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Abstract

Mitigating Yo-Yo Attacks on Cloud Using Game-Theoretical Modelling and

Learning-Based Approach

Saman Saniee Monfared

Cloud computing, a transformative paradigm, has ushered in an era of unparalleled convenience

and economic efficiency for both service providers and users. Historically, before its widespread

adoption, digital services were susceptible to Distributed Denial of Service (DDoS) attacks, which

aimed to overwhelm server capacities. The advent of cloud computing has primarily mitigated these

threats but, in doing so, has inadvertently introduced new vulnerabilities. In their relentless pursuit

of exploitation, attackers have transitioned from targeting server performance to inflicting economic

damages. A particularly insidious form of this is the Yo-Yo Attack, an Economic Denial of Sustain-

ability (EDoS) strategy that manipulates the auto-scaling features inherent to cloud systems.

This thesis presents a novel mathematical framework to understand the ongoing tussle between

cloud service providers and Yo-Yo Attackers. We conceptualize this conflict as a Repeated Dynamic

Bayesian Stackelberg game. This approach is pioneering in capturing the Yo-Yo attacker’s nuanced

strategies, particularly their adeptness at exploiting the cloud’s auto-scaling features. The Learning-

Based Attackers’ Type Recognition and Defense Mechanism is central to our game model, which

harnesses the power of one-class Support Vector Machine (SVM) to discern the modus operandi of

various Yo-Yo attack types.

Our research further introduces an innovative machine-learning algorithm adept at recogniz-

ing and countering the unique attack patterns of individual bots. We delve deeper into a proposed

defense mechanism, which recognizes different strategies of Yo-Yo attackers aiming to exploit dif-

ferent vulnerabilities of the cloud’s auto-scaling mechanism and thereby confound their efforts. Our

empirical experiments underscore the efficacy of our solution. Our approach demonstrates superior
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reduced compromised services and overall efficiency compared to existing Yo-Yo detection and

defense strategies.

In conclusion, as cloud computing continues to dominate the digital landscape, ensuring its

security remains paramount. Our research offers a robust solution to a new generation of threats,

setting a benchmark for future endeavors in cloud security.
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Chapter 1

Introduction

1.1 Background

1.1.1 About Cloud

In recent years, cloud computing has emerged as a transformative force in the field of informa-

tion technology, rapidly expanding its reach and influence across various sectors. This paradigm

shift is primarily driven by the multitude of benefits it offers, such as cost efficiency, enhanced

scalability, and improved resource management. Moreover, the unprecedented challenges posed by

the COVID-19 pandemic have further hastened the transition from in-house infrastructure to cloud-

based solutions [1] as businesses and individuals alike sought to adapt to the new normal of remote

work and virtual collaboration. The transition of companies from investing in their own in-house

infrastructures to outsourcing their computation needs to third-party cloud providers has had numer-

ous advantages for both sides [2]. This shift is motivated by the inherent benefits of cloud computing

and the challenges and costs associated with managing and maintaining in-house systems.

a. Cloud Advantage

To attain a comparable level of Quality of Service (QoS) without relying on cloud services,

businesses, and online companies would have to invest substantially in infrastructure, maintenance,

and skilled personnel. Building and maintaining an in-house data center with a high QoS involves
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significant upfront costs for hardware acquisition, space requirements, and power consumption.

Additionally, organizations must allocate resources to employ expert staff responsible for ongoing

infrastructure maintenance, security, and management. This includes addressing the inevitable need

for replacing failed hard disk drives and processors, which adds to the overall burden of managing

a data center.

Security is another crucial concern for businesses managing their own infrastructure. Ensuring

a robust security posture requires continuous monitoring, threat detection, and mitigation efforts.

This demands a dedicated team of security professionals who are well-versed in the latest threat

landscape and capable of implementing comprehensive defense strategies. The rapid advancements

in machine learning and AI, the proliferation of cyberattacks, and the fact that attackers constantly

adapt to security measures are undeniable challenges businesses face in securing their infrastructure.

There are several occasions when each online business might experience the urge to make tem-

porary or permanent adjustments to its infrastructure to serve its users better. For instance, suppose

a business intends to launch new services or test new features for future developments. In that case,

it usually requires additional hardware upgrading to increase the capacity of its servers or timely

software updates, which incurs additional costs. Furthermore, there are certain times of the year

when online businesses experience spikes (fluctuations) in user demand, such as holiday sales for

e-commerce businesses or major content releases on streaming services. Before the advent of cloud

computing’s auto-scaling feature, it was nearly impossible for businesses to prevent crashes or ser-

vice slowdowns during such spikes without investing heavily in additional servers, which would

then sit idle during periods of average user traffic.

Regarding data safety, an in-house solution would require implementing multi-regional backups

and disaster recovery plans to safeguard against catastrophes, power outages, and other unforeseen

events. This necessitates a complex and costly infrastructure that spans multiple geographical lo-

cations and dedicated personnel to manage the backup and recovery process. The challenge lies in

synchronizing data across all locations, ensuring timely recovery, and maintaining the integrity of

the data during the process.

Accessibility and data synchronization are also vital considerations for companies with multiple
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branches and offices. Ensuring seamless, real-time access to data across various locations would en-

tail significant investment in networking, infrastructure, and data management solutions. The need

for instantaneous data synchronization across multiple locations introduces additional complexities

and potential bottlenecks that may impact overall performance and user experience. Given these

challenges, cloud computing emerges as an attractive alternative for businesses seeking to achieve

the above benefits without incurring the substantial costs and complexities associated with in-house

infrastructure. The integration of cloud services in online businesses has proven to be highly ad-

vantageous due to its inherent cost-efficiency and scalability. By adopting a pay-as-you-go model,

customers and providers both experience substantial cost savings, while auto-scaling features en-

able seamless accommodation of fluctuating user demands. Additionally, cloud services facilitate

instant updates and upgrades, allowing for accelerated testing, launching of new products, and rapid

feature implementation.

Furthermore, cloud computing offers enhanced security measures, as cloud providers invest

heavily in cutting-edge security technologies and employ dedicated teams of experts to protect their

client’s data. This level of security is often difficult for individual businesses to achieve with their

in-house infrastructure. Moreover, cloud services provide robust data safety protocols, including

multi-regional backups and disaster recovery plans, which alleviate the challenges associated with

safeguarding data in the face of unforeseen events.

Lastly, the cloud enables seamless accessibility and data synchronization across multiple lo-

cations, empowering businesses to embrace a more agile and flexible operational model. This is

particularly beneficial for companies with multiple branches and offices, as it ensures real-time ac-

cess to data and eliminates potential bottlenecks that may arise due to complex data management

and synchronization requirements.

b. Cloud Auto-Scaling Vulnerabilities

Every technological advancement comes with its share of risks, and cloud computing is no

exception. One of the vulnerabilities associated with cloud computing lies in its auto-scaling feature

[3]. While auto-scaling provides numerous benefits, it also exposes cloud systems to new types of

attacks.
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The vulnerability of the auto-scaling feature can be exploited by adversaries, potentially leading

to detrimental effects. A specific instance of such exploitation is embodied as the ’Yo-Yo’ attack, a

form of Distributed Denial-of-Service (DDoS) attack that manipulates the auto-scaling mechanism

of cloud computing systems.

1.1.2 Yo-Yo Attack

Distributed Denial of Service (DDoS) attacks have long threatened online businesses, over-

whelming targeted systems with a flood of traffic and rendering them inaccessible to legitimate

users [4, 5]. Cloud computing can mitigate the impact of DDoS attacks due to its auto-scaling

mechanism [6], which can automatically scale resources to accommodate increased traffic. How-

ever, this same feature can also be exploited by malicious actors differently [7, 8].

Economic Denial of Sustainability (EDoS) attacks are a specific type of attack that aims to

exploit the auto-scaling vulnerability in cloud systems [9±11]. These attacks focus on causing

financial damage to the targeted organization by continuously generating fake traffic, forcing the

auto-scaling mechanism to scale resources and, in turn, increasing operational costs.

Yo-Yo attacks are a subtype of EDoS attacks that involve alternating between high and low

traffic periods, making it more difficult for cloud providers to distinguish between legitimate and

malicious traffic. This deceptive attack pattern can cause businesses significant performance and

financial damage by continuously triggering the auto-scaling mechanism and increasing infrastruc-

ture costs.

1.1.3 Game Theory

Game Theory is a branch of mathematics that studies decision-making in situations where mul-

tiple agents interact with each other, taking into account the strategic behavior of each agent. It has

been widely used to model and analyze complex interactions in various fields, including economics,

political science, and cybersecurity.
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a. Game Theory Overview

Game theory is a mathematical approach to modeling and analyzing situations in which mul-

tiple decision-makers, or players, interact with each other strategically. It seeks to understand and

predict players’ choices under various conditions, considering the incentives, preferences, and in-

formation available to them. Game theory applies to a wide range of fields, including economics,

political science, biology, and computer science, and is especially useful in analyzing situations

where decision-makers have conflicting interests.

The fundamental concept in game theory is that of a game. A game is typically defined by

its players, strategies, and payoffs. Players are the decision-makers involved in the game, each

having their own objectives and preferences. Strategies are the set of actions or choices available

to the players. Payoffs represent the consequences or rewards associated with the combinations of

strategies chosen by the players. A key objective of game theory is to identify the best strategies for

each player, given their preferences and the strategies available to other players in the game.

b. Nash Equilibrium

An important concept in game theory is that of a Nash equilibrium. A Nash equilibrium is

a situation in which no player can improve their payoff by unilaterally changing their strategy,

given the strategies chosen by the other players. In other words, each player’s strategy is optimal,

considering the other players’ strategies. Nash equilibrium can be found in both simultaneous and

sequential games and serves as a standard solution concept in game theory.

c. Bayesian Games

There are two main types of games in game theory: simultaneous and sequential. In simulta-

neous games, all players make their decisions simultaneously without knowing the other player’s

choices. In sequential games, players make decisions in a particular order, with each player’s de-

cision potentially affecting the choices of the subsequent players. Sequential games are often rep-

resented using game trees, which depict the order of play, available strategies, and payoffs at each

stage.
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Bayesian games are a subclass of games that incorporate incomplete information. In a Bayesian

game, players have private information about their types, which can represent their preferences,

abilities, or other relevant characteristics. Players form beliefs about the types of other players

based on a probability distribution, which influences their strategic choices. The goal of Bayesian

game theory is to find the optimal strategies for each player, given their type and beliefs about the

types of other players.

d. Repeated Games

In a repeated game, players interact with each other multiple times, making decisions in a series

of discrete periods or stages. Repeated games are particularly relevant when players have the op-

portunity to learn from their past interactions and adjust their strategies accordingly. One common

solution concept for repeated games is the subgame perfect Nash equilibrium (SPNE), a strategy

profile that constitutes a Nash equilibrium in every subgame, including the overall game itself. This

solution concept helps identify credible strategies that account for the dynamic nature of repeated

games.

Discount factors are used in repeated games to account for the time value of payoffs. A discount

factor represents the relative weight a player assigns to future payoffs compared to immediate ones.

In a repeated game with an exponential discount factor, each player’s utility function incorporates

the discounted sum of their payoffs over all the game periods. By adjusting the discount factor,

players can more or less emphasize immediate rewards relative to future ones.

e. Bayesian Stackelberg Games

Stackelberg games are a specific type of sequential game in which one player, called the leader,

moves first, and the other player called the follower, moves second. The leader commits to a strat-

egy, and the follower observes it and chooses their best response accordingly. The Stackelberg

equilibrium is a solution concept that identifies the optimal strategies for both the leader and the

follower, given their preferences and the sequential structure of the game.

In a Bayesian Stackelberg game, the leader and the follower have incomplete information about
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each other’s types. The leader forms beliefs about the follower’s type based on a probability dis-

tribution and chooses a strategy that maximizes their expected utility, considering the follower’s

best response function. The follower, in turn, observes the leader’s strategy and chooses their best

response based on their type and beliefs about the leader’s type. The Bayesian Stackelberg equilib-

rium is a strategy profile that specifies the optimal strategies for both the leader and the follower,

given their types, preferences, and beliefs about each other’s types.

Mixed strategies are another important concept in game theory. A mixed strategy is a probability

distribution over a player’s set of pure strategies, indicating the likelihood of choosing each strategy.

In some games, it can be advantageous for players to employ mixed strategies rather than commit-

ting to a single pure strategy. Mixed strategies can introduce uncertainty and unpredictability into

the game, making it more difficult for opponents to exploit weaknesses in a player’s strategy.

f. Applying Game Theory to the Problem

A repeated Bayesian Stackelberg game can be formulated to apply game theory to the problem

of cloud provider-attacker interaction in the context of Yo-Yo attacks. The cloud provider acts as

the leader, choosing defense strategies based on their beliefs about the attacker’s type. In contrast,

the attackers act as the followers, choosing attack strategies in response to the cloud provider’s

defense strategies. Both players have utility functions incorporating exponential discount factors,

emphasizing the importance of recent rewards over older ones.

In this game, the cloud provider’s and attacker’s utility functions are used to formulate maxi-

mization problems for each player, subject to constraints on their policies (defense and attack strate-

gies) and other relevant factors. The Bayesian Stackelberg game is then solved using backward

induction, combining the attacker’s maximization problem with the cloud provider’s maximization

problem. This results in a Mixed-Integer Quadratic Programming (MIQP) problem, which is then

converted into a Mixed-Integer Linear Programming (MILP) problem to find the optimal defense

strategy for the cloud provider.

By learning and understanding these game theory concepts and their application to the problem

at hand, one can gain a deeper insight into the strategic interaction between cloud providers and

attackers in the context of Yo-Yo attacks. This knowledge can ultimately contribute to developing
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more effective defense strategies and countermeasures against such attacks, ensuring the continued

security and reliability of cloud services for all users.

1.2 Problem Statement

To further illustrate the application of game theory to the problem of mitigating Yo-Yo attacks

by the cloud, let us consider a simplified example. Suppose there are two types of attackers, with dif-

ferent attacking capabilities, and the cloud provider has two defense strategies. The cloud provider

estimates the probability distribution of facing each attacker type and uses this information to deter-

mine the best defense strategy. On the other hand, the attacker observes the defense strategy chosen

by the cloud provider and selects their attack strategy accordingly.

In this example, the cloud provider would first solve their maximization problem, considering

the expected utility resulting from each possible combination of defense and attack strategies. Then,

the attacker’s maximization problem would be integrated into the cloud provider’s problem through

backward induction. This would ultimately result in an MIQP problem, which could be converted

to a MILP problem and solved to identify the optimal defense strategy for the cloud provider.

This example is, of course, a simplification of the actual problem addressed in the thesis. How-

ever, it illustrates the general approach and methodology used in applying game theory to the study

of Yo-Yo attacks. By developing a comprehensive understanding of the underlying game theory

concepts and their relevance to the problem at hand, researchers and practitioners can make more

informed decisions regarding developing and implementing effective defense strategies against such

attacks.

Having now covered the basics of game theory and its application to the specific problem of

Yo-Yo attacks, it is essential to understand the significance and implications of the proposed Stack-

elberg Bayesian game model. This model allows for a more thorough understanding of the strategic

interactions between cloud providers and attackers, ultimately leading to the development of more

effective defense strategies.

One of the key benefits of employing a game theoretic approach is that it provides a system-

atic and mathematically rigorous framework for analyzing the decision-making processes of both
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attackers and defenders. By identifying the optimal strategies for both parties under various condi-

tions, game theory enables researchers to understand the factors influencing their behavior and the

consequences of their actions.

Furthermore, by modeling the problem as a Stackelberg Bayesian game, the proposed approach

accounts for the inherent asymmetry in the roles of the cloud provider (leader) and attacker (fol-

lower). This is important because it reflects the real-world dynamics of the problem, where the

cloud provider typically has more information about the system and makes decisions that influence

the attacker’s subsequent actions.

In conclusion, the application of game theory to the study of Yo-Yo attacks and cloud security,

in general, provides valuable insights that can contribute to the development of more effective and

resilient defense strategies. By thoroughly understanding the underlying concepts and methodolo-

gies involved in game theory, researchers and practitioners can make better-informed decisions and

more effectively safeguard the security and reliability of cloud services.

To summarize, game theory offers a valuable framework for understanding and analyzing the

strategic interactions between cloud providers and attackers in the context of Yo-Yo attacks. The

Stackelberg Bayesian game model, in particular, allows us to consider the asymmetric information

and roles of the two players, ultimately leading to more effective defense strategies. The proposed

model incorporates critical elements such as mixed strategies, pure strategies, probability distribu-

tions, and optimization problems, making it a comprehensive and powerful tool for studying this

complex problem.

With this comprehensive overview of game theory, we now have a solid foundation to under-

stand the Stackelberg Bayesian game model used in this thesis and how it can be applied to analyze

the strategic interactions between cloud providers and attackers in the context of Yo-Yo attacks.

1.3 Contributions

The main contribution of this thesis is modeling the Yo-Yo attack as a Repeated Dynamic Stack-

elberg Bayesian game. Then, we employ this model to optimize the cloud defense strategy against

Yo-Yo attackers to mitigate the damages of their attacks better.
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In summary, the main contributions of this work are:

• Characterizing the nature of Yo-Yo attacks and formulating these attributes into a mathemat-

ical model. This first step towards systematizing the defense against such attacks provides a

critical foundation for the rest of the study.

• Introducing proper variables that correspond to the motivations and objectives of the Yo-Yo

attackers. These variables allow for a more nuanced understanding of the attack dynamics

and better equip the cloud provider in its defense.

• Defining different types of attacking strategy prioritization for the Yo-Yo attackers enables

them to exploit the Auto-Scaling vulnerabilities in a more sophisticated and more intelligent

manner.

• Designing a Repeated Dynamic Stackelberg Bayesian game that eventually leads the cloud

provider to implement the optimal defense strategy against Yo-Yo attacks.

• Solving the game model using MILP to find the best strategy for the cloud provider. This

approach enhances computational efficiency and optimality, supporting a more robust defense

against Yo-Yo attacks.

• Proposing a framework to categorize different types of Yo-Yo attackers to increase the ac-

curacy and efficiency of cloud security against such attacks. By recognizing the differences

among attackers, the cloud provider can tailor its strategy according to the specific type of

Yo-Yo attack it faces.

This novel approach will provide a deeper understanding of the interactions between attackers

and cloud providers in the context of this specific type of EDoS attack, ultimately paving the way

for developing more effective strategies to mitigate and prevent such periodic attacks in the future.
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Chapter 2

Related Work

2.1 Cloud Auto-Scaling & Vulnerabilities

The authors In [12] delved into the vulnerabilities of cloud auto-scaling systems, particularly

emphasizing the ºYo-Yo attackº. While the cloud’s auto-scaling feature is adept at handling tra-

ditional Distributed Denial of Service (DDoS) attacks [13], it inadvertently introduces suscepti-

bility to Economic Denial of Sustainability attacks (EDoS) [14] and Reduction of Quality (RoQ)

attacks [15]. The ºYo-Yo attack,º a term first coined in this research, is an efficient assault on the

auto-scaling mechanism. It operates by cycling between two phases: the on-attack phase, where

a short burst [16] of traffic prompts the auto-scaling to scale up, and the off-attack phase, initiated

when the attacker ceases the excess traffic upon recognizing the scale-up. This cyclical process

can keep an adaptive mechanism in a perpetual oscillation state between over-load and under-load

conditions. The researchers utilized Amazon’s cloud service for their experimental evaluations.

Their model revealed that the attacker spent approximately 77% of the time in the off-attack phase,

leaving the victim in constant flux. The findings indicate that the Yo-Yo attack is thrice as potent

as a consistent DDoS attack, underscoring its potential threat in cloud environments. The paper

underscores the need for a nuanced understanding of these policies, especially the differences be-

tween adaptive and discrete, to safeguard against such sophisticated attacks. The authors advocate

for early scale-up and slower scale-down configurations as a countermeasure.

Building on the foundational work of [12], The author in [17] further elucidated the intricacies
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of the Yo-Yo attack on cloud auto-scaling mechanisms. Their experimental evaluations of Ama-

zon’s cloud service highlighted the differential impacts of two auto-scaling policies: adaptive and

discrete. Their findings revealed that while the adaptive policy responded quicker, it suffered from

more significant economic and performance damages compared to the discrete policy. This was

attributed to the substantial warm-up time when users incurred costs for all the machines without

any performance enhancement. Furthermore, their analysis showcased the Yo-Yo attack’s economic

efficiency, as it could inflict more damage per unit cost than a traditional DDoS attack. This eco-

nomic advantage makes the Yo-Yo attack appealing to potential attackers, especially considering

the real-world implications of renting botnets for such assaults. The study’s experimental results,

especially those related to the adaptive policy, indicated that the Yo-Yo attack could deploy twice

the number of machines at half the cost of a DDoS attack, emphasizing the critical need for robust

defense strategies against such sophisticated threats [15, 18]. Building on the previous insights pro-

vided in [12, 17], the authors in [19] present an innovative approach to mitigate the Yo-Yo attack in

cloud auto-scaling mechanisms. They introduce the TASD system, which leverages the trust values

of users to identify adversarial users. Utilizing the CloudSim toolkit for their experimental evalua-

tions, the results indicate that TASD can detect up to 80% of malicious requests with a false positive

rate of only 6.7%. Furthermore, TASD effectively disrupts the cyclical nature of the attacker’s re-

sponse time, making it challenging for attackers to infer the state of the auto-scaling mechanism

through probe packets. The system’s efficiency is further underscored by its ability to reduce the

number of attacks by 38% and decrease scale-ups by 41%. However, the authors also highlight a

trade-off: while higher trust value thresholds can reduce the number of attacks, they can also lead

to a higher false positive rate. This paper’s findings underscore the potential of trust-based systems

like TASD in defending against sophisticated Yo-Yo attacks, complementing the earlier works by

offering a tangible solution to a previously identified vulnerability.

Expanding upon the foundational understanding of Yo-Yo attacks, the study presented in [20]

offers a comprehensive exploration of the Trust-based Adversarial Scanner Delaying (TASD) sys-

tem in a natural cloud production environment, specifically Amazon Web Services (AWS). The

original TASD system, as introduced in [21], utilized an additive decrease method to update trust

values dynamically. Drawing inspiration from TCP rate control mechanisms, the authors introduced
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two optimized methods: ADAI (Additive Decrease/Additive Increase) and MDAI (Multiplicative

Decrease/Additive Increase). These methods aim to enhance the TASD system’s detection and

mitigation capabilities. The paper demonstrates through a series of experiments that the proposed

TASD variants can effectively identify and counteract Yo-Yo attacks in real cloud applications. The

results emphasize the system’s ability to stabilize instance scaling after detecting an attack, ensur-

ing consistent service delivery and minimizing the oscillatory effects of the Yo-Yo attack. However,

it is noteworthy that this work primarily focuses on a singular type of exploitation of the cloud’s

auto-scaling vulnerability and does not encompass various Yo-Yo attacking strategies, signifying

the need for more comprehensive solutions, such as those presented in our research.

2.2 Game-Theoretic Approaches for Cloud’s Security Applications

Building upon the foundational studies on the vulnerabilities of cloud auto-scaling systems,

in [22] the writer introduced a sophisticated detection and defense mechanism tailored for cloud-

based systems. Their approach is anchored in a game-theoretical model, specifically a repeated

Bayesian Stackelberg game. This model is designed to address multi-type attacks in the cloud.

The authors proposed a multi-phased strategy: (1) a risk assessment framework to evaluate the risk

level of each guest Virtual Machine (VM); (2) a Moving Target Defense (MTD) mechanism that

intelligently migrates services from vulnerable VMs to more secure ones; (3) a machine learning

technique to identify attacker types using honeypot data; and (4) a resource-aware Bayesian Stack-

elberg game to aid the hypervisor in determining the optimal detection load distribution strategy

among VMs [23]. Their experiments, conducted using Amazon’s data center, AWS honeypot [24]

data, and the CloudSim toolkit [25], demonstrated the efficacy of their solution in improving detec-

tion performance and minimizing attacked services. However, a critical observation is that while

their system might be adept at detecting and diverting potential threats to honeypots, it remains sus-

ceptible to some types of Economic Denial of Sustainability (EDoS) attacks, especially the Yo-Yo

attacks. The inherent challenge is that even if the Yo-Yo attackers are redirected to the honeypots,

the cloud provider still incurs financial costs. The Yo-Yo attackers, not necessarily aiming to access

crucial data, can still financially strain the cloud system. Running honeypots, while a deterrent, still
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requires financial resources for its infrastructure [26].

Given these observations, our work emerges as a more comprehensive solution against such

EDoS attacks. While [22] provides a robust foundation for detecting and diverting threats, our

approach is designed to detect and effectively counteract the financial implications of sophisticated

attacks like the Yo-Yo attack. Our model offers a more holistic defense mechanism, ensuring cloud

systems’ security and economic sustainability.

In [27], an optimal defense allocation strategy is presented, considering interdependencies, such

as assets under a single vendor. These interdependencies are represented through an interdepen-

dency graph. The model assumes attackers exploit these interdependencies to target high-value

assets. The game involves multiple defenders, each tasked with safeguarding a group of assets.

Each defender aims to reduce its potential losses, considering that attack probabilities on its assets

are influenced by its defense measures, other defenders’ actions, and the interdependency graph.

In [28], a game-theoretical framework is developed between an external threat and a network

of decoy nodes, structured in two phases. The initial phase examines the interactions between the

adversary and an individual decoy node. This phase focuses on the adversary’s attempts to (1)

discern the decoy node by analyzing node response timings and (2) detect discrepancies in protocol

implementations to distinguish between real and decoy nodes. The result of this phase determines

the duration an adversary needs to ascertain if a node is genuine or a decoy. The subsequent phase

formulates games where the adversary aims to identify genuine nodes within a mixed network of

real and decoy nodes. This phase’s outcome suggests the system’s best strategy to shuffle the IP

address space, making it challenging for the adversary to pinpoint actual nodes.
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Chapter 3

Game Theoretic Problem Modelling

Formulation

3.1 Model Components

3.1.1 Model Overview

Two significant roles are on each side of this game: the cloud provider and the cloud’s users.

On one side is the cloud provider, a business entity aiming to deliver infrastructure services for

profit. This player seeks to maximize efficiency, finding the delicate balance between cost-saving

enforcement and the necessity of maintaining user satisfaction. The ultimate goal of the cloud

provider is to accumulate benefits over time, building a sustainable and profitable business model.

On the other side are the users, who seek reliable services with minimal latency and errors.

They are the final consumers of the cloud provider’s services, and their satisfaction is paramount to

its success. Between the cloud provider and the final users, there might be middlemen, also known

as the cloud’s customers. They are the service providers that utilize cloud infrastructure to present

their services to the end users. The security measures in the interaction between the cloud and the

attacker are not directly related to the service running on the cloud servers. However, instead, they

relate to the auto-scaling criteria set by these middleman services.
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Finally, a potential malicious group exists among the users, acting as a major periodic Dis-

tributed Denial-of-Service (DDoS) attack, also known as the Yo-Yo attack or a Reduction of Quality

(RoQ) attack. An analogy could be drawn here between the Yo-Yo attack and a tumor in a living

organism. The cloud provider acts as the body, and the attacker bots (the individual elements of the

Yo-Yo attack) are like tumor cells feeding off the body. These bots exploit the cloud’s resources and

disrupt its operations, much like how tumor cells invade and impair bodily functions.

With these elements in place, the stage is set for a dynamic game of strategies and counter-

strategies, with the cloud provider continually seeking ways to protect its infrastructure and ensure

service quality. The attackers perpetually search for vulnerabilities to exploit. This game’s end goal

for the cloud provider is to maintain its service integrity while maximizing user satisfaction and

profitability.

3.1.2 The Cloud

The first player is the cloud provider, which we refer to as the cloud. The cloud can monitor

specific activity metrics from its active users to ensure any malicious Yo-Yo attacker is not exploiting

the servers. By saying cloud, we assume it is an entity that can analyze the users’ activity metrics

such as CPU utilization, in/out network traffic in bytes, disk read/write in bytes or operations, etc.,

and decide if blocking specific user bots due to their repeated malicious activities, especially during

the critical times helps to enhance the overall security of the servers.

Decision-making in the cloud can be done by its brain, load balancer, VM manager, etc. We

mean the ‘Cloud’ as one entity with every ability and authority necessary to make decisions and

act on its scaling strategies, monitor and analyze users’ activities metrics, block malicious users,

implement defense strategy mechanisms, move data among VMs, etc.

We observe this game through the eyes of a cloud provider who tries to pick an optimum defense

strategy that idealistically can help it gain maximum profit by providing the highest and fastest

quality of service to the normal users, which results in growth in their satisfaction ratings, the

number of customers, and their daily average usage time and overall more accumulated benefit from

users for them. At the same time, the cloud wants to minimize the costs resulting from unnecessary

scale-ups caused by malicious Yo-Yo attacker bot activities. Over time, it wants to block the users
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that it finds malicious, acting as the Yo-Yo attacking bots. However, the defense and blocking

against the Yo-Yo attackers also have associated costs that the cloud seeks to minimize as much as

possible to have maximum profit while maintaining the safety of the servers against Yo-Yo attacks.

The cloud aims to isolate/block the malicious users that act as Yo-Yo attacker bots from mingling

with normal users to help maintain providing a consistent, safe service to the legit normal users and

minimize attack damage costs.

The goal of the cloud provider in our model is to maximize its profit by obtaining the financial

benefit that each user delivers to the cloud by maximizing the detection and blocking of these mali-

cious user bots while maintaining maximum accuracy and minimum error. The success in achieving

this goal results in minimizing unnecessary Scaling costs and subsequently, maximizing the profit

(payoff) of the cloud.

3.1.3 The Users

On the other side of the game, there are cloud users who want to use a desirable cloud ser-

vice [29] with minimum response latency and connection problems from the servers together at a

reasonable price. The cloud provides its users with services to obtain their financial benefit for its

profit. This benefit can be derived from different sources; it can come from advertising, subscrip-

tions, etc., or it can come directly from the service provider’s funds. In any way, the aim is to show

that to make the game model work, there must be a benefit incentive for the cloud to be provided to

the users.

This benefit is a function of users’ value for the cloud provider and is not necessarily equal for

all users. For services that work with a pay-as-you-go model or show ads to users, the more a user

uses the services, the more benefit goes to the cloud. Other factors like geographical location can

also determine the benefit amount from each user. For, displaying ads to YouTube users in a higher

GDP country is likely to be more costly than in those low GDP countries. Overall, the benefit of a

user for the cloud is directly related to the amount of money that the user can eventually generate

for the cloud provider by using the running service on those cloud servers. At the end of the day,

the cloud wants to make the maximum profit, which means that the higher the users accumulated

benefits than their costs, the better for the cloud.
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Between the cloud provider and the final user, other joints might also be involved as middlemen.

By middleman, we mean any online service, e.g., websites, phone applications, software, etc., that

uses cloud infrastructure to host services to the end users. However, the interaction between the

attacker and the cloud is unrelated to the service running on the cloud servers. Still, It is directly

related to cloud auto-scaling criteria. The Yo-Yo attack and, in general, the EDoS attacks are fo-

cused on the auto-scaling feature vulnerability related to the cloud management algorithms. These

are either defaulted by the cloud’s underlying managing algorithms or can be adjusted within the

allowed corresponding threshold range during the overload and underload periods by the cloud cus-

tomer (middleman). In a nutshell, we mean the cloud customer as the service that implements cloud

infrastructure to present its service to the end users.

3.1.4 The Attackers within The Users

There is always a chance that a group within the users does suspicious or malicious coordinated

activities. Unlike conventional DDoS attacks in the cloud, where the impact can often be mitigated

by the considerable cost incurred by the attacker, the Yo-Yo attack offers a more cost-effective

disruption method, making it more challenging to track. The essence of a Yo-Yo attacker’s strategy

is exploiting the auto-scaling mechanism’s responsive nature and employing a cyclical pattern of

activities designed to force the cloud system into futile cycles of server overload, scale-up, and

scale-down.

The Yo-Yo attack operates in two alternating phases. In the ’On-attack’ phase, the attacker

initiates a short burst of traffic through its bots significant enough to trigger the overload period

necessary for the auto-scaling mechanism, leading to a scale-up. This causes the cloud system to

allocate extra resources to handle the surge, resources that could be more beneficial as they are

engaged in processing bogus traffic. In the ’Off-attack’ phase, the attacker ceases sending excess

traffic, waiting for the system to identify the diminished demand and initiate a scale-down. And

repeat this process over and over.

The potency of the Yo-Yo attack lies in its iterative nature. As soon as the attacker identifies a

scale-down, they repeat the process, thus maintaining a constant strain on the system. The ability

of the attacker to discern the appropriate timing to switch between these two phases significantly
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influences the attack’s strength. By mastering this timing, an attacker could maximize the disruption

to the system while minimizing their own cost. In our model, we consider that the attacker can

access the scaling state of the cloud servers.

The cloud may detect its scaling state by sending probe packets to the cloud’s servers and an-

alyzing its response time. A longer than usual response time could hint that the servers are under

overload and are in the period right before a scale-up. A shorter-than-usual response time can ad-

dress the attacker that the cloud is already scaled up. However, because there is no real need for that

excess computation capacity, the cloud is before an expected scale-down is triggered. Moreover,

the default scaling criteria of the cloud providers, which can be visible to every cloud customer, can

help the attackers figure out the exact scaling state of the cloud.

This manipulation pattern of the Yo-Yo attack essentially exploits the cloud system into paying

for unproductive resources, creating an avenue for financial drain alongside performance disruption

for the cloud’s customers (middlemen). It exemplifies how system features intended for efficiency

can, under malicious intent, be reoriented into vulnerabilities. Thus, it is of paramount importance

for the cloud to incorporate robust safeguards against such exploitative attacks within the auto-

scaling mechanism.

Suppose a cloud provider business bleeds much cash due to the financial damage of paying

for unnecessary extra server scale-ups. In that case, it results in increasing the overall price of the

cloud for their customers. And thus decreasing the satisfaction of the general customers in the end.

That explains the motivation of the cloud provider to block the users with malicious behaviors that

contribute to a Yo-Yo attack.

3.1.5 Attacking Brains

As mentioned above, each Yo-Yo attack consists of periodic particles of DDoS attacks, which

inherently means that the Yo-Yo attack is done through multiple malicious bots oriented to sabotage

the host’s servers, similar to DDoS. However, this time, it uses DDoS to force Yo-Yo attacks with the

maximum attack potency, maximizing the damage while minimizing the costs. So, although there

might be many users (either malicious bots or manipulated exploited machines from reasons such

as IoT Internet of Things) contributing to a Yo-Yo attack, the cloud wants to detect the significant
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strategies that lead those attacker bots.

This herd behavior nature of the Yo-Yo attacker bots leads us to understand the fact that in

order to detect and stop Yo-Yo attackers, the cloud is required to analyze and detect the attacking

brains behind each flock of attacker bots that lead a group of coordinated attacker bots, instead of

studying each user bot individually. As the computation load of a single user is never enough to

cause overload on the servers. However, it is a group of users that become capable of overloading

the servers.

From now on, when we say attacker, we mean an attacking brain. Each of the attacking brains

may have its unique attacking type and strategies to maximize their damage through exploiting the

auto-scaling feature of the cloud while minimizing their effort and, as a result, their attacking cost.

There might be more than one Yo-Yo attacking brain, simultaneously forcing Yo-Yo attacks to the

cloud through their own attacker bots.

Some users might have malicious volitions that act as particles of a major periodic Distributed

Denial-of-Service (DDoS) attack or a Reduction of Quality (RoQ) attack. There are different types

of attackers ( users ) because each attacking brain can perceive the cloud’s scaling state. Neverthe-

less, all the attacker bots controlled by an attacking brain are the same types within their group.

3.2 Proposed System Formulation

3.2.1 System Overview

The two main parties of our model formulation are the cloud and the users.

Main 2 Sides =















Cloud Provider

Cloud Users

The set of users U = {u1, u2, . . . , un} consists of all the users using a specific service on the cloud’s

servers. Each ith user is named ui where i comes from the index set for users IU = {1, . . . , n}, thus

henceforward |U | = n.

On the other side of this model is the cloud provider, whose aim is to serve these users to gain
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financial benefits for itself. These users are either normal or malicious.

Cloud′s Users =















Normal

Malicious (Y o− Y o Attacker Bots)

The normal ones are actual human users who are actually using that service fairly on the cloud

servers in order to serve their own interests (e.g., Entertainment, Communication, Business, etc.).

The behavior of normal users is typically not in a particular repetitive harmonized pattern with other

users.

The malicious users, on the other hand, are malicious attacker user bots who aim to perform a

certain cyclic usage behavior to minimize being detected as malicious bots by the cloud’s security

module and at the same time, contribute to a coordinated distributed attack that, aims to force

damage to the cloud in both performance and economic manners. This group of malicious attacker

bots stealthily contributes to exploiting the auto-scaling mechanism of the cloud, and we call them

the Yo-Yo attackers. These bots are in the set of A = {a1, a2, . . . , am}, and as mentioned, the

attacker bots set itself is a subset of the users set (A ⊆ U ). Therefore, it is obvious that m ≤ n. The

naming of the attacker aj comes from its index set IA = {1, . . . ,m}, henceforth |A| = m.

After initial verification, at the beginning of the game, the cloud assumes all its users are normal.

When the game starts, the cloud monitors all the required users’ activity metrics. A user’s status re-

mains normal unless it shows suspicious behavior while using the service, making the cloud change

its status from normal to suspicious or malicious. The cloud analyzes users’ necessary required

connection metrics to determine if each user is normal or if it is necessary to change its label from

normal to suspicious or from suspicious to malicious to prevent any upcoming security risks caused

by those users. All the users, including the attacker bots, are actively using the services provided

by the cloud. The goal of the cloud is to set strategic security measurements to identify and defend

against all malicious bots that hide within normal users by tracking and analyzing certain network

parameters of the users and blocking the access of bad actors over time.

On the other side, the attacker tries to satisfy his goals. Based on its attacking brain’s type

and strategy, it tries to enforce maximum performance and economic damages to the cloud while
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keeping minimal activity to minimize the attacking costs and the probability of being caught and

blocked. There are different ways for the Yo-Yo attacker to access the cloud’s scaling data with

different accuracy. To make this paper more compelling and to consider the most complicated sit-

uation, we assume that the Yo-Yo attacker may be able to find the auto-scaling state information

accurately. In order to define each player’s payoff functions in a realistic manner that properly illus-

trates both the profit-maximizing and seeking to minimize incurred damages cost natures of each of

the players simultaneously, we need to explain their individual motivations and fears numerically

so that it helps us in higher accuracy decision making.

3.2.2 The Cloud’s Motivation

As we mentioned before, the motivation of the cloud is to collect maximum individual benefits

from each user by providing services to them. The individual benefit bi(vi) for each user is a

function of that user’s revenue value vi that it brings to the cloud. The value of each user vi is

determined by their location, interests, age, activity amount rate, etc., and generally, any element

that can affect the derived revenue targeted from each user.

The user’s value metric elements definition could vary based on the type of service running

on the cloud. Generally, every element that can affect the ad revenue targeted for each user can

contribute to its revenue value. For instance, a streaming service could determine the user’s value

by location, directly affecting their ad rates, number of views, retention rates, etc. To simplify

the problem, we will use numerical values for bi(vi) and use bi instead, so time remains the only

primary variable in our model.

On the other side of the cloud provider collecting benefits from its users, there are also associated

costs. The first cost that comes to mind is the default required costs from running the infrastructure

to serve the users. The user i’s server consumption cost at time t is determined by the total amount

of computational load occupying the cloud’s servers. This computational load mainly comes from

the summation of lui
(t), the user i’s computation load on the server at time t, together with lci

the initial default constant computation load necessary for each user in order to be able to use the
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servers. So the user i’s server cost at time t can be defined as below:

csi(t) = (lui
(t) + lci)CM

where CM is the unit server’s cost. We consider time as a discrete value in our calculations.

The second and third costs only appear when a Yo-Yo attack can effectively cause an unnec-

essary scale-up or a temporary server overload. The attacker imposes the economic damage cost

when it successfully causes an unnecessary scale-up. When every scale-up happens, it takes time

for the cloud’s auto-scaling mechanism to trigger the scale-down mechanism; however, the cloud

still needs to pay for the extra servers during the scale-up periods.

We can formulate the user i’s scale-up economic damage cost contribution at time t as:

cei(t) =
(TupCupLup
∑

k∈Iup
lk

)

lui
(t)

This function shows how much each individual user contributes to imposing the unnecessary scale-

up cost to the cloud. When a scale-up happens, only the users that have been active during the

scale-up thresholds are responsible for the cei(t). Iup indicates the active set of active users while

the scale-up happened.

The economic damage cost functions show the proportion of the imposed computation load the

contribution of each user li from the set of users Iup during that scale-up to the sum of computation

loads on the server of the active users while scale-up (
∑

k∈Iup
lk). Cup is the unit cost of each

scale-up, Tup indicates the total time of scale-up periods, and Lup is the added computation load

amount after scale-up. if Lup = 0, then cei(t) = 0. The last cost for the cloud appears exactly

before each scale-up process. It goes back to the main reason why a scale-up happens in the first

place. r(t) = rt is the response time from the server to the user for a data packet sent at the moment

t.

When the initial computation load experiences a huge data burst that fully occupies its capacity,

the users on that server at that time experience a higher response time, resulting in dissatisfaction.

This dissatisfaction shows itself in the model as an unwanted cost that negatively affects the total

profit. When the response time is in the normal range for the users, the performance damage cost
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is ineffective (equal to 0). It only appears when the users’ response time is more significant than

average.

The user i’s performance damage can be shown below. L refers to the leader of this game, which

we will discuss later:

cpi(t) =















0 0 ≤ rt ≤ ravg

ln( rt
ravg

csi) rt ≥ ravg

ravg is the average response time of the server to the users which is seen when the servers are in a

stable condition.

As mentioned above, a cloud’s server response time rt illustrates how long it takes for cloud

computers to render and respond to the user input data. The amount of response time is related to

how much starvation the cloud has for CPU and memory resources, routing, etc. This hints at the

fact that when the active servers are under an overload period, it takes time for the predetermined

scale-up activation thresholds to trigger. During this waiting period, the users experience higher

than normal rt due to the significant processing load on the servers. This resource starvation period

is the cause of the performance damage cost to the cloud.

3.2.3 The Attacker’s Motivation

As done for the cloud, we also need to define the gain and loss characteristics for the attacker,

which enable us to write a proper profit function. We want to take a slightly different approach

to define the motivation and fear elements of the attacker. Because we look at this game through

the eyes of the cloud, formulating accurate numeric representations of the gaining motivation and

the fear of loss from an attacker is unknown to us. However, through observing the behaviors of

different Yo-Yo attacking strategies, we define the variables equipped in a way that parametrically

enables the attacker to determine a specific balance of how an attacker prioritizes economic versus

performance damage, How many bots it employs in each attack, how powerful the computation

overload damage capability of each bot is, and how powerful the attacker wants its Yo-Yo attack to

be.

Prioritizing economic damage over performance damage means that the attacking brain engages
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its bots in a strategy that forces as many unnecessary scale-ups as possible. This means that it

pushes the bogus traffic by its attacker bots right enough to force an overload on the existing active

server’s VMs, triggering an unneeded scale-up. Once the scale-up process has been completed and

extra servers become online, it is best for an attacking brain with this strategy prioritization [12]

to immediately stop the attack and wait till the time threshold for the scale-down to regular VM

capacity triggers. After the attacking brain notices the scale-down process is being completed, It

repeats the above process.

On the other hand, when an attacking brain prioritizes performance damage over economic dam-

age, it exploits the increased response time rt caused during the overload period before the scale-up

process is triggered, it attempts to employ its attacker bots to cause maximum user dissatisfaction

by creating these fake periodic overload periods for the cloud’s users or even block their access for

few moments. The primary purpose for an attacking brain with the above strategy prioritization is to

force enough bogus traffic to induce a server overload, but long only to a limit that the bombarding

traffic does not trigger the scale-up process in order to keep the servers under the maximum overload

time possible while keeping the numbers of servers steady. This requires the attacking brain to have

precise live knowledge of the scaling state of the cloud’s servers.

In another condition, the rational option for an attacking brain is to adjust hybrid custom damage

prioritization for both of these priorities based on its strategy and type. To the best of our knowledge,

this is the first work that introduces a model that gives freedom to a Yo-Yo attacker to switch between

prioritizing different aspects of periodic Yo-Yo attack damages. Also, it is the first work considering

different types of Yo-Yo attackers.

A simple version of the proposed profit function for the Yo-Yo attacker is presented as below,

where we assume the whole set of the attacker bots A = {a1, a2, . . . , am} is controlled by a single

attacking brain:

HA(t) = (TupVe + θ(t)Vp)− α
∑

aj∈A

paj (t)qaj

As shown above, the gain of the attacker TupVe + θ(t)Vp) is determined by how valuable each

of the performance damage and economic damage is for the attacking brain. This gain definition

provides the required freedom for the attacker to adjust its flexibility to be suitable to perform
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any spectrum of damaging strategies between valuing identifying economic damage more or the

performance damage.

We use Ve as an indicator value to show how much economic damage is prioritized for the

attacker. or simply, the economic damage value indicator for the attacker. In addition, Vp is the

indicator value to show how much performance damage is valued for the attacker. Alternatively,

how vital the performance damage value is for the attacker. θ(t) indicates the performance damage

success rate at time t (by receiving response time rt ), and α shows the attacking power rate.

The incurred costs element of the attacker (α
∑

aj∈A
paj (t)qaj ), is defined as more straightfor-

ward than the gain element. The attacking brain attacks through its multiple attacking user bots,

which can either be manipulated machines from other innocent people’s resources or can be bots

directly employed by the attacker to act as users on the service to damage it.

To illustrate how we calculate the attacker’s attacking cost, for each bot aj ∈ A we multiply

paj (t) the running load of jth bot on the cloud servers at time t (by receiving response time rt ) by

qaj , the running cost unit of jth bot on the cloud servers for each bot and the sum for all attacking

bots is the total attacking cost.

The summation of computing load times and its cost for all the attacker bots are limited by α

coefficient, as it is an indicator of how much of the attacking power of each attacker bot is in use.

In our model, we also assume that the attacker can learn from the environment and previously

observed cloud’s defensive reactions to its attacks constantly and consistently aim to improve its

strategy success efficiency. This helps attacking brains modify their attacking method to maximize

damage by constantly adjusting their valuation of the attacking damage priorities. This means it can

implement different strategies at different times based on the cloud’s state and the environment’s

parameters. The same weighted division could also be implemented in distributing attacker bots

into inflicting different attacking strategies.

Table 3.1: Table of Variables

Notation Interpretation

U Set of the users

Continued on following page
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Table 3.1, continued.

Notation Interpretation

ui The ith user

A Set of the attacker bots active among the users (A ⊆ U )

aj The jth attacker bot

IU Index set of users (IU = n)

IA Index set of attacker bots (IA = m)

vi or vi(t) Individual financial value of user i for the cloud (at time t)

bi(vi) Financial benefit of serving user i with the value vi for the cloud

csi(t) User i’s server cost at time t

lui
(t) User i’s computation load on the cloud’s server at time t

lci User i’s constant necessary initial load on the server

CM Cloud’s server’s unit cost

cei(t) User i’s economic damage at time t

Tup Total time of scale-up periods

Cup Scale-up Unit cost

Lup Added computation load capacity after scale-up

r(t) = rt Server’s response time to the user for a data packet sent at moment t

ravg Average response time of server to the users

cpi
(t) User i’s performance damage cost

HA(t) The profit function of the set of attacker bots A

V π
e Economic damage prioritization value for the attacker of type π

V π
p Performance damage prioritization value for the attacker of type π

θ(t) Performance damage succeed rate at time t (by receiving response time rt)

α Attacking power rate

paj
(t) Running load of jth bot on the cloud servers at time t (and receiving response time rt )

qaj
Running cost unit of the jth bot on the cloud servers

gLi (vi, t) Leader’s profit (Gain) function for each user i with value v(i)) at time t

Continued on following page
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Table 3.1, continued.

Notation Interpretation

gLi (t) Simplified leader’s profit (Gain) function for each user i at time t

ci(t) Accumulated costs of user i’s activity on the cloud’s server

GL(t) Leader’s total gain function at time t for serving all the users (∀ui ∈ U )

X Set of attacking brains

IX Index set of attacker bots (IX = w)

χπ
k The kth attacking rain of type π ∈ Π

Π Set of attacking brains’ types

π The type of a attacking brain (π ∈ Π)

Aχk
Set of attacking bots controlled by the the kth attacking brain χπ

k ∈ X

GL
χπ
k
(t) Leader’s gain function at time t for all the all the attacker bots controlled by χπ

k ∈ X

Hπ
k (t) Profit function of the kth attacking brain χπ

k ∈ X of type π ∈ Π

UL
χπ
k

Leader’s utility function by dealing with the attacking brain χπ
k ∈ X

UF
χπ
k

Follower’s utility function of type π ∈ Π

dL Leader’s profit discount factor

dF Follower’s profit discount factor

fj A vector of the attacking brain’s pure strategies (Follower’s policy)

li A vector of the cloud’s pure strategies (Leader’s policy)

F Index set of the follower’s pure strategies (Follower’s policy set)

L Index set of the leader’s pure strategies (Leader’s policy set)

3.3 The Game Model

Now that we have defined the required elements of gains and losses for both sides of the game,

we can define their profit functions, leading us to write their utility functions. Eventually, we want

these functions defined to utilize them in modeling this problem as a Repeated Dynamic Stackelberg

Bayesian game model.

The preliminary aspect of a Stackelberg game is knowing the leader who first picks its best strategy,

28



and based on that, the follower aims to best respond to the leader’s strategy. In this game, the cloud

provider is the leader who first decides its defense strategy against the attacker, knowing that the

attacker, as the follower, will try to best respond to it. attacker means an attacking brain capable of

dictating the attacking strategy to its multiple attacker bots.

Players =















Cloud ( Leader)

Attacker ( Follower)

3.3.1 Leader’s Accumulated Profit

From what we discussed in the previous section, we can write the leader’s profit function in

interaction with the individual user ui ∈ U by subtracting the costs of providing services to ui from

the gains it brings to the cloud:

gLi (vi, t) = bi(vi)− (cpi(t) + csi(t) + cei(t))

By using ci(t) as the accumulated costs of the user i’s activity on the cloud’s server (ci(t) = cpi(t)+

csi(t) + cei(t)) we can simply write:

gLi (vi, t) = bi(vi)− ci(t)

To simplify this function for calculation, we’ll assume bi(vi) as a constant, not a variable (bi(vi) =

bi), so by having t as the only variable remaining, we have:

=⇒ gLi (t) = bi − ci(t)

We also always assume that the leader cannot make a loss by providing services to a user, so always

bi ≥ ci(t), ∀t. As mentioned, the cloud is not playing this game against a single attacker bot.

However, it plays it with an attacking brain controlling multiple attacker bots. This gives us the

necessity to redefine the leader’s profit function for interacting with an accumulated number of
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users. So the leader’s total gain Function at time t for serving all the users (∀ui ∈ U ) is:

GL(t) =
n
∑

i=1

gLi (t)

For calculation purposes, we can rewrite the above as:

=⇒ GL(t) =
n
∑

i=1

(bi − ci(t)) = nbi −
n
∑

i=1

(ci(t))

3.3.2 Yo-Yo Attacking Brain

A Yo-Yo attacking brain of type π ∈ Π is essentially an online or offline software that actively

or passively controls a potentially large cluster of user attacker bots as a subset of A. There might be

multiple attacking brains with their own types leading their cluster of attacker bots simultaneously

to damage the cloud customers financially. The set of attacking brains is shown below:

X = {χ1, χ2, . . . , χw}

We can write the index set of attacking brains as IX = {1, . . . , w}, and as a result we can say

|X| = w.

3.3.3 Attackers’ Types

As we illustrated earlier, each Yo-Yo attacker user bot is controlled by an attacking brain and is

a particle of a coordinated multi-bot periodic DDoS attack. Each attacking brain’s type determines

what type of Yo-Yo attacking strategy its bots use. So χπ
k is the kth attacking brain of type π ∈ Π

from the set X . The set of attacking bots controlled by the The kth attacking brain χπ
k ∈ X is shown

as Aχk
. Because we considered that each Yo-Yo attacker aj ∈ A is controlled by one, and only one

attacking brain χπ
k ∈ X , we can simply claim that:

A =

χk∈X
⋃

Aχk
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This means that all of the attacker bots involved in each Yo-Yo attack are controlled by one and only

one attacking brain of type π ∈ Π, or more mathematically accurately:

∀aj ∈ A, ∃χk ∈ X s.t. aj ∈ Aχk

3.3.4 Leader’s Utility Function

Now that we have defined the types for each attacker [)aj ∈ Aχk
⊆ A controlled by attacking

brain χk, we can define the game between the cloud as the leader facing the kth attacking brain with

type π ∈ Π that controls the set of attacker bots Aχk
as the follower of the game.

To write the leader’s gain function at time t in a game against the attacking brain χπ
k ∈ X that

controls the attackers of the set Aχk
, we have:

GL
χπ
k
(t) =

∑

az∈Aχk

gLaz(t)

To make it usable for calculation, we can write this as below:

=⇒ GL
χπ
k
(t) =

∑

az∈Aχk

(baz − caz(t)) = |Aχk
|baz −

∑

az∈Aχk

(caz(t))

After finding the gain (Profit) function of the leader, we use it to write the leader’s utility function

by dealing with the attacking brain χπ
k ∈ X:

UL
χπ
k
=

tcurrent
∑

t=0

dLG
L
χπ
k
(t)

dL = γtis a discount factor(0 < γ < 1) that multiplies the gain function in order for us to show

we prioritize weighting the most recent gains more than the older ones. In order to use the above

function for calculation, we simplify it:

UL
χπ
k
=

tcurrent
∑

t=0

∑

az∈Aχk

γ
1

t gaz(t) =⇒ UL
χπ
k
=

tcurrent
∑

t=0

∑

az∈Aχk

γ
1

t (baz − caz(t))
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3.3.5 Follower’s Utility Function

Previously, we defined the accumulated profit function for all attacker bots A. In this section, we

want to be more specific. Now we specifically write the profit function (Follower’s profit function)

for the kth attacking brain χπ
k ∈ X of type π ∈ Π, its profit function could be defined as:

Hπ
k (t) = (TupV

π
ek

+ θk(t)V
π
pk
)− αk

∑

az∈Aχk

paz(t)qaz

V π
ek

is the performance damage value for the attacker. In other words, it is an indicator value to

show how much causing performance damage is valued by the attacking bot χπ
k .

Similarly, V π
pk

indicates how much forcing Performance damage to the cloud is valued by the attack-

ing brain χπ
k ∈ X . Also for the kth attacking brain profit function, θk(t) represents its performance

damage success rate at time t (by receiving response time rt ), and αk is the attacking power rate.

In order to write the follower’s profit function, the expenses of performing such a multibot at-

tack are then deducted from its income value. To calculate the attacking cost for an attacking brain,

we multiply paj (t), the processing load of the jth attacker bot (aj)on the cloud servers at time t (by

receiving response time rt ), by qaj the running cost unit of the jth attacker bot on the cloud servers.

So, to write the attacking brain’s total expenses, we multiply the attacking power rate by The

summation of individual attacking costs for running all the attacker bots (
∑

az∈Aχk
paz(t)qaz ).

Now that we have fully explained the profit function for the attacker, we can write the follower’s

utility function as below:

UF
χπ
k
=

tcurrent
∑

t=0

dFH
π
k (t)

dF = µt is the discount factor (0 < µ < 1 ) used to put higher numerical priority on the most

recent profits than the older ones. For an easier calculation process, we simplify the above formula:

UF
χπ
k
=

tcurrent
∑

t=0

µtHπ
k (t) =⇒ UF

χπ
k
=

tcurrent
∑

t=0

µt
(

(TupV
π
ek

+ θk(t)V
π
pk
)− αk

∑

az∈Aχk

paz(t)qaz
)
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Now that we have shown both players’ utility functions, we can fully start implementing back-

ward induction to solve our Repeated Dynamic Stackelberg Bayesian game modeling of the Yo-Yo

attacks.

3.4 Assumptions

Centralized Cloud Entity: In our model, ªthe cloudº is conceptualized as a singular, cohesive

entity. It possesses comprehensive capabilities and authority, ensuring that all requisite decisions

related to scaling strategies, monitoring user activity metrics, imposing restrictions on malicious

entities, and orchestrating defense mechanisms are centralized. Such decision-making processes

can be delegated to components within the cloud, including but not limited to load balancers, virtual

machines (VMs), and other infrastructure components.

User Grouping and attacker brain Dynamics: Users exhibiting synchronous behavioral pat-

terns, especially during critical intervalsÐprecisely when the cloud server’s auto-scaling mecha-

nism threshold timer is about to be triggeredÐare categorized as the constituents of a singular at-

tacking entity termed as the ªattacking brainº. This brain operates as the strategic nucleus, guiding

the actions of its associated users, which we analogize as its ªsoldiersº.

Unique Attacker brain Typology: Distinctiveness among attacking brains is demarcated based

on their type. Should an attacking brain bifurcate its associated entities (bots) to execute varied

strategic profiles, each individual profile is regarded as a unique attacking brain. This abstraction

assigns each strategy profile its own distinct type and associated characteristics.

Attacker’s Scaling State Insight: We operate under the assumption that the attacker, regardless

of its sophistication or type, possesses the capacity to ascertain the precise scaling state of the cloud

servers at any given juncture. Furthermore, it can dynamically discern patterns within the cloud’s

scaling strategy, allowing it to adapt and recalibrate its offensive techniques in real-time.
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Chapter 4

Formulating Yo-Yo Attack as Repeated

Stackelberg Bayesian Security Game

Model

After thoroughly defining the game elements in the last chapter, we thoroughly write the Re-

peated Dynamic Stackelberg Bayesian security game modeling formulation of Yo-Yo attacks in this

chapter. After considering the follower’s best response to its implemented strategy, we implement

backward induction to find the leader’s optimal defense strategy for the cloud provider. Our final

goal in formulating this problem is finding the cloud’s optimal defense strategy against all Yo-Yo

attackers using backward induction.

4.1 Repeated Dynamic Stackelberg Bayesian Security Game

Initially, we want to review our game model’s overall structure. First of all, our game is dy-

namic. By dynamic, we mean that both players can make optimal decisions after following and

analyzing each other’s actions. Also, by the definition we provided for our game environment,

we can see that the interaction between the players is intrinsically dynamic. Because the attacker

actively observes the scaling state of the cloud’s servers and picks the optimal attacking strategy

accordingly to enforce the maximum damage to the leader, and on the other side, the cloud as the
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leader is actively watching all the users’ activity patterns and implements security measurements to

find out and block any suspicious activity by the users. As we see in the mathematical formulation

of this problem, we can notice that this model is a singular one-off game that repeats over time. In

each iteration of this game, the players can investigate the outcomes they have already observed and

learned from their opponent and then adjust their parameters to get a better outcome when playing

next time.

Secondly, This game is Stackelberg. This comes from the fact that there is inherently a sequen-

tial nature in the decision-making process of this game. This means that the attacker launches a

successful Yo-Yo attack, most likely after it is informed about the scaling state of the cloud. This

eventuates that in this game, the cloud as the leader is first executes its defense and scaling strategy,

and based on these policies, the attacker as the follower observes it and, based on that, picks the

best response strategy.

Thirdly, this game is Bayesian. to have a more accurate and practical formulation of this prob-

lem, we consider the fact that we previously explained how different the inference of different

attacking Brains from the auto-scaling state of the cloud can be. Considering freedom for defining

different attackers’ types in our formulation gives our model more credibility as it enables the cloud

to detect and defend against a broader spectrum of periodic attacks that focus on the auto-scaling

vulnerability of the cloud. Also, it keeps the doors open for the leader to add any new type of Yo-Yo

attacks that have not been previously observed and then define it as a new type of attacker in the

attacking types set.

4.2 Players Policies

4.2.1 Leader’s Policy Set

In practice, for every user active on the cloud’s servers, the cloud can offer different behaviors

versus its users. If the cloud thinks a user is normal, it keeps the user’s connection to the servers

intact. However, if the cloud thinks a user is malicious, it immediately blocks that user’s access

to the servers. In other conditions, if the cloud is suspicious of a user and is not sure if the user

is legit or malicious, it considers it as a suspicious user and can either make that user pass further
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authentication methods like CAPTCHA, etc., or it can put suspicious users in a honeypot in order to

learn their behavior patterns more specifically by manipulating their response time to disrupt their

attacking mechanism and then observe those users reaction to those disruptions. The leader’s pure

policy set is shown below:

Leader′s Strategies =































OK to go (Normal Users)

Inject delay or I ′mNot Robot test (Suspicious Users)

Block (Malicious/Bad Users)

4.2.2 Follower’s Policy Set

On the other hand, the attacking Brain, as the follower in the game, chooses its action from its

strategy set. Based on the follower’s perception of the cloud’s scaling state and its attacking type and

strategies, the attacking Brain decides whether to attack the cloud or not attack it. The follower’s

pure policy set is shown below:

Follower′s Strategies =















Attack

No Attack

Now that we have figured out the leader’s and follower’s pure strategies individually, we can

discuss finding the cloud’s optimal solution using the backward Induction.

4.3 Backward Induction

We analyze optimal strategies for both the cloud provider and the attacking brains through

the lens of backward induction. We commence by defining the attackers’ optimal response to a

given, fixed strategy of the cloud provider. This response is subsequently integrated into the cloud

provider’s optimization problem, guiding it toward its optimal detection and interdiction strategies.

This suggests that the cloud provider projects the attacking brain’s optimal responses to its

observed defensive maneuvers. This projection is incorporated into its optimization problem to
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dictate the ideal detection strategy.

Consider L and F as index sets signifying the pure strategies of the cloud provider (Leader)

and the attacking brain (Follower), respectively. Let l symbolize a vector of the cloud provider’s

pure strategies (Leader’s policy), and f signifies a vector of the attacking brains’ pure strategies

(Follower’s policy). In this context, li demonstrates the frequency of the leader deploying pure

strategy i from its policy set, indicating how the cloud provider interacts with each user (providing

a standard service, blocking, inducing delay, CAPTCHA verification, etc.). Similarly, fj delineates

the frequency of the attacking brain pure strategy j from its policy set, thus portraying whether an

attack is launched or deferred at the time t.

4.3.1 Follower’s Optimization Problem

First, let us fix the leader’s policy to a particular policy l. When the follower observes the

leader’s vector of pure strategy l, in order to best respond to l, it needs to solve the following linear

programming optimization problem:

Having fixed the leader’s (cloud provider’s) policy to a specific strategy denoted as l, the follower

(attacking brain), upon observing this strategy vector l, has to respond optimally. To facilitate this,

the follower must solve the subsequent linear programming optimization problem:

max
∑

j∈F

∑

i∈L

UF
ij fjliS.t.

∑

j∈F

fj = 1fj ∈ [0, 1], ∀j ∈ F

In this scenario, the attacker’s best response fj(l), given the known fixed strategy l of the cloud

provider [30], should result in a non-negative utility for the attacker. The constraint encapsulates

this:

fj ×
∑

i∈L

UF
ij × li ≥ 0, ∀j ∈ F

Furthermore, fj(l) being the best response, any deviation (1− fj) would imply a utility loss for

the attacker. Hence, the constraint below is also required:

(1− fj)×
∑

i∈L

UF
ij × li ≤ 0, ∀j ∈ F
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The value fj encapsulates the attacker’s optimal pure strategy in response to the leader’s ob-

served strategy li. Consequently, fj can only be 0 or 1. If the best response fj equals 1, indicating

that the attacker opts to attack, the deviation from fj would be 0, yielding an attacker utility of 0. In-

tuitively, this means the attacking brain neither gains nor loses anything, as no attack was executed.

Alternatively, if the attacker’s best response fj is 0, the deviation from fj would be 1, implying

that the attacker chooses to attack. In this case, the attacker’s utility will be consistently negative,

symbolizing an unsuccessful attack due to detection by the cloud provider and the costs incurred to

initiate the attack.

4.3.2 Leader’s Optimization Problem

Let us move now to the leader’s side. The cloud provider, knowing that the attacking brain

will play its best response fj(l) to every leader’s strategy l, incorporates this knowledge into its

optimization problem to determine the solution l that maximizes its payoff. Thus, the cloud has to

solve the following problem:

max
∑

i∈L

∑

j∈F

UL
ijfj(l)li

S.t.
∑

i∈L

li = 1, li ∈ [0, 1], ∀i ∈ L

Switching perspectives to the cloud provider, it considers that the attacking brain will execute

its optimal response fj(l) to each of its strategies l. By integrating this knowledge into its own

optimization problem, the cloud provider determines the strategy l that yields the maximum payoff.

Thus, the provider must solve the following problem:

max
∑

i∈L

∑

j∈F

UL
ijfj(l)li

S.t.
∑

i∈L

li = 1, li ∈ [0, 1], ∀i ∈ L

This optimization problem allows the cloud provider to identify a strategy that maximizes its

payoff, considering the likely best responses from the attacking brain.
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4.4 Mixed-Integer Quadratic Programming (MIQP) Problem

Given any optimal mixed strategy fj(l), it logically follows that all pure strategies within its

support are also optimal. This can be proven simply via a contradiction argument. If we assume

there is a pure strategy within the support that is not optimal, then there exists another strategy that

can offer a higher utility. Nevertheless, this contradicts the premise that fj(l) was an optimal mixed

strategy since incorporating this new strategy would yield a higher utility. Subsequently, we can

focus on the attacking brain’s optimal pure strategies, which always exist, and represent them using

binary variables.

To further refine the cloud provider’s decision-making, we include the probability distribution

pπ pertaining to each type π ∈ Π of attackers into the cloud’s optimization problem. For instance,

suppose the types of Yo-Yo attackers are categorized into sophisticated, intermediate, and novice,

each with a distinct likelihood pπ of occurring. The cloud provider, aware of these probabilities,

can adjust its strategies accordingly. The following section will detail how the cloud provider can

practically compute pπ. With all this information at hand, the cloud provider’s problem evolves

into:

max
l,f

∑

π∈Π

∑

i∈L

∑

j∈F

pπUL,π
ij lif

π
j

S.t.
∑

i∈L

li = 1

∑

j∈F

fπ
j = 1, ∀π ∈ Π

(1− fπ
j )×

∑

i∈IL

UF
ij × li ≤ 0, ∀j ∈ F, π ∈ Π

fπ
j ×

∑

i∈IL

UF
ij × li ≥ 0, ∀j ∈ F, π ∈ Π

li ∈ [0, 1], ∀i ∈ L

fπ
j ∈ {0, 1}, ∀j ∈ F, π ∈ Π

The aforementioned maximization problem constitutes an integer program with a non-convex

quadratic objective. In this formulation, the first and sixth constraints enforce the feasibility of a
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mixed policy for the cloud provider. In contrast, the second, third, and seventh constraints ensure

a feasible pure strategy for the attacking brain. The fourth and fifth constraints guarantee the best

response fj(l) to be optimal for the attacker concerning utility gain. The sixth constraint also

dictates the attacking brain’s action vector to be a pure distribution over F .

4.5 Convert MIQP to a Mixed-Integer Linear Programming (MILP)

Problem

The final stage of this chapter involves transforming this Mixed-Integer Quadratic Programming

(MIQP) problem into a Mixed-Integer Linear Programming (MILP) problem. This is accomplished

by eliminating the nonlinearity of the objective function, which can be achieved by substituting the

value of li × fπ
j with a new variable zπij .

The product of the decision variables is removed from the objective function and replaced with

the new variables zπij , hence transforming the problem into a linear one. These new variables are

constrained to be between 0 and 1, consistent with the feasible range of the original decision vari-

ables.

Additionally, constraints are added to ensure that the new variables zπij accurately represent the

product of the original decision variables li and fπ
j . As a result, the problem preserves its original

meaning while eliminating the quadratic term from the objective function, rendering it a MILP

problem. Consequently, the revised MILP problem is as follows:

max
l,f

∑

π∈Π

∑

i∈L

∑

j∈F

pπUL,π
ij zπij

S.t.
∑

i∈L

∑

j∈F

zπij = 1, ∀π ∈ Π

fπ
j ≤

∑

i∈L

zπij ≤ 1, ∀j ∈ F, π ∈ Π

∑

j∈F

fπ
j = 1, ∀π ∈ Π
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(1− fπ
j )×

∑

i∈L

UF
ij × zπij ≤ 0, ∀j ∈ F, ∀π ∈ Π

fπ
j ×

∑

i∈L

UF
ij × zπij ≥ 0, ∀j ∈ F, ∀π ∈ Π

zπij ∈ [0, 1], ∀i ∈ L, j ∈ F, π ∈ Π

fπ
j ∈ {0, 1}, ∀j ∈ F, π ∈ Π

These steps effectively transform the original MIQP into an equivalent MILP, making it more

manageable and easier to solve while still respecting the initial conditions and constraints of the

original problem.

4.6 Learning-Based Attackers’ Type Recognition and Defense Mech-

anism

Previously, we delved into the intricacies of Yo-Yo attacks targeting cloud servers and devised

a framework modeled on the Repeated Dynamic Stackelberg Bayesian game. This analytical con-

struct can be deconstructed into three salient phases:

(1) Dynamic Bayesian Stackelberg Game: As elucidated in the preceding chapter, this phase

aims to determine the optimal probability distributions of the cloud’s strategic defense and

attack detection mechanisms in relation to each potential user or attacker action.

(2) Defense Module Mechanism: Triggered when an anomaly suggests a user might be under

the malignant influence of a Yo-Yo attacking brain, this phase endows the cloud manager

with a gamut of defensive strategies. Options range from outright blocking the suspected

user, routing them through CAPTCHA validations, inducing intentional lags in data packet

responses to disorient their understanding of the cloud’s scalability, and funneling them to-

wards honeypots to decode their attack modalities.

(3) Learning-Based Attackers’ Type Recognition: This phase underscores the essence of proac-

tive monitoring. By continually scrutinizing user activities, it aims to discern the nuances in

attackers’ reactions to varied response times. By collating and examining data regarding their
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malevolent strategies, the goal is to gain insights into the motivations and methodologies of

the attackers, mainly when governed by an attacking brain.

It is pivotal to understand that these phases are not static but iterate over each discrete time unit,

denoted as [t1, t2]. The amassed data undergoes rigorous analysis via a one-class SVM classifier

aimed at discerning the nature and taxonomy of Yo-Yo attackers, thereby enhancing our understand-

ing of their probability distributions. This invaluable intelligence subsequently informs the Dynamic

Bayesian Stackelberg game during the succeeding time unit (x+ 1), enabling recalibration and op-

timization of the Cloud’s strategy for detection load distribution. A pertinent caveat is the cyclical

nature of the Bayesian Stackelberg game, necessitating its repetition for every discrete-time window

unit. Instigating auxiliary phases hinges on the outputs derived from the game phase. To elucidate,

should no user be flagged as a potential threat during a specific time frame, the subsequent steps for

that particular duration become redundant.

In the ensuing sections, we shall delve deeper, offering a granular examination of each phase within

the Repeated Stackelberg game framework.

4.6.1 The Defense Mechanism Module

Central to our discussion is the defense Mechanism Module, a pivotal construct that epitomizes

the cloud’s defensive apparatus.

This module is summoned into action once a user is earmarked, ostensibly governed by a Yo-Yo

Attacking brain. The flexibility of our model is its hallmark. The cloud’s responses are not only

contingent upon the nature of the suspected attack. However, they are also tailored based on the

services it offers and the vulnerabilities it is susceptible to. This nuanced approach allows for a more

dynamic defense, catering to the specific vulnerabilities of different cloud services. For instance, a

cloud service dedicated to financial transactions may prioritize different defense mechanisms than

one hosting public web content.
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Stratified Defense Responses

(1) Blocking: Foremost in the arsenal is the straightforward act of barring access. Once a user

is unequivocally identified as a malevolent bot, the optimal recourse is immediate blocking,

safeguarding the cloud infrastructure from any impending harm.

(2) Verification Measures: When suspicion is cast but conclusive proof eludes, softer verifica-

tion tools are employed. CAPTCHA serves as a prime example. However, in an era where

authenticity is paramount, advanced measures, such as 2-factor authentication, become indis-

pensable. This could entail transmitting a one-time code to a user’s registered mobile number

or email, ensuring an additional layer of validation.

(3) Delay Injection: Tailored especially for countering the nuances of Yo-Yo attacks, delay in-

jections serve a dual purpose. They not only befuddle attackers, rendering them unable to

accurately gauge the cloud’s auto-scaling algorithm but also, when deployed within honey-

pots, help discern how these attackers recalibrate based on fluctuating response times.

(4) Honeypots: A sophisticated decoy, honeypots are deployed to lure attackers, affording an

observational vantage point to understand their modus operandi. Every interaction with a

honeypot is intrinsically unauthorized, rendering all traffic to it malicious. The objective is

clear: simulate an authentic environment, prompting attackers to reveal their strategies, thus

amassing invaluable intelligence.

To explain the differences between low-interaction vs. high-interaction Honeypots, The effi-

cacy of a honeypot is determined by its interaction level. Low-interaction honeypots offer limited

interaction, generally logging basic information about the attacker. Conversely, high-interaction

honeypots are more immersive, allowing attackers to engage with a seemingly genuine system.

Such an environment is ripe for studying diverse attack vectors, even those unanticipated.

Given our overarching aimÐto meticulously study attacker behavior to extrapolate probabil-

ity distributions over their typesÐthe choice of high-interaction honeypots is self-evident. Their

unbiased nature, making no preordained conjectures about attacker behavior, makes them adept at
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recording a spectrum of malicious endeavors, even those that veer off the beaten path. This empow-

ers us to not only document but also analyze a gamut of attack paradigms, including those hitherto

unknown.

4.6.2 Learning-Based Attackers’ Type Recognition

Post data accumulation via the defense Module’s honeypots, an astute classification method-

ology is requisite to dissect this data, aiming to deduce the probability distributions across varied

attacker profiles.

Our preference leans towards the one-class Support Vector Machine (SVM). Originally con-

ceived as an augmentation of the conventional binary SVM classifier [31], the one-class SVM de-

lineates itself with a unique approach. It seeks a hyperplane, which, in mathematical parlance, is

the decision boundary. This boundary judiciously distances the lion’s share of data points from the

origin, effectively labeling data points beyond this demarcation as anomalies or outliers. This ar-

chitecture equips the decision function with the acumen to appraise new data, discerning whether it

aligns with or diverges from a specific data pattern assimilated during its training epoch, a process

colloquially termed novelty detection.

Three pivotal observations undergird our inclination towards the one-class SVM:

(1) Unsupervised Nature: The one-class SVM, in its essence, is an unsupervised classifier. This

implies it operates without heavily relying on preliminary information or the need for pre-

tagged class labels in the dataset under scrutiny.

(2) Multifaceted Classification: Its innate ability to seamlessly handle multi-class data classi-

fication positions it as a prime choice for our conundrum, where the landscape is populated

with a diverse range of attacker archetypes.

(3) Novelty Detection Prowess: The one-class SVM’s core competency lies in its novelty detec-

tion. This trait empowers it to unearth nascent, uncharted attack vectors. The SVM gauges the

congruence or divergence of novel data concerning this ’normal’ dataset by contextualizing

established attack modalities as normative behavior. This capability is invaluable, especially

when the objective is to identify and combat emerging threats preemptively.
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Imagine a scenario wherein the classification system has previously discerned two distinct types

of attackers. Should a novel attacker manifest with attributes that diverge from the archetypes of

these pre-identified attacker types, this new manifestation would be interpreted as a nascent attack

variant, potentially imperiling the cloud system.

To elucidate this formally, let us define x = (x1, x2, . . . , xn) as the feature vector encapsulating

a myriad of attack attributes, such as source and destination IP addresses, employed protocols, host-

names, the geographical origin of the attack, among others, all collated by the honeypot apparatus.

The one-class SVM, in its crux, translates the classification conundrum into an objective function

minimization problem delineated as:
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ξi − ρ

s.t :

(ω.ϕ(xi)) ≥ ρ− ξi ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n

Here, n represents the training set’s magnitude, while ω and ρ correspond to the hyperplane’s

normal vector and bias term, respectively. The transformation function, symbolized by ϕ(.), and

facilitated by the kernel function, projects data into a more expansive dimensional ambit. The slack

variables, represented as (xii ∈ ξn, permit certain data instances to nestle within the margin, thereby

inoculating the SVM classifier against over-fitting in the face of noisy data. Of pivotal import is

the regularization parameter, υ, which informs the resultant solution’s contour by stipulating: (1)

a cap on outlier fractions and (2) a lower bound on the volume of training tuples functioning as

support vectors. Increasing υ engenders a more expansive soft margin, augmenting the likelihood

of training data breaching conventional borders. This problem can be astutely tackled by leveraging

the Lagrange multipliers technique, leading to the decision function f(x) materializing as:

f(x) = sgn((ω.ϕ(xi))− ρ) = sgn(

N
∑

i=1

αik(x, xi)− ρ)

Within this formulation, the kernel function k(x, xi) could adopt various forms, including linear,
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polynomial, Gaussian, or sigmoid, delineated as:

K(xj , xi) =


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xi, xj , linear

(γ.xi.xj + c)d, polynomial

exp(−γ.|xi − xj |
2), gaussian radial basis

tanh(γ.xi.xj + c), sigmoid

Gleaning insights from the classification outcome, the cloud calculates the probability pπ for

each attacker profile π ∈ Π, deduced as:

pπ =
Number of observations classified as ”π”

Total number of observations

In culmination, this intelligence is retrofitted into the Bayesian Stackelberg game (as expounded

in the preceding chapter), furnishing the game with updated probability distributions over attacker

types. This iterative feedback optimally refines the game’s detection load distribution across user

subsets.
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Chapter 5

Experimental Simulations and Results

Analysis

In this chapter, we delve into the experimental environment, methodologies, and the subsequent

results derived from our research. We aim to provide a comprehensive understanding of the perfor-

mance and implications of our proposed solution compared to the state-of-the-art Yo-Yo mitigation

systems. The experiments are designed in a way to show the different reactions of the AD, ADAI,

and MDAI TASD defense solutions compared to our mitigation technique solution while facing

three different types of Yo-Yo auto-scaling exploitation attack scenarios.

5.1 Simulation Experiment Setup

In this section, we will define every necessary element for creating the simulation environment.

We will discuss our experimental simulation setup hardware and software details, users’ quantity

and behavior, different attacker types, and their type’s probability distribution. Also, we discuss

the state-of-the-art Yo-Yo attack mitigation mechanisms. After that, we will define our mitigation

method. After discussing all the required knowledge. In the next section, we perform the experiment

simulations to analyze the effectiveness and advancements of our provided solution compared to the

most recent related works.
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5.1.1 Simulation Environment

In our pursuit to model and analyze the intricate dynamics of the different types of Yo-Yo at-

tacks on cloud systems using Bayesian Stackelberg game theory, it became imperative to devise a

bespoke simulation environment. This necessity stemmed from the inherent limitations of existing

platforms, such as AWS and CloudSim. While these environments offer robust features, they fall

short of offering the granular control and specific functionalities essential for our research. For

instance, AWS, despite its scalability [32, 33] and comprehensive infrastructure, restricts access to

critical monitoring and threshold adjustment capabilities necessary for our simulations. Similarly,

CloudSim, though widely used for cloud simulations, imposes constraints on defining auto-scaling

criteria, and its updates post-version 3.0.3 have lacked the consistency required for our advanced

modeling needs.

To effectively simulate the diverse range of Yo-Yo attack scenarios and test various defense

mechanisms, our team decided to develop our own cloud simulation environment using Python. This

approach allowed us to overcome the accessibility and functionality limitations encountered with

AWS and CloudSim. By custom-building our simulation environment, we achieved a dual objective:

We replicated the comprehensive feature set of these platforms while gaining the flexibility to tailor

every aspect of the simulation to our specific research needs. This included the ability to define

intricate detection mechanisms and auto-scaling features that are pivotal in modeling and mitigating

Yo-Yo attacks. Our environment, therefore, represents the best of both worlds ± combining the

robustness of AWS and CloudSim with the customized control and specificity required for our

cutting-edge research.

The decision to develop our own cloud client simulator in Python has been instrumental in ac-

curately replicating the cloud environment used in [20], but also with more sophisticated features

in hosting both the normal users and attackers simultaneously during the simulation. This unique

approach not only facilitates a more realistic simulation of cloud interactions but also allows for an

in-depth exploration of Yo-Yo attack dynamics under varied conditions. Our environment’s elastic-

ity and customizability enable us to meticulously monitor and adjust system parameters in real-time,

a capability crucial for understanding and countering these complex cyber threats. Consequently,
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our custom simulation environment stands as a testament to innovative problem-solving and is a

cornerstone in advancing the field of cloud security and game theory-based attack modeling.

5.1.2 Yo-Yo Attackers Types

Introducing 3 different Sample Attacker Types Strategies:

(a) Yo-Yo Attacker Type 1

This type of attacker is the most similar to all the previous works written about the yo-yo

attack. The attacker pushes a DDoS attack data burst. Once the attacker ensures the attack

has successfully forced a scale-up, it stops it and waits for the cloud to scale back down to its

default capacity. Then, the attacker does the same thing over and over. This type’s primary

focus is causing maximum oscillation in the server’s processing capacity to induce economic

and performance damages.

(b) Yo-Yo Attacker Type 2

This type of attacker’s primary focus is forcing maximum performance damage for the cloud;

however, causing a scale-up is not a priority for this type. This attacker type’s most desirable

attacking strategy is to push its attack force long enough to cause server overload but not too

long to trigger the overload interval. For example, suppose the cloud manager has set the

scaling criteria to trigger a scale-up process after two consistent minutes of utilization over

70%. In that case, the attacker of type 2 prefers to push maximum data burst but for a period

shorter than the 2-minute threshold (e.g., 1.9 min) in order to not trigger a scale-up and keep

the servers in an overload state, which results in the increased response time and maximum

dissatisfaction for the normal active users on the server and eventually a heavy performance

damage for the service provider. Once the scale-up threshold has restarted before triggering

the scale-up, The attacker does the same process again.

(c) Yo-Yo Attacker Type 3

This type, similar to type 2, takes a more radical approach to enforcing a yo-yo attack, but in

a different way. This type of attacker’s primary focus is forcing maximum economic damage
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on the cloud by making the cloud employ extra servers for the maximum amount of time.

This type’s primary focus is keeping the cloud’s server in the scale-up state for the maximum

duration. Nevertheless, once the first attack wave of the attacker type 3 triggered a scale-up,

waiting for the servers to scale down is not a priority for this type like it is for the type 1

attacker. This attacker type’s most desirable attacking strategy is to push its attack force long

enough to cause server scale-up. Once the scale-up occurs, the attacker stops attacking, but

this pause is not too long to trigger a scale-down. For example, suppose the cloud manager

has set the scaling criteria to trigger the scale-down process after two consistent minutes of

utilization below 30%. In that case, the attacker of type 3 prefers to stop push maximum data

burst but only waits for below the 2-minute threshold (e.g., 1.9 min) in order to not trigger a

scale-down and keep the servers in a scaled-up state, which results in increased scale-up time

and maximum costs for paying the extra unnecessary processing infrastructure. The attacker

does the same process over again.

5.1.3 The Probability Distribution over Attackers’ Types

5.1.4 State-of-the-Art Yo-Yo Attack Mitigation Approaches

Trust-based Adversarial Scanner Delaying (TASD) mechanisms are state-of-the-art approaches

specifically designed to detect and mitigate the Yo-Yo attacks.

The AD TASD offers a baseline defense with its straightforward trust value reduction approach,

ADAI TASD enhances this model by introducing dynamic trust value adjustment to reduce false

positives, and MDAI TASD builds upon these strategies by implementing a more aggressive re-

sponse to suspicious activities. Collectively, these mechanisms form a layered defense strategy,

ensuring robust security in cloud auto-scaling environments against sophisticated Yo-Yo attacks.

AD TASD

AD TASD (Additive Decrease Trust-based Adversarial Scanner Delaying) operates on each in-

stance of a web application within an auto-scaling group. As the system scales up, the distributed

TASD service on each new instance functions independently as a defense mechanism. It primarily
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focuses on detection and mitigation, where the attack detection module categorizes each user re-

quest. Suspicious requests are forwarded to a secondary auto-scaling group, where they encounter a

web service that imposes a two-second delay, or in the case of malicious requests, they are dropped.

The users marked as normal will be forwarded to the main auto-scaling module. Algorithms 1 and

2 show the pseudo-codes for detection and mitigation methods of AD TASD.

Algorithm 1 Pseudo code for the AD trust value detection Method

for each request r do

if the user u in request r is not in trust value db then

Add user u with default trust value Tinit to trust value db;

end if

if Auto-scaling in Scale-out then

Ni ← number of requests for each users;

S ← k users with top t request numbers;

end if

if Auto-scaling in Scale-in then

for each user ui in S do

N ′

i ← number of requests for ui;
if N ′ −N > M then

Update trust value of user ui : Ti = Ti − 1;

end if

end for

end if

end for

Algorithm 2 Pseudo code for the AD trust value mitigation method

for each request r do

if the trust value of request Ti < Tsuspicious then

Add user u to ALB forwarding rule;

end if

if the trust value of request Ti < Tmalicious then

Add deny rule for user u in VPC ACL;

end if

end for

ADAI TASD

ADAI TASD (Additive Decrease/Additive Increase Trust-based Adversarial Scanner Delaying)

addresses the false-positive error by dynamically updating the trust value of users. It increases the

trust value of a user after a certain interval, balancing between detecting malicious activities and
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avoiding mislabeling normal users. Compared to the AD method, the ADAI method aims to reduce

false positives by adapting to user behavior by offering a more nuanced approach to managing user

trust values. Algorithm 3 shows the pseudo code for the ADAI TASD method.

Algorithm 3 Pseudo code for the ADAI trust value mitigation method

for each request r do

if the trust value of request Ti < Tsuspicious then

if tforward of ui > trelease then

Update trust value of user ui : Ti = Ti + 1);

else

Add user s to ALB forwarding rule;

end if

end if

if the trust value of request Ti!‘Tmalicious then

if [)tblock of ui > trelease then

Update trust value of user ui : Ti = Ti + 1;

else

Add deny rule for ui in VPC ACL;

end if

end if

end for

MDAI TASD

MDAI TASD (Multiplicative Decrease/Additive Increase Trust-based Adversarial Scanner De-

laying) incorporates a multiplicative decrease in trust values, allowing for a more aggressive re-

sponse to potential threats. This method is effective in swiftly escalating defenses against suspi-

cious activities.. MDAI TASD’s strategy of combining a multiplicative decrease with an additive

increase ensures that the system can quickly respond to potential threats, while still allowing for

the rehabilitation of users who may have been falsely categorized as malicious. This dual approach

ensures that the system remains both secure and fair, adapting dynamically to the evolving patterns

of user behavior and potential threats. Algorithms 4 and 5 show the pseudo-codes for detection and

mitigation methods of the MDAI.
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Algorithm 4 Pseudo code for the MDAI trust value detection method

for each request r do

if the user u in request r is not in trust value db then

Add user u with default trust value Tinit to trust value db;

end if

if Auto-scaling in Scale-out then

Ni ← number of requests for each users;

S ← k users with top t request numbers;

end if

if Auto-scaling in Scale-in then

for each user ui in S do

N ′

i ← number of requests for ui;
if N ′ −N > M then

Update trust value of user ui : Ti = Ti × α ;

end if

end for

end if

end for

Algorithm 5 Pseudo code for the MDAI trust value mitigation method

for each request r do

if the trust value of request Ti < Tsuspicious then

if tforward of ui > trelease then

Update trust value of user ui : Ti = Ti + β ;

else

Add user s to ALB forwarding rule;

end if

if the trust value of request Ti!‘Tmalicious then

if tblock of ui > trelease then

Update trust value of user ui : Ti = Ti + β;

else

Add deny rule for ui in VPC ACL;

end if

end if

end if

end for
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5.1.5 Our Learning-Based Yo-Yo Mitigation Mechanism

In the preceding chapters, we established a theoretical framework for our Bayesian Stackelberg

game theory model, aimed at tackling Yo-Yo attacks in cloud computing environments. Our model

was meticulously designed to be applicable across a broad spectrum of cloud services. This chapter

delineates the simulation experiments conducted to validate and refine our proposed model, making

it not just versatile but also practically implementable.

Our provided mitigation solution commences with an intricate evaluation of data packets from

users. This evaluation is bifurcated into two sequential phases: Classification and Attackers Type

Recognition. Our defense mechanism begins by evaluating data packets received from each user.

It involves a meticulous process of user classification and behavior analysis to dynamically label

users as ºNormal,º ºSuspicious,º or ºMalicious.º This classification is crucial in identifying and

mitigating potential Yo-Yo attacks.

The mechanism labels each user based on their interaction history and activity patterns. Newly

added users or those with no prior suspicious activities are initially labeled as ºNormal.º The tran-

sition of a user’s label from ºNormalº to ºSuspiciousº and ultimately ºMaliciousº hinges on the

concept of critical Intervals. These intervals are defined as periods when the servers experience

overload or are on the verge of triggering a scale-down process due to underload.

The attacker’s type recognition phase is triggered only during every critical interval. At the end

of each critical interval, whether leading to a scale change or not, our method initiates the SVM

(Support Vector Machine) learning phase. Unlike the mentioned TASD methods, which update

users’ trust value only if that interval leads to a scale change. This phase analyzes user activity

metrics, identifying clusters of users exhibiting similar behavior patterns. Users within these clusters

are tagged as ºSuspicious,º yet allowed continued service access.

In subsequent critical intervals, if the SVM repeatedly identifies the same ºSuspiciousº users ex-

hibiting identical behavior, their label escalates to ºMalicious.º This transition leads to the blocking

of their access and the dropping of all their subsequent requests.

This method only gives a one-time chance to a suspicious user before being dropped.
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To refine the defense mechanism for mitigating Yo-Yo attacks and reduce the risk of false pos-

itives, adjustments can be made to provide more opportunities for users labeled as ºSuspiciousº to

demonstrate legitimate behavior. This can be achieved through two primary modifications: adjust-

ing the trust value calculation and selectively blocking users based on their level of suspicion.

In order to revise our approach for managing ºsuspiciousº users to decrease the risk of false

positives, we can utilize defining adjusting trust values, or we can use more customized selective

blocking of suspicious users.

Adjusting Trust Values: For all users initially labeled as ºNormal,º assign a trust value of 1.

After each critical interval, the cloud multiplies the trust value of these users by a discount factor

within the range (0,1).

If a user’s trust value falls below a predefined threshold, their access is blocked. This approach

allows users multiple chances to exhibit behavior before being labeled as ºMalicious.º

Selective Blocking of Suspicious Users: During critical intervals, the mechanism monitors the

activities of all users tagged as ºSuspicious.º Instead of blocking all suspicious users simultaneously,

the mechanism only blocks the top ’k’ most suspicious users.

The value of ’k’ is determined by the cloud operator, allowing for a more nuanced approach to

blocking users and further reducing false positives.

Algorithm 6 shows the pseudo-code of our suggested mechanism for the detection and mitiga-

tion of Yo-Yo attacks.

5.1.6 Simulation Parameters

Our simulation environment is designed to closely mimic real-world cloud server scenarios. It

features a cloud-based server that starts with a single instance, capable of handling 100 requests

per millisecond. This setup initially caters to 10 active normal users, whose combined request load

typically falls within the uncritical utilization range of 20-40%. To simulate attack scenarios, we

introduce DDoS and Yo-Yo attacks of type 1, 2, and 3, each executed by 10 attacker bots. These

bots are coordinated by an ’attacking brain’ which, crucially, has access to the server’s scaling state,

mirroring sophisticated real-world cyber-attacks.
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Algorithm 6 Pseudo code for our learning-based Yo-Yo mitigation mechanism

# Function to label a user

function LABELUSER(ip, activity, criticalInterval, svmModel)

if ip not in registeredUsers then

registeredUsers[ip] = ºlabelº: ºNormalº, ªtrustValueº: 1;

end if

if criticalInterval then

if registeredUsers[IP][ªlabelº] == ªNormalº then

# SVM learning phase;

clusterLabel = svmModel.analyzeUserBehavior(activity)

if clusterLabel == ªSuspiciousº then

registeredUsers[ip][ªlabelº] = ªSuspiciousº;

end if

else if registeredUsers[ip][ªlabelº] == ªSuspiciousº then

# Check for repeated suspicious behavior;

if svmModel.confirmSuspiciousBehavior(activity) then

registeredUsers[ip][ªlabelº] = ªMaliciousº;

end if

end if

end if

# Update trust values and check for access block

for userIp, userData in registeredUsers.items() do

if userData[ªlabelº] == ªNormalº then

userData[ªtrustValueº] *= discountFactor;;

if userData[ªtrustValueº] ¡ threshold then

registeredUsers[userIp][ªlabelº] = ªMaliciousº;

end if

end if

end for

end function

function PROCESSREQUEST(ip, activity, criticalInterval, svmModel)

labelUser(ip, activity, criticalInterval, svmModel);

userLabel = registeredUsers[ip][ªlabelº];

if userLabel == ªMaliciousº then

return ªAccess Blockedº;

else

return ªAccess Grantedº;

end if

end function
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The server’s auto-scaling feature is configured to respond to fluctuations in demand. Under

normal conditions, if server utilization exceeds 70% (equivalent to 70 requests per millisecond) for

more than 20 seconds, it triggers an immediate scale-up, increasing the capacity from 1 instance

to 4 instances. This expansion enhances the server’s total handling capacity to 400 requests per

millisecond. Conversely, after scaling up, if the server’s utilization drops below 17.5% (70 requests

per millisecond) for 20 consecutive seconds, it triggers a scale-down, reverting to its original single-

instance configuration.

In our simulation, we streamline the process by minimizing the cool-down and warm-up in-

tervals, which are not central to our key metrics. This means that adjustments in the number of

instances due to auto-scaling occur instantaneously. New instances are added to the server as soon

as they are launched, and similarly, during a scale-down, the extra instances are immediately re-

moved without any delay. This approach allows us to focus on the core dynamics of the server’s

response to varying loads and attack patterns, providing us with clear insights into the efficacy of

our defense mechanisms against different types of Yo-Yo attacks.

5.1.7 Designed Experiments

To rigorously evaluate the efficacy of our proposed mitigation solution against Yo-Yo attacks,

we have conceptualized a series of simulation experiments. These experiments are meticulously

designed to not only assess our solution but also to compare its performance with current state-

of-the-art Trust-based Adversarial Scanner Delaying (TASD) methods: AD (Additive Decrease),

ADAI (Additive Decrease/Additive Increase), and MDAI (Multiplicative Decrease/Additive In-

crease). The focus is on comprehensively analyzing the response of these systems to different

types of Yo-Yo attacks, specifically types 1, 2, and 3.

In total, we have structured 8 simulation experiments, each tailored to provide insights into

various aspects of the attack and defense dynamics. These experiments are carefully crafted to

simulate real-world scenarios where cloud-based systems encounter diverse Yo-Yo attack patterns.

Here are the key aspects these experiments aim to cover:

• Attack Detection and Mitigation: We will evaluate the ability of our solution to accurately

detect and mitigate Yo-Yo attacks of different types. This includes assessing the speed and
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accuracy of attack detection, the effectiveness of response mechanisms, and the overall impact

on system performance and stability.

• Comparison with TASD Methods: Each experiment is designed to provide a comparative

analysis between our solution and the AD, ADAI, and MDAI TASD methods. This compari-

son will help us understand the relative strengths and weaknesses of our approach in various

attack scenarios.

• Types of Yo-Yo Attacks: By focusing on Yo-Yo attacks of types 1, 2, and 3, we aim to cover

a broad spectrum of auto-scaling aimed attack methodologies. This will allow us to evaluate

the versatility and adaptability of our solution across different attack vectors.

• Performance Metrics: Key performance metrics such as total requests received from users,

attackers’ response to scaling fluctuations, trust-value adjustments, and the rate of instances

utilizing false positives or negatives will be closely monitored. These metrics will provide

quantitative data to support our analysis.

• Real-World Scenario Simulation: The experiments are designed to simulate real-world ex-

ploitation conditions as closely as possible, ensuring that our findings are applicable and

relevant to actual cloud environments.

Through these comprehensive experiments, we aim to establish a clear understanding of the

efficacy of our proposed solution in defending against different Yo-Yo attack types. The insights

gained will not only validate our approach but also contribute to the ongoing efforts to enhance

cloud security against such sophisticated cyber threats.

Experiment 1: DDoS Attack On an Auto-Scaling Enabled Server with No Defense Mechanism

The first experiment is implemented to assess the response of an auto-scaling server to a DDoS

attack in the absence of any defense mechanisms. The experiment is set against a backdrop of reg-

ular traffic from normal users to mimic realistic conditions, with the primary goal of understanding

the server’s scaling behavior in reaction to the sudden surge of requests typical of a DDoS onslaught.
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Experiment 2: Yo-Yo Attack Type 1 On an Auto-Scaling Enabled Server with No Defense

Mechanism

The second experiment explores a simulation of a Type 1 Yo-Yo attack on a cloud service

equipped with auto-scaling capabilities, conducted in the absence of any defense mechanisms. This

approach aligns with the methodology outlined in reference [20], where the attacker employs probe

requests to monitor and ascertain the service’s scaling status, both for scale-up and scale-down

phases.

Crucial to this experiment is the assumption that the attacker possesses a highly accurate un-

derstanding of the auto-scaling state, thereby maximizing the efficacy of the attack strategy. This

level of insight is not solely reliant on data gathered by the attacker’s bots. Instead, the attacker may

acquire essential scaling information through external sources or by employing dummy users who

consistently engage with the service in a normal manner. This approach ensures that any measures

to delay or block specific attacker bots will not impede the attacker’s access to vital information

regarding the cloud service’s scaling activities.

Experiment 3: Yo-Yo Attack Type 2 On an Auto-Scaling Enabled Server with No Defense

Mechanism

In a manner akin to Experiment 2, this experiment involves simulating a Type 2 Yo-Yo attack

on a cloud service equipped with auto-scaling functionality, conducted without the activation of any

defense mechanisms.

Experiment 4: Yo-Yo Attack Type 3 On an Auto-Scaling Enabled Server with No Defense

Mechanism

Following the methodology of Experiments 2 and 3, this phase of the study involves simulat-

ing a Type 3 Yo-Yo attack on a cloud service that is equipped with an auto-scaling feature, again

conducted in the absence of any defense mechanisms.
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Experiment 5: Test AD TASD Defense Mechanism With Different Yo-Yo Attack Types 1,2 and

3

In this experiment, the focus is on assessing the efficacy of the AD TASD mechanism in iden-

tifying and mitigating the three different types of Yo-Yo attackers. The primary objective is to

evaluate how effectively the AD TASD approach detects and counteracts each specific Yo-Yo attack

strategy.

The experiment adheres to parameters similar to those detailed in reference [20]. The initial

trust value Tinit is established at 10, a benchmark for evaluating user behaviors. To update this trust

value, the parameter M is configured at 100, which influences the criteria for updating the trust

value. Additionally, threshold values for classifying user activities are set, with Tsuspicious at 7 and

Tmalicious at 5. These thresholds are instrumental in differentiating between normal, suspicious,

and outright malicious activities based on the deviation of their behaviors from established norms.

Furthermore, the parameter k, which determines the size of the list of users with the highest request

load volume recorded by the detection module, is fixed at 10.

Experiment 6: Test ADAI TASD Defense Mechanism With Different Yo-Yo Attack Types 1,2

and 3

In this experiment, we assess the ADAI TASD defense mechanism’s effectiveness against the

three types of Yo-Yo attackers. The ADAI TASD, distinct from the AD TASD, places a greater

emphasis on reducing false positives. It contemplates scenarios where a normal user’s behavior

temporarily appears suspicious, potentially leading to an incorrect decrease in their trust value and

impacting service quality. To address this, ADAI TASD modifies the AD algorithm by managing

the duration of request forwarding tforward or denial tblock, maintaining rules for a specific period

trelease, set at 5 minutes, and then potentially increasing the trust value. Key parameters are similar

to those in [20], with Tinit set to 10, M at 100, and Tsuspicious and Tmalicious thresholds at 7 and 5,

respectively.
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Experiment 7: Test MDAI TASD Defense Mechanism With Different Yo-Yo Attack Types 1,2

and 3

In our analysis, we now examine the efficacy of the MDAI TASD defense mechanism in counter-

ing the three distinct types of Yo-Yo attackers. The MDAI TASD system adopts a similar approach

to the ADAI method in prioritizing the reduction of false positives, but it employs a different set

of metrics for trust value allocation. This method introduces a Multiplicative decrease strategy for

trust value aimed at enhancing detection rates alongside an additive increase approach to minimize

the occurrence of false-positive errors.

For this specific experiment, the initial trust value Tinit is established at 100, with the variable

M also set at 100 for updating the trust value. The multiplicative factor α is determined to be 0.5.

This experiment also adjusts the thresholds for ’suspicious’ Tsuspicious and ’malicious’ Tmalicious

statuses to 50 and 20, respectively. Additionally, the incremental factor β, which governs the rate of

trust value increase, is set at 5, with this value incrementing every 1.5 minutes in accordance with

the trelease parameter.

Experiment 8: Test Our Presented Defense Mechanism With Different Yo-Yo Attack Types

1,2 and 3

Finally, it is time for us to evaluate the effectiveness of our provided learning-based defense

mechanism against Yo-Yo attacks of types 1,2 and 3 and compare its efficacy to the AD, ADAI, and

MDAI TASD mitigation mechanisms.

Distinct from the TASD mechanisms, which are reactive to scale changes (scale-up or scale-

down) in server operations, our learning-based mechanism proactively updates its data inputs dur-

ing any instances of overload or underload, regardless of whether these instances result in a scale

change. This means that for TASD mechanisms to reassess users’ trust values, a scale change

must occur at the end of an overload or underload period. In contrast, our defense mechanism

continuously updates its evaluations throughout these critical intervals, regardless of whether they

culminate in a change in scale capacity or not.

In practical terms, our model operates as follows: When the cloud server experiences overload
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due to suspicious user activities, our mechanism captures user metrics at the end of this overload

period, irrespective of a resulting scale change. It then employs an SVM classifier to identify pat-

terns of behavior among users that could be contributing to these critical intervals. If the mechanism

detects a group of users (e.g. πi) exhibiting coordinated suspicious activities, it marks these users

for further monitoring. Should these marked users repeat similar activities in subsequent critical

intervals, the defense system intervenes by blocking the top k contributors within these groups, thus

aiming to neutralize the threat.

Given the presence of ten attacker bots for each type of Yo-Yo attack, and in an effort to balance

the reduction of false positives with high detection accuracy, we have configured the threshold k to

be 5.

5.2 Experimental Results And Analysis

Eight distinct experiments were carried out to assess the effectiveness of various mitigation

algorithms in response to different attack scenarios. This section delves into an analysis of the

results obtained from these experiments, offering a detailed and comprehensive evaluation.

5.2.1 Results

Experiment 1

The first experiment illustrates the response of a cloud-based web service with auto-scaling

capabilities to a single-phase Distributed Denial of Service (DDoS) attack. At the commencement

of the simulation, typical users engage with the service, generating standard traffic. This is reflected

in Figure 5.1, which depicts the aggregate requests per second from all active users.

Twenty seconds into the simulation, the orchestrator of the attack deploys DDoS tactics via bots,

thereby escalating the total request rate. The strategy is to sustain an attack intensity that surpasses

70 packets per millisecond, triggering the service’s scale-up threshold. Subsequently, 20 seconds

post the onset of the DDoS attack, the cloud service’s auto-scaling feature is activated, enhancing

its processing capacity from 100 to 400 packets per millisecond. This adjustment in the cloud’s

processing capability, along with the concurrent total request rate, is shown in Figure 5.2.
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One minute after the attack begins, the attacker ceases the assault, leading to a reduction in the

request rate to below the 70-request threshold. A subsequent 20-second delay results in the trigger-

ing of the scale-down process, reverting the processing capacity from 400 back to 100 requests per

millisecond.

Figure 5.3 presents the server’s capacity Utilization chart, highlighting the number of requests

relative to the server’s maximum capacity at each point in time. The chart reveals a substantial

increase in utilization, nearing full capacity, during the initial 20 seconds of the attack, prior to the

activation of the scale-up threshold. Following the scale-up, utilization normalizes. Post-attack,

there is a notable drop in utilization (below 10%), indicating significant excess capacity for the

remaining normal traffic. Finally, 20 seconds after the cessation of the DDoS attack, the server’s

capacity is scaled down, and utilization levels return to their original state.

Figure 5.1: Total requests from all active users (normal users and attacker bots) per second to

simulate a DDoS attack.

Figure 5.2: Cloud’s processing capacity scale, together with the total requests per second
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Figure 5.3: Server’s Capacity Utilization

Experiment 2

The Type 1 Yo-Yo attack, as delineated in this experiment, follows a distinct tactical pattern

aimed at exploiting the auto-scaling feature of the cloud service. The attack strategy involves inten-

sifying the assault until the scale-up process is confirmed to be activated. Upon confirmation, the

attack is abruptly halted, and the attacker then waits for the signal indicating the initiation of the

scale-down process. As soon as this signal is detected, the same attack pattern is repeated, creating

a continuous cycle of scaling up and down. This Type 1 strategy is recognized as the conventional

Yo-Yo attack method in various related studies.

Figures 5.4 and 5.5 illustrate, respectively, the total requests per second and the scaling of the

cloud’s processing capacity. These visual representations clearly demonstrate that the Type 1 attack

induces more significant fluctuations in the scaling state compared to Types 2 and 3. Furthermore,

Figure 5.6, which showcases the utilization fluctuations, reveals a consistent pattern of oscillation.

This pattern is characterized by alternating periods of high utilization (exceeding 75%) and very

low utilization (below 10%).

Throughout the duration of this experiment, a total of 11 complete cycles of the Yo-Yo attack

were observed, providing a comprehensive view of the impact and behavior of this type of Yo-Yo

attacking strategy on cloud-based services.
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Figure 5.4: Total requests from all active users (normal users and attacker bots) per second to

simulate a type 1 Yo-Yo attack

Figure 5.5: Cloud’s processing capacity scale, together with the total requests per second

Figure 5.6: Server’s Capacity Utilization
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Experiment 3

While exhibiting cyclic attack patterns akin to those observed in Experiment 2, this experiment

highlights a distinct operational focus for the Type 2 Yo-Yo attacker. The primary objective of this

attacker is to maintain the servers at their maximum utilization capacity, strategically avoiding the

activation of the scale-up mechanism.

Figure 5.7illustrates the fluctuations in the number of requests generated by the Type 2 attacker.

These fluctuations are indicative of the attacker’s efforts to modulate the intensity of the assault. The

key distinction between the objectives of Type 1 and Type 2 attackers becomes evident in Figure

5.8. The Type 2 attacker, unlike its Type 1 counterpart, seeks to orchestrate periodic attacks that

maximize server utilization without triggering a scale-up response.

Further evidence of this tactical approach is presented in Figure 5.9, which verifies the attacker’s

intention to sustain high utilization levels. However, it also demonstrates the attacker’s deliberate

reduction in attack intensity at specific intervals. This tactic is employed to prevent the engage-

ment of the cloud service’s 20-second scale-up threshold, thus maintaining a continuous high-load

environment without prompting additional resource allocation.

Figure 5.7: Total requests per second sent from all active users (normal users and attacker bots) to

simulate a type 2 Yo-Yo attack
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Figure 5.8: Cloud’s processing capacity scale, together with the total requests per second

Figure 5.9: Server’s Capacity Utilization

Experiment 4

In this experiment, we closely examine how the strategy employed by the Type 3 Yo-Yo attacker

manipulates the performance statistics of the cloud server.

Figure 5.10 reveals that the initial wave of the Type 3 Yo-Yo attack is more prolonged than

subsequent waves. This pattern becomes more apparent when analyzed in conjunction with Figures

5.11 and 5.12.

The Type 3 attacker commences with an extended first wave of attack, deliberately designed to

ensure the triggering of a scale-up response from the server. Once the scale-up is confirmed to be

in effect, the attacker shifts its approach. Instead of maintaining a constant high intensity of attack,

it sporadically sends short bursts of data. The strategic intent behind these intermittent bursts is to

disrupt and reset the scale-down triggering timer, effectively preventing the auto-scaling mechanism

from initiating a scale-down process.
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This tactic results in a scenario where the servers maintain and pay for additional capacity over

an extended period, a capacity that remains primarily underutilized by legitimate, normal users.

Figure 5.10: Total requests per second sent from all active users (normal users and attacker bots) to

simulate a type 2 Yo-Yo attack

Figure 5.11: Cloud’s processing capacity scale, together with the total requests per second
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Figure 5.12: Server’s Capacity Utilization

Experiment 5

This experiment rigorously evaluates the effectiveness of the AD TASD mechanism in counter-

ing Yo-Yo attacks of types 1, 2, and 3.

The results for Type 1 attacks, as illustrated in Figure 5.13(a), indicate successful mitigation by

the AD TASD mechanism, marking an improvement over Experiment 2, where no active defense

was deployed.

Conversely, Figures 5.15(a) and 5.17(a) reveal a stark contrast in the mechanism’s performance

against Type 2 and 3 attackers. Compared to Experiments 3 and 4, where no defense mechanisms

were active, the AD TASD system demonstrates a notable deficiency in mitigating these types of

attacks. The core limitation lies in the mechanism’s reliance on scale changes to adjust users’ trust

values. Since Types 2 and 3 attacks do not oscillate the auto-scaling mechanism, they do not trigger

changes in the attackers’ trust values, thus evading detection. This limitation is further highlighted

in Figures 5.16(a), 5.18(a), 5.19(b), and 5.19(c). The server utilization and scale fluctuations in

these scenarios remain unaltered compared to the corresponding scenarios in Experiments 3 and 4,

underscoring the ineffectiveness of the AD TASD mechanism against these attack types.

Additionally, the presumption that attackers have access to accurate scaling mechanism data

undermines the effectiveness of delay injection strategies. Such attackers are not solely reliant on

analyzing response times, thereby diminishing the impact of any delay tactics employed by the

defense mechanism.

Interestingly, Figure 5.14(a) shows that while the Type 1 attacker initially succeeds in forcing
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six cycles of scale-ups, the defense mechanism eventually blocks their access once their trust value

falls below the Tmalicious threshold. This leads to a cessation of their requests and a subsequent

return of server utilization to normal levels, as depicted in Figure 5.19(a).

(a) AD TASD (b) ADAI TASD

(c) MDAI TASD (d) Our defense mechanism

Figure 5.13: Total requests per second sent from all active users (normal users and attacker bots) to

simulate a type 1 Yo-Yo attack on a server tested with different defense mechanisms.
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(a) AD TASD (b) ADAI TASD

(c) MDAI TASD (d) Our defense mechanism

Figure 5.14: Cloud’s processing capacity scale and the total requests per second in a Yo-Yo attack

Type 1 against different defense mechanisms.

Experiment 6

Similar to the previous experiment, the ADAI TASD methodology demonstrated effectiveness

only in mitigating Type 1 attackers. This is illustrated in Figure 5.13(b), where the ADAI sys-

tem successfully restricts attackers’ server access following six scale oscillation cycles, paralleling

findings from 5.13(a). A notable distinction in this experiment is the introduction of the trelease

parameter. This variable causes an incremental increase in the attackers’ trust value by one unit,

approximately five minutes subsequent to the initial access denial. Consequently, the trust value

escalates from 4 to 5, altering the attacker’s classification from ’malicious’ to ’suspicious’, thereby

regaining server access. This cycle of the attacker resuming their attack pattern, as depicted in Fig-

ure 5.14(b), leads to another scale oscillation. The defense mechanism responds by reducing the

trust value back to 4, reverting the attacker’s status to ’malicious’, resulting in the blockade of their

requests. Figure 5.19(d) captures the server’s utilization fluctuation induced by the Type 1 attack

against the ADAI system. The pattern shows a potential perpetual oscillation between trust values

of 4 and 5, given the recurrent pattern of trust value reduction and subsequent rise during the attack

cycle.
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Regarding Type 2 attackers, the ADAI system shows limitations in detecting their malicious ac-

tivities as these attacks do not induce scale oscillations. This incapacity results in an unchanged trust

value for these attackers, and consequently, the related data visualizations (Figures 5.15(b), 5.16(b),

and 5.19(e)) resemble those from Experiment 3, where no defense mechanism was operational.

Similarly, the ADAI system fails to identify the activities of Type 3 attackers, as their strategy

does not involve full scale-up and scale-down oscillations. This leads to a static trust value for

Type 3 attacker bots, and as a result, the charts representing total requests count, autoscaling status,

and utilization status (Figures 5.17(b), 5.18(b), and 5.19(f)) are comparable to those observed in

Experiment 4.

(a) AD TASD (b) ADAI TASD

(c) MDAI TASD (d) Our defense mechanism

Figure 5.15: Total requests per second sent from all active users (normal users and attacker bots) to

simulate a type 2 Yo-Yo attack on a server tested with different defense mechanisms.
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(a) AD TASD (b) ADAI TASD

(c) MDAI TASD (d) Our defense mechanism

Figure 5.16: Cloud’s processing capacity scale and the total requests per second in a Yo-Yo attack

Type 2 against different defense mechanisms.

Experiment 7

In this experimental evaluation, the MDAI TASD defense mechanism demonstrated effective-

ness in mitigating only Type 1 Yo-Yo attacks but not Types 2 and 3.

As evidenced in Figure 5.13(c), the MDAI mechanism successfully neutralized the Type 1 attack

within three oscillation cycles. This is a notable improvement in efficiency compared to the AD

and ADAI methods, which required six cycles to mitigate the same type of attack. This enhanced

performance is attributed to the MDAI’s more aggressive approach in adjusting users’ trust values.

The trust value plummeted from 100 to 50 after the first oscillation, then further dropped to 25

after the second, and finally to 12.5 following the third attack wave. With the trust value falling

below the threshold of 20, the attacker bots were effectively blocked by the server, initiating the

trelease countdown. Despite an incremental rise in trust value over two subsequent 1.5-minute

periods and reaching over the 20 thresholds, the attackers managed to regain access, as shown in

Figure 5.14(c). This pattern led to additional unnecessary scale oscillations, triggering the defense

mechanism to reduce their trust value again, as illustrated in Figure 5.19(g), which depicts the

utilization fluctuations caused by Type 1 attackers on the MDAI TASD-enabled cloud server.
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However, similar to the AD and ADAI TASD mechanisms, the MDAI method was unable to

detect Type 2 and 3 attacks. For Type 2 attacks, the unchanged trust value resulted in outcomes

parallel to those in Experiment 3, as shown in Figures 5.15(c), 5.16(c), and 5.19(h). Similarly, the

MDAI mechanism could not effectively reduce the trust value for Type 3 attackers based on their

malicious behavior. Consequently, the associated charts for Type 3 attacks, namely Figures 5.17(c),

5.18(c), and 5.19(i), exhibited no significant differences compared to those in Experiment 4. This

indicates a consistent limitation in the TASD method’s ability to detect and respond to these specific

types of attacks.

(a) AD TASD (b) ADAI TASD

(c) MDAI TASD (d) Our defense mechanism

Figure 5.17: Total requests per second sent from all active users (normal users and attacker bots) to

simulate a type 3 Yo-Yo attack on a server tested with different defense mechanisms.
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(a) AD TASD (b) ADAI TASD

(c) MDAI TASD (d) Our defense mechanism

Figure 5.18: Cloud’s processing capacity scale and the total requests per second in a Yo-Yo attack

Type 3 against different defense mechanisms.

Experiment 8

The comprehensive analysis of our learning-based defense mechanism against Yo-Yo attacks of

Types 1, 2, and 3 demonstrates its superior efficacy compared to traditional AD, ADAI, and MDAI

TASD mechanisms.

In the case of Yo-Yo attack Type 1, Figure 5.13(d) illustrates our defense mechanism’s success-

ful neutralization of this attack variant. Following the cessation of the initial attack wave, the system

identified ten users exhibiting abnormal behavior during the first critical interval. At the conclusion

of the second wave, the mechanism was re-evaluated to identify the group of users responsible for

the subsequent system overload. The discovery that the same users instigated both waves led to the

preemptive blocking of the top five attackers that caused the most disruption.

During the subsequent attack wave, the remaining five bots attempted to induce another scale

oscillation, albeit with insufficient force. The attack orchestrator, recognizing this weakness, in-

structed the remaining bots to intensify their request rate. This strategy resulted in erratic efforts by

the attackers, ultimately failing to prompt a further scale adjustment. The defense mechanism then

identified and blocked these remaining bots. As depicted in Figures 5.14(d) and 5.19(j), the third
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wave’s ineffectiveness in triggering a third scale-up and the subsequent normalization of server

utilization underscore our mechanism’s efficacy. Figures 5.13 and 5.14 further demonstrate the

mechanism’s superior performance in curtailing Type 1 attacks with minimal scale oscillations and

preventing reentry of attackers, unlike ADAI and MDAI TASD mechanisms that inadvertently in-

creased attackers’ trust values.

Regarding Yo-Yo attack Type 2, Figure 5.15(d) shows our mechanism’s effective mitigation

comparable to that of Type 1. Despite Type 2’s shorter attack waves, our system adeptly records

and analyzes the attackers’ patterns. Figures 5.16(d) and 5.19(k) depict the scale status during

the simulation and the mechanism’s restoration of normal server utilization after three attack waves.

Figures 5.15 and 5.16 affirm our mechanism’s unique capability in countering Type 2 attacks, which

elude other TASD mechanisms due to the attackers’ sophisticated strategies.

Finally, addressing Yo-Yo attack Type 3, Figure 5.17(d) confirms our defense mechanism’s

effectiveness in this scenario. Unlike the previous types, the mitigation of Type 3 required four

waves, a variance explicated in Figure 5.18(d). The first wave’s extended duration and scale impact,

contrasted with the subsequent shorter waves aimed at preventing scale variation, presented a unique

challenge. However, the defense mechanism adapted, identifying and mitigating five attackers by

the third wave and the remainder by the fourth. Figure 5.19(l) illustrates the server utilization

fluctuations throughout this process. Figures 5.17 and 5.18 further corroborate our mechanism’s

sole efficacy in mitigating Type 3 attacks, a feat unachievable by the other three TASD mechanisms.
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(a) Yo-Yo type 1 - AD TASD (b) Yo-Yo type 2 - AD TASD (c) Yo-Yo type 3 - AD TASD

(d) Yo-Yo type 1 - ADAI TASD (e) Yo-Yo type 2 - ADAI TASD (f) Yo-Yo type 3 - ADAI TASD

(g) Yo-Yo type 1 - MDAI TASD (h) Yo-Yo type 2 - MDAI TASD (i) Yo-Yo type 3 - MDAI TASD

(j) Yo-Yo type 1 - Our defense

mechanism

(k) Yo-Yo type 2 - Our defense

mechanism

(l) Yo-Yo type 3 - Our defense

mechanism

Figure 5.19: Server’s Capacity Utilization during Yo-Yo attack types 1, 2, and 3 tested with different

defense mechanisms.

5.2.2 Discussion And Analysis Of The Experimental Results

Upon concluding all eight experiments and analyzing their outcomes, it becomes evident that

our proposed defense mechanism outshines traditional TASD mechanisms in effectively countering

various Yo-Yo attack types and in the promptness of attack mitigation.

This thesis introduces a sophisticated mitigation model based on a game-theoretical three-phase

formulation, with learning-based type recognition as just one component. In more complex envi-

ronments, the insights gained from the type recognition phase could be further incorporated into

a MILP (Mixed Integer Linear Programming) optimization problem, enhancing the mechanism’s

robustness and adaptability.

Our experimental design was meticulously structured to facilitate a direct comparison between
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our advanced solution and the prevailing Yo-Yo TASD attack mitigation techniques. This compara-

tive approach was integral to evaluating the efficiency of our mechanism relative to its predecessors.

Focusing on the Type 1 Yo-Yo attack, our analysis enables a comparison of different mecha-

nisms’ effectiveness. The AD TASD mechanism was neutralized after six attack waves, similar to

the ADAI TASD. However, ADAI TASD’s vulnerability, stemming from its false-positive avoidance

policy, permitted attackers to reaccess servers after a designated treleaseperiod. MDAI TASD ex-

hibited improved performance over AD and ADAI, mitigating attacks in fewer waves, yet it shared

the same flaw of readmitting attackers.

Our mechanism demonstrated superior performance, neutralizing attacks in the least number

of waves, and crucially, unlike ADAI and MDAI, it permanently blocked malicious attackers from

reaccessing the servers.

For Yo-Yo attacks of Types 2 and 3, the contrast becomes more pronounced as all TASD meth-

ods failed to mitigate attacks employing advanced strategies. As depicted in Figure 5.19, our mech-

anism uniquely restored server utilization to normal levels following all three attack types.
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Chapter 6

Conclusions

This Thesis presents a comprehensive Repeated Dynamic Stackelberg Bayesian game model

meticulously designed to determine the optimal strategy for safeguarding the cloud’s auto-scaling

mechanism. This model is structured in three pivotal phases: (1) The Dynamic Bayesian Stackel-

berg Game, which lays the foundational framework; (2) The Defense Module Mechanism, which

actively counters threats; and (3) The Learning-Based Attackers’ Type Recognition, which discerns

and categorizes various attacker strategies.

A key contribution of this research lies in the detailed categorization of vulnerabilities in auto-

scaling mechanisms, leading to the identification and analysis of more sophisticated exploitation

strategies by attackers. This comprehensive analysis yielded the definition of three distinct types of

auto-scaling exploitation Yo-Yo attack strategies, further enriching our understanding of the threat

landscape. Significantly, our model demonstrates superior capability in mitigating various Yo-Yo

attacking strategies. This is a noteworthy advancement over traditional TASD (Trust-based Adver-

sarial Scanner Delaying) methods, which were limited to addressing a single type of periodic attack

strategies. Our approach’s versatility and adaptability mark a significant leap forward in cloud se-

curity protocols.

The robustness of the proposed solution was rigorously tested through cloud environment sim-

ulations, where it was benchmarked against contemporary Yo-Yo TASD attack mitigation meth-

ods, namely AD (Additive Decrease), ADAI (Additive Decrease/Additive Increase ), and MDAI

(Multiplicative Decrease/Additive Increase). The simulation results underscore the efficacy of our
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proposed solution.

A standout feature of our model is its marked improvement in detecting covert EDoS (Economic

Denial of Sustainability) Exploitations. Compared to existing EDoS and Yo-Yo detection and de-

fense strategies, our approach significantly reduces the percentage of successful attacks. This is a

testament to the model’s advanced predictive and reactive capabilities, positioning it as a formidable

tool in cloud security.

As the digital landscape continually evolves, with threats becoming more sophisticated, our

research offers a robust, efficient, and innovative solution. By setting a new benchmark in cloud

security, this thesis addresses current security challenges and lays the groundwork for future ad-

vancements in the field. With its advanced approach, this model is poised to be a cornerstone in the

ongoing effort to secure cloud environments against increasingly sophisticated threats.

80



Bibliography

[1] D. MacRae, ª81% of firms have accelerated their cloud computing plans due to COVID-

19.º https://www.cloudcomputing-news.net/news/2021/jun/14/81-of-firms-have-accelerated-

their-cloud-computing-plans-due-to-covid-19/, June 2021.

[2] M. G. Avram, ªAdvantages and Challenges of Adopting Cloud Computing from an Enterprise

Perspective,º Procedia Technology, vol. 12, pp. 529±534, Jan. 2014.

[3] R. Ravichandiran, H. Bannazadeh, and A. Leon-Garcia, ªAnomaly Detection using Resource

Behaviour Analysis for Autoscaling systems,º in 2018 4th IEEE Conference on Network Soft-

warization and Workshops (NetSoft), pp. 192±196, June 2018.

[4] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, ªInferring Internet denial-

of-service activity,º ACM Trans. Comput. Syst., vol. 24, pp. 115±139, May 2006.

[5] B. B. Gupta and O. P. Badve, ªTaxonomy of DoS and DDoS attacks and desirable defense

mechanism in a Cloud computing environment,º Neural Comput & Applic, vol. 28, pp. 3655±

3682, Dec. 2017.

[6] M. Darwish, A. Ouda, and L. F. Capretz, ªCloud-based DDoS attacks and defenses,º in Inter-

national Conference on Information Society (i-Society 2013), pp. 67±71, June 2013.

[7] A. Bello Usman and J. Gutierrez, ªToward trust based protocols in a pervasive and mobile

computing environment: A survey,º Ad Hoc Networks, vol. 81, pp. 143±159, Dec. 2018.

[8] K. Singh, P. Singh, and K. Kumar, ªApplication layer HTTP-GET flood DDoS attacks: Re-

search landscape and challenges,º Computers & Security, vol. 65, pp. 344±372, Mar. 2017.

81



[9] A. Bonguet and M. Bellaiche, ªA Survey of Denial-of-Service and Distributed Denial of Ser-

vice Attacks and Defenses in Cloud Computing,º Future Internet, vol. 9, p. 43, Sept. 2017.

[10] G. Sun, V. Chang, M. Ramachandran, Z. Sun, G. Li, H. Yu, and D. Liao, ªEfficient location

privacy algorithm for Internet of Things (IoT) services and applications,º Journal of Network

and Computer Applications, vol. 89, pp. 3±13, July 2017.

[11] M. A. S. Monge, J. M. Vidal, and L. J. G. Villalba, ªEntropy-Based Economic Denial of

Sustainability Detection,º Entropy, vol. 19, p. 649, Dec. 2017.

[12] M. Sides, A. Bremler-Barr, and E. Rosensweig, ªYo-Yo Attack: Vulnerability In Auto-scaling

Mechanism,º SIGCOMM Comput. Commun. Rev., vol. 45, pp. 103±104, Sept. 2015.

[13] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield, ªSplit/Merge: System Support for

Elastic Execution in Virtual Middleboxes,º

[14] Z. A. Baig and F. Binbeshr, ªControlled Virtual Resource Access to Mitigate Economic De-

nial of Sustainability (EDoS) Attacks against Cloud Infrastructures,º in 2013 International

Conference on Cloud Computing and Big Data, pp. 346±353, Dec. 2013.

[15] M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang, ªReduction of Quality (RoQ) Attacks on

Dynamic Load Balancers: Vulnerability Assessment and Design Tradeoffs,º in IEEE INFO-

COM 2007 - 26th IEEE International Conference on Computer Communications, pp. 857±

865, May 2007.

[16] ªAre You Protected Against Burst Attacks? ± Radware Blog.º

https://www.radware.com/blog/security/2018/02/burst-attack-protection/.

[17] A. Bremler-Barr, E. Brosh, and M. Sides, ªDDoS attack on cloud auto-scaling mechanisms,º

in IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, pp. 1±9, May

2017.

[18] ªAWS Best Practices for DDoS Resiliency - AWS Best Practices for DDoS Resiliency.º

https://docs.aws.amazon.com/whitepapers/latest/aws-best-practices-ddos-resiliency/aws-best-

practices-ddos-resiliency.html.

82



[19] X. Xu, J. Li, H. Yu, L. Luo, X. Wei, and G. Sun, ªTowards Yo-Yo attack mitigation in cloud

auto-scaling mechanism,º Digital Communications and Networks, vol. 6, pp. 369±376, Aug.

2020.

[20] M. M. Kashi, A. Yazidi, and H. Haugerud, ªMitigating Yo-Yo attacks on cloud auto-scaling,º

in 2022 14th IFIP Wireless and Mobile Networking Conference (WMNC), pp. 46±53, Oct.

2022.

[21] T. Lorido-BotrÂan, J. Miguel-Alonso, and J. Lozano, ªA Review of Auto-scaling Techniques

for Elastic Applications in Cloud Environments,º Journal of Grid Computing, vol. 12, Dec.

2014.

[22] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, ªResource-Aware Detection and Defense

System against Multi-Type Attacks in the Cloud: Repeated Bayesian Stackelberg Game,º

IEEE Transactions on Dependable and Secure Computing, vol. 18, pp. 605±622, Mar. 2021.

[23] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, ªOptimal Load Distribution for the De-

tection of VM-Based DDoS Attacks in the Cloud,º IEEE Transactions on Services Computing,

vol. 13, pp. 114±129, Jan. 2020.

[24] M. Ranganath and M. Keating, ªHow to detect suspicious activity in your

AWS account by using private decoy resources Ð AWS Security Blog.º

https://aws.amazon.com/blogs/security/how-to-detect-suspicious-activity-in-your-aws-

account-by-using-private-decoy-resources/, Aug. 2022.

[25] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, ªCloudSim:

A toolkit for modeling and simulation of cloud computing environments and evaluation of

resource provisioning algorithms,º Software: Practice and Experience, vol. 41, no. 1, pp. 23±

50, 2011.

[26] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, ªI Know You Are Watching Me:

Stackelberg-Based Adaptive Intrusion Detection Strategy for Insider Attacks in the Cloud,º

in 2017 IEEE International Conference on Web Services (ICWS), pp. 728±735, June 2017.

83



[27] A. Hota, A. Clements, S. Sundaram, and S. Bagchi, ªOptimal and Game-Theoretic Deploy-

ment of Security Investments in Interdependent Assets,º pp. 101±113, Nov. 2016.

[28] A. Clark, K. Sun, L. Bushnell, and R. Poovendran, ªA Game-Theoretic Approach to IP Ad-

dress Randomization in Decoy-Based Cyber Defense,º pp. 3±21, Nov. 2015.

[29] M. Irvine, ªAverage Cost per Click by Country [DATA].º

https://www.wordstream.com/blog/average-cost-per-click.

[30] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez, and S. Kraus, ªPlaying games

for security: An efficient exact algorithm for solving Bayesian Stackelberg games,º in Pro-

ceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent

Systems - Volume 2, AAMAS ’08, (Richland, SC), pp. 895±902, International Foundation for

Autonomous Agents and Multiagent Systems, May 2008.

[31] M. R. Watson, N.-u.-h. Shirazi, A. K. Marnerides, A. Mauthe, and D. Hutchison, ªMalware

Detection in Cloud Computing Infrastructures,º IEEE Transactions on Dependable and Secure

Computing, vol. 13, pp. 192±205, Mar. 2016.

[32] ªChange the desired capacity of an existing Auto Scaling group - Amazon EC2 Auto Scaling.º

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-manual-scaling.html.

[33] ªDynamic scaling for Amazon EC2 Auto Scaling - Amazon EC2 Auto Scaling.º

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scale-based-on-demand.html.

84


	List of Figures
	List of Tables
	Introduction
	Background
	About Cloud
	Yo-Yo Attack
	Game Theory

	Problem Statement
	Contributions

	Related Work
	Cloud Auto-Scaling & Vulnerabilities
	Game-Theoretic Approaches for Cloud’s Security Applications

	Game Theoretic Problem Modelling Formulation
	Model Components
	Model Overview
	The Cloud
	The Users
	The Attackers within The Users
	Attacking Brains

	Proposed System Formulation
	System Overview
	The Cloud’s Motivation
	The Attacker’s Motivation

	The Game Model
	Leader’s Accumulated Profit
	Yo-Yo Attacking Brain
	Attackers’ Types
	Leader’s Utility Function
	Follower’s Utility Function

	Assumptions

	Formulating Yo-Yo Attack as Repeated Stackelberg Bayesian Security Game Model
	Repeated Dynamic Stackelberg Bayesian Security Game
	Players Policies
	Leader’s Policy Set
	Follower’s Policy Set

	Backward Induction
	Follower’s Optimization Problem
	Leader’s Optimization Problem

	Mixed-Integer Quadratic Programming (MIQP) Problem
	Convert MIQP to a Mixed-Integer Linear Programming (MILP) Problem
	Learning-Based Attackers’ Type Recognition and Defense Mechanism
	The Defense Mechanism Module
	Learning-Based Attackers’ Type Recognition


	Experimental Simulations and Results Analysis
	Simulation Experiment Setup
	Simulation Environment
	Yo-Yo Attackers Types
	The Probability Distribution over Attackers’ Types
	State-of-the-Art Yo-Yo Attack Mitigation Approaches
	Our Learning-Based Yo-Yo Mitigation Mechanism
	Simulation Parameters
	Designed Experiments

	Experimental Results And Analysis
	Results
	Discussion And Analysis Of The Experimental Results


	Conclusions
	Bibliography

