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Abstract for PhD 

Data-driven approach for personalization of electropolishing operations in used baths 

Zahra Chaghazardi, Ph.D. 

Concordia University, 2023 

Industrial electropolishing facilities can enhance their competitiveness in the market by embracing 

the concept of mass personalization, which involves closely integrating customers in the design 

process to accommodate their specific preferences. Traditional electropolishing operations rely 

heavily on skilled operators and costly trial-and-error experiments to determine the suitable 

process parameters for obtaining their target surface quality. The ongoing deterioration of the 

polishing bath further complicates achieving personalized outcomes. To adopt the mass 

personalization trend, electropolishing operations need to implement approaches that ensure 

consistent polishing results while enabling the rapid identification of optimal process parameters 

for achieving personalized surface finishes. 

The goal of this work is to develop a prediction tool to determine the suitable polishing parameters 

in a deteriorating polishing bath to attain the target surface quality. The study uses surface 

roughness and brightness measurements, as well as SEM images of the parts to investigate the 

effect of bath conditions on the final surface finish of electropolished parts. Multiple explanations 

are suggested to justify the compromised performance of heavily-used baths. The study also 

proposes a current-voltage plot that can be used as a tool to determine the polishing voltages 

associated with the emergence of some surface defects under varying bath conditions.  

A substantial dataset is next compiled from electropolishing experiments conducted under different 

bath states and using various polishing parameters. This dataset is later subjected to several 

machine learning algorithms to determine the model that best represents the data. The Random 

Forests model is selected as the foundation for the target prediction tool, which demonstrates 

excellent performance on both the dataset and previously unseen scenarios. The constructed tools 

offer a comprehensive perspective on electropolishing outcomes across different bath and part 

conditions and polishing process parameters.  
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Moreover, by facilitating the attainment of the desired surface finish even in heavily-utilized 

electrolytes, the developed tools diminish the need for frequent electrolyte replenishment and the 

expensive disposal of hazardous waste, thereby benefiting the environment
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1. Introduction  
 

1.1.Mass personalization, a new consumption trend 

 

Nowadays, the customers' urge to identify themselves via the products they purchase and consume 

is an increasing trend in consumer behavior. Customers are increasingly seeking customizable and 

personalized goods that allow them to put their mark on the products and create something that 

feels uniquely theirs. Technological advances and evolving customer demands are driving an 

emerging trend known as “mass personalization”, which enables large-scale product customization 

to meet individual consumer preferences. Nowadays, companies leverage digital platforms to 

allow consumers to personalize and customize products. The fashion industry has embraced mass 

personalization by allowing customers to select colors, patterns, and materials, and even add 

personalized engravings or messages to create unique products tailored to their tastes. For instance, 

the popular watch company Swatch offers clients to choose from a variety of parts and design 

features to build their own unique Swatch watch 1. Another example is Nike brand’s customization 

platform where customers select their favorite design elements to create their own unique shoes 2. 

Several other industries including beauty and cosmetics, food and beverage, home furnishing, 

automotive, and consumer electronics are also experiencing significant mass personalization 

growth. 

 

1.2. Transition of manufacturing technologies towards mass personalization 

 

With the advent of the second industrial revolution, mass production methods enabled 

manufacturers to produce large quantities of standardized parts at a lower cost and in a shorter 

time. Industries could benefit from the mass production of products with high demand rates such 

as automobiles and electronic items. Upon the emergence of the third industrial revolution, mass 

automation, automation technologies, and assembly lines were employed to rapidly manufacture 

tremendous numbers of standard parts or their variations 3–6. Nonetheless, the main disadvantage 

of such processes was the lack of diversity in the final products since it was difficult to adapt a 

production line to changing demands 7,8.  

The move to a new manufacturing strategy, mass customization, was driven by the ever-rising need 

of the companies to satisfy the various demands of the customers.  This strategy makes use of 

advancements in information and manufacturing technology to combine the increased diversity of 

the products with near-mass production efficiency 9. However, in mass customization, it is the 

manufacturer who presents the customer with various designs and feature combinations to choose 

from, rather than the other way around, making it impossible to fully satisfy the individual 

preferences of the customers or offer personalized products 10,11. To remain competitive in the 

market today, companies must implement tactics to enhance both the quantity and degree of their 
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customized products. This has shifted the mass customization strategy towards a novel paradigm 

known as mass personalization. The foundation of this concept is the close involvement of the 

consumers in the design process to accommodate their specific preferences 10,12,13.  

From a technological standpoint, there are no significant impediments to manufacturing 

individualized products. However, transitioning from large batches of massively identical products 

to small batches of massively individualized items has proven financially challenging. Given that 

mass producers often invest heavily in specialized machinery and that shifting to more flexible 

production strategies raises the manufacturing overhead dramatically, it is becoming exceedingly 

difficult to make highly diversified products at prices comparable to mass-produced ones 14. 

Another significant factor that raises the cost of the mass personalization strategy is the 

optimization of manufacturing technology. Manufacturing processes require optimum operating 

parameters to achieve cost-effective production. Therefore, various optimization strategies are 

employed, including model-based parameter calculations, implementation of technology vendor's 

instructions, or experimental optimization using systematic approaches like the Taguchi method. 

However, since the mass personalization strategy demands flexible manufacturing technologies 

capable of swiftly adapting to new designs, process parameter re-calibration and re-determination 

are unavoidable 15. In contrast to mass production, where the cost of optimizing process parameters 

may be spread over a large number of identical products, these costs could become prohibitive for 

the cost-effective production of low-volume and high-variety parts.  

The manufacturing processes that are more suited to the idea of mass personalization typically 

share similar traits such as: 

• Consist of adaptable operations and systems 

• Do not require specialized tooling or lengthy set-up, re-programing, and re-calibration 

processes 

• Can handle complex geometries 

 

1.3. Electropolishing, a promising candidate for mass personalization 

 

The electropolishing process is an example of a manufacturing technology that is well-suited to 

the notions of mass production and mass personalization. Electropolishing is an electrochemical 

method for improving the surface finish of metal objects, as well as their corrosion resistance and 

surface cleanliness 16. The flexible yet effective nature of this process makes it highly appealing to 

many industries such as pharmaceutical, medical devices, aerospace, automotive, and food 

processing, where high-quality surface finishes and cleanliness are critical. The electropolishing 

process does not require a sizeable set of equipment or a complicated manufacturing system. In 

addition, the key process parameters including the applied polishing voltage/current, polishing 

time, bath temperature, and cell geometry can be easily adjusted to handle various component 

materials and geometries.  
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The electropolishing services on the market do not, however, offer a variety of options in terms of 

the final surface quality, let alone the possibility of providing the customer's specific selection of 

surface finish. This is true even though it is theoretically possible to adjust the process parameters 

to easily achieve target surface qualities. Moreover, despite its flexible and affordable nature that 

facilitates the transition toward the mass production strategy, the electropolishing process has 

certain limitations.  

One of the major issues affecting the performance of industrial electropolishing processes is the 

electrolyte's “aging” or gradual degradation due to extensive usage. It has been demonstrated that 

high levels of dissolved metal in heavily-exploited electrolytes have a negative impact on the 

polishing rate and the ultimate roughness and brightness of the surface 17–21. Since the polishing 

bath is considered one of the main tools of the electropolishing process, the continuous change in 

its chemical composition and physical properties makes it more difficult to maintain the 

consistency of the polishing quality. As a result, large-scale manufacturing of standardized parts is 

hampered by inconsistent surface quality. The continuous and inevitable deterioration of the 

polishing electrolyte also adds to the already considerable process optimization costs that stand in 

the way of the mass personalization strategy. Although various process optimization approaches 

may be used for the electropolishing process, constant changes in the polishing tool (electrolyte) 

would necessitate repeated re-calculation of the optimum process parameters even for previously 

manufactured parts. Identifying the optimum polishing parameters for obtaining desired surface 

attributes typically necessitates time-consuming and costly trial-and-error experiments and is 

strongly reliant on the operator's prior expertise and competence.  

There seems to be a lack of publicly available information about electropolishing in deteriorated 

electrolytes because companies prefer to keep this information private to maintain their 

competitive edge in the market. Additionally, a review of the literature reveals that there is limited 

research that concentrates on the impact of electrolyte deterioration on the final surface finish 

or practical solutions for sustaining and enhancing polishing results in heavily-used baths. 

 

1.4. Problem statement 

 

Finding the right process parameters for achieving the desired product quality in the mass 

production paradigm can be challenging. This complexity becomes even greater when it comes to 

mass personalization due to a higher level of variability and a lack of previous data. 

Producing a large series of identical parts with well-defined surface finishes is a daily task that the 

electropolishing industry masters very well. The real challenge arises when processing a new part 

(different geometry, metal, etc.) or producing a new surface finish. As a result, a great number of 

trial-and-error experiments are required to optimize the process parameters. This is especially the 

case in industrial settings where the state of the electropolishing bath isn’t well controlled and it is 

not uncommon to see polishing baths that have been in use for many years. Such baths have very 

different properties than the ideal lab-scale electrolytes or recently acquired polishing baths. As 

long as the optimization process is conducted for the production of large series, the associated 
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manufacturing overhead can be distributed over the large numbers of parts. However, as the series 

gets smaller the additional cost per part becomes too large to be economically viable. The 

electropolishing industry is therefore actively seeking strategies to expedite the lengthy and costly 

optimization process required for processing new types of parts or surface finishes. 

If the electropolishing process is to adopt the mass personalization trend, effective approaches 

should be considered for a) maintaining the consistency of polishing results by real-time 

adjustments of process parameters based on visual and experimental feedback, and b) rapid 

identification of optimum process parameters for achieving personalized surface finishes.  

Several challenges need to be addressed in this context: 

 

I. Rapid identification of optimum process parameters 

Manufacturing operations are usually run by strict schedules and production objectives. The 

time spent on trial-and-error experimentations to find the optimal process parameters can cause 

production delays and affect overall efficiency. Furthermore, trial-and-error methods that 

manually modify parameters could not thoroughly investigate the entire parameter space, and 

may lead to suboptimal results or missed opportunities for process optimization. 

When a new order is submitted to a polishing facility, optimum process parameters need to be 

identified as fast as possible. Finding the right process parameters through a series of trial-and-

error experiments is not time efficient, especially when the order size is small. The ideal 

approach identifies optimum process parameters for achieving a target surface quality with the 

minimum number of experiments.  

 

II. Adjusting process parameters at a reasonable cost 

As was already discussed, the cost of optimizing process parameters challenges the profitable 

production of small-size orders with a high variety of parts. Conducting numerous trial-and-

error experiments to find the best process parameters consumes significant resources, including 

materials, equipment, energy, and labor. The ideal approach will enable tuning the polishing 

process parameters at a reasonable cost. 

 

III. Lack of qualified workforce willing to work in demanding conditions 

 Electropolishing is a specialized process that requires specific expertise and skills to operate 

the equipment, handle chemicals, and ensure the desired results. Finding individuals with the 

necessary training and expertise in electropolishing techniques can be quite challenging. In 

addition, the hazardous working environment of electropolishing facilities can further limit the 

pool of competent candidates. Finding a qualified workforce that is willing to work in such 

environments despite the safety concerns or the need for additional training and certifications 

can be quite challenging. 
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Given the above-mentioned challenges, the application of an intelligent process for quality control 

and optimization of the electropolishing process can be a promising solution. Intelligent tools, such 

as artificial intelligence (AI) algorithms can analyze vast amounts of data to improve the overall 

efficiency of manufacturing processes 15. In addition, these tools facilitate real-time data 

monitoring, enabling early detection of quality deviations from intended standards and speedy 

identification of underlying causes of process issues. Another important feature of intelligent tools 

is the ability to learn from historical data and make adaptive control decisions to continuously 

improve manufacturing processes 22–24. 

A strategy that employs previous production experience to help determine acceptable process 

parameters shows significant potential for advancing the electropolishing process towards mass 

production and mass personalization methods despite the deteriorating state of the polishing 

electrolyte. The guiding principle of this strategy is that a manufacturing process may 

progressively enhance its performance just as a junior operator advances to a senior operator over 

time. By incorporating artificial intelligence and machine learning algorithms, the intelligent 

process can analyze collected data and dynamically adjust process parameters to compensate for 

changes in bath conditions, ensuring consistent and high-quality results. This intelligent process 

can also identify correlations between the bath conditions and the resulting surface quality and 

optimize process parameters based on the intended outcome 25. 

 

 

1.5. Objectives 

 

The objective of this study is to employ machine learning methods to quickly identify the optimum 

polishing parameters for achieving the desired surface finish in an aging solution. Several 

uncertainties need to be addressed to solve this problem: 

 

• Establishing a methodology for quantifying the state of an aging bath and determining 

relevant electrolyte properties: 

 

Research of the literature indicates that certain metal concentrations or electropolishing 

ampere-hours thresholds have been suggested in industrial studies for the onset of the 

decline in the polishing performance of some baths. There is, however, a scarcity of 

available data concerning the definition of an aged bath and important measurable 

electrolyte properties to identify its state. To determine what is considered a deteriorated 

or an “aged” bath, it is necessary to establish baseline parameters and benchmarks relevant 

to the electropolishing process and used electrolytes. Only after establishing an effective 

method for quantification of the bath state will we be able to investigate the effect of bath 

aging on the outcomes of the electropolishing process. In this regard, relevant 

physicochemical properties of the electrolyte need to be identified and prioritized in terms 
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of their importance for the performance of the bath as well as their simplicity and ease of 

use in fast-paced industrial electropolishing settings. 

 

• Exploring the possibility of employing the physicochemical properties considered relevant 

to the state of the polishing bath for maintaining the consistency of electropolishing results: 

 

Upon understanding the effect of variations in the physicochemical properties of an aging 

bath on the ultimate surface finish of electropolished samples, we aim to ascertain whether 

these properties may be used to make necessary adjustments to the polishing process 

parameters, such as voltage and time, in order to maintain consistent surface properties 

(i.e., roughness and appearance) of the workpiece. This investigation requires an adequate 

number of electropolishing experiments with different process parameters at varying bath 

states, followed by precise surface characterization of electropolished parts.  

 

• Building a comprehensive dataset of the polishing process parameters and resulting 

surface qualities: 

 

The first step towards a prediction tool for the identification of process parameters required 

for obtaining a target surface quality in an aging bath is building a comprehensive dataset. 

Such a dataset must encompass a wide range of polishing bath states, process parameters, 

and surface finishes. In addition to a significant number of polishing experiments, the 

construction of this dataset requires precise measurements of the electrolyte states, process 

parameters, and surface properties. The dataset can then be thoroughly analyzed to acquire 

an in-depth understanding of the key contributors to the ultimate surface quality of the parts 

and their potential correlations.  

 

 

• Developing a tool to predict the optimum process parameters for achieving a target surface 

quality at a given bath state: 

 

The target prediction tool of this study shall be based on a machine learning model chosen 

among various algorithms based on its accuracy in representing the constructed dataset. 

After developing the tool, we also aim to evaluate its predictive power and generalization 

capability to unseen situations.  
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1.6. Significance of the study 

 

In order to remain competitive and fulfill the demands of today’s customers in a timely manner, 

manufacturing industries are embracing the Industry 4.0 philosophy where automation is pushed 

beyond robotics to new technologies emerging from data science and artificial intelligence 26. The 

adoption of Industry 4.0 technologies, such as automation and sophisticated data analytics, may 

greatly benefit surface treatment operations by significantly increasing their productivity and 

efficiency. In addition, Industry 4.0 enables advanced quality control and process optimization by 

collecting and analysis of vast amounts of data from different phases of the surface treatment 

process 22,25. Traditional industries, such as electropolishing, need to find ways to automate their 

often heavily artisanal-based techniques to increase the efficiency and quality of their operations. 

They also need to develop an intelligent network of machines and processes to cut down on the 

time spent on non-value-added tasks and learn from previous experience. In addition, the 

possibility to choose from a variety of attainable surface finishes rather than a one-size-fits-all 

“shiny” or “smooth” surface can be a strong steppingstone for the “mass personalization” of the 

electropolishing services. 

Moreover, development of a smart process to find the optimum polishing parameters in a degrading 

bath can significantly decrease the costs of electropolishing operation. One considerable expense 

for electropolishing operations is the cost of electrolyte replenishment and disposal of the degraded 

baths 20,27,28. Electropolishing facilities require replacing the polishing bath periodically with fresh 

electrolytes to maintain an acceptable quality of the polished parts 28–31. Also, the disposing of 

heavily-exploited electrolytes typically requires following proper disposal procedures and 

contracting licensed waste management services to ensure compliance with environmental 

regulations 29. Determining the suitable polishing parameters that allow obtaining the target surface 

quality at any given bath state can reduce the frequency of bath renewal and disposal, thereby 

cutting a substantial share of these expenses.   

Another major expense for electropolishing facilities is the labor cost including the cost of training 

and certifications for personnel handling hazardous chemicals and wages of highly skilled 

operators that can determine the optimum process parameters for achieving required surface finish. 

Indeed, the technicians who perform electropolishing operations have training and experience 

levels that are significantly higher than those of other workers in the electropolishing facility. 

Developing a smart tool that can automate labor-intensive process optimization tasks and enable 

data-driven decision-making can reduce the reliance on human labor and lead to significant cost 

savings for electropolishing facilities.   

Finally, the disposal of extensively-used electrolytes with high concentrations of heavy metal ions 

exposes contaminants into the environment and endanger the ecosystem and human health 28,32. 

This smart process reduces the frequency of bath renewal and the subsequent disposal of hazardous 

electrolytes to the environment by extending the service life of degraded polishing baths. 
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In the upcoming chapter, an in-depth examination of the electropolishing process mechanism, the 

significance of key process parameters, and some advantages and limitations of electropolishing 

are detailed. Chapter 2 also summarizes the existing knowledge on the electrolyte aging 

mechanism and its impact on the polishing process outcomes. In addition, conventional quality 

control methods in electropolishing, along with their potential drawbacks, are explored.  

Chapter 3 presents the experimental methodology employed in this study and briefly outlines the 

steps taken to develop the predictive tool, which is the target of this research. Chapter 4 utilizes 

various experimental results to elucidate the influence of electrolyte degradation on the surface 

quality of polished components and proposes a methodology for quantifying the bath state. 

The details of the dataset construction process are presented in Chapter 5, followed by an analysis 

of the dataset and an evaluation of different machine learning algorithms based on their ability to 

reproduce it. Chapter 6 outlines the development process of the prediction tool derived from the 

findings of Chapter 5. The performance of the constructed prediction tool is then assessed in both 

familiar and previously unseen situations. 

Chapter 7 offers suggestions for potential future research directions, and finally, the most 

significant conclusions are summarized in the concluding chapter. 
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2. Literature Review 
 

2.1 Electropolishing process, potentials, challenges 

 

Electropolishing is an electrochemical finishing process for the removal of surface impurities and 

irregularities from a metallic component. In this process, the workpiece is polarized as the anode 

of an electrolytic cell (a two electrodes cell in general) with a suitable material serving as the 

cathode. Electrochemically dissolved metal cations diffuse through the electrolyte towards the 

cathode, where reduction reactions generally produce hydrogen 33,34. Figure 2.1 illustrates a typical 

electropolishing cell. 

 

Figure 2.1. Schematic of an electropolishing cell. 

 

Electropolishing produces smooth and bright surface finishes by removing surface imperfections, 

such as microburrs, scratches, and scale, resulting in a clean and aesthetically appealing surface 
35,36. In addition to leveling surface irregularities, electropolishing can greatly enhance corrosion 

resistance by removing defective and corrosion-promoting surface oxides and nonmetallic 

inclusions and replacing them with a dense, stable, and chemically homogeneous protective 

passive layer 37–39.  
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2.1.1 Mechanism of electropolishing  

 

Figure 2.2 depicts the typical current density-voltage curve exhibited by many electropolishing 

systems, with each part of the curve representing a different step of the electropolishing process. 

In the first region of the curve, preferential etching of the surface occurs, and grain boundaries are 

attacked. This may be explained by the fact that for a given potential, the rate at which different 

planes of a metal crystal dissolve depends on their orientation. Therefore, in the active potential 

region, the anodic dissolution of metals with crystal planes at random orientations results in 

faceting and the formation of crystallographic patterns on the surface. In this region, raising the 

applied voltage increases the current density. In the passivating region, however, increasing the 

applied voltage causes a slight decrease in current density, indicating the formation of a passive 

oxide layer on the workpiece surface. The passive layer is stabilized in the polishing region, and 

the process becomes mass transfer-controlled. Since the current remains nearly constant with 

increasing voltage, this area is also known as the limiting current plateau. As the applied voltage 

increases in the last region (the transpassive region), the passive layer begins to break down and 

the anodic dissolution is accompanied by the evolution of gas bubbles and pitting of the workpiece 

surface 33,40,41. 

 

Figure 2.2. Characteristic I-V curve of the electropolishing process according to Han et al. 33 

 

During the electropolishing process smooth and bright surfaces are achieved by eliminating 

surface roughness as well as crystallographic and grain-boundary attack. It is generally agreed 

upon that electropolishing occurs through two processes of anodic levelling (elimination of surface 

roughness of height > 1 µm) and anodic brightening (elimination of surface roughness < 1 µm). 

Anodic leveling results from varying dissolution rates at metal surface peaks and valleys 
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depending on the current distribution or mass-transport conditions. Anodic brightening results 

from suppressing the influence of surface microstructure (crystallographic orientations, surface 

defects, etc.) on the dissolution process. It is achieved under mass transfer-controlled elimination 

of microscopic irregularities 40,42. 

Although electropolishing has been used for decades, its mechanism is still debated in the 

literature. Based on the oxidation, dissolution, and diffusion processes observed during 

electropolishing, it is generally accepted that the mass transport-controlled anodic dissolution of 

metal is responsible for the electropolishing process 43. Two mass-transport mechanisms have been 

proposed to explain the polishing process: (i) the establishment of a viscous boundary layer or (ii) 

the formation of a salt film on the workpiece surface 33,40.  

It is generally believed that when a current passes across the electrolyte, metal dissolution products 

form a viscous boundary layer (or as some researchers postulate, a salt film) on the workpiece 

surface. Since this surface layer has a higher viscosity and electrical resistivity than the bulk of the 

solution, it reduces the current density and metal dissolution rate. The thickness of the surface layer 

and hence, the diffusion rate of metal cations to the solution are different at protrusions and valleys 

of the surface. As a result, the non-uniform current distribution and different dissolution rates on 

the surface lead to anodic leveling 33,40. 

Anodic brightening, on the other hand, is achieved by the random removal of cations from the 

metal lattice given the random and rare chance of cation vacancies in the anodic film. Thus, in 

contrast to the surface etching observed in the active potential region, where the rate of metal 

crystal dissolution depended on crystallographic orientation, the effect of workpiece 

microstructure is suppressed in the mass transfer-controlled region, and sub-micrometer scale and 

specular reflectivity metal finishes are obtained 44–46. 

Although mass transport control is common to all brightening systems, the transport limiting 

species may vary from one system to another. According to the review conducted by Landolt 42, 

three possible transport limiting species have been suggested: anodically generated metal ions, 

acceptor anions, and water. The answer to the question which species is limiting in each 

brightening system can be difficult to determine. 

 

2.1.2 Role of electropolishing parameters 

 

Optimizing the electropolishing process necessitates a thorough understanding of the effect of 

process variables, such as polishing current, potential, duration, or electrolyte temperature, on the 

final surface quality of the parts. Some of the main process parameters and their speculated 

functions are as follows:  

Electropolishing current It is commonly accepted that the polishing process is accelerated at high 

currents, leading to nonuniform dissolution and possible pitting of the part surface. Applying lower 

polishing currents is, however, not favorable given the considerably lower material removal rates 
47.  
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For instance, during the electropolishing of aluminum samples, it was observed that with 

increasing the applied polishing current density, the formation rate and thickness of the oxide layer 

increased, and the diffusion-controlled dissolution regime was attained faster. Also, under 

excessively high current densities, a much thicker and deformed oxide layer was formed on the 

workpiece through dramatic bubble evolution, leading to non-uniform metal dissolution and 

eventually, surface roughening. It was argued that at the optimum current density, the surface 

brightness reaches a maximum because the formation and dissolution rates of the oxide layer are 

balanced 48,49.  

Awad 36,50 claimed that achieving the limiting current region for increasing the surface smoothness 

and brightness of AISI-304 stainless steel samples requires adequate electric current distribution 

over the surface, regular dissolution of surface asperities, and homogenous filling of surface 

depressions by metal oxide layer. According to the author, low current densities are not sufficient 

for ionic mobility through the viscous electrolyte, which results in low anodic reaction rates, 

incomplete surface oxidation, and ultimately, matt surfaces. 

 

Electropolishing potential The application of sufficient electric potential is necessary for the 

polishing electrode reactions to proceed at an acceptable rate. For a given overvoltage, increasing 

the distance between the anode and cathode of the electrochemical cell lowers the flowing current 

due to the increased electrical resistance between the electrodes. Further, the electropolishing 

system's ohmic drop and current efficiency can both be negatively impacted by the development 

of a passive layer on the anode surface 34,47.  

During the charge transfer-controlled anodic dissolution of the workpiece, increasing the applied 

polishing potential was shown to increase the surface roughness of the workpiece (etching) and 

decrease the surface brightness. Further increasing the potential leads the anodic dissolution 

process to become mass transfer-controlled, allowing for the generation of highly reflective and 

smooth surfaces. However, while low voltages might not activate the polishing electrode reactions, 

applications of very high potentials are generally avoided. At very high cell potentials, the 

significant increase in current density leads to considerable evolution of gas bubbles, resulting in 

a dramatic deterioration of surface finish quality (increased surface roughness and decreased 

surface brightness) due to excessive defects and local pit formation. Overpolishing due to high 

voltages can also diminish the part's dimensional accuracy 36,47,51. 

 

Electropolishing duration During the electropolishing process, the surface roughness of the 

samples has been observed to undergo a rapid decrease at first and reach a limiting value with 

further extension of the process 47. Figure 2.3 depicts the change in surface roughness of 316L 

stainless steel samples as a function of electropolishing duration presented in a study by 

Haïdopoulos et al 52. Prolonging the electropolishing process is typically known to further reduce 

the surface roughness of the workpiece. However, it has been shown that electropolishing a part 

for excessively long durations does not improve its surface finish significantly and may potentially 

result in severe part dissolution 47. 
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The surface brightness of the workpiece has also been observed to initially improve and decline 

later with increasing the electropolishing duration. It has been reported that prolonged polishing 

processes and the continuous electric potential applied to the surface can result in severe and 

irregular surface dissolution leading to distortion of the workpiece and deterioration of surface 

brightness 39.  

 

 
Figure 2.3. Variation of the mean surface roughness Ra of 316 stainless-steel surfaces with the duration of 

electropolishing process as (a) measured by AFM, and (b) measured by stylus profilometry 52. 

 

Electropolishing Bath Temperature One of the key factors that can significantly affect the 

electropolishing process is the temperature of the polishing bath. Higher bath temperatures result 

in faster ion diffusion, greater metal solubility, and lower electrolyte viscosity, all contributing to 

an increase in polishing current density 33.  

It has been reported that increasing the temperature of the polishing bath results in an increase in 

limiting current density and improvement of the surface brightness. This observation has been 

justified by the fact that increasing the bath temperature increases the solubility of dissolution 

products in the balk solution and therefore higher current densities are required to obtain a bright 

surface 53. Higher temperatures were also reported to facilitate the electropolishing process and 

shift the polishing mechanism to mass-transfer controlled. The time required to obtain a bright 

polished surface is reportedly shorter at higher temperatures 38. It has been justified that since 

polishing baths are typically composed of highly viscous electrolytes that are very resistive to ionic 

mobility, an effective polishing process requires an adequate temperature to overcome their ohmic 

resistance and increase the ionic mobility towards the working electrode 36. 

In addition, according to the literature, at lower bath temperatures, the oxide layer generated during 

electropolishing has a high formation rate and a low dissolution rate. As a result, the thickness and 

resistance of the oxide layer are increased. Conversely, at higher temperatures, the formation and 
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dissolution rates of the oxide layer are balanced, and the optimum oxide thickness and surface 

quality are achieved 49. However, at very high temperatures, the viscosity of the diffusion layer is 

significantly reduced, making it difficult to maintain a viscous layer on the workpiece surface. 

Therefore, it has been suggested that excessively high temperatures should be avoided to prevent 

the development of etching pits and the deterioration of surface quality 33,34. 

Other factors, such as bath agitation, interelectrode distance, and polishing current signals can also 

affect the ultimate surface quality of electropolished samples 47. Considering the diversity of the 

adjustable parameters and their rather complicated influences on the outcomes of the 

electropolishing process, considerable research has been devoted over the years to identifying the 

most reliable and efficient process optimization methods. For example, several studies have 

compared the surface quality obtained with various levels of process parameters to optimize the 

electropolishing process 54,55. Other studies employed statistical methods for the systematic 

optimization of the electropolishing process. Such methods help to identify the key process 

parameters and their optimal settings to achieve the desired surface finish, material removal rates, 

or other performance metrics. For instance, some studies have utilized the Taguchi design of 

experiments to determine the optimum level of process parameters that yield high surface quality 

parts 56,57. Kao et al. 58 used grey relational analysis to optimize electropolishing process 

parameters such as temperature, current density, and electrolyte composition to achieve optimal 

surface roughness and passivation strength for 316L stainless steel parts. The response surface 

methodology (RSM) has also been used in several studies for the optimization of the 

electropolishing process parameters 59,60. 

 

2.1.3 Advantages and challenges of electropolishing process 

 

Various surface polishing technologies based on mechanical, chemical, or electrochemical 

approaches have been proposed for improving the appearance and performance of metallic parts. 

Compared to other polishing methods, electropolishing offers advantages that make it an appealing 

process to some demanding applications including biomedical, food and beverage, aerospace, and 

electronics and semiconductor industries. 

For instance, one of the major advantages of electropolishing over mechanical polishing is that no 

tool contact is required, and it can potentially handle much more complex geometries. In principle, 

any part of the workpiece within the electrolyte's reach may be treated with electropolishing, 

provided that a cathode can be placed in the vicinity of the surface. Such flexibility can be quite 

beneficial in the treatment of small or complicated geometry parts with internal spaces, hidden 

surfaces, and intrusions that are otherwise inaccessible 47,61,62.  

Furthermore, as a non-contact polishing process, electropolishing does not cause further 

mechanical stresses, oxide contamination, or surface hardening 63,64. In fact, it can be used for the 

treatment of hardened materials which is challenging for mechanical machining considering the 

contact between the tool and the workpiece 65. In addition, contrary to some polishing methods 
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like laser polishing, electropolishing operates at low temperatures and does not subject the parts to 

excessive heat, thereby minimizing the risk of thermal stress and distortion 66. 

Electropolishing is usually a faster process compared to chemical polishing due to the application 

of anodic current densities 38. Utilization of anodic current densities in electropolishing also helps 

to reduce the need for strong or highly concentrated acidic solutions that are typically used in 

chemical etching, which makes the working conditions safer and the resulting hazardous waste 

less harmful to the environment 63,67. Electropolishing also offers better control over the process, 

whereas, in chemical etching, mere modification of chemical bath concentration and polishing 

time cannot render parts with the desired accuracy 38,68. 

Aside from its great potential for effective improvement of surface qualities, the electropolishing 

process bears limitations that can challenge adopting mass-production and mass-personalization 

strategies. Some major drawbacks of the electropolishing process are inconsistent polishing quality 

caused by electrolyte deterioration, the artisanal nature of the process, and the complexity of 

process optimization due to the high number of process parameters to fine-tune 47. 

 

Electrolyte ageing The "aging" or degradation of the electrolyte over time due to repeated usage is 

one of the main issues in industrial electropolishing operations. Significant amounts of dissolved 

metal in heavily used electrolytes have detrimental effects on the polishing rate and the ultimate 

roughness and gloss of the surface. 18,69,70.  Studies have shown that the accumulation of metal ions 

in electrolytes increases consistently with increased usage to the point where higher 

voltage/current or longer polishing times are needed to maintain the consistency of polishing 

quality 20,69,70. Increasing the polishing voltage/current or the duration of the electropolishing 

process results in higher energy consumption, bath overheating, development of surface defects, 

and formation of byproducts 71. An alternate approach is to replace the electrolyte when a specific 

amount of metal content is reached or when the process begins to yield unacceptable results 28,69. 

However, since electrolyte mixtures are expensive frequent bath renewal can be financially 

burdensome for industrial electropolishing facilities 20,27. Other potential strategies, according to 

the literature, include: 

• Altering the electrolyte composition to create a more affordable alternative with a longer 

lifespan 20 

• Detecting the onset of the “aging” by continuously monitoring the changes in the 

electrolyte and reversing the process by adding fresh electrolyte 31,70 

• Removing the metal content using chemical or electrochemical methods or by means of 

natural sorbent materials 18,28,31 

• Lowering the amount of metal ions in the electrolyte by obtaining the optimum polishing 

parameters for minimum weight loss of the workpiece 32,72. 

 

In addition to the financial drawback of bath aging, the disposal of aged electrolytes with high 

concentrations of heavy metal ions exposes contaminants to the environment, endangering the 

ecosystem and human health 28,32. A detailed discussion of this issue, including the effect of various 
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electropolishing parameters on bath aging and its consequences on the final surface quality of the 

parts, will be provided in the next section. 

 

Artisanal process and complicated process optimization The term "artisanal" refers to a process or 

technique that requires skilled craftsmanship, attention to detail, and a high level of manual 

expertise. Electropolishing is considered an artisanal process due to the high level of skill and 

craftsmanship needed to precisely select and control the process parameters that deliver the desired 

results. 

Industrial electropolishing facilities usually rely on highly skilled operators with a deep 

understanding of the process, including knowledge of the workpiece material, electrolyte 

composition, and the role of process parameters. The operator's ability to monitor and control 

various parameters, such as polishing voltage, current, time, and bath temperature, is critical to the 

success of the electropolishing process. Over their many years of experience, skilled operators 

acquire the ability to make real-time decisions and adjustments based on the specific requirements 

of each workpiece. Considering their important responsibilities and the hazardous working 

environment of the electropolishing facilities, these operators must be paid highly competitive 

wages 73. 

Such heavy reliance on the knowledge and expertise of the operators can be a significant obstacle 

to the automation of electropolishing operations and their ultimate transition to mass production 

and mass personalization strategies. Transitioning to the mass production paradigm calls for 

streamlining processes, increasing production speed, and reducing dependence on manual labor to 

achieve higher efficiency and cost-effectiveness. Indeed, streamlining electropolishing procedures 

necessitates rapid and low-cost parameter optimization strategies. In addition, since the customers 

of mass-produced products expect uniformity across the parts, ensuring reproducibility and 

consistent quality of the products is another crucial requirement. This concern may be addressed 

through establishing standardized procedures and automated quality control measures.  

Another obstacle for artisanal processes like electropolishing is handling the complexity and 

variety of products in the context of mass personalization. Electropolishing operations must adopt 

parameter optimization methods that can accommodate product customization requirements while 

maintaining efficiency and cost-effectiveness. This can be a challenging task because: 

• Different electropolishing operators may have unique approaches and preferences, leading 

to variations in the process control strategy and the final surface quality. This subjectivity 

and variability make it difficult to establish standardized procedures and optimize the 

process for efficiency and quality. 

• The knowledge and expertise are generally stored in the operator's memory rather than in 

documented instructions or process manuals. This lack of formal documentation makes it 

challenging to analyze and improve the process systematically. 

• In electropolishing, like most artisanal processes, data collection and feedback mechanisms 

are limited or nonexistent. Without accurate and comprehensive databases on process 
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parameters and final surface characteristics, making decisions for process optimization 

becomes difficult. 

• The electropolishing process involves complex interactions between various parameters 

that can affect the final surface finish of the parts. These interactions can be hard to quantify 

and understand, especially when they involve subjective judgments of the operator.  

• At some point, the experienced operators will retire, and transferring their knowledge to a 

broader workforce or new generations of operators can be challenging. It takes time and 

effort to train new operators to achieve the same level of skill and expertise, and even then, 

variations in individual performance can still occur. 

 

To the best of our knowledge, no research has been conducted on the possibility of personalizing 

the electropolishing process. However, the literature on the electropolishing process indicates that 

it is indeed possible, albeit probably not affordable. For instance, some studies have focused on 

electropolishing optimization for accommodating workpieces of different materials and 

geometries. The results of such works may be guidelines for determining the specific process 

parameters required for achieving desired surface finishes for various types of parts. Further, some 

studies have shown that different electropolishing process parameters can generate diverse surface 

finishes, such as high gloss, mirror-like surfaces, or matte ones. It can thus be concluded that it is 

possible to achieve a range of polished surface finishes by manipulating process variables such as 

the polishing voltage, current, and time. Moreover, several researchers have employed process 

monitoring methods such as in-situ measurement of process parameters that can be useful for 

quality control of the electropolishing results. 

Despite the demonstrated potential for personalization of the electropolishing operations, the 

artisanal nature of the process and dynamic changes of the polishing bath can undermine the 

feasibility of this approach. Even if the electropolishing operations succeed in producing large 

batches of identical parts with well-defined surface qualities, the real challenge emerges when a 

new surface finish or a new type of part (different geometry, material, etc.) is to be processed. In 

such cases, the process parameters must be optimized again by considerable trial-and-error 

experiments to accommodate the new target. This is especially the case in industrial facilities 

where the state of the electropolishing bath is not well-controlled, and it is not uncommon to see 

polishing baths that have aged for several decades. Such baths have very different properties than 

the ideal lab-scale or freshly set up electrolytes. From a financial viewpoint, as long as the 

optimization process is conducted for large batches, the resulting manufacturing overhead can be 

spread out over the large numbers of parts to be produced. But when the batch size becomes small, 

the additional cost per part grows too large to be economically viable. This can prove quite 

challenging in the context of mass personalization, where small orders of individually personalized 

products are common. 

Recently, manufacturing processes have benefited from data-driven approaches like machine 

learning (ML) algorithms as a valuable tool for reducing the cost of parameter 

optimization/calibration. Machine learning algorithms can analyze large amounts of data, identify 

patterns, and make predictions based on those patterns. They can, hence, automate the optimization 
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process by learning from historical data and identifying the optimal parameters for attaining a 

given objective. As a result, manual trial-and-error optimization approaches are no longer needed, 

and considerable resources are saved. In addition, data-driven methods can continuously analyze 

data from sensors and monitoring systems to optimize process parameters in real-time. This 

enables dynamic adjustment and fine-tuning of parameters based on changing conditions, thereby 

improving efficiency, and reducing waste or errors. 

There have been few instances of employing data-driven approaches for electropolishing process 

optimization or the prediction of final surface finish. For instance, Krishna et al. 74 developed a 

multilinear model to predict final surface roughness of 316 stainless steel samples using the main 

bath properties. Lochyński et al. 75 devised a multifactorial mathematical model for the prediction 

of the surface quality based on the metal content of the polishing bath and process parameters. An 

in-depth review of these works is provided in the next section.  

 

2.2 Electrolyte ageing  

 

2.2.1 What is electrolyte ageing? 

 

The electropolishing process is accomplished through metal dissolution. As a result, oxidized 

metal ions form soluble and insoluble (recognized as dark sediments 69) chemical compounds in 

the electrolyte 31. A growing amount of sludge (metal precipitates) builds up in the bath as the 

polishing process progresses due to a rise in the concentration of metal ions in the electrolyte 28,70. 

The expression "aging" of the electrolyte refers to the contamination of electropolishing baths with 

metal ions upon prolonged use. 

 

2.2.2 How does aging affect the polishing quality? 

 

It has been observed that electropolishing of parts in aged electrolytes can result in the appearance 

of surface defects and deterioration of part’s roughness and gloss  18,76,77. According to Chatterjee 
28, during electropolishing of stainless steel parts, the surface brightness of the parts drops when 

the iron content of the acid bath exceeds about 6 wt. %, because the electrolyte becomes saturated 

with metal salts of stainless steel. Therefore, to keep an ideal process, the iron in the solution during 

electropolishing should be maintained below 5 wt. % to reduce sludge formation. Similarly, during 

electropolishing of niobium Superconductivity Radio Frequency (SRF) cavities used for particle 

acceleration, Eozénou et al. 76 observed that when the polishing process was extended, the surface 

brightness of the samples reached a maximum and subsequently began to decrease after around 

7.7 g of niobium was dissolved in the bath (after 2580 minutes of electropolishing). However, 

when the polishing bath was replaced with a fresh solution, the maximum surface brightness 

improved even further until roughly the same quantity of niobium was dissolved again (after 2490 

min of electropolishing). Using XPS (X-ray Photoelectron Spectroscopy), SEM (Scanning 
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Electron Microscope), and EDX (Energy Dispersive X-ray Spectroscopy) analysis, Tyagi et al. 77 

demonstrated that as the electrolyte ages, the surface finish of niobium samples deteriorates, and 

a significant amount of sulfur particles is generated on their surface. These sulfur particles are 

known to limit the SRF cavity performance. The sulfur generation rate at the cavity surface was 

also found to be proportional to the aging of the EP electrolyte. While studying the effect of the 

Electrochemical Reduction (ER) process on reducing the contamination in aged polishing baths, 

Lochynski et al. 18 observed that the surface roughness of 304 stainless steel samples increased 

after electropolishing in an aged bath, while for a bath subjected to the ER process, the surface 

roughness was gradually improved with increasing the polishing duration. The samples 

electropolished in the aged bath were also found to exhibit a higher weight loss. Krishna et al. 74 

obtained similar results showing that the surface quality of stainless steel samples drops as the 

polishing electrolyte ages. In addition, the SEM images of the samples electropolished in aged 

solutions indicated a very rough and irregular surface with traces of bath contamination. 

 

2.2.3 What causes the decline in the quality of the surface in aged polishing baths? 

 

Generally, as polishing solutions are used, some of their properties change. Such changes can 

significantly affect the surface finish of the electropolished samples: 

Increased viscosity- Decreased ionic conductivity According to the theories suggested for the 

mechanism of electropolishing and given the crucial role of the viscous film of metal salts formed 

at the anode surface, the viscosity of the solution is believed to be the key element in the control 

of electropolishing. The viscosity, in turn, is dependent on the composition of the polishing 

solution and its temperature 31. 

Electropolishing baths are often selected from viscous acidic solutions 28,40. It should be pointed 

out, nonetheless, that an overly high solution viscosity brought on by excessive metal dissolution 

can also be detrimental to the results of electropolishing 74. Not only may it cause the solution's 

electric conductivity to decrease due to the slower movement of charge carriers, but it can also 

thicken the viscous layer that has developed on the anode's surface and increase its electric 

resistance, reducing the rate of material removal 36,40. 

Indeed, since a fresh electrolyte only contains a few ions, its electric conductivity may be 

insufficient to deliver an acceptable polishing effect, but after a few polishing processes, the rate 

of material exchange at the workpiece/electrolyte interphase is enhanced 69. However, as 

previously mentioned, prolonged polishing processes may result in excessive metal dissolution 

and an increase in solution viscosity, which eventually increases the ohmic resistance of the 

electrolyte 36. Consequently, higher current densities or longer polishing times are required to 

obtain satisfactory results. This is consistent with the results of electropolishing niobium SRF 

cavities, in which the intensity and etching rate of the samples drop dramatically with bath aging 
76. Additionally, as the ohmic resistance of the electrolytes decreases at elevated temperatures, 

aging of the polishing bath increases the optimum process temperature 69.  
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Moreover, according to the Stokes–Einstein equation, higher viscosity of aged solutions decreases 

the diffusion coefficient of ions and hence the mass transfer-controlled metal dissolution rate  78: 

𝐷𝜂

𝑇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  2.1 

where D is the diffusion coefficient of particles (cm2 s−1), η is the viscosity of solution (g cm−1 s−1) 

and T is its absolute temperature. 

 

Change in the electrolyte composition: 

Aside from the changes in physical properties of the polishing bath, the solution composition also 

changes upon excessive exploitation 38,70,74. As the polishing electrolyte ages, the concentration of 

metal cations in the bulk of the solution is increased. For a mass transfer-controlled anodic 

dissolution process, the limiting current density measured by a rotating disk electrode can be 

described by the Levich equation 79,80: 

𝑖𝐿 = 0.62𝑛𝐹𝐷
2
3𝜐−

1
6𝜔

1
2Δ𝐶    2.2 

 

where n is the number of electrons involved in the reaction, F is the Faraday Constant equal to 

96500 𝐶/𝑚𝑜𝑙, D is the diffusion coefficient, 𝜐 is the kinematic viscosity, 𝜔 is the rotation speed 

of the disk, and Δ𝐶 is the difference between the concentration of the diffusing species at the anode 

surface (𝐶𝑠) and the bulk electrolyte (𝐶𝑏).  

As can be noticed in equation 2.2, the limiting current density is a function of the concentration 

gradient of the diffusing species. The increase in the bulk concentration of metal cations will, 

therefore, decrease the concentration gradient across the cell, which, in turn, reduces the limiting 

current density. As a result, longer polishing times are needed to achieve an acceptable surface 

finish. Aside from increased energy consumption concerns 38, the extension of the polishing 

process increases the likelihood of bath contamination from various sources. Such contaminations 

can result from the dissolution of different parts with different manufacturing processes, the 

environment of the polishing facility, and accidental bath contamination by operators. These 

impurities may find their way to the surface of the electropolished samples and affect their quality. 

For instance, it has been proved that impurities found on the surfaces of polished aluminum 

samples can absorb light and affect the reflection of the specimens 49. 

 

2.2.4 Effect of electrolyte aging on increasing the consumed energy 

 

In addition to its impact on the surface quality of electropolishing samples, electrolyte aging can 

increase the energy consumption of the process. It has been reported that the decline of the 

electrolyte efficiency upon prolonging the electropolishing process leads to a constant decrease in 
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the polishing intensity and material removal rate 20,81,82. Seeing as the renewal of the polishing bath 

has shown promising results in terms of improving the surface quality of the samples, one might 

consider renewing the polishing bath to be a practical solution to the issue of electrolyte aging 76. 

However, changing the polishing bath frequently would be to be very costly given the significant 

amount of electrolyte required (for example, the 2,000 L polishing bath tank at the KEK plant in 

Japan or a ton of electrolyte for a single batch in industrial Cu electroplating)) 20,27. 

As previously mentioned, in order to provide satisfactory surface results in aged electrolytes, 

higher currents/voltages or longer polishing times are necessary due to the considerable decline in 

polishing rate and intensity. Neither option is financially viable considering the significant electric 

energy consumption 38,72,74, which is why industries usually prefer polishing baths having a long 

lifetime and requiring low voltages 76. Aside from the financial cost of increased energy 

consumption, raising the polishing voltage/current to compensate for the aging of electropolishing 

baths may result in other issues such as: 

a)  Exacerbation of surface conditions 

Tyagi et al. 27 investigated the effect of increasing the polishing current density to improve the 

electropolishing results of niobium surfaces in an aged solution. The results of the study 

showed that despite a 25% increase in the rate of niobium removal, a significant amount of 

sulfur (up to 10.3 at. %) was generated on the samples at a higher current density of 50 mA/cm2, 

whereas the sulfur amount reduced drastically to 0.3 at. % for the surfaces treated with lower 

current density (33 mA/cm2). Additionally, SEM analysis of the samples subjected to high 

current densities revealed a significant number of particles larger than 10 µm at the surface. 

EDX analysis determined the particles' composition to be sulfur and oxygen. Hence, it was 

concluded that EP in aged electrolytes should be carried out with a low current density to 

ensure the minimum sulfur particles at the surface. Similar observations were reported in a 

study by Lochyński et al. 18, where the application of higher current densities for 

electropolishing 304 stainless steel samples in a strongly contaminated industrial bath resulted 

in the emergence of smudges on the entire exposed area, leading to a significant deterioration 

of their surface roughness. 

b) Reducing the lifetime of the polishing bath 

 

A study by Éozénou et al. 76 on electropolishing niobium SRF cavities in an aging solution 

showed that the polishing rate increased with higher polishing voltage and the maximum 

surface gloss was reached earlier. However, the deterioration of the surface gloss also started 

at lower concentrations of dissolved niobium in the solution, indicating that the lifetime of the 

polishing bath had decreased 83. The higher polishing potential was also found to result in 

increased bath contamination and the formation of significant amounts of sulfur particles at the 

workpiece surface. Another study by the same authors on electropolishing niobium SRF 

cavities indicated that a lower polishing voltage increased the lifetime of the EP mixture 84. 

This observation was justified by the fact that overheating of the solution under higher 

potentials resulted in intensive evaporation of the hydrofluoric acid, HF, present in the 
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polishing bath, which, from previous experience, was identified as the key element in 

determining the final surface finish of the samples. 

c) Additional cost of cooling system 

 

The viscosity of the polishing solution is known to decrease at elevated temperatures. 

According to the Stokes-Einstein equation (2.1), a lower viscosity leads to greater diffusion of 

ions and molecules in the solution, higher polishing rates, and increased bubble generation. 

However, since the acidic electrolytes usually used in electropolishing have high electrical 

resistivity, applying a higher polishing voltage/current could lead to overheating of the solution 

and damage to the surface quality. Consequently, cooling devices and large amounts of acid 

would be necessary to prevent overheating of the solution and further deterioration of surface 

quality 8428,72.  

 

According to the study by Éozénou et al. 84, the only drawback to low-voltage electropolishing is 

the decreased niobium removal rate, which could be improved by increasing electrolyte agitation, 

or increasing the concentration of hydrofluoric acid in the polishing bath. In this regard, some 

studies have investigated the effect of altering the polishing bath composition to extend its service 

life. For instance, Éozénou et al. 76 observed that raising the concentration of hydrofluoric acid in 

the polishing bath, improved the niobium removal rate even with a lower polishing voltage. It was 

concluded that electropolishing in a hydrofluoric acid-concentrated bath yielded a higher polishing 

current without the need for supplying more electrical power or overheating of the solution. In 

addition, the lifetime of the polishing bath was found to significantly increase upon increasing the 

hydrofluoric acid concentration. Nevertheless, an upper limit had to be determined for hydrofluoric 

acid concentration in the polishing bath, because previous experiments showed that a too high 

hydrofluoric acid content led to the loss of the diffusion plateau and nonuniform etching inside the 

cavities. Also, at higher hydrofluoric acid concentration, an efficient cooling system had to be 

provided to control the temperature 81. Finally, despite all advantages, working with a hydrofluoric 

acid-concentrated bath was not favorable due to the safety concerns 83.  

 

2.2.5 Effect of aged solution disposal on environment 

 

Heavily-used electrolytes are known to contain very high concentrations of heavy metal ions, 

mainly iron, chromium, and nickel ions, that are eventually introduced to the natural environment 

through wastewater 32,72,85. Heavy metals exhibit high mobility, relatively high chemical stability, 

and carcinogenicity in natural ecosystems 86.  

In surface treatment facilities, the parts are transferred to a rinse tank after the electropolishing 

process to remove the anodic film formed on their surface with deionized water. The parts are then 

thoroughly rinsed with fresh deionized water to remove any remaining trace of the anodic film. 

During this rinsing step, significant amounts of wastewater are generated that must be properly 
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treated before disposal 28. The non-biodegradable and toxic heavy metals present in the aged 

electrolytes and electropolishing wastewater can accumulate in living organisms, causing many 

diseases and disorders 85,86. 

The situation worsens as the polishing bath ages. A higher concentration of contaminants in a 

polishing bath increases its specific gravity, allowing more concentrated solutions to come out 

from the surface and enter the wastewater 72. In addition, the high viscosity of the polishing 

electrolytes results in more corrosive wastewater, which can cause problems its neutralization 

process 32.  

The disposal of huge quantities of aged polishing baths and contaminated wastewater from 

electropolishing facilities is very challenging due to the high concentrations of heavy metals. 

 

2.2.6 Evaluation of existing research on electropolishing in aged electrolyte 

 

As it was previously discussed, some industrial reports have emphasized the importance of process 

monitoring for maintaining the desired surface quality of electropolished parts 28,70. These 

technical papers describe the important electrolyte-related process parameters for monitoring; 

however, they are rather brief and do not generally give the readership a clear understanding of the 

issue. Thanks to the insights of skilled operators with decades of hands-on experience, throughout 

the years, electropolishing companies have established specialized knowledge and proprietary 

techniques that give them a competitive advantage in the market. Therefore, companies consider 

such information valuable trade secrets and do not share them with the public to avoid 

compromising their competitive edge. 

An investigation of the academic papers published in this field indicates that very little knowledge 

is available regarding electropolishing in aged electrolytes and its effect on the final surface quality 

of the parts. The research conducted so far is limited both in the range of the investigated process 

parameters and target surface characteristics. This section will discuss some of the major 

shortcomings of the existing literature: 

 

Lack of a clear definition of an aged electrolyte 

It is commonly said that the solution is aged once the polishing results deviate from the target 

specifications. However, an in-depth understanding of the variations in different properties of the 

polishing electrolyte upon prolonged exploitation is missing. The few papers that have discussed 

electrolyte aging have almost unanimously described aging by the dissolved metal content of the 

solution, and very seldom have they studied the change over time in other bath properties such as 

specific gravity, electric conductivity, and viscosity. Without a clear understanding of the 

mechanism of electrolyte deterioration, one cannot modify the process parameters to maintain the 

quality level of electropolished parts. 
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Necessity of more efficient electrolyte analysis methods 

Almost all the research conducted so far on electropolishing with aged solutions has used methods 

such as Inductively Coupled Plasma (ICP) testing or Ionic chromatography (IC) for determining 

the metal and ion content of the electrolyte, respectively. These methods are usually costly and 

time-consuming. Since only some facilities have the required equipment for these tests, sample 

solutions must be sent to outside laboratories for analysis, which could take up to several days. 

Given that the mass personalization approach requires real-time adjustments of process parameters 

based on visual and experimental feedback, simpler and faster methods are required for 

investigating electrolyte deterioration. In addition to their significant influence on final 

electropolishing results, electrolyte properties such as specific gravity, electric conductivity, and 

viscosity can be easily and rapidly measured on-site without the need for sophisticated equipment 

or advanced interpretation skills 74. 

 

 

Limited range of bath states and polishing results 

Most of the conducted studies have focused on either handling the detrimental effects of electrolyte 

aging on the surface finish or achieving minimum surface roughness or maximum surface 

brightness in an aging bath. For instance, the body of the works by Éozénou et al. 76,81–84,87 on 

electropolishing niobium cavities in aged solutions, while quite enlightening, is focused on 

reducing the generation of sulfur particles on the surface of the cavities upon aging of the 

electrolyte. These studies provide a basic understanding of the effect of solution aging on mass 

transport phenomena in the solution and, consequently, deterioration of surface gloss. However, 

they are mostly focused on finding the optimal electrolyte composition with a higher lifetime and 

less chance of impurity generation. Similarly, the works of Tyagi et al. 27,77 on low-current-density 

electropolishing of niobium cavities in aged solutions only aim to alleviate high levels of sulfur 

generation on the surface. The studies by Lochyński et al. 18,32,72,88 on the electropolishing process 

in aged solutions focus on achieving the highest surface quality (highest gloss, lowest surface 

roughness) and/or lowest sample weight loss. However, as already stated, shifting the 

electropolishing operations towards mass personalization calls for accommodating various surface 

qualities (e.g., matt, semi-bright, or mirror reflection). Different applications require different 

levels of surface quality, and developing an efficient approach for obtaining a vast range of results 

in an aging electrolyte can be a huge advantage for electropolishing companies in today’s market. 

Further, the research conducted so far does not encompass a wide range of aged solution conditions 

or final surface qualities. For instance, the study by Surmann et al. 69 on the application of a fuzzy 

logic controller for automating the electropolishing process considers only four states of the 

polishing bath, namely, new, good, medium, and bad, which is estimated based on the ampere-

hours of the polishing process. It may be argued that the ampere-hours of polishing treatment may 

not always be a reliable indicator of a bath's condition as the bath is frequently replenished and 

modified during its service life. Therefore, it seems more logical to assess the state of the polishing 

bath based on its usage and modification history. The work of Lochyński et al. 32 also only deals 
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with aged baths that have a metal content of up to 6%. The study by Krishna et al. 74 investigates 

the variation in electrolyte properties upon aging, however, the range of the changes in the 

properties is quite limited compared to the actual deteriorated bath states encountered in industry. 

Even if industries can maintain acceptable polishing bath quality by different countermeasures like 

decanting, establishing a more flexible electropolishing process that can deliver acceptable results 

even at higher levels of bath contamination is strongly justified. 

 

Limited size of electropolishing database 

An experienced operator may be able to estimate the required process parameters given a certain 

bath state. However, this process can be highly subjective, time-consuming, and limited regarding 

the scope of explored process parameters. The constant variation of the polishing bath can further 

complicate this process. The aim of this study, as mentioned several times, is to automate the 

parameter optimization process in aging solutions by means of data-driven approaches. In this 

regard, detailed analysis of studies that have employed models for the prediction of final surface 

characteristics or optimal electropolishing process parameters in aged baths is of utmost 

importance. Krishna et al. 74 developed a mathematical model to predict the final surface roughness 

of electropolished samples based on the properties of the aging bath, such as specific gravity, 

viscosity, and electric conductivity. However, given the limited range of studied bath parameters, 

the lack of surface appearance (gloss) investigations, and the fixed level of electropolishing 

process parameters (5V, 10 min), this study does not yield a comprehensive analysis of the topic. 

The study by Lochyński et al. 32 developed models of surface characteristics as affected by process 

parameters, based on a limited number of actual observations. The majority of data utilized in this 

study for determining the optimum process parameters required to achieve the target surface 

quality was generated by the model. A limited number of actual observations and a lack of model 

evaluation experiments undermine the validity of the results. Given the existing knowledge gap on 

optimization of electropolishing process parameters in aging electrolytes, and the importance of 

this knowledge in maintaining the consistency of the results and reducing the overall costs of 

electropolishing operations, a comprehensive study of the issue is required. This study shall be 

based on a sizeable database of experimental results, encompassing a wide range of surface 

qualities and bath states. The results of the study shall be assessed with different evaluation 

methods, and its extendibility to new operating conditions shall be studied. 

 

2.3 Quality control in electropolishing  

 

The quality and consistency of electropolishing results depend on the degree to which the 

electropolishing process is controlled 28. Given that electrolytes are known to significantly 

deteriorate with repeated application, a lack of process control may result in inconsistent and 

unpredictable qualities 28. Various methods are used in electropolishing facilities to maintain the 

effectiveness of the polishing electrolyte as it ages. The general practice involves monitoring 

certain properties of the bath, removing the sludge, and regular decanting of the electrolyte. 
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2.3.1 Removing electrolyte sludge 

 

As part of the routine preventative maintenance, it is advised that the sludge formed from metal 

precipitation during electropolishing should be removed regularly 28,31,74. Filtration methods can 

also be employed to remove suspended particles, debris, or contaminants that may have 

accumulated in the electrolyte during usage 85. The excessive metal ions dissolved in the polishing 

bath can also be precipitated out by different techniques such as lowering the temperature, 

chemical precipitation (use of precipitating agents), or electrodeposition (electrochemical 

reduction) 28,31. 

Failure to remove the sludge can have a severe impact on the polishing process. For instance, some 

metal ions tend to plate out at the cathodes, which reduces the polishing quality and dissipates 

electrical energy. Consequently, periodic cathode cleaning is required 18,31. In addition, when the 

sludge covers the cathodes, the power supply undergoes an extra workload to compensate for the 

wasted electrical energy and may ultimately burn out 31.  

 

2.3.2 Decanting the electrolyte 

 

The simplest and most common method for restoring the quality of aged polishing baths is to 

replenish the electrolyte with a fresh solution or specific bath components to restore the proper 

composition. The frequent practice followed in the industry is to use the bath up to the point where 

the polishing quality is known to be impaired. At this point, 10 – 20% of the solution is removed 

and replaced with fresh electrolytes to maintain the optimum chemical balance of the electrolyte 

(decanting). Except for electrolytes with a high sludge volume, it is typically not necessary to 

replace 100% of the used electrolyte because it is known from experience that polishing baths 

perform better with some metal already dissolved into the solution 28–31. 

 

 

2.3.3 Monitoring bath properties 

 

Good electropolishing is proven to depend on maintaining the concentration of total acid and 

dissolved metal in the polishing bath, as well as the bath’s specific gravity, viscosity, and 

temperature 28,31,69,70. Regular evaluation of the bath state can determine the time of decanting. 

Additionally, after bath adjustment, continuing the assessments for a while can help to establish the 

appropriate schedule for electrolyte decanting and other restorative activities (such as acid 

addition) based on polishing ampere-hours 70.  
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Some typical bath control measurements include: 

 

Viscosity 

The polishing bath viscosity is considered an important factor in controlling the 

electropolishing process. The viscosity depends on dissolved metal content, ratio of bath 

constituents, and temperature of the polishing bath 28,31. It is important to maintain the 

solution viscosity necessary for optimum electropolishing results by accurately regulating 

the specific gravity, metal concentration, and temperature. 

 

Specific gravity 

The specific gravity of the solution increases with the accumulation of ampere-hours, 

which is attributed to an increased concentration of dissolved metals in the solution. A 

typical method of monitoring the electrolyte quality is the routine measurement of its 

specific gravity and comparing it to the operating range recommended by the manufacturer. 

In the absence of a guideline, it is suggested to simply decant the electrolyte on a regular 

basis (monthly) 29,30. 

 

Analysis of dissolved metal concentrations 

As previously mentioned, the electrolyte's specific gravity and tendency for sludging 

increase as its dissolved metal content grows. The build-up of certain metals in the solution 

(such as iron during stainless steel electropolishing) is known to adversely affect the 

polishing results. In such cases, Atomic Absorption Spectrometry (AAS) is recommended 

for determining the concentration of elements such as iron, copper, nickel, and chromium 

in the solution 30. 

 

 

Titration of acids 

In an aging polishing solution, the acid concentration drops as the concentration of the 

dissolved metals in the solution increases, which might lead to an unfavorable polishing 

quality 38,70. Acid titration can be used to monitor the concentration of various acids in the 

polishing solution. For instance, the electropolishing solution for stainless steel typically 

contains at least two inorganic acids, namely, sulfuric acid and phosphoric acid. The 

concentration ratio of the acids can be analyzed by titration with different pH endpoints to 

ensure it remains within the desired range for optimal performance 30. 
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Electrical conductivity  

Electrical conductivity measurement is another useful parameter for assessing the quality 

of the electrolyte. The conductivity of the bath can vary with changes in the concentration 

of ions, dissolved solution byproducts, or contaminants. Monitoring conductivity can help 

detect changes in the bath's composition and guide corrective actions 74. 

 

2.3.4 Quality control challenges 

 

For practical applications, it is important to characterize the electropolishing bath state using 

quantities that can be measured on-site, such as viscosity, specific gravity, and electrical 

conductivity 74. In an electropolishing facility it is usually the operator’s responsibility to record 

the variations in the electrolyte quality and estimate the state of the bath for each electropolishing 

treatment 69. Determination of the proper polishing parameters based on the bath condition relies 

to a great extent on the "art of electropolishing”, i.e., the ability of the operator 28. Maintaining the 

consistency of polishing results in an ever-changing bath can become a great challenge, even for 

a skilled operator. Particularly, if different users operate the same polishing bath, there is high 

uncertainty about the electrolyte quality 69.  

Aside from requiring a great level of knowledge and experience of the process, sustaining an 

acceptable quality of the polishing bath is quite costly. Given the relatively high cost of polishing 

electrolytes and the considerable amount to which they are consumed in electropolishing facilities 

(for instance, the capacity of the electrolyte reservoir tank at the KEK facility in Japan is 2,000L), 

changing the polishing solution frequently reveals very expensive 20,27. Another significant cost 

for quality control of electropolishing services is the cost of disposing of the used electrolytes 27,28. 

Since aged electrolytes have high metal content, they are considered hazardous waste and cannot 

be simply neutralized and flushed 32. The same applies to the sludges formed during the 

electropolishing and rinsing waters used for removing electrolyte residues from the polished parts. 

Therefore, their disposal is usually handled by certified waste hauling services to ensure 

compliance with environmental regulations 29. Some electropolishing facilities conduct a standard 

in-house waste treatment process consisting of pH adjustment, removal of metals from the 

solution, sludge filtration, drying, bagging, and shipping by a certified waste hauler 89. Either way, 

waste disposal and replenishment of the electropolishing tanks with fresh acid are costly and 

impose environmental issues. 

 

2.3.5 Quality control using data-driven approaches 

 

The main goal of all the discussed efforts is to maintain the consistency of the surface qualities 

despite electropolishing in an aging solution. This would be a great improvement, especially for 

an electropolishing facility looking to establish the mass production paradigm. As previously 

stated, effective process control is essential for maintaining product consistency and quality. In 
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addition, trained and skilled operators are required to optimize the process to achieve efficient and 

cost-effective mass production. In theory, if all of the requirements are met, and the process 

parameters can be adjusted to obtain consistent results, the electropolishing process gets one step 

closer to implementing the mass production strategy. The transition to mass production might be 

complicated, nevertheless, by some circumstances. For instance, determining the correct process 

parameters to reproduce a surface finish obtained in a previous order in a bath that has perhaps 

changed significantly since then. Another instance would be finding the basic polishing parameters 

to accommodate a new surface finish that has not been produced before. Relying on the previous 

experience of the operator is the only imaginable way to address such situations. Indeed, most 

electropolishing facilities still rely on skilled operators’ judgment for critical decision-making 

about the polishing process.  

The transition from mass production to a mass personalization approach requires developing a 

range of product customization options. For instance, in the case of the electropolishing process, 

the customers may be provided with a menu of surface roughness, surface brightness, or acceptable 

workpiece weight loss options to choose from. In addition, considering the importance of learning 

from the operator’s experience for successful quality control, utilization of tools that enable data-

driven decision-making is crucial for electropolishing treatments.  

An essential aspect of the mass personalization approach is data collection, storage, and analysis, 

which would enable manufacturing new concepts based on previous knowledge and experiments. 

Proper management and exploitation of this huge amount of data is outside the capabilities of 

human operators. This is why embracing digital technologies is an essential requirement for mass 

personalization of products. Digital technologies provide tools and capabilities for collecting and 

analyzing vast amounts of data to facilitate product customization. Another great advantage of 

digital technologies is the possibility of data-driven decision-making for optimizing the process 

and improving its efficiency and cost-effectiveness. Using smart tools such as machine learning 

algorithms can greatly aid electropolishing facilities in processing significant amounts of data from 

long-term monitoring of polishing bath properties, electropolishing procedures, final surface 

characteristics, and specific process observations. With the insight from previous data, machine 

learning algorithms can predict the “optimum” process parameters required to obtain various 

surface qualities. 

A study of the literature indicates that in some electrochemical processes, researchers have tried to 

employ data-driven approaches, especially machine learning to benefit from experience. For 

example, by combining grey relational analysis (GRA) with an artificial neural network (ANN) 

model, Asokan et al. 90 found the optimal level of electrochemical machining (ECM) process 

parameters such as current, voltage, and flow to achieve favorable cutting performance in terms of 

metal removal rate and subsequent surface roughness of the workpiece. Li et al. 91 used a 

backpropagation (BP) neural network model to find the optimum machining parameter 

combinations that can fully meet the manufacturing specifications for aero-engine blades while 

assuring ECM process stability. BP neural networks were also utilized in the electroforming 

process to optimize the microhardness and tensile strength of the electroformed copper layer 92, as 

well as the physical quality of electroformed metal shells 93. Goulart et al. 94 were able to 
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autonomously manage the pH of a mathematically simulated electroplating bath using a machine 

learning model that maintained the pH value at a predetermined set point by adjusting the 

neutralizer input flow rate. In other works, to ensure a steady plating process Ellis et al. 95 and 

Yoon et al. 96 employed artificial neural network algorithms to determine the concentration of 

various additives in copper deposition electrolytes. 

Given their significant potential for mass personalization, one may argue that surprisingly little 

work has been done on applying data-driven approaches to enhance electropolishing procedures. 

In fact, to the best of the author's knowledge, no other research has tried to paint a comprehensive 

picture to demonstrate the effect of variations in bath properties and polishing parameters on the 

final surface characteristics of polished parts. 
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3. Methodology 
 

3.1. Introduction 

 

The goal of this study is to develop a prediction tool based on a machine learning model to predict 

the electropolishing process parameters required for obtaining a target surface finish at a given 

polishing bath condition. The first step in constructing the prediction tool is building a sufficiently 

large dataset that encompasses diverse electropolishing outcomes achieved under varying process 

parameters and bath conditions. Once a sizable dataset is assembled, a series of data analysis 

procedures is undertaken to formulate the predictive tool. Ultimately, the tool's performance is 

assessed in terms of its predictive value and its expandability to scenarios beyond the dataset's 

original scope. 

 

3.2. Experimental set-up and procedure 

 

3.2.1. Workpiece and bath preparation 

 

Various electrolytes have been proposed over the years for the electropolishing of different metals. 

Given that examining every combination of metals and polishing solutions requires a significant 

amount of time, the scope of this project was limited to a common metal and electrolyte in the 

hopes that the results would be more useful for future applications. Thus, the project's focus is on 

the aging of the phosphoric acid-sulfuric acid-DI water bath commonly used for electropolishing 

stainless steel parts. 

Stainless steel 316 bars of size 70mm × 20mm ×1mm from McMaster-Carr were cut and prepared 

for the electropolishing experiment with the following procedure: 

• Degreasing with soap water for 15 minutes in an ultrasonic bath (Branson Model 1510 

ultrasonic cleaner). 

• Rinsing with DI water to remove the soap. 

• Degreasing with acetone for another 15 minutes using ultrasonic vibrations. 

• Cleaning with DI water for 5 minutes in the ultrasonic bath. 

• Drying with airflow. 

• Coating with varnish on one side to limit the exposed area to a 2cm×2cm square. 

• Insulating the remaining area of the sample with Teflon tape.  

 

After the polishing tests, the workpieces were thoroughly rinsed with cold water to remove all acid 

residues. The samples were then air-dried and characterized. 
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During the accelerated aging tests, which will be discussed later in this chapter, stainless steel 316 

bars from McMaster-Carr were cut in 75 mm x 75 mm x 6 mm dimensions and used as the working 

electrode. 

The initial polishing bath was prepared with a mixture of 35% v/v sulfuric acid, 50% v/v 

phosphoric acid, and 15% v/v DI water. The concentrations of the sulfuric-phosphoric acid used 

for the electrolyte preparation were 96.8% and 85%, respectively. The composition of this bath 

was close to the commercial EPS 4000 solution used in industry for electropolishing of stainless 

steel. 

 

3.2.2. Electropolishing  

 

Electrochemical polishing and accelerated bath aging tests were conducted in a typical 

electrochemical three-electrode cell with a B&K Precision Model-9117, multi-range 

programmable DC power supply. The stainless steel bars were used as the working electrodes. A 

copper sheet was rolled and placed in the cell as the counter-electrode. The shape and positioning 

of the counter-electrode provided even current densities to the working electrode. All potentials 

were measured versus a double junction mercury sulfate (MSE) electrode saturated in K2SO4 

solution. An ABS (Acrylonitrile Butadiene Styrene) electrode holder was designed and fabricated 

through fused deposition modeling (FDM) in an Ultimaker 2+ printer. The holder was then used 

to position the workpiece at the center of the cell and 1 cm from the tip of the reference electrode.  

Electropolishing treatments were conducted at 40° C under different applied potentials (3, 4, 5, 6, 

and 7V) for different durations (300, 600, 900, and 1200 s). During the electropolishing tests the 

fluctuations of the polishing bath temperature were recorded using a digital temperature sensor.  

- Accelerated Ageing Test: In order to obtain polishing baths with various usage histories, 

solutions were subjected to accelerated aging tests where stainless steel 316 bars (75 mm x 75 

mm x 6 mm) were electropolished at constant currents for various durations until the desired 

level of aging was obtained. After each accelerated aging cycle, the bath could cool down to 

room temperature and then the parameters of bath quality were measured to ensure a significant 

change in the solution electrical conductivity or viscosity had happened (a jump of at least 10 

mS/cm in the solution’s conductivity or a change of about 60 mPa.s in viscosity). 
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Figure 3.1. A typical electropolishing cell utilized in this study. 

 

3.2.3. Bath characterization 

 

Based on their proven relevance and their measurement simplicity, the specific gravity, viscosity, 

and electrical conductivity of the electrolyte were chosen to evaluate the state of the polishing bath.  

Before each polishing process, the specific gravity, electrical conductivity, and viscosity of 

different polishing baths were measured at room temperature using the METTLER TOLEDO™ 

handheld density meter, Thermo Scientific Orion benchtop conductivity meter, and SNB-2 

rotational viscometer, respectively. 

The dissolved metal content of the polishing baths was measured by Inductively Coupled Plasma-

Mass Spectroscopy (Agilent-7500ce ICP-MS). Samples of different polishing baths were diluted 

20 times with DI water and subsequently filtered with PTFE 0.22-u filters before submission for 

ICP-MS analysis. 

The sulfuric acid-phosphoric acid ratio of the polishing baths was measured by acid-base titration 

end point detection method using methyl orange and phenolphthalein indicators, respectively. 
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3.2.4. Sample characterization 

 

Weight measurement  

Before and after each electropolishing experiment, the samples were cleaned according to the steps 

mentioned in 3.2.1 and weighed using a OHAUS PIONEER® precision balance. 

 

Surface roughness tests 

The surface roughness of the samples was measured before and after each experiment using a 

Mitutoyo Surftest SJ-210 Series-178, contact-type portable profilometer. The surface roughness 

measurements were repeated at least on 10 random points of the exposed area. The cut-off length 

was carefully selected (in function of the measured roughness) for each measurement to ensure 

correct results. 

For each surface roughness measurement three parameters, namely, Ra, Rq, and Rz were 

measured. The user’s manual of the surface roughness tester defines these parameters as follows 
97: 

• Ra (Arithmetic Average Roughness) is the arithmetic average of the absolute values of 

the deviations of profile heights from the mean line within the measurement length. 

• Rq (Root Mean Square Roughness) is the square root of the arithmetic mean of the 

squares of profile height deviations over the measuring length. 

• Rz (Maximum Height Roughness), is the maximum peak-to-valley height within a 

sampling length on the surface profile. 

 

 

 

Surface gloss tests 

A Miza Trigloss Meter was used to evaluate the gloss value of the exposed surface of the bars 

before and after electropolishing. This device determines the surface gloss by projecting a beam 

of light at a fixed intensity and angle onto the surface and measuring the amount of reflected light 

at an equal but opposite angle. It is known that on a smooth surface, the projected beam of light is 

reflected opposite to the angle at which it arrives, which is referred to as ‘specular’ reflection. On 

a rough surface, however, light is reflected at all angles (scattered), and a relatively small amount 

of light reflects at the specular angle (Figure 3.2).  

 



35 
 

 

Figure 3.2. Specular and diffuse reflection. 

 

All specular gloss values are based on a primary reference standard, which is a highly polished 

black glass with an assigned specular gloss value of 100. The ratio of reflected to incident light for 

the specimen, compared to the ratio for the gloss standard, is recorded as gloss units (GU). 

The Miza Trigloss Meter device used in this study enables gloss finish measurements at angles of 

20°, 60°, and 85° (Figure 3.3). It is generally recommended by gloss meter manufacturers that the 

20° angle gloss should be used for evaluating high gloss finishes, whereas the 60° and 85° angle 

glosses should be used for assessing medium and low gloss surfaces, respectively.  

As a rule of thumb, the incident angle used to describe the brightness of a surface is determined 

from the gloss measurement at the 60° angle. If the measured surface gloss is less than 70, the 

surface is considered low gloss and should be investigated with an 85° incident angle. However, 

if the measured surface gloss is larger than 70, the surface is high gloss and must be studied using 

the 20° angle gloss. 

Considering the relatively bright surface of the as-received samples, only the 20° and 60° angle 

glosses were measured in this study.  Similar to surface roughness readings, gloss measurements 

were repeated on at least 10 random points of the exposed surface. 

 

 

Figure 3.3. Surface gloss measurement angles. 
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The measurement errors for surface roughness parameters Ra, Rq, and Rz are estimated to be about 

0.01, 0.01, and 0.06 µm, respectively. Additionally, the errors in surface gloss measurements are 

16 GU for the H20 index and 5 GU for the H60 index (for justifications and details see 5). 

 

Surface morphology investigations 

The surface morphology of the electropolished samples was characterized using a Hitachi 

S3400N scanning electron microscope (SEM). 

 

3.3. Model development 

 

Figure 3.4 provides an overview of the steps taken to develop a machine learning model. This 

section discusses some of the tools and libraries used in this study for conducting data analysis and 

developing machine learning models to represent and analyze the dataset. 

First, a dataset is built with raw process data coming from experimental results and sensors that 

record various process parameters. In the case of this study, the building blocks of the dataset are 

the results of electropolishing experiments under different polishing conditions at various bath 

states, as well as the variations of the polishing bath temperature and polishing current during the 

experiments.  

Subsequently, the analysis of this dataset is conducted within the framework of Jupyter 

Notebook—an open-source, interactive web application widely used in data science for data 

exploration, visualization, and documentation. In the data ingestion step, the Pandas library 98 is 

used to import the raw data to the Jupyter Notebook in the form of DataFrames and Series. These 

data structures enable efficient data exploration, cleaning, pre-processing, and transformation. 

After transforming the dataset into a usable format, its most informative features are identified 

using different feature selection methods, as well as the existing knowledge of the process (details 

provided in section 5.6.2). In the next step, various regression algorithms are implemented using 

the Scikit-Learn machine learning library 99, and their performance in representing the dataset is 

compared. Finally, the prediction value of the tool is investigated through a series of experiments 

in new polishing baths with different preparation and usage histories than those studied in the 

dataset. During the process, other open-source Python libraries such as Matplotlib 100 and NumPy 
101 are also used for data visualization and execution of mathematical and statistical operations on 

the dataset, respectively. The details of the machine learning model development will be 

thoroughly discussed in 5. 



37 
 

 

Figure 3.4. Model development steps. 
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4. Polishing Bath History 
 

4.1. Introduction 

 

As stated in the literature review section, despite the substantial contribution of electrolyte "aging" 

to the outcomes and cost of the electropolishing process, there is insufficient information available 

on the subject in the open literature. The electropolishing industry has devised in-house 

countermeasures to avoid the consequences of bath aging. However, they are not publicly available 

and are considered knowledge to be protected due to the risk of losing their competitive advantage.  

Among the open questions regarding the effect of bath degradation on the surface quality of the 

electropolished parts, three are of particular interest to our work. Firstly, there is the issue of 

defining the state of bath aging. As will be discussed later, the “age” of a polishing bath is not 

properly the most suitable term to employ for discussing the variation of a bath upon extensive 

usage. Instead, the “state” of the bath is a more appropriate notion for reflecting the complicated 

process history it experiences. Consequently, our second question revolves around the assessment 

of bath state. To be more specific, we aim to determine which physicochemical properties of the 

bath are relevant, and whether it is possible to characterize the state of the bath using only the 

properties that are readily available for in-line, real-time measurements. The third question we aim 

to explore involves the possibility of using such physicochemical properties to make necessary 

adjustments to the polishing process parameters, such as voltage and time, in order to maintain 

consistent surface properties (i.e., roughness and appearance) of the workpiece. 

To investigate the impact of electrolyte degradation on the electropolishing process, this chapter 

explores three different polishing bath states: one being relatively new, and the other two having 

undergone extensive use, but with different process history. Subsequently, an assessment of the 

resultant surface quality of the samples polished in these baths is carried out, utilizing 

measurements of surface roughness and brightness, as well as conducting morphological studies 

using SEM imaging. Finally, potential interpretations and insights are presented to elucidate the 

influence of the electrolyte's usage history on the ultimate quality of the components. 

 

4.2. Bath analysis 

 

Identifying the state of the polishing bath prior to the electropolishing process is a crucial step in 

building the dataset which will subsequently be utilized to predict the adequate polishing 

parameters. It must be mentioned, however, that from the author's view, terms like "electrolyte 

aging" or "aged bath" lack clear and well-defined definitions. When working with polishing 

electrolytes, it is essential to consider that characterizing a bath based on the number of polished 

parts or the accumulated ampere-hours of polishing treatment does not necessarily yield a 

meaningful or accurate understanding of its condition. This is particularly true in industrial 

electropolishing facilities where the electrolyte is often used continuously with regular additions 
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or adjustments to maintain the desired composition and performance. It can be, thus, difficult to 

accurately estimate the state of the electrolyte, given its continuous usage and replenishment. 

However, given the fact that a bath’s usage history and replenishment frequency can significantly 

affect the electropolishing results, this study aims to study the effect of bath “state” rather than its 

age.  The polishing bath may be characterized meaningfully by physicochemical properties such 

as its specific gravity, electric conductivity, and viscosity that can be simply and rapidly measured 

on-line in industrial facilities without sophisticated equipment or extensively trained operators. 

These electrolyte properties were, therefore, used in this study to demonstrate the state of the 

polishing baths. In addition, to give a thorough understanding of the various states of the polishing 

bath, a more time-consuming analysis, to be conducted off-line, of electrolyte composition and 

metallic ion content is presented in this chapter.   

Three solutions were taken from baths with different usage histories, solution 1 being closest to a 

fresh bath, and solutions 2 and 3 selected from two artificially aged baths. The physicochemical 

properties to be investigated were selected based on the literature review of 2. In addition to 

specific gravity, electric conductivity, and viscosity, the bath composition (volume percent of 

sulfuric acid and phosphoric acid) was evaluated using multiple-point titration, and ICP-MS 

(Inductively Coupled Plasma Mass Spectrometry) analysis was used to determine the 

concentration of dissolved metals in the baths. Table 4-1 and Table 4-2 present the results of bath 

characterization for these three bath states. 

Table 4-1. Measured properties for different bath states. 

Solution 
Electric Conductivity  Viscosity Specific Gravity  Composition 

%(v/v) Error: ±0.4 mS/cm Error: ±0.1 mPa.s Error: ±0.001 g/L 

1 144.5 23.4 1.673 
H2SO4: 31 

H3PO4: 45 

2 38.1 224.5 1.855 
H2SO4: 27 

H3PO4: 52 

3 28.6 339.5 1.887 
H2SO4: 34 

H3PO4: 68 

 

Table 4-2. Concentration of dissolved metals measured by ICP-MS analysis. 

 Concentration (g/L) 

Mo Sample Cr Mn Fe Ni 

Fresh Solution 1.19 0.21 6.95 2.45 1.34 E-04 

1 7.91 0.43 25.82 1.99 0.95 

2 23.04 1.48 85.7 6.29 2.67 

3 25.56 1.50 90.36 4.85 2.84 

 



40 
 

According to Table 4-1, the specific gravity of solutions 2 and 3 is higher than that of the close-to-

fresh bath (solution 1) which is evidently due to the higher concentration of dissolved metals from 

electropolishing reactions. It can also be noted that the electric conductivity and viscosity of baths 

2 and 3 are significantly different from those of bath 1. This difference can be explained by the 

fact that the increased polishing bath viscosity caused by extensive metal dissolution decreases the 

mobility of charge-carrying species, thereby reducing the electric conductivity of the solution. In 

addition to the observed changes in the physical properties of the polishing baths, variation of the 

electrolyte composition upon usage is also known to affect the outcome of the electropolishing 

treatment.  As can be seen in Table 4-2, the concentration of dissolved metals in solutions 2 and 3 

is considerably higher than that of the close-to-fresh solution. The higher concentration of 

dissolved metals in solution 3 may suggest that this bath was operated for a longer time. It can also 

very well mean that solution 2 was operated longer but replenished more often. This indicates that 

different usage histories can result in different levels of contamination in the solutions and 

highlights once more the importance to consider the state of the bath, rather than its “age” or usage 

history.  

In industrial settings, access to the ICP-MS results is challenging for at least two reasons. Firstly, 

it is a costly process and secondly, and most importantly, since ICP-MS is not accessible within 

the production facility, it necessitates outsourcing, making it impossible to obtain real-time data 

on the production line. An important question we attempt to answer within our work is, to know if 

the state of the bath can be characterized accurately enough using readily available in-line 

measurements, such as the ones presented in Table 4-1. 

 

4.3. Sample analysis 

4.3.1. Surface roughness and brightness characterization  

 

To demonstrate the effect of bath state, resulting from a certain usage history, on the surface quality 

of the electropolished parts, three samples were polished with similar process parameters 

(polishing voltage: 5 V, polishing duration: 300 s) in electrolytes 1, 2, and 3. Electropolished 

samples were then characterized with regard to their surface roughness, surface brightness, and 

weight loss. In addition, SEM images were taken to study the effect of the bath state on the surface 

microstructure of the samples. Figure 4.1 demonstrates the visual difference between the 

electropolished samples and an untreated sample. It is evident that the sample treated in the near-

fresh solution 1 (Figure 4.1(b)) has a bright and mirror-like surface, whereas the surface of the 

other two samples does not differ considerably from that of the untreated sample. Table 4-3 

indicates the results of surface characterization for these samples.  
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Figure 4.1. (a) Untreated sample and samples electropolished under 5 V, 300 s in (b) solution 3, (c) 

solution 2, and (d) solution 1. 

 

Table 4-3. Surface characterization and weight loss measurements for three samples electropolished under 

the same process parameters (5 V, 300 s) in solutions 1, 2, and 3. 

Electrolyte  

Surface Roughness 

(µm) 

Surface Brightness  

(GU) 

Weight Loss 

(g) 

before after before after  

1 

Ra 0.1 0.05 

20: 138 

60: 137 

20: 925 

60: 603 
0.1515 Rq 0.15 0.06 

Rz 1.09 0.28 

2 

Ra 0.08 0.11 

20: 164 

60: 225 

20: 114 

    60: 261 
0.0075 Rq 0.1 0.14 

Rz 0.55 0.83 

3 

Ra 0.08 0.13 
20: 145 

60: 175 

20: 49 

60: 127 
0.005 Rq 0.1 0.17 

Rz 0.55 1.1 

 

According to Table 4-3, compared to the results obtained by baths 2 and 3, electropolishing in the 

close-to-fresh solution results in a significant reduction of surface roughness and an increase in 

surface brightness. These results were expected given that the performance of the electropolishing 

bath generally deteriorates upon usage. Solution 2 does not deliver significant changes in surface 

roughness or brightness, indicating inadequate polishing action. Solution 3, on the other hand, 

demonstrates a considerable increase in surface roughness and reduction of surface brightness 

which indicates that this solution has the weakest polishing performance among the three baths. 

This conclusion is also supported by the results of the weight loss measurements which show that 

an effective polishing action in the near-fresh bath causes a considerable decrease in the weight of 
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the sample, whereas in bath 2 and 3 significantly less weight loss occurs due to insufficient metal 

dissolution. 

4.3.2. Scanning Electron Microscopy 

 

SEM images of the samples were captured to investigate the effect of electrolyte degradation on 

the microstructure of the electropolished surfaces (Figure 4.2). The SEM micrographs of the 

samples clearly show the substantial impact of bath properties on the surface topography of the 

polished parts. The SEM image of the untreated part in Figure 4.2 (a) shows a rough surface with 

deep cracks and scratches. It is clear from the images that the surface polished in the freshest 

solution (bath 1) is homogeneous and smooth with visible bulk structure, that is, distinct grain 

boundaries displaying different crystallographic orientations 54,102. The surface of the part treated 

with bath 2 is relatively smooth with slightly visible grains, although there is a noticeable amount 

of surface waviness. Bath 3 delivers the poorest results in terms of surface morphology. As can be 

seen in Figure 4.2 (d), the surface of the electropolished part appears rough, uneven, and quite 

similar to the untreated part, which can be suggestive of insufficient polishing. 

 

 

Figure 4.2. SEM images of a) untreated sample and samples electropolished in (b) solution 1, (c) solution 

2, and (d) solution 3 under similar polishing parameters (5 V, 300 s). 
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4.4. Analysis of the results 

 

The observed difference in the polishing results can be attributed to several factors including: 

 

a) The increased ohmic drop across the polishing bath 

The ohmic drop within an electrochemical cell refers to the resistance encountered by the current 

as it passes the cell's medium, and it depends on the conductivity of the electrolyte and the 

geometry of the cell. The ohmic drop’s contribution to the potential of the electrochemical cell is 

given by 103: 

 

𝑈 = 𝑈0 + ∑|𝜂| +  𝑅0𝐼  (4.1) 

                                          

where 𝑈 is the terminal voltage of the electrochemical cell, 𝑈0 is the cell potential at equilibrium 

(where no current flows) given by the sum of equilibrium potentials at anode and cathode, ∑|𝜂| is 

the sum of all electrode overpotentials, and the term 𝑅0𝐼 is the ohmic drop. 

 

Figure 1.6. Schematic potential distribution in an electrochemical cell. 

 

An external power supply provides the driving force for the electropolishing process. The applied 

voltage must supply the overpotential needed to drive and sustain the electrochemical reactions 

that occur during electropolishing. According to equation 4.1, the applied potential must also 

overcome the voltage drop caused by the internal resistance of the cell, which includes electrolyte 

resistance, electrode resistance, and any additional resistance in the circuit. In an electrolyte with 

low electric conductivity, the higher voltage drop across the cell reduces the potential available to 

the electrodes and, therefore, the effective current density, resulting in slower material removal 

rates and less efficient electropolishing. 
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It is known that the electrolyte usage history can have a significant effect on its electrical resistance. 

Over time, impurities can build up in the polishing bath from different sources, including dissolved 

metals from the workpiece, reaction by-products, or environmental contaminants. In addition, 

gradual degradation of the electrolyte due to chemical reactions, exposure to air and moisture, or 

thermal effects can alter its composition and, ultimately, electric conductivity. For instance, 

electrolyte evaporation upon prolonged usage can result in more concentrated and aggressive baths 

that, in turn, can lead to higher concentrations of dissolved metals. All of these factors can increase 

the electrolyte's electrical resistance, leading to a higher ohmic drop (IR drop) during the polishing 

process. 

In addition to a slower material removal rate, a higher IR drop can cause non-uniform current 

distribution across the workpiece surface, leading to uneven material removal and poor overall 

polishing quality. Further, when the IR drop increases, more electrical energy is converted into 

heat rather than electrochemical reactions. Excessive electrolyte heating can further alter its 

composition and potentially damage the workpiece surface. 

According to Table 4-1, the electric conductivity of the close-to-fresh solution is 144.5±0.4 mS/cm 

which is significantly higher than those of more-used solutions (38.1±0.4 mS/cm for solution 2 

and 28.6±0.4 mS/cm for solution 3). The electrical resistance of the solutions can be estimated 

from these data using the following formula: 

𝑅 = 𝜌
𝑙

𝐴
 (4.2) 

            

where ρ is the electric resistivity of the solution in Ω ∙ m and equal to the reciprocal of electric 

conductivity, l is the distance between the working and the reference electrodes (1 cm), and A is 

the area of the exposed surface (4 cm2). Given the measured values for electric conductivity of the 

solutions, their electric resistances are roughly estimated as 1.7 Ω, 6.6 Ω, and 8.7 Ω for solutions 

1, 2, and 3, respectively. For a current of 0.5 A (which is a typical value of the current observed 

during electropolishing at 5 V), a voltage drop of 0.9 V, 3.3 V, and 4.3 V can be expected in 

solutions 1, 2, and 3, respectively. It can be hence concluded that the three samples electropolished 

in these solutions with similar process parameters (5 V, 300 s) were in fact subjected to different 

polishing potentials.  

For samples electropolished in solutions 2 and 3, the actual available voltage was 1.7 V and 0.7 V, 

which indicates insufficient electropolishing as one of the main reasons for lower surface qualities. 

It could, therefore, be expected that if the workpiece is treated with a higher applied voltage to 

compensate for the estimated ohmic drop of the bath, more favorable results could be obtained. 

However, polishing experiments at higher polishing voltages (6 V and 7 V) indicated that this 

approach is not as straightforward as it seems.  

Figure 4.3 illustrates the effect of increasing the polishing voltage on final surface roughness of 

samples electropolished in solutions 1, 2, and 3 for the same duration (300 s). Considering the 

difference in the initial roughness of the samples (Ra before), these values are also included in the 
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plot for a more meaningful comparison of the results. As can be noted in the plot, for the given 

polishing duration (300 s), the surface roughness of the samples treated in solution 1 are decreased 

after electropolishing. However, increasing the applied polishing voltage does not yield a 

substantial improvement in the polishing outcomes. On the other hand, in the case of the samples 

treated for 300 s in solutions 2 and 3, the surface roughness is increased by the polishing process. 

It can also be noted that for this polishing duration, increasing the polishing voltage in solutions 2 

and 3 does not necessarily enhance the final surface roughness of the samples. 

 

 

Figure 4.3. The change observed in the surface roughness (Ra) of samples electropolished in solutions 1, 

2, and 3 under different polishing voltages for 300 s. 

 

It was also observed during the electropolishing experiments that increasing the polishing voltage 

up to 7 V resulted in significant bubble formation and heating of the electrolyte, especially in 

extensively-used baths. In addition, shortly after applying potentials higher than 7 V, the current 

decreased rapidly, and the polishing stopped. These observations can be explained by the 

substantial alteration in the electrochemical behavior of the part when subjected to higher polishing 

voltages, primarily due to the pronounced generation of bubbles. To better illustrate this point, the 

I-V graphs of samples electropolished at six different bath states are presented in Figure 4.4. These 

plots indicate that as the electric conductivity of the polishing bath decreases, the current-voltage 

behavior of the workpiece is further changed, and applying higher voltages results in a less 

significant increase in polishing current. This behavior is, in fact, observed generally on gas-
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evolving electrodes under high potentials. An instance of this voltage-current behavior is exhibited 

by the water electrolysis process, as shown in Figure 4.5. 

 

 

Figure 4.4. Variation of the I-V behavior of the workpiece with electric conductivity of the bath. The 

polishing current shown in the plots is the average measured current over different durations of the polishing 

experiments (300 s, 600 s, and 900 s). 
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Figure 4.5. (left) Current-voltage plot for water electrolysis process on a gas-evolving electrode, (right) 

bubble diffusion layers around a cylindrical electrode at various voltages 103. 

 

As can be seen in Figure 4.5, in the initial region of the I-V curve (AB) the current increases nearly 

linearly with the polishing voltage. At this stage, a compact bubble layer is forming over the 

electrode surface from the evolving bubbles. The current continues to increase in the next region 

(BC) until it reaches a limiting value at which the bubbles start to coalesce. From this point, the 

current-voltage relationship is no longer controlled by equation 4.1, and the electrolysis process is 

limited by the ability of the bubbles to detach from the electrode. According to Wuthrich et al. 103, 

depending on their size, the electrochemically formed bubbles may or may not be able to leave the 

electrode surface and significantly influence the interelectrode resistance. Figure 4.6 illustrates the 

percolation model of the nucleation sites that can be used to describe the bubble size distribution 

of the formed gas bubbles on the electrode. 
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Figure 4.6. Percolation model of the bubble nucleation sites on the lateral surface of an electrode 103. 

 

In this model, the lateral surface Ω of an electrode is subdivided into a lattice of size L, where each 

lattice site represents a nucleation site on the electrode surface. The bubbles on a nucleation site 

grow through coalescence with bubbles from the neighboring occupied sites and form a new larger 

bubble. If we assume that only bubbles of size smaller than Smax (a function of the electrode 

geometry, surface roughness, and wettability) can leave the electrode surface, then the evolution 

of the surface fraction covered by bubbles (𝜃) is as follows 103: 

𝑑𝜃

𝑑𝑡
=

𝛽𝑗𝑙𝑜𝑐𝑎𝑙

𝜉𝑑𝑛

(1 − 𝜃) −
1

∆𝑡𝑏
∑ 𝑠𝑛𝑠(𝜃)

𝑠𝑚𝑎𝑥

𝑠=0

 (4.3) 

 

where 𝛽 is the coefficient of faradic gas generation, 𝑗𝑙𝑜𝑐𝑎𝑙 is the local current density, 𝜉𝑑𝑛 is the 

bubble height written as the product of 𝑑𝑛 (the mean distance between two nucleation sites) and 𝜉 

(the parameter describing the degree of bubble flatness), ∆𝑡𝑏 is the bubble detachment time, and 

∑ 𝑠𝑛𝑠(𝜃)𝑠𝑚𝑎𝑥

𝑠=0  is the fraction of nucleation sites the surface covered on by the growing gas bubbles 

that are able the leave the electrode. 

The characteristic I-V curve of the gas-evolving electrode presented in Figure 4.5 can be obtained 

by solving the differential equation 4.3. In this plot, the limiting current region (BC) ends at a 

critical current 𝐼𝑐𝑟𝑖𝑡and voltage 𝑈𝑐𝑟𝑖𝑡 after which the current decreases rapidly with a further 

increase of the voltage. In the last part of the curve, the current is very small because a gas film is 

formed on the electrode, completely isolating it from the electrolyte.  

In light of the described I-V behaviour on gas-evolving electrodes, the results observed in different 

polishing bath states may also be interpreted. It has been observed that during the electropolishing 

process, the electrolyte’s resistivity controls the current-voltage relationship in the first region of 

the curve (AB). Starting from point B, however, other factors must be taken into account. It is 

known that during the electropolishing process, hydrogen evolution occurs on the cathode surface 

while oxygen is generated on the metal surface. After gas bubbles are formed, they start to grow 
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and coalesce with nearby bubbles until they finally detach from the surface and diffuse through 

the electrolyte. Increasing the polishing voltage in this region has been reported to cause substantial 

gas evolution to a point where further progress of the electropolishing process is limited by the 

size, shape, and detachment time of the bubbles generated on the surface. According to equation 

4.3, the rate of bubbles’ growth and subsequent detachment depend on several electrolyte 

properties, including viscosity and wettability 103. Given that a highly viscous electrolyte would 

resist the detachment and diffusion of the generated bubbles, the application of higher polishing 

voltages in heavily-used baths can only partly compensate for the increased ohmic drop. At this 

point, further fine-tuning of the process parameters or the operator’s know-how proves 

insignificant, and the polishing bath must be refreshed or replaced. 

Understanding the evolution process of gas bubbles on the polished workpiece can also provide 

valuable insights into the origins of common defects frequently encountered in industrial 

electropolishing processes. Figure 4.7 indicates the surface of samples treated with polishing 

voltages of 5, 6, and 7 V for the same duration (300 s) in solutions 1, 2, and 3. The surfaces of the 

samples polished in solution 1 exhibit a common defect encountered in the electropolishing 

industry called the orange peel effect (highlighted on the figure by red dashed lines). The term 

"orange peel" is used because of the micro pitting pattern on the surface that resembles the dimpled 

texture of an orange peel 104–106. In the case of samples electropolished in solutions 2 and 3, it can 

be noted that with the application of higher voltages, the brightness of the surface is only 

marginally improved, and flow marks in the form of white stripes appear on the surface 

(highlighted on the figure by green dashed lines). Also known as “gassing streaks”, these flow 

marks are another common defect observed in electropolishing 107–109.  

In the electropolishing industry, these defects are generally attributed to intensive bubble 

generation near the metal surface due to excessive applied polishing potential/current, high 

solution viscosity, and lack of proper agitation to remove the evolved oxygen gas away from the 

workpiece 29,104,110,111. However, a review of the literature indicates that the reason for the 

appearance of such defects and potential corrective actions is still subject to speculation. In 

particular, there are no objective criteria currently available that would enable predicting the 

emergence of such defects in a given bath for a specific set of polishing parameters.  

Such surface defects significantly affect the visual quality and functionality of electropolished 

parts and render them unacceptable or less appealing to customers. Considering the lack of 

adequate information on the origin of such defects, a closer examination of their evolution process 

is necessary. Figure 4.8 indicates the obtained surface finishes along with their corresponding I-V 

graphs for samples treated in solutions 1, 2, and 3 at different polishing potentials for the same 

duration (300 s). 
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Figure 4.7. The surface finishes obtained after electropolishing under increasing potentials (5, 6, and 7 V) 

for 300 s in solutions 1, 2, and 3. The orange peel effect and the gassing streaks are shown by red and green 

dashed lines, respectively. Note: the mechanical scratches (defects not highlighted with dashed lines) are 

due to the manipulation of the samples. 
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(a) 

 

(b) 
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(c)  

Figure 4.8. Surface finishes obtained at different regions of the current-voltage plot for samples 

electropolished in (a) solution 1, (b) solution 2, and (c) solution 3 (note: the mechanical scratches on the 

surface are due to manipulation and handling of the samples.) 

 

The gradual emergences of the previously mentioned defects with increasing the polishing voltage 

can be noted in Figure 4.8. As can be seen, the orange peel effect (for samples treated in solution 

1 and 2) and white stripes (for samples treated in solutions 2 and 3) started to appear when the 

polishing potential reached approximately 5 V, aligning with the BC region on the current-voltage 

plot for gas-evolving electrodes as depicted in Figure 4.5. It may be concluded that at this potential 

bubble generation reaches a level of intensity to significantly impact the surface of the stainless 

steel workpiece. It can also be noted that in a close-to-fresh solution (solution 1), a bright surface 

can be achieved at a polishing voltage of 5 V, whereas in more used solutions, higher potentials 

are required to obtain a slightly bright finish. This can be justified by the higher viscosity of the 

heavily-used baths that inhibits the diffusion of the gas bubbles towards the bulk of the solution, 

which may, in turn, lead to pronounced bubble formation, significantly affecting the workpiece 

surface 111. In addition, the increased specific gravity of heavily-exploited polishing baths can lead 

to local overheating and, as a result, to the intensification of emerging defects 112,113. 

The current-voltage graphs depicted in Figure 4.8 can serve as a valuable tool for predicting the 

likelihood and possible coordinates of surface defects emergence at different polishing bath 

conditions. For instance, for a given bath condition, test samples can undergo electropolishing at 
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various polishing voltages for a fixed duration, and the resulting polishing currents can be recorded 

to generate I-V plots that depict their current-voltage behavior. By analyzing these plots, it 

becomes feasible to pinpoint the voltages at which the previously mentioned defects are most 

likely to occur on the workpiece (voltages corresponding to the BC region of the I-V plot shown 

in Figure 4.5). This way the operator will be able to maintain the polishing consistency of the 

surfaces through modification of process parameters or implementing corrective measures, such 

as agitating the electrolyte or replenishing the polishing bath.  

 

b) Variation of the electrolyte base composition 

Another factor contributing to the different polishing behavior of the investigated solutions can be 

the variation in their compositions due to different usage histories. The results of titration 

experiments provided in Table 4-1 indicates that the volume percentages of sulfuric acid and 

phosphoric acid are different among the investigated solutions. These variations can be attributed 

to different factors, including the consumption of electrolyte components in chemical reactions, 

the accumulation of dissolved metals and reaction by-products, exposure to environmental 

contamination, splashing, and evaporation. 

Several works have explored the role of different components of the polishing solution used in this 

study on the final surface quality of electropolished samples. For instance, during the 

electropolishing of Fe-24Cr parts with a rotating disk electrode setup in a concentrated sulfuric 

acid solution (in the absence of phosphoric acid), Ponto et al. 114 observed a small limiting current 

independent of the rotation rate with no polishing effect. It was concluded that sulfuric acid forms 

a rather stable anodic film on the surface of the workpiece, inhibiting the electropolishing process. 

Datta et al. 115 also reported that metal dissolution is inhibited in concentrated sulfuric acid baths 

due to secondary passivation at high anode potentials. It was suggested that concentrated sulfuric 

acid is not favorable for stainless steel from an electropolishing point of view. On the other hand, 

Nazneen et al. 116 observed that in concentrated phosphoric acid solution (in the absence of sulfuric 

acid), the passive oxide film was not formed on the surface, leading to high anodic currents and 

damaged surfaces, whereas the addition of sulfuric acid to the electrolyte helped improve the 

surface smoothness in some parts of the sample. Similar observations are reported by Abouzeid et 

al. 117 for electropolishing aluminum parts in a phosphoric acid-sulfuric acid mixture where an 

extreme increase of acids ratio in any direction resulted in the disappearance of the limiting current 

plateau from the polarization curve. These observations suggest that the presence of both acids is 

necessary for achieving a desirable surface finish.  

Nonetheless, mixed, and sometimes even contradictory, results have been reported for the effect 

of moderate changes in the electrolyte composition on the surface finish of electropolished parts. 

For example, Ponto et al. 114 reported that at a constant water content in the polishing bath, the 

polarization behavior of Fe-24Cr parts in phosphoric acid-sulfuric acid solution is relatively 

insensitive to moderate sulfuric/phosphoric acid ratio variations. Chen et al. 118 and Huang et al. 
119 on the other hand, observed an increase in the limiting current density with increasing the 

phosphoric acid content of the electrolyte and designated H2PO4
-, PO4

3- or their complexes as the 

diffusion-limiting species. In another study, Hwang et al. 120 observed that increasing the sulfuric 
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acid concentration resulted in damaging the surface of stainless steel parts. The authors proposed 

that increasing the sulfuric acid content of the electrolyte reduces the thickness of the diffusion 

layer formed on the surface, which promotes metal dissolution and eventually results in an 

aggressive attack on the surface. 

In addition to the acids mixing ratio, the acid-water ratio of the polishing bath also plays an 

important role in the electropolishing process. In low-water-content baths, the acid concentration 

is too high, which can result in increased viscosity of the solution, excessive material removal, and 

eventually a rough surface finish. Conversely, in baths with high water concentration, the acid 

content becomes too small, leading to inadequate electrolyte viscosity, insufficient material 

removal rate, and uneven or incomplete polishing. Magaino et al. 121 reported that the brightness 

of electropolished stainless steel samples decreased with increasing water concentration and 

concluded that polishing is not attained in electrolytes with higher water contents. This indicates 

that a certain water concentration is required to achieve optimal polishing results. Not only the 

presence of water can help regulate the viscosity of the electrolyte, but it can also affect its 

conductivity by improving ion mobility and hydration. 

Analysis of the existing literature on the effect of electrolyte composition on the outcome of the 

electropolishing process also shows that the studies do not provide a well-defined range of 

electrolyte compositions that ensure consistently acceptable polishing results. This might be due 

to the fact that a universally good or bad electrolyte composition cannot be defined as the 

electropolishing results also rely heavily on the employed process parameters. However, despite 

the occasionally conflicting theories proposed for the effect of variations in the electrolyte 

composition on electropolishing results, it can be confidently stated that a balance should exist 

between different components of the bath in order to achieve a favorable polishing effect. While it 

is evident that changes in the electrolyte composition can have a substantial impact on the outcome 

of the electropolishing process, it's essential to recognize that it's not the sole determining factor 

in achieving the desired surface finish. Therefore, we hypothesize that restoring the original 

composition of a heavily-used polishing bath by introducing suitable electrolyte components 

would not be enough for improving the surface of the parts and ensuring consistent quality.  

This important statement was proved through a set of electropolishing experiments in three 

polishing baths (A, B, and C) with identical constituents (sulfuric acid, phosphoric acid, and DI 

water) but different compositions. Table 4-4 presents the surface characterization and weight loss 

results for three samples electropolished in baths A, B, and C using the same polishing parameters 

(5 V, 300 s) as the samples treated with solutions 1,2, and 3. Comparing the results of Table 4-1 

and Table 4-4 indicates that achieving a bright and smooth electropolished surface is not just a 

question of the mixing ratio of the acids. Other factors, such as the electric conductivity and 

viscosity of the bath, could be much more effective in determining the final surface finish of the 

electropolished samples. It can be noted that the viscosity and conductivity of the fresh solutions 

are generally in the same range, and they are all potentially capable of yielding smooth and bright 

surfaces. This is evident in the similarity between the results obtained in solution 1 (close-to-fresh) 

and solutions A, B, and C. The electric conductivity and viscosity of solutions 2 and 3, however, 

are far from those of the fresh solution, mostly due to the accumulation of metal dissolution 
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products that lower the polishing performance. Therefore, it can be argued that the sole action of 

resetting the electrolyte composition should not be expected to yield considerable improvement in 

the electropolishing results. 

 

 

 

Figure 4.9. Samples electropolished under 5 V, 300 s in (a) solution A, (b) solution B, and (c) solution C. 

 

Table 4-4. Electropolishing results for samples treated in polishing baths with different compositions. 

Electrolyte 
Composition 

%(v/v) 
 

Surface Roughness 

(µm) 

Surface Brightness 

(GU) 
Weight Loss 

(g) 
before after before after 

A 
H2SO4: 25 

H3PO4: 50 

Ra 0.11 0.05 
H20: 135 

H60: 135 

H20: 829 

H60: 586 
0.1043 Rq 0.14 0.06 

Rz 1.02 0.3 

B 
H2SO4: 30 

H3PO4: 50 

Ra 0.11 0.04 
H20: 164 

H60: 178 

H20: 1029 

H60: 598 
0.1823 Rq 0.14 0.05 

Rz 1.01 0.24 

C 
H2SO4: 40 

H3PO4: 50 

Ra 0.07 0.02 
H20: 138 

H60: 142 

H20: 1119 

H60: 596 
0.1894 Rq 0.1 0.02 

Rz 0.6 0.1 
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c) Increased viscosity of the solution 

The viscosity of the solutions could also contribute to their different polishing behavior. 

Considering that solutions 2 and 3 are more extensively used than the close-to-fresh solution 1, 

their significantly higher viscosity seems reasonable. The viscosity of a heavily used polishing 

bath increases due to a variety of factors, including the accumulation of dissolved metals, solution 

by-products, precipitates, and environmental contamination, as well as the evaporation of volatile 

components, particularly water, due to high temperatures and exposure to air.  

For instance, Table 4-1 indicates that the specific gravity of solutions 2 and 3 is higher than that of 

solution 1, which can be due to the increased concentration of dissolved metals upon usage. 

According to the ICP-MS results presented in Table 4-2, the concentration of heavy metals such 

as Fe, Cr, Ni, and Mn in solutions 2 and 3 are much more than those of the close-to-fresh solution 

1. Another explanation for increased bath viscosity upon usage comes from the titration results in 

Table 4-1, showing a significant loss of water content for solution 3, compared to solutions 1 and 

2. This could be attributed to the considerable heating of solution 3 during the electropolishing 

process as a result of its lower electric conductivity. Decreased water content of a polishing bath 

can increase the concentration of other components, such as acids and dissolved particles that can 

cause greater intermolecular interactions and hinder fluid flow, thereby increasing the bath 

viscosity.  

As previously discussed in Chapter 2, although viscous acidic solutions are commonly employed 

for electropolishing treatment, excessive solution viscosity can damage the final surface finish of 

the parts in multiple ways 122. A more viscous solution opposes the free flow of the charge carriers, 

thereby increasing the electrical resistance and ohmic drop in the solution. As a result, the available 

effective current density is reduced, leading to a lower material removal rate and insufficient 

polishing action 123,124. This effect was most evident in the SEM images of the sample polished in 

solution 3 (exhibiting the highest viscosity) that suffered from inadequate polishing. The lower 

polishing current and material removal rate for low-conductivity (high-viscosity) solutions were 

also evident in the current-voltage curves presented in Figure 4.4.  

Another consequence of the increased viscosity of the solution is the slower movement of bubbles 

generated during the polishing process. It has been established that excessive bubble generation 

can result in the orange peel effect or the appearance of strikes on the surface of the workpiece 
29,110,111. In fact, one of the justifications for the pulse-electropolishing process is providing 

sufficient off-time for refreshing the electrolyte in the inter-electrode gap and removing generated 

bubbles and polishing by-products away from the workpiece surface 125.  

Finally, it was also proposed that increased viscosity of the polishing bath can decrease the 

diffusion coefficient of mass-transport limiting species (equation 2.1), thereby slowing the 

electropolishing process and lowering the polishing current 126. 
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d) Increased level of contamination in the polishing bath 

The buildup of dissolved metals, precipitates, and other reaction by-products can also degrade the 

polishing bath quality and affect the surface finish of the parts in different ways. Their presence in 

the electrolyte between the inter-electrode gap can interfere with electropolishing reactions and 

result in non-uniform material removal. In addition, they can hinder the formation of a smooth and 

uniform oxide layer on the workpiece during electropolishing, resulting in an uneven or rough 

surface finish. It is also possible that dissolved metals re-deposit onto the workpiece surface, 

leading to the formation of micro-defects, such as nodules or rough patches. Different 

contaminants coming from the solution can also stick to the metal surface and result in a dull or 

tarnished finish by absorbing light. A study by Aguilar-Sierra et al. 127 indicated that the brightness 

of electropolished aluminum parts was affected by the presence of impurities on their surface. 

In addition to its direct influence on the surface appearance of the parts, solution contamination 

can also affect the electropolishing process indirectly. Lower saturation solubility of dissolved 

metals in highly contaminated electrolytes decreases the polishing current density by hindering 

further metal dissolution. Longer polishing times are, therefore, required, which, in turn, can 

exacerbate the bath contamination issue. In addition, higher concentrations of dissolved metals 

and polishing product precipitates increase the electrolyte density, viscosity, and electric 

resistance, which can have different consequences, including inadequate polishing, solution 

overheating, the appearance of pitting, and streak marks on the surface as discussed previously in 

this chapter. 

 

4.5. Concluding remarks 

 

The results of bath and sample characterizations in this chapter indicated that the samples 

electropolished in heavily-used baths suffered from insufficient or inadequate polishing action. 

Several sources were discussed for this behavior: 

• Increased IR drop: As a polishing bath undergoes prolonged use, the buildup of 

dissolution products and environmental contaminants diminishes the bath's electrical 

conductivity. Consequently, a higher voltage drop occurs across the cell, reducing the 

available potential for efficient electropolishing on the workpiece.  

• Variation of electrolyte base composition: It has been reported that extreme deviations 

from the base composition of the electrolyte (for example the absence or significant 

depletion of one of the acids) can significantly impact the polishing results. Minor 

changes in the electrolyte composition (volume percent of the acids), however, cannot 

account alone for the decline in surface quality observed in extensively-used 

electrolytes.  

• Increased viscosity: The viscosity of extensively-used electrolytes increases as a result 

of impurity accumulation and the evaporation of volatile elements. Higher bath 

viscosity can decrease the polishing rate by impeding the movement of charge carriers, 

consequently reducing electrical conductivity, and obstructing the diffusion of species 
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that limit mass transport. Moreover, the increased viscosity hinders the dispersion of 

gas bubbles generated during the process, exacerbating the occurrence of defects on the 

workpiece surface. 

• Increased electrolyte contamination: In addition to the possibility of a non-uniform or 

defected surface caused by the impurities on the workpiece surface interfering with the 

polishing process, the accumulation of these impurities in the polishing bath has been 

demonstrated to elevate the electrolyte's specific gravity, viscosity, and electrical 

resistance. These changes can collectively lead to a reduction in polishing current and 

an insufficient polishing effect. 

 

The three questions mentioned in 4.1 can be addressed with several key observations presented in 

this chapter: 

• It was demonstrated that the variations in the properties and performance of the polishing 

bath depend on its usage and replenishment history. Consequently, when considering 

factors that influence the quality and consistency of electropolishing outcomes, the 

condition of the bath before the electropolishing process holds greater significance than 

either the number of treated parts or the total ampere-hours of polishing treatment carried 

out in the bath. 

• It was also shown that physicochemical properties such as the specific gravity, electric 

conductivity, and viscosity of the polishing bath serve as robust indicators of its condition 

and significantly affect its performance. Notably, these properties not only offer valuable 

insight into the varying performance of the bath at different states but can also be easily 

and rapidly measured on-line within industrial settings, without the need for complex 

equipment or highly trained personnel. 

• In addressing the question of whether consistent electropolishing results can be achieved 

through adjustments to polishing process parameters guided by the relevant 

physicochemical properties of the bath, our experimental findings revealed that such bath 

properties are not the only factors that contribute to the outcome of the electropolishing 

process, and as such, seemingly straightforward actions such as modifying the applied 

potential or re-adjusting the electrolyte composition cannot guarantee consistent polishing 

outcomes under the same set of polishing parameters. For instance, it was observed that 

raising the applied polishing potential to compensate for the increased IR drop in 

extensively-used electrolytes resulted in pronounced bubble formation and the emergence 

of pit marks and white streaks on the surface. It was also shown that merely altering the 

bath composition may not be sufficient for restoring its performance. It was therefore 

concluded that at a given bath condition, knowledge of the relevant physicochemical 

properties of the bath must be accompanied by application of correct process parameters 

to achieve consistent electropolishing outcomes.  

• The current-voltage plots obtained from electropolishing test samples at various voltages 

for a fixed duration have shown significant promise as a predictive tool for identifying the 

voltage threshold at which surface defects, such as the orange peel effect and gassing 
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streaks, may occur at a given bath state. These voltages align with a specific section in the 

I-V plot of gas-evolving electrodes, where bubble generation reaches an intensity level 

significant enough to affect the surface of the workpiece. When selecting the necessary 

process parameters to achieve a desired surface finish, this tool can be invaluable in 

preventing the occurrence of surface defects. 

 

The substantial impact of process parameters on the surface quality of electropolished parts 

highlights the necessity for an intelligent approach to finding the correct process parameters. 

Using previous production experience, such an approach determines suitable polishing 

parameters tailored to the unique characteristics of the part, polishing bath, and intended 

application. 
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5. Open Dataset for Stainless Steel Electropolishing 
 

5.1 Introduction 
 

The result of Chapter 4 highlighted the profound impact of usage history on the state of a polishing 

bath, which, in turn, significantly influences the outcomes of the electropolishing process. One of 

the most important changes observed in a bath upon extensive use is the decline in the electric 

conductivity, leading to a substantial IR drop across the polishing cell and a considerable reduction 

in the available polishing potential. Moreover, Chapter 4 revealed that due to the multitude of 

factors influencing the final surface finish of parts, simple measures like correcting the ohmic drop 

or readjusting the polishing bath composition do not necessarily result in repeatable polishing 

outcomes. This indicates the necessity for an intelligent approach to maintain the consistency of 

the electropolishing results despite the dynamic nature of the polishing bath. This approach would 

have the capability to determine the process parameters required to achieve a desired surface finish 

based on the part and bath parameters as well as the intended application. 

As previously mentioned, one of the objectives of this study is to create a substantial dataset 

comprising electropolishing outcomes achieved under various process parameters and bath 

conditions. This dataset would serve as the foundation for developing a predictive tool that can 

determine the necessary process parameters to achieve a specific surface finish under given bath 

conditions. Throughout the experimental phase of this study, a multitude of polishing experiments 

were conducted, yielding a significant volume of data points of the polishing process parameter 

and results. 

In this chapter, the constructed dataset is examined from a data analytics perspective. Initially, the 

details of the dataset construction process, including measurement errors for variables such as 

electrical conductivity, bath temperature, and surface roughness and brightness of the samples, are 

discussed. The dataset is then explored, with a focus on investigating the variation trends, statistical 

distributions, and inter-correlations among different variables, along with justifications for these 

observations. Subsequently, various aspects of the model development process, including feature 

selection and hyperparameter tuning for the investigated machine learning algorithms, are covered. 

The performance of these algorithms in predicting different target variables is then compared, and 

the most accurate model for representing the dataset is selected as the basis for the development 

of our prediction tool. 

 

 

 

 

 



61 
 

5.2 Determining the correct process parameters in an ever-changing polishing bath 
 

Given the significant effect of the electrolyte condition on the surface finish of electropolished 

parts, various control methods are used in the industry to maintain or restore the polishing bath 

quality. However, even in a well-maintained polishing bath, preserving the consistency of the 

polishing results is challenging. In a mass production paradigm, where the polishing process is 

always carried out for the same type of alloy coming from the same supplier, the type and amount 

of contaminants entering the bath can be known and controlled. This is also true if the 

electropolishing treatment is conducted in the same facility as one of the steps of a well-known 

and controlled manufacturing process. However, most electropolishing facilities only perform the 

polishing treatment and accept the parts from different customers with significantly different 

manufacturing histories.  

Depending on the production process of the parts, different kinds of oil, dirt, and contaminants are 

introduced into the solution, considerably affecting the consistency of the results. The situation 

becomes even more challenging with the new mass personalization trend. Even with an optimized 

process, inconsistent results would be obtained if parts of slightly different alloys (such as different 

grades of stainless steel) or parts with different shapes (for instance, having difficult-to-reach 

corners) were to be electropolished. Determination of the required process parameters in such 

challenging conditions is not only reliant on the experience and know-how of the operator but also 

requires time and resource-consuming trial-and-error experiments. As already stated, the 

overarching goal of this study is to develop a data-driven approach for determining the optimum 

process parameters for achieving a desired surface finish at a given bath state.  

One important aspect of this goal is the modification of electropolishing process parameters to 

obtain different surface qualities. Our previous study on titanium (grade 5) electropolishing in 0.9 

M NaCl- ethylene glycol solution indicated that it is possible to achieve a range of electropolished 

surface finishes by tuning the polishing process parameters 128. Figure 5.1 displays the titanium 

samples treated with different combinations of polishing potential and duration at the solution 

temperature of 20 °C. As can be noticed in the obtained surface finishes, 10 V was the lower limit 

of the applicable potentials that yielded an insufficient polishing effect for the effective removal 

of the surface oxide layer. It was also noted that applying a potential beyond 25 V would lead to 

intensive bubble generation and sudden stopping of the test. In addition, electropolishing at the 

same solution temperature and with the same applied polishing potential of 20 V for different 

durations (10, 20, 30, and 40 minutes) yielded a range of diverse surfaces. 
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Figure 5.1. Up: Surface finishes obtained for titanium samples for (top) 20 minutes polishing duration and 

different polishing voltages (10, 15, 20, and 25V) and (bottom) 20 V polishing potential and different 

polishing durations (10, 20, 30, and 40 min) 128. 

 

The ability to achieve a wide range of surface qualities could be highly appealing for a variety of 

decorative purposes, including architectural finishes, home appliances, automobile parts, 

consumer electronics, and luxury goods. Since decorative applications place a high value on the 

visual aesthetics of the products, acquiring different surface finishes gives them greater design 

flexibility and the ability to create visually striking products that stand out in the market. The 

transition of electropolishing treatments towards mass personalization manufacturing can 

potentially accommodate different industries’ needs for a broader range of electropolished surface 

finishes. However, for most electropolishing facilities, determining the proper polishing conditions 

for achieving a target surface finish is neither simple nor affordable. Depending on the operator’s 

level of expertise, the process might require rounds of trial-and-error experiments (potentially 

inconclusive or imprecise), considerable waste of materials and energy, and significant delays in 

the production schedule.  

Given the considerable costs of stopping the main production line, one possible solution would be 

establishing a small pilot plant on the side to find the required process parameters through trial-

and-error experiments. However, not only this pilot bath would have a different history from the 

main polishing bath, but its properties may also undergo changes during the experiments due to its 

smaller volume in comparison to the main bath. Therefore, the only way to find the “correct” 

process parameters is to stop the production by conducting trial and error in the main bath, which 
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is very costly. The profitable incorporation of a mass personalization paradigm in an industrial 

electropolishing facility calls for rapid process-tuning approaches to justify the production of small 

batches financially. This is another aspect of this study’s goal, developing an approach to promptly 

determine the required process parameters for obtaining a desired surface quality. 

Driven by the findings of our prior work on titanium samples, in this project, a variety of surface 

finishes were obtained for stainless steel 316 parts by modifying electropolishing voltage and time. 

Figure 5.2 presents the various surface finishes obtained on stainless steel samples with their 

corresponding surface gloss measured before and after the electropolishing process and different 

polishing parameters. The electrolyte used for these experiments was solution 1 from Chapter 4 

(close-to-fresh solution). 

The results of these experiments indicate that obtaining a better surface finish (in this case, a higher 

surface gloss) by modifying the process parameters is not as straightforward as one might expect. 

There appears to be a trade-off between the electropolishing process parameters and final surface 

results. For instance, it can be noted that the use of a higher polishing voltage or longer polishing 

duration does not necessarily yield a better surface finish, as illustrated on Figure 5.2, where 

sample 6, treated with 3 V for 600 seconds, shows a higher surface gloss than samples 7 and 8, 

which were treated for the same duration with 4 and 5 V, respectively. Another example is sample 

13, polished with 5 V for 900 seconds, which has a higher brightness compared to samples 11, 14, 

and 16, treated for the same duration with 3, 6, and 7 V, respectively.  Sample 6 itself (3 V, 600 s) 

is brighter than sample 13 (5 V, 900 s) even though, as previously stated, one might expect that 

employing higher voltages or longer polishing times would result in higher surface gloss.  

Such observations further indicate that a right balance must be reached between achieving the 

desired surface finish and maintaining other essential factors such as material removal rate and 

cost efficiency. These results also indicate the importance of employing the correct process 

parameters for obtaining the target results and accentuate the operator's critical role in estimating 

the optimum process conditions.  
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Figure 5.2. (top): Range of surface finishes obtained for stainless steel 316 samples by changing the 

electropolishing voltage and duration in solution 1, (bottom): variation of the corresponding surface gloss 

(the samples are organized in order of applied polishing voltage and polishing duration). 

 

However, determining the correct process parameters with a constantly varying bath is an 

exceedingly difficult task, even for a skillful operator with several years of experience, because it 

requires repeated trial-and-error experiments. Modification of process parameters at different bath 

states indicated that the obtained surface finishes also vary from one electrolyte to another due to 

the different usage histories. Figure 5.3 shows the surface appearance and corresponding surface 

gloss of the samples polished in solution 3 from Chapter 4. The significant deterioration of 

electropolishing results is evident in this picture. 

Compared to the relatively “fresh” solution 1 that yielded almost only bright surfaces (albeit with 

different levels of surface gloss), the more “used” bath is only able to deliver bright surfaces under 

certain conditions. Figure 5.3 also shows that despite the deterioration of the polishing bath quality 

due to extensive usage, it is still possible to attain acceptable surface finishes by employing the 

“correct” polishing parameters. These observations demonstrate another focus point of this study, 

the polishing bath history. The ideal approach for rapid determination of the process parameters 

for obtaining a desired surface quality must also take into account the dynamic nature of the 

polishing electrolyte, and ideally, compensate it. 
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Figure 5.3. (top): Range of surface finishes obtained for stainless steel 316 samples by changing the 

electropolishing voltage and duration in solution 3, (bottom): variation of the corresponding surface gloss 

(the samples are organized in order of applied polishing voltage and polishing duration). 

 

The main idea of this study is to build a comprehensive dataset of various polishing parameters 

and resulting surface finishes for a wide range of solutions with different usage histories. Models 

will then be applied to the dataset, and their precision in representing the dataset will be evaluated 

from a purely mathematical perspective. Finally, the model providing the most accurate 

presentation of the dataset shall be used to develop a prediction tool for determining the process 

parameters required for achieving a target finish. 

 

5.3 Dataset construction 

 

The dataset was built with the goal of obtaining polishing baths representative of those observed 

in the industry. Therefore, to have a broad range of polishing bath conditions, the accelerated aging 
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process was conducted between experiments to simulate a “heavily contaminated” polishing bath. 

The solutions were also gradually refreshed by mixing with fresh electrolytes. 

Overall, 17 polishing baths with different usage histories were studied, going from the “standard 

fresh state” to a “heavily used” state. For each solution, the specific gravity, viscosity, and electric 

conductivity were measured multiple times. The precision of the devices used for measuring 

specific gravity and viscosity were 0.001 g/cm3 and 0.1 mPa.s, respectively. The measurement of 

electric conductivity, however, is known to be more intricate from an electrical point of view and 

therefore, was repeated 20 times before each polishing experiment. To estimate the precision of 

the measurements, the average (0.4 mS/cm) of the distribution of all measurement standard 

deviations of the dataset was used (Figure 5.4).  

 

 

Figure 5.4. Boxplot of the standard deviation in conductivity measurements for different solutions (340 

samples). 

 

On average, between 10 to 20 samples were electropolished in each solution with different 

polishing parameters (polishing voltage and polishing duration). Table 5-1 presents the polishing 

parameters used for the construction of this dataset. Despite efforts to maintain the temperature of 

the polishing bath constant, factors, including the ambient temperature, equipment malfunction, 

and intense polishing reactions, resulted in occasional bath temperature fluctuations during the 

electropolishing process. Figure 5.5 displays the distribution of the bath temperature over the 

conducted experiments. It was also observed that the standard deviation of the bath temperature 

increased with the duration of the electropolishing process, which could be attributed to intensive 

polishing reactions and gas bubble generation. 
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Table 5-1. Electropolishing process parameters used for the construction of the dataset. 

Polishing Potential 
 

3, 4, 5, 6, and 7 V 

Polishing Duration 
 

300, 600, 900, and 1200 s 

Polishing Solution Temperature 
 

40 °C 

 

 

Figure 5.5. Distribution of bath temperature in conducted experiments (249 samples). 

 

 

Figure 5.6. (left) Distribution of the standard deviation in bath temperatures, (right) effect of polishing 

duration on bath temperature standard deviation (249 sample). 
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The surface roughness and surface gloss of the samples were measured 10 times before and after 

each electropolishing experiment to ensure accuracy. Figure 5.7 and Figure 5.8 present the 

standard deviation in measurements of the various surface roughness and surface gloss indexes 

before and after each polishing treatment. The standard deviations of measured roughness and 

brightness values exhibit a lognormal distribution as expected for a normal distributed random 

variable. 

The average of the distributions of standard deviation indicates a precision of 0.01, 0.01, and 0.06 

µm for Ra, Rq, and Rz measurements, respectively. Similar calculations for surface gloss give a 

precision of 16 and 5 GU for the measurements of the H20 and H60 indexes, respectively. 
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Figure 5.7. Standard deviation of surface roughness indexes before and after electropolishing treatment 

(249 samples). 
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Figure 5.8. Standard deviation of surface gloss measurements before and after electropolishing (249 

samples). 
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The weight loss of the samples was also measured before and after each polishing treatment. In 

addition, during the electropolishing experiments, different process parameters, including the 

polishing voltage and current, as well as the solution temperature, were recorded. Table 5-2 

indicates the average number of measurements conducted for the construction of the dataset. 

 

Table 5-2. Average number of measurements conducted for dataset construction. 

Number of solutions 17 

Total number of conductivity/viscosity/density measurements 340 

Typical number of samples polished per solution 10-20 

Total number of samples 249 

Total number of Ra/brightness measurements 2492 

Total number of weight measurements 249 

 

 

5.4 Dataset exploration 
 

The constructed database allows for the meaningful illustration of the variation patterns of different 

parameters in the investigated polishing system. Figure 5.9 displays the distributions of the 

viscosity and conductivity values of the investigated polishing baths together with their cumulative 

percentage. As can be noted in the plots, the dataset is distributed in a way that there are not 

noticeably more instances of one bath state than others. This shows that the built dataset is not 

skewed, meaning that the distribution of conductivity and viscosity values is balanced and 

representative. Indeed, it was intended during the dataset construction step to include a sufficient 

number of sample solutions for different bath states (fresh, medium-used, and heavily-used) to 

avoid over-representing any particular bath state compared with others. This is crucial as a 

balanced dataset prevents the machine learning model from making biased predictions due to 

imbalanced class distributions. 

Figure 5.10 indicates the variation of electric conductivity and viscosity of the polishing baths as 

they go from a “fresh” state to a “heavily-used” condition. It is evident that as the polishing bath 

becomes more viscous, a significant drop occurs in its electric conductivity. This can be explained 

by the reduced mobility of electric charge carriers in highly viscous solutions. 

It is worth noting that, despite the correlation between solution viscosity and electric conductivity, 

it has been observed that both properties are required to determine the state of a polishing bath. As 

can be seen in Figure 5.10, for low-viscosity solutions, a slight change in the viscosity results in a 

considerable change in electric conductivity. Similarly, for highly viscous solutions, a small 

variation in the electric conductivity is accompanied by a large difference in viscosity. Therefore, 

given that a small measurement error in one property can lead to a considerable misestimation of 

the other, both properties should be measured to determine the polishing bath state. 
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Figure 5.9. Cumulative distributions of viscosity and conductivity for the investigated solutions. 

        

  

Figure 5.10. Variation of the electric conductivity and viscosity among the studied electrolytes. 

 

Figure 5.11 presents the distribution of the initial and final surface roughness of the studied 

samples. The samples utilized for this study were cut from four different stainless steel 316 sheets. 

The histograms of the initial surface roughness indexes indicate two distinct populations of values, 

which could suggest that two of the utilized sheets must have had a similar surface roughness. It 

can also be noted that, in general, two populations of samples were achieved upon the 

electropolishing, which is probably a result of the polishing bath history, and it will be explored 

later in more detail.  

Figure 5.12 illustrates the distribution of surface gloss values before and after electropolishing 

treatments. Given that all of the measured values for the H60 index were higher than 70, the H20 

index was considered more relevant than the H60 index. Therefore, in the future, we will only 
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discuss the H20 index for the surface brightness of the samples. The wider distribution of H20 

brightness values after the electropolishing treatment  (ranging from around 60 to 1000 GU) can 

be explained by the fact that a broad range of finishes going from matt to semi-bright to mirror-

like surfaces could be obtained (Figure 5.2 and Figure 5.3; the reader is as well invited to compare 

this with Figure 5.12).  

 

 

Figure 5.11. Surface roughness distribution of the samples (top) before, and (bottom) after electropolishing 

treatments (249 samples). 
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Figure 5.12. Surface brightness distribution of the samples (top) before, and (bottom) after electropolishing 

treatments (249 samples). 

 

Figure 5.13 represents the correlation matrix constructed to visualize the relationships between 

different variables in the electropolishing process. Each cell in the matrix represents the correlation 

coefficient between two variables ranging from 0 to 1. A higher correlation coefficient (closer to 

1) indicates that the variables are strongly correlated and that changing one will significantly affect 

the other. The following conclusions can be made based on the correlation matrix: 

 

1. The initial roughness of the samples is strongly correlated to their initial weight. This can 

be explained by the fact that the studied samples are generally similar before 

electropolishing (similar dimensions and nearly similar surface roughness), and no 

significant change is observed in either of the measured quantities. 

 

2. The final surface roughness and brightness of the samples are highly correlated with each 

other, as well as with the conductivity and viscosity of the polishing bath. This correlation 

was expected, given the effect of surface topography on its light-reflecting properties. In 

addition, it has been established that the electric conductivity and viscosity of the solution 

can significantly affect the outcome of the electropolishing process.  

 

3. The viscosity of the electrolyte is highly correlated with its electric conductivity. This is 

expected since, as previously stated, an electrolyte's electric conductivity tends to decrease 
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as its viscosity increases. This is due to the fact that viscous solutions hinder the movement 

of charge carriers, making it more challenging for them to carry an electric current. 

 

 

 
 

Figure 5.13. Correlation matrix for different variables of the electropolishing process. 

 

The following plots illustrate some of the correlations observed in the correlation matrix between 

different variables of the electropolishing process. Figure 5.14 indicates that the solution viscosity 

and electric conductivity have opposite effects on the final surface roughness (Ra) of the samples. 

Similar trends can also be noted in the effect of solution viscosity and electric conductivity on the 
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final surface brightness of samples (Figure 5.15). This can be expected given the diminished 

polishing performance of highly viscose and low-conductivity electrolytes. Figure 5.16 displays 

the correlation between surface roughness indexes (Ra, Rq, and Rz) and surface gloss. Evidently, 

as the surface becomes smoother, it has fewer irregularities that can scatter light, therefore, it 

reflects light more uniformly, resulting in a higher gloss unit. 

 

 

 
Figure 5.14. Effect of bath viscosity and electric conductivity on the average final roughness (Ra) of the 

electropolished samples. 

 

 
Figure 5.15. Effect of bath viscosity and electric conductivity on the average final roughness (Ra) of the 

electropolished samples. 
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Figure 5.16. Correlation of the average final roughness (Ra) of the electropolished samples with the average 

surface gloss. 

 

5.5 Dataset preprocessing 
 

After dataset construction and exploration, machine learning models can be employed to make 

decisions or predictions based on the dataset. However, before the raw data can be fed to machine 

learning models for training and prediction, it must be cleaned and transformed (preprocessed) to 

a suitable format. In the cleaning and preprocessing step, the outliners and missing values of the 

dataset are properly handled. In addition, in the cases of datasets that contain numerical features 

with different scales and units, the features are standardized to ensure their equal contribution to 

the model. The dataset collected in this study was, henceforth, cleaned, and the occasional missing 

or outlier values were re-measured to avoid errors or biased results. In the preprocessing step, the 

dataset was scaled using the standard scaling method, which transforms the data to have a mean 

of 0 and a standard deviation of 1. In addition, the average surface roughness and brightness values 

were calculated and utilized for each investigated sample. 

 

5.6 Model development 
 

The construction of a comprehensive dataset that covers a wide range of polishing bath states with 

different usage histories enables us to predict the required process parameters for achieving a 

desired surface finish in almost any given bath condition in the studied range. In the case of a new 

bath state, this dataset can be used as a look-up table to find the polishing parameters used in the 

most similar situations. However, given the size of the dataset and the variety of the studied 

features, developing an appropriate mathematical model that can clearly describe the dataset can 

greatly facilitate the polishing parameter tuning process. As already explained, the goal of this 

study is to develop a model that can predict the final surface finish of the parts using the employed 

polishing parameters and vice versa. The first step towards this goal is to reduce the dataset 

complexity by creating simplified mathematical representations that capture the essential 

information and patterns in the data. 
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For a better understanding of a model’s performance in capturing the essential patterns of a dataset, 

it is necessary to split the dataset into training and test sets. As can be expected from their names, 

the training dataset will be used to train the model, while the test dataset will be used to evaluate 

its performance. Splitting the dataset yields a more realistic estimation of the model’s 

generalization power by assessing its performance on previously unseen data points. The 

constructed dataset in this study was hence divided into training and test sets with a split ratio of 

80%:20%, respectively. 

 

5.6.1. Definition of the target variable 

 

After preprocessing, the dataset is ready to be explored and analyzed by the modeling algorithm. 

The first step in model development is determining the target variable, which is the variable that 

the model is going to predict. In the case of the electropolishing process, various target variables 

can be considered, including the post-electropolishing surface roughness and brightness or the 

ideal polishing voltage or duration for achieving a desired surface finish. In the following 

examples, various models were compared with regard to their performance in predicting the final 

surface roughness parameters of the parts (Ra_after, Rq_after, and Rz_after).  

The target variable could also be the relative surface roughness of the parts calculated as follows: 

 

𝑅𝑎𝑟𝑒𝑙 =  
𝑅𝑎𝑎𝑓𝑡𝑒𝑟

𝑅𝑎𝑏𝑒𝑓𝑜𝑟𝑒
 

 

𝑅𝑞𝑟𝑒𝑙 =  
𝑅𝑞𝑎𝑓𝑡𝑒𝑟

𝑅𝑞𝑏𝑒𝑓𝑜𝑟𝑒
 5.1 

 

𝑅𝑧𝑟𝑒𝑙 =  
𝑅𝑧𝑎𝑓𝑡𝑒𝑟

𝑅𝑧𝑏𝑒𝑓𝑜𝑟𝑒
 

 

  

5.6.2. Feature selection 

 

A machine learning algorithm utilizes a set of features (also known as attributes or input variables) 

to make predictions or decisions based on the dataset. In the case of the dataset used in this 

problem, different parameters of the electropolishing system, such as pre-electropolishing surface 

roughness and brightness or the polishing voltage and duration, can be used as the model features. 

As a critical step in the machine learning model development process, the goal of feature selection 

is to choose a subset of relevant and informative features from the original set of variables to 

improve model performance and reduce its complexity. The most informative features of the 

dataset can be determined using different methods, such as removing low variance features, 

univariate feature selection, and tree-based feature selection. A deep understanding of the process 
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can also provide valuable insights into which features are crucial in determining the outcome of 

the process. The knowledge of an expert can help prioritize and select relevant features even if 

they might not have the highest correlation with the target variable.  

After cleaning and preprocessing the dataset a number of potentially relevant features were studied 

to identify the most informative features. Three different feature selection methods were employed 

to find the most relevant features of the current database. The definition and results of each method 

are presented as follows: 

 

1. Variance-based feature selection: This technique is used to identify and remove features 

with little variation in their values across the dataset. Such features are often considered 

less informative as they provide no information that allows machine learning models to 

predict the target variable. Eliminating low-variance features can simplify the model, 

reduce computation time, and improve generalization performance. Figure 5.17 presents a 

list of investigated features based on a low-variance feature removal approach. The features 

are sorted in the order of decreasing variance, going from polishing time to the Ra 

roughness of the sample before electropolishing. According to this method, a feature 

presenting a high variance, like the polishing time, is more relevant than a low-variance 

feature, like the pre-electropolishing surface roughness. The low-variance features of the 

dataset can be removed using the Variance Threshold method of the Scikit-Learn library, 

which is a convenient and straightforward way to filter out the features whose variance is 

below a defined threshold.  
 

2. Tree-based feature selection: Feature selection using Random Forests is another 

technique for identifying the most important features in a dataset. Random Forests is an 

ensemble learning method combining multiple decision trees to make predictions. This 

method involves ranking the model features according to their Gini importance, which is a 

(normalized) measure of how much a feature contributes to the overall predictive power of 

the model. The Gini importance of a feature is calculated by evaluating how much the 

feature reduces the impurity (Gini impurity) in the data when making splits in a decision 

tree. To conduct this method, a Random Forests model is fitted to the training data after 

the dataset is cleaned, preprocessed, and split into training and test sets. Next, the Feature 

Importance, which is an attribute of the Random Forests model, can be used to obtain the 

importance score of each feature in predicting the target variable. Figure 5.17 indicates the 

investigated features sorted according to their importance scores. For instance, it can be 

understood from the order of the features that splitting the dataset based on the conductivity 

and viscosity of the polishing bath is more informative than doing so according to its 

specific gravity. 

 

 

3. Univariate feature selection:  This method selects the best features based on univariate 

statistical tests between each feature and the target variable. It helps identify the most 

relevant features by evaluating their relationships with the target variable. The Select K 
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Best is one of the classes used to perform univariate feature selection in Scikit-Learn. This 

method selects the first K highest-scoring features. Different scoring functions such as 

f_regression, f_classif, and chi2 are used to evaluate the significance of features concerning 

the target variable. The investigated features of our dataset were scored using the 

f_regression test which computes the F-value and p-value for each feature by performing 

an analysis of variance (ANOVA) test between the target variable and each feature. As can 

be seen in Figure 5.17 , the viscosity and conductivity of the polishing bath have the highest 

F scores and are hence, considered most informative by this method. 

 

 

 
Figure 5.17. Dataset features in order of their importance in predicting Ra_rel using various feature 

selection methods. 

 

Investigation of the results obtained from the studied methods indicated that the Random Forests 

and Select K Best methods are more reliable for feature selection than the Low Variance method. 

Both Random Forests and Select K Best methods take into account the relationship between 

features and the target variable. The Low Variance method, on the other hand, only considers 

individual feature variations, which may not be sufficient to assess its relevance in the context of 

predicting the target variable.  

It can be concluded from the results of Random Forests and Select K Best methods that besides 

the viscosity and conductivity of the polishing bath, the state of the parts’ surface before 

electropolishing is as important as the polishing parameters used. Given their statistical nature, 

these methods, however, might not be able to capture the importance of some features. For 

instance, Figure 5.17 indicates that the polishing temperature is not considered highly informative 

by any of the investigated models. However, our understanding of the process tells us that, on the 

contrary, the temperature of the polishing bath significantly affects the material removal rate and 

the outcome of the electropolishing process. The statistical method's wrong assumption that 
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temperature is insignificant comes from the limitation of the dataset, where only one bath 

temperature (40°C) was examined due to time constraints. As a result, the effect of temperature is 

not shown in the raw data. 

Upon consideration of the feature selection results and our previous experience with the 

electropolishing process, the following features were considered most informative and selected to 

be used with different machine learning algorithms for the prediction of the final surface roughness 

of the parts: electric conductivity, viscosity, and temperature of the polishing bath, electropolishing 

voltage and time, as well as the initial surface roughness (Ra, Rq, Rz) of the samples. 

The feature selection step was also performed for the gloss value prediction. Figure 5.18 represents 

the result of the feature selection analysis for predicting H20_after. It can be noted that compared 

to the important features for predicting the surface roughness, polishing parameters appear higher 

in the importance ranking for gloss predictions. It can be concluded that the influence of polishing 

parameters on optical properties is much more significant than on surface roughness values. 

Therefore, while tuning the polishing parameters to modify the optical properties appears to be 

realistically possible, it looks to be more challenging for roughness properties. In addition, even 

though there was no significant variation in the temperature of the bath during the polishing 

process, bath temperature seems to have a stronger effect on surface brightness than surface 

roughness. Based on our knowledge of the process and using the results of feature selection 

methods, the following dataset features were selected to be used by the models for the prediction 

of surface brightness after electropolishing: electric conductivity, viscosity, density, and 

temperature of the bath, polishing voltage and time, Rq_before, Rz_before, and H20_before. 

 

 

 

 
Figure 5.18. Dataset features in order of their importance in predicting H20_after using various feature 

selection methods. 
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3.3.3. Model training 

 

After determining the most relevant features of the database, a model may be used to learn from 

the selected features and make accurate predictions. In this step, various statistical learning 

algorithms can be evaluated and compared regarding their performance on the dataset. Three 

different models were investigated in this study to predict the designated target variables using the 

selected features from the dataset: linear regression, k-Nearest Neighbors (KNN), and Random 

Forests. 

Each model was trained on the training dataset set using the selected features. Next, their 

performance was compared based on their Root Mean Squared Error (RMSE) on the test set. The 

model with the best performance was then selected to be used for the mathematical representation 

of the dataset. 

 

 

3.3.4. Hyperparameter tuning 

 

Some of the investigated algorithms, such as KNN or Random Forests require hyperparameter 

tuning to maximize their predictive value. In this process, the model’s performance is scored with 

a cross-validation strategy for different values of hyperparameters (number of neighbor points in 

KNN or the number of decision trees in the Random Forests model). The k-fold cross-validation 

is one of the strategies used for the hyperparameter tuning of models. This method involves 

dividing the training data into k subsets (folds) and training/evaluating the model k times, each 

time using a different fold as the validation set. The Repeated K Fold cross-validation strategy 

utilized in the current study is a variant of the K-fold cross-validation technique that involves 

repeating the k-fold process multiple times with random data shuffling. 

Figure 5.19 presents the results of the Repeated K-fold cross-validation method for hyperparameter 

tuning of the KNN and Random Forests models for predicting the Ra_rel. As indicated, for each 

model, the root mean square error (RMSE) of the k fold training and validation sets are calculated 

at different values of the hyperparameters until the optimal value (minimum RMSE for the k fold 

validation set) was reached. It can also be understood from these plots that both models behave as 

expected. For example, for the KNN model, the RMSE of the training set is very small for fewer 

number of neighbors, whereas the error of the model shown through the validation set is very high 

in the beginning and decreases afterward (indeed if K=1, the prediction on the training set has no 

error as the algorithm simply reproduces the training set, but will have no generalization power). 

The Random Forests model, however, behaves differently. Both K fold training and validation sets 

exhibit high RMSE for a smaller number of trees, and the predictive value of the model increases 

as the number of trees goes up, as expected. It can also be noted that while the error in the k fold 

validation set decreases with increasing the number of trees, the error of the k fold training set does 

not change after a while. 
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Figure 5.19. Hyperparameter tuning using cross-validation for (left) KNN algorithm and (right) Random 

Forests algorithm. 

 

 

 

 

 

 

 

5.7 Model selection  

 

The following figures present the performance of the studied models with regard to predicting the 

final surface roughness parameters of the electropolished parts, Ra_after, Rq_after, and Rz_after. 

It must be noted that these plots are just one example of model predictions based on one similar 

train-test-split in the dataset. To investigate whether the solution history affects the model’s 

accuracy, the models’ error (y-ypred) has been plotted as a function of the solution viscosity.  

In addition, a voting ensemble algorithm was used to combine the predictions of the studied models 

to make a final prediction. Ensemble learning methods may be used to improve model 

performance, ideally achieving better performance than any single model used in the ensemble. In 

this study, the voting regressor ensemble was used to average the individual predictions form 

different models to form a final prediction. Figure 5.23 displays examples of predictions made by 

the ensemble method. 
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Figure 5.20. The linear regression model used for the prediction of Ra-after, Rq-after, and Rz-after. 
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Figure 5.21. The KNN model used for the prediction of Ra-after, Rq-after, and Rz-after. 
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Figure 5.22. The Random Forests model used for the prediction of Ra-after, Rq-after, and Rz-after. 
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Figure 5.23. The Voting Regressor ensemble used for the prediction of Ra-after, Rq-after, and Rz-after. 
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To better compare the models’ predictive power their root mean squared error (RMSE) distribution 

in prediction of different target variables based on 100 train-test-splits of the dataset was plotted 

(Figure 5.24). All predictions were made on the data from the test set.  

 

 

 
 

Figure 5.24. RMSE distribution of different models for prediction of Ra-after, Rq-after, and Rz-after on 

the test set. 

 

The box plots in this figure feature "whiskers" that span from the minimum to the maximum 

prediction errors of the models. Within each box, the lower and upper boundaries correspond to 

the 25th and 75th percentiles of the RMSE values, respectively, providing a visual representation 

of the central 50% of the distribution. The median RMSE, signifying the middle value in the 

ordered set of prediction errors, is denoted by a green line inside each box. Additionally, the green 

triangles near the median line represent the mean RMSE value. Any individual data points that fall 

noticeably outside the whiskers are typically identified as outliers, suggesting the presence of 

uncommon or extreme values within the dataset. 
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It can be concluded from the plots that, on average, the Random Forests model provides the most 

accurate representation of the dataset. Note that the Random Forst algorithm is as well the only 

model that reproduces the dataset over the full range of roughness data (For instance, the KNN 

model demonstrates accurate predictions for low roughness values but exhibits significant errors 

when it comes to high roughness values; see Figure 5.21). The Random Forests algorithm was 

hence selected to be used for the development of the target prediction tool. 

The result of model predictions for the relative surface roughness of the electropolished parts are 

presented in Chapter 10. These results are in agreement with the observations for the absolute 

surface roughness values, indicating the Random Forests model as the most accurate algorithm in 

representing the dataset of this study, both for absolute and relative roughness values. 

Similar steps were also taken for the prediction of the surface gloss after electropolishing. Figure 

5.25 indicates the root mean squared error (RMSE) distribution of the studied models in prediction 

of final surface gloss based on 100 train-test-splits of the dataset. All predictions were made on 

the data from the test set. As can be seen in this figure, the Random Forests model exhibits again 

the strongest performance in representing the dataset. 

 

 

Figure 5.25. RMSE distribution of different models for prediction of final surface gloss on the test set. 
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Figure 5.26. Results of Random Forests model in prediction of H20_after. 

 

Figure 5.26 indicates the performance of the Random Forests model in predicting the final surface 

gloss. It must be noted that this plot is just one example of model predictions based on one random 

train-test-split in the dataset. 

As can be noted in Figure 5.22 and Figure 5.26, the RMSE error of the Random Forests model in 

the prediction of Ra_after and H20_after is 0.01 µm and 53.84 GU, respectively. Earlier in this 

chapter, the measurement error for the surface roughness (Ra) and gloss (H20) was estimated at 

0.01 µm and 16 GU, respectively. It can be concluded that the constructed dataset has enabled the 

Random Forests model to reach the surface roughness measurement precision, which is the highest 

attainable precision for the model. The error of the Random Forests model in prediction of surface 

gloss is also quite close to our surface gloss measurement precision.  

 

5.8 Concluding remarks  
 

• The results of electropolishing experiments indicate the feasibility of achieving a range of 

surface finishes through the adjustment of polishing process parameters. However, it is 

essential to find the right balance between obtaining the target surface finish and upholding 

other critical factors like material removal rate and cost-efficiency. 

• Even in an extensively-used polishing bath, satisfactory surface qualities can be attained 

by using the correct polishing settings. 

• The dataset created in this study exhibits a well-balanced distribution of conductivity and 

viscosity values, ensuring a sufficient representation of various bath states without an 

undue emphasis on any particular state. 

• The final surface roughness and brightness of the samples exhibit a high degree of 

correlation with each other, as well as with the conductivity and viscosity of the polishing 

bath. 
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• All the investigated machine learning algorithms demonstrated an increase in their 

prediction error as the viscosity of the solution increased. 

• The Random Forests model emerged as the most accurate representation of the dataset and 

was consequently chosen for use in the prediction tool. 

• The Root Mean Square Error (RMSE) of the Random Forests model in predicting the final 

surface roughness of the electropolished samples was found to have reached the level of 

surface roughness measurement precision, representing the highest achievable precision 

for a model. The prediction error of the Random Forests model for the final surface gloss 

of the samples is also quite close to the estimated surface gloss measurement precision. 
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6. Model Prediction of Polishing Parameters for Given Bath States 
 

6.1. Introduction 

 

As previously discussed, the target of this study is to develop a prediction tool to be used by 

electropolishing operators for tuning the polishing process parameters. This tool should predict the 

required process parameters for achieving a desired surface finish for a given bath state. As 

discussed in Chapter 5, in the first step towards developing this tool, a representative and balanced 

dataset was constructed from various electropolishing conditions and results. Next, different 

machine learning algorithms were used to analyze the dataset. The results of model performance 

evaluations in Chapter 5 indicated that among the studied models, the Random Forests model had 

the highest accuracy in representing and summarizing the constructed dataset together with the 

highest generalization potential. Therefore, this model was selected to be used as the basis of our 

target prediction tool. In this chapter, first, the development process of the prediction tool from the 

selected model is explained, and several instances from the dataset are used to showcase the 

performance of the tool over familiar conditions. The tool's capacity to generalize to unseen 

conditions, such as polishing baths different from those used in the dataset, is next examined 

through a series of electropolishing experiments. Finally, the results are interpreted, and potential 

limitations of the tool are discussed. 

 

6.2. Development of the prediction tool 

 

After training and hyperparameter tuning, the Random Forests model was reversed to predict the 

polishing parameters required for achieving different surface finishes. A linear regression model 

was further added as output layer to remove the noises and smoothen out the Random Forests 

model’s predictions. The outcome of the linear regression model is the final tool to be used by the 

operator for estimating the required process parameters. Figure 6.1 illustrates the structure of the 

prediction tool. Figure 6.2 presents an instance of the prediction tool calculations, where blue 

circles demonstrate the predictions made by the Random Forests model, and the orange line 

denotes the linear regression model fitted to the predictions. The input parameters of the tool are 

the initial surface roughness indexes of the part (Ra, Rq, Rz) and the temperature, electric 

conductivity, and viscosity of the polishing bath. The tool predicts the process parameters 

necessary for obtaining various surface qualities for two scenarios: a) Using a polishing voltage of 

5 V and variable polishing times, and b) Using a polishing time of 900 s and different polishing 

voltages. 
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Figure 6.1. Architecture of the prediction tool. 

 

 

 

Figure 6.2. Predictions made by the tool outlined in Figure 6.1. 

 

 

6.3. Performance of the prediction tool on previously seen solutions 

 

To compare the tool predictions with actual observations, the tool was first trained on the complete 

dataset (no train-test-splitting). Next, sample data of the initial surface roughness and bath 

conditions were extracted from the dataset and fed to the tool. Figure 6.3 presents the tool 

predictions (blue line) and measured values (orange circle) for the final Ra, Rq, and Rz roughness 

of the parts electropolished in solutions 1, 2, and 3 of Chapter 4. The error bars shown in the plots 

demonstrate the Ra, Rq, and Rz measurement errors obtained by calculating the average of the 

surface roughness standard deviations. It can be understood from these plots that the prediction 

tool works properly on points from the dataset which was expected as the points are drawn from 

the dataset used to build the model. 
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Figure 6.3. Final surface roughness predictions for the for the sample polished in solutions 1, 2, and 3 of 

Chapter 4, under 5 V for 300 s. The blue line is the prediction tool, while the orange circles demonstrate 

the measured values. 

 

6.4. Generalization capacity of the prediction tool to unfamiliar polishing baths 

 

As expected, the tool predictions made for initial surface roughness and solution characteristics 

extracted from the dataset were in agreement with the measured values. The next step is to 

determine the tool’s capability to generalize to new, unseen data. Therefore, the prediction value 

of the tool is investigated in the case of samples treated in previously unseen polishing baths. In 

this step, seven solutions were studied that differed from the dataset electrolytes in terms of 

preparation and usage history, acids mixing ratio, and the type and concentration of impurities. 

These solutions were prepared to simulate various situations that might arise during the service 
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life of an industrial polishing bath. Table 6-1 presents the main characteristics of the investigated 

solutions.  

 

 
Table 6-1. Characteristics of studied baths. 

Bath 
Electric Conductivity 

(mS/cm) 

Viscosity 

(mPa.s) 

Major Difference Compared to                          

the Training Dataset 

1 171.7 14.3 Acids mixing ratio 

2 187.2 13.1 Acids mixing ratio 

3 116.5 22 Acids mixing ratio 

4 27.2 279.8 

Usage history 

Type and concentration of impurities  

(Copper ions) 

5 45.5 141.3 
Usage history 

Acids mixing ratio 

6 33 247.7 
Usage history 

Used for polishing AlSi10Mg parts. 

7 91.3 52.9 Acids mixing ratio 

 

 

 

The baths presented in the Table 6-1 are numbered in order of decreasing similarity to the original 

bath studied in the dataset. Baths 1, 2, 3 of the table were prepared by adding fresh electrolytes 

(sulfuric acid- phosphoric acid- DI water) with different acids-to-water mixing ratios to a 

moderately-used bath (Table 6-2).  

 

 
Table 6-2. Composition of the fresh electrolytes used in the preparation of baths 1, 2, and 3. 

Fresh solution 

Composition %(v/v) 

Sulfuric Acid Phosphoric Acid 
DI 

Water 

Original 35 50 15 

Used in Solution 1 25 50 25 

Used in Solution 2 30 50 20 

Used in Solution 3 40 50 10 
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Baths 1, 2, and 3 were used to simulate situations where the original aged bath is replenished with 

a fresh electrolyte of slightly different composition. Indeed, in industrial electropolishing facilities, 

bath replenishment is not always conducted correctly. For instance, if the supplier of the original 

polishing solution is changed, the new fresh electrolyte might not have the same composition as 

the original bath. Especially since the exact composition of the commercially available electrolytes 

are usually not disclosed. These solutions are essentially similar to previously investigated baths; 

yet the effect of their slight compositional difference on the performance of the prediction tool 

merits consideration. 

Baths 5 and 7 were utilized to investigate the performance of the prediction tool in more extreme 

scenarios of incorrectly formulated fresh electrolytes. In the case of bath 5, a severely-used 

electrolyte (which was even more aged than the dataset's heavily-used electrolytes) was mixed 

with a fresh solution of the incorrect composition (sulfuric acid 25% v/v: phosphoric acid 50% 

v/v: DI water 15% v/v). Bath 7 on the other hand, was prepared by adding pure sulfuric acid to a 

moderately-used electrolyte.  

In industrial electropolishing operations, it is not uncommon for counter electrodes, which are 

typically made of copper, to fall accidentally into the bath during manipulation. Over time these 

electrodes dissolve into the solution and release excess copper ions. Bath 4 was used to simulate 

such cases and investigate the performance of the prediction tool in the presence of other metal 

impurities in the polishing bath. In order to prepare bath 4, 0.5 mol/L of copper sulfate (CuSO4) 

(similar to the amount of Fe ions detected by ICP analysis in solution 1, from 4 (Table 4-2)) was 

dissolved in the severely-used electrolyte. As mentioned before, to move further away from the 

previously examined baths, the severely-used electrolyte was aged to a point that is not typically 

observed in practical production as it would have been long replenished. 

Finally, bath 6 was prepared to simulate the situation where the electrolyte is used for polishing 

metals other than stainless steel 316. This could happen if a polishing facility needs to urgently 

process a part made from a metal other than the one the polishing bath was intended for. To prepare 

this bath, the severely-used electrolyte was mixed in a 2:3 ratio with a solution that had been 

employed for a long time to electropolish an AlSi10Mg part with a 316 stainless steel cathode. 

Bath 6 is radically different from the solutions studied in the dataset as it contains materials such 

as aluminum, silicon, and magnesium. 

Each bath was then used to electropolish two samples. For easier use of the prediction tool and 

comparison with previous results, the samples were treated either with an applied polishing voltage 

of 5 V for 300 s or 3 V for 900 s. The tool was then employed to predict the final surface roughness 

of the samples in each bath. Although, in reality, the tool could use the complete available dataset 

for making predictions of new data points, 100 train-test-splits of the dataset were conducted at 

this step to simulate different cases. The error of the tool was then estimated by plotting the 

distribution of its root mean squared error (RMSE) in the prediction of different target variables 

(Ra_after, Rq_after, Rz_after) based on 100 train-test-splits (Figure 6.4). 
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Figure 6.4. Distribution of the tool's RMSE in prediction of Ra, Rq, and Rz for samples electropolished 

under 5 V for 300 s, and 3 V for 900 s in the studied solutions.  
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As can be seen in Figure 6.4, the RMSE of the tool predictions for the first 3 solutions with higher 

conductivities appear to be in the same range and considerably less than the rest of the investigated 

solutions. Figure 6.5 displays the surface of the samples electropolished with different polishing 

parameters in the first three baths. As previously discussed in 4, moderate variations in the 

composition of the polishing bath do not significantly affect the electropolishing results. As can be 

noted in the picture, all of the electropolished samples appear smooth and bright, which could be 

attributed to the high electric conductivity and low viscosity of the baths that facilitate the polishing 

action. 

 

 

Figure 6.5. Samples electropolished under 5V and 300s in (a) solution 1, (b) solution 2, and (c) solution 3, 

and under 3V and 900s in (d) solution 1, (e) solution 2, and (f) solution 3. 

 

These results suggest that refreshing the severely used baths with a fresh electrolyte whose 

composition is slightly different does not undermine the accuracy of the tool predictions. However, 

as previously stated, achieving favorable polishing results requires a balance between different 

constituents of the bath. This point was also observed while electropolishing in solution 7, which 

was prepared by adding pure sulfuric acid to a moderately-used solution. According to Figure 6.4, 

in bath 7, the RMSE of the tool in the prediction of Ra_after, Rq_after, and Rz_after is the highest 

among all studied solutions. These results can be explained by the fact that the polishing bath's 

composition was radically changed by adding only sulfuric acid. Given that the model was never 

trained on such scenarios, it is normal that it does not perform well in this example. 

Pictures taken from the surface of the samples electropolished in bath 7 (Figure 6.6) further 

corroborate the results. The surface of both electropolished samples is dull and matt, which is 

indicative of nonexistent polishing action. It has been pointed out by several studies that both 
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sulfuric acid and phosphoric acid must be present in the polishing bath to obtain acceptable results. 

Indeed, it was pointed out by Ponto et al. 1 and Datta et al. 2 that in concentrated sulfuric acid 

solutions, metal dissolution is inhibited due to the formation of a stable passive film on the surface, 

and hence, no polishing effect is observed. It can, however, be deduced from Figure 6.4 that the 

increase in the tool's prediction error is still within a reasonable range, even in a situation as 

extreme as eliminating one of the acids from the polishing bath. 

 

 
 

Figure 6.6. Samples electropolished in solution 7 under (a) 5 V and 300 s, and (b) 3 V and 900 s. 

 

 

It is also evident from Figure 6.4 that in comparison to the first 3 solutions, the RMSE of the 

prediction tool is higher in solutions 4, 5, and 6. As it was discussed in 5, the error of the Random 

Forests model increases with the viscosity of the polishing bath. Table 6-2 indicates that solutions 

4, 5, and 6 have the highest viscosities among the studied baths. The surface of the samples 

electropolished in solutions 4, 5, and 6 is shown in Figure 6.7. In addition to their generally matt 

finish, streak marks can be observed on some surfaces, which as previously discussed in 4, is one 

of the major downsides of electropolishing in high-viscosity solutions. The defect occurs because 

highly viscous solutions oppose the movement and diffusion of the generated bubbles away from 

the workpiece surface. 

Figure 6.4 indicates that although the prediction tool does not perform as well for solutions 4, 5, 

and 6 as it did for the first three solutions, it is still reliable enough to be used as a starting point to 

quickly estimate proper polishing parameters.   

 



100 
 

 
 

Figure 6.7. Samples electropolished under 5 V and 300 s in (a) solution 4, (b) solution 5, and (c) solution 

6 and samples electropolished under 3 V and 900 s in (d) solution 4, (e) solution 5, and (f) solution 6. 

 

 

Overall, it was shown that the prediction value of the tool decreases with the degradation of the 

polishing bath and the increase of its viscosity. Naturally, there comes a point in the service life of 

the polishing bath beyond which the high solution viscosity prevents the tool from delivering 

acceptable results. Consequently, in real-life applications, industrial electropolishing operations 

may establish thresholds for the bath viscosity or acceptable prediction error to determine the point 

of bath replenishment or replacement. The threshold point can be determined based on the 

application or the customer’s required level of surface finish accuracy or quality consistency. For 

instance, biomedical and food and beverage industries have stringent requirements for surface 

quality, while decorative applications may be more forgiving. 

 

 

6.5. Concluding remarks 

 

• The prediction tool operates as expected on initial surface roughness and solution 

parameters collected from the dataset. 

 

• The RMSE error of the prediction tool was at its lowest for baths 1, 2, and 3, owing to their 

high electrical conductivity and low viscosity. It may be concluded that the accuracy of the 

tool predictions is not significantly compromised by adding a fresh electrolyte of a slightly 

different composition to a heavily-used bath. 
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• The performance of the prediction tool experienced a decline as the polishing baths 

diverged further from the previously studied electrolytes. It was, however, shown that the 

RMSE of the prediction tool remained acceptable in previously unexplored scenarios, such 

as the presence of different types of metal impurities in the bath or the use of the polishing 

bath on a metal different from the one originally intended for the electrolyte. 

 

• Despite the decrease in the prediction tool's accuracy with the deterioration of the polishing 

bath and the increase in its viscosity, the tool remains sufficiently reliable to serve as an 

initial reference point for rapidly estimating appropriate polishing parameters.  

 

• The highest prediction error of the tool was exhibited for the case of refreshing a 

moderately-used solution with pure sulfuric acid. However, the increase in the tool's 

prediction error in a situation as extreme as eliminating one of the acids from the polishing 

bath was still found to be within a reasonable range. 

 

• The most substantial prediction error of the tool was observed in the extreme case of 

replenishing the polishing bath with only one of the acids. Nevertheless, even for such a 

radical change in the polishing bath, the increase in the tool's prediction error was still 

found to be within a reasonable range. 

 

• Despite the promising performance of the prediction tool in anticipating the final surface 

roughness and brightness of samples electropolished with different parameters across 

various bath states, it does not predict the appearance of common surface defects 

encountered in the electropolishing industry, such as the orange peel effect or gassing 

streaks. As previously shown in Chapter 4, use of I-V plots derived from electropolishing 

tests conducted at varying voltages for a fixed duration can aid in predicting, at different 

bath states, the polishing voltages at which these defects may appear. By integrating these 

two tools, a complete picture of the expected outcomes of the polishing process for 

different part and bath conditions and process parameters can be attained. 
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7. Outlook 
 

In this chapter some of the potential future research avenues are proposed for wider application of 

the findings presented in this study. 

 

7.1. Extending the scope of the study 
 

The results of this project proved for the first time that it is indeed possible to predict the proper 

parameters (to achieve a desired outcome) for an electrochemical process based on the current bath 

state. The prediction tool developed in this project demonstrated excellent precision by matching 

the precision of Ra surface roughness and H20 brightness measurements (0.01 µm and 12 GU 

prediction error vs. 0.01 µm and 16 GU measurement error).  

Furthermore, as demonstrated in Chapter 6, the prediction tool is highly robust, as seen by its 

adequate performance even in situations quite far from the dataset. The prediction tool was found 

to be tolerant of severely contaminated electrolytes or even the electropolishing of other metals in 

the bath. Given the promising performance of the tool, we can begin to build upon it and unlock 

its potential for various applications. 

Due to time constraints, this project only considered a simple case of one type of polishing bath 

and metal. It seems, however, quite possible that a similar model be developed for other 

combinations of metals and polishing baths. Power and water usage for processing and washing 

each item can also be recorded for cost-per-part estimations. All this data may be combined in a 

sizable dataset to be used later for finding the best polishing parameters that not only produce the 

desired surface finish but also guarantee the least amount of energy or water consumption or bath 

pollution. Of course, training the models takes longer with such large datasets. Alternatively, more 

time-efficient models can be utilized to build the prediction tool. 

 

7.2. Increasing the size of the dataset for better generalization 

 

An important benefit of using a data-driven strategy for personalization and quality control of 

electropolishing services is the capacity for continuous improvement. As more polishing 

operations are conducted, additional data is collected from the process, and the machine learning 

model becomes more capable of detecting the subtle patterns in the dataset that may not have been 

apparent initially. As a result, the model makes more precise predictions and is better equipped to 

generalize its learning to new, unseen data.  

The prediction tool developed in this study has the capacity to learn from previous experience and 

improve with size of the dataset. To illustrate this capacity, the tool was trained on increasing 

portions of the dataset points and its root mean squared error (RMSE) distribution in prediction of 
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different target variables based on 100 train-test-splits of the dataset was plotted. Figure 7.1 presents 

the RMSE error of the tool as a function of the dataset size for 3 samples electropolished at 3 

different bath states. As can be noted in the plots, the RMSE of the prediction tool decreases as the 

number of electropolished samples grows. It must however be emphasized that the dataset 

constructed in this study was large enough to allow the prediction tool to reach the precision of 

roughness measurements, which is the best possible outcome as the prediction cannot be more 

accurate than the process itself. 

 

 
 

Figure 7.1. Variation of the tool RMSE error in prediction of Ra_after, Rq_after, and Rz_after with 

increasing the size of the dataset. 
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7.3. Application of the K Nearest Neighbors (KNN) algorithm 
 

 

Creating a smart electropolishing process necessitates regular monitoring and recording of bath 

and part parameters. Aside from the ability to improve with a growing dataset, the ideal prediction 

tool should not require complete retraining when new data points are received. In applications 

where new data constantly arrives, a model capable of incremental learning can easily adapt to the 

dynamic changes of the production environment and maintain its performance. Therefore, in the 

context of smart electropolishing operations where new data is continuously collected from various 

sources such as roughness measurements or bath temperature sensors, incremental learning can 

help the prediction tool adjust to the changing bath conditions and preserve the consistency of the 

surface quality. This ongoing learning process can lead to better decision-making and prediction 

accuracy. 

During the training phase, "eager" machine learning algorithms (also known as model-based 

algorithms) build a specific model that summarizes the correlations and patterns in the dataset to 

make predictions on new, unseen data. A "lazy" or instance-based machine learning algorithm, in 

contrast, doesn't learn a specific function or make generalizations while training on the dataset. 

Instead, it stores the entire training dataset in memory and makes predictions by comparing new 

data points to the existing training examples 1. Since lazy learning algorithms can easily 

incorporate new data without the need to rebuild the entire model, they are well suited for 

continuous data streaming applications. 

As a model-based learning algorithm, Random Forests actively builds and trains decision trees 

during the training phase and then combines the predictions of these trees to make more accurate 

and robust predictions for new data. Therefore, the Random Forests model has to be continually 

retrained as the dataset evolves. The k-Nearest Neighbors (KNN) algorithm, on the other hand, as 

the most common lazy learning algorithm, determines the k nearest data points from the training 

dataset based on a similarity metric (Euclidean distance) to predict a new data point. This approach 

is thus especially useful in scenarios where new data points are constantly added to the dataset 

since it does not need to be completely retrained to make predictions on these new points. This 

approach may also be further improved by optimizing the similarity metric used by the KNN 

model. For example, rather than relying on the Euclidean distance (as we have done in 5), a 

distance-weighted strategy may be implemented. In this approach, higher weights are assigned to 

the nearest neighbors and lower weights to the more distant neighbors 129. This ensures that the 

influence of closer neighbors on the final prediction or decision is more pronounced, while still 

allowing for some consideration of information from more distant neighbors. 

Retraining the Random Forests model is not an issue for the dataset constructed in this study, but 

larger datasets might require employing more efficient models. Although the KNN model proved 

 
1 If the dataset becomes so large it can no longer fit into the memory, tools from the field of Big-Data will have to be 

used (e.g. distributed data processing systems such as Apache Sparks) 
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less precise than the Random Forests model, it can nevertheless facilitate incremental learning for 

the smart electropolishing process. Figure 7.2 displays the RMSE error of the KNN algorithm as 

a function of the dataset size for the 3 samples discussed in Figure 7.1. Compared to the Random 

Forests model, the KNN algorithm is easier to employ with a growing dataset. It is only necessary 

to confirm that the algorithm's k value is still acceptable when additional data points are received. 

However, after the dataset has grown large enough, we expect the k value remains constant. 

 

 

Figure 7.2. Variation of the KNN model RMSE error in prediction of Ra_after, Rq_after, and 

Rz_after with increasing the size of the dataset. 
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7.4. Software architecture for actual deployment of the prediction tool in 

production 
 

Actual deployment of the prediction tool in an electropolishing facility can be realized by 

automated data streaming pipelines. These pipelines allow for real-time ingestion, processing, and 

analysis of production data as it flows through the system. Therefore, they enable prompt response 

to changing process conditions and rapid decision-making. Data streaming systems require a 

sophisticated software architecture for controlling the connection and collaboration of various 

system components as well as collecting, storing, and processing the data. In Figure 7.3 we 

illustrate a proposed software architecture that can be deployed on-premise (the electropolishing 

facility) or in the cloud to effectively use the prediction tool developed in this project. In the 

perception layer, sensors or programmable machines that interact with the physical production 

environment collect the data from monitoring of equipment, processes, and events. The connection 

layer connects various system components with different data formats, communication protocols, 

and interfaces. It employs a combination of hardware and software tools to ensure effective 

communication and smooth data flow between various system components. The acquired data is 

then forwarded to the aggregation layer, where Apache Kafka distributed streaming platform 2 

may be used for real-time data ingestion and processing. The messaging pattern between different 

components of a data streaming architecture determines how data is exchanged and processed 

within the system. Using Kafka Connect framework, the Kafka cluster connects to external 

systems to import and export data using the Publish-Subscribe (Pub-Sub) messaging paradigm. In 

this framework, source connectors receive data from sensors (publishers) and feed them into 

different topics. Sink connectors gather the data from the topics and make them available to 

consumers (subscribers) who have expressed interest in a specific topic. In the storage layer, the 

ingested production data is distributed across a cluster of one or more machines (brokers) that are 

responsible for storing and managing the data. This way, if one machine fails or needs to be 

updated, the complete production data will not be lost, and the Kafka cluster continues to function. 

The data can also be distributed in cloud systems in different locations for extra precaution. Data 

preparation operations like data cleansing and rearrangement are handled by the computation layer. 

Sink connectors then transfer the preprocessed data to databases, data warehouses, or other 

external systems for applications and reporting. The application layer then provides notifications, 

machine learning algorithms, and visualization tools for monitoring and analyzing real-time data. 

Finally, the data will be forwarded to the business layer, where insights into the process are 

generated and acted upon based on predefined criteria. Implementing the prediction tool with such 

modern architecture can enable time and cost-effective process optimization, automate the quality 

control process, and reduce the plant's dependence on a qualified workforce willing to work in 

hazardous polishing environments. 

 
2 Originally developed by LinkedIn, it was donated to the Apache foundation by LinkedIn in 2011. 
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8. Conclusion 
 

Throughout this thesis journey, we have advanced our understanding of the effect of electrolyte 

aging on the outcomes of electropolishing process achieving meaningful insights into the role of 

bath state and polishing process parameters in determining the ultimate surface finish of the 

electropolished parts.  

Most importantly, we have diligently pursued the objectives set forth in the introduction chapter: 

 

• Establishing a methodology for quantifying the state of an aging bath and determining 

relevant electrolyte properties: 

 

We proposed that, in the context of deteriorating the performance of a polishing bath over 

extended use, it is more appropriate to replace the concept of bath "age" with bath “state." 

The latter term offers a clearer reflection of the complex processes a bath undergoes during 

its service life, whereas the former can be misleading, as the number of treated parts or the 

total ampere-hours of polishing treatment have a lesser influence on a bath's polishing 

performance compared to its usage and replenishment history. 

We were also able to identify the relevant physicochemical properties of the polishing bath 

(namely, the specific gravity, electric conductivity, and viscosity), which can effectively 

characterize its condition at any given point during its service life.  These properties were 

selected not just for their impact on the bath's performance but also for their suitability for 

rapid and straightforward on-line measurement in industrial electropolishing facilities, 

eliminating the need for intricate equipment or extensively trained personnel. 

 

• Exploring the possibility of employing the physicochemical properties considered relevant 

to the state of the polishing bath for maintaining the consistency of electropolishing results: 

After establishing the importance of closely monitoring and controlling the bath's 

physicochemical properties for achieving consistent and high-quality electropolishing 

results, it was concluded that these properties are not the sole determinants of the 

electropolishing process's outcome. It was proven through experimental results that with 

the same set of polishing parameters, conducting straightforward measures to compensate 

electrolyte aging, like modification of the applied polishing potential or re-adjusting bath 

composition, cannot assure uniform polishing results. These properties, however, may be 

used in conjunction with correct process parameters (such as the polishing voltage and 

time) to achieve consistent electropolishing outcomes. This conclusion highlighted the 

necessity for a data-driven approach to identify the suitable process parameters for 

obtaining a target surface finish at a given bath state. 
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• Building a comprehensive dataset of the polishing process parameters and resulting 

surface qualities: 

We constructed a comprehensive and balanced dataset, incorporating a substantial quantity 

of data points derived from numerous electropolishing experiments conducted at different 

bath conditions. The distribution of electric conductivity and viscosity of the polishing 

baths indicated that adequate instances of each bath state were included without excessive 

emphasis on any specific state. Analysis of the dataset also revealed the most influential 

parameters affecting the final surface quality of the electropolished parts. 

 

• Developing a tool to predict the optimum process parameters for achieving a target surface 

quality at a given bath state: 

 

We evaluated a variety of machine learning algorithms to assess their accuracy in 

summarizing the constructed dataset. Out of the algorithms considered, the Random 

Forests model emerged as the most accurate, predicting the surface roughness and 

brightness of the electropolished samples with the lowest Root Mean Square Error 

(RMSE). This precision of the Random Forests model was shown to match our surface 

roughness measurement precision, which is the highest precision attainable for a model. 

The precision of the model in predicting the final surface brightness was also found to be 

very close to our surface gloss measurement precision. 

We also evaluated the prediction tool in terms of its predictive power and generalization 

capability to unseen scenarios. The tool was found to be highly tolerant of variations in the 

polishing electrolytes. It was also shown that even in scenarios that significantly deviate 

from the dataset, the prediction tool remains sufficiently robust to serve as an initial 

reference point for quickly estimating appropriate polishing parameters. 

 

• Developing a tool to identify the polishing voltages associated with the occurrence of 

surface defects at different bath conditions: 

 

We generated a series of current-voltage plots by recording the polishing current for 

samples electropolished at various bath states and under different polishing voltages for 

the same duration. Upon examining the surfaces of these samples, we successfully 

identified a specific region within their I-V plots that correlates with the occurrence of 

common surface defects encountered in the electropolishing industry, including the orange 

peel effect and gassing streaks. We consequently deduced that these current-voltage plots 

can be employed at various bath states to determine the polishing voltages most likely to 

induce these surface defects. Upon the application of the developed prediction tool for 

determining the process parameters required to attain the desired surface finish, these I-V 

plots can serve as a supplementary tool to avoid using process parameters that might lead 

to the emergence of surface defects. When combined, these two tools offer a 
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comprehensive understanding of the electropolishing results for different bath states and 

process parameters. 
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10. Appendix 
 

In the following examples, various models were compared with regard to their performance in 

predicting the relative surface roughness of the parts (Ra_rel, Rq_rel, and Rz_rel). 

 
Figure 10.1. The linear regression model used for the prediction of Ra-rel, Rq-rel, and Rz-rel. 
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Figure 10.2. The KNN model used for the prediction of Ra-rel, Rq-rel, and Rz-rel. 
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Figure 10.3. The Random Forests model used for the prediction of Ra-rel, Rq-rel, and Rz-rel. 
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Figure 10.4. The Voting Regressor ensemble used for the prediction of Ra-rel, Rq-rel, and Rz-rel. 
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Figure 10.5 presents the distribution of the models’ Root Mean Squared Error (RMSE) in 

predicting various target variables across 100 different train-test splits of the dataset. All 

predictions were executed on the data from the test set. 

 

 

Figure 10.5. RMSE distribution of different models for prediction of Ra-rel, Rq-rel, and Rz-rel on the test 

set. 

 


