

Cpϵ
− 2
α(

p
2
−1)||b||2

⃓⃓⃓
ϵ−

1
α z
⃓⃓⃓2
ν2(dz)ds

]︃
≤ CpTϵ

− p
α . (2.103)

Summing estimates (2.100),(2.101),(2.102), and (2.103) into (2.99), conclude that

|Y ϵ
t |
p ≤

(︂
|Y ϵ
t |

2 + ϵ−
2
α

)︂ p
2
=: U (Y ϵ

t ) ≤
(︂
|y|2 + ϵ−

2
α

)︂ p
2
+ CpT

pϵ−
p
α +

1

2
E

[︄
sup
t∈[0,T ]

|Y ϵ
t |
p

]︄
,

which implies the result.
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Proof of Lemma 2.11. Showing f is globally Lipschitz implies that (2.13) has a unique so-
lution (see [App09]). By definition of the invariant measure⃓⃓

f(x1)− f(x2)
⃓⃓
≤
⃓⃓
f(x1)− E

[︁
f(x1, Y

x1,0
t )

]︁⃓⃓
+
⃓⃓
E
[︁
f(x2, Y

x2,0
t )

]︁
− f(x2)

⃓⃓
+
⃓⃓
E
[︁
f(x1, Y

x1,0
t )

]︁
− E

[︁
f(x2, Y

x2,0
t )

]︁⃓⃓
=
⃓⃓
P x1
t f

(︁
x1, Y

x1,0
t

)︁
− µx1(f)

⃓⃓
+
⃓⃓
P x2
t f

(︁
x2, Y

x2,0
t

)︁
− µx2(f)

⃓⃓
+ E

⃓⃓
f(x1, Y

x1,0
t )− f(x1, Y x2,0

t )
⃓⃓
+ E

⃓⃓
f(x1, Y

x2,0
t )− f(x2, Y x2,0

t )
⃓⃓
.

Now apply Lemma 2.1 and Lemma 2.2

≤C ||f ||1 e
−κt

2 (1 + sup
t≥0
|Y x1,0
t |) + C ||f ||1 e

−κt
2 (1 + sup

t≥0
|Y x2,0
t |)

+ ||∇yf ||
⃓⃓
Y x1,0
t − Y x2,0

t

⃓⃓
+ ||∇xf |||x1 − x2|,

which by (2.39) with p = 1 gives

≤2C ||f ||1 e
−κt

2 (1 + Cp(1 + |y|)) + C|x1 − x2|
≤Cpe−

κt
2 + C|x1 − x2|.

Take t→∞ to see that f is globally Lipschitz. Therefore, there exists a unique solution.
By the above Lipschitz condition,

E

[︄
sup
t∈[0,T ]

⃓⃓
X t

⃓⃓p]︄
=E

[︄
sup
t∈[0,T ]

⃓⃓⃓⃓
x+

∫︂ t

0

f
(︁
Xs

)︁
ds

⃓⃓⃓⃓p]︄

≤CpT p(1 + |x|p) + E
[︃∫︂ T

0

⃓⃓
f
(︁
Xs

)︁
− f (0)

⃓⃓p
+
⃓⃓
f (0)

⃓⃓p
ds

]︃
≤CpT p(1 + |x|p) +

∫︂ T

0

CpE

[︄
sup
r∈[0,s]

⃓⃓
Xr

⃓⃓p]︄
ds+ T |f |p.

The conclusion follows from Gronwall’s inequality,

E

[︄
sup
t∈[0,T ]

⃓⃓
X t

⃓⃓p]︄ ≤ CpT
p (1 + |x|p) eCpT .
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Chapter 3

On Convergence of Undiscounted Optimistic
Policy Iteration without State Update

Restrictions

Outline

§3.1 Reinforcement Learning preliminaries are introduced with model assumptions.
This leads to the algorithm, a stochastic iteration, we will show converges.

§3.2 Main part of the chapter where the convergence result is established following
some important lemmas.

§3.3 A discussion on how various assumptions can be relaxed, some quick corollaries,
and how to extend previous known results.

As this is only the beginning of the α = 1 case and many more variations seem
immediately possible, the dissertation’s Conclusion lists possibilities for future work.

Notation
Let x, y ∈ Rn be n-dimensional vectors and ξ ∈ Rn be an n-dimensional vector of strictly
positive components. An inequality between vectors is always understood component-wise.
Let S be a set and I the identity matrix.

||x||∞ = max
1≤i≤n

|x(i)| maximum norm

||x||ξ = max
1≤i≤n

|x(i)|
ξ(i)

weighted maximum norm

e = (1, 1, ..., 1) vector of ones
|S| cardinality of S

diag(x) = xT I matrix whose diagonal is x



3.1. PRELIMINARIES

§3.1 Preliminaries

Let S and A be the set of states and actions with finite cardinality |S| and |A|, respectively.
Consider the Markov decision process (MDP) M = (S,A, P ) where P : S×A×S → [0, 1] is
the transition probability function. Define a policy µ : S ↦→ A as the function that specifies
which action to take from each state. Since the state-action pair is finite, it is evident that
there are only finitely many policies. We denote the set of all policies by Π. Furthermore, we
denote the deterministic one-stage cost vector by gµ = (g(1, µ(1))), ..., g(|S|, µ(|S|)) ∈ R|S|,
where each g : S × A → R is assumed bounded. These costs assign a penalty (or reward,
depending on the reader’s perspective) to each transition.

Remark 3.1. As mentioned in Section 6 of [Tsi02], one may carry out the same proof with
random rewards under the assumption that the conditional expectation of such rewards is
equal to gµ with bounded conditional variance. This amounts to adding zero-mean noise and
poses no analytical difficulties, so as is customary for the convenience of exposition, we keep
the noise deterministic.

Fix i, j ∈ S and a ∈ A then pij(a) is the probability of transitioning from state i to state
j under action a = µ(i),

pij(a) := P (i, a, j) = P(xt+1 = j|xt = i, at = a)

where {(xt, at)}t≥0 ⊆ S × A denotes the evolution of the MDP on a fixed trajectory. No-
tice that by fixing a ∈ A, P (·, a, ·) is a matrix with the above transition probabilities as
components. To simplify the notation for any fixed policy, consider the matrix

Pµ := (pij(µ(i))) ∈ R|S|×|S|.

With policy µ, define the associated cost-to-go vector by

Jµ(i) := E

[︄
∞∑︂
t=0

αtg(xt, µ(xt))|x0 = i

]︄
, ∀i ∈ S,

with a fixed discount factor α ∈ (0, 1]. For α ∈ (0, 1), Jµ is well defined since g is bounded
and we have a simple geometric series, but for the α = 1 case this chapter is interested in,
we must impose the following assumption to ensure it is well behaved (see pg 17, [BT96]).

Assumption 3.1. Assume there exists a cost-free terminal state, say state 0,

n∑︂
j=1

pij(a) ≤ 1 and pi0(a) = 1−
n∑︂
j=1

pij(a)

for all i ∈ S and a ∈ A. Furthermore, assume state 0 is a trap state, in that once the
MDP reaches that state, it remains there at no further cost

p00(a) = 1 and =⇒ p0j(a) = 0 and g(0, a) = 0 ∀a ∈ A, j ∈ S.
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It is well known that all discounted problems can be seen as a special case of a stochastic
shortest path problem (see pg 39-40, [BT96] and Remark 3.3 below). As such, without loss
of generality and for the remainder of this chapter, we will assume α = 1 and omit it in the
notation.

Define the optimal cost-to-go value function as

J∗(i) = min
µ∈Π

Jµ(i).

There being finitely many policies ensures the minimum is achieved. The objective is to find
an optimal policy µ∗ ∈ Π that attains this minimum.

We introduce the standard Bellman equation and associated dynamic programming op-
erators used for this type of analysis. For any vector J ∈ R|S|, µ ∈ Π, define the operators
Tµ : R|S| → R|S| and T : R|S| → R|S| by

TµJ(i) = g(i, µ(i)) +
n∑︂
j=1

pij(µ(i))J(j) and TJ(i) = min
a∈A

(︄
g(i, a) +

n∑︂
j=1

pij(a)J(j)

)︄
.

In vector form, the notation for these operators simplifies to

TµJ = gµ + PµJ and TJ = min
µ∈Π

TµJ,

respectively. As is known from Proposition 2.1 [BT96], Jµ is the unique fixed point of Tµ,

TµJ
µ = Jµ, (3.1)

and similarly, J∗ is the unique fixed point of T ,

TJ∗ = J∗. (3.2)

In fact, a stationary policy µ is optimal if and only if TµJ∗ = TJ∗ = J∗. When µ is such
that

TµJ = TJ

(︃
= min

µ∈Π
TµJ

)︃
,

we call µ the greedy policy corresponding to the vector J. Such a policy is always attainable.
Therefore, convergence has been achieved when J ≡ J∗.

When the operator Tµ is composed with copies of itself m times, we call Tmµ J the m-step
rollout of the policy µ. Similarly, when we apply the Bellman operator k times to a vector
J , we call the resulting operator T k, or the k-times composition of T , the k-step lookahead
corresponding to J . The greedy policy corresponding to T kJ is defined as the policy µ that
attains

TµT
k−1J = T kJ ⇐⇒ µ ∈ argmin

µ∈Π
TµT

k−1J.

Notice that µ need not be unique and so we interpret the argmin as the set of minimal
policies. In this case, we are considering the greedy policy with respect to some computed
k-th future iteration and not the immediate next step.
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In the discounted case where α ∈ (0, 1), we can show that T and Tµ are contraction
mappings with respect to the maximum norm. This is no longer the case when α = 1.
Rather, we make the following assumption (see Assumption 2.1 [BT96]).

Assumption 3.2. All policies in Π are proper.

A policy is said to be proper if the terminal state is reached almost surely regardless
of the initial state (see Definition 2.1 [BT96]). It will be possible to relax this assumption
(see Remark 3.4 below), but for the optimistic variants of policy iteration, failing to make
this assumption could lead to infinite value arising from an improper policy. The standard
treatment is to first prove convergence under the assumption that all policies are proper and
then to show that an MDP under a relaxed assumption remains close to an MDP using this
assumption.

Since all policies are proper, there exists a β ∈ [0, 1) and a positive vector ξ such that
(see Proposition 2.2 [BT96])

|S|∑︂
j=1

pij(a)ξ(j) ≤ βξ(i), ∀i ∈ S, a ∈ A, (3.3)

which further implies that T and Tµ are contraction mappings with respect to the weighted
maximum norm ||J ||ξ := max

i

|J(i)|
ξ(i)

, for all J ∈ R|S|. In other words,

||TµJ1 − TµJ2||ξ ≤ β||J1 − J2||ξ and ||TJ1 − TJ2||ξ ≤ β||J1 − J2||ξ. (3.4)

Define the matrix Ξ := diag(ξ(1), ..., ξ(|S|)). Then (3.3) can be written in its matrix form

PµΞe ≤ βΞe, ∀µ ∈ Π, (3.5)

where e is the vector of ones and the inequality is interpreted component-wise. Furthermore,
Proposition 2.1 (d) [BT96] also gives us the following identity for the limit of the rollout

lim
m→∞

Tmµ J = Jµ, ∀J ∈ R|S|, µ ∈ Π. (3.6)

In order to ensure that the lookahead is sufficiently large to guarantee convergence, m
and k must satisfy the following assumption.

Assumption 3.3. Let m, k > 0 and let β be the contracting factor for the operators
Tµ and T . Assume that

βk−1 + (1 + βm)
βk−1

1− β
(1 + β) < 1.

We are now ready to introduce the algorithm whose convergence proof is the main result
of this chapter. At each iteration index t, we have a vector Jt which, we will show, iteratively
converges to J∗. J0 can be chosen arbitrarily, but all subsequent iterations will be updated
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as per the algorithm. Given Jt, we compute the k-step lookahead T k−1Jt and then find the
greedy policy with respect to this lookahead (policy iteration step), i.e. let µt be the policy
that solves

TµtT
k−1Jt = TT k−1Jt. (3.7)

It may be computationally difficult to calculate the lookahead T k−1Jt. In practice, Monte
Carlo Tree Search methods are employed to make its approximation feasible [Sil+17b]. Then
use the policy µt to simulate a single trajectory.

Define the set of states visited by trajectory t that are chosen for updating as Dt.

Assumption 3.4. Let i ∈ S and let pt(i) be the probability of picking state i, i.e. the
probability that i ∈ Dt. Assume inf

t≥0
pt(i) > 0 for all i ∈ S.

This assumption guarantees that every state is picked for updating infinitely often.

Remark 3.2. The exploring starts assumption that the initial state is drawn from a fixed
distribution for each state in S and used for updating, where the probability of picking any
state as the initial state is positive, can now be seen as a special case of Assumption 3.4. If
each state is guaranteed to be picked infinitely often for updating from the initial state, then
it satisfies the assumption.

We call γt(i) the state-dependent step-size parameter that satisfies the following standard
assumptions.

Assumption 3.5. The stepsizes γt(i) are non-negative and satisfy

∞∑︂
t=0

γt(i) =∞ and
∞∑︂
t=0

γt(i)
2 <∞ ∀i ∈ S.

Note that when i ̸∈ Dt, we impose the convention that γt(i) = 0. The step size summing
to infinity guarantees the algorithm will be able to escape any initial condition and square
summability is necessary to ensure updates are not so slow the algorithm converges to the
wrong point or possibly even diverges. The step size is state dependent and this generaliza-
tion is possible due to the use of rollout to achieve the necessary contractive property for
convergence.

Having already calculated the lookahead T k−1Jt, we use an unbiased estimator of the
lookahead’s m-step rollout as an approximation for Jµt by considering the sum of m costs
following each i ∈ Dt (policy evaluation step), or simply the estimator for trajectory t defined
by

τi+m−1∑︂
ℓ=τi

g(xℓ, µt(xℓ)) + T k−1Jt(xm), τi = min{ℓ ∈ N : xℓ = i}, ∀i ∈ Dt. (3.8)
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To see that this estimator is unbiased for the lookahead’s m-step rollout TmµtT
k−1Jt, notice

that the noise for each state i ∈ S, say wt = (wt(1), ..., wt(|S|)), arising from the difference
between the estimator and rollout has zero mean:

E [wt(i)| Ft] =E

[︄(︄
τi+m−1∑︂
ℓ=τi

g(xℓ, µt(xℓ)) + T k−1Jt(xm)

)︄
− TmµtT

k−1Jt(i)

⃓⃓⃓⃓
⃓Ft
]︄

=g(i, µt(i)) +
∑︂
j1

pij1(µt(i))g(j1, µt(j1))

+
∑︂
j2

∑︂
j1

pj2j1(µt(j1))pij1(µt(i))g(j2, µt(j2))

+ ...

+
∑︂
jm

...
∑︂
j1

pjmjm−1(µt(jm))...pj1i(µt(j1))T
k−1Jt(jm)− TmµtT

k−1Jt(i) = 0,

where Ft = {J0(i), ..., Jt(i), w0(i), ..., wt−1(i), γ0(i), ..., γt(i), i = 1, ..., |S|} denotes the natural
filtration or history of the algorithm up to when the step-sizes are determined, but just before
the update direction is determined (pg 138, [BT96]). Furthermore, there are only finitely
many states and policies, therefore E [||wt||2∞|Ft] ≤ C for some C > 0.

This estimator is then used in the optimistic value iteration update step as follows:

Jt+1(i) =

{︄
(1− γt(i))Jt(i) + γt(i)(T

m
µtT

k−1Jt(i) + wt(i)) i ∈ Dt
Jt(i) i ̸∈ Dt

. (3.9)

Let χt(i) be a random variable taking value 1 if state i is selected for updating on
trajectory t and 0 otherwise, i.e.

χt(i) =

{︄
1 i ∈ Dt
0 i ̸∈ Dt,

and let pt(i) denote the probability that state i is ever selected on trajectory t. We do
not need to know pt a priori considering an application of the value iteration update (3.9)
does not require it, however knowing it can lead to the desgin of different step sizes (e.g.
Section 5 [Liu21]) which may have different desirable convergence properties. Also, notice
pt(i) = E[χt(i)]. Then,

Jt+1(i) =χt(i)
[︁
(1− γt(i))Jt(i) + γt(i)(T

m
µtT

k−1Jt(i) + wt(i))
]︁
+ (1− χt(i))Jt(i)

=Jt(i)− γt(i)pt(i)Jt(i) + γt(i)pt(i)Jt(i) + χt(i)Jt(i)− χt(i)Jt(i)
+ γt(i)pt(i)T

m
µtT

k−1Jt(i)− γt(i)pt(i)TmµtT
k−1Jt(i)

− χt(i)γt(i)Jt(i) + χt(i)γt(i)T
m
µtT

k−1Jt(i) + χt(i)γt(i)wt(i)

= (1− γt(i)pt(i)) Jt(i)

+ γt(i)pt(i)

(︃
TmµtT

k−1Jt(i) + wt(i) +

(︃
χt(i)

pt(i)
− 1

)︃(︁
TmµtT

k−1Jt(i)− Jt(i) + wt(i)
)︁)︃

=(1− γt(i)pt(i)) Jt(i) + γt(i)pt(i)
(︁
TmµtT

k−1Jt(i) + vt(i)
)︁
,
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where

vt(i) := wt(i) +

(︃
χt(i)

pt(i)
− 1

)︃(︁
TmµtT

k−1Jt(i)− Jt(i) + wt(i)
)︁
.

For notational ease, this is equivalent to its vector form

Jt+1 = (I − ΓtPt)Jt + ΓtPt
(︁
TmµtT

k−1Jt + vt
)︁
, (3.10)

where I denotes the identity matrix, Γt and Pt are matrices with diagonal entries γt(i) and
pt(i), respectively, vt is the vector with components vt(i), and Jt is as above.

§3.2 Convergence Analysis

In this section we prove the main result. There are three lemmas that build on each other
to prove the pseudo-contraction property of the operator Hm,k

t := TmµtT
k−1 which allows one

to apply Proposition 4.5 of [BT96] to conclude. This proof follows [WS23] but circumvents
the issue of α = 1 by using the contracting factor β instead as suggested in [Liu21].

Theorem 3.1 Algorithm Convergence

The sequence Jt generated by the iteration (3.10) converges to J∗ almost surely.

The following three lemmas establish some general properties for the operators and will
be useful in proving the theorem. The first lemma bounds the difference between the cost-
to-go vector (what is being estimated with simulated trajectories) and the lookahead vector.
This is then used in the second lemma to bound the rollout vector and the lookahead vector.
Finally, the rollout is shown to be a pseudo-contraction with respect to J∗ in Lemma 3.3,
satisfying a necessary condition to apply Proposition 4.5 in [BT96].

Lemma 3.1. Let Jµ be the cost-to-go vector, Jt be the iteration generated by (3.10) and let
β be the contracting factors of the operators T and Tµ with respect to the weighted maximum
norm || · ||ξ. Then

||Jµt − T k−1Jt||ξ ≤
βk−1

1− β
||TJt − Jt||ξ, ∀t ≥ 0.

Proof. The greedy update (3.7) implies

TµtT
k−1Jt =T

kJt

=⇒ TµtT
k−1Jt =T

k−1Jt + (T kJt − T k−1Jt)

=⇒ T 2
µtT

k−1Jt =Tµt
(︁
T k−1Jt + (T kJt − T k−1Jt)

)︁
=gµt + Pµt

(︁
T k−1Jt + (T kJt − T k−1Jt)

)︁
=TµtT

k−1Jt + Pµt
(︁
T kJt − T k−1Jt

)︁
=T k−1Jt +

(︁
T kJt − T k−1Jt

)︁
+ Pµt

(︁
T kJt − T k−1Jt

)︁
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=⇒ T 3
µtT

k−1Jt =T
k−1Jt +

(︁
T kJt − T k−1Jt

)︁
+ Pµt

(︁
T kJt − T k−1Jt

)︁
+ P 2

µt

(︁
T kJt − T k−1Jt

)︁
.

Proceed inductively to derive the following identity

TmµtT
k−1Jt =T

k−1Jt +
(︁
I + Pµt + ...+ Pm−1

µt

)︁ (︁
T kJt − T k−1Jt

)︁
. (3.11)

Notice that

Pm
µt

(︁
T kJt − T k−1Jt

)︁
=Pm

µtΞΞ
−1
(︁
T kJt − T k−1Jt

)︁
≤Pm

µtΞ||Ξ
−1
(︁
T kJt − T k−1Jt

)︁
||∞e

=Pm−1
µt PµtΞe||T kJt − T k−1Jt||ξ,

and from (3.5),

≤Pm−1
µt βΞe||T kJt − T k−1Jt||ξ

≤βm||T kJt − T k−1Jt||ξΞe. (3.12)

Plug (3.12) into (3.11)

TmµtT
k−1Jt ≤T k−1Jt + (I + β + β2 + ...+ βm−1)||T kJt − T k−1Jt||ξΞe

≤T k−1Jt + Ξ
||T kJt − T k−1Jt||ξ

1− β
e.

Furthermore, since the right hand side no longer depends on m, we have as a consequence
of (3.6) that

Jµt = lim
m→∞

TmµtT
k−1Jt ≤ T k−1Jt + Ξ

||T kJt − T k−1Jt||ξ
1− β

e. (3.13)

Repeatedly apply the weighted contraction property established in (3.4),

Jµt − T k−1Jt ≤Ξ
||TT k−1Jt − TT k−2Jt||ξ

1− β
e

≤Ξ β

1− β
||T k−1Jt − T k−2Jt||ξe

≤...

≤Ξβ
k−1||TJt − Jt||ξ

1− β
e.

By consequence

||Ξ−1
(︁
Jµt − T k−1Jt

)︁
||∞ ≤

βk−1

1− β
||TJt − Jt||ξ,

which implies

||Jµt − T k−1Jt||ξ ≤
βk−1

1− β
||TJt − Jt||ξ

as desired.
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Lemma 3.2. Let Jt be the iteration generated by (3.10) and let β be the contracting factors
of the operators T and Tµ with respect to the weighted maximum norm || · ||ξ. Then

||TmµtT
k−1Jt − T k−1Jt||ξ ≤

(︃
βm+k−1

1− β
+

βk−1

1− β

)︃
||TJt − Jt||ξ, ∀t ≥ 0.

Proof. By the reverse triangle inequality

||TmµtT
k−1Jt − T k−1Jt||ξ − ||T k−1Jt − Jµt||ξ ≤||TmµtT

k−1Jt − Jµt ||ξ
=||TµtTm−1

µt T k−1Jt − TµtJµt ||ξ
≤β||Tm−1

µt T k−1Jt − Jµt ||ξ,

which follows from the fixed point property of Jµt (3.1) and an application of the weighted
contraction property (3.4). Simply repeat these steps m− 1 more times to derive

≤βm||T k−1Jt − Jµt||ξ.

This implies

||TmµtT
k−1Jt − T k−1Jt||ξ ≤βm||T k−1Jt − Jµt ||ξ + ||T k−1Jt − Jµt ||ξ

≤(βm + 1)
βk−1

1− β
||TJt − Jt||ξ =

(︃
βm+k−1

1− β
+

βk−1

1− β

)︃
||TJt − Jt||ξ,

where the second inequality follows from Lemma 3.1.

Lemma 3.3. Let J∗ be the optimal cost-to-go vector, Jt be the iteration generated by (3.10)
and let β be the contracting factors of the operators T and Tµ with respect to the weighted
maximum norm || · ||ξ. Then

||TmµtT
k−1Jt − J∗||ξ ≤

(︃
βk−1 + (1 + βm)

βk−1

1− β
(1 + β)

)︃
||Jt − J∗||ξ, ∀t ≥ 0.

Proof. Lemma 3.2 implies

||TmµtT
k−1Jt − J∗||ξ − ||T k−1Jt − J∗||ξ ≤||TmµtT

k−1Jt − T k−1Jt||ξ

≤
(︃
βm+k−1

1− β
+

βk−1

1− β

)︃
||TJt − Jt||ξ.

Repeatedly apply (3.4) and the fact that J∗ = TJ∗ to derive

||TmµtT
k−1Jt − J∗||ξ ≤||T k−1Jt − J∗||ξ +

(︃
βm+k−1

1− β
+

βk−1

1− β

)︃
||TJt − Jt||ξ

≤βk−1||Jt − J∗||ξ +
(︃
βm+k−1

1− β
+

βk−1

1− β

)︃
(||TJt − J∗||ξ + ||J∗ − Jt||ξ)

≤βk−1||Jt − J∗||ξ +
(︃
βm+k−1

1− β
+

βk−1

1− β

)︃
(β||Jt − J∗||ξ + ||Jt − J∗||ξ)

≤
(︃
βk−1 + (1 + βm)

βk−1

1− β
(1 + β)

)︃
||Jt − J∗||ξ,

as desired.

93



3.3. FURTHER DISCUSSION

Proof of Theorem 3.1. Fix m and k satisfying Assumption 3.3. Recall (3.10) in component
form

Jt+1(i) = (1− γt(i)pt(i))Jt(i) + γt(i)pt(i)
(︁
TmµtT

k−1Jt(i) + vt(i)
)︁
.

It is evident that {Jt}t≥0 is a sequence of the form (4.23) in [BT96], with ut(i) = 0. In
particular by Lemma 3.3, the operator

Hm,k
t := TmµtT

k−1,

which is adapted to Ft by virtue of being an expectation conditional on the filtration, is
a pseudo-contraction under the same weighted maximum norm || · ||ξ, with the same fixed
point J∗, and with the same contraction factor (m and k are fixed for every iteration)

˜︁β :=

(︃
βk−1 + (1 + βm)

βk−1

1− β
(1 + β)

)︃
< 1.

That is, there exists a vector J∗, a positive vector ξ, and a scalar ˜︁β ∈ [0, 1), such that

||Hm,k
t Jt − J∗||ξ ≤ ˜︁β||Jt − J∗||ξ, ∀t ≥ 0.

The step-sizes γt(i) are non-negative and satisfy the step-size conditions of Assumption
3.5. By Assumption 3.4, we have that inf

t≥0
pt(i) > 0. Therefore,

∞∑︂
t=0

γt(i)pt(i) ≥ inf
t≥0

pt(i)
∞∑︂
t=0

γt(i) =∞ and
∞∑︂
t=0

γt(i)
2p2t (i) ≤

∞∑︂
t=0

γt(i)
2 <∞.

Lastly, we must show that the noise term vt(i) satisfies Assumption 4.3 in [BT96]. Upon
taking expectations, we see that E[vt|Ft] = 0. Evidently, by the boundedness of gµ and
there being finitely many policies, we have that ||TmµtT

k−1Jt||2∞ is bounded by some constant.
Therefore,

E[||vt||2∞|Ft] ≤ A+B||Jt||2∞,

where A and B are constant.
We have checked all conditions of Proposition 4.5. Therefore, we may conclude that Jt

converges to J∗ with probability 1.

§3.3 Further Discussion

In this section we discuss how some of the assumptions can be relaxed, how some variations
either follow as corollaries or can be generalized directly, and we tie the proof back into
previous known results.

It is well known that discounted problems can be converted into a stochastic shortest
path problems (see pg 37, [BT96]), thus making the former a specialization of the latter.
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Remark 3.3. To convert the discounted problem to a stochastic shortest path problem one
may introduce a termination state with probability 1 − α of being reached from any state.
As such, all policies are proper. Then it can be shown that the two problems are equivalent
as the state evolution prior to termination and cost-to-go are the same. Therefore, if one
follows this procedure, the MDP in [WS23] is a special case of the MDP in this chapter. By
consequence, their results follow.

Not all policies need to be proper for convergence to be guaranteed. The following remark
discusses this.

Remark 3.4 (Relaxing Assumption 3.2). It was shown in Section 4 of [Liu21] that one can
relax the proper policy assumption by replacing it with the following:

Assumption 3.6. There exists at least one proper policy and every improper policy
yields an infinite cost for at least one initial state.

In general, the convergence proof would not go through with this modified assumption
because there is no guarantee the optimistic value iteration would not explode due to an
improper policy. However, modifying an MDP satisfying assumption 3.6 by forcing the tra-
jectory to terminate with small probability and thus guarantee every policy is proper, [Liu21]
showed that an optimal value and policy of an MDP satisfying assumption 3.6 will remain
close to the original optimal value and policy. This is done by showing that any improper
policy cannot be optimal and among proper policies, the value between the modified MDP
and the original MDP remain close.

Since the proof in [Liu21] does not rely on the specific variation on the algorithm but
rather the uniqueness of J∗ for the MDP, it carries over unchanged and so is omitted.

In previous work (e.g. [Tsi02; Liu21]), if one wanted to study the convergence of any
asynchronous algorithm, algebraic manipulations had to be employed within very specific
contexts to circumvent the issue of non-commuting matrices in the proof of their results.
Even so, cases like the first-visit were not covered. The contraction property exhibited by
the lookahead policy allows for a different proof technique which avoids the previous pitfall
(as used in [WS23]). In conjunction with the techniques employed in [Liu21], this chapter’s
main theorem extends [WS23] to the stochastic shortest path setting and by not specifying
Dt a priori, we were able to prove a general result about the Optimistic Policy Iteration
algorithm. Now we specialize this result further to the first-visit variation using lookahead.

Example (first-visit). In the classic definition of the first-visit variation [SB18], we are
updating based on the average cost of all trajectories following every first visit to a state.
Define the set of first-visits on trajectory t by

Dt := {i ∈ S : ∃k ∈ N ∪ {0} s.t. xk = i and xℓ ̸= i ∀ℓ < k}.

The estimator used in the update procedure is (pg 190, [BT96])

Jt+1(i) =
1

nt(i)

t∑︂
w=0

1{i∈Dw}

∞∑︂
ℓ=0

g(xℓ, µw(xℓ)),
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where nt(i) :=# first visits to state i by iteration t and x0 = i. Upon iterating

=

{︄
nt−1(i)
nt(i)

1
nt−1(i)

∑︁t−1
w=0 1{i∈Dw}

∑︁∞
ℓ=0 g(xℓ, µw(xℓ)) +

1
nt(i)

∑︁∞
ℓ=0 g(xℓ, µt(xℓ)) i ∈ Dt

Jt(i) i ̸∈ Dt

=

{︄
nt(i)−1
nt(i)

Jt(i) +
1

nt(i)

∑︁∞
ℓ=0 g(xℓ, µt(xℓ)) i ∈ Dt

Jt(i) i ̸∈ Dt
,

Set γt(i) = 1
nt(i)

, m =∞, and k large enough such that

k > 1 +
log 1

2
(1− β)
log β

, (3.14)

implied by assumption 3.3. Convergence of the first-visit variation is guaranteed by choosing
greedy policies based on sufficiently large lookahead since it is a simple matter to check that
the step-size satisfies Assumption 3.5. Of course, one may choose to modify the rollout
parameter m to suit any particular application. We simply presented a version that is as
close to the original definition as possible.

For the interested reader, Algorithm 1 of [WS23] presents the pseudo-code for the first-
visit variation. It would be identical to this chapter’s case with the understanding that α is
allowed to take value one.

Generalizing past results

It is possible to recover a particular case of the main theorem of [Liu21] from this chapter’s
Theorem 3.1 and by extension Proposition 1 of [Tsi02]. In the restrictive scenario that every
state is guaranteed to be visited on the trajectory before termination, we may set the model
parameters to Dt = S,Γt = γtI, and Pt = I in iteration (3.10). Furthermore, one would
have to allow for a theoretically infinite rollout (m = ∞), then for any k large enough,
lim
m→∞

TmµtT
k−1Jt = Jµt and we recover

Jt+1 = (1− γt)Jt + γt(J
µt + wt),

which is iteration (3) studied in [Liu21] under the same assumptions of this chapter. Notice
how k is purely formal; it’s necessary to satisfy this chapter’s requirements for contraction
but not necessary to guarantee convergence. Rather one could appeal to the results of
[Liu21], consider a 1-step greedy policy, and still be guaranteed convergence.

By making use of lookaheads, we may generalize from this unlikely setup. Say one
could not guarantee a visit to every state on each trajectory but still wanted to use the
estimator Jµt + wt, that is, the sum of all costs to termination. This would lead to a direct
generalization of past results: the algorithm can be designed to allow for as many updates
as desired for each t. In the process, we provide a sufficient condition for convergence under
this generalized iterative scheme. The question of whether this sufficient condition is also
necessary remains open, although we do not think it is necessary.
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Generate a trajectory with the estimator TmµtT
k−1Jt(i) + wt(i). Consider the following

modified iteration

Jt+1(i) =

{︄
(1− γt(i))T k−1Jt(i) + γt(i)(T

m
µtT

k−1Jt(i) + wt(i)) i ∈ Dt
T k−1Jt(i) i ̸∈ Dt

. (3.15)

Remark 3.5. If one wished to use the estimator Jµt + wt (i.e. m =∞), we will show that
any lookahead satisfying (3.14) will lead to convergence irrespective of how many states are
picked for updating, thus allowing for a direct generalization of past results. This is different
from iteration (3.10) since we no longer require the restrictive assumptions on the model
dynamics discussed above to use the main iterations of [Tsi02; Liu21], but still allows for
the flexibility in the choice of state updates.

Proposition 3.1 Generalized Convergence

Let assumptions 3.1, 3.2, 3.3, 3.4, 3.5 still hold. Further, assume there exists a scalar
valued step size ˆ︁γt that satisfies Assumption 3.5 and

lim
t→∞

Pt = lim
t→∞

ˆ︁γtΓ−1
t , ∀i ∈ S (3.16)

then iteration (3.15) converges to J∗ almost surely.

Remark 3.6. Assumption (3.16) boils down to asserting the asymptotic equivalence between
step size choices emanating from states whose frequency of selection is not restricted and ones
that are. It is known that restricting state selection and appropriately selecting step-sizes will
lead to convergence through algebraic manipulations (see Section 5, [Liu21]), and therefore
this is a natural and possibly obvious sufficient condition. However, it seemed appropriate
that in the process of generalizing to iteration (3.15) one would put all cases under a single
umbrella. Finding a necessary and sufficient condition is a more interesting question. For
example, the following all satisfy assumption (3.16) and use iteration (3.15), thus allowing
for a single theorem to capture each of these iterations:

• Equation (4) of [Tsi02]: Choose Dt = {i ∈ S : x0 = i},m = ∞,Γt = γtI, Pt =
1
|S|I,

and ˆ︁γt = γt
|S| ;

• Proposition 16 of [Liu21] with step-size (14): Choose Dt = {i ∈ S : x0 = i},m =
∞,Γt = diag( 1

# times i selected by iteration t
), Pt = diag(p(i)), and ˆ︁γt = 1

t+1
;

• Proposition 16 of [Liu21] with step-size (15): Choose Dt = {i ∈ S : x0 = i},m =
∞,Γt = diag( ˆ︁γt

p(i)
), Pt = diag(p(i)), and any ˆ︁γt.

Example. As an illustration of sufficiency for Assumption 3.16, consider the example in
Section 6 of [Liu21]. It is a discounted problem with α ∈ (0, 1): let S = {1, 2} and A = {l, r}
and define the costs as g(1, r) = g(2, l) = 0 and g(1, l) = g(2, r) = 1. The system is
deterministic in that p11(l) = p12(r) = p21(l) = p22(r) = 1−p11(r) = 1−p12(l) = 1−p21(r) =
1−p22(l) = 1. The probability of choosing state 1 as the initial state is p. This fully specifies
the MDP. For more details see Section 6 in [Liu21] and Example 5.11 in [BT96].
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3.3. FURTHER DISCUSSION

They show empirically that convergence is achieved for an arbitrary step-size only when
states are selected uniformly or if the probability distribution used to select the states is
non-uniform, the step-size satisfies Assumption (3.16). All other cases diverge.

It will be easier to work with Jt in vector form. Using similar algebraic manipulations
that led to equation (3.10), we may rewrite iteration (3.15) as

Jt+1(i) = (1− ˆ︁γt)T k−1Jt(i) + ˆ︁γt(TmµtT k−1Jt(i) + vt(i) + ut(i)),

where

vt(i) := wt(i) +

(︃
χt(i)

pt(i)
− 1

)︃
(−T k−1Jt(i) + TmµtT

k−1Jt(i)) +

(︃
χt(i)γt(i)ˆ︁γt − 1

)︃
wt(i),

and

ut(i) :=

(︃
γt(i)ˆ︁γt − 1

pt(i)

)︃
χt(i)(−T k−1Jt(i) + TmµtT

k−1Jt(i)).

Notice that by the boundedness of gµ and for some constants A,B > 0,

||T k−1Jt||∞ = ||TµtT k−2Jt||∞ = ||gµt + PµtT
k−2Jt||∞ = ||gµt + Pµtgµt + ...+ Pm

µtJt||∞
≤ A||Jt||∞ +B.

This, the fact that T k−1Jt is adapted to Ft, and with the boundedness of TmµtT
k−1Jt implies

E [vt(i)|Ft] = 0 and E
[︁
||vt(i)||2∞|Ft

]︁
≤ ˜︁A||Jt||2∞ + ˜︁B. (3.17)

Furthermore, it is evident from (3.16) that there exists a constant C > 0 and θt :=

Cmax
i∈S

⃓⃓⃓
γt(i)ˆ︁γt − 1

pt(i)

⃓⃓⃓
→ 0, almost surely, such that

|ut(i)| ≤ θt (||Jt||∞ + 1) , ∀i ∈ S, t ≥ 0. (3.18)

We have seen how using β in place of α allows us to generalize to the stochastic shortest
path. This applies to this proof as well. As the proof of Proposition 3.1 is virtually identical
to the one in [WS23], we outline the major differences allowing for asynchronous behavior
and using the contracting factor β in place of the discount factor α, and refer the reader to
Appendix A in [WS23] for details.

Proof of Proposition 3.1. We first show that for every ϵ > 0, there exists a sufficiently large
tϵ such that

(1− ˆ︁γt)T k−1Jt + ˆ︁γtTmµtT k−1Jt − ϵΞe ≤ Jt+1 ≤ (1− ˆ︁γt)T k−1Jt + ˆ︁γtTmµtT k−1Jt + ϵΞe. (3.19)

Define the sequence Y0 = 0 and

Yt+1 = (1− ˆ︁γt)Yt + ˆ︁γt(vt + ut).
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CHAPTER 3. OPTIMISTIC POLICY ITERATION

If we consider the operator that maps Yt to the zero vector, then such an operator trivially
satisfies the pseudo-contraction property. In view of the assumption on ˆ︁γt, (3.17), (3.18),
all other assumptions of Proposition 4.5 [BT96] hold and therefore we may conclude that
Yt → 0 almost surely.

Subtract Yt+1 from Jt+1 and rearrange,

Jt+1 = (1− ˆ︁γt)T k−1Jt + ˆ︁γtTmµtT k−1Jt + (Yt+1 − (1− ˆ︁γt)Yt).
Since Yt → 0 a.s. then for all δ > 0 there exists a tδ, such that for all t > tδ

Jt+1 ≤ (1− ˆ︁γt)T k−1Jt + ˆ︁γtTmµtT k−1Jt + δe.

Fix ϵ > 0. Since the above equation holds for all δ > 0, choose δ = ϵmin
i∈S

ξ(i), then for all
ϵ > 0, there exists a tϵ such that for all t > tϵ,

Jt+1 ≤ (1− ˆ︁γt)T k−1Jt + ˆ︁γtTmµtT k−1Jt + ϵΞe. (3.20)

The left-hand side of (3.19) is established in a symmetrical way.
Recall that TJ = min

µ∈Π
TµJ ≤ TµJ ∀µ ∈ Π and by Lemma 5 in [Liu21],

TJt+1 ≤Tµt
(︁
(1− ˆ︁γt)T k−1Jt + ˆ︁γtTmµtT k−1Jt + ϵΞe

)︁
≤Tµt

(︁
(1− ˆ︁γt)T k−1Jt + ˆ︁γtTmµtT k−1Jt

)︁
+ βϵΞe

=gµt + (1− ˆ︁γt)gµt − (1− ˆ︁γt)gµt + (1− ˆ︁γt)PµtT k−1Jt + ˆ︁γtPµtTmµtT k−1Jt + βϵΞe

=(1− ˆ︁γt)T kJt + ˆ︁γtTm+1
µt T k−1Jt + βϵΞe. (3.21)

Now simply subtract (3.20) from (3.21),

TJt+1 − Jt+1 ≤ (1− ˆ︁γt)(T kJt − T k−1Jt) + ˆ︁γt(Tm+1
µt T k−1Jt − TmµtT

k−1Jt) + (1 + β)ϵΞe.

Remark 3.7. In contrast to [WS23], we used the matrix Ξ when applying the monotonicity
property of Tµt. In the discounted case, this matrix is not necessary as we do not need to use
the weighted maximum norm to establish the result. Beyond this point, the proof is identical
to Appendix A in [WS23], with the same Ξ-technique caveat, and so we simply outline the
major steps.

Using an appropriate recursive sequence, namely, set δtϵ := ||TJt− Jt||ξ, ˆ︁ξ := maxi∈S Ξe,
and define δt = δt−1(β

k−1 + βm+k−1) + (1 + β)ˆ︁ξϵ, then by induction, it can be shown that

lim sup
t→∞

TJt − Jt ≤ lim
t→∞

δte ↓ 0 as ϵ→ 0,

since Assumption 3.3 guarantees βk−1 + βm+k−1 < 1. Therefore, for any ˜︁ϵ > 0, there exists
a t˜︁ϵ such that for all t > t˜︁ϵ,

TJt ≤ Jt + ˜︁ϵΞe =⇒ TmµtT
k−1Jt ≤ T k−1Jt +

βk−1

1− β
˜︁ϵΞe.
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3.3. FURTHER DISCUSSION

Continuing from (3.19), for t > tϵ + t˜︁ϵ and without loss of generality ˆ︁γt ≤ 1 since ˆ︁γt → 0,

Jt+1 ≤ (1− ˆ︁γt)T k−1Jt + ˆ︁γt(︃T k−1Jt +
βk−1

1− β
˜︁ϵΞe)︃+ ϵΞe ≤ T k−1Jt +

βk−1

1− β
˜︁ϵΞe+ ϵΞe.

And for the reverse inequality,

Jt+1 ≥ (1− ˆ︁γt)(TmT k−1Jt −
βk−1

1− β
˜︁ϵΞe) + ˆ︁γtTmµtT k−1Jt − ϵΞe ≥ Tm+k−1Jt −

βk−1

1− β
˜︁ϵΞe− ϵΞe.

Put the two inequalities together,

Tm+k−1Jt −
βk−1

1− β
˜︁ϵΞe− ϵΞe ≤ Jt+1 ≤ T k−1Jt +

βk−1

1− β
Ξ˜︁ϵe+ ϵΞe. (3.22)

Notice from the weighted maximum norm contraction property applied repeatedly,

||Tm+k−1Jt − J∗||ξ ≤ βm+k−1||Jt − J∗||ξ, and ||T k−1Jt − J∗||ξ ≤ βk−1||Jt − J∗||ξ.

Upon subtracting J∗ from (3.22),

−βm+k−1||Jt − J∗||ξe−
βk−1

1− β
˜︁ϵΞe− ϵΞe ≤ Jt+1 − J∗ ≤ βk−1||Jt − J∗||ξ +

βk−1

1− β
Ξ˜︁ϵe+ ϵΞe.

Therefore ||Jt+1 − J∗||ξ ≤ (βk−1 + βm+k−1)||Jt − J∗||ξ + βk−1

1−β Ξ˜︁ϵe+ ϵΞe, which implies

lim sup
t→∞

||Jt − J∗||ξ ≤ lim
ϵ,˜︁ϵ→0

βk−1

1−β Ξ˜︁ϵ+ ϵΞ

βk−1 + βm+k−1
= 0,

as desired.
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Conclusion

Main Convergence Results

Three projects were carried out for this dissertation. We established:

§1 a large deviation principle for additive functionals of reflected jump-diffusions;

§2 a functional central limit theorem for a fast-slow dynamical system driven by
symmetric and multiplicative α-stable noise; and

§3 the almost sure convergence of undiscounted optimistic policy iteration without
state update restrictions.

For the first project, the existence of a solution to the reflected jump diffusion in both
the normal and oblique reflection cases was treated. Then a full characterization of the rate
function for the large deviation principle was derived involving the eigen-pair solution of a
related partial-integro differential equation using the Gärtner-Ellis theorem by making use
of an appropriate exponential martingale. This latter object was shown to be a martingale
through the standard Markov process argument of setting the drift of an a-priori conjectured
process to zero. In so doing, a partial-integro differential equation was derived where the
existence and uniqueness of its solution followed by showing the same for the eigen-pair of a
related operator. The results were then specialized to the one dimensional case from which
a numerical scheme based on finite differences was devised to solve two standard examples
with known analytic solutions and an applied problem in biochemical reactions.

There are a number of places where future work can continue. For one, the additive func-
tional is not as general as it could be; it only considers the continuous part of the associated
boundary process. One might ask if this could be extended to consider the entire boundary
process. From an application standpoint, the numerical scheme devised is limited to the one-
dimensional case. One could extend this to the multi-dimensional setting using the same
techniques, although it would probably be more fruitful to consider more advanced tech-
niques in numerical approximation. And, naturally, as this argument has been used in more
specialized cases than the one treated in Chapter 2, once can imagine it is likely applicable
to processes other than reflected jump-diffusions or additive functionals of the process paths.

The functional central limit theorem result follows the averaging principle, which itself
is a consequence of a related Poisson equation involving the generator of the frozen process
and the difference between the drift of the slow process and its averaged process. To work



out the Poisson equation, one had to first establish the ergodicity for the frozen process and
derive a number of technical bounds on gradients and differences between gradients of this
process. Then the regularity properties for the solution of the Poisson equation were derived.
These regularity properties served as bounds in the proof of the averaging principle along
with various moment estimates. From the averaging principle, we were able to derive the
scaling for the functional central limit theorem which was established by showing tightness
and convergence of the finite dimensional distributions. The chapter was concluded with a
numerical study of an illustrative example to put the theory into practice.

There are a few obvious extensions of this work. The Poisson approach has been shown to
be useful in a number of previous papers and it is likely to be applicable to other dynamical
systems. One could add Brownian motion terms or various other drift terms that would fun-
damentally change the system but have different applications. The order of scaling can also
be manipulated to derive different results. One could also extend this work by establishing a
large deviation principle for this system. The numerical study relied on an inefficient Monte
Carlo pathwise simulation, and we exploited efficiencies of the practical problem to speed
up computation. A possible avenue of research is in how to improve on this simulation or
derive better numerical approaches to putting the theory into practice.

Finally, we established the convergence for the optimistic variant of policy iteration
in the undiscounted setting and without the need to specify which states are updated a
priori. This was done by making use of lookahead policies and the pseudo-contraction
property of the operators. We discuss the first-visit, discounted cases, and generalized the
variants that use the initial state for updating while providing a sufficient condition for
convergence. A seemingly difficult problem would be to find a necessary and sufficient
condition for convergence which remains open.

This serves as a first step in the exploration of the α = 1 case. It seems likely that
these techniques would extend easily to temporal differences: TD(λ), λ ∈ [0, 1), where the
policy update is carried out within a trajectory, by adapting the techniques in [BT96; Tsi02;
Liu21; WS23] to Chapter 3’s setting. When a model is available it is often possible to solve
for an optimal policy analytically. Therefore, one could look into the model-free case using
Q-values and state-action pairs for updating, as done in [Tsi02]. When the problem is too
computationally expensive, for example state and action spaces that are too large, we can
also consider algorithms that use function approximation, gradient descent, least squares,
and feature vectors, as done in the second half of the paper [WS23] among others in this
direction: [WS22; Win+21]. Finally, the proof relied on finding a suitable unbiased estimator
to update the value function. This precludes the every-visit variation which is known to be
consistent but biased. And thus research into the convergence of consistent estimators may
allow for a proof of this variation as well.
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