
Dependency Management Practices for the npm
Software Ecosystem

Abbas Javan Jafari

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Software Engineering) at

Concordia University

Montréal, Québec, Canada

December 2023

© Abbas Javan Jafari, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Abbas Javan Jafari

Entitled: Dependency Management Practices for the npm Software

Ecosystem

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Software Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Pantcho P. Stoyanov

External Examiner
Dr. Raula Gaikovina Kula

Examiner
Dr. Peter Rigby

Examiner
Dr. Tse-Hsun (Peter) Chen

Examiner
Dr. Jamal Bentahar

Supervisor
Dr. Emad Shihab

Approved by
Dr. Leila Kosseim, Graduate Program Director

Department of Computer Science and Software Engineering

December 12, 2023
Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

Abstract

Dependency Management Practices for the npm Software Ecosystem

Abbas Javan Jafari, Ph.D.

Concordia University, 2024

Software ecosystems provide developers with the opportunity to accelerate develop-

ment by relying on third-party dependencies. Developers use third-party packages to in-

crease productivity and improve quality. However, the increased reliance on third-party de-

pendencies has emphasized dependency-related challenges. Developers need to be aware

of such challenges and be equipped with techniques to mitigate their impact. Poor man-

agement of third-party dependencies can subject the project to breaking changes, bugs and

vulnerabilities, which negatively impact the quality of software. In this thesis, we use a

mixture of quantitative and qualitative methods to understand dependency management

challenges in the npm ecosystem and provide actionable mitigation techniques to help de-

velopers better manage their dependencies.

We first study, catalog and quantify recurring patterns of dependency mis-management

in the npm ecosystem and provide evidence of their prevalence and accumulation. In the

second part of the thesis, we analyze the relationship between the characteristics of npm

packages and how they are used by the community. We propose to developers a technique

to determine the update strategy of their direct dependencies based on the individual char-

acteristics of each package. In the last part of the thesis, we focus on the impact of transitive

dependencies and quantify the impact of dependency decisions on continued exposure to

iii

security vulnerabilities. We propose a technique to select dependencies that mitigates the

propagation of vulnerabilities to our project. Throughout our research, we identify impli-

cations that can serve both researchers and practitioners.

iv

Acknowledgments

I would like to thank my amazing supervisor, Prof. Emad Shihab for his continued

support throughout my PhD. It was a great pleasure having a supervisor who is both truly

an expert in the field and who can always motivate his students to perform at their best. I

am forever grateful to Emad for his trust, guidance and encouragement.

Throughout my PhD adventure, I had the privilege of working with Dr. Diego Elias

Costa, Dr. Ahmad Ahmad Abdellatif and Dr. Rabe Abdalkareem at DAS Lab. Thank you

so much for taking the time to share your invaluable experience and insights. I also had

the wonderful experience of collaborating with Dr. Nikolaos Tsantalis at the Department

of Computer Science and Software Engineering.

I would also like to thank my committee members. Dr. Raula Gaikovina Kula, Dr.

Peter Rigby, Dr. Tse-Hsun (Peter) Chen and Dr. Jamal Bentahar for taking the time to read

my thesis and providing me with insightful comments throughout my PhD.

I also wish to extend my appreciation to my fellow colleagues at the Data-driven Anal-

ysis of Software (DAS) Lab, specifically Mahmoud Alfadel, Jasmine Latendresse, Suhaib

Mujahid and Khaled Badran. I wish you all the very best.

Above all, I thank god for blessing me with a wonderful family. I thank my mother,

father and brother for always supporting me throughout the years. I thank my amazing wife

who was always at my side and kept me motivated throughout the journey. I would not be

here without you all and I hope to make you proud.

v

Contents

List of Figures x

List of Tables xii

1 Introduction and Research Statement 1

1.1 Introduction . 1

1.2 Research Statement . 4

1.3 Thesis Overview . 4

1.4 Thesis Contributions . 7

1.5 Related Publications . 8

1.6 Thesis Organization . 9

2 Background and Related Work 10

2.1 Background . 10

2.1.1 Software Ecosystems . 10

2.1.2 Dependency Management . 11

2.1.3 Semantic Versioning (SemVer) . 13

2.2 Related Work . 15

2.2.1 Software Packaging Ecosystems 15

2.2.2 Breaking Changes and Technical Lag in the npm Ecosystem 17

2.2.3 Security Vulnerabilities in npm Packages 19

vi

3 Challenges in Dependency Management 21

3.1 Introduction . 22

3.2 Dependency Smells . 25

3.2.1 Dependency Smells Catalog . 26

3.3 Dataset . 34

3.4 Smell Detection . 35

3.5 Results . 37

3.5.1 RQ1: How prevalent are JavaScript dependency smells? 37

3.5.2 RQ2: How do developers perceive dependency smells and their

negative impact? . 41

3.5.3 RQ3: Why are these smells introduced in JavaScript projects? . . . 46

3.6 Dependency Smell Evolution . 53

3.7 Generalizability to other ecosystems . 56

3.8 Implications . 57

3.9 Related Work . 59

3.10 Threats to Validity . 62

3.11 Chapter Conclusion and Future Work . 65

4 Practices for Updating Dependencies 67

4.1 Introduction . 68

4.2 Data and Methodology . 72

4.2.1 Specialized packages . 72

4.2.2 Data filtering and labeling . 73

4.2.3 Feature selection and extraction 75

4.3 Results . 82

4.3.1 RQ1: Can package characteristics be used as indicators of depen-

dency update strategies? . 82

vii

4.3.2 RQ2: Which package characteristics are the most important indi-

cators for dependency update strategies? 87

4.3.3 RQ3: How do dependency update strategies evolve with package

characteristics? . 93

4.4 Implications . 102

4.5 Related Work . 105

4.6 Threats to Validity . 109

4.7 Chapter Conclusion . 111

5 Practices for Selecting Dependencies 113

5.1 Introduction . 114

5.2 Data and Methodology . 117

5.2.1 Vulnerable dependency dataset . 117

5.2.2 Package feature extraction . 119

5.3 Results . 124

5.3.1 RQ1: How does dependency management impact the risk of vul-

nerabilities for downstream packages? 124

5.3.2 RQ2: How can we identify packages that quickly mitigate vulner-

abilities? . 128

5.3.3 RQ3: How do developers perceive dependency practices for vul-

nerability mitigation? . 136

5.4 Implications . 143

5.5 Related Work . 145

5.6 Threats to Validity . 148

5.7 Chapter Conclusion . 151

6 Conclusion and Future Work 152

viii

6.1 Conclusion . 152

6.1.1 Challenges in Dependency Management 153

6.1.2 Practices for Updating Dependencies 153

6.1.3 Practices for Selecting Dependencies 154

6.2 Future Work . 154

6.2.1 Impact of the ecosystem on external projects 155

6.2.2 Generalizability to other ecosystems 155

6.2.3 Industry vs. Open-source priorities 156

6.2.4 Extent of dependency utilization 156

6.2.5 Impact of package functionality 157

Bibliography 158

ix

List of Figures

Figure 2.1 Dependency relationships . 12

Figure 2.2 Example of a dependency configuration file (package.json) 13

Figure 3.1 Example of a smelly package.json file 27

Figure 3.2 Distribution of projects in the dataset under four perspectives: age,

authors, commits and dependencies . 35

Figure 3.3 Distribution of dependency smells ratio in the latest snapshot of

projects that contain at least one instance of the smell. We specify the

number of projects plotted (N) and the median of the distribution (median). 38

Figure 3.4 Introduced and fixed dependency smells over time. 54

Figure 3.5 Accumulation of dependency smells over time. 55

Figure 4.1 Example of a package.json file showing dependency update strategies 74

Figure 4.2 Impact of specialization threshold on class distribution 76

Figure 4.3 Distribution of dependent agreement percentage for packages in

each class . 76

Figure 4.4 Comparison of performance for candidate models 84

Figure 4.5 Performance evaluation results . 85

Figure 4.6 Importance of Features . 89

Figure 4.7 Distribution of the top 3 important features (Dependent Count is

log10 distribution) . 89

Figure 4.8 Partial Dependence Plots (PDP) for each class 91

x

Figure 4.9 Example packages for which dependents follow the previously pop-

ular update strategy . 95

Figure 4.10 Example packages for which the dependent strategy shifts at the

1.0.0 release mark (red vertical line) . 97

Figure 4.11 Example packages for which there is a weak agreement on the re-

strictive update strategy . 98

Figure 4.12 Example packages for which the restrictive update strategy exhibits

anomalous behavior . 99

Figure 5.1 Distribution of the update strategy feature 122

Figure 5.2 Release type for the vulnerability fix (separated by vulnerability

severity) . 126

Figure 5.3 Comparing the distributions of upstream fix delay with downstream

adoption delay for different vulnerability severities (statistically significant

difference with p<0.05). 127

Figure 5.4 Distribution of adoption delay (days) 130

Figure 5.5 Distribution of model classes . 132

Figure 5.6 Performance evaluation results for the dependency practices model . 132

Figure 5.7 Ranking the features of the model based on permutation importance 133

Figure 5.8 Partial Dependence Plots and Individual Conditional Expectations

for the top 5 dependency practices . 134

Figure 5.9 Likelihood of our top features being used in practice. 142

xi

List of Tables

Table 3.1 Overview of dependency smells. 28

Table 3.2 Dependency smells in extracted projects. 38

Table 3.3 Number of projects containing distinct smell types 39

Table 3.4 Co-occurrence of pinned constraints with the existence of package-

lock. 39

Table 3.5 Background of participants in the survey. 43

Table 3.6 Quantifying the impact of smells . 45

Table 3.7 Developer reasons on why dependency smells are introduced. 49

Table 3.8 Number of introduced and fixed instances per dependency smell. . . . 53

Table 4.1 Relevant features in selecting dependencies 77

Table 4.2 Selected features and their description 82

Table 4.3 Comparing model performance across different specialization thresh-

olds . 86

Table 4.4 Per-Class Evaluation . 99

Table 4.5 Examples of created issues that correspond with a rise of restrictive

update strategies . 101

Table 5.1 The dataset for our study . 119

Table 5.2 Selected features for downstream packages 123

Table 5.3 Performance evaluation of alternative models on severity-specific

subsets of the data . 133

xii

Table 5.4 Background of participants in the survey. 137

xiii

Chapter 1

Introduction and Research Statement

1.1 Introduction

Current software systems are large and complex and heavily rely on code reuse to ac-

celerate their development and improve quality (Bombonatti, Goulão, & Moreira, 2017;

Keswani, Joshi, & Jatain, 2014). More than 80% of the codebase in a modern applica-

tion is comprised of third-party and open source components (GitHub, 2020). Software

packages (i.e. reusable code libraries) are a common way to achieve code reuse and their

popularity is driven by software ecosystems. Software packaging ecosystems serve as a

platform for developers to share their own packages, and also use packages shared by oth-

ers. The increasing number of packages can facilitate code reuse, but it can also lead to

an increase in dependencies between packages (i.e. packages rely on other packages to

function). Dependencies between packages are the major underlying principle for software

ecosystems (Cogo, Oliva, & Hassan, 2019). One example of such ecosystems is the Node

Package Manager (npm), which is currently the world’s largest software ecosystem where

a high reliance on third-party dependencies is commonplace. By late July 2021, the npm

ecosystem had over 1.9 million packages (up 16% from the previous year) and 21 million

package versions (Sonatype, 2021). According to Laurie Voss (COO and co-founder of

1

npm Inc.), 97% of the code in modern web applications come from npm packages, mean-

ing the application developer is directly responsible for only 3% of the code-base (npm,

2018). In the case of the npm ecosystem, the average number of total dependencies has

been growing at a super-linear rate (Zimmermann, Staicu, Tenny, & Pradel, 2019).

The sheer size and complexity of the dependency networks, along with their speedy

growth and evolution, has created difficult challenges in software ecosystems, particu-

larly in dependency management practices such as tracking and updating packages (Artho,

Suzaki, Di Cosmo, Treinen, & Zacchiroli, 2012; Bogart, Kästner, Herbsleb, & Thung,

2016; Decan, Mens, & Grosjean, 2019). In fact, a 2022 survey of industry practitioners

found that 85% of organizations are are not fully confident in their open source depen-

dency management practices (Tidelift, 2022). The multitude of dependency management

challenges in software ecosystems have also given birth to the colloquial term, “Depen-

dency Hell” (Decan & Mens, 2019a; Fan et al., 2020; Matt Rickard, 2021). Examples of

the technical issues which directly relate to dependency management are software bugs

and vulnerabilities, technical lag, breaking changes and bloated installations (Bogart et al.,

2016; Chinthanet, Kula, Ishio, Ihara, & Matsumoto, 2019; Cogo et al., 2019; Decan, Mens,

& Constantinou, 2018a; Jafari, Costa, Abdalkareem, Shihab, & Tsantalis, 2021; Kula, Ger-

man, Ouni, Ishio, & Inoue, 2018a; Soto-Valero, Harrand, Monperrus, & Baudry, 2021).

Many software ecosystems such as npm (Node Package Manager), PyPi (Python Pack-

age Index) and RubyGems (Ruby Package Manager) allow developers to determine their

stance toward automatic updates using the dependency configuration file. This presents

package developers with a dilemma. On one hand, we want to keep our dependencies

up to date and take advantage of the latest features and bug/vulnerability fixes. On the

other hand, updating dependencies often increases the chance of installing a backward-

incompatible release of the dependency and break our code (Bavota, Canfora, Di Penta,

Oliveto, & Panichella, 2013; Bogart et al., 2016; Cogo et al., 2019; Derr, Bugiel, Fahl,

2

Acar, & Backes, 2017). Proper dependency management practices can help in finding the

right balance between staying up to date and ensuring code stability. Due to the complexity

and variety in software packages and their inter-dependencies, ensuring (or even defining) a

suitable dependency management strategy is not straightforward. Knowing when to update

a dependency and knowing which versions to use are among the most important challenges

faced by development teams (Tidelift, 2022). Motivated by the issues in the literature, we

aim to tackle the following questions:

(1) What is bad dependency management? Developers have many alternative options

in deciding how to manage their dependencies. However, these alternatives corre-

spond to negative consequences on their project or on the ecosystem. Developers

need to be aware problematic dependency configurations and their impact.

(2) How should developers update dependencies? Updating too eagerly can break

compatibility and updating too conservatively can expose us to security risks. Every

package has its unique set of characteristics and behaviors. Therefore, developers

need to identify an update strategy suitable for each dependency.

(3) How should developers select dependencies? Regardless of how well developers

manage their dependencies, they have no means to properly manage the dependencies

of their dependencies. Managing these transitive dependencies is the responsibility

of direct dependencies. Therefore, developers need to select suitable packages that

have responsible dependency practices.

In order to better understand the challenges in open-source dependency management

and help developers in mitigating these challenges, we conduct a series of empirical stud-

ies focused on the JavaScript ecosystem. JavaScript is the most widely used open source

programming language (GitHub, 2021) and it also has the largest software ecosystem with

over 1.9 Million packages (Sonatype, 2021). We first employ a mixture of quantitative

3

and qualitative techniques to study dependency management practices in packages that

declare dependencies to examine dependency management issues, their prevalence and

consequences. Next, in order to help developers better manage and update their depen-

dencies, we study the upstream packages to model and understand the association between

the characteristics of a package and the dependency practices selected by its dependent

community. Finally, we aim to help developers in selecting suitable dependencies by ex-

amining the attributes of packages that quickly mitigate vulnerabilities. Our research aims

to help developers in selecting and maintaining their dependencies to minimize their expo-

sure and contribution to dependency-related issues in both their own project and the larger

ecosystem.

1.2 Research Statement

Developers are faced with many challenges when managing their dependencies Sec-

tion 1.1. Knowing what dependency packages to use and how to use them are key issues

in the npm ecosystem. The goal of this Ph.D. thesis is to address these issues by studying

dependency management practices and proposing suitable mitigation strategies. We state

our research statement as follows:

Given the complexity of dependency management in software ecosystems, our goal

is to employ information from the JavaScript ecosystem to identify challenges and

propose mitigation techniques to help developers better manage their dependen-

cies.

1.3 Thesis Overview

In this section, we provide a brief overview of the thesis. In the first part (Chapter 2),

we provide the background required for our research and discuss how our work aligns with

4

the related works in literature. In the second part, we present our three empirical studies

(Chapters 3, 4 and 5). We conclude our thesis in Chapter 6 and discuss the key avenues for

future research in dependency management.

Chapter 3: Challenges in Dependency Management

Many software ecosystems (e.g. npm, PyPI) allow developers to choose from a variety

of dependency management practices. For example, developers in npm can specify differ-

ent constraints for each of their dependencies that determine how the dependency is fetched,

installed and automatically updated. Choosing the wrong dependency configuration can

have negative consequences on the project such as bugs, vulnerabilities and compatibility

issues. We need to identify and quantify the advantages and drawbacks of different prac-

tices to understand the current landscape and formulate guidelines for good dependency

management practices. Dependency practices and their consequences are referenced in on-

line discussions and informal interviews, and sometimes mentioned as a byproduct of other

research, but there is no comprehensive and focused study on cataloging and quantifying

such practices. We use a combination of quantitative and qualitative techniques to catalog,

understand and quantify the challenges posed by various dependency practices. We start

by specifying bad practices and qualitatively analyzing their consequences by enlisting the

help of practitioners. We then conduct an empirical study on the development history of

1,100+ npm projects on GitHub to quantitatively measure the prevalence of such bad prac-

tices. We also look at the evolution of such practices over time and investigate the reasons

for their occurrence in the first place. This work has been published in the journal of IEEE

Transactions on Software Engineering (Jafari et al., 2021).

5

Chapter 4: Practices for Updating Dependencies

The findings of Chapter 3 show that developers don’t use the same blanket strategy to

manage all of their dependencies and sometimes opt for problematic alternatives as a re-

sponse to shortcomings of a particular dependency. Therefore, understanding downstream

dependency practices requires an investigation into the characteristics and behaviors of dif-

ferent upstream packages. Previous research has hinted that the characteristics of a package

may influence how it is perceived by its dependents (Decan & Mens, 2019a). We need to

understand how upstream packages influence dependency management strategies in their

downstream dependents. We also need to help developers assign a fitting dependency man-

agement strategy for each of their dependencies. Our objective is to better understand

whether package characteristics can be used to model and predict the common dependency

update strategy used by its dependents. We conduct an empirical study to explore the asso-

ciation between the 19 characteristics of more than 112,000 packages and the dependency

update strategies used by their dependents in an effort to understand why certain depen-

dency update strategies are favored by the community. We complement this work by a

number of qualitative analyses on a sample of 160 packages to better understand the evolu-

tion of dependency update strategies over time. This work has been published in the journal

of ACM Transactions on Software Engineering and Methodology (Jafari, Costa, Shihab, &

Abdalkareem, 2023).

Chapter 5: Practices for Selecting Dependencies

While developers might maintain a certain amount of trust for their dependency pack-

ages, installing each dependency places an implicit trust on a much larger number of third-

party packages that serve as the dependencies of their dependencies (i.e. transitive depen-

dencies) (Zimmermann et al., 2019). The findings of Chapter 4 can be used to determine

a suitable update strategy for dependencies. However, even if developers have flawless

6

dependency management practices for their dependencies, they have no control over the

transitive dependencies of their project. Yet, transitive dependencies can expose the project

to upstream issues such as security vulnerabilities. From a downstream client’s perspective,

there is no difference between being directly exposed to a vulnerability or being exposed to

a vulnerability through a dependency (Decan, Mens, & Constantinou, 2018b). Therefore,

developers need to select dependencies that are well-equipped for handling vulnerabilities.

We propose a means to identify responsive packages (i.e. packages that quickly adopt a

vulnerability fix) to help developers select dependencies that better mitigate the propaga-

tion of vulnerabilities to their project. We study 450 verified npm vulnerabilities and over

200,000 infected packages (through dependencies) to model the speed of vulnerability fix

adoption. We observe 9 package attributes, verified by practitioners, that can be incor-

porated to dependency management practices to mitigate the exposure to vulnerabilities.

We plan to submit this work to the journal of IEEE Transactions on Software Engineering

(Jafari, Costa, Abdellatif, & Shihab, 2023).

1.4 Thesis Contributions

The key contributions of this thesis are as follows:

• Empirical study of dependency smells, their impact and their evolution in more than

1,100 JavaScript projects

• Catalog of 7 dependency smells crafted and validated by quantifying responses from

JavaScript practitioners.

• Prototype tool named Dependency Smells that can analyze npm projects and identify

dependency smells.

• Empirical study of over 112,000 npm packages to identify the update strategy used

7

by clients of each package.

• Identifying 19 package characteristics that can be used to determine a suitable update

strategy.

• Qualitative analysis of 160 npm packages to investigate the evolution of update strate-

gies.

• Empirical study on the speed of fix adoption for 450 vulnerabilities and more than

200,000 impacted packages.

• Identifying 9 attributes that can be used to select dependencies that mitigate vulner-

ability propagation.

• Validating the practical applicability of using dependency practices to mitigate vul-

nerabilities with a survey of 67 practitioners.

1.5 Related Publications

The following publications align with the content of this thesis:

• Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and

Nikolaos Tsantalis. “Dependency smells in javascript projects.” IEEE Transactions

on Software Engineering 48, no. 10 (2021)

• Abbas Javan Jafari, Diego Elias Costa, Emad Shihab, and Rabe Abdalkareem. “De-

pendency Update Strategies and Package Characteristics.” ACM Transactions on

Software Engineering and Methodology 32, no. 6 (2023):

• Abbas Javan Jafari, Diego Elias Costa, Ahmad Abdellatif and Emad Shihab. “De-

pendency Practices for Vulnerability Mitigation.” IEEE Transactions on Software

Engineering [To be Submitted]

8

1.6 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 provides the background and

related works for our research. Chapter 3, Chapter 4 and Chapter 5 present the details and

results of our empirical studies that investigate the research questions of this thesis. Since

the related works are mostly specific to each chapter, we do not attempt to amalgamate

the related works into a standalone section of the thesis. We summarize our findings and

suggest directions for future work in Chapter 6.

9

Chapter 2

Background and Related Work

2.1 Background

In this section, we explain the necessary background required to understand our work

on dependency management. We describe the concept of software ecosystems and using

npm as an example, we explain the dynamics of dependency management. We also explain

the Semantic Versioning standard and how it impacts dependency management.

2.1.1 Software Ecosystems

We study software ecosystems in the context of package libraries for software program-

ming languages. In this regard, a software ecosystems is a collection of software projects

which are developed, distributed and evolve under the same environment (Lungu, Lanza,

Gı̂rba, & Robbes, 2010). The environment in this context refers to package managers that

are charged with maintaining (add, remove, update, configure) and distributing (install)

software packages (Burrows, 2017; Decan et al., 2019). In the following, we present some

examples of currently popular software ecosystems and their corresponding package man-

agers:

10

• npm (Node Package Manager) is the main package manager for Node.js created in

2010. The package manager consists of an online database (the npm registry) which

is accessed by the command line client.

• PyPI (Python Package Index) is an official package repository for Python released

in 2003. The popular “pip” package manager in Python uses PyPI as the main source

for packages.

• RubyGems is a package manager for the Ruby programming language launched in

2004. The package manager distributes ruby program and libraries in a standard

“gem” format.

Different software ecosystems can also have different cultures and values, which are

enforced through peer pressure or policies. For example, the community around the npm

ecosystem favors ease of adoption for new technologies, even if it may lead to incompatible

and breaking releases. On the other hand, the Eclipse community has long recognized

stability as a key value, even if it may cause technical debt (Bogart et al., 2016).

2.1.2 Dependency Management

Dependencies between packages in a software ecosystem is a common technique to

facilitate code reuse. The dependency relationship from one package to another can be di-

rect (a package declares another as a dependency) or transitive (a package declares another

as a dependency which itself declares a third package as a dependency). A package can

reuse all of the functionalities provided by its dependencies or only make use of a subset

of the functionalities. Based on the example relationships in Figure 2.1, our project has

declared package A as a dependency. In this relationship, our project is referred to as the

dependent or a downstream package and package A is referred to as the dependency or an

11

upstream package. Package A has declared package B as a dependency, making package

B a transitive dependency for our project.

Your Project Package A Package B

Your Dependency Dependency of
Package A

DependencyDependency

Transitive Dependency

Downstream Upstream

Figure 2.1: Dependency relationships

Different software ecosystems have their own standards in declaring and managing

dependencies. In the JavaScript ecosystem of npm, packages use the package.json file

(Figure 2.2) to specify dependencies, along with other metadata such as package name

and version (npm Documentation, 2019a). This file consists of different sections for run-

time, development and optional dependencies. When a package is installed, npm will fetch

and install all upstream runtime dependencies, as they are necessary for the application to

function. Failure to fetch or install runtime dependencies will raise errors by the package

manager. Development dependencies are only required for development operations such

as testing and linters and are not necessary for package users. As for optional dependen-

cies, npm will try to fetch them, but failure to do so will not raise any errors since they

are not necessary for the package to function correctly. The installation of packages is also

performed for transitive dependencies (dependencies of dependencies) until the full depen-

dency tree is installed. Upon using the npm install command, the package manager also

creates a package-lock.json which includes the installed versions of all dependencies at the

time. This allows future installations of a package to remain consistent.

12

Figure 2.2: Example of a dependency configuration file (package.json)

2.1.3 Semantic Versioning (SemVer)

Semantic Versioning (SemVer) is the recommended versioning standard for many soft-

ware ecosystems including npm (npm, 2022a) and PyPI (Coghlan & Stufft, 2021). Tom

Preston-Warner, the co-founder of the GitHub platform, first introduced this standard in

2011. SemVer 2.0 was released in 2013 and it is the version referenced throughout our re-

search (Preston-Werner, 2019). SemVer addresses the dependency update issue by allowing

package maintainers to communicate what type of changes are included in a new release.

SemVer introduces a multi-part versioning scheme in the form of Major.Minor.Patch[-

Tag].

• Major: If a newly released version contains backward incompatible feature updates,

the maintainer will increase the major version number.

13

• Minor: If a newly released version includes a backward compatible feature update,

the maintainer will increase the minor version number.

• Patch: If the new release only contains bug or security fixes, the maintainer will

increase the patch version number.

• Tag: The optional tag is used for specifying build metadata and pre-release or post-

release numbers.

In a software ecosystem such as npm, developers can use SemVer, along with the depen-

dency notations in npm, to specify the degree of freedom granted to the package manager

in fetching new versions of a dependency. In order to be compliant with SemVer, devel-

opers should accept automatic updates for new minor and patch version for all post-1.0.0

releases. The common dependency notations in npm are as follows:

• The caret (∧) notation is used to accept only minor and patch updates for post-1.0.0

versions. For example, ∧2.3.4 is equivalent to [2.3.4-3.0.0).

• The tilde (∼) notation is used to accept only patch updates (when a minor version is

specified). For example, (∼)2.3.4 is equivalent to [2.3.4-2.4.0).

• The star (*) wildcard will give npm complete freedom to install any new version of

a dependency.

• Specifying a specific version will limit npm to only install that particular version.

SemVer Non-Compliance

While SemVer is a promising solution to many dependency update issues, and even

though it is recommended by ecosystem maintainers (Coghlan & Stufft, 2021; npm, 2022a),

it is not always followed in practice (Decan & Mens, 2019a). A survey of more than 2,000

14

developers from 18 different software ecosystems including the npm ecosystem showed

that while 92% of the respondents for npm claim to only increment the left-most digit if

they release an update that may break dependent code, 70% of the surveyed developers

had a different experience when updating their dependencies (Bogart, Filippova, Kästner,

& Herbsleb, 2017). In these cases, they experienced breaking changes even when updating

in compliance with SemVer guidelines. This leads developers to exercise caution when

following SemVer, especially for dependencies which have a history of non-compliance

for their releases.

2.2 Related Work

In this section, we present the research works closely related to our thesis. We start by

presenting the related studies on software ecosystems including npm. We then present the

related works on the important dependency challenges of the npm ecosystem and how our

thesis complements the literature.

2.2.1 Software Packaging Ecosystems

There is an extensive body of work that study the evolution and dependency dynamics

of different software ecosystems. Decan et al. compared the evolution of dependency net-

works in seven package ecosystems and proposed metrics to capture the growth, reusability

and fragility of the ecosystems (Decan et al., 2019). Kikas et al. studied the dependency

networks of the JavaScript, Rust and Ruby ecosystems and found all ecosystems to be

highly dependent on a subset of popular packages (Kikas, Gousios, Dumas, & Pfahl, 2017).

Soto-Valero et al. empirically studied the diversity of releases in the Maven ecosystem and

found that for popular packages, more than 50% of their versions are used by downstream

15

dependents (Soto-Valero, Benelallam, Harrand, Barais, & Baudry, 2019). Kula et al. pro-

posed a model for visualizing package diffusion and adoption in the Maven and CRAN

ecosystems and found the Maven ecosystem to have a more conservative approach to updat-

ing dependencies than CRAN (Kula, De Roover, German, Ishio, & Inoue, 2018). Vargas et

al. conducted a qualitative study with 115 industry practitioners to understand the influence

of technical, human and economical factors on how developers select third-party packages

(Larios Vargas, Aniche, Treude, Bruntink, & Gousios, 2020). They observed many ad-hoc

package selection procedures because developers do not have access to a unified infrastruc-

ture to support package selection. However, they found that developers generally look for

stability and security when selecting dependencies. Dietrich et al. investigated developer

choices on over 170 million dependency relationships across 17 software ecosystems (Di-

etrich, Pearce, Stringer, Tahir, & Blincoe, 2019). They found that developers struggle with

finding the sweet spot between fixed and flexible dependency practices.

The npm ecosystem is not only the largest software packaging ecosystem in the world

with over 2 million packages (npm, 2022b), it is also a highly interconnected ecosystem.

Wittern et al. studied the evolution of the npm ecosystem and found an increasing amount

of dependencies between packages, with more than 80% of the packages relying at least

on one other package (Wittern, Suter, & Rajagopalan, 2016). Zimmermann et al. reported

that the average number of packages in the ecosystem is growing every year, but also high-

lighted that the number of dependencies per package is growing at a super-linear rate (Zim-

mermann et al., 2019). In their study of the evolution of package dependency networks,

Decan et al. confirmed the exponential growth of npm in terms of both size and complexity

(Decan et al., 2019). Large packages are not the only popular packages in the ecosystem.

Chowdhury et al. found that some small and trivial packages (Abdalkareem, Nourry, We-

haibi, Mujahid, & Shihab, 2017) (also known as micro-packages (Kula, Ouni, German, &

Inoue, 2017)) impact close to 30% of downstream dependents, resembling points of failure

16

for the entire ecosystem (Chowdhury, Abdalkareem, Shihab, & Adams, 2021). In addition,

developers in npm do not limit their dependencies to stable and mature packages. Decan

and Mens studied the reliance on initial development releases (version number equivalent

to 0.y.z) and found that even though these releases are deemed unstable, more than 43% of

all downstream packages in npm are depending on such releases (Decan & Mens, 2021).

2.2.2 Breaking Changes and Technical Lag in the npm Ecosystem

Due to its rapid growth and highly connected nature, the npm ecosystem is plagued with

dependency-related issues. Breaking changes are changes in new package releases that are

backward incompatible with the older version, causing a breakage for downstream depen-

dents that update their dependency. In their study of the cultural values of different soft-

ware ecosystems, Bogart et al. (Bogart et al., 2016) observed that npm developers are less

concerned with introducing breaking changes, as long as they are clearly communicated

to downstream clients via version numbering (i.e. using SemVer). A follow-up study by

Bogart and Thung confirmed theses findings (Bogart, Kästner, Herbsleb, & Thung, 2021).

However, ensuring backward compatibility is difficult in practice. Venturini et al. empiri-

cally studied breaking changes and found that more than 11% of all downstream packages

in npm experienced breaking changes while updating to a non-major release (Venturini,

Cogo, Polato, Gerosa, & Wiese, 2023). The majority of these breaking changes were not

a result of a change in a direct dependency, but trickled downstream from transitive de-

pendencies. The authors also found that close to 22% of breaking changes are never doc-

umented. Moller et al. proposed a pattern matching technique based on static analysis for

detecting locations in JavaScript programs that are affected by breaking changes (Møller,

Nielsen, & Torp, 2020). Mujahid et al. proposed a crow-sourced technique that leverages

the automated test cases of downstream packages that depend on the same upstream pack-

age to detect breaking changes and notify downstream dependents (Mujahid, Abdalkareem,

17

Shihab, & McIntosh, 2020).

Fear of breaking changes has given room for another dependency-related issue in the

npm ecosystem- outdated dependencies. Zerouali et al. introduced the concept of technical

lag for dependencies in a software ecosystem which measure how far behind a package

is with respect to the latest version of their dependencies (Zerouali, Constantinou, Mens,

Robles, & González-Barahona, 2018). They found an average technical lag of 3.5 months

in npm, which indicates a reluctance to update dependencies. Decan et al. studied the

evolution of technical lag in npm and found that one in four dependencies in the ecosystem

suffer from technical lag (Decan et al., 2018a). They also found that most dependencies

with technical lag, increase their technical lag over their lifespan. Outdated dependencies is

not a problem specific to npm. Kula et al. studied the Maven ecosystem and found that 80%

of the projects have outdated dependencies (Kula, German, et al., 2018a). Technical lag is

often associated with a reluctance to update, but it may be created by deliberate decision-

making. Cogo et al. studied dependency downgrades in the npm package ecosystem.

They found that downgrades occur a reactive or preventive measure by the downstream

package and often leads to a more conservative use of the upstream dependency (Cogo et

al., 2019). In another study, Cogo et al. investigated the usage of deprecated packages

in npm and found that 27% of downstream packages directly rely on deprecated releases

(Cogo, Oliva, & Hassan, 2021). Additionally, they found that 54% of packages transitively

rely on deprecated releases.

Software ecosystems suffer from a great deal of dependency related problems which

arise from the decisions and habits of both downstream dependents and upstream main-

tainers. In order to understand the prevalence and impact of bad dependency management

decisions in downstream dependents, Chapter 3 presents an empirical study on JavaScript

projects to identify, catalog and quantify recurring dependency management issues that can

lead to breaking changes or technical lag in the npm ecosystem. In Chapter 4, we shift the

18

focus from the decisions of downstream dependents to understanding the characteristics

of upstream packages that influence how downstream dependents update their packages.

We propose a solution to updating dependencies by extracting the relationship between

package characteristics and the wisdom of the crowds. Our findings help developers in

managing their direct dependencies.

2.2.3 Security Vulnerabilities in npm Packages

The specific characteristics of software ecosystems create a breeding ground for secu-

rity vulnerabilities. The npm ecosystem in particular, emphasizes heavy reuse (Kikas et

al., 2017; Zimmermann et al., 2019) and tends to have a larger number of transitive depen-

dencies (Decan, Mens, & Claes, 2017; Decan et al., 2019). Consequently, certain packages

in npm have far-reaching influence (Decan et al., 2017) and can expose large portions of

the ecosystem if they are infected with a vulnerability. Zimmermann et al. studied the

security threats in the npm ecosystem. They found that installing an average npm pack-

age introduces an implicit trust on 79 third-party packages and highly popular packages

can influence more than 100,000 other packages (Zimmermann et al., 2019). The authors

also observed that up to 40% of the packages in npm rely on dependencies with publicly

disclosed vulnerabilities. Zerouali et al. explored the transitive impact of vulnerabilities

in the npm ecosystem and found that it takes up to 7 years to uncover and disclose half of

the hidden vulnerabilities in the ecosystem (Zerouali, Mens, Decan, & De Roover, 2022).

They also found that the number of dependents exposed to vulnerabilities through transitive

dependencies are twice the number exposed through direct dependencies. Pashchenko et al.

conducted interviews with industry practitioners and found that developers are concerned

about using packages that result in too many transitive dependencies (Pashchenko, Vu, &

Massacci, 2020).

The existence of long dependency chains in the npm ecosystem means that even when a

19

vulnerability is fixed, it is not immediately propagated through the ecosystem (Chinthanet

et al., 2021) and portions of the ecosystem continue to suffer the effects of vulnerabili-

ties. Decan et al. empirically studied the impact of vulnerabilities on the npm ecosystem

and found that the number of vulnerabilities is on the rise (Decan et al., 2018b). The au-

thors found that many a reluctance to update means packages remain vulnerable via their

dependencies even after the fix has been released. Chinthanet et al. investigated the re-

lease and adoption of vulnerabilities in npm and found that relying on patch releases is

not enough to receive vulnerability fixes as they are often bundled into minor and major

releases (Chinthanet et al., 2021). The authors also observed that the severity of vulnera-

bilities influence the propagation speed of the fix throughout the ecosystem. Alfadel et al.

analyzed Node.js applications and found that the main reason for vulnerable dependencies

in a project was simply the refusal to update to a newer version of the dependency (Alfadel,

Costa, Shihab, & Adams, 2023). They also observed that half of their applications were

exposed to publicly disclosed vulnerabilities for more than 3 months.

Security vulnerabilities are a major problem in software ecosystems. Since package

maintainers do not equally attend to their vulnerable dependencies, publicly disclosed vul-

nerabilities linger in the package dependency chains long after the fix has been released.

Vulnerabilities from our direct dependencies are one of the negatives consequences of the

bad dependency management decisions studied in Chapter 3. The impact of vulnerabili-

ties can be alleviated by choosing a suitable strategy to update dependencies, as proposed

in Chapter 4. However, update strategies for direct dependencies are less effective for con-

trolling the transitive effect of upstream packages further along the dependency chain. In

Chapter 5, we propose a solution to mitigate the impact of vulnerabilities from transitive

dependencies. We conduct an empirical study on the responsiveness of npm packages to

vulnerability fixes and identify the characteristics of fast-responder packages.

20

Chapter 3

Challenges in Dependency Management

Dependency management in modern software development poses many challenges for

developers who wish to stay up to date with the latest features and fixes whilst ensuring

backwards compatibility. Project maintainers have opted for varied, and sometimes con-

flicting, approaches for maintaining their dependencies. Opting for unsuitable approaches

can introduce bugs and vulnerabilities into the project, introduce breaking changes, cause

extraneous installations, and reduce dependency understandability, making it harder for

others to contribute effectively.

In this chapter, we empirically examine evidence of recurring dependency manage-

ment issues (dependency smells). We look at the commit data for a dataset of 1,146 active

JavaScript repositories to catalog, quantify and understand dependency smells. Through a

series of surveys with practitioners, we identify and quantify seven dependency smells with

varying degrees of popularity and investigate why they are introduced throughout project

history. Our findings indicate that dependency smells are prevalent in JavaScript projects

with two or more distinct smells appearing in 80% of the projects, but they generally infect

a minority of a project’s dependencies. Our observations show that the number of depen-

dency smells tend to increase over time. Practitioners agree that dependency smells bring

21

about many problems including security threats, bugs, dependency breakage, runtime er-

rors, and other maintenance issues. These smells are generally introduced as developers

react to dependency misbehaviour and the shortcomings of the npm ecosystem.

3.1 Introduction

Software ecosystems have completely changed the way we build software, by enabling

code reuse in large scale through software packages. Developers now rely on an increas-

ingly high number of packages to build their programs, reusing code to increase productiv-

ity, improve software quality and decrease time-to-market (Lim, 1994; Mohagheghi, Con-

radi, Killi, & Schwarz, 2004). However, this development paradigm creates a lot of depen-

dencies, and managing these dependencies has become a key issue for developers (Artho et

al., 2012; Bogart et al., 2016; Decan et al., 2019). An example incident in npm (Node Pack-

age Manager) is the release of a backward incompatible minor version 1.7.0 of the package

“underscore” that caused many complaints among dependent packages about underscore

not respecting Semantic Versioning (SemVer) (Chatfield, 2014). Another anecdote is the

removal of the “left-pad” package that caused widespread breakage among big internet

sites like Facebook, AirBnB, and Netflix (MacDonald, 2018).

Semantic Versioning (SemVer) has been presented as a solution to help effectively man-

age dependencies (Preston-Werner, 2019). It allows maintainers to automatically receive

fixes and minor updates, while also limiting their exposure to breaking changes. However,

previous research has shown that developers do not always conform to SemVer (Chinthanet

et al., 2019; Dietrich et al., 2019; Kula, German, Ouni, Ishio, & Inoue, 2018b; Wittern et

al., 2016). This has created major problems due to outdated dependencies and breaking

changes. There is evidence that up to 40% of the packages on npm rely on at least one

package with a publicly disclosed vulnerability (Zimmermann et al., 2019) and up to 53%

of package releases on npm suffer from some sort of technical lag (Decan et al., 2018a).

22

Simply allowing dependencies to automatically update is also problematic. A survey of

2,000 developers across different ecosystems has reported that 70% of the Node.JS devel-

opers have experienced breaking changes caused from updates when building their pack-

age (Bogart et al., 2017). Although the reasons and impacts regarding the circumvention

of guidelines such as SemVer and opting for alternative approaches have been referenced

in the literature, they are usually studied as a side-topic to explore other issues such as

technical lag (Decan et al., 2018a) or security vulnerabilities (Zimmermann et al., 2019).

We argue that in order to better improve the management of dependencies, there is

a need for a study that specifically focuses on dependency issues. Hence, the objective

of this chapter is to catalog, quantify, and understand these dependency issues, which we

refer to as dependency smells. Dependency smells are recurring violations of dependency

management guidelines that have negative consequences on the project and the ecosystem.

Through our empirical study, we curated and analyzed a dataset of 1,146 open source

JavaScript projects. First, we provide the definition and description of seven identified de-

pendency smells: pinned dependency, URL dependency, restrictive constraint, permissive

constraint, no package-lock, unused dependency, and missing dependency. These defi-

nitions are validated with an initial survey of twelve practitioners. We then qualitatively

investigate their advantages and disadvantages through a survey with 41 JavaScript prac-

titioners. We then conduct an empirical study to examine the prevalence of these depen-

dency smells, and investigate why they are introduced in the studied JavaScript projects.

Our study is formalized through the following research questions:

RQ1: How prevalent are JavaScript dependency smells? We built a tool that detects the

aforementioned defined dependency smells in the 1,146 JavaScript projects in our dataset.

Our findings reveal that dependency smells are prevalent in JavaScript projects. The results

reveal that 80% of the projects are infected with two or more distinct smells. Not all smells

occur at a large degree. Four out of seven appear in less than 30% of projects and the

23

majority of smells infect a minority (17%) of a project’s dependencies. However, the results

hint at inadequate attention to dependency maintenance or a lack of awareness regarding

best practices in dependency management.

RQ2: How do developers perceive dependency smells and their negative impact? We

crafted a questionnaire and surveyed 41 practitioners to quantify their agreement/disagree-

ment on the consequences and potential rationales of dependency smells. Developers con-

firmed the harmful nature of these smells and they were even more critical than we antici-

pated.

RQ3: Why are these smells introduced in JavaScript projects? We asked developers

why they opted to introduce a smell rather than using the alternatives suggested by npm or

SemVer. We aggregated the 28 responses into 14 reasons. Our findings show that experi-

encing breaking changes and needing a fix not yet published on npm were among the most

cited reasons for introducing a dependency smell.

Looking through the evolution of the dependency smells over time, we observe that

these dependency smells are addressed, but new smells are introduced more frequently than

old smells are being fixed. This has caused an overall upward trend in their accumulation.

This study presents (i) A catalog of dependency smells crafted and validated, by quan-

tifying responses from JavaScript practitioners, (ii) A large-scale empirical study of de-

pendency smells in 1,146 popular JavaScript projects, and (iii) A prototype tool named

DependencySniffer (Javan Jafari, 2020) that can analyze any JavaScript project that uses

npm and detect the presence of dependency smells. The tool can potentially be incorporated

into CI pipelines to prevent dependency smells from rippling through software projects.

The rest of the chapter is organized as follows. Section 3.2 introduces our catalog

of dependency smells. Section 3.3 and 3.4 present our dataset and the smell detection

technique for the empirical analysis. The results for the three RQs are presented in Section

3.5. We discuss smell evolution in Section 3.6 and we present our implications in Section

24

3.8. The related works are discussed in Section 3.9. Section 3.10 highlight the limitations

of our study and Section 3.11 concludes the chapter.

3.2 Dependency Smells

In this section, we define each dependency smell, the rationale for why it might occur,

and its negative consequences (Section 3.2.1). Similar to the code smell literature, whether

or not something is a smell is based on the context (Fontana, Dietrich, Walter, Yamashita,

& Zanoni, 2016). These smells have not been explicitly defined in the literature. They are

initially observed by studying violations of npm recommendations, violations of SemVer

guidelines and by studying the discussions surrounding the package.json file. We have

followed up the initial observations with a survey from twelve practitioners in the field to

better understand the negative consequences of each smell and why they might occur. We

sent out an open-format questionnaire (where respondents are free to write anything) to

seventeen JavaScript developers that we knew had sufficient experience with developing

JavaScript projects. The developers were a convenient sample from Canada and Brazil

that were known by the authors. They were contacted by email. We presented them with

different approaches of depending on an npm package and asked them to write down the

advantages and disadvantages associated with each approach. Since we did not want to

bias the developers into associating negative consequences with the presented approaches,

we refrained from calling an approach a “smell” and also included the SemVer-compliant

alternative among our approaches. More importantly, we asked them to give us both advan-

tages and disadvantages for each approach. The advantages not only help in reducing bias

but also help in understanding why a particular dependency smell might occur. In order to

ensure a similar understanding of dependency management and SemVer, we provided the

participants with links to the npm dependency reference (npm Documentation, 2019a) and

the SemVer standard guide (Preston-Werner, 2019) .

25

From the seventeen invites, twelve developers responded to our first survey (i.e,. 70%

of response rate). From the 12 respondents, 10 identified themselves as industry practi-

tioners and 2 participants were students. All participants have used npm and 11 out of 12

participants had at least one year of experience in Node.JS development. From the 12 re-

spondents, 11 were familiar with SemVer. For each dependency smell, we categorized the

12 responses using an open-coding approach similar to the guidelines expressed by Philip

Burnard (Burnard, 1991). Through an iterative process for each smell, we extracted and

grouped relevant themes from developer responses into reasons for why a smell occurs and

reasons for why it can cause problems.

The smells identified in this study focus on how dependencies are used and managed,

rather than what dependencies are selected. Therefore, issues such as using too many

dependencies or the wrong selection of dependencies are not covered, as they are specific

to the requirements and functionalities of each project.

3.2.1 Dependency Smells Catalog

This smells catalog consists of a list of seven identified dependency smells. We do not

claim this to be an exhaustive list, but given that npm limits the possible expressions of

dependency constraints in the package.json file, the smells presented here cover the major-

ity of different alternatives for depending on a package. Figure 3.1 presents examples of

the restrictive constraint, pinned dependency, permissive constraint, and URL dependency

smells. Other dependency smells are not identifiable solely by looking at the package.json

file and they require closer inspection of the source code or project directory.

In identifying the negative consequences associated with each pattern, along with the

reasons for why they might occur, we relied on developers’ feedback as well as the inher-

ent npm rules for evaluating dependency constraints. In each smell’s definition, we give

examples of developer responses (Tagged P1 through P12). Table 3.1 presents an overview

26

Figure 3.1: Example of a smelly package.json file

of the smells and their negative consequences.

Note that in this first survey we did not ask about the Unused Dependency and the

Missing Dependency smell. These smells are included as they are both a clear case of

dependency mismanagement. They create a mismatch between dependencies used in the

source code and the ones defined in package.json which is a violation of npm guidelines

(npm Documentation, 2019a). Hence, we do not expect any developers to consider them as

a valid approach with positive outcomes. Missing dependencies can cause runtime errors

or crashes when executing the code that relies on the dependency. Unused dependencies

unnecessarily increase installation size and maintenance effort required for dependencies.

Soto-Valero et al. (Soto-Valero et al., 2021) use the term bloated dependencies to study un-

used dependencies in the Maven ecosystem. Depcheck is an npm tool which reports unused

and missing dependencies for npm projects (J. Li & Lukic, 2019). Additionally, we did not

ask developer’s opinion on not using package lock, which is the smell in our catalog (No

27

Table 3.1: Overview of dependency smells.

Smell Description Consequence

Pinned Dependency Using a fixed version Not receiving fixes and manual workload

URL Dependency Fetching from a URL Increased security risks and link breakage

Restrictive Constraint Only updating to patch releases Not receiving compatible features and fixes

Permissive Constraint Allowing major version updates Significantly higher risk of breaking changes

No Package-Lock No package-lock in repository No guarantee of consistent installation

Unused Dependency Installing unused packages Unnecessarily bloated dependency folder

Missing Dependency Omitting a needed package Code breakage or ambiguous dependencies

package-lock). Instead, we ask the advantages and disadvantages of using package.lock

in the project, given this more intuitive and easier to assess than the consequences of not

using an approach. We then use the pros of using a package.lock as the cons of not having

package.lock in the project, and vice versa.

S1 - Pinned dependency:

Description: A pinned dependency is a type of restrictive approach in which only a single

version of the dependency is accepted, for example pinning to version 1.2.3.

Why it occurs: Choosing to pin dependencies is a common approach to ensure fine-grained

control over the software packages that a project depends on. It is sometimes even recom-

mended for runtime dependencies of deployable projects to ensure consistent installations.

This approach drastically reduces the risk of breaking changes and unknown bugs or vulner-

abilities that may exist only in newer releases. For example, P12 said: “Makes it extremely

unlikely for breaking changes to happen ...”.

When it is a dependency smell: By pinning a dependency, we will not receive important

security and bug fixes, as P12 mentions: “you are more exposed to security risks and bugs”.

It therefore leaves our project less and less secure over time, unless manual measures are

taken to constantly update the constraint to a newer version, which will require extra effort.

For example, P10 said: “[It] creates technical debt in dependencies. Someone has to put in

the time later to update them ...”. Having pinned dependencies is even worse for packages

28

which will later be used as dependencies in other projects, since npm can no longer re-use

similar dependencies for installed packages but must rather have separate installations for

the different versions, which can cause a significant increase in the number of installed de-

pendencies for a project. For example, P10 cited: “...increases node modules size because

different packages can’t share the same installation”.

S2 - URL dependency:

Description: URL dependencies are constraints that directly point to an online URL, often

pointing to a repository link such as GitHub. The URL may point to a general repository

or a specific release or branch in that repository. Figure 3.1 contains an example of a URL

dependency.

Why it occurs: The most plausible reason for choosing a URL dependency is in cases

where there is no equivalent on the npm package manager, as P2 states: “Point to a package

outside npm listings”. Another potential reason is instances where the dependent strongly

needs a new fix in the repository that has not yet made its way to the latest release on npm.

For example, P7 said: “... the fix is applied to the GH repo way before we see it on npm.

...”.

When it is a dependency smell: URL dependency constraints are problematic for a vari-

ety of reasons. If the URL points to a master branch of a software repository it can lead to

breaking changes since any new change to the master branch will be fetched. If the URL

points to a specific release of a package on a repository or other type of webpage, it is akin

to a pinned dependency. In any case, it is very difficult to adhere to SemVer guidelines

whilst using URL constraints for dependencies. In addition, since developers are operating

outside npm, they cannot take advantage of its project metrics and security advisories, and

they are more vulnerable to typosquatting attacks (different and malicious packages with

29

very similar names) (npm, 2017). Apart from security issues, the unstable nature of un-

released packages can also introduce more bugs, as mentioned by P9: “... vulnerable to

typo-squatting attacks and even if the repository is legit, you are depending on something

unstable ...”. It can also be harder to identify if a new version is released if the URL does

not point to a code repository. Additionally, npm prohibits the deletion of uploaded pack-

ages after a grace period, but a URL can change or be removed completely at the owner’s

discretion, leaving developers with missing dependencies. For example, P8 cites: “If the

linked library disappear then code will stop working ...”. If the package exists on npm, one

should use the published version. Otherwise, it may be possible to avoid this dependency

in favor of its npm-established alternative.

S3 - Restrictive constraint:

Description: Restrictive constraints are any dependency constraints that are more restric-

tive than SemVer. For post-1.0.0 releases, this is equivalent to only accepting patch updates

using the ”˜” notation (e.g. ˜2.1.3) or by using the ”x” notation in the patch component

of a constraint (e.g. 2.1.x). While pinned dependencies are a special case of restrictive

constraint, we opt for separating them in our study for clarity purposes.

Why it occurs: When a developer knowingly opts for a more restrictive approach in spec-

ifying dependency constraints, it is likely due to fear of breaking changes from automatic

updates. For example, P12 said: “... reduce[s] the chance of breakage”. Indeed, adhering

to SemVer only guarantees backward compatible updates if the maintainers of the depen-

dency also adhere to SemVer. This verification is not straightforward and it can be difficult

to ensure backward compatibility in practice (Decan & Mens, 2019b). Nonetheless, restric-

tive constraints still allow patch updates, as P8 states: “This will make sure your libraries

are up to date in regard to security patches”.

When it is a dependency smell: Restrictive constraints prevent the project from receiving

30

backward compatible updates. For example, P10 mentions: “I will not get ”safe” feature

updates”. In practice however, the situation could be even worse. Since minor releases

can also contain crucial fixes which are not necessarily back-ported to previous patch re-

leases, using the restrictive constraint does not even guarantee we will receive the majority

of important security or bug fixes. For example, P9 states: “quite common to see lots of

bugs and vulnerabilities addressed in a minor which never make it to any of the previous

patch releases”. Alternatively, restrictive dependencies have to be manually changed more

frequently to keep up with newer versions. This creates extra work for developers, as men-

tioned by P2: “Increased work required to update the system”.

S4 - Permissive constraint:

Description: Permissive constraints are any dependency constraints that are more permis-

sive than SemVer. For post-1.0.0 releases, this is equivalent to accepting major updates

using the * or ”” wildcards, or by specifying a minimum version range without a maximum

limit such as > 1.2.3.

Why it occurs: In cases where there is an inter-dependency between dependencies main-

tained by the same developers, they might freely accept any updates since they are in charge

of both projects and are therefore more confident in the type of changes they make. For

some, removing restrictions is an easy way to make sure the latest updates are fetched. For

example, P9 said: “It caters to my inner laziness”.

When it is a dependency smell: Permissive constraints expose projects to the constant risk

of breaking changes, as stated by P10: “Sooner or later, an update will break the API”. If

the maintainers pinpoint the breaking changes immediately, they have to manually change

the constraint to an earlier version, which they have first to identify to work correctly. This

is not always easy if semantically breaking changes have creeped up during several up-

dates. In addition, it is irrational to claim a project will work with all future versions of a

31

dependency. In fact, the Cargo ecosystem has prohibited the use of wildcards for this very

reason (Rust-lang, 2018).

S5 - No package-lock:

Description: The npm package-lock file includes the entire dependency tree with precise

dependency versions at a specific time, which make sure the project will be built. The

npm documentation recommends that the package-lock should be committed into source

repositories (npm Documentation, 2019b). However, we observe that developers do not al-

ways include package-lock (or its similar counterparts: yarn.lock or npm-shrinkwrap.json)

in their project repositories.

When it occurs: Since package-lock is auto-generated, this smell occurs because develop-

ers chose not to commit the file into their repository. Since the package-lock does not affect

the package.json file and it can be rebuilt if the desired dependencies change, or it can be

ignored altogether, we do not see any rationale for not including it, and developers seem to

generally agree. For example, P12 said: “I don’t see any issues with having package-lock”.

Why it is a dependency smell: In the absence of the package-lock file, there is no way to

guarantee that installation at different times will yield the same result (even if the depen-

dencies are pinned), as stated by P10: “everyone can use it [package-lock] to install the

same exact thing”. In a sense, package-lock provides the best of both worlds by allowing

developers to comfortably use SemVer in their package.json file while giving the option to

install using a pinned dependency tree. Without a package-lock there is no way to track the

history of dependencies without uploading the large node modules folder. For example, P9

mentions: “... if I don’t use package-lock ... I need to push my node modules folder”.

S6 - Unused dependency:

Description: The unused dependency smell represents runtime dependencies that exist in

32

the package.json file, but are not used in source code of the project.

Why it occurs: The unused dependency occurs when the code and import statements that

needed the dependency were removed but the package.json file has not been cleaned up to

properly reflect this. Alternatively, the dependency may only be used in development envi-

ronments but it is incorrectly listed under runtime dependencies instead of the development

dependencies in the package.json file.

When it is a dependency smell: If the dependency was actually removed from the project,

then including it in the package.json file will cause an extraneous package installation and

take up unnecessary space in the modules folder. Even if the dependency is used in de-

velopment but incorrectly specified under runtime dependencies rather than development

dependencies, it will result in the same extraneous installation when installing a project for

production. Additionally, both cases will cause confusion for users and developers of the

project. In any case, a mismatch between the dependencies imported in the source code and

the ones defined in the package.json is a violation of npm guidelines (npm Documentation,

2019a).

S7 - Missing Dependency:

Description: The missing dependency smell represents packages that are used in the source

code, but not specified in the runtime dependencies of the package.json file.

Why it occurs: The missing dependency smell can occur when a dependency is manually

installed but not added to the package.json (by using the ‘–save’ option with the npm in-

stall command). Additionally, it can appear because the dependency is removed from the

project, and thus the package.json file, but the import statements are not fully cleaned up

from the code. Alternatively, a missing dependency may still be used in the code but it has

not yet raised errors because it exists in a seldom-reached execution path.

When it is a dependency smell: Missing dependencies can be very problematic if they

33

are in fact used in the source code but are not properly specified in the package.json file.

This can result in bugs or crashes while executing the part of the source code that relies

on this dependency. If the missing dependency occurs because the dependency is imported

in source code but never actually used, it will still create ambiguity for users and devel-

opers of the source code. In any case, a mismatch between the dependencies imported in

the code and the ones defined in the package.json is a violation of npm guidelines (npm

Documentation, 2019a).

3.3 Dataset

We gather a large set of open-source JavaScript projects that are hosted on GitHub

to create our dataset. We chose to study projects written in JavaScript since it is the most

popular programming language on Github (GitHub, 2019). We also study npm since it is the

official registry of JavaScript packages with more than 1.5 million packages (Libraries.io,

2020).

We start our data collection by retrieving the GitHub metadata from GHTorrent (Gousios,

2019) containing data until June 1st, 2019. We use this metadata to identify non-forked

open-source Javascript projects that have a minimum of 10 contributing authors (as deter-

mined by GitHub) and at least 10 commits since January 2019, that is, six months before

the data collection started. With this criteria, we aim at filtering projects that are actively

maintained by at least a medium sized team of developers and reduce the chances of skew-

ing our results towards abandoned and toy projects, prevalent on GitHub (Abdalkareem et

al., 2017; Kalliamvakou et al., 2014).

Using our selection criteria, we identified a total of 2,216 candidate projects. We further

prune this dataset by 1) removing 569 projects that do not contain package.json, making it

impossible to reliably pinpoint their dependencies and 2) removing 413 projects that had

no runtime dependencies in their package.json, as development and optional dependencies

34

(a) Number of commits (b) Number of authors
(c) Age of the projects

(months)

(d) Number of dependen-

cies

Figure 3.2: Distribution of projects in the dataset under four perspectives: age, authors,

commits and dependencies

are not in the scope of this study. We were left with 1,146 projects as our dataset. This

accounts for 26,924 dependency constraints (in the latest snapshot).

Figure 3.2 presents the dataset distribution for the number of commits per project, the

number of authors per project, the projects’ age in months and the number of dependen-

cies per project. Our dataset is comprised of 1,541,504 commits, with a median of 555

commits per project. It also contains 29,400 total authors with a median of 21 authors per

project. The median age for the projects is 24 months. The dataset contains a total of

26,924 dependencies with a median of 15 dependencies per project. These statistics are

indicative of the diversity of our dataset, comprised of well-maintained and active open-

source JavaScript projects. A replication package of our study is available on Zenodo

(Javan Jafari, Elias Costa, Abdalkareem, Shihab, & Tsantalis, 2021).

3.4 Smell Detection

Since we are aiming at analyzing a large dataset of JavaScript projects, some of our

analyses are automated using a tool we developed specifically for this purpose. Our tool can

easily and effectively be used to analyze any JavaScript project and detect current depen-

dency smells. The tool prototype (DependencySniffer) is open source and accessible

to everyone (Javan Jafari, 2020).

For the first four smells (pinned dependency, URL dependency, restrictive constraint,

35

permissive constraint), we go through the projects in our dataset and parse the package.json

and their related commits and commit diffs. The parser is a prominent part of our detec-

tion because the plain textual diffs are not useful for automated analysis and they can be

error-prone. We first parse the package.json in the latest snapshot of the project and store

all dependency profiles in a structured SQL database. These dependency profiles can be

queried to obtain information such as the name, version constraint and existing smells. The

first four smells are identified using regex rules on the version constraints. We manually

checked the results of 50 smell extractions to fine-tune the rules and ensure the rules prop-

erly identify the first four smells. The fifth dependency smell (No-package-lock) can be

identified by looking through a projects root directory. We used the depcheck external tool

to find unused and missing dependencies. In order to investigate the evolution of depen-

dency smells over project history, we need to gather the historical information. We use

git log to identify the commits that modify the package.json file. We then run a large

contextual git diff on those commits, i.e., diffs that also include unchanged lines, to

properly parse the entire JSON dependency object into a SQL database. To do so, we per-

form an intersection of the dependencies in the before and after commits. The elements

that are not in the intersection from the before commit are ”deleted” dependencies. The

elements that are not in the intersection from the after commit are ”added” dependencies.

The elements in both the ”added” and ”deleted” sets that refer to the same dependency but

with a different version or different constraint are ”modified” dependencies. This database

contains added, removed, and modified dependencies in each commit. Differentiating be-

tween these operations are important because we do not want to flag a smells as fixed, due

to the removal of the dependency from the package.json file. Aside from the dependency

profile, this database captures commit-relevant information (e.g., commit message, commit

date) needed for answering RQ3.

36

3.5 Results

In this section, we motivate our research questions, describe the approaches to answer

them, and present their results.

3.5.1 RQ1: How prevalent are JavaScript dependency smells?

Motivation: Thus far, we have catalogued seven dependency smells and described their

negative consequences in software projects. In this question, we aim at finding empirical

evidence of their existence to better understand their prevalence and importance. We look

at the current snapshot of projects to see which smells are more common, which will give

us a clear picture of the current landscape and guide our in-depth analysis.

Approach: We parse the package.json file of each project in our dataset and create a struc-

tured database for the dependencies (Section 3.4) to identify the occurrence of the depen-

dency smells S1 to S4 (see Table 3.2). For the no package-lock smell (S5), we verify

the existence of package-lock.json and other lock files including npm-shrinkwrap.json and

yarn.lock in the root directory of the studied projects. To identify the Unused Dependency

(S6) and Missing Dependency (S7) smells, we resort to the Depcheck tool (J. Li & Lukic,

2019). Depcheck is a tool for analyzing dependencies in projects, reporting instances of

unused dependencies (i.e., mentioned in package.json but not used in the code) or missing

dependencies (i.e., absent in package.json but used in the runtime source code). It works

by analyzing the package.json and comparing the declared dependencies with the depen-

dencies used in the code. We parse Depcheck’s output to analyze the occurrence of the two

dependency smells.

Results: Table 3.2 shows the dependency smells and the number and percentage of JavaScript

projects in our study that have these dependency smells. Overall, our findings show that

dependency smells are prevalent, with four out of seven appearing in more than 25% of the

projects. As can be seen in Table 3.2, developers choose to pin some of their dependencies

37

Table 3.2: Dependency smells in extracted projects.

Dependency Smell Projects (%)

S1 Pinned dependency 598 (52.2%)

S2 URL dependency 117 (10.2%)

S3 Restrictive constraint 106 (9.2%)

S4 Permissive constraint 41 (3.6%)

S5 No package-lock 304 (26.5%)

S6 Unused dependency 915 (79.8%)

S7 Missing Dependency 729 (63.6%)

Figure 3.3: Distribution of dependency smells ratio in the latest snapshot of projects that

contain at least one instance of the smell. We specify the number of projects plotted (N)

and the median of the distribution (median).

in over 52% of the projects. This is because while pinning dependencies has many draw-

backs, it is still common practice among developers who do not trust their depended-upon

packages to properly abide by SemVer.

The package-lock could be used as a more appropriate alternative for pinning (although

not exactly the same thing), since it pins the entire dependency tree while also allowing

developers to abide by SemVer. Even if the project is not meant to be directly installed,

it aides development cycles by preventing breakage in transitive dependencies (Section

3 presents other reasons for using package-lock). In any case, this lock file is effortless

to generate and will be ignored when the package is fetched as a dependency from npm.

However, package-lock is not used in over 26% of the projects.

In order to investigate this further, we cross-reference the data to identify whether these

two dependency smells occur in the same projects, and present this analysis in Table 3.4.

The results are quite interesting. More than 40% of the studied projects contain both

38

Table 3.3: Number of projects containing distinct smell types

of Distinct Smells # of Projects % of Projects

Zero 41 3.6%

One 188 16.4%

Two 362 31.6%

Three 357 31.2%

Four 160 14%

Five 32 2.8%

Six 6 0.5%

Seven 0 0%

Table 3.4: Co-occurrence of pinned constraints with the existence of package-lock.

Package-lock Dependency smell Projects (%)

Exists Contains pinned dep. 463 (40.4%)

Exists Contains unpinned dep. 783 (68.3%)

Does not exist Contains unpinned dep. 277 (24.2%)

Does not exist Contains pinned dep. 135 (11.8%)

package-lock and pinned dependencies (row 1 in Table 3.4). We also observe that more

than 68% of the projects that have a package-lock did not feel the need to pin all of their

dependencies (row 2 of Table 3.4). Conversely, 11.8% of the projects had at last one in-

stance of a pinned dependency but did not opt to include the package-lock. Note that the

percentages in Table 3.4 should not add up to 100% because a single project can contain

both pinned and unpinned dependencies.

As can be seen in Table 3.2, the URL dependency smell is less common but still appears

in over 10% of the projects. This is followed by the restrictive constraint smell which

appears in more than 9% of the projects. The Permissive constraint is perhaps the least

common smell, appearing in less than 4% of the projects. This makes sense since this smell

is almost never justified, unless we have complete control over the dependent package.

Our results show that developers are much more likely to err on the side of caution when

it comes to breaking changes, since restrictive constraints and pinned dependencies are

39

substantially more common than permissive constraints.

Unused and missing dependencies are surprisingly common, appearing in 79% and

63% of the projects, respectively. While the high incidence of unused dependencies indi-

cates an overall lack of attention to dependency maintenance and can bloat the installation

of some applications, our analysis show that the large majority of the projects require de-

pendencies that are not declared in the package.json (missing dependencies), which can

cause bugs and crashes. Overall, these results indicate JavaScript developers seem to strug-

gle to maintain a healthy package.json file.

We studied the relationship between project characteristics such as age, number of de-

pendencies, number of commits, and the number of maintainers on the occurrence of each

dependency smell. Based on the mentioned characteristics, we found significant differ-

ences between smell-infected and smell-free projects using the Man-Whitney-U test for

p<0.05. However, analyzing the effect size using Cliff’s delta reveals the differences to

be small or negligible for all characteristics except the number of dependencies (large ef-

fect size). This is not surprising as increasing the number of dependencies increases the

likelihood of a project being infected by a smell.

So far, we have investigated whether projects contain dependency smells or whether

smell occurrence is affected by project characteristics, but not the extent in which they oc-

cur within the projects. For instance, pinning a single dependency may have much less

impact on a project maintenance than pinning half of its project dependencies. To put the

extent of smell occurrences per project into perspective, we show in Figure 3.3 the dis-

tribution of dependency smell percentage on the projects with at least one instance of that

smell. The dependency smell percentage normalizes the number of dependency smells with

respect to the total number of the project dependencies, as projects with large number of de-

pendencies will have a tendency to have more smells. In the case of Missing Dependency,

we perform a different normalization, as these represent dependencies that are not specified

40

by the project. We calculate the dependency smell percentage by dividing the number of

identified missing dependencies over the number of dependencies in package.json + the

number of missing dependencies. Note that we did not include the no package-lock smell,

as calculating the percentage for this particular smell makes no practical sense - a project

either has the smell (100%) or not (0%).

All of the violin plots have a relatively non-uniform distribution, with the majority of

smell distributions having a median of under 17%. In other words, smells usually infect a

minority of a projects dependencies. In particular, projects tend to have a relatively small

percentage of URL and Missing dependency smells, while Pinned and Unused dependen-

cies occur in higher proportions in our dataset. Observing the pinned dependency plot near

the 100% mark shows that some projects (7.5% of all projects) may decide to use pinning

as a blanket dependency strategy regardless of the specifics of each dependency. On the

other hand, the URL dependency smell is often used on specific cases. We further explore

the reasons why these occur in Section 3.5.3.

The results reveal that 80% of the projects are infected with two or more distinct

smells. However, not all smells occur at a large degree. Four out of seven appear in

less than 30% of projects and the majority of smells infect a minority of a project’s

dependencies.

3.5.2 RQ2: How do developers perceive dependency smells and their

negative impact?

Motivation: After realizing the prevalence of dependency smells in JavaScript projects, we

want to understand how developers perceive these smells and their negative consequences.

Do the developers agree that these smells are harmful? Do different smells have different

levels of impact? This will help us understand if the prevalence of these smells are in fact

a major concern.

41

Approach: In order to examine the negative consequences of dependency smells, we

crafted a survey and asked respondents to rate their agreement/disagreement to a num-

ber of statements about each smell. We craft the statements by grouping the responses

from the first survey from Section 3.2 into encompassing statements about each smell. We

also included statements about using SemVer, to assess how developers see the use of this

standard in practice.

To that aim, we create a questionnaire containing all statements in Table 3.6, and ask

practitioners to rate their agreement on a likert-scale of 1 to 5 (strongly disagree, disagree,

neither, agree, strongly agree). Note that some statements might seem positive/negative, but

considering the level of disagreement from developers may reveal the opposite. For exam-

ple, the positive statement that restrictive constraints “allow for all important security and

bug fixes” has been met with disagreement, meaning the inverse is true. We were careful

not to bias the participants in being negative towards the dependency smells. To do so, first,

we refer to each of the smells as dependency approaches and include the SemVer compli-

ant approach in the questionnaire. Second, to avoid confusing the participants, we did not

use the labels used throughout this study (e.g., Restrictive constraint, URL Dependency)

and instead focus in describing the smells as an “approach” for managing dependencies.

For instance, instead of writing “Restrictive Constraint” we specified “Allowing npm to

only install the latest patch updates”. Instead of ”URL Dependency” we use “Specifying

a direct URL to fetch the dependency”, and so on. The sole exception are the dependency

smells Unused Dependency and Missing Dependency, which are clear dependency issues

and we framed them as such in the questionnaire. The participants could also freely input

comments on a text box for each dependency smell, to clarify and justify their agreement

or further address aspects not mentioned in our questionnaire.

Similar to Section 3.2, we ask the advantages and disadvantages of using package.lock

in the project, given this more intuitive and easier to assess than the consequences of not

42

Table 3.5: Background of participants in the survey.

Dimension Experience %

Background

Industry Practitioner 75.6%

Academic Researcher 19.5%

Student 4.9%

Node.JS

> 5 years 24.4%

4-5 years 24.4%

1-3 years 41.5%

< 1 year 9.8%

npm use

Always 48.8%

Most projects 43.9%

Sometimes 4.9%

Rarely 2.4%

SemVer

Completely familiar 80.5%

Somewhat familiar 12.2%

Not familiar 7.3%

Total participants 41

using an approach. We then use the pros of using a package.lock as the cons of not having

package.lock in the project, and vice versa.

It is worth noting that we did not include statements that relates to how SemVer or npm

operates, since our goal was to evaluate qualitative statements rather than quiz the respon-

dents on how SemVer or npm works. For example, a common issue associated with pinned

dependencies is that developers cannot automatically receive new updates. However, this

is a fact and is not up to debate. Even though it exists in our smell definition, it does not

appear in the survey. On the other hand, the security problems associated with pinning

dependencies is a qualitative characteristic which depends on developers’ experience.

To recruit our survey participants, we use a snowball sampling method (Goodman,

1961) where we posted this survey on Twitter and the Node.JS community on Spectrum.

We received a total of 41 replies. As Table 3.5 shows, the set of respondents is composed

primarily by industry practitioners (75.6%) and academic researchers 19.5%). The majority

43

of the participants have more than a year of Node.JS development experience (83.3%),

use npm on most or all of their projects (92.7%) and are completely familiar with npm

(80.5%). We present the background and the experience of respondents with Node.JS, npm

and SemVer in Table 3.5.

Results: We present the results of our survey in Table 3.6, showing per dependency smell

and statement, the distribution of the agreement levels as a Divergent Stacked Bar chart. We

center-align the bars on “Neither”. Hence, a statement with mostly green bars tending to the

right shows a more frequent agreement within the 41 participants. Conversely, statements

with bars tending to the left (orange) convey a more frequent disagreement to the statement

by the respondents. Note that each statement is either a rationale for using the dependency

smell/approach (marked with ‘+’) or a disadvantage of using the smell/approach as a valid

approach (marked with ‘−’).

Overall, the results shown on the third column of Table 3.6 indicates that developers

substantially agree with 15 out of the 21 statements. Developers mostly agree with all

statements related to the benefits of using SemVer, and the problems that may be caused

by Unused and Missing Dependencies. Aside from this, we see a more common agree-

ment on the downsides of using dependency smells. For instance, the three highly agreed

upon statements related to Pinned Dependency are all related to the downsides of pinning

dependency: increases bugs and vulnerabilities over time, increases installation size and

creates extra overhead for maintainers. We observe a similar picture in the highly agreed

upon statement for Permissive Constraint and URL Dependency, indicating that developers

tend to agree with the downsides of using the dependency smells.

All the six statements where developers more frequently disagree are related to the ra-

tionale of using a dependency smell as a valid approach. For instance, most developers

either disagree or strongly disagree that using a Permissive Constraint makes dependen-

cies easier to manage. When justifying their position, developers pointed out that: “It is

44

Table 3.6: Survey results for quantifying smell characteristics. Each statement is either a

rationale (+) for using the smell as a valid approach or a downside (−) of the dependency

smell. The last column presents the aggregated total for each statement from 1 to 5 (strong

disagreement to strong agreement)

3

1

4

10

1

2

2

19

11

19

19

15

1

3

3

1

9

5

6

11

1

11

15

2

24

26

18

6

14

27

32

10

6

4

12

7

5

19

4

32

27

23

25

29

30

12

4

3

15

25

12

1

1

14

3

27

1

36

21

1

6

2

16

6

4

1

-35 -25 -15 -5 5 15 25 35 45

Strongly Disagree Disagree Neither Agree Strongly Agree
Smell/Approach Statement Overall

Pinned Dependency

− Increases bugs and vulnerabilities over time 4.1

− Increases installation size 3.8

− Creates extra overhead for manually updating 3.5

+ Drastically reduces breaking changes 3.2

URL Dependency

− Can cause dependency breakage (link-removal) 4.6

− Increases security risk and bugs 4.2

+ Useful for non-npm packages and custom forks 3.8

+ Useful for getting latest fixes not yet published 2.6

Restrictive Constraint
+ Significantly reduces breaking changes 3.3

+ Allows for all important security and bug fixes 2.3

Permissive Constraint
− It is sure to lead to a breaking change 4.6

+ Makes dependencies easier to manage 2.2

Package Lock

+ The best way to ensure consistent installations 4.9

+ Provides a historical snapshots of dependencies 4.5

− Only useful for applications not packages 2.1

Unused Dependency

− It will cause an extraneous installation of
a dependency and waste storage memory 4.1

− The mismatch between declared and
used dependencies confuses users 3.8

Missing Dependency
− It will cause unexpected runtime errors 4.4

− The mismatch between declared and
used dependencies confuses users 3.9

SemVer Compliant
+ Ensures I receive necessary security and bug fixes 3.9

+ Ensures I don't experience breaking changes 3.6

45

only easier to manage [the dependencies] if nothing breaks, which it will” and said that:

“Solves some vulnerabilities but causes others.” Another vastly disagreed upon statement,

is related to Restrictive Constraint: Allows for all important security and bug fixes. De-

velopers pointed out that: “[...] maintainers bundle many fixes into non-patch releases”

and said that: “(one) should never ONLY rely on patch releases for fixes.” Another highly

contested view is related to the cons of using package.lock: Only useful for applications

not packages. As we mentioned before, this statement actually points out a disadvantage of

not using package.lock in projects. Most practitioners disagree, pointing out that: “Even

for packages, it decreases test flake in CI, causing less maintainer stress”, showing that

they believe there is not a good reason not to include a package.lock on JavaScript projects.

Overall, developers are even more conservative when it comes to rationalizing the us-

ages of dependency smells than we anticipated. While all the downsides of using depen-

dency smells as an approach were highly agreed upon by practitioners, they have disagreed

with statements that attempt to rationalize dependency smells as valid approaches in par-

ticular cases.

Not only do practitioners confirm that dependency smells can be harmful to the

maintenance and security of software projects, but practitioners are even critical

towards rationales for turning to these smells in specific circumstances.

3.5.3 RQ3: Why are these smells introduced in JavaScript projects?

Motivation: Observing the prevalence and the impact of dependency smells leads us to

ask the question: why are these smells introduced? We were keen to identify reasons on

why developers have introduced a certain dependency smell and whether the introduction

of a smell was a conscious effort by the developer or if it was merely a by-product of other

development or maintenance tasks.

46

Approach: For this analysis, we reach out to 100 developers that have introduced a de-

pendency smell in the studied projects in our dataset. We only consider the cases where

a developer changed the dependency constraint from SemVer to a dependency smell. In

such cases, we expect developers to be aware of semantic versioning and are more likely

to remember what motivated them to use an alternative approach. We also prioritize more

recent changes with the hope that the changes are still relatively fresh in their minds (al-

though this resulted in an older change from 2015 for the permissive constraint smell to

also be included, since this smell has less cases overall). We ignore ”no-reply” emails.

In total, we sent out 100 emails that reached a recipient, 25 for each of the 4 depen-

dency smells: Pinned dependency, URL dependency, Restrictive constraint, and Permis-

sive constraint. We omit Missing and Unused dependencies from this analysis, as these

are clearly a symptom of dependency mismanagement and there are no valid rationales for

introducing them. We also omit ”No Package-Lock” from this analysis as this is a project

decision not easily attributed to a single developer we could contact to get information. It

is also not a decision that regularly changes due to dependency modifications and is often

related to the development culture of individual projects. Our email provided details of the

change such as the dependency name, dependency constraint, and the commit message,

along with GitHub links to the commit that caused the change. We asked developers ”why

they switched to this approach instead of using SemVer like before”. Developers were

suggested to justify their changes by simply replying to the email.

We received a total of 28 responses (i.e., response rate of 28%) where developers ex-

plained their reasoning for the change. The achieved response rate is significantly larger

than the typical 5% rate found in questionnaire-based software engineering surveys (Singer,

Sim, & Lethbridge, 2008). This is because developers were targeted based on their depen-

dency actions and we also tried to provide all the relevant information in the email while

keeping it concise and to the point. The responses were quite detailed in a free-text format,

47

providing not only the reasoning about the dependency change in question, but also ratio-

nales on why the developers might resort to dependency smells, along with cultural beliefs

about semantic versioning and the centralized nature of npm.

To analyze the free-text responses provided by the developers, the first two authors

have independently assigned a theme to each reason presented in the responses, using an

open-coding approach (Fincher & Tenenberg, 2005). The two authors then discussed the

themes encountered and merged them into 10 categories of reasons of why the dependency

smells are introduced. In the two cases where the first two authors did not fully agree on

the classification, the third author was consulted to provide a tie-breaker.

Results: The 10 reasons on why dependency smells are introduced are presented in Ta-

ble 3.7. Note that the total number of responses in the table is more than 28, because many

developers gave multiple reasons for introducing the dependency smells. We found at most

four different reasons per dependency smell, while the most common reason on each smell

was found in at least three responses. In the following, we explain each reason along with

example responses from developers (Tagged P1 through P28):

R1-Breaking changes: The most cited reason for pinning dependencies and also for using

restrictive constraints is breaking changes. Breaking changes are changes in a new release

of a package that is incompatible with the previous API, causing a breakage in others

that depend on the package. Developers tend to adopt a more cautious approach when a

dependency breaks the API even though it was a minor or patch release. For example,

P12 said: “newer versions of ”esm” broke GL JS tests in very obscure ways. I spent a day

debugging and couldn’t find a root cause for”. It is also interesting to see that new features,

while not causing API breakage, can still cause problems, as stated by P13: “a new feature

introduced in a minor release might be backwards compat in terms of the API, but not so

much in terms of the user experience or expectations - e.g. a component might suddenly

show some new option or expose some new behavior that we have yet to evaluate or have

48

Table 3.7: Developer reasons on why dependency smells are introduced.

Smell Reason # Responses

Pinned

Dependency

Breaking changes 5 (71%)

Mistrust of SemVer compliance 3 (43%)

Transitive dependency compatibility 1 (14%)

Unaware of SemVer 1 (14%)

URL

Dependency

Fix not on npm 7 (70%)

Experimenting with features 4 (40%)

Philosophical issue 3 (30%)

Maintainer owns dependency 2 (20%)

Restrictive

Constraint

Breaking changes 5 (83%)

Mistrust of SemVer compliance 2 (33%)

Transitive dependency compatibility 1 (17%)

Permissive

Constraint

Breaking changes not likely 3 (60%)

Unaware of SemVer 1 (20%)

Reducing installation size 1 (20%)

approved by our clients / end users”. Developers are in fact opting to pin dependencies as

a direct response to breaking changes or unexpected updates.

R2-Mistrust of SemVer compliance: Some developers have not experienced breaking

changes for the specific dependency, but past experiences with other dependencies have

made them less trusting in SemVer and more conservative in their dependency approach.

For example, P27 mentions: “I think it is a result of several incidents with packages and

my mistrust of [the] js community”. In fact, not trusting dependency maintainers in npm

to properly follow SemVer is the second highly cited reason for pinning a dependency or

using a restrictive constraint, as cited by P16: “The unfortunate reality is that not every

maintainer correctly adheres to SerVer when publishing new versions of their own depen-

dencies”. Past experiences leave a bitter taste and it may take a while for some developers

to opt for SemVer even after maintainers properly abide by it.

R3-Transitive dependency compatibility: Sometimes transitive dependencies can cause

49

incompatibility issues. Such cases arise when a transitive dependency requires only spe-

cific versions of a dependency to be installed, whereas npm will install multiple versions

of a dependency if they are required by dependency packages. For example, P22 said: “So

to ensure that a transitive dependency issue do not occur I pinned the react-scripts ver-

sion”. Although developers are somewhat aware that this issue could be remedied by using

peerDependencies (plugins that express compatibility with a specific host package but do

not use it directly through the “require” statement (npm Documentation, 2019a)), as stated

by P11: “it’s probably better to express the dependencies within the hierarchy as loose

peer-dependencies”.

R4-Unaware of SemVer: While not common, some developers mentioned their lack of

familiarity with SemVer as the reason for pinning a dependency or using a permissive

approach, as cited by P18: “I really had no idea what the hell I was doing back in 2015,

and had probably not yet even heard of semver”. Some dependencies can still suffer from

old practices in which SemVer was not a well-known standard.

R5-Fix not on npm: The most common reason for using a direct URL to fetch a depen-

dency is the delay or reluctance of the maintainer in publishing a needed fix on npm. For

example, P9 stated: “There is a bug in the main npm module and there’s a branch made

to fix it but it hasn’t been merged.”. In some cases, the developers even issued a fix to the

repository but the maintainer did not respond, as mentioned by P2: “I submitted a pull

request to fix the vulnerability, but they never bothered merging it, and their system eventu-

ally closed the PR because it sat for too long”. If the maintainers would work with users to

publish a consistent and timely stream of patch releases with the newest fixes, there would

be less incentive to circumvent npm to fetch dependencies.

R6-Experimenting with features: Another common reason for switching to a direct URL

is to experiment with new features not yet ready for release, as mentioned by P9: “I’m

experimenting, and not sure if certain things are stable yet”. This experimentation is also

50

useful if the developer wants to prepare for an upcoming transition to a new release. For

example, P8 said: “At the time I did that because I wanted to test against a specific branch”.

Some developers are fully aware of the unstable nature of using unpublished dependency

versions and view it as a temporary experimentation.

R7-Philosophical issue: Interestingly, some developers have an inherent and somewhat

philosophical issue with the idea of a centralized dependency registry. For example, P8

stated: “I don’t think it is beneficial to have a standard centralised registry for dependen-

cies in any language. That’s what npm has become to node and it is critical and prejudicial,

as npm is a private company and can choose to do whatever it wants”. In such cases, they

believe using absolute URLs for JavaScript dependencies is a major step towards decen-

tralization, as pointed out by P14: “since JavaScript is an interpreted language I have a

hunch that it’s actually not a good thing to use a centralized registry”. The philosophical

standpoint against a centralized dependency model is an interesting and unexpected reason

why some developers may never fully depend on npm, but such discussions often ignore

the disadvantages of using URLs, such as link breakage and typo-squatting attacks.

R8-Maintainer owns dependency: We also observed that using a URL to use a devel-

opment branch of a dependency managed by you can be useful for integration tests. For

example, P26 cited: “When we are developing something in ‘[anonymised]’ or in any other

dependency managed by us which are npm dependencies, we used to point to the Github

development branch of the dependency in order to a more or less detailed validation of the

changes”. It is also useful if it is crucial to have a personal fork in order to have full con-

trol over the dependency. For example, P28 mentioned: “We switched to our own forked

version of the repo. This is to ensure that it works properly, that no vulnerabilities are

introduced (since our app deals with people’s money)”. The main advantages and disad-

vantages of using URLs relates to ”trust”, but some developers trust a custom URL, or even

trust their forks more than the official package due to increased control.

51

R9-Breaking changes not likely: Contrary to reasons 1 and 2, some developers have not

experienced breaking changes. This is the most cited reason for using permissive con-

straints, as stated by P7: “I might have done it differently if it was likely that we’d break

people with this, but it just didn’t seem likely.”. However, developers mention how this only

works in specific circumstances when there is a high familiarity with the dependency, as

mentioned by P25: “while it works perfectly for our use case, this situation is not ideal from

a semantic versioning perspective”. Just as negative experience can shape one to rarely

trust the compatibility promises of SemVer, those who have never experienced breaking

changes may not be worried about their consequences.

R10-Reducing installation size: Another reason for using permissive constraints is so

that users of your package can reuse dependency versions without npm installing multiple

versions of the same package. For example, P7 mentioned: “allowing more permissive

use may allow users to reduce the total number of packages that they need to ship in their

bundles”. In these cases, if you already have a particular version of package A in your

dependencies, and package B in your dependency tree relies on package A, it is more likely

that package B does not need to install a separate version of package A. While overly

permissive approach can create many issues, being overly restrictive could force clients

into larger installations as npm cannot fully utilize reusability and needs to install multiple

versions of the same package.

The introduction of dependency smells is generally the result of developers re-

acting to dependency misbehaviour and the shortcomings of the npm ecosystem.

Nonetheless, some developers are unaware of SemVer and some are against a cen-

tralized dependency model altogether.

52

Table 3.8: Number of introduced and fixed instances per dependency smell.

Smell Smell Instances
Introduced Fixed

S1 Pinned dependency 5,814 1,640

S2 URL dependency 750 556

S3 Restrictive constraint 1,068 479

S4 Permissive constraint 99 96

3.6 Dependency Smell Evolution

Now that we know dependency smells are prevalent, we want to investigate smell-

inducing and smell-fixing commits throughout history to better understand their evolution.

By analyzing the smells that were introduced or fixed in the past five years, we can better

understand when these smells started to accumulate and where the current trend is moving

towards.

Since we have the contextual diff for all commits parsed and stored into our database,

we can identify when and how dependency constraints were changed throughout the project.

We specifically focused only on dependencies that persist between two commits but their

constraint was changed such that a dependency smell was introduced or fixed. This pre-

vents noisy data due to fixes that are merely a result of dependency removal or migration.

Since the analyses for this research question rely on the dependency constraints inside the

package.json file, it can only be conducted on the first four dependency smells (pinned

dependency, URL dependency, restrictive constraint, and permissive constraint). We have

analyzed the changes over a 5 year period to provide a more comprehensive view of how

the smells evolve through time.

Table 3.8 presents the total number of instances for each of the four smells that were

introduced or fixed during a five-year period from mid 2014 to mid 2019. The line plots

in Figure 3.4 show how the introduction and fix of dependency smells happen throughout

project evolution. The fixed lines clearly show that developers are somewhat aware of these

53

smells and they regularly address them.

(a) Pinned Dependency (b) URL Dependency

(c) Restrictive Constraint (d) Permissive Constraint

Figure 3.4: Introduced and fixed dependency smells over time.

In order to investigate whether the regular fixes are enough to alleviate the regular

introduction of dependency smells, we have plotted the accumulation of these dependency

smells in Figure 3.5. This accumulation is normalized by the number of projects included

in the dataset per month (since projects are added at different times). As can be seen, the

pinned dependency, URL dependency, and restrictive constraint smells have an increasing

trend. This shows that despite consistent dependency refactoring throughout the history of

these projects, the number of newly added dependency smells are still higher.

The accumulation graph for the permissive constraint smell is noticeably different than

the rest, both in its spiky form and its recently downwards trend. The non-gradual shape

of the diagram might be due to the smaller number of instances for this smell (Table 3.8).

54

(a) Pinned Dependency (b) URL Dependency

(c) Restrictive Constraint (d) Permissive Constraint

Figure 3.5: Accumulation of dependency smells over time.

The permissive constraint smell subjects projects to a higher risk of breaking changes and

the recently decreasing trend implies that developers generally agree that this smell is not

justified, or the drawbacks far outweigh any benefits. It may be for this reason that an-

other ecosystem like Cargo has banned the use of permissive wildcards in 2016 (Rust-lang,

2018). It may also be due to the severity of this smell. According to Table 3.6, Permissive

Constraints have the highest likelihood of introducing breaking changes. Another reason

for this downward trend could be the introduction of the semver-compliant caret (∧) symbol

in npm and its use as the default in February 2014 (Decan & Mens, 2019b; Oxley, 2014).

This gives developers more freedom by allowing minor and patch updates (as opposed to

only patch updates) and discourages the use of more permissive constraints..

Dependency smells are addressed and fixed through time, but most dependency smells

55

are introduced more frequently than they are fixed, causing an accumulation of smells over

time. The permissive constraint smell is the only case where we observed a decrease over

time.

3.7 Generalizability to other ecosystems

While our study focuses on npm, many of these smells can apply to other ecosystems

with varying degrees. In fact, any package manager that allows developers to restrict de-

pendencies to a particular version or version range is susceptible to pinned and restrictive

dependency smells. It will also be susceptible to permissive and URL dependency smells

if the package managers allow developers to always use the latest version of a package

or fetch a dependency directly from a URL. Missing dependencies (and to a lesser extent,

Unused dependencies) are mainly a problem for interpreted languages such as JavaScript

and Python. However, compiled languages such as C++ (and even languages like Java) can

catch these issues at compile time. For example, the PyPI ecosystem for Python allows de-

velopers to specify dependencies (requirements specifiers) and constraints (version speci-

fiers) in a setup.py or requirements.txt file. The Python dependency specification (Coghlan

& Stufft, 2021) allows for a pinned dependency using the version matching clause (==).

PyPI also uses the compatible release clause (∼=) and the ordered comparison clause (>=

and <=) which allows for the restrictive constraint and permissive constraint smells. Python

projects can also suffer from unused and missing dependencies since one can specify de-

pendencies regardless of their usage in the code, or forget to specify all dependencies in the

setup.py or requirements.txt file. PyPI allows direct URL links using the “<Dep Name>

@ <URL>” format. PyPI also uses the pip-freeze command to output installed package

versions which can be used for locking dependencies, similar to package-lock in npm.

It is worthwhile mentioning that while other ecosystems can differ in the type of smells

they can experience, the severity of the smells might also be different. A good example is

56

the difference in the way the JavaScript and Python package managers handle dependency

conflicts. While npm handles conflicts by installing multiple versions of a transitive de-

pendency, which are each nested inside their respective direct dependencies (npm, 2021),

PyPI will either outright reject installing incompatible Python packages or break another

dependency by installing an incompatible transitive dependency (PyPA, 2021). This means

that while using pinned dependencies can cause security issues in both ecosystems (due to

not receiving security updates), in the case of Python, it can also break dependencies, while

for npm, it will only increase the installation size.

3.8 Implications

We present actionable implications for developers, package maintainers, researchers,

and educators.

Implications for Developers and Maintainers: The prevalence of dependency smells

(RQ1) and their increase (Section 3.7) implies that current dependency management prac-

tices are inadequate. We found that 80% of the projects are infected with two or more

distinct smells. Many of the reasons for introducing smells in RQ3 (Section 3.5), such

as R2, R3, R4, R6, R7, R8, R9 and R10 can be fully or partially addressed if developers

regard them as a priority, perhaps by opting to use SemVer rather than the alternative. For

example, some developers are against a centralized repository altogether (R7) so they opt

to use direct URLs, But these external links can bring about many security and stability

issues (Section 3.2). They also cite a mistrust that stems from historical practices but not

necessarily from the package at hand (R2). It would be beneficial for developers to spend

more effort in dependency maintenance, but such maintenance requires proper guidance to

be efficient. Developers can use our open source tool (Javan Jafari, 2020) to quickly scan

their projects and identify dependency smells as “hot-spots” requiring prioritized mainte-

nance. Additionally, developers could add a “dependency maintenance” task to the code

57

review checklist, every time a dependency is added or modified in a pull request.

The number of dependency smells in a package (given by a tool such as DependencyS-

niffer) can also be used as a metric to evaluate and compare package quality, especially in

cases where the functionality is similar. When faced with a choice between two similar

packages, selecting one with more dependency smells may propagate maintenance issues

to our own project in the future. It also affects the ecosystem as more projects along a

dependency chain could be infected by dependency smells. This can be accomplished by

displaying “clean” or “infected” badges in the project’s page on npm. Badges are a great

way to provide status information for the package and they can be displayed on GitHub

or the npm registry. In fact, the David DM tool attempts a similar approach by analyzing

project dependencies and providing “up to date” or “out of date” badges for the project

(Shaw, 2020). Additionally, IDEs can be a good platform for warning developers about

smells. For example, the JetBrains IDE currently issues warnings for missing dependen-

cies, but not the other smells mentioned in this study (JetBrains, 2021).

Developers agree that dependency smells are harmful (RQ2) but some key reasons

for reluctantly resorting to dependency smells are rooted in the dependencies themselves

(RQ3). Some of the reasons for introducing smells in RQ3 (Section 3.5), such as R1, R2

and R5 need to be addressed by the maintainers. As such, package maintainers play a very

important role in reducing the spread of dependency smells in an ecosystem. For example,

developers mentioned how unexpected breaking changes (R1) forced them to pin a depen-

dency for which they previously adhered to SemVer, or how a maintainer’s apathy towards

releasing requested fixes (R5) forced them away from the official package towards custom

URLs. They also state how they sometimes resort to alternatives because they do not trust

that SemVer is correctly respected by the maintainers (R2). Thus, proper SemVer compli-

ance by maintainers can alleviate some of the key cited reasons for turning to dependency

smells. The Greenkeeper tool attempts to proactively warn developers when a dependency

58

update breaks their code by running CI tests each time a dependency is updated (Lehnardt

& Haas, 2020). Package maintainers can also benefit from this by running a select num-

ber of tests from their dependents’ projects before releasing a new version of the package.

This can be further encouraged at the ecosystem level by labeling packages that frequently

violate SemVer in their releases.

Implications for Researchers and Educators: Dependency smells occur in a very con-

siderable portion of the projects in our dataset (RQ1). However, there are yet other research

aspects which should be explored. One possibility is mapping a smell-inducing commit to

its fixing commit to determine the lifetime of dependency smells. Also, observing how

smell type or project characteristics influence the lifetime of smells in a project will help

in better understanding the root cause of dependency smells. Additionally, it is worthwhile

to study which smell instances have a considerable impact on project maintenance based

on revision history, issue tracking records and other project data to better understand the

impact of dependency smells on software evolution.

Our catalog of dependency smells contains full descriptions and consequences for seven

npm dependency smells (Section 3.2). This catalog is backed up by empirical evidence re-

garding their prevalence (RQ1), and practitioner validations regarding their negative impact

(RQ2). It is thus a great reference guide for educators looking to teach best practices in de-

pendency management. While analyzing survey responses from 41 practitioners (RQ2), no

single developer was aware of every smell, nor were they aware of every possible conse-

quence for the smells. Teaching this collective knowledge to future developers is a good

way to battle the increase in dependency smell accumulation (Section 3.7).

3.9 Related Work

While we could not find any research works that specifically target dependency smells,

the issues surrounding dependency management in software ecosystems is a well known

59

and actively explored topic. There are also some studies which look at other types of

configuration smells.

Dependency management issues: Being too restrictive in updating dependencies will

prevent developers from receiving the latest security and bug fixes, and as observed by

Cox et al., systems with outdated dependencies are four times more likely to have security

vulnerabilities (Cox, Bouwers, Van Eekelen, & Visser, 2015). Derr et al. also found that

almost 98% of the actively used android libraries that they investigated have a security

vulnerability that can be fixed by simply updating the package versions (Derr et al., 2017).

The result of this study hints that developers are sometimes aware of dependency issues,

but they choose to ignore it because addressing them can be a lot of work. However, a

survey by Kula et al. showed that up to 69% of developers are unaware of the fact that they

have a vulnerable dependency in their project (Kula, German, et al., 2018b). The work of

Decan et al. analyzes security reports for npm packages and found that more than 40%

of releases depending on a vulnerable package could easily be protected if they were less

restrictive in their updates (Decan et al., 2018b). A study by Zimmermann et al. looks at

the potential of both packages and package maintainers in npm to affect larger parts of the

ecosystem. They look at over five million package versions and found that up to 40% of all

packages depend on a code that has at least one publicly disclosed security vulnerability

(Zimmermann et al., 2019). They also observed how particular features of the npm, such as

pinned dependencies and heavy reuse (especially in micro-packages (Abdalkareem et al.,

2017)) exacerbate dependency issues.

Opting for a permissive approach will facilitate updates, but increases the exposure to

breaking changes. Bogart et al. study breaking changes in Eclipse, CRAN, and npm and

find that compared to other ecosystems, npm developers are more willing to perform break-

ing changes with the assumption that users that use SemVer will be protected (Bogart et al.,

2016). Bogart et al. also conduct a survey of 2,000 developers across eighteen ecosystems

60

where 70% of the respondents for npm declare that they have experienced breaking changes

when attempting to build their package (Bogart et al., 2017). A study on the Maven ecosys-

tem finds that more than 35% of minor and more than 23% of patch releases contain at least

one breaking change (Raemaekers, Van Deursen, & Visser, 2014). Semantic versioning is

one of the proposed solutions to the dependency management issues. A recent work by

Decan and Mens (Decan & Mens, 2019b) looks at the four ecosystems of Cargo, npm,

Packagist, and RubyGems. They found that there is a promising trend towards SemVer

compliance, but in the cases where SemVer is not followed, developers prefer to be restric-

tive rather than permissive. An empirical study by Decan et al. looks into dependency

issues in npm, CRAN, and RubyGems, focusing on the extent of dependency relationships

and the issues surrounding dependency constraints(Decan et al., 2017). They find that de-

velopers prefer to specify a maximum threshold on their constraints, rather than a minimum

one. They also mention the co-installability issues with strict (aka pinned) dependencies.

Another recent work looks at how dependencies adopt SemVer and how they change their

approach over time. Dietrich et al. were unable to find a large-scale adoption of SemVer

and there is evidence of both flexible and restrictive approaches to update(Dietrich et al.,

2019). These studies are all solely based on npm packages and do not consider applica-

tions, which can have different approaches in managing dependencies. They also do not

mention issues beyond permissive or restrictive constraints, or quantify how these issues

evolve over time.

To the best of our knowledge, our study is the first work that specifically focuses on

cataloging, quantifying, and understanding dependency smells.

Configuration smells: Infrastructure as Code (IaC) is another domain where system con-

figuration is specified through code. While configuration code is different than source code,

it is subject to similar issues of maintainability and complexity. Sharma et al. (Sharma,

Fragkoulis, & Spinellis, 2016) analyzed more than 4,600 Puppet repositories and proposed

61

a catalog of configuration smells that violate best practices. Configuration scripts can also

contain smells related to security vulnerabilities. These security smells are reoccurring pat-

terns of configuration code snippets which can lead to security breaches. Rahman et al.

conduct an empirical study on more than 1,700 IaC scripts (Rahman, Parnin, & Williams,

2019) to identify seven security smells. They then developed a detection tool and collected

instances of those smells from 293 open-source repositories and submitted bug reports for

a random subset of the instances. They found that security smells have a median lifetime of

20 months while some can persist for as long as 98 months. Since the package.json has a

relatively well-defined structure and functionality, it is possible to automatically parse it to

detect dependency smells. Semantic versioning guidelines can also be an effective solution

in Infrastructure as Code. Opdebeeck et al. study 70,000 version increments in the An-

sible infrastructure and discover that Ansible role developers generally abide by semantic

versioning guidelines (Opdebeeck, Zerouali, Velázquez-Rodrı́guez, & De Roover, 2020).

3.10 Threats to Validity

In this section, we discuss the threats to validity of our study.

Threats to construct validity: Threats to construct validity refers to the concern between

the theory and the results of the study. The smells catalog in this study is neither exhaustive

nor complete. There might be other dependency smells in the npm ecosystem that our study

did not consider. In addition, many of our dependency smells are observed through the

package.json file. However, it is possible for developers to manually install dependencies

and not include them in package.json. While we have studied such cases under “Unused

dependencies”, they could also be subject to other smells such as ”Pinned dependency”,

since a manually installed package may not be automatically updated. However, since

package.json is the official dependency configuration file for npm, ad-hoc alternatives are

rare and discouraged. Also, while investigating the reasons for the introduction of smells

62

(RQ3), we emailed the developers in charge of the smell-inducing commit. In reality, there

may be other sources, such as other developers involved in group discussions, that may

have also influenced the change. We believe the developer in charge of the commit would

be the most-informed member of the team on this change and in fact, all respondents were

able to elaborate on the commit.

Threats to internal validity: Threats to internal validity refers to the concerns that are

internal to the study such as experimenter bias and errors. In our work, we used the de-

pcheck (J. Li & Lukic, 2019) tool to extract the missing and unused dependency smells

in the studied projects. Hence, we are limited by the accuracy of this tool. To mitigate

the threats related to using the depcheck tool, we randomly selected five projects from our

dataset and fed them to the depcheck tool. We then manually cross-checked the output

of this tool. We found that in all cases, the tool produced the correct results for missing

dependencies, as we were able to navigate to the file that uses a dependency not specified

in the package.json. Validating unused dependencies can be much harder since there are

different ways to use a dependency inside a code. While the results proved accurate in our

manual checks, this is one area where depcheck users have experienced false positives.

Similar to the process used for empirically studying the smells, our proposed tool uses

regular expressions to detect the first four dependency smells. To validate the accuracy

of the regular expressions and the parser as a whole, we manually examined a sample of

10% of the cases and we observed no false positives or false negatives. However, our

manual validation is still limited to 10% of the dataset. Additionally, we used the tool to

identify smells and emailed developers for clarification (RQ3), and all respondents verified

the existence of the smells. These results make us confident in our parsing process and our

regular expressions.

Our initial survey gathered responses from 12 developers. These developers were a

convenience sample which were known by the authors in Canada and Brazil which is not

63

representative of all JavaScript developers. However, this survey was conducted to augment

the initial understanding of the smells. The initial definitions are observed by studying vi-

olations of npm recommendations, violations of SemVer guidelines and by studying the

discussions surrounding the package.json file. In addition, to extract the reasons for in-

troducing a dependency smell, we manually analyzed the free-text responses provided by

the developers. Since this human activity and can be subject to human bias, we perform a

thematic analysis with two independent coders where we have the first two authors inde-

pendently analyze and categorize them.

Threats to external validity: Threats to external validity concerns the generalization of

our findings. Our study is based solely on JavaScript projects, therefore our findings may

not hold for projects written in other programming languages. However, our research

methodology of defining and studying dependency smells can be easily replicated for

other programming languages such as Python. Secondly, the datasets that we used in our

work only represent open source projects hosted on GitHub that may not reflect proprietary

projects. Furthermore, we examine the official dependency manager for JavaScript, npm.

Hence, our results may not be fully generalized to other dependency managers such as

yarn. However, yarn uses the same package.json file to evaluate dependencies and uses the

same npm registry to download them (Yarn, 2020). The only difference related to our work

is cases where projects have a yarn-lock file instead of a package-lock. That is why we

considered projects with yarn.lock to be free of the no package-lock smell. To understand

why dependency smells are introduced in projects, we surveyed 28 developers. Although

we believe this to be a sufficient number of developers for our analysis, our results may

not represent the opinion of all JavaScript developers. Also, asking a different sample

of developers may result in a different set of reasons for introducing dependency smells.

To mitigate the threat, we contacted practitioners from different studied projects and their

backgrounds show that they are experienced JavaScript developers.

64

Threats to conclusion validity: Threats to conclusion validity concern the relation be-

tween the experiment and the conclusions. The empirical study of dependency smells is

based on historical data in 1146 JavaScript projects, but investigating their impact and the

reasons for their introduction is conducted using surveys. Therefore, the conclusions drawn

are based on the type and number of respondents. The response rate for the emails we sent

out to developers to understand the reasons for introducing the smells was 28%. While

this is significantly larger than the typical rate in questionnaire-based software engineering

surveys (Singer et al., 2008), having a larger portion of respondents may reveal new rea-

sons or change the priority of current reasons. Additionally, we argue that the prevalence

of dependency smells in RQ1 implies a lack of attention to dependency maintenance. The

dependency smells in this study focus on how dependencies are used, but do not consider

other aspects of dependency maintenance, such as what dependencies are selected. There-

fore, dependency smells alone are not enough to compare dependency maintenance across

projects. Hence, this study does not claim to measure dependency maintenance.

3.11 Chapter Conclusion and Future Work

Our objective was to catalog, quantify, and understand dependency smells in the npm

ecosystem. We conducted an empirical study on a dataset of 1146 active JavaScript projects

to identify which smells are more common and how they accumulate over time. We also

consulted practitioners to quantify the consequences associated with each smell and under-

stand why they are introduced.

We define seven dependency smells in npm. Our findings reveal that these smells are

prevalent. While not all smells occur at a large degree, 80% of the projects are infected with

two or more distinct smells. In our practitioner surveys, we found that practitioners recog-

nized the multitude of security problems, bugs, dependency breakages, and other mainte-

nance issues brought about by dependency smells. These smells are generally introduced

65

ass developers react to dependency misbehavior and the shortcomings of the npm ecosys-

tem. We also observed that dependency smells are addressed/fixed, but most dependency

smells are introduced more frequently than old smells are fixed, causing an accumulation of

smells over time. Since we had to analyze a large number of projects, commits, and smells,

we built a tool (DependencySniffer) for our analyses. Our prototype tool can be used to

analyze any JavaScript project and detect dependency smells. The tool is open source and

accessible to everyone (Javan Jafari, 2020).

As we observed in the results of this study, it is not rare to see developers introduce

smells into some of their dependencies, while others remain clean. The communication

with the developers further highlights that dependency smells in downstream packages are

often introduced as a response to the shortcomings and misbehaviors of upstream packages.

When it comes to managing dependencies, developers do not perceive (or trust) all pack-

ages equally. In the following chapter, we investigate how the characteristics of upstream

packages influence the dependency management decisions of their downstream dependents

and how developers can leverage such characteristics to better manage their dependencies.

66

Chapter 4

Practices for Updating Dependencies

Managing project dependencies is a key maintenance issue in software development.

Developers need to choose an update strategy that allows them to receive important up-

dates and fixes while protecting them from breaking changes. Semantic Versioning was

proposed to address this dilemma but many have opted for more restrictive or permissive

alternatives. This empirical study explores the association between package characteristics

and the dependency update strategy selected by its dependents to understand how develop-

ers select and change their update strategies. We study over 112,000 npm packages and use

19 characteristics to build a prediction model that identifies the common dependency up-

date strategy for each package. Our model achieves a minimum improvement of 72% over

the baselines and is much better aligned with community decisions than the npm default

strategy. We investigate how different package characteristics can influence the predicted

update strategy and find that dependent count, age and release status to be the highest in-

fluencing features. We complement the work with qualitative analyses of 160 packages to

investigate the evolution of update strategies. While the common update strategy remains

consistent for many packages, certain events such as the release of the 1.0.0 version or

breaking changes influence the selected update strategy over time.

67

4.1 Introduction

Software development is increasingly reliant on code reuse, which can be accomplished

through the use of software packages. Utilizing packages to build software improves qual-

ity and productivity (Lim, 1994; Mohagheghi et al., 2004). These packages, along with the

dependencies and maintainers have formed large software ecosystems (Sonatype, 2021). In

the current landscape, managing dependencies among packages is an emerging challenge

(Artho et al., 2012; Bogart et al., 2016; Decan et al., 2019). The popular Node Package

Manager (npm) ecosystem has experienced several dependency-related incidents. One ex-

ample is the removal of the backward-incompatible release of the “underscore” package

that generated a lot of complaints among dependents that updated to the latest version

(Chatfield, 2014). Another example is the removal of the “left-pad” package which, at the

time, majorly impacted many web services (MacDonald, 2018). The ua-parser-js package

is more a recent example of an npm package that had its maintainer account hijacked to

release malicious versions of the library (Github, 2021) that would steal user information

such as cookies and browser passwords. The package frequently experiences 6-7 million

weekly downloads and was used by many large companies such as Facebook, Apple, Ama-

zon, Microsoft, IBM, Oracle, Mozilla, Reddit and Slack (Cimpanu, 2021).

Knowing when and how to update dependencies are among the most important chal-

lenges faced by development teams (Tidelift, 2022). The npm package manager allows for

various constraints for configuring when and how each dependency will automatically up-

date (npm Documentation, 2019a). In order to study the dynamics of dependency updates,

we draw inspiration from previous literature and group the various dependency constraints

into 3 update strategies: the balanced update strategy, the restrictive update strategy and

the permissive update strategy (Decan & Mens, 2019a). The specifics of each update strat-

egy is further explained in Section 4.2. Different update strategies bring about different

68

consequences (Jafari et al., 2021). Opting for overly restrictive update strategies (e.g. pre-

venting any automatic updates) will prevent timely security fixes for packages (Cox et al.,

2015; Decan et al., 2018b; Prana et al., 2021). On the other hand, overly permissive up-

date strategies (e.g. allowing any type of automatic updates) will increase the likelihood

of breaking changes due to incompatible releases (Decan et al., 2018a; Jafari et al., 2021;

Kula, German, et al., 2018a). Thus, a key issue in dependency management is choosing the

right strategy for updating dependencies.

Semantic Versioning (SemVer) has been proposed as a solution to aid dependency

management by allowing maintainers to communicate the type of changes included in

their new package releases and allowing developers to determine backward-compatibility

based on the semantic version number of the newly released version. This provides de-

velopers with a middle-ground between keeping dependencies up to date while ensuring a

backward-compatible API (Preston-Werner, 2019). However, previous research has shown

that SemVer is not always relied on in practice and it is not rare to see developers opting

for alternative dependency update strategies (Chinthanet et al., 2019; Cogo et al., 2019;

Dietrich et al., 2019; Kula, German, et al., 2018a; Wittern et al., 2016).

Developers may adopt or modify a dependency update strategy based on their percep-

tion of a package dependency. This is visible in the dependency configuration of npm

packages (package.json) where different maintainers will opt for different strategies for

managing their dependencies but more importantly, a maintainer will even opt for different

strategies for different dependencies in the same project (Jafari et al., 2021). Certain events

(e.g. breaking changes) may also shift a developer’s perception in regards to the previously

selected update strategy (Cogo et al., 2019). Different dependency update strategies may be

selected based on the characteristics of the target packages. Additionally, the characteristics

of a package dependency may serve as indicators of the community trust on the package

69

(e.g. age may signal maturity). Understanding how these characteristics relate to depen-

dency decisions among the majority of developers can serve as a guide for how one should

depend on each package, as well as a means to understand what package characteristics are

associated with dependency update strategies.

In this study, we investigate the relationship between npm package characteristics and

the dependency update strategy opted by its dependents. We focus on npm since it cur-

rently maintains the largest number of packages in any software ecosystem (Libraries.io,

2020) and consequently, a high number of dependency relationships between packages.

Our dataset includes 112,452 npm packages and 19 characteristics derived from npm and

the package repository. We use a machine learning module to investigate whether package

characteristics can be used to predict the most popular dependency update strategy for each

package. Specifically, we aim to tackle the following research questions:

RQ1: Can package characteristics be used as indicators of dependency update strate-

gies?

We train several machine learning models using features collected and derived from

package characteristics. Our experiments reveal Random Forest as the most suitable model

for our purpose. As such, we select Random Forest as the model in this study. We evaluate

our model and compare it against two baselines (stratified random prediction and npm-

recommended balanced strategy). The results show a 72% improvement in the ROC-AUC

score and 90% improvement in the F1-score compared to the stratified baseline. We observe

that package characteristics can be used as indicators of the common update strategy and

they can be leveraged for predicting dependency update strategies. Additionally, we found

that our model results align considerably better with community decisions than always

using the balanced update strategy.

RQ2: Which package characteristics are the most important indicators for dependency

update strategies?

70

In order to help developers understand the key factors that impact dependency update

strategies, we identify the most important features for the prediction model and analyze how

a change in these features impacts the model’s predictions. The release status of a package,

the number of dependents and its age (in months) are the most important indicators for the

common dependency update strategy. Dependents of younger, post-1.0.0 packages with

more dependents are more likely to agree on the balanced update strategy. On the other

hand, dependents of pre-1.0.0 packages are more likely to opt for more permissive update

strategies.

RQ3: How do dependency update strategies evolve with package characteristics?

In an effort to understand the prominence of evolutionary features in predicting the

common update strategy, we use a mixed-method technique on a convenience sample of

160 packages to analyze the evolution of update strategies over a period of 10 years. We

found that for many packages in npm, the common update strategy remains consistent

throughout a package’s lifecycle, but the release of the 1.0.0 version causes a visible shift

in the common update strategy. Restrictive update strategies proved to experience the weak-

est agreement (repeatedly challenged by other strategies), with more erratic evolutionary

behavior that correlate with incidents such as breaking changes.

The rest of the chapter is organized as follows. Section 4.2 describes specialized pack-

ages and our data selection and feature extraction methodology. We present our results in

Section 4.3 and highlight the study implications in Section 4.4. We review related work

in Section 4.5 and discuss the threats to validity in Section 4.6. We conclude our work in

Section 4.7.

71

4.2 Data and Methodology

We use the latest version of the libraries.io dataset available at the time of collection,

containing package dependencies from January 20201 (Libraries.io, 2020) to collect all

packages in the npm ecosystem. We filter and label the packages, extract characteristics

and derive new features, and use them to train a Random Forest model.

A replication package of our study is available on Zenodo (Javan Jafari, Elias Costa,

Shihab, & Abdalkareem, 2022).

4.2.1 Specialized packages

In order to identify the “common” dependency update strategy for a particular package,

we rely on the “wisdom of the crowds” principle (Decan & Mens, 2019a). This means

that a dependency update strategy is deemed the common strategy if the majority of its

dependents are using the same strategy. A package is deemed specialized toward an update

strategy if the majority of its dependents agree on that particular update strategy. In this

study, we calculate the proportion of each of the 3 dependency update strategies and use

50% as the threshold to define specialized packages. If more than 50% of the dependents

are not using a common update strategy, a package is deemed unspecialized and we can

not use package characteristics to analyze dependency update strategies for that package.

Section 3.1 explains the rationale for the selected threshold. By drawing inspiration from

the work of Decan and Mens (Decan & Mens, 2019a), a package is considered specialized

if more than 50% of its dependents agree on one of the following update strategies:

• Balanced: The update strategy is considered balanced if it allows for new updates but

keeps us safe from breaking changes (with the assumption that SemVer is correctly

followed by the target package). In specific terms, a post-1.0.0 constraint that allows

1At the time of this study, no other dataset has been published since 2020.

72

automatic updates to new minor and patch versions is considered balanced. This

can be accomplished by using the caret notation in npm (e.g. “∧1.2.3”) but can

also be expressed in other ways such as “1.x.x”. A pre-1.0.0 constraint is considered

balanced if it does not allow any updates (pinned). This is due to the fact that SemVer

considers these versions to have an unstable API (Preston-Werner, 2019).

• Restrictive: The update strategy is considered restrictive if it is more restrictive

than the balanced update strategy. In specific terms, a post-1.0.0 constraint that only

allows automatic updates to new patch releases or no automatic updates at all is

considered restrictive. This can be accomplished through the use of the tilde notation

in npm (e.g. “∼1.2.3”) but can also be expressed in other ways such as “1.2.x” or

“1.2.3”. Pre-1.0.0 constraints can not be restrictive since pre-1.0.0 releases have an

unstable API and any freedom in updates is considered permissive.

• Permissive: The update strategy is considered permissive if it is more permissive

than balanced update strategy. In specific terms, a post-1.0.0 constraint that allows

automatic updates to all new versions (including major versions) is considered per-

missive. This can be accomplished through the use of wildcards (e.g. “*”) but can

also be expressed in other ways such as “latest” or “>=1.2.3”. A pre-1.0.0 constraint

that allows any automatic updates is considered permissive.

4.2.2 Data filtering and labeling

For this study, we only consider packages with two or more runtime dependents. We

want to investigate the most common dependency update strategy for each package. There-

fore, we should only consider packages that have downstream dependents. Additionally,

looking for a majority agreement between dependents of a package is not a sound approach

if the package has fewer than 2 dependents. The npm package manager allows developers

73

Figure 4.1: Example of a package.json file showing dependency update strategies

to specify development dependencies (will be used in development environment) and op-

tional dependencies (npm will try to fetch them but will not raise errors if unsuccessful).

We do not consider development and optional dependencies because they are not required

for the dependent package to function and are sometimes incomplete. These thresholds

help in removing unused and noisy packages from the dataset. However, we were still able

to identify multiple spam packages which had the sole purpose of depending on all pack-

ages in npm. The ones we identified were all-packages-X, wowdude-X and neat-X, in all

of which the X is replaced by various numbers.

In order to identify package specialization, we extracted the runtime dependency rela-

tionships from the latest published versions of all packages to other packages in our dataset

(January 2020). We used the reverse relationship (from the target package to the source

package) to determine the dependents of each package and their dependency constraints.

74

If more than 50% of a package’s dependents agree on a dependency update strategy (Sec-

tion 4.2), the package is labeled as specialized towards that strategy (i.e. balanced, restric-

tive, permissive). Otherwise, the package is labeled as unspecialized.

This groups all packages in the dataset into 4 categories (balanced, restrictive, permis-

sive, unspecialized). We do not choose a threshold below 50% since a threshold of over

50% for one class is guaranteed to always represent the most accepted update strategy for

that package. Increasing the threshold (higher majority agreement) bolsters the confidence

in the “most common update strategy” when there is an agreement, but as the agreements

become rare, the results become less meaningful in practice. As can be seen in Figure 4.2,

our selected threshold also results in the lowest comparative percentage of “unspecialized”

packages. Unspecialized packages are not helpful in studying the common update strategy,

since by definition, they do not have a common agreed upon update strategy among their

dependents.

The final dataset includes 112,452 total npm packages. From this total, 101,381 (90.2%)

are specialized toward a particular update strategy and 11,071 (9.8%) are unspecialized.

Looking at different update strategies we see that 54.2% of packages are specialized toward

the balanced strategy, 6.7% are specialized toward the restrictive and 29.3% are specialized

toward the permissive update strategy. The packages in our dataset have a median of 3

dependents and a median age of 39 months. The distribution of our dataset is shown in

the first row (50% threshold) of Figure 4.2 and the distributions of agreement percentage

(among dependents) for each class are presented in Figure 4.3.

4.2.3 Feature selection and extraction

In this section, we explain the rationale for selecting the package features. We then

explain our feature extraction procedure and the necessary pre-processing of the features.

Feature selection rationale: In order to train a suitable model in predicting dependency

75

Figure 4.2: Impact of specialization threshold on class distribution

Figure 4.3: Distribution of dependent agreement percentage for packages in each class

update strategies, we first need to select appropriate features that can capture developer

needs in choosing the correct strategy. The libraries.io dataset consists of over 50 charac-

teristics for each package, although some are highly correlated. We use the term package

features to refer to characteristics from both the package on npm and its project repository.

In order to determine what features in our dataset are relevant and what other features might

be needed, we studied the literature to identify which package characteristics are associated

with the characteristics involved in choosing and managing dependencies.

Table 4.1 presents each of these features. All of the studies referenced in the table are

comprised of developer surveys and interviews regarding practitioner needs and practices

(see Section 4.5). The features listed here are deemed relevant in the literature in choosing

and managing dependencies, but ours is the first study to investigate their influence on

the dependency update strategy. According to the reviewed literature, developers use the

76

Table 4.1: Relevant features in selecting dependencies

Feature Studies

Repository Stars Count (Haenni, Lungu, Schwarz, & Nierstrasz, 2013; Larios Vargas et al., 2020;

Pashchenko et al., 2020)

Repository Watchers Count (Haenni et al., 2013; Larios Vargas et al., 2020)

Repository Forks Count (Haenni et al., 2013; Larios Vargas et al., 2020)

Dependency Count (Larios Vargas et al., 2020)

Dependent (Repository and Package) Count (Bogart et al., 2016; Haenni et al., 2013; Larios Vargas et al., 2020; Pashchenko

et al., 2020)

Repository Contributors Count (Pashchenko et al., 2020)

Repository Open Issues Count (Pashchenko et al., 2020)

Licenses (Haenni et al., 2013; Pashchenko et al., 2020)

Days Since Last Release (Bogart et al., 2016; Larios Vargas et al., 2020)

Age (Larios Vargas et al., 2020)

Version Count, Version Frequency (Bogart et al., 2016; Haenni et al., 2013; Larios Vargas et al., 2020)

Repository Readme, Description, Wiki,

Pages

(Bogart et al., 2016; Haenni et al., 2013; Larios Vargas et al., 2020)

Repository Size (Bogart et al., 2016; Larios Vargas et al., 2020)

Release Status (Bogart et al., 2016)

following characteristic groups to select dependencies:

• Package maturity and popularity is a recurrent factor in the literature. Prominent

projects that are established in the community are a priority in selecting dependencies

(Bogart et al., 2016; Haenni et al., 2013; Larios Vargas et al., 2020; Pashchenko et al.,

2020). Characteristics such as Age, Dependent Count, Repository Stars and Forks

Count along with Repository size and Contributors count can be used as indicators

for established package among the community. We hypothesize that packages with a

more established history (whether positive or negative) provide more information for

developers to decide on their preferred dependency update strategy. Popular pack-

ages are also encouraged to be more diligent in their updates as they are scrutinized

by a larger user-base. Additionally, packages in initial stages of development are

often deemed unstable by dependency guidelines such as SemVer, and thus warrant

stricter update strategies.

• Package activity and maintenance is cited as one of the most important factors in

selecting dependencies (Bogart et al., 2016; Larios Vargas et al., 2020; Pashchenko

et al., 2020). Characteristics such as Version frequency, Open issues count and Days

77

since last release can be used as indictors for package activity. We hypothesize that

highly active packages would be more problematic for dependents that opt for per-

missive dependency approaches as the likelihood of breaking changes may increase

with more frequent releases. On the other hand, different dependency update strate-

gies can be inconsequential for packages that have not released a new version for a

long time as there is little meaningful difference between the latest version and an

old version.

• Documentation is also among the highly stated factors for selecting dependencies

(Bogart et al., 2016; Haenni et al., 2013; Larios Vargas et al., 2020; Pashchenko et al.,

2020). License information is also important to prevent legal issues. Project readme

and wiki files, along with license information can be used as suitable indicators for

this category. We use the license code as a feature that represents the type of licenses

for the package (e.g. MIT, BSD-2-Clause, ISC). We hypothesize that the resulting

perception from better documentation can not only encourage developers to select a

package, but also influence the perception of trust on the package. This in turn can

sway them to opt for less restrictive update strategies. Adequate documentation may

also bring comfort in knowing that the dependent’s development team can rectify

shortcomings in particular dependency versions.

Feature extraction: Some of the selected features are directly available in the libraries.io

dataset and others are derived using the raw features in the dataset. In the following, we

will explain the derived features:

• Age is derived using the package’s “created timestamp” and comparing it against the

date the dataset was released (Jan 2020).

• Version Frequency is derived by counting the number of releases and dividing it by

the package age in months. In cases where the age was zero months, we used version

78

count instead of version frequency.

• Dependent Count for each package is the sum of reverse dependencies (dependents

of a package) from the latest version of all packages in the dataset to that package.

The dependent count available in libraries.io also includes dependents from old ver-

sions of all packages.

• Transitive Dependent Count is the total number of packages in the dependent tree

of our package. It is calculated by converting the dependency relationships for each

package into a graph and calculating the total ancestors from the selected package.

• Dependency Count is calculated by counting the number of dependencies for the

package.

• Transitive Dependency Count is the total number of packages in the dependency

tree of our package. It is calculated by converting the dependency relationships for

each package into a graph and calculating the total descendants from the selected

package.

• Release Status is extracted using the latest version of the package and determines if

the package is in initial development (pre-1.0.0) or production stage (post-1.0.0).

• Days Since Last Release is derived by extracting the latest release and comparing

its date against the date the dataset was released (Jan 2020).

We hypothesize that the Domain or type of the package may influence how developers

depend on a package since certain dependencies may correspond to more critical aspects

of a software project. This is further investigated in the manual analysis of Section 4.3.

Seeing that we have access to package keywords, we can use them to assign domain/type

to each package. Since there are many varied keywords in the dataset, we first need to

prune the keyword set and map each package to a smaller set of keywords. To this aim,

79

we first address highly correlated keywords by finding the top 2000 trigrams and bigrams

(n-grams are collections of n keywords that frequently appear together) with the highest

Point-wise Mutual Information (PMI) scores. PMI is a metric provided by NLTK (NLTK,

2022) to quantify the likelihood of co-occurrence for two words, taking into account that

this might be caused by the frequency of single words. We only consider trigrams and

bigrams that appear at least 10 times in the dataset. In short, we group keywords into

sets if they commonly co-appear. We then use one keyword to represent each set. This

procedure reduces the average number of keywords per package. In the next step, we use

the keywords to cluster the packages. To this aim, we use the top 15 keywords to build a

term frequency vectorizer for package keywords. The vectorized keywords are fed into a

K-means clustering algorithm with K=10 (derived using the elbow and silhouette methods

(Géron, 2019)). The result is a numerical “Domain” feature which includes a value from 1

to 10 for each package.

Feature pre-processing: Many values in the dataset did not have a default of zero and

instead, included missing values. Missing values were handled in such a way that would be

meaningful for each feature. For example, if there were missing values for the number of

dependencies or repository stars count, a value of zero was used as a replacement. However,

this strategy would not be meaningful for all features. For example, missing values in

repository size were replaced by the median repository size. Since we study packages

with a dependent count greater or equal to 2, missing values in dependent count were

automatically removed.

Highly correlated features negatively impact the model’s performance and more impor-

tantly, its interpretability. We calculate the Pearson correlation and remove features with a

correlation above 0.7.

When two features were highly correlated, we kept the feature with the more tangible

description. For example ”Repository Contributors Count” was removed as it was highly

80

correlated with ”Repository Size” and ”Repository Watchers Count” was removed due to

its high correlation with ”Repository Stars Count”. In total, the following 12 features were

removed due to correlation: Repository Host Type, Repository Wiki enabled?, Reposi-

tory Pages enabled?, Repository Open Issues Count, Repository Issues enabled?, Repos-

itory Watchers Count, Repository Forks Count, Repository SourceRank, Versions Count,

Repository Contributors Count, Repository URL, Transitive Dependent Count.

Table 5.2 presents the final set of features selected for this study along with a descrip-

tion for each feature. After dropping the aforementioned correlated features, the remaining

feature set in Table 4.1 appears in our final set of features. We have also used the character-

istic groups observed in the literature (maturity and popularity, activity and maintenance,

and documentation) to utilize relevant features available in the dataset or synthesize rel-

evant features. Transitive dependency count is an extension of dependency count which

considers whether the dependencies of a package are ”dependency heavy” themselves. The

existence of keywords and homepage URL is another means of evaluating package docu-

mentation. The domain is an attempt to identify package type by clustering the keywords

(since the entire set of keywords are too numerous to use outright). The domain and key-

words features have different objectives. Domain attempts to encapsulate package type

while the existence of keywords is an indicator of package documentation. License code

is also different from repository license in a similar manner. The former is a means of

encapsulating package license type and permissions (to understand whether it affects how

dependents use the package) while the latter is an indicator of documentation completeness.

We also added SourceRank as a feature as it is the scoring algorithm used by Libraries.io to

index the results (Libraries.io, 2020). SourceRank aggregates a number of metrics believed

to represent high quality packages, some of which are also included in our features. For

example: Is the package new? How many contributors does it have? and Does it follow

SemVer?

81

Table 4.2: Selected features and their description

Feature Description Histogram

Dependency Count The # of dependencies from the latest releases of npm packages.

Transitive Dep. Count The # of transitive dependencies from the latest package release.

Dependent Count The # of dependents from the latest releases of npm packages.

Version Frequency The # of released versions divided by the age.

Age The age of the project in months.

Description Whether or not the package provides a description.

Keywords Whether or not the package specifies keywords.

Homepage URL Whether or not the package specifies a homepage URL.

License Code The ID for the type of license(s) specified for the package.

SourceRank The SourceRank metric of a package provided by libraries.io.

Release Status Whether or not the package is at a pre-1.0.0 or post-1.0.0 state.

Days Since Last Release The # of months elapsed since the most recent release.

Dependent Repositories The # of dependent repositories on the package’s repository.

Repository Size The size of the package repository in Kilobytes.

Repository Open Issues The # of open issues in the package repository.

Repository Stars The # of stars for the repository.

Repository License Whether or not the package repository specifies a license.

Repository Readme Whether or not the package repository provides a readme file.

Domain Package domain group extracted from the keywords.

4.3 Results

We present the findings of our empirical study starting by our results for using package

characteristics to predict the dependency update strategy. This is followed by a study on

the impact of package characteristics on the popular dependency update strategy. In the last

section of our results, we conduct a mix-method analysis with 160 packages to understand

the contributing factors in the evolution of update strategies over a span of 10 years.

4.3.1 RQ1: Can package characteristics be used as indicators of de-

pendency update strategies?

Motivation: Understanding the association between package characteristics and the com-

monly chosen dependency update strategy by its dependents can help the community to

better grasp the dynamics of dependency update strategies. Knowing whether or not the

82

characteristics of a package are indicators of dependency update strategies will also help

developers by providing them with meaningful and actionable information in the process

of deciding the appropriate update strategy for their package dependencies. This can help

prevent dependency issues that result from using unsuitable alternative strategies (Jafari et

al., 2021).

Approach: In order to study the relevance of package characteristics to the commonly used

dependency update strategy by the community, we use the features in Table 5.2 to train a

Random Forest model. The multi-class model aims to use the characteristics to predict the

commonly used update strategy for each package. The result of the prediction for each

package can be one the four classes of Balanced, Restrictive, Permissive or Unspecialized.

The unspecialized class does not represent an update strategy but rather, packages which do

not have a common agreed-upon update strategy among their community of users. We use

Random Forests since the objective of our study is to understand the association between

package characteristics and dependency update strategies which necessitates descriptive

models. In addition, we want good performance compared to the baseline in order to de-

rive meaningful associations. We conducted preliminary experiments with Random Forest,

Logistic Regression and SVM and compared their performance using ROC-AUC and F1-

score metrics. The ROC (Receiver Operating Characteristics) is a probability curve where

AUC (Area Under the Curve) is a value between 0 and 1 that represents the degree of which

the model is capable of distinguishing between classes. The higher the AUC, the better the

model is at correctly predicting classes. Since our problem is a multi-class model, we

plot multiple ROC-AUC curves, one for each of the classes using the One-vs-Rest (OvR)

methodology. The final ROC-AUC is the resulting average of the ROC-AUC scores. F1-

score is a function between 0 and 1 that balances between precision (the fraction of true

positive instances among the retrieved instances) and recall (the fraction of true positive

instances that were retrieved). We did not modify the hyper-parameters of the three models

83

but we performed data normalization which is important for Logistic Regression and SVM

when there is high cardinal variance between the features. All three models were trained

on 80% of our dataset (training set) and evaluated on the held-out 20% (tests set). As can

be seen in Figure 4.4, the Random Forest model yields considerably better performance,

which is why it is selected as the Package Characteristics model in this study.

Figure 4.4: Comparison of performance for candidate models

Since there is no previous work on using package characteristics to predict dependency

update strategies, the results are compared against two baselines; the stratified baseline

model and the balanced model. The stratified baseline uses the class distribution in the

training set for weighted random predictions about the suitable update strategy. The bal-

anced baseline always predicts the balanced update strategy, as is recommended by npm

(npm, 2022a). We evaluate the performance of the model using ROC-AUC and F1-score

metrics (as explained previously in our preliminary experiments). We use 80% of the data

as our training set and leave the remaining 20% for the final evaluation. We tuned the

hyper-parameters of the Random Forest model using 10-fold validation on the training set

which results in 500 estimators (trees) with 8 minimum samples required for a split. The

10-fold cross validation fits the model 10 times, with each fit being performed on a 90%

84

of the training data selected at random, with the remaining 10% used as a validation set. It

is important to evaluate the model on the 20% of the data used as a held-out set since we

want to assess the model’s performance on unseen data.

Results: Figure 4.5 presents the evaluation results using the ROC-AUC, F1-score, Preci-

sion and Recall metrics. Compared to the baseline model, we can see a 72% improve-

ment in the ROC-AUC for the Random Forest model, achieving an ROC-AUC of 0.86.

The ROC-AUC for the Stratified baseline and the balanced-only approach round-up to 0.5,

which is the expected behavior of ROC-AUC when the model makes random predictions

or always predicts the same class. We also see a 90% improvement in the F1-score for the

Random Forest model compared to the stratified baseline model, achieving a score of 0.74.

Since the real world contains unspecialized cases where no agreement is observed, we have

also included these unspecialized packages in the training and evaluation of our model.

Figure 4.5: Performance evaluation results

The high ROC-AUC score of 0.86 shows that the package characteristics in Table 5.2

are not only relevant for selecting dependencies, but they can also be leveraged to predict

the dependency update strategy opted by the majority of developers. In other words, they

can be used as indicators of dependency update strategies. Another interesting observation

are the results for the balanced baseline. While the balanced strategy is the recommended

85

Table 4.3: Comparing model performance across different specialization thresholds

Threshold Model ROC AUC Min. Increase F-1 Score Min. Increase

50%
Stratified Baseline 0.50 - 0.39 -

Balanced Only 0.50 - 0.38 -

Package Characteristics 0.86 72% 0.74 90%

75%
Stratified Baseline 0.50 - 0.33 -

Balanced Only 0.50 - 0.28 -

Package Characteristics 0.85 70% 0.67 103%

90%
Stratified Baseline 0.50 - 0.32 -

Balanced Only 0.50 - 0.20 -

Package Characteristics 0.86 72% 0.68 113%

95%
Stratified Baseline 0.50 - 0.32 -

Balanced Only 0.50 - 0.18 -

Package Characteristics 0.88 76% 0.70 119%

default by the npm ecosystem (npm, 2022a), the results indicate that there is a considerable

number of packages for which developers do not believe the balanced update strategy to be

suitable.

In Section 4.2, we discussed the impact of alternative specialization thresholds on the

class distribution. Additionally, we have analyzed the impact of alternative specialization

thresholds on the performance of our model in Table 4.3. We look at the change in the ROC

AUC and F1-score metrics and also calculate the minimum increase in model performance

(i.e. the performance compared to the highest value among the stratified and the balanced

only models). As can be seen in Table 4.3, increasing the specialization threshold to focus

on higher majority agreements (i.e. 75%, 90%, 95%) actually results in a more performant

model (when comparing each model to the corresponding baselines). However, as stated

in Section 4.2, higher specialization thresholds result in a higher number of unspecialized

packages for which there is no majority agreement on the update strategy. Our objective is

to model the relationship between package characteristics and the common update strategy

of its dependents in the npm ecosystem. A model that assumes a strictly high level of

agreement among the dependents will be of limited use in practice as such agreement does

not exist for many npm packages.

86

Finding #1: The quality of our classification model shows that package charac-

teristics can be used as indicators of the common update strategy chosen by the

package’s dependent community.

Finding #2: While the balanced update strategy is recommended by npm, the

recommended update strategy from the package characteristics model is better

aligned with the update strategy selected by npm developers.

4.3.2 RQ2: Which package characteristics are the most important in-

dicators for dependency update strategies?

Motivation: There is a large array of characteristics for packages in the npm ecosystem

and some create extraneous noise in understanding and selecting the appropriate update

strategy while others might even mislead the community. By identifying and studying the

most important characteristics that are associated with update strategies, the community can

better understand the type of packages that fall into each of the three specialization groups.

As previously stated, opting for the suitable dependency update strategy for a package can

prevent dependency issues that arise from alternative update strategies (Jafari et al., 2021).

Therefore, developers also need to know which characteristics should be prioritized when

deciding on an update strategy and how the increase or decrease of such characteristics

would impact the commonly selected dependency update strategy.

Approach: Package characteristics which have a larger impact on the model’s prediction

of the commonly used dependency update strategy are better indicators of the update strat-

egy. In order to calculate the feature importance in our model, we use the permutation

feature importance instead of the default impurity-based feature importance of Random

Forest. The impurity-based feature importance inflates the importance of high cardinality

features and it is biased to the importance of features in training the model, rather than

87

their capacity to make good predictions (Scikit-learn, 2020). The 10-fold permutation im-

portances in Figure 4.6 are calculated by randomly permuting each feature 10 times and

observing its impact on the model’s performance (ROC-AUC score). A feature is deemed

more important if permuting its values has a larger impact on the model’s performance.

In order to visualize how a change in a package characteristic (feature) impacts the

model’s decision making for each class, we present Partial Dependence Plots (PDP) for

the top 3 important features in Figure 4.8 (since the top 3 are the most prominent). Partial

dependence plots visualize the marginal effect of a feature on the prediction of the machine

learning model (Molnar, 2020). PDPs can highlight linear, monotone or more complex

relationships between the feature and the target. In the case of our model, the PDPs in

Figure 4.8 can show how an increase or decrease in a feature (such as age) can increase

or decrease the model’s likelihood to predict the balanced class (or any other class). Since

partial dependence is plotted across the distribution, we also plot the distribution plots of

the top 3 features to emphasize where the PDPs have more weight. The Y-axis represents

the predicted probability for an instance belonging to the mentioned class. The tick marks

on the X-axis of the PDPs represent the deciles of the feature values, which are consistent

with the distributions in Figure 4.7.

Results: The box-plots of Figure 4.6 present the top 10 most important features which are

associated with the commonly used dependency update strategy. As can be seen, release

status, dependent count and package age are the most important indicators for dependency

update strategies. This hints that these features are highly relevant in influencing deci-

sions about dependency update strategies. Release status is the most relevant feature for

the model. Knowing if a package is in early development or post-production is one way to

gauge the stability of new releases, which in turn is a way to gauge the degree of freedom

dependents give to automatic updates for that package. Additionally, since SemVer con-

siders pre-1.0.0 versions to be unstable, any update strategy that permits even the smallest

88

Figure 4.6: Importance of Features

Figure 4.7: Distribution of the top 3 important features (Dependent Count is log10 distri-

bution)

degree of freedom in receiving new versions (i.e. only accepting patch releases) is consid-

ered permissive. This allows the model to use release status to identify many instances of

permissive-labeled packages. The high rankings of dependent count and age hints that both

popularity and maturity are good indicators of the common dependency update strategy to-

ward the package.

Finding #1: The most important indicators for the common dependency update

strategy toward a package are its release status, number of dependents and age.

The distributions for the top 3 features can be seen in Figure 4.7. The majority of

89

packages (65.5%) are in a post-1.0.0 release state with a median of 3 dependent packages

and 39 months (3+ years) of age. The distribution of values for most of the top features

are highly skewed. Therefore, it is necessary to consider this skewed distribution when

analyzing the impact of features.

Figure 4.8 depicts the partial dependence plots for the top 5 features. The partial depen-

dence plot for release status is unsurprisingly linear since release status is a binary feature.

The steep slope of the release status dependence plot is also expected as we previously

discovered this feature to be highly important for the model. The impact of release status

on the common dependency update strategy is straightforward and intuitive. Post-1.0.0

releases result in balanced dependency update strategies, and pre-1.0.0 releases result

in more permissive update strategies. In other words, knowing whether a package is

in post-1.0.0 production or in pre-1.0.0 initial development is a good way to decide how

permissive or restrictive one should be when depending on that package. As stated previ-

ously, this is partly due the treatment of pre-1.0.0 release by the SemVer standard. SemVer

considers pre-1.0.0 versions to be unstable by nature and any update strategy that permits

even the smallest degree of freedom in receiving new versions (i.e. only accepting patch

releases) could introduce backward compatibility issues (Preston-Werner, 2019). This find-

ing also aligns with the previous investigations of Decan et al. that found the majority of

dependencies toward pre-1.0.0 releases to accept patch releases, which is more permissive

than what SemVer recommends (Decan & Mens, 2021).

Looking at the partial dependence plots for dependent count, we see that higher depen-

dent count increases the likelihood of balanced update strategies (i.e. dependents of a

package tend to agree on the balanced strategy, when the package has more dependents). In

a developer survey, Bogart et al. found that the value of avoiding breaking changes grows

with the user base of a package (Bogart et al., 2016). Consequently, the user base of such

packages may be more likely to perceive the balanced update strategy to be “good enough”

90

in preventing breaking changes for highly used and mature packages.

(a) Balanced Class

(b) Permissive Class

(c) Restrictive Class

(d) Unspecialized Class

Figure 4.8: Partial Dependence Plots (PDP) for each class

The distribution in Figure 4.7 should be taken into account when discussing the PDPs.

Since the median dependent count is 3, the left portion of the plot has more weight. It is

91

also important to highlight that packages with very few dependents (less than 5) have a

considerably higher chance of not being specialized (i.e. dependents of packages with

few dependents are less likely to agree on a dependency update strategy). This is a natu-

ral consequence of lesser dependents as there is not yet enough dependents (and perhaps

package history) to reach an agreement on how to treat that package as a dependency. Ad-

ditionally, dependents may be more inclined to choose an update strategy based on personal

preference if there is no established popular update strategy for the upstream package.

The partial dependence plots for age reveals that developers tend not to favor the bal-

anced update strategy for old packages, specifically those older than 45 months. Cross

referencing this information with the distribution gives further insight. Since the majority

of the packages in the dataset are in fact more than 39 months old (right portion of plot has

more weight), we can conclude that in general, dependents of newer packages favor

the balanced update strategies more than dependents of older packages. The SemVer

caret notation was established as the npm default in 2014 (Decan & Mens, 2019a; Oxley,

2014). This alone could gradually shape the update strategy the majority of developers

choose for newer packages. On the other hand, some might deem an old project as stagnant

and will not worry about a new release that breaks the API, which can justify permissive

update strategies.

Finding #2: Package characteristics are highly skewed and packages with less

than 5 dependents are less likely to be specialized toward a particular dependency

update strategy.

Finding #3: Dependents of younger, post-1.0.0 release packages with more de-

pendents are more likely to use the balanced update strategy while dependents of

pre-1.0.0 release packages are more likely to use the permissive update strategy.

92

4.3.3 RQ3: How do dependency update strategies evolve with package

characteristics?

Motivation: According to our model, characteristics such as release status, dependent

count and age have the largest impact on the dependency update strategy. Interestingly, all

of these top characteristics are indicative of how a package evolves over time (since depen-

dent count generally increases over time and release status is changed once in a package’s

lifetime). Consequently, there can be multiple explanations for how the evolution of a

package impacts the update strategy chosen by its dependents. For example:

• The common update strategy was different early on but dependents gradually shifted

to a new update strategy.

• The common update strategy changed because new dependents are adopting a differ-

ent strategy than old dependents.

• The common update was initially the same and dependents (new and old) simply

followed the previous choice.

• The common update strategy experienced a shift due to the shift from a pre-1.0.0

version to a post-1.0.0 version.

• The common update strategy experienced a sudden shift due to an anomalous event

in the package’s lifecycle.

While we know that release status, dependent count and age are related to the currently

popular dependency update strategy, we need to see if such a relationship was preserved

through the package’s evolution or if perhaps, it is a result of an external event. Under-

standing the evolution of dependency update strategies toward a package will provide much

needed insight into why the characteristics that are most relevant to the dependents’ update

strategy are all related to a package’s evolutionary behavior.

93

Approach: Evaluating the evolution of dependency update strategies is carried out through

a mix of quantitative and qualitative techniques. We take a random sample of 160 packages

from the dataset (40 packages from each of the three update strategies + 40 unspecialized

packages) for a historical analysis of each package’s dependents over the last 10 years up to

the latest snapshot of the dataset. We want to look at packages with over 100 dependents in

the hopes of disregarding packages with very limited historical dependent data. Therefore,

half of this sample dataset consist of packages with 100 to 1000 dependents (in the latest

snapshot) and the other half have more than 1000 dependents (in the latest snapshot). This

sample of 160 packages is not meant to be a representative sample of the main dataset.

Rather, it is “convenience sample” (Baltes & Ralph, 2022) consisting of reasonably used

packages selected for an in-depth mix-method study that is otherwise not feasible on a large

dataset.

For each package, we utilize a monthly snapshot of the ecosystem to identify depen-

dents at each month. We then analyze the dependency requirement constraints to identify

the number of dependents using a particular update strategy per month. Since the age of

a package increases with time, visualizing the dependency update strategies over time is

akin to plotting the evolution of update strategies over the package’s lifecycle. It is impor-

tant to note that even though we take 40 samples from each group (balanced, restrictive,

permissive, unspecialized), we still plot all update strategies for each package, since a pack-

age currently specialized toward a restrictive update strategy for example, may have other

strategies used by its dependents throughout time. To eliminate the bias toward dependents

that release more frequently, we only consider the latest version of each dependent at each

month (i.e. each dependent package is counted only once per month, regardless of how

many versions it maintains).

Results: We present the commonly observed evolution patterns for dependency update

strategies along with real examples that embody the findings. While age and dependent

94

count do not increase at the same rate, their relationship with the evolution of update strate-

gies proved to be similar. Thus, we focus our analyses on the evolution of dependency

update strategies across package age. The complete set of visualizations for each package

can be accessed through our replication package (Javan Jafari et al., 2022).

Figure 4.9: Example packages for which dependents follow the previously popular update

strategy

One common evolution pattern is the tendency of dependents to follow the previously

popular update strategy (i.e. agreement on the common update strategy does not change

throughout the package’s lifecycle). This evolution pattern was observed across the de-

pendents of all package groups as shown in Figure 4.9. We observed this pattern for 18

instances of balanced packages, 28 instances of permissive packages and 6 instances of

restrictive packages. This finding aligns with the observation of Dietrich et al., which state

that packages tend to stick to their dependency habits for a particular dependency (Dietrich

et al., 2019). It is also worth noting that this behavior was observed in example packages

specialized to all of the three update strategies, meaning it is not a result of dependents

95

merely using the default npm update strategy (which leans toward the balanced update

strategy).

Finding #1: For many npm packages, the common update strategy of its depen-

dents remains consistent.

The pre-1.0.0 release versions of an npm package is considered to be unstable due

to its initial development stage. However, Decan et al. studied package usage for pre-

1.0.0 releases and found that there is no considerable difference between the number of

dependents for pre-1.0.0 and post-1.0.0 releases (Decan & Mens, 2021). In our sample

dataset, we observed an interesting phenomenon when a package releases its 1.0.0 version.

When a highly used pre-1.0.0 package releases switches to a post-1.0.0 status, there is a

very observable shift from permissive to balanced update strategies among its dependents.

The examples in Figure 4.10 clearly show the impact of the 1.0.0 release (red line) on

the update strategy evolution. While there are still dependents that use the permissive

update strategies after the 1.0.0 release, the majority of new dependent relationships shift

to the balanced strategy. The pattern generally appears when the pre-1.0.0 releases were

already used by many dependents (which is why it can not be observed in the examples of

Figure 4.9). This pattern may have occurred because the npm community is less accepting

of the SemVer standard as it pertains to pre-1.0.0 releases and does not believe pre-1.0.0

dependencies should necessarily be pinned to a particular version (Decan & Mens, 2021).

This particular pattern is observed for 12 instances of balanced packages, 6 instances of

permissive packages and 15 instances of unspecialized packages.

Finding #2: For highly used pre-1.0.0 packages, the release of the 1.0.0 version can

change the common update strategy from permissive to balanced.

The evolution of update strategies for dependents of packages specialized toward the

restrictive update strategy exhibits unusual and anomalous behavior that is not observed in

96

Figure 4.10: Example packages for which the dependent strategy shifts at the 1.0.0 release

mark (red vertical line)

the other two package groups (balanced and permissive). First of all, it is more common to

see packages that have a borderline agreement in the restrictive cases. The examples in Fig-

ure 4.11 show that while the evolution of update strategies for these packages ultimately

leads the restrictive update strategy as the dominant one, a very considerable number of

dependents still use the balanced update strategy when depending on these packages. Re-

strictive update strategies are a reluctant response to breaking changes or other problems

with automatically updating to new minor versions of the dependency (Jafari et al., 2021).

Therefore, the observed disagreement on the restrictive update strategy can happen be-

cause either a portion of the community is not aware of an existing issue with the package

or because the issues do not equally affect all dependents. We observed this pattern in 10

instances of restrictive packages and 6 instances of unspecialized packages.

Finding #3: Even when restrictive update strategies are the majority, they expe-

rience weaker agreements due to many dependents opting for balanced update

strategies.

The other unusual observation for restrictive dependency update strategies is their anoma-

lous evolutionary behavior. For example, in the evolution of update strategies for packages

in Figure 4.12, we see a sudden spike in the number of restrictive update strategies start-

ing at a specific point in time that is very dissimilar to the gradual increase of the other

97

Figure 4.11: Example packages for which there is a weak agreement on the restrictive

update strategy

two update strategies. This can happen if a particular event in time (perhaps a breaking

change) causes a shift in community perception toward that package. The observation may

also be due to a new set of dependents with more conservative strategies that started using

the package for the first time. The latter is more likely in cases such as detect-port and

identity-obj-proxy. Alternatively, in cases such as promise and raf where the community

moves back to the balanced strategy after a certain amount of time, the former explanation

is more likely. We found such anomalous behavior in 4 instances of balanced packages, 8

instance of restrictive packages and 3 instances of unspecialized packages.

The findings for the evolution analysis of the restrictive update strategy warrants a

closer look into the capability to identify them using package characteristics. While RQ1

presents the overall performance of our model, the per-class evaluation results can provide

further insight. Table 4.4 presents the precision, recall and F1-score for each of the 3 main

classes of the model, along with the unspecialized label (since some npm packages are not

specialized toward any update strategy and they must also be included in the evaluation).

We have also included the per-class F1-scores for the two baseline models for comparison.

F1-Stratified denotes the F1-score for the stratified baseline and F1-Balanced denotes the

F1-score for the Balanced only model. While our model outperforms the baseline for all

3 main classes, the restrictive class seems to be more difficult to predict across all models.

98

Table 4.4: Per-Class Evaluation

Class Label Precision Recall F1-score F1-Stratified F1-Balanced

Balanced 80% 84% 82% 54% 70%

Permissive 74% 85% 79% 29% 0%

Restrictive 77% 32% 45% 6% 0%

Unspecialized 47% 33% 39% 9% 0%

Specifically, our model achieves high precision but low recall for the restrictive cases, indi-

cating the model is mostly correct when classifying a restrictive package, but it also misses

many of the other restrictive cases. The challenges in predicting the restrictive update strat-

egy can be due to the limited number of packages specialized toward the restrictive strategy

in the ecosystem (7% of our main dataset) or due to the incidental nature of such strategies

that are caused due to target package misbehavior (e.g. breaking changes) rather than its

characteristics.

Figure 4.12: Example packages for which the restrictive update strategy exhibits anomalous

behavior

Further examination of the anomalous behavior in the evolution of restrictive update

99

strategies necessitates a qualitative approach. Thus, we manually analyze 1) The npm reg-

istry (npm, 2022b), 2) The snyk open source advisory (snyk, 2022) and 3) The GitHub

repositories of the 40 sampled packages in the restrictive group. The npm registry provides

information regarding installation notes, current weekly downloads of each version and

build status badges. The snyk advisory provides information about known security vulner-

abilities along with a package health score that considers security in addition to package

popularity and maintenance. The GitHub repository provides the development history of

the package. Using the repository information, we can filter created and resolved issues

during a specific historical window to identify breaking changes that may correspond to

the rise of a restrictive update strategy for that package.

We started with the npm registry page of each package to search for mentions of SemVer

non-compliance from maintainers of the package. We hypothesized that one reason for the

popularity of restrictive update strategies for this group of packages would be the official

statements by package maintainers that indicate their misalignment with SemVer compli-

ance. None of the 40 packages had stated anything about the recommended update strategy.

Thus, we can speculate that the choice of a restrictive update strategy is solely on the de-

pendents’ side. One interesting observation was the maintainer’s recommendation to install

their packages as a development dependency, as opposed to a runtime dependency, in 65%

of these packages. Since our dataset is filtered to only include runtime dependency rela-

tions, many dependents have obviously not followed this recommendation.

The snyk advisory provides a package health score that combines security, popularity,

maintenance and community factors into a single metric (snyk, 2022). More importantly,

snyk is a vulnerability dataset that catalogs low, medium, high and critical severity vulner-

abilities recorded for each version of a package. We hypothesized that vulnerable releases

will encourage package dependents to restrict their update strategies while they wait for a

fix to be released. With the exception of the “webpack-dev-server” package in which 144

100

Table 4.5: Examples of created issues that correspond with a rise of restrictive update

strategies

Package Name Issue Date Issue Title

postcss-loader Jan 2017 “v1.2.1 runs fine, but v1.2.2 throws error”

eslint-plugin-jsx-a11y Jun 2016 “Exception after update to 1.4.0”

jest-resolve Dec 2018 “medium severity vulnerability [. . .] introduced via jest @23.6.0”

eslint-loader Apr 2015 “npm error after update to version 0.11.0”

fsevents Feb 2017 “breaking change in 1.1.0”

versions were infected by a high severity vulnerability, the rest of the packages in our sam-

ple had no recorded vulnerabilities. In simpler terms, we could not find sufficient evidence

that indicate restrictive update strategies are mainly the result of vulnerable releases.

The GitHub repository of the packages allows open access to the development history

of the package, along with recorded issues and feature requests.

We hypothesized that breaking changes from new releases may be a reason why depen-

dents opt for a more restrictive update strategy. To this aim, we searched through repository

issues created for each package during the one year window in which we observed a rise in

restrictive update strategies from the dependents of that package. We found concrete evi-

dence of breaking updates in 18 of the 40 packages in the restrictive group. Not all breaking

updates lead to newly created issues about the problem, so our findings are actually a lower

bound on the number of packages that experience breaking changes. In fact, out of the 22

packages with no evidence of breaking changes, 11 packages had low activity (less than 50

open and closed issues combined) or no activity in their repository issue tracker throughout

the project’s history. Table 4.4 presents example issues from package repositories where

users voice their concerns about breaking changes (or other problems) caused by updating

to a new version. These findings align with prior research that identifies breaking changes

and dependency misbehavior as highly influential factors in restrictive dependency update

policies by the dependents (Jafari et al., 2021).

101

Finding #4: Restrictive update strategies exhibit a more erratic evolutionary be-

havior that corresponds to breaking changes, making them harder to predict

4.4 Implications

We present actionable implications for both practitioners (developers and package main-

tainers) and researchers in the field.

Implications for Practitioners:

The package characteristics model presented in this study has been shown to outperform

the default balanced update strategy in npm (RQ1). The predictions of the model can

be used as a recommendation for developers to help them in deciding on a suitable

dependency update strategy for a package. Alternatively, practitioners can rely on

the most important features such as release status, dependent count and age (RQ2)

to aid their dependency update strategy selection. For example, using packages with

a smaller number of dependents poses an inherent risk of not yet having an agreed upon

update strategy in the community. In addition to the number of dependents, the prominence

of those dependents should also be taken into account.

The release status of a package (pre-1.0.0 vs. post-1.0.0) has shown to be a relevant fea-

ture in identifying the common update strategy (RQ2) and there is an observable shift from

the permissive update strategy to the balanced strategy when the 1.0.0 version is released

(RQ3). The use of permissive constraints for pre-1.0.0 packages shows that developers in

the npm community do not fully align with the SemVer standard for pre-1.0.0 releases. It

is also a testament to the relatively high popularity of some pre-1.0.0 packages. We looked

at the number of dependents for both the pre-1.0.0 and post-1.0.0 packages and found that

while post-1.0.0 packages have a median of 4 dependents, pre-1.0.0 have a median of 3

dependents. This is surprising as SemVer considers pre-1.0.0 initial development releases

102

to be unstable by nature and depending on them poses an inherent risk. Yet, a consider-

able portion of developers are already using such packages as dependencies. This confirms

the findings of Decan et al. (Decan & Mens, 2021) and highlights the importance of ini-

tial development releases for package maintainers. Package maintainers should assume

that initial development releases may already be used by dependents which could be

stakeholders in future changes.

While studying the evolution of dependency update strategies, we observed many in-

stance where the initially established update strategy was also selected by new dependents,

creating a compounding effect that ultimately leads to a clearly dominant dependency up-

date strategy for dependents of that package. We did not find significant evidence of target

packages recommending a particular update strategy to their users and this continuous trend

was observed for all 3 types of update strategies (i.e. it can not simply be attributed to the

use of the default balanced update strategy). Therefore, this behavior likely stems from in-

dependent decisions from package dependents, some of which may consider the previously

common update strategy to be the best one. Ecosystem maintainers should be attentive

to the early adopter community of their packages as the first impressions set by the

initial community can have long-lasting influence on how new dependents use their

package.

Implications for Researchers:

While the package characteristics model in this study can be leveraged to predict the

suitable dependency update strategy (RQ1), there are other characteristics to explore. Fur-

ther research is needed to extract and look into other features such as the package down-

loads count, code complexity, the experience level of package maintainers and the

quality of the documentation to see if and how these features can improve the model.

Additionally, since we know that restrictive update strategies may be influenced by specific

events rather than package characteristics (RQ3), future work is needed to cross-reference

103

the time of the change with relevant events in the repository such as a bug/vulnerability

fix or a newly opened issue to understand how such events can influence a change in the

dependency update strategy. We should also look at the frequency of change and the

duration between changes in the dependency update strategy to better understand

whether some events such as breaking changes have long-term impact on the trust of

a particular package.

The current model proposes a predicted update strategy based on the characteristics of

a target package. However, it is beneficial to know the confidence in the recommended

update strategy and the rankings of the non-recommended alternatives. While developers

can use the important features discovered in this study as the basis for their own judgment,

a probabilistic model that complements the predictions by presenting a ranking of

recommended update strategies can prove useful.

Not knowing why different dependency update strategies occur in a package creates

data noise when analyzing the strategies. We previously discussed how npm default con-

straints for newly added dependencies (RQ2) create a challenge when analyzing the wis-

dom of the crowds since we do not fully know whether the developer chose the constraint

or simply trusted the default update strategy. Using the balanced strategy can be traced

back to meticulous planning by the dependent or a simple disregard toward dependency

maintenance. A valuable avenue for research is to study how much the ecosystem is im-

pacted by developer decisions versus ecosystem policies, such as default dependency

constraints.

Restrictive update strategies are a response to issues such as breaking changes when

updating dependencies. However, the entire dependent community of a package may not

be equally aware or equally affected by such issues, which leads to weaker agreements on

the restrictive update strategy (RQ3). In the wisdom of the crowds model, a high level

of restrictive strategies (and their underlying cause) may be disregarded simply because

104

they do not represent the majority. An improved version of the model presented in this

study can allow the specialization threshold to differ per each class to allow a strategy-

sensitive model that is tuned to better predict the probability of a particular update

strategy.

4.5 Related Work

To the best of our knowledge, there is no other work that utilizes package characteris-

tics to predict the most suitable dependency update strategy and studies the impact of those

characteristics on the selected strategy. The related work for our study is comprised of

research that focuses on dependency update strategies, studies that focus on relevant char-

acteristics in selecting dependencies and research in the npm ecosystem supply chain.

Dependency update strategies:

Decan and Mens conducted an empirical study to compare SemVer compliance across

four software ecosystems including npm (Decan & Mens, 2019a). They proposed an update

strategy based on “the wisdom of the crowds” to help developers choose the best depen-

dency update strategy. They accomplished this by analyzing the dependency constraints of

all dependents of a package and recommending the most common update strategy. This

study is the most relevant to our work as it uses past dependency decisions to predict the

most common update strategy in the future. However, the work of Decan et al. does not

use package characteristics for prediction and requires a complete and updated dependency

graph of the npm ecosystem, making it unscalable in practice. Our method is scalable as

it only looks at the current characteristics of the package and does not need dependency

information from the dependents. More importantly, our work is the first to study the rela-

tionship between package characteristics and the predicted dependency update strategy. In

another study, Decan et al. empirically investigated the pre-1.0.0 versions and their usage

105

in 4 software ecosystems. They found that there is no practical difference between the us-

age of pre-1.0.0 and post-1.0.0 versions but ecosystems are more permissive than SemVer

guidelines when it comes to using pre-1.0.0 versions (Decan & Mens, 2021).

Dietrich et al. studied dependency versioning practices across 17 software ecosystems

including npm (Dietrich et al., 2019). Their study is complemented by a survey of 170

developers. They found that most ecosystems support flexible versioning practices but de-

velopers still struggle to manage the trade-offs between the predictability of more restrictive

update strategies and the agility of more flexible ones. Feedback from more experienced

developers suggest they favor the stability that accompanies restrictive update strategies.

Dietrich et al. did not look at how package characteristics can impact the selected depen-

dency update strategy and how such package characteristics can be used to guide developers

towards the suitable strategy.

Jafari et al. empirically studied problematic dependency update strategies in JavaScript

projects (Jafari et al., 2021). They cataloged and analyzed 7 dependency smells including

restrictive constraints and permissive constraints. Their findings indicate that while smells

are prevalent, they are localized to a minority of each project’s dependencies. Through a

developer survey, they highlighted the negative impacts of such update strategies and they

also quantified the reasons for their existence. They found that such alternative update

strategies are often the result of dependency misbehaviour or issues in the npm ecosystem.

While Jafari et al. did not look at the impact of package characteristics on dependency

update strategies, their work highlights the importance of studying such characteristics to

understand why some npm packages implicitly push their dependents to use non-balanced

dependency update strategies.

Package characteristics for selecting dependencies:

Bogart et al. performed an empirical study on three software ecosystem including npm

106

to study how developers make decisions in regard to change and change-related practices

(Bogart et al., 2016). In their interview with 28 developers, they found that various signals

are used to select dependencies. These include the level of trust on the developers of the

package, activity level, user base, project history and artifacts such as documentation. The

respondents believed such characteristics to be important in deciding what package to de-

pend on, but the study did not look at how package characteristics can influence the chosen

dependency update strategy.

Vargas et al. surveyed 115 developers to study the factors that impact the selection of

dependency libraries (Larios Vargas et al., 2020). They observed several technical factors

such active maintenance, code stability, release frequency, usability and performance to be

relevant factors. The authors also observed human factors such as community perception

and popularity along with economic factors such as license and cost of ownership to be

contributing factors in selecting a dependency.

Pashchenko et al. interviewed 25 industry practitioners to investigate the influence of

functional and security concerns on decision making with regards to software dependencies

(Pashchenko et al., 2020). The authors found that developers rely on high-level information

that demonstrates the community support of a library such as popularity, commit frequency

and project contributors. Developers prefer libraries that are safe to use and do not add too

many transitive dependencies. The authors observed that dependency selection is often

assigned to more skilled members of the team.

Haenni et al. conducted a survey and asked developers about their information needs

with respect to their upstream and downstream packages (Haenni et al., 2013). Developers

stated that they consider factors such as popularity, documentation, license type, update

frequency and compatibility when looking for a new dependency. The authors also found

that in practice, developers monitor news feeds, search through package websites and blogs

and run their unit tests to achieve these goals.

107

The four aforementioned studies all focus on relevant characteristics in selecting a pack-

age as a dependency. They do not study the impact of these characteristics on the update

strategy used for each dependency.

The npm ecosystem supply chain:

Zimmerman et al. studied how the packages and package maintainers in npm have

the potential to impact large chunks of the ecosystem (Zimmermann et al., 2019). They

looked at a collection of more than five million package versions in npm and observed that

installing an average npm package is the equivalent of implicitly trusting 79 packages and

39 maintainers. Additionally, they realized that up to 40% of npm packages depend on a

vulnerable package with a publicly disclosed vulnerability. The authors found that, among

other things, locking dependencies exacerbates the security issues in the ecosystem since it

hinders the automatic adoption of a vulnerability fix.

Zerouali et al. empirically analyzed the technical lag in the npm ecosystem and its

relationship to dependency update strategies (Zerouali et al., 2018). The authors used a

subset of the libraries.io dataset comprised of 610K packages and over 4.2 million package

versions. They found that while npm packages are frequently updated, dependencies are

rarely added or removed. They also discovered that restrictive dependency update strategies

are the main culprit for technical lag in the ecosystem.

Cogo et al. conducted an empirical study on same-day releases in the npm ecosystem

(Cogo, Oliva, Bezemer, & Hassan, 2021). They found same day releases to be common

in popular packages, interrupting a median of 22% of regular release schedules. More im-

portantly, they observed that 32% of such releases encompass even larger changes than

their prior (planned) release. In general, downstream dependents of popular packages tend

to automatically adopt same-day releases due to their dependency update strategies. The

authors believe same-day release to be a significant occurrence in the npm ecosystem and

108

dependency management tools should consider flagging such releases for downstream de-

pendents.

Chowdhury et al. studied trivial packages in the npm ecosystem (micro-packages with

only a few lines of code) (Chowdhury et al., 2021). They found that close to 17% of the

packages in the ecosystem can be considered trivial, but removing one of these packages

can impact up to 29% of the entire ecosystem. While such small packages are small in size

and complexity, they are responsible for a high percentage of API calls. Trivial packages

play an important and significant role in the npm ecosystem.

4.6 Threats to Validity

This section discusses the threats to the validity of our study.

Threats to construct validity consider the relationship between theory and observation,

in case the measured variables do not measure the actual factors. Our specification of

dependency update strategies considers version constraints and assumes developers use the

official npm registry to fetch their dependencies. In reality, developers can look outward

and use external sources to fetch dependencies (e.g. direct link to Github repository). One

issue with such cases is that the update strategy could change depending on the contents of

the external source. For example, linking to the master branch is equivalent to a permissive

update strategy and linking to a specific release is equivalent to a restrictive update strategy.

Another issue is that there is no way to identify all package dependents if the package is

hosted on an external link. In order to study both the dependencies and the dependents of

the packages, our study only considers packages hosted on the official npm registry and

dependencies pointing to other packages in the npm ecosystem. Additionally, we assume

the information provided by the libraries.io dataset (Libraries.io, 2020) is accurate, and this

assumption has been verified by other researchers (Decan et al., 2019).

109

Threats to internal validity refer to internal concerns such as experimenter bias and er-

ror. The npm ecosystem is very large and susceptible to noisy/toy packages. We disregard

packages with less than 2 dependents which removes unused packages from our dataset.

We also manually remove multiple spam packages (and their dependencies) which had the

sole purpose of depending on every other package in the ecosystem (Section 4.2). In order

to train our model, we use 19 features that we believe to influence dependency decisions

based on the literature. In reality, there may be other relevant information for deciding

on the dependency update strategy that were not captured (or not feasible) using our fea-

ture set. For example, developers can change dependency update strategies following a

recommendation from a senior member of the team or because the specific section of the

code relying on the dependency is critically important. We believe our features to be suit-

able since we cross-referenced the relevant characteristics for dependency selection and

management that we found in the literature, with the package characteristics available in

the npm registry and the code repository. We discovered features with missing data in

the repository fields of the libraries.io dataset, warranting a look into the accuracy of the

dataset. For many features (e.g. Dependency Count) the null value was used to denote zero

as the minimum value starts at one. However, in 3 out of the 19 features selected for our

model (Repository Stars Count, Repository Size, and Repository Open Issues Count), we

found missing values where a value of zero was also present. We took a sample of 1000

packages that had missing data corresponding to the three features and realized 96.1% of

these packages do not have a working repository link (repository no longer exists). Sec-

tion 4.2 explains how we handled missing values in our dataset. Our findings regarding

the accuracy of the libraries.io dataset corroborates the previous analysis of Decan et al.

in which they manually cross-checked the libraries.io dataset against their own collected

metadata from the npm registry and verified its accuracy (Decan et al., 2019).

Threats to external validity concern the generalization of our findings. The observed

110

findings are specific to the npm ecosystem since previous research has shown that different

ecosystems have different practices and cultural values (Bogart et al., 2017, 2016). How-

ever, the package characteristics, the methodology to extract the features and the update

strategy to train the model can be replicated on other ecosystems that provide similar de-

pendency information. In fact, since the libraries.io dataset (Libraries.io, 2020) used in this

study utilizes the same schema to store metadata for other ecosystems such as PyPI and

Maven, our replication package (Javan Jafari et al., 2022) can easily be used to replicate

the study on other ecosystems. Additionally, the libraries.io dataset used in this study does

not contain npm package data after January 2020. However, re-collecting the dataset for

an entire ecosystem such as npm does not only require a lot of effort, but it is error-prone.

The accuracy of the libraries.io dataset has previously been verified in the literature (Decan

et al., 2019). More importantly, our study is more focused on the dynamics of dependency

management in the npm ecosystem, rather than predicting the update strategy for the latest

available version. Therefore, we believe the dataset to be suitable for our study. The find-

ings of RQ3 are derived from a sample of 160 packages. While these packages are selected

at random, we want to focus on packages with adequate historical dependent data. There-

fore, our selection criteria requires packages to have more than 100 dependents, which

threatens the generalizability of the results of this particular RQ to packages with a small

number of dependents. As previously mentioned, the sample of 160 packages is not meant

as a representative sample of the entire ecosystem. It is a convenience sample of highly

used packages for an in-depth mixed-method study that is otherwise infeasible for such a

large ecosystem.

4.7 Chapter Conclusion

In our study, we use a curated dataset of over 112,000 npm packages to collect and

derive 19 package characteristics from the their npm registry and code repository. We use

111

these characteristics to train a model to predict the most commonly used dependency update

strategy for each package. Based on the wisdom of the crowds principle, we believe the

update strategy used by the majority to be favorable to the alternatives. We show that these

characteristics can in fact be used to predict dependency update strategies. We analyze

the most important features that influence the predicted update strategy and show how

a change in these features influences the predictions. Developers should take note of the

highly important characteristics and their impact when making dependency decisions about

a package. The results show that our model outperforms the alternative of merely using the

balanced update strategy in all instances. We complement the work with a manual analysis

of 160 packages to investigate the evolutionary behavior of dependency update strategies

and understand how they are impacted by events such as the 1.0.0 release or breaking

changes.

The findings of this study can be used to better manage direct dependencies. However,

managing the dependencies of our project is not enough to mitigate dependency issues, es-

pecially those arising from transitive dependencies. Just like direct dependencies, transitive

dependencies are installed along the code-base and can influence the project. Yet, devel-

opers have no control over what transitive dependencies are installed and how they are

managed. Developers must rely on their direct dependencies to properly manage their own

dependencies in order to prevent the propagation of problems (e.g. vulnerabilities) down-

stream. In the following chapter, we investigate the attributes of packages that quickly

respond to vulnerabilities and how developers can leverage these attributes in their depen-

dency selection criteria to mitigate the risk of vulnerabilities from transitive dependencies.

112

Chapter 5

Practices for Selecting Dependencies

Relying on dependency packages accelerates software development, but it also in-

creases the exposure to security vulnerabilities that may be present in dependencies. While

developers have full control over which dependency packages (and which version) they

use, they have no control over the dependencies of their dependencies. Such transitive de-

pendencies, which often amount to a greater number than direct dependencies, can become

infected with vulnerabilities and put software projects at risk. To mitigate this risk, Prac-

titioners need to select dependencies that respond quickly to vulnerabilities to prevent the

propagation of vulnerable code to their project. To identify such dependencies, we analyze

more than 450 vulnerabilities in the npm ecosystem to understand why dependent pack-

ages remain vulnerable. We identify over 200,000 npm packages that are infected through

their dependencies and use 9 features to build a prediction model that identifies packages

that quickly adopt the vulnerability fix and prevent further propagation of vulnerabilities.

We also study the relationship between these features and the response speed of vulnerable

packages. We complement our work with a practitioner survey to understand the appli-

cability of our findings. Developers can incorporate our findings into their dependency

management practices to mitigate the impact of vulnerabilities from their dependency sup-

ply chain.

113

5.1 Introduction

Software ecosystems have facilitated large scale code reuse by providing access to a

wide range of software packages. In turn, developers are increasingly reliant on third-party

packages to accelerate development (Bombonatti et al., 2017). However, developers also

need to expend effort and expertise to manage their dependencies (Kula, German, et al.,

2018a). In a recent survey, developers reported that they are not confident in their current

dependency management practices (Tidelift, 2022). The Node Package Manager (npm) is

the world’s largest software package ecosystem with more than 2 million packages (npm,

2022b). The average number of packages in the npm ecosystem is growing year after

year (Sonatype, 2021), but more importantly, the number of dependencies per package is

growing at a super-linear rate (Zimmermann et al., 2019). The scale and complexity of the

npm dependency network has created many dependency management challenges (Artho et

al., 2012; Decan et al., 2017, 2019; Matt Rickard, 2021).

Security vulnerabilities are a prevalent issue in software ecosystems. The increase of

deep dependency supply chains provides an exploitable opportunity for attackers. In the

year 2021, there was a 650% increase in attacks aimed at exploiting vulnerabilities in up-

stream software packages (Sonatype, 2021). Up to 40% of all npm packages depend on

code that is infected with a publicly disclosed vulnerability (Zimmermann et al., 2019)

and the number of reported vulnerabilities in npm is increasing exponentially (Zerouali et

al., 2022). The interconnected nature of software ecosystems increases the threat surface

for vulnerabilities (Decan et al., 2018b; Liu et al., 2022). For example, when the popu-

lar “lodash” package was infected with a high severity vulnerability, more than 4 million

open-source projects were exposed to a potential attack (Tal, 2019). When a client installs

an npm package, they are implicitly trusting up to 80 other packages (on average), many

of which are due to transitive dependencies (dependencies of dependencies) (Zimmermann

et al., 2019). More than one third of the latest package releases in npm are exposed to

114

vulnerabilities through their transitive dependencies (Zerouali et al., 2022). Vulnerabilities

in transitive dependencies can propagate to our project and yet, we have no direct con-

trol over what transitive dependencies (or what version) are installed alongside our project.

Long dependency chains created through layers of transitive dependencies also impede the

propagation of vulnerability fixes throughout the affected packages in the ecosystem (Al-

fadel et al., 2023; Chinthanet et al., 2021).

Since transitive dependencies are installed based on the requirements of our direct de-

pendencies, the only means to address our exposure to vulnerabilities in transitive depen-

dencies is relying on the responsiveness of our direct dependencies. Responsive packages

are packages that install the published fix for their vulnerable dependencies in a timely

manner. Developers need to align their dependency practices to select responsive de-

pendency packages. We aim to identify and understand the attributes of npm packages

that indicate better responsiveness to vulnerable dependencies. By selecting packages that

quickly adopt vulnerability fixes in their dependencies, developers can reduce the risk of

publicly disclosed vulnerabilities from transitive dependencies. Our research is formulated

through the following questions:

We extract vulnerability data for 458 vulnerabilities from the npm advisory database.

We then cross-reference the vulnerabilities with more than 154 million dependency re-

lationships in the npm ecosystem, extracted from libraries.io to identify 201,027 unique

packages that install (and later fix) vulnerable dependencies. We measure how long it takes

for the dependent packages to adopt the vulnerability fix. We train a random forest model

that uses 9 package attributes (e.g. release frequency) to classify the fast-reponder and

slow-responder packages.

RQ1: How does dependency management impact the risk of vulnerabilities for down-

stream packages? While it is up to the maintainer of a vulnerable package to release a fix,

dependent packages must decide on when and how they install the fix in their dependency.

115

The average public vulnerability is fixed in a little over 1, but it takes on average more than

6 months for dependents to install the fixed version, which highlights the importance of

package responsiveness on mitigating vulnerabilities. Dependency management decisions

of packages with a vulnerable dependency also influence what portion of fixes can be in-

stalled. By relying only on patch updates, dependents miss out on 30% (on average) of

vulnerability fixes.

RQ1: How does dependency management impact the risk of vulnerabilities for down-

stream packages? Developers need a means to identify and select responsive packages

to mitigate the risk of vulnerabilities from transitive dependencies. The high ROC-AUC

score of 0.85 for our classification model shows that package attributes are useful indi-

cators for differentiating between fast-responder and slow-responder packages. We found

that non-restrictive dependency update strategy have a shorter exposure to vulnerabilities.

Package age, and release frequency are also good predictors of how quickly packages adopt

a vulnerability fix.

RQ3: How do developers perceive dependency practices for vulnerability mitigation?

In order to gauge the applicability of our results in practice and understand the perception of

practitioners on our findings, we design a survey and disseminate it among 67 practitioners

from industry and academia. Many practitioners are unaware that the lack of updates from

downstream dependents is the key culprit for prolonged exposure to public vulnerabilities.

In regards to the package attributes that indicate a faster adoption of vulnerability fixes, the

experience of practitioners is generally aligned with our results. Survey participants are in

favor of incorporating our findings into their dependency management practices.

This chapter is structured as follows. Section 5.2 explains the methodology and dataset

used to conduct the study. We present the findings of our research in Section 5.3 and discuss

the practical and research implications of our results in Section 5.4. In Section 5.5, we

summarize the key related works. Section 5.6 presents the threats to validity. We conclude

116

our study in Section 5.7.

5.2 Data and Methodology

Our objective is to identify and understand the characteristics of responsive packages.

Consequently, we require data regarding vulnerable packages in npm. We also need in-

formation about the attributes of downstream packages that depend on these vulnerable

packages. We combine the data provided by the npm security advisories and package and

dependency metadata for the npm ecosystem to curate a dataset of vulnerable dependency

relationships in npm. We then extract the relevant features from the downstream depen-

dents that install (and later fix) a vulnerable version of the upstream dependency to prepare

our dataset for training a machine learning model. A complete replication package for this

study is available on Zenodo (Javan Jafari, Elias Costa, Abdellatif, & Shihab, 2023).

5.2.1 Vulnerable dependency dataset

In order to analyze the package attributes that indicate a faster adoption of vulnerability

fixes, we need first to identify packages that install a vulnerable dependency. We gather the

dataset of reviewed npm security advisories from GitHub (GitHub, 2023b). The vulnerabil-

ity advisories include the vulnerability name, published date, severity, CWE classification

(Mitre, 2023b), CVE identifier (Mitre, 2023a), affected versions, fixed versions, along with

a description of the vulnerability. We also use the latest available version of the libraries.io

dataset (Libraries.io, 2023) to identify dependency relationships in the npm ecosystem so

we can extract packages that install a vulnerable dependency. This dataset has been used

and validated in previous research (Decan et al., 2019; Jafari, Costa, Shihab, & Abdalka-

reem, 2023). The dataset contains metadata for 1,275,082 unique packages, 11,400,714

package versions and 154,914,774 dependency relationships for the npm ecosystem. We

117

then cross-reference both datasets and select the packages that have a vulnerable version in

our npm dependency dataset, resulting in 118, 253, 160 and 44 critical, high, medium and

low severity vulnerabilities, respectively. We maintain 4 separate datasets (one for each

vulnerability severity type) to facilitate detailed analyses.

For each vulnerability, we first collect the entire list of its downstream dependents from

the dataset to identify the packages that are ’potentially vulnerable’ to the upstream vulner-

ability. We only consider runtime dependency relationships from the downstream depen-

dents to upstream packages because they are required for the package to properly function

and should be complete (missing runtime dependencies are considered a bad practice (Ja-

fari et al., 2021)). This first step amounts to more than 1,940,000, 4,545,000, 4,770,000 and

2,320,000 potentially vulnerable dependencies for critical, high, medium and low severity

vulnerabilities, respectively. We then evaluate each of the mentioned dependency rela-

tionships to determine whether the downstream dependency actually installs a vulnerable

version of the upstream package (i.e. downstream dependent installs a vulnerable version).

Similarly, we determine if the downstream package installs a version including the fix or

any version higher than that (i.e. downstream dependent installs a non-vulnerable version).

Since disclosed vulnerabilities often affect all previous releases of a package (Zerouali et

al., 2022), the most reliable way to mitigate vulnerabilities is to update to a fixed version.

Many packages specify flexible version ranges for their dependencies which may in-

stall a different upstream version depending on the evaluation time frame (i.e. constraint of

>1.2 may install version 1.5 or version 2.0 depending on when the constraint is evaluated).

In order to verify if a package installs a vulnerable version, we evaluate the current down-

stream constraint the day before the fix could be adopted. If no downstream dependent

in our dataset installs the vulnerable upstream version, the upstream package are removed

from our analysis. In order to verify if the downstream package installs a fix, we evaluate

the current downstream constraint at the time the fix was released by the upstream package

118

Table 5.1: The dataset for our study

Dataset Attribute Critical Severity High Severity Medium Severity Low Severity Total

Vulnerabilities 59 213 146 40 458
Vulnerable Dependencies 113,068 165,311 151,471 79,746 509,596
Vulnerable Dependents 104,149 134,329 126,087 75,432 201,027

and every subsequent date the downstream releases a new version and measure the first

time the fixed version (or any higher version) of the upstream package is installed. Ta-

ble 5.1 presents the detailed statistics of the final dataset used in our study. Note that total

vulnerable dependents are less than the sum of vulnerable dependents for each severity type

since a dependent package can appear as a vulnerable dependent in multiple severity type

groups.

5.2.2 Package feature extraction

We aim to identify and collect features in downstream packages that are relevant for

responding to vulnerable dependencies. The features will be used to train a model to predict

the speed of response to a vulnerable dependency fix. We aim to consider dimensions

regarding package popularity, maturity & stability, activity and dependency management.

Popularity: We use Dependent Count as our popularity metric as it is the de facto mea-

sure of the number of unique downstream clients for a package. We hypothesize that highly

used packages may take greater care in quickly addressing vulnerable dependencies as their

vulnerable dependencies can transitively impact a larger number of downstream packages

and consequently, invite greater repercussions. Multiple studies highlight the number of

downstream dependents as a metric used by developers to aid in their dependency selec-

tion (Bogart et al., 2016; Haenni et al., 2013; Larios Vargas et al., 2020; Pashchenko et al.,

2020).

Maturity & Stability: We use Age and Release Status as our indicators for package

119

maturity & stability. Packages with a longer history provide practitioners with more re-

liable information regarding the responsiveness of the package to security vulnerabilities.

On the other hand, older projects are less likely to still be well maintained (software also

rots after all). Developers have cited package maturity as a criterion for selecting depen-

dencies (Larios Vargas et al., 2020). The release status determines whether a package has

released their first 1.0.0 version or if they are still in their initial development releases (e.g.

v0.2.3). SemVer considers pre-1.0.0 releases unstable by nature and we believe their use

is a reliable means to gauge the maintainers’ perception regarding the maturity of their

own package. Release status has previously been referenced by developers as a metric in

selecting packages (Bogart et al., 2016).

Activity: We use the Release Frequency as our metric for measuring activity. We

hypothesize that packages with a more active development and maintenance schedule are

more proactive in responding to vulnerable dependencies. If a package rarely releases a new

version, they need to rely on automatic dependency updates as their means of installing new

fixes for vulnerable dependencies. However, a package that limits automatic dependency

updates can still install the fix manually if they release a new version of their package with

a modified configuration file. Release frequency normalizes the number of total releases by

the age of a package and it is an indicator used by developers when selecting dependencies

(Bogart et al., 2016; Haenni et al., 2013; Larios Vargas et al., 2020).

Dependency Management: Since we want to identify features that best predict the re-

sponsiveness to vulnerable dependencies, we need to consider a feature group that focuses

on the dependency management of packages. We hypothesize the dependency-related de-

cisions made by a potential direct dependency has a considerable influence on our exposure

to transitive dependencies. We use Dependency Count, Dependency Modifications and De-

pendency Update Strategy as our dependency management features. Dependency Count

is a measure of the number of dependencies, and it is considered by developers to aid

120

in dependency selection (Larios Vargas et al., 2020; Mujahid, Abdalkareem, & Shihab,

2023). We hypothesize that a larger number of dependencies may make it difficult to prop-

erly manage and keep track of vulnerable dependencies. Dependency Modifications is a

measure of dependency change and measures how many releases modified the dependency

configuration. Changing a dependency configuration file (package.json) more frequently

can be a sign of continuous upkeep to maintain dependency health or it could be a sign of

frequent dependency problems. When viewed alongside release frequency, the number of

dependency modifications highlights whether an active package with frequent releases also

frequently modifies their dependencies.

The Dependency Update Strategy encapsulates the dependency constraints used by the

npm package manager to determine acceptable versions of each package dependency (De-

can & Mens, 2019a; Jafari, Costa, Shihab, & Abdalkareem, 2023). These constraints spec-

ify the degree of freedom given to the package manager to automatically install new ver-

sions of a dependency and it is an important part of the dependency management prac-

tices in each project. We hypothesize that limiting automatic updates for dependencies

increases the likelihood of depending on a vulnerable version of a dependency that has al-

ready released a fix. In the following, we elaborate on the specific definition of our three

dependency update strategies. Figure 5.1 presents the distribution of dependency update

strategies in our dataset.

• Balanced Update Strategy: This update strategy encompasses dependency con-

straints that allow the package manager to automatically install new minor and patch

releases for post-1.0.0 package dependencies and prevent automatic updates for pre-

1.0.0 package dependencies (because SemVer considers pre-1.0.0 releases to have an

unstable API (Preston-Werner, 2019). A common practice to use a balanced update

strategy in npm is to use the caret symbol as a dependency constraint (e.g. ∧1.2.3).

121

• Restrictive Update Strategy: This update strategy encompasses dependency con-

straints that either prevent automatic updates entirely or restrict the package manager

to only install new patch updates for post-1.0.0 package dependencies. The tilde no-

tation is commonly used in npm to specify restrictive update strategies (e.g. ∼1.2.3).

We do not define restrictive strategies for pre-1.0.0 package dependencies as any

automatic updates for such packages is considered permissive.

• Permissive Update Strategy: This update strategy encompasses dependency con-

straints that allow the package manager to automatically install all new releases (in-

cluding major releases) for post-1.0.0 package dependencies and any dependency

constraint that allows updates of any kind for pre-1.0.0 package dependencies. The

npm ecosystem allows the use of wildcards (e.g. *) as a dependency constraint but

one can also use >= (e.g. >=1.2.3).

�%�D��D�Q�F�H�G

��	��	��

�3�H�U�P��V�V��Y�H����������

�5�H�V�W�U��F�W��Y�H

���������

Figure 5.1: Distribution of the update strategy feature

In order to curate an accurate depiction of the relationship between features and vulner-

ability fixes, we need to calculate downstream package features at the time a vulnerability

was fixed in an upstream package (e.g. we are interested in the release frequency of the

downstream package at the time the upstream package released the fix, not many years

after). Since the same npm package can depend on multiple vulnerable dependencies at

122

Table 5.2: Selected features for downstream packages

Feature Description Histogram

Package Age The number of days since the dependent package was published.

Balanced Update Strategy Whether or not the dependent used the balanced update strategy.

Restrictive Update Strategy Whether or not the dependent used the restrictive update strategy.

Permissive Update Strategy Whether or not the dependent used the permissive update strategy.

Release Frequency The average number of dependent version releases per month.

Dependency Count The total number of dependencies for the dependent package.

Dependent Count The total number of dependents for the dependent package.

Release Status Whether the package was in a pre-1.0.0 or post-1.0.0 release state.

Dependency Modifications The number of releases in which the dependencies were modified.

different times, the features have to be calculated separately every time.

The dependency update strategy is a categorical feature with no ordered relationship

and we must use one-hot encoding to encode each class into a binary (0,1) feature. Oth-

erwise, the model may assume a natural order between the update strategies, which might

result in poor performance or irrational results. We used the pandas library to retrieve

one-hot encoded values for the update strategies (Pandas, 2023).

Introducing highly correlated features while training a machine learning model can

impact both its performance and its interpretability. Due to the skewed distribution of our

features, we use Spearman’s correlation (Hollander, Wolfe, & Chicken, 2013) to identify

and remove features with a correlation score of above 0.7. In such cases, we kept the feature

which we believed to have a more tangible definition. We dropped Package Version Count

in favor of Dependency Modifications and Days Since Last Release in favor of Package

Age. The final set of features for our study is presented in Table 5.2. It is worth noting that

some of the collected features represent the characteristics of a selected dependency (e.g.

Age and Dependent Count) while others reflect their behavior (e.g. Update Strategy and

Release Frequency).

123

5.3 Results

In this section, we motivate our 3 research questions, describe our approach, and present

our findings.

5.3.1 RQ1: How does dependency management impact the risk of vul-

nerabilities for downstream packages?

Motivation: Security vulnerabilities rooted in dependency packages are a major risk to

software (Sonatype, 2021; Zimmermann et al., 2019). Packages play a key role in mitigat-

ing vulnerabilities in their dependencies. We want to understand the role of dependency

management decisions of packages in their exposure to vulnerabilities from upstream pack-

ages. While previous research has discussed how long it takes for a npm dependency to

remain vulnerable (Alfadel et al., 2023; Chinthanet et al., 2021; Decan et al., 2018b), they

have not studied the relationship between vulnerabilities and the dependency management

decisions of downstream dependents.

Approach: A vulnerability fix can be released as a major, minor or patch version (Sec-

tion 2). Since we have the information for package versions and vulnerability metadata,

we can compare the version number of the fixing release (r) with the version number of

the release right before the fix (r-1) to evaluate the type of fixing release. (Figure 5.2).

We use the npm SemVer package (npmjs, 2023) to evaluate the difference between these

two packages. For this analysis, we exclude uncommon release types such as pre-major

and pre-minor and focus on the main types of releases according to semantic versioning

guidelines (Preston-Werner, 2019) (i.e. major, minor and patch). Since the adoption of dif-

ferent release types is determined by the dependency decisions of downstream dependents,

comparing the proportion of release types for vulnerability fixes shows how downstream

dependency management decisions can influence the proportion of vulnerability mitigation.

124

To evaluate the speed of vulnerability mitigation, we measure how long it takes for the

upstream packages to fix the vulnerability after public disclosure (i.e. fix delay) and how

long it takes for the downstream dependents to adopt the fix after the fix is released (i.e.

adoption delay). Since the adoption of a fix is the responsibility of downstream depen-

dents (through dependency management decisions), comparing the fix delay and adoption

delay shows how much downstream dependency management decisions influence the total

mitigation time.

The fix delay is measured by comparing the public exposure date and the fix release date

which are both provided by the vulnerability advisory. In order to measure the adoption

delay, we determine which dependents actually install a vulnerable version of the upstream

vulnerable package and later adopt the fix (Section 5.2). We then look at the release date

of the fix and compare it with the first release of the dependent that accepts the upstream

fix. In addition, 74,909 dependent packages in our dataset never adopt a fix, so we measure

the adoption delay from when the fix was published to the most recent date in the dataset

(12 Jan 2020). This is a lower bound for the adoption delay as the dependents can opt to

receive a fix at a later date.

Figure 5.3 presents the distributions for the fix and adoption delays for different vulner-

ability severities. We use the Mann-Whitney U test to measure the statistical significance of

the difference between the distributions (Mann & Whitney, 1947). The distributions should

not be biased towards popular vulnerabilities that impact many dependents or the decisions

of packages that have many vulnerable dependencies. In order to prevent a bias towards

vulnerabilities that affect many dependents, the distributions of fix delays are calculated

for unique vulnerabilities. Similarly, to prevent a bias towards downstream packages that

are affected by many vulnerabilities, the distributions of adoption delays are calculated for

unique dependent packages (i.e. when a package has multiple vulnerable dependencies,

we consider the most recent vulnerable dependency).

125

�0�D��R�U

�������

�0
�Q�R�U
����������

�3�D�W�F�

���������

(a) Critical

�0�D��R�U

����������

�0
�Q�R�U ���������

�3�D�W�F�
����������

(b) High

�0�D��R�U

������

�0	�Q�R�U ��������

�3�D�W�F�
����������

(c) Medium

�0�D��R�U

����������

�0��Q�R�U ����������

�3�D�W�F�
���������

(d) Low

Figure 5.2: Release type for the vulnerability fix (separated by vulnerability severity)

Findings: The release types of the vulnerability fixes for each severity class are depicted

in Figure 5.2. The majority of vulnerability fixes are released as a patch update, which is

expected as these types of releases are meant for fixing bugs and vulnerabilities. Yet, a size-

able portion (more than 30% on average) of vulnerability fixes are released in minor and

major release types, which aligns with the findings of previous research (Chinthanet et al.,

2021; Zerouali et al., 2022). This creates a problem for downstream dependents because

previous research has shown that even though dependents frequently use the non-latest ver-

sion groups, back-porting fixes to previous version groups is an infrequent practice (Decan,

Mens, Zerouali, & De Roover, 2021). Consequently, downstream dependents that refuse

to accept all updates will not receive all vulnerability fixes. In other words, downstream

dependency practices impact what proportion of vulnerability fixes can be adopted. The so-

lution is not as straightforward as “accepting all updates”, as new major versions will (by

definition) contain backward incompatible changes that can break the downstream pack-

age. Even new minor or patch releases may introduce such breaking changes (Cogo et al.,

2019; Mezzetti, Møller, & Torp, 2018).

Finding 1: Since vulnerability fixes are packaged in different release types, down-

stream dependency management decisions that limit updates to specific release

types (e.g. patches) also limit their capacity of receiving the fixes.

126

Figure 5.3: Comparing the distributions of upstream fix delay with downstream adoption

delay for different vulnerability severities (statistically significant difference with p<0.05).

The more important finding is the relationship between downstream dependency man-

agement decisions and the adoption delay of vulnerability fixes. The violin plots in Fig-

ure 5.3 provide insights into how long npm packages remain vulnerable. For each severity

type, we have plotted the distribution for the fix delay and the adoption delay. While the

median for all delays is zero (meaning many publicly disclosed vulnerabilities are fixed

within one day and adopted by the dependents on the same day), the distribution of the

delays clearly show that adoption delay is usually much longer than the fix delay. The dif-

ference between two distributions are statistically significant (for all severities) using the

Mann-Whitney U test with p<0.05. The mean time to release a fix is 1.17 days, while the

mean time to adopt a fix is 192.5 days. While only 4 vulnerabilities take more than a day to

release a fix (after disclosure), 73,155 dependent packages need more than a day to adopt

an upstream fix.

The minuscule delay to release a fix is due to the vulnerability disclosure policies that

recommend the initial vulnerability report to be made privately to package maintainers so

they can release a fix before publicly disclosing the vulnerability (GitHub, 2023a). In fact,

apart from a few outliers, almost all publicly disclosed vulnerabilities have a vulnerability-

fixing release on the same day. This is not the case for the adoption of vulnerability fixes.

It is the delay in downstream fix adoption, not the delay in the upstream fix release, that

is keeping dependent packages vulnerable. What makes matters worse, is that the post-

disclosure vulnerability risk period is more dangerous than the pre-disclosure period be-

cause the details of the vulnerability and the means to exploit it are now made public. A

127

crucial factor in determining how fast publicly disclosed vulnerabilities are mitigated across

the ecosystem is for downstream dependents to adopt appropriate dependency management

practices.

One interesting observation in Figure 5.3 is that the delay in fix adoption corresponds

intuitively and consistently to the severity of the vulnerability. The lower the severity of a

vulnerability, the higher the delay in adopting the fix. This hints that developers are aware

of vulnerability severities and use the information to prioritize the adoption of fixes. As

previous research has shown, developers often do not update their dependencies due to

the necessary extra effort (Kula, German, et al., 2018a). The built-in npm audit command

scans package dependencies for known vulnerabilities and reports the list and severity of

public vulnerabilities (npm Docs, 2023). A similar functionality is provided by the popular

Dependabot dependency management tool (GitHub Docs, 2023).

Finding 2: Since the majority of packages with a vulnerability release a fix within

a day of public disclosure, downstream dependency management decisions that

delay fix adoption are the key culprit for prolonged exposure to such vulnerabili-

ties.

5.3.2 RQ2: How can we identify packages that quickly mitigate vul-

nerabilities?

Motivation: In our first research question, we find that dependency decisions impact the

responsiveness of packages to adopting a vulnerability fix. We need to identify the at-

tributes of responsive dependency packages. By identifying responsive packages, we can

help developers mitigate the risk of vulnerable dependencies. We wish to use our selected

package attributes to model the adoption delay of vulnerability fixes. Our results will help

developers better understand how opting for different dependency practices (e.g. choosing

a package with a higher release frequency) can increase or decrease the adoption speed of

128

vulnerability fix propagation from upstream packages.

Approach: We use our set of 9 package attributes (Section 5.2) to train a random forest

model to predict the adoption delay of the fix. We use random forest because it is known

to offer a good balance between performance and interpretability and is commonly used

in software engineering research (Dey & Mockus, 2020; Ohm, Boes, Bungartz, & Meier,

2022). When feeding the vulnerability instances to the model, we use the latest vulnerable

dependency relationship for each downstream dependent. We do this as we do not want

non-unique downstream packages across our training and test data and we do not want

to bias the data towards downstream packages with a high number of dependencies. For

example, package X may depend on a vulnerable package in 2016 and another vulnerable

package in 2019. Since each dependency relationship is an instance used to train the model,

relationships involving package X may appear in both training and test sets. While the fea-

tures for package X are calculated separately per dependency relationship, a hidden feature

(e.g. cultural habits) may remain consistent for both relationships, causing a data leak from

the training set to the test set. Additionally, package X may have many more vulnerable

dependencies than another downstream package, which would bias the model results to

the features of package X due to increased presence in the training set. This amounts to

201,027 vulnerable dependency relationships in our data. Since no previous work has used

dependency practices to model adoption delay, we use a stratified predictor (random pre-

diction based on class weight) as our baseline (Scikit, 2023). Both our random forest and

our baseline model are trained and tuned on 80% of our dataset (training and validation

set) and evaluated on the held-out 20% (test set) (Géron, 2019). We use ROC-AUC and

F1-score to evaluate our models (Tharwat, 2020). The ROC metric (Receiver Operating

Characteristics) depicts a probability curve and the AUC (Area Under the Curve) is a value

in the range of 0 and 1 that shows the capability of the model in distinguishing between

129

classes. Higher ROC-AUC means the model is better at correctly predicting classes. F1-

score is a function in the range of 0 and 1 that measures the balance between precision (the

portion of true positive cases among all the retrieved cases) and recall (the portion of true

positive cases that were retrieved).

We used a grid search with a 10-fold cross validation on the training set to tune the

hyper-parameters of our model. This results in 1000 estimators (trees) with a minimum

sample split of 8. The 10-fold cross validation fits the model 10 times, where each fit is

performed on 90% of the training set (randomly selected) and the remaining 10% is used

as a validation set.

Figure 5.4: Distribution of adoption delay (days)

We are interested in predicting a range of classes of adoption delay (e.g. fast, slow),

instead of the actual number of days because the adoption delay ranges from 0 to 2841 days

and the delay is not equally distributed along the range. Figure 5.4 presents the distribution

of delay in 10 bins. As can be seen, the majority of vulnerability fixes are adopted in a

short time (note the log scale on the Y-axis of Figure 5.4).

We train a binary classifier and use a threshold of 48 hours for identifying the fast-

responder class. Since it is not intuitive to classify anything below 48 hours as fast and

anything slightly above it (e.g. 50 hours) as slow, we use a disjoint threshold of below 48

hours for the fast class and above 14 days for the slow class to better separate the classes.

This removes 546 dependents between the two thresholds (that adopted the fix later than

130

48 hours and sooner than 14 days) from our dataset. We conducted a sensitivity analysis

to analyze our binary class threshold and ensure minor changes do not significantly impact

the target class distribution (see Section 5.6).

Since not all dependency practices have the same impact in predicting the adoption de-

lay, we need to identify, rank and analyze the important features of the model (Figure 5.7).

We calculate the permutation feature importance on the test set in which each feature is

randomly shuffled (repeated 10 times) to observe its impact on the model’s performance

(ROC-AUC). Important features have a larger influence on the model’s performance when

their values are permuted (Scikit-learn, 2020).

We use Partial Dependence Plots (PDP) to visualize the impact of the important de-

pendency practices on the predicted adoption delay (Figure 5.8). PDPs depict the marginal

effect of a feature on the model’s predictions (Molnar, 2020) and they can highlight lin-

ear, monotone or more complex relationships between the dependency practices and the

adoption delay. In other words, we can visualize how a change in a feature can change

the adoption delay predicted by the model. The Y-axis on the PDPs in Figure 5.8 is the

predicted probability for an instance being predicted as a fast response. The tick marks on

the X-axis are the deciles for the feature distribution which indicate which part of the plots

represent the majority of our dataset. Individual Conditional Expectation (ICE) plots also

show the effect of a feature on the target variable. However, unlike PDP which average the

effect over all instances, ICE plots visualize the relationship for a single instance (Gold-

stein, Kapelner, Bleich, & Pitkin, 2015). We have shown a random sample of 20 ICE plots

in Figure 5.8 for each of the top 5 features (depicted using the light-colored lines).

Findings: The evaluation results in Figure 5.6 present the ROC-AUC, F1 score, Precision

and Recall for our dependency practices model compared with the stratified baseline. Our

dependency practices model achieves an ROC-AUC of 0.85, which is a 70% improvement

131

Figure 5.5: Distribution of model classes

Figure 5.6: Performance evaluation results for the dependency practices model

over the baseline. Our model also achieves an F1-score of 0.71, which is a 97% improve-

ment compared to the baseline. These results indicate that package features can be used to

model and predict the adoption delay of vulnerability fixes in the npm ecosystem.

We also train and evaluate the model on four subsets of the data in Table 5.1, which sep-

arates the dataset based on vulnerability severity to see if there is a considerable difference

between our results when we focus on critical, high, medium and low severity vulnerabil-

ities. As can be seen in the evaluation breakdown of Table 5.3, our data subset models

perform at least on par with the main model. In some cases, we observe even stronger

132

Table 5.3: Performance evaluation of alternative models on severity-specific subsets of the

data

Subset model Model ROC-AUC Baseline ROC-AUC Increase Model F1-score Baseline F1-score Increase

Critical 0.92 0.5 84% 0.82 0.35 134%

High 0.85 0.5 70% 0.73 0.38 92%

Medium 0.91 0.5 82% 0.80 0.34 135%

Low 0.92 0.5 84% 0.83 0.41 102%

performance results (e.g. ROC-AUC of 0.92 for critical vulnerabilities).

Finding 1: Practitioners can use the attributes of their dependency packages to

influence the adoption of upstream vulnerability fixes.

Figure 5.7: Ranking the features of the model based on permutation importance

We have ranked the dependency practices based on their permutation importance in the

box plots of Figure 5.7. The use of a restrictive update strategy, the age of the package,

the use of a balanced update strategy, the release frequency of the package and the num-

ber of dependencies for a package are the most important indicators for determining the

responsiveness of an npm package to a vulnerability fix. Developers should incorporate

these characteristics in their dependency management and selection practices.

133

Figure 5.8: Partial Dependence Plots and Individual Conditional Expectations for the top 5

dependency practices

While feature importance tells us which dependency practices are instrumental for the

model, the PDPs in Figure 5.8 tell us how the dependency practices impact the prediction

results. Specifically, we want to analyze how a change in the top 5 dependency prac-

tices increase or decrease the likelihood of a package being classified as a fast responder

to vulnerabilities. We can see that packages with restrictive update strategies take longer

to adopt vulnerability fixes. Consequently, their increased exposure to vulnerabilities fur-

ther exposes their downstream dependents (transitive exposure). While this observation

aligns with our intuitive understanding of restrictive updates, it is not always the expected

outcome. Developers that use restrictive update strategies can always decide to manually

maintain their dependencies and keep track of important updates, but in a generalized sense,

they fall short of the latest vulnerability fixes; especially compared to developers who opt

for a more balanced update strategy.

Finding 2: Downstream dependents of packages with a non-restrictive dependency

update strategy tend to have shorter exposure to security vulnerabilities.

A less intuitive finding is the impact of package age on the responsiveness to vulner-

abilities. Older packages in our dataset are predicted less likely to quickly adopt vulnera-

bility fixes. We believe this is due to the impact of old and unmaintained packages, since

a well-maintained mature package (while seemingly rare) can actually be a more reliable

dependency choice. This hypothesis is reinforced by the PDPs for release frequency. Pack-

ages that release more often are more likely to be predicted as a fast responder. It is also

134

worth noting the initial feature of “Days Since Last Release” was removed due to a high

correlation with “Package Age”, indicating that older packages are more likely to not have

a recent release.

Finding 3: Downstream dependents of younger packages tend to have shorter ex-

posure to security vulnerabilities.

A higher release frequency of a package initially increases the likelihood of a fast re-

sponse to vulnerabilities. However, once the package has a new release every 4 months, a

further increase in release frequency does not seem to make a difference. There are two po-

tential explanations for this observation. First, a non-zero release frequency of around 0.25

per month is already enough to differentiate between regularly maintained and abandoned

packages and further increase in the release frequency may not provide further insight into

adequate maintenance. The second explanation for this observation is the tick marks on

the X-axis, which represent the distribution deciles for the feature. As can be seen, the

majority of the distribution is collected in the left side of the PDP, indicating that the initial

positive slope is in fact a better representation of the overall effect of release frequency on

the likelihood of a fast response.

Finding 4: Downstream dependents of packages with a faster release cycle tend to

have shorter exposure to security vulnerabilities.

Packages with a higher number of dependencies are less likely to be predicted as a fast

responder. Having more dependencies can make it more difficult to keep track of (and

respond to) vulnerable dependencies in a timely manner, especially if relying on manual

updates. The PDP slope in Figure 5.8 only indicates a modest effect by dependency count

that does not influence the model’s predictions as strongly as the other top features. It is also

worth noting that our findings are focused on the delay of adopting vulnerability fixes, but

having more dependencies can also increase the threat surface for vulnerable dependencies.

135

Finding 5: Downstream dependents of packages with less dependencies tend to

have shorter exposure to security vulnerabilities.

5.3.3 RQ3: How do developers perceive dependency practices for vul-

nerability mitigation?

Motivation: The key objective of this study is to assist developers in identifying respon-

sive packages to reduce the risk of vulnerability exposure from dependencies. Therefore,

we need to understand the perception of developers regarding our findings. Are develop-

ers aware of the impact of downstream dependency practices on vulnerability mitigation?

Do our findings reinforce or contradict their experiences? Will they use our findings to

complement their dependency selection process? Answering these questions will help us

understand the applicability of our findings in practice.

Approach: To understand the perception of developers on the use of dependency man-

agement practices for mitigating vulnerabilities, we crafted a survey that aims to compare

the findings of RQ1 and RQ2 with the real-world dependency management experience of

practitioners.

The survey is composed of 4 parts. In the first part, we ask respondents about their

background and experience. In part 2, we ask the participants about their opinion (based

on their experience) on the relative effect of publishing the fix compared to adopting the

fix as the main reason for exposure to publicly disclosed vulnerabilities (RQ1). In part

3, we ask the participants about the impact of the features used for our model (RQ2) on

the responsiveness to vulnerability fixes. In the final part, we provide respondents with

the initial findings of our study and ask if they would incorporate our findings in their

dependency selection and management practices in the future.

All of the questions included an ”other” option which allowed developers to provide an

answer not already included in the choices or to expand on their answer. We also asked

136

Table 5.4: Background of participants in the survey.

Dimension Responses %

Background

Industry Practitioner 59.7%

Academic Re-

searcher

29.8%

Both 7.5%

Student 3%

Development Experience

>= 7 years 38.8%

4-6 years 28.4%

1-3 years 31.3%

< 1 year 1.5%

Total participants 67

respondents if they wish to suggest additional package attributes that affect the response

speed to vulnerable dependencies. Some of these free-form responses are exclusively ref-

erenced in Section 5.4. The complete set of questions and response choices are included in

our replication package (Javan Jafari et al., 2023).

In order to recruit the participants for the survey, the authors distributed it among

their existing network of industry developers and academic researchers (mostly in Canada)

which are actively working in the industry or academia. We contacted 114 practitioners

and received a total of 67 responses. As Table 5.4 shows, the respondents are primarily

composed of industry practitioners (59.7%), followed by academic researchers (29.8%).

The majority of our participants (67.2%) have 4 years or more experience in software de-

velopment.

Findings: In the following, we will present the findings of our practitioner survey. We have

also included sample responses from the participants. We empirically discovered (RQ1)

that it is the adoption delay, not the fix delay, that is the main contributing factor for the

survival of publicly disclosed vulnerabilities in the npm dependency ecosystem. This aligns

with the experience of a considerable portion (46.3%) of our respondents. However, 40.3%

137

of the respondents believe that both the fix delay and adoption delay are equally respon-

sible for exposure to publicly disclosed vulnerabilities.Surprisingly, 10.4% of respondents

believe the fix delay to be the main contributing factor. Respondents also highlighted the

criticality of the downstream dependent in the outcome.

“The projects deployed in industry are usually relatively large and extensive. [...]

nobody dares to manipulate dependencies as any change may stop the system’s reg-

ular functionality” - R12

Indeed, updating dependencies is a more sensitive decision when backward compati-

bility is crucial.

“It depends on the project. For some projects, the security level is critical, so if there

is any known vulnerability, it can be more option one [fix delay], and for less critical

project, more option 2 [adoption delay].” - R58

In other words, a security critical downstream client is less likely to be exposed to a

vulnerability through their own fault, but rather because the fix is not yet released.

Finding 1: The majority of the practitioners do not believe that the delay in down-

stream fix adoption is more responsible than the delay in the upstream fix release

in keeping dependent packages vulnerable.

The next section of the survey focuses on the important package features for predicting

the adoption delay (RQ2). The responses align with our findings for RQ2, both for the

importance of the features and for the positive/negative relationship between the features

and the response delay. When asked about the relationship between package age and the

speed of handling vulnerable dependencies, 46.3% of practitioners believed older packages

to be slower in addressing vulnerable dependencies, which aligns with our finding in RQ2.

Only 10.4% believed older packages to be faster in addressing vulnerable dependencies.

37.3% of the practitioners selected the “Neither” option. Respondents also highlighted the

138

distinction between old active packages and old unmaintained packages.

“[...] I believe packages that see active development are more likely to address

vulnerable dependencies” - R20

“If its really old then maybe its kinda abandoned but if its too young then it might be

immature” - R39

When asked about the relationship between release frequency and how fast vulnerable

dependencies are addressed, 85.1% of practitioners believed packages that release more

often are faster in handling vulnerable dependencies. Respondents also highlighted the

importance of the reason behind a frequent release cycle.

“packages in early development release more often. Not to fix vulnerabilities but to

change features. After that initial period release frequency might be more related to

vulnerabilities” - R66

“[...] a healthy release cycle is good but too much may just be a sign of bad version-

ing practice by the devs” - R39

Our findings in RQ2 show that release frequency does have a positive relationship with a

fast response to vulnerabilities, but only to an extent. We observed no further improvement

after a release frequency of around 0.25 per month. 11.9% of practitioners selected the

“Neither” option.

We previously found in RQ2 that higher dependency count in our model decreases the

likelihood of a fast response to vulnerabilities. In the survey, 64.2% of the practitioners

also believe packages with a high number of dependencies are slower in addressing vul-

nerabilities. 19.4% believe the opposite is true and 11.9% believe there is no difference

either way. Practitioners highlighted that the number of dependencies should be viewed in

conjunction with project size and policies.

139

“If the dev team is small then more dependencies will make it harder to keep track so

it might increase risk but a large dev team should maintain good dependency health

anyway” - R66

“Depends on project/org policies” - R16

This may explain the reason we observed a weak relationship between dependency

count and the response to vulnerabilities in RQ2.

We asked practitioners to rank the various dependency update strategies based on which

update strategies in a package lead to faster handling of vulnerable dependencies with a

publicly disclosed vulnerability. Among the respondents, 58.2% agree that the balanced

update strategy leads to a faster response to vulnerable dependencies whereas a restrictive

update strategy leads to a slower handling of such vulnerable dependencies. Going further

than a balanced update strategy and adopting a more permissive strategy allows for even

more updates but increases the risk of breaking changes.

“The best practice is to allow automatic updates for new patch and minor versions

[i.e. balanced strategy]. For major changes, it is not technically possible to allow

automatic updates since the major updates [i.e. permissive strategy] include break-

ing changes for other dependencies [...]” - R38

Indeed, developers are aware that fixes are not always released in (or backported to)

patch releases, but they are wary of the trade-offs (between receiving all fixes and breaking

changes) for allowing too much freedom in automatic updates.

“believe it or not, some fixes are in major updates! but its usually not a good idea to

update all the time like that” - R39

Even though we consider both patch only updates and no updates as restrictive update

strategies, we gave respondents the option to rank these two approaches separately. 86.6%

of respondents ranked patch only updates as a better approach than no automatic updates.

140

Finding 2: The majority of practitioners agree that younger packages with fre-

quent releases that adopt a balanced update strategy and have fewer dependencies

are faster in addressing vulnerable dependencies.

Even though the Update Strategy, Package Age, Release Frequency and Dependency

Count are the important features for our model (Figure 5.7), we asked practitioners about

all the features in our study. When asked about the number of modifications to dependency

configuration, 50.7% of practitioners believe more frequent modifications of the depen-

dency configuration file is associated with a faster response to vulnerable dependencies,

while 32.8% do not believe this feature to be relevant to assess a packages response to

vulnerable dependencies.

“Depends. touching things too much could be a sign of diligence or an inexperienced

dev” - R66

For dependent count, 44.8% of respondents believe packages with higher dependent

counts to be faster in addressing vulnerable dependencies whereas 26.9% believe they

would be slower to react. Having a large community can motivate the package maintain-

ers to be more diligent since vulnerabilities from their dependencies can propagate to their

large client base.

“Usually yes because they get bombarded from their community if they don’t [...]” -

R66

In regards to release status, 37.3% believe post-1.0.0 packages to be faster in addressing

vulnerable dependencies while 38.8% do not believe this feature to be relevant to how fast

packages respond to vulnerable dependencies.

“Some packages just enjoy staying in pre-1.0.0 (god knows why!) but they have

a large following so they are good at handling vulnerable dependencies on time.

Generally though, post-1.0.0 is better” - R66

141

In the final section of the survey (after asking the respondents about their perceptions

on our proposed attributes) we presented our own findings on the most important package

attributes that lead to better responsiveness to vulnerable dependencies. We asked partici-

pants how likely they are to use our proposed attributes in their dependency practices in the

future. Figure 5.9 presents the results for each of the attributes, ranging from Never using

the attribute to Definitely using the attribute in the future. As can be seen, participants have

a generally positive outlook on the applicability of our findings in practice. However, the

ranking of the features proposed by developer is not the same as the rankling of our model.

Specifically, practitioners have a strong tendency to use release frequency as a criterion for

selecting packages in order to mitigate vulnerabilities from transitive dependencies.

11

7

18

14

8

2

6

9

3

2

24

23

26

24

24

35

14

18

-40 -20 0 20 40 60

Never Unlikely Not Sure Probably Definetly

Package
Age

Release
Frequency

Dependency
Count

Update
Strategy

Figure 5.9: Likelihood of our top features being used in practice.

While the top attributes in our model are a considerable indicator of how fast packages

address vulnerable dependencies, they are not equally accessible to all developers.

142

“The age and release frequency are attributes that are often easy to check on a pack-

age management website or GitHub. These attributes are often good indicators of

the health of the package, thus, the likelihood that maintainers will address vulnera-

ble dependencies in a fast manner[...]” - R22

“[...] Regarding dependency counts, I know having more dependencies to manage

carries more risks, but sometimes there are specific packages you need that don’t

have other equivalents in npm. [...] I’m not sure if we can see somewhere in the npm

registry or github if a package has automatic updates, but I’d definitely take a look

at their github repo and see if the package has recent updates and contributors.” -

R26

Finding 3: Practitioners are likely to incorporate our findings into their depen-

dency management practices, but not all attributes are readily accessible to down-

stream dependents.

5.4 Implications

We present actionable implications for practitioners and researchers.

Implications for Practitioners & Maintainers:

Delay in the adoption of fixes is the main reason packages remain vulnerable (RQ1).

Almost all vulnerabilities in our dataset are fixed within a day after public disclosure, but

it takes an average of 6 months for the fix to be adopted by downstream dependents (RQ1).

There are many tools available for notifying developers of vulnerabilities in direct depen-

dencies. For example, Dependabot is an open source tool can identify vulnerable depen-

dencies and raise a pull request to adopt the fix (GitHub Docs, 2023). SonarQube (Sonar,

2023) is an enterprise-ready alternative that can identify vulnerable dependencies using

its dependency check plugin (Dallig, 2023). However, developers must also be aware of

the transitive influence of upstream packages on their project. Specifically, developers

143

should maintain an inventory of their entire dependency tree (direct and transitive)

and periodically analyze their transitive dependencies for vulnerabilities. As one of

the respondents in our survey (RQ3) highlighted: “Maintain some sort of SBOM [Software

Bill of Materials] and monitor for transitive dependencies with known CVEs”. In addition,

developers can use our proposed set of attributes (RQ2) as dependency selection crite-

ria, because the consequences of bad dependency management trickles downstream.

Multiple respondents in our practitioner survey (RQ3) cited the lack of accessibility as a

reason for not using some of the suggested attributes. The npm registry uses badges to dis-

play certain metadata about a package such as the number of downloads and test coverage.

Package maintainers should expand the use of badges to include information sought

after by potential downstream dependents to aid their dependency selection process.

A good example would be to display information regarding dependency update strategies

(RQ2) such as the number of pinned dependencies. This functionality is currently available

with third-party tools such as Dependency Sniffer (Javan Jafari, 2020). Additionally, Vul-

nerability databases should add information regarding vulnerable dependencies for a

package to provide a more holistic depiction of risk for potential dependents.

Implications for Researchers:

We use a set of package attributes to model how fast the package will respond to a

vulnerability fix in their dependencies (RQ2). However, as highlighted by our survey re-

spondents (RQ3), socio-technical factors play a significant role in the responsiveness of

a package to vulnerable dependencies. When asked about identifying packages with a

speedy response to vulnerability fixes, one respondent stated: “For me, looking at who is

behind the package also helps. Is it a college kid pushing his first npm package or is it a

new project from Microsoft?”. Another respondent said: “[...] packages owned by large

corps (e.g. Microsoft, Meta...) will be faster in checking for these issues even before they

have many users”. Future research should investigate the organizational practices that

144

influence the responsiveness to software vulnerabilities, especially in the case of open

source projects tied to large organizations.

We found that the dependency update strategy is one of the important indicators for

predicting the response speed to vulnerability fixes (RQ2). An important reason why de-

velopers are hesitant to freely their dependencies is the fear of breaking changes. For

example, one of the respondents in our survey (RQ3) said: “[...] when packages update,

and break code (which can happen even for patch releases, even though it shouldn’t)[...]”.

Another respondent stated: “For major changes it is not technically possible to allow auto-

matic updates since the major updates includes breaking changes for other dependencies”.

Although Semantic Versioning was proposed to alleviate such issues, it is still not adopted

by all packages in the npm ecosystem (Decan & Mens, 2019a). In fact, it is not uncom-

mon for developers to downgrade to a previous version, following a seemingly compatible

update (Cogo et al., 2019). Different ecosystems favor different practices and policies.

Different packaging ecosystems can also have a differing levels of Semantic Versioning

adoption (Decan et al., 2019; Dietrich et al., 2019; W. Li, Wu, Fu, & Zhou, 2023) and

different cultural habits (Bogart et al., 2017, 2016). Future research should study the

ecosystem-specific attributes and policies that indicate responsive packages, especially

across packaging ecosystems with diverse policies.

5.5 Related Work

In addition to the studies cited throughout the chapter, this section describes the key

research works that study vulnerable dependencies in the npm ecosystem and approaches

for selecting dependencies.

Vulnerable dependencies:

Decan et al. (Decan et al., 2018b) explored the impact of security vulnerabilities in

the npm ecosystem. They found that the number of vulnerabilities in the ecosystem are

145

on the rise but most vulnerabilities are fixed before they are publicly disclosed. They

observed that a large fraction of packages do not immediately adopt the fix released by the

upstream package, leaving them vulnerable despite the availability of the fix. The authors

also highlighted that from a package user’s perspective, there is no difference between

being directly exposed to a vulnerability or being exposed to a vulnerability through a

dependency.

Chinthanet et al. (Chinthanet et al., 2021) studied the release and adoption of vul-

nerability fixes in the npm ecosystem. They found that vulnerability fixes are not always

released as a patch, but often bundled into other release types. Additionally, the majority

of the commits in the majority of the fixing releases are not related to the security vulnera-

bility. The authors found that even when the fix is released as a patch, the direct dependent

package often releases the fixed package as a minor or major version, meaning as we travel

downstream in the dependency chain, relying on patch-only fixes is increasingly ineffec-

tive. They also observed that the type of the release and the severity of the vulnerability

influence the propagation of the fix across the ecosystem.

Alfadel et al. (Alfadel et al., 2023) conducted an empirical study on Node.js applica-

tions to analyze the discoverability of npm vulnerabilities. They found that 67% of ap-

plications have at least one vulnerable dependency. The main reason for the existence of

publicly disclosed vulnerable dependencies in projects was the refusal to update the de-

pendency to a newer version. In half of the applications studied by the authors, exposure

to publicly disclosed vulnerabilities persists for more than 3 months. Additionally, the

authors found that the majority of the projects (77%) are infected by a small subset of 5

vulnerability types.

Zimmermann et al. (Zimmermann et al., 2019) studied the potential of individual pack-

ages and package maintainers to threaten the security of the npm ecosystem. They found

that installing an average npm package creates an implicit trust on 79 unique packages and

146

39 unique maintainers. Additionally, they found that the top 5 packages in npm are used by

more than 100,000 downstream dependents, which makes such packages a primary target

for attackers. The authors cited characteristics of the npm ecosystem such as heavy reuse,

micropackages (small packages with few lines of code) and an open publishing model as

potential security threats.

Zerouali et al. (Zerouali et al., 2022) empirically analyze the impact of vulnerabili-

ties on transitive dependents in the npm and RubyGems ecosystems. They observe that it

takes up to 7 years to disclose half of the lingering vulnerabilities in the npm ecosystem.

They also found that more than 15% of the latest dependent releases in npm are exposed

to vulnerabilities from direct dependencies and 36.5% of the latest releases are exposed to

vulnerabilities from transitive dependencies. The authors found that the number vulnera-

bilities from transitive dependencies decrease as you go deeper along the dependency chain

but vulnerabilities are still existent at the deepest levels.

Dependency selection:

Suhaib et al. (Mujahid et al., 2023) examined the characteristics of highly selected

packages in the npm ecosystem. Through their qualitative analysis, they found that devel-

opers gravitate towards popular packages that have adequate documentation and are gen-

erally free from vulnerabilities. Their quantitative analysis of more than 2,500 packages

confirmed their observations. The authors highlighted that developers should carefully

consider the attributes of a package before adding it as a dependency of their project. They

further mentioned that package maintainers should strive to make such attributes more ac-

cessible to their downstream dependents.

Vargas et al. (Larios Vargas et al., 2020) studied the technical, human and economic

factors considered by practitioners when selecting dependencies. The authors present the

importance of release characteristics such as active maintenance and stability of packages in

the dependency selection process, but underline the lack of a standard means of measuring

147

such factors. The authors also observe disagreements between developers on the correct

approach to selecting dependencies. They highlight the need to move away from ad-hoc

decision-making towards a more systematic means of identifying suitable packages.

Pashchenko et al. (Pashchenko et al., 2020) conducted 25 interviews to understand how

developers select packages. The found that developers consider the community support of

a package as an important factor when selecting dependencies. They also observed that

developers have different dependency management practices but generally regard vulnera-

bilities as an important factor in dependency management decisions. Developers expressed

frustration with packages with packages with a high number of dependencies due to the

lack of control over transitive dependencies.

Our study builds on the previous works regarding vulnerabilities and dependency se-

lection in the npm ecosystem by proposing empirically extracted dependency management

practices that are associated with a faster response to vulnerability fixes. In addition to

providing an in-depth analysis of how certain package attributes and behaviors influence

the adoption of vulnerability fixes, our practitioner-aligned solution to selecting dependen-

cies provides a means to mitigate the impact of vulnerabilities from transitive dependencies

which are commonplace in the npm ecosystem.

5.6 Threats to Validity

In this section, we discuss the threats to the validity of our study.

Threats to construct validity: Threats to construct validity refer to the concern between the

theory and the results of the study. In order to measure responsiveness, we categorize the

adoption delay into fast and slow classes based on a threshold of less than 2 days and more

than 14 days. However, there is no consensus on what is defined as fast or slow. We initially

experimented with a multi-class model by distributing the delay into 4 classes. A response

of 2 days or less was classified as fast; a response of more than 2 days but less than 2 weeks

148

was classified as acceptable; a response between 2 weeks and 3 months was classified as

mediocre and a response later than 3 months was classified as slow. However, the fast

and slow classes combined made up over 96% of our class distribution, indicating that we

are in fact dealing with a binary classification problem. We then conducted a sensitivity

analysis to ensure minor changes in our threshold does not translate into a considerable

change in our class distribution. Reducing the threshold from 48 hours to 0 hours decreases

the distribution of the Fast class from 63.7% to 63.6% (less than 1% change). Increasing

the threshold from 48 hours to 30 days increases the distribution of the Fast class from

63.7% to 64.2% (less than 1% change). When identifying exposure to vulnerabilities from

dependencies, we assume all dependencies in a package are fetched from the npm package

manager. In reality, developers can install a dependency from any source (e.g. GitHub).

The problem with considering sources outside of the official package registry (npm) is that

there is no way to extract the list of dependents for an ad-hoc package hosted on the web.

There is also no way to guarantee what is installed by the package manager as the contents

of the hosted package can change at any time.

A vulnerability fix can be released as a major, minor or patch version (Section 2). Since

we have the information for package versions and vulnerability metadata, we can compare

the version number of the fixing release (r) with the version number of the release right

before the fix (r-1) to evaluate the type of fixing release.

Threats to internal validity: Threats to internal validity refer to the concerns that are

internal to the study such as experimenter bias and errors. We use 9 features that we be-

lieve can serve as indicators of the response to vulnerabilities. There could be additional

indicators that are not captured (or not feasible) using our feature set. One example is the

experience of the development team for a package, which can influence how they respond

to vulnerabilities regardless of the package attributes (as hinted in the responses of RQ3).

149

We do not claim our collection of features to be an exhaustive list of all of the relevant char-

acteristics and behaviors for predicting the adoption of vulnerability fixes. However, as can

be seen in Section 5.3, our model model has a high capability of predicting the response to

vulnerabilities. In order to extract the release type of the vulnerability fix in RQ1, we com-

pare the version of the fixing release against the version of the release right before the fix.

However, some packages may have multiple simultaneous release streams which means

the chronological order of release may not align with the numerical order. The libraries.io

dataset used in this study dates to January 2020. Collecting the metadata for an entire

ecosystem from scratch requires great effort but is also prone to errors. The libraries.io

dataset has been used in multiple prior studies (Decan & Mens, 2019a, 2021; Zerouali et

al., 2022; Zerouali, Mens, Robles, & Gonzalez-Barahona, 2019) and its accuracy has been

verified by other researchers (Decan et al., 2019). Additionally, we study vulnerabilities

that have been discovered, disclosed, fixed and propagated across the ecosystem. We are

more interested in the dynamics of dependency management practices for vulnerability

mitigation, rather than the response to the latest vulnerabilities.

Threats to external validity: Threats to external validity concern the generalization

of our findings. The methodology for identifying package attributes that indicate a fast

response to vulnerabilities is applicable to other ecosystems. However, the scope of our

findings is focused on the npm ecosystem. Therefore, our results may not be applicable to

other software packaging ecosystems, especially if they follow dependency guidelines that

are considerably different than npm. We conduct a survey to understand the developer’s

perception on our findings. While our response rate of 59% is considerably higher than the

the usual rate in software engineering surveys based on questionnaires (Singer et al., 2008),

having more respondents may influence our understanding on practitioner perspectives.

150

5.7 Chapter Conclusion

The objective of our study was to propose a means to mitigate vulnerabilities in tran-

sitive dependencies. We curated a dataset of 450 vulnerabilities and over 200,000 unique

dependents that are exposed to these vulnerabilities through their dependencies. We use

9 features to train a model that predicts the adoption speed of vulnerability fixes. We

found that packages that younger packages that release more often, favor non-restrictive

update strategies and have less dependencies are faster in adopting vulnerability fixes. We

also conducted a survey of 67 industry practitioners to obtain their perception on our find-

ings. We found that the experience of practitioners generally align with our proposed set

of features. However, many were not aware of the importance of downstream dependency

decisions in mitigating vulnerabilities. Previous research has frequently suggested that

practitioners need to be wary of the risk of vulnerabilities from transitive dependencies.

Developers can use our findings to incorporate the mitigation of vulnerabilities from tran-

sitive dependencies in their dependency selection criteria.

151

Chapter 6

Conclusion and Future Work

In this chapter, we summarize the conclusions and findings from each chapter and dis-

cuss future directions for research.

6.1 Conclusion

Software ecosystems accelerate software development through third-party dependen-

cies. However, increased reliance on third-party packages exacerbates dependency related

challenges such as breaking changes and vulnerabilities. In this thesis, we empirically

study the npm ecosystem to understand such challenges and propose mitigation techniques

to help developers in their dependency management. We first start by cataloging depen-

dency management problems and quantifying their impact. Next, we extract how upstream

packages are used by downstream dependents and propose a technique to help developers

decide on a suitable update strategy for their direct dependents. Finally, we help developers

control the impact of vulnerabilities from transitive dependencies by proposing a solution

to identify and select responsive packages. In the following, we discuss the main findings

and contributions of each chapter.

152

6.1.1 Challenges in Dependency Management

We use a mixture of quantitative and qualitative methods to catalog dependency man-

agement issues (i.e. Dependency Smells) in the npm ecosystem. We conduct an empirical

study on the history of over 1,100 npm projects and measure the prevalence of 7 depen-

dency smells. We found that 80% of the projects in our dataset were infected with at least

two distinct smells. The evolution of these smells in the dataset suggests that there is an

upward accumulation of dependency smells in the ecosystem. We then surveyed 41 practi-

tioners to quantify the impact of such smells and found that developers agree on the harmful

nature of dependency smells. We identified the smell-introducing commits and contacted

the associated developers to investigate the reasons behind such smells and aggregated the

responses into 14 reasons. Dependency smells were largely a reactionary decision to short-

comings in the upstream package or the npm ecosystem. We also developed a tool named

Dependency Sniffer that analyzes npm projects and detects the presence of dependency

smells.

6.1.2 Practices for Updating Dependencies

Developers have a different perception and trust towards their various dependencies and

do not utilize the same constraints for all of their dependencies. We conduct an empirical

study on more than 112,000 npm packages to identify characteristics in packages that indi-

cate the favored update strategy by their downstream dependents. We use 19 characteristics

to build a model that predicts the update strategy of dependents with high accuracy. We

further investigate the characteristics to show how a change in a characteristic influences

the prediction of the model. We found that the release status, number of dependents and the

age of the packages are prime indicators of the update strategy favored by the community

and developers should consider these indicators when determining the update strategy of

each dependency. We complement the study with a deeper analysis of 160 packages in

153

the dataset to analyze the evolution of their dependent update strategy over 10 years. We

recommend that developers take note of the 1.0.0 release milestone, as it creates a shift in

the update strategy of the corresponding dependent community.

6.1.3 Practices for Selecting Dependencies

The number of transitive dependencies for the average package in the npm ecosystem

is much higher than direct dependencies. Transitive dependencies can expose software

projects to security risks but developers cannot directly influence which transitive depen-

dencies are installed with their project. We extract 450 vulnerability reports for the npm

ecosystem and study over 200,000 packages infected with these vulnerabilities. We found

that the main contributing factor for continued exposure to such vulnerabilities is the re-

luctance of packages to update their dependencies. We use 9 attributes from npm packages

to build a model that predicts the adoption speed of vulnerability fixes. We recommend

that developers consider the release frequency and update strategy of a package in the de-

pendency selection criteria to shorten their exposure to vulnerabilities. In our survey of 67

practitioners, we found that developers were generally unaware of the reluctance to update

as the main culprit of vulnerability exposure. However, developers are in favor of using our

proposed attributes in their dependency selection practices.

6.2 Future Work

This thesis has made many contributions towards understanding dependency manage-

ment challenges in software ecosystems and providing actionable mitigation techniques.

In the following, we summarize the key directions for future research that were identified

throughout our research.

154

6.2.1 Impact of the ecosystem on external projects

With the exception of Chapter 3, our research is focused on the dependency relation-

ships of packages inside the npm packaging ecosystem. There are many packages outside

the npm ecosystem that rely on (and are influenced by) packages inside the ecosystem.

There is currently no means to accurately account for the number of external projects that

rely on npm. The favored update strategy in Chapter 4 and the responsiveness to vulnera-

bilities in Chapter 5 may significantly differ if we were to include external projects. When

discussing both the impact of dependent decisions and the influence of upstream packages

on downstream dependents, having a comprehensive inventory of all dependent projects,

internal and external to the ecosystem, results in more accurate observations and sugges-

tions. Future work should at the very least include the entirety of GitHub projects alongside

npm packages and consider the number of downloads from npm (in addition to dependent

count) to better account for external projects.

6.2.2 Generalizability to other ecosystems

Chapter 3 investigate the applicability of our dependency smell catalog on other ecosys-

tems such as PyPI (the Python package ecosystem). However, developers in packaging

ecosystems for programming language with features distinct from JavaScript (e.g. Java)

may have a different experience. The differences between various ecosystems is not lim-

ited to the technicalities of how packages are fetched, installed and used. Previous research

suggests that there are also cultural and behavioral differences between ecosystems that can

influence the dynamics of dependency managements. We have included replication pack-

ages for all of our studies (Javan Jafari et al., 2021, 2023, 2022) to facilitate future research

efforts that aim to replicate our findings on other ecosystems.

155

6.2.3 Industry vs. Open-source priorities

The findings from our practitioner surveys in Chapter 3 and Chapter 5 show that de-

velopers are sometimes aware of the advantages and disadvantages of various dependency

management decisions, but are forced to heavily prioritize certain dependency manage-

ment objectives. In particular, projects in the industry may tend to favor system stability

above new features available in new package versions, which could highly influence their

update behavior. On the other hand, there is a greater responsibility of handling secu-

rity vulnerabilities for critical systems compared to open source projects. Future research

should investigate the dependency management practices of industry projects to evaluate

how the difference in priorities between the industry and open source initiatives influences

dependency management.

6.2.4 Extent of dependency utilization

This thesis studies the dynamics of dependency management rather than the extent of

dependency utilization. While a package with many declared dependencies is heavily influ-

enced by third-party code, it does not necessarily heavily utilize each dependency. When it

comes to dependencies, a project may use as little as a function or as much as entire classes

from the declared dependency. In fact, Chapter 3 reveals that some declared dependencies

may not be used at all. Other research has also found that, despite what developers declare,

not all packages are equally used in production (Latendresse, Mujahid, Costa, & Shihab,

2022). Major dependency issues such as breaking changes and security vulnerabilities can

often be tracked down to specific portions of a package and may not equally impact down-

stream dependents that use different portions of the upstream packaged code. Knowing the

details of utilization can provide further insight into why packages use particular update

strategies (Chapter 4) or react differently to vulnerable dependencies (Chapter 5). Future

156

research should consider the degree of dependency utilization in addition to the raw depen-

dency relationship between packages.

6.2.5 Impact of package functionality

The Practitioners in Chapter 5 remind us that the treatment of a dependency is directly

tied to the criticality of the software. Consequently, the functionality of a package is tied

to the criticality of its utilization. A packages that handles database queries can be con-

sidered more critical than a package that facilitates unit testing. Chapter 4 attempts to

consider package domain and functionality as an indicator of the update strategy, but the

automated clustering approach did not yield actionable package groups. The research field

would greatly benefit from a large-scale analysis and catalog of packages based on their

functionality to observe how both the behavior of package maintainers and its downstream

dependents are impacted by the criticality of package functionality.

157

References

Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., & Shihab, E. (2017). Why do

developers use trivial packages? an empirical case study on npm. In Proceedings of

the 2017 11th joint meeting on foundations of software engineering (pp. 385–395).

Alfadel, M., Costa, D. E., Shihab, E., & Adams, B. (2023). On the discoverability of npm

vulnerabilities in node. js projects. ACM Transactions on Software Engineering and

Methodology, 32(4), 1–27.

Artho, C., Suzaki, K., Di Cosmo, R., Treinen, R., & Zacchiroli, S. (2012). Why do

software packages conflict? In Proceedings of the 9th ieee working conference on

mining software repositories (pp. 141–150).

Baltes, S., & Ralph, P. (2022). Sampling in software engineering research: A critical

review and guidelines. Empirical Software Engineering, 27(4), 1–31.

Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., & Panichella, S. (2013). The evolution

of project inter-dependencies in a software ecosystem: The case of apache. In 2013

ieee international conference on software maintenance (pp. 280–289).

Bogart, C., Filippova, A., Kästner, C., & Herbsleb, J. (2017, October). How ecosystem cul-

tures differ: Results from a survey on values and practices across 18 software ecosys-

tems. http://breakingapis.org/survey/. ((accessed on 10/16/2020))

Bogart, C., Kästner, C., Herbsleb, J., & Thung, F. (2016). How to break an api: cost

negotiation and community values in three software ecosystems. In Proceedings

of the 2016 24th acm sigsoft international symposium on foundations of software

158

engineering (pp. 109–120).

Bogart, C., Kästner, C., Herbsleb, J., & Thung, F. (2021). When and how to make break-

ing changes: Policies and practices in 18 open source software ecosystems. ACM

Transactions on Software Engineering and Methodology (TOSEM), 30(4), 1–56.

Bombonatti, D., Goulão, M., & Moreira, A. (2017). Synergies and tradeoffs in software

reuse–a systematic mapping study. Software: practice and experience, 47(7), 943–

957.

Burnard, P. (1991). A method of analysing interview transcripts in qualitative research.

Nurse education today, 11(6), 461–466.

Burrows, D. (2017, October). What is a package manager? https://www.debian

.org/doc/manuals/aptitude/pr01s02.en.html.

Chatfield, D. (2014, September). Fix the versioning · issue #1805 · jashkenas/underscore.

https://github.com/jashkenas/underscore/issues/1805. ((Ac-

cessed on 10/16/2020))

Chinthanet, B., Kula, R. G., Ishio, T., Ihara, A., & Matsumoto, K. (2019). On the lag of

library vulnerability updates: An investigation into the repackage and delivery of se-

curity fixes within the npm JavaScript ecosystem. arXiv preprint arXiv:1907.03407.

Chinthanet, B., Kula, R. G., McIntosh, S., Ishio, T., Ihara, A., & Matsumoto, K. (2021).

Lags in the release, adoption, and propagation of npm vulnerability fixes. Empirical

Software Engineering, 26, 1–28.

Chowdhury, M. A. R., Abdalkareem, R., Shihab, E., & Adams, B. (2021). On the un-

triviality of trivial packages: An empirical study of npm javascript packages. IEEE

Transactions on Software Engineering, 48(8), 2695–2708.

Cimpanu, C. (2021, October). Malware found in npm package with millions

of weekly downloads. https://therecord.media/malware-found-in

-npm-package-with-millions-of-weekly-downloads.

159

Coghlan, N., & Stufft, D. (2021, February). Version identification and dependency speci-

fication. https://www.python.org/dev/peps/pep-0440. ((accessed on

3/20/2021))

Cogo, F. R., Oliva, G. A., Bezemer, C.-P., & Hassan, A. E. (2021). An empirical study of

same-day releases of popular packages in the npm ecosystem. Empirical Software

Engineering, 26(5), 89.

Cogo, F. R., Oliva, G. A., & Hassan, A. E. (2019). An empirical study of dependency

downgrades in the npm ecosystem. IEEE Transactions on Software Engineering.

Cogo, F. R., Oliva, G. A., & Hassan, A. E. (2021). Deprecation of packages and releases

in software ecosystems: A case study on npm. IEEE Transactions on Software En-

gineering, 48(7), 2208–2223.

Cox, J., Bouwers, E., Van Eekelen, M., & Visser, J. (2015). Measuring dependency fresh-

ness in software systems. In 2015 ieee/acm 37th ieee international conference on

software engineering (Vol. 2, pp. 109–118).

Dallig, P. (2023). Dependency check plugin for sonar. https://github.com/

dependency-check/dependency-check-sonar-plugin.

Decan, A., & Mens, T. (2019a). What do package dependencies tell us about semantic

versioning? IEEE Transactions on Software Engineering.

Decan, A., & Mens, T. (2019b). What do package dependencies tell us about semantic

versioning? IEEE Transactions on Software Engineering.

Decan, A., & Mens, T. (2021). Lost in zero space - an empirical comparison of 0.y.z

releases in software package distributions. Science of Computer Programming, 208,

102656.

Decan, A., Mens, T., & Claes, M. (2017). An empirical comparison of dependency issues

in oss packaging ecosystems. In 2017 ieee 24th international conference on software

analysis, evolution and reengineering (saner) (pp. 2–12).

160

Decan, A., Mens, T., & Constantinou, E. (2018a). On the evolution of technical lag in

the npm package dependency network. In 2018 ieee international conference on

software maintenance and evolution (icsme) (pp. 404–414).

Decan, A., Mens, T., & Constantinou, E. (2018b). On the impact of security vulnerabil-

ities in the npm package dependency network. In 2018 ieee/acm 15th international

conference on mining software repositories (msr) (pp. 181–191).

Decan, A., Mens, T., & Grosjean, P. (2019). An empirical comparison of dependency

network evolution in seven software packaging ecosystems. Empirical Software En-

gineering, 24(1), 381–416.

Decan, A., Mens, T., Zerouali, A., & De Roover, C. (2021). Back to the past–analysing

backporting practices in package dependency networks. IEEE Transactions on Soft-

ware Engineering, 48(10), 4087–4099.

Derr, E., Bugiel, S., Fahl, S., Acar, Y., & Backes, M. (2017). Keep me updated: An

empirical study of third-party library updatability on Android. In Proceedings of the

2017 acm sigsac conference on computer and communications security (pp. 2187–

2200).

Dey, T., & Mockus, A. (2020). Deriving a usage-independent software quality metric.

Empirical Software Engineering, 25, 1596–1641.

Dietrich, J., Pearce, D. J., Stringer, J., Tahir, A., & Blincoe, K. (2019). Dependency

versioning in the wild. In Proceedings of the 16th international conference on mining

software repositories (pp. 349–359).

Fan, G., Wang, C., Wu, R., Xiao, X., Shi, Q., & Zhang, C. (2020). Escaping dependency

hell: finding build dependency errors with the unified dependency graph. In Pro-

ceedings of the 29th acm sigsoft international symposium on software testing and

analysis (pp. 463–474).

Fincher, S., & Tenenberg, J. (2005). Making sense of card sorting data. Expert Systems,

161

22(3), 89-93. doi: 10.1111/j.1468-0394.2005.00299.x

Fontana, F. A., Dietrich, J., Walter, B., Yamashita, A., & Zanoni, M. (2016). Antipattern

and code smell false positives: Preliminary conceptualization and classification. In

2016 ieee 23rd international conference on software analysis, evolution, and reengi-

neering (saner) (Vol. 1, pp. 609–613).

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and tensorflow:

Concepts, tools, and techniques to build intelligent systems. ” O’Reilly Media, Inc.”.

GitHub. (2019). The state of the octoverse — the state of the octoverse celebrates a year of

building across teams, time zones, and millions of merged pull requests. https://

octoverse.github.com/.

GitHub. (2020). The 2020 state of the octoverse security report. https://

octoverse.github.com/static/github-octoverse-2020

-security-report.pdf.

GitHub. (2021). The 2021 state of the octoverse security report. https://octoverse

.github.com/static/octoverse-report-2021.pdf.

Github. (2021, October). Security issue: compromised npm packages of ua-parser-js.

https://github.com/faisalman/ua-parser-js/issues/536.

GitHub. (2023a). About coordinated disclosure of security vulnerabilities. https://

docs.github.com/en/code-security/security-advisories/

guidance-on-reporting-and-writing/about-coordinated

-disclosure-of-security-vulnerabilities.

GitHub. (2023b). Github advisory database. https://github.com/advisories.

GitHub Docs. (2023). Dependabot. https://docs.github.com/en/code

-security/dependabot.

Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking inside the black

box: Visualizing statistical learning with plots of individual conditional expectation.

162

journal of Computational and Graphical Statistics, 24(1), 44–65.

Goodman, L. A. (1961). Snowball sampling. The annals of mathematical statistics, 148–

170.

Gousios, G. (2019, Mar). The GHTorrent project. https://ghtorrent.org/. ((ac-

cessed on 10/16/2020))

Haenni, N., Lungu, M., Schwarz, N., & Nierstrasz, O. (2013). Categorizing developer

information needs in software ecosystems. In Proceedings of the 2013 international

workshop on ecosystem architectures (pp. 1–5).

Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods.

John Wiley & Sons.

Jafari, A. J., Costa, D. E., Abdalkareem, R., Shihab, E., & Tsantalis, N. (2021). Depen-

dency smells in javascript projects. IEEE Transactions on Software Engineering,

48(10), 3790–3807.

Jafari, A. J., Costa, D. E., Abdellatif, A., & Shihab, E. (2023). Dependency practices for

vulnerability mitigation. arXiv.

Jafari, A. J., Costa, D. E., Shihab, E., & Abdalkareem, R. (2023). Dependency update

strategies and package characteristics. ACM Transactions on Software Engineering

and Methodology.

Javan Jafari, A. (2020, September). Dependency Sniffer. https://github.com/

abbasjavan/DependencySniffer.

Javan Jafari, A., Elias Costa, D., Abdalkareem, R., Shihab, E., & Tsantalis, N.

(2021, March). Replication package for dependency smells in JavaScript projects.

https://doi.org/10.5281/zenodo.4701497.

Javan Jafari, A., Elias Costa, D., Abdellatif, A., & Shihab, E. (2023, October). Repli-

cation package for dependency practices for vulnerability mitigation. https://

doi.org/10.5281/zenodo.8432714.

163

Javan Jafari, A., Elias Costa, D., Shihab, E., & Abdalkareem, R. (2022, August).

Replication package for dependency update strategies and package characteristics.

https://doi.org/10.5281/zenodo.5643627.

JetBrains. (2021, March). Code inspections in JavaScript and TypeScript. https://

www.jetbrains.com/help/phpstorm/code-inspections-in

-javascript-and-typescript.html#Imports and dependencies.

((accessed on 26/04/2021))

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & Damian, D.

(2014). The promises and perils of mining GitHub. In Proceedings of the 11th work-

ing conference on mining software repositories (p. 92–101). New York, NY, USA:

Association for Computing Machinery. Retrieved from https://doi.org/

10.1145/2597073.2597074 doi: 10.1145/2597073.2597074

Keswani, R., Joshi, S., & Jatain, A. (2014). Software reuse in practice. In 2014 fourth in-

ternational conference on advanced computing & communication technologies (pp.

159–162).

Kikas, R., Gousios, G., Dumas, M., & Pfahl, D. (2017). Structure and evolution of package

dependency networks. In 2017 ieee/acm 14th international conference on mining

software repositories (msr) (pp. 102–112).

Kula, R. G., De Roover, C., German, D. M., Ishio, T., & Inoue, K. (2018). A generalized

model for visualizing library popularity, adoption, and diffusion within a software

ecosystem. In 2018 ieee 25th international conference on software analysis, evolu-

tion and reengineering (saner) (pp. 288–299).

Kula, R. G., German, D. M., Ouni, A., Ishio, T., & Inoue, K. (2018a). Do developers update

their library dependencies? Empirical Software Engineering, 23(1), 384–417.

Kula, R. G., German, D. M., Ouni, A., Ishio, T., & Inoue, K. (2018b). Do developers update

their library dependencies? Empirical Software Engineering, 23(1), 384–417.

164

Kula, R. G., Ouni, A., German, D. M., & Inoue, K. (2017). On the impact of micro-

packages: An empirical study of the npm javascript ecosystem. arXiv preprint

arXiv:1709.04638.

Larios Vargas, E., Aniche, M., Treude, C., Bruntink, M., & Gousios, G. (2020). Selecting

third-party libraries: The practitioners’ perspective. In Proceedings of the 28th acm

joint meeting on european software engineering conference and symposium on the

foundations of software engineering (pp. 245–256).

Latendresse, J., Mujahid, S., Costa, D. E., & Shihab, E. (2022). Not all dependencies are

equal: An empirical study on production dependencies in npm. In Proceedings of

the 37th ieee/acm international conference on automated software engineering (pp.

1–12).

Lehnardt, J., & Haas, S. (2020, September). Greenkeeper. https://greenkeeper

.io/docs.html. ((accessed on 10/14/2020))

Li, J., & Lukic, D. (2019, October). Depcheck: Check your npm module for unused

dependencies. https://github.com/depcheck/depcheck. ((accessed on

10/16/2020))

Li, W., Wu, F., Fu, C., & Zhou, F. (2023). A large-scale empirical study on semantic

versioning in golang ecosystem. arXiv preprint arXiv:2309.02894.

Libraries.io. (2020, September). The npm ecosystem. https://libraries.io/npm.

((accessed on August, 2021))

Libraries.io. (2020, September). Overview and documentation. https://docs

.libraries.io/overview.html. ((accessed on August, 2021))

Libraries.io. (2023). npm. https://libraries.io/npm.

Lim, W. C. (1994). Effects of reuse on quality, productivity, and economics. IEEE software,

11(5), 23–30.

165

Liu, C., Chen, S., Fan, L., Chen, B., Liu, Y., & Peng, X. (2022). Demystifying the vul-

nerability propagation and its evolution via dependency trees in the npm ecosystem.

In Proceedings of the 44th international conference on software engineering (pp.

672–684).

Lungu, M., Lanza, M., Gı̂rba, T., & Robbes, R. (2010). The small project observatory:

Visualizing software ecosystems. Science of Computer Programming, 75(4), 264–

275.

MacDonald, F. (2018, September). How a programmer nearly broke the inter-

net by deleting just 11 lines of code. https://www.sciencealert

.com/how-a-programmer-almost-broke-the\protect\

discretionary{\char\hyphenchar\font}{}{}internet-by

-deleting-11-lines-of-code.

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables

is stochastically larger than the other. The annals of mathematical statistics, 50–60.

Matt Rickard. (2021). The nine circles of dependency hell (and a roadmap

out). https://about.sourcegraph.com/blog/nine-circles-of

-dependency-hell.

Mezzetti, G., Møller, A., & Torp, M. T. (2018). Type regression testing to detect break-

ing changes in node. js libraries. In 32nd european conference on object-oriented

programming (ecoop 2018).

Mitre. (2023a). Common Vulnerabilities and Exposures (CVE). https://www.cve

.org/About/Overview.

Mitre. (2023b). Common Weakness Enumeration (CWE). https://cwe.mitre.org/

about/index.html.

Mohagheghi, P., Conradi, R., Killi, O. M., & Schwarz, H. (2004). An empirical study of

166

software reuse vs. defect-density and stability. In Proceedings of the 26th interna-

tional conference on software engineering (pp. 282–292).

Møller, A., Nielsen, B. B., & Torp, M. T. (2020). Detecting locations in javascript programs

affected by breaking library changes. Proceedings of the ACM on Programming

Languages, 4(OOPSLA), 1–25.

Molnar, C. (2020). Interpretable machine learning. Lulu.com.

Mujahid, S., Abdalkareem, R., & Shihab, E. (2023). What are the characteristics of highly-

selected packages? a case study on the npm ecosystem. Journal of Systems and

Software, 198, 111588.

Mujahid, S., Abdalkareem, R., Shihab, E., & McIntosh, S. (2020). Using others’ tests to

identify breaking updates. In Proceedings of the 17th international conference on

mining software repositories (pp. 466–476).

NLTK. (2022, April). Collocations documentation. http://www.nltk.org/howto/

collocations.html. ((accessed on August, 2021))

npm. (2017, December). The npm blog — new package moniker rules. https://blog

.npmjs.org/post/168978377570/new-package-moniker-rules.

((accessed on 10/16/2020))

npm. (2018). This year in javascript: 2018 in review. https://blog.npmjs.org/

post/180868064080/this-year-in-javascript-2018-in-review

-and-npms.html.

npm. (2021, February). npm install documentation. https://docs.npmjs.com/

cli/v6/commands/npm-install.

npm. (2022a, February). About semantic versioning. https://docs.npmjs.com/

about-semantic-versioning.

npm. (2022b, April). The npm registry. https://www.npmjs.com/.

npm Docs. (2023). npm-audit. https://docs.npmjs.com/cli/v9/commands/

167

npm-audit.

npm Documentation. (2019a, October). npm-package.json — npm documentation.

https://docs.npmjs.com/files/package.json.

npm Documentation. (2019b, October). npm-package-lock.json — npm documentation.

https://docs.npmjs.com/files/package-lock.json. ((accessed on

10/16/2020))

npmjs. (2023). The semver package. https://www.npmjs.com/package/

semver.

Ohm, M., Boes, F., Bungartz, C., & Meier, M. (2022). On the feasibility of supervised

machine learning for the detection of malicious software packages. In Proceedings of

the 17th international conference on availability, reliability and security (pp. 1–10).

Opdebeeck, R., Zerouali, A., Velázquez-Rodrı́guez, C., & De Roover, C. (2020). Does

infrastructure as code adhere to semantic versioning? an analysis of ansible role evo-

lution. In 2020 ieee 20th international working conference on source code analysis

and manipulation (scam) (pp. 238–248).

Oxley, T. (2014, September). Semver: Tilde and caret. https://nodesource.com/

blog/semver-tilde-and-caret. ((accessed on 3/22/2021))

Pandas. (2023). Pandas api reference. https://pandas.pydata.org/docs/

reference/api/pandas.get dummies.html.

Pashchenko, I., Vu, D.-L., & Massacci, F. (2020). A qualitative study of dependency

management and its security implications. In Proceedings of the 2020 acm sigsac

conference on computer and communications security (pp. 1513–1531).

Prana, G. A. A., Sharma, A., Shar, L. K., Foo, D., Santosa, A. E., Sharma, A., & Lo, D.

(2021). Out of sight, out of mind? how vulnerable dependencies affect open-source

projects. Empirical Software Engineering, 26(4), 1–34.

Preston-Werner, T. (2019). Semantic versioning 2.0. Retrieved from https://semver

168

.org/

PyPA. (2021, February). pip documentation. https://pip.pypa.io/en/latest/

user guide/. ((accessed on August, 2021))

Raemaekers, S., Van Deursen, A., & Visser, J. (2014). Semantic versioning versus breaking

changes: A study of the maven repository. In 2014 ieee 14th international working

conference on source code analysis and manipulation (pp. 215–224).

Rahman, A., Parnin, C., & Williams, L. (2019). The seven sins: security smells in in-

frastructure as code scripts. In Proceedings of the 41st international conference on

software engineering (pp. 164–175).

Rust-lang. (2018, December). Rust edition guide. https://doc.rust-lang.org/

edition-guide/rust-2018/cargo-and-crates-io/crates-io

-disallows-wildcard-dependencies.html. ((accessed on September,

2020))

Scikit. (2023). Scikit api reference. https://scikit-learn.org/stable/

modules/generated/sklearn.dummy.DummyClassifier.html.

Scikit-learn. (2020). Permutation importance vs random forest feature importance.

Retrieved from https://scikit-learn.org/stable/auto examples/

inspection/plot permutation importance.html

Sharma, T., Fragkoulis, M., & Spinellis, D. (2016). Does your configuration code smell? In

2016 ieee/acm 13th working conference on mining software repositories (msr) (pp.

189–200).

Shaw, A. (2020, September). David-dm. https://david-dm.org.

Singer, J., Sim, S. E., & Lethbridge, T. C. (2008). Software engineering data collection

for field studies. In Guide to advanced empirical software engineering (pp. 9–34).

Springer.

snyk. (2022, April). snykadvisor. https://snyk.io/advisor/.

169

Sonar. (2023). Sonarqube. https://www.sonarsource.com/products/

sonarqube/.

Sonatype. (2021). 2021 state of the software supply chain. https://www.sonatype

.com/hubfs/SSSC-Report-2021 0913 PM 2.pdf?hsLang=en-us.

Soto-Valero, C., Benelallam, A., Harrand, N., Barais, O., & Baudry, B. (2019). The emer-

gence of software diversity in maven central. In 2019 ieee/acm 16th international

conference on mining software repositories (msr) (pp. 333–343).

Soto-Valero, C., Harrand, N., Monperrus, M., & Baudry, B. (2021). A comprehensive study

of bloated dependencies in the maven ecosystem. Empirical Software Engineering,

26(3), 1–44.

Tal, L. (2019). Snyk research team discovers severe prototype pollution security

vulnerabilities affecting all versions of lodash. https://snyk.io/blog/

snyk-research-team-discovers-severe-prototype-pollution/

security-vulnerabilities-affecting-all-versions-of

-lodash.

Tharwat, A. (2020). Classification assessment methods. Applied computing and informat-

ics, 17(1), 168–192.

Tidelift. (2022). The 2022 open source software supply chain survey report.

https://tidelift.com/2022-open-source-software-supply

-chain-survey.

Venturini, D., Cogo, F. R., Polato, I., Gerosa, M. A., & Wiese, I. S. (2023). I depended on

you and you broke me: An empirical study of manifesting breaking changes in client

packages. ACM Transactions on Software Engineering and Methodology, 32(4), 1–

26.

Wittern, E., Suter, P., & Rajagopalan, S. (2016). A look at the dynamics of the JavaScript

package ecosystem. In 2016 ieee/acm 13th working conference on mining software

170

repositories (msr) (pp. 351–361).

Yarn. (2020, 2020). Documentation — yarn. https://classic.yarnpkg.com/

en/docs/. ((accessed on 10/16/2020))

Zerouali, A., Constantinou, E., Mens, T., Robles, G., & González-Barahona, J. (2018). An

empirical analysis of technical lag in npm package dependencies. In New opportuni-

ties for software reuse: 17th international conference, icsr 2018, madrid, spain, may

21-23, 2018, proceedings 17 (pp. 95–110).

Zerouali, A., Mens, T., Decan, A., & De Roover, C. (2022). On the impact of security

vulnerabilities in the npm and rubygems dependency networks. Empirical Software

Engineering, 27(5), 107.

Zerouali, A., Mens, T., Robles, G., & Gonzalez-Barahona, J. M. (2019). On the diversity of

software package popularity metrics: An empirical study of npm. In 2019 ieee 26th

international conference on software analysis, evolution and reengineering (saner)

(pp. 589–593).

Zimmermann, M., Staicu, C.-A., Tenny, C., & Pradel, M. (2019). Small world with

high risks: A study of security threats in the npm ecosystem. arXiv preprint

arXiv:1902.09217 (To appear in the 28th USENIX Security Symposium).

171

