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Abstract

Using ChatGPT to Augment Software Engineering Chatbots Datasets

Khaled Badran

Chatbots are envisioned to bring about a significant shift in the realm of Software Engineering

(SE), enabling practitioners to engage in conversations and interact with various services using nat-

ural language. At the heart of each chatbot is a Natural Language Understanding (NLU) component

that enables the chatbots to comprehend the user’s queries. However, the NLU requires extensive,

high-quality training data (examples) to accurately interpret user queries. Prior work shows that the

creation and augmentation of SE datasets are resource-intensive and time-consuming. To address

this gap, we explore the potential of using ChatGPT to augment the SE chatbot training dataset.

Specifically, we evaluate the impact of retraining the NLU on ChatGPT’s augmented dataset on the

NLU’s performance using four widely used SE datasets. Moreover, we assess the syntactic and se-

mantic aspects of the generated examples compared to human-written examples. Additionally, we

conduct an ablation study to investigate the impact of each component in the prompt on the NLU’s

performance and the diversity of the generated examples. The results show that ChatGPT signifi-

cantly improves the NLU’s performance, with F1-score improvements ranging from 3.9% to 11.6%.

Moreover, we find that ChatGPT-generated examples exhibit syntactic diversity while maintaining

consistent semantics (2.2% on average) across all datasets. Additionally, the results indicate that

including a few human-written examples and a description of the intent’s objective in the prompt

impacts the quality of the generated examples. Finally, we provide implications for practitioners

and researchers of SE chatbots.
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Chapter 1

Introduction

Software chatbots perform various software engineering (SE) tasks, from answering techni-

cal questions Abdellatif, Badran, and Shihab (2020); Xu, Xing, Xia, and Lo (2017) and refactoring

code Wyrich and Bogner (2019), to eliciting user feedback and assisting newcomers to a project Ser-

rano Alves, Wiese, Chaves, and Steinmacher (2022). Practitioners can easily interact with chatbots

using natural language, making them quite useful for handling tedious tasks. At the core of each

chatbot lies a natural language understanding component (NLU) that enables the chatbot to com-

prehend the queries posed by users. In other words, the NLU extracts structural information (the

user’s intent) from unstructured text (user query).

To enhance the NLU’s ability to extract the intent from the user’s query, chatbot practitioners

provide the NLU with training examples. These examples capture the various ways users might

phrase the same question. For instance, the training examples: ªHow many commits do we have?º

and ªGive me the commit countº have the same intent (i.e., ask about the number of commits) but

different syntax. Prior work shows that training the NLU with high-quality training examples (i.e.,

training data) improves its performance in correctly understanding user queries Abdellatif, Badran,

Costa, and Shihab (2021), ultimately enhancing user satisfaction with the chatbot.

However, chatbot developers often have to manually craft and augment these high-quality train-

ing examples. This process is not only time-consuming but also resource-intensive. In fact, previous

studies indicate that collecting and augmenting training data for the NLU is one of the most difficult

tasks when building a chatbot Abdellatif, Badran, and Shihab (2020); Abdellatif, Costa, Badran,
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Abdelkareem, and Shihab (2020); Dominic, Houser, Steinmacher, Ritter, and Rodeghero (2020a).

Such challenges lead to a scarcity of high-quality training data, with concrete consequences in real

life. For instance, Dominic et al. Dominic et al. (2020a) reported that the lack of training data limited

their chatbot’s performance. Similarly, the developers of the MSRBot faced difficulties in providing

accurate answers to certain user queries due to the scarcity of training examples Abdellatif, Badran,

and Shihab (2020). In light of the struggles associated with augmenting training examples, and their

impact on the progress of SE chatbots, it is crucial to support chatbot developers in this task.

Recently, OpenAI released ChatGPT, which has revolutionized many fields, including SE. Chat-

GPT is a Large Language Model (LLM) that has been trained using Reinforcement Learning from

Human Feedback (RLHF) Wu et al. (2023), helping it set new benchmarks in several NLP chal-

lenges, including the generation of human-like text OpenAI (2023a). Within the SE domain, recent

studies have showcased the effectiveness of ChatGPT in various tasks, such as code generation

YetisËtiren, ÈOzsoy, Ayerdem, and TÈuzÈun (2023), unit test generation Yuan et al. (2023), bug repro-

duction Joshi et al. (2022), and program repair Cao, Li, Wen, and chi Cheung (2023). This highlights

ChatGPT’s ability to grasp a wide range of SE contexts and their unique terminologies (e.g., ‘bugs’

referring to an ‘issue’). Moreover, ChatGPT excels in few-shot learning scenarios OpenAI (2023a),

which means that it can provide a valuable response even with limited or no prior examples. Given

these qualities, ChatGPT presents as a promising solution to assist developers in augmenting their

training datasets. However, its effectiveness in this specific task remains unexplored.

In this thesis, we present the first work exploring the potential of using ChatGPT to augment SE

chatbot training datasets and empirically evaluating its performance on this task. To achieve this,

we design a prompt comprising four components: ‘Intent Name’, ‘Intent Definition’, ‘Intent Exam-

ples’, and ‘Task Boundaries’ (conditions to ensure that ChatGPT generates diverse output) to guide

ChatGPT in generating additional training examples. Next, we assess the contribution of adding

the generated examples to (i.e., augmenting) the initial dataset to the NLU’s performance. We use

four SE datasets in our evaluation: 1) Repository, focusing on project-related data exploration (e.g.,

ªWhich developer fixed more bugs in TopicPartitionTest fileº), 2) Stack Overflow, encompassing

software development questions commonly asked and answered by practitioners (e.g., ªHow to
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load data from Excel file to SQL database?º), 3) Ask Ubuntu, containing the most popular ques-

tions from the Ubuntu Q&A community on Stack Exchange (e.g., ªHow to upgrade Ubuntu 9.10

to 12.10 via terminal?º), and 4) MSA, which covers Microservices environment questions (e.g., ªI

want to know the health data for my server.º). Additionally, we examine the quality of the generated

examples both in terms of their similarity to human-written ones, and whether they preserve the

intent used in the prompt. Moreover, we investigate the impact of each prompt component on the

generated examples by ChatGPT.

1.1 Thesis Overview

The remainder of the thesis is organized as follows. Chapter 2 reviews literature and studies that

are related to our area of research, including chatbots in software engineering, data augmentation,

and the application of ChatGPT in this field. Chapter 3 provides an overview of chatbots and

explains related concepts used throughout this thesis. Chapter 4 outlines the methodology employed

in our work, including the selection of datasets, the process of prompt engineering for ChatGPT, and

the use of the ChatGPT model in conjunction with the Rasa NLU platform. Chapter 5 presents our

main results in three parts:

• Chapter 5.1 attempts to answer our first research question ªCan ChatGPT’s generated ex-

amples improve the NLU’s performance?º We find that ChatGPT generates, on average,

10 new examples per intent. Training the NLU using the augmented examples significantly

improves its performance, with improvement ranging from 3.9% to 11.6% in F1-score.

• Chapter 5.2 addresses the question ªHow well do the generated examples reflect real-world

examples?º Here we find that ChatGPT’s generated examples show syntactic differences

when compared to human-written ones. Specifically, examples from the Stack Overflow

dataset stand out as the most distinct, with a BLEU-1 score of 28.5%, while those from the

Repository dataset closely mirror human examples, with a BLEU-1 score of 48.9%. Nonethe-

less, 92.2% of generated examples preserve the intent on average. This highlights ChatGPT’s

ability to preserve the intent while introducing syntactic diversity.
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• Chapter 5.3 tackles the research question ªWhat factors influence the performance of

ChatGPT when generating examples?º We find that the ‘Intent Definition’ and ‘Intent

Examples’ prompt components are important to generate useful examples that improve the

NLU’s performance. Additionally, including ‘Intent Examples’ in the prompt leads to a higher

similarity between ChatGPT’s generated examples and human-written ones.

Chapter 6 dives deeper into our findings, examining the effect of different temperature settings

on the NLU’s performance and exploring the impact of using only ChatGPT-generated examples

for training the NLU. This chapter concludes with a discussion of the broader implications of our

research for practitioners and researchers. Chapter 7 discusses potential limitations and threats to

validity in this thesis, while Chapter 8 concludes the thesis and presents future research directions.

1.2 Thesis Contributions

This thesis makes the following contributions to practitioners and the research community:

• To the best of our knowledge, this is the first work that investigates the use of ChatGPT for

augmenting SE chatbot training datasets.

• We conduct an empirical evaluation across four distinct SE datasets, offering insights into

ChatGPT’s generative capabilities in diverse contexts for the SE domain.

• We provide actionable recommendations to SE chatbot practitioners aiming to harness Chat-

GPT in their workflows.

• We make our replication package publicly available to enable replication and encourage fur-

ther studies by the chatbot community Zenodo (2023).
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Chapter 2

Related Works

Since the goal of this thesis is to explore the potential of using ChatGPT in augmenting training

datasets for SE chatbots, we discuss the related work in three areas: work that studies chatbots in

the SE domain, work that focuses on dataset augmentation, and work that leverages ChatGPT to

perform various SE tasks.

2.1 Dataset Augmentation

Many researchers evaluate approaches that augment datasets for text classification Amin-Nejad,

Ive, and Velupillai (2020); S. Y. Feng, Gangal, Kang, Mitamura, and Hovy (2020); Imran, Jain,

Chatterjee, and Damevski (2023); Marivate and Sefara (2020); Rizos, Hemker, and Schuller (2019);

Wei and Zou (2019). For example, S. Y. Feng et al. (2020) evaluated different approaches, such as

random insertion and semantic text exchange, to augment text data using Yelp Reviews dataset. The

results demonstrated that augmentation methods improve GPT-2’s performance in various aspects

of text generation. For instance, the Type-Token Ratio (TTR) score improved from 0.7173 to 0.7420

after augmentation.

Amin-Nejad et al. (2020) evaluated the use of Transformer models for augmenting medical

datasets, particularly datasets related to discharge summaries of patients. The authors experiment

with state-of-the-art Transformer models, including GPT-2, to generate new training data and eval-

uate their effectiveness in enhancing two clinical NLP tasks: unplanned readmission prediction
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and phenotype classification. The study demonstrates that the generated data, while not as high in

quality as the original, can significantly improve performance in specific tasks like readmission pre-

diction, especially when used with models like BioBERT that are pre-trained on biomedical texts.

Imran et al. (2023) tackled the challenge of data scarcity related to emotion recognition tasks in

GitHub issues and pull requests. The authors focused on enhancing the performance of SE-specific

emotion classifiers by employing data augmentation techniques. They propose and evaluate three

different augmentation strategies (Unconstrained, Lexicon-based, and Polarity-based) to generate

augmented training data. These strategies aim to enhance the emotional polarity of text while in-

troducing more diverse syntax. The study demonstrates an average improvement of 9.3% in micro

F1-Score across three existing emotion classification tools when trained with the Polarity-based

augmentation strategy.

Sharifirad, Jafarpour, and Matwin (2018) proposed an approach that generates new training

examples by replacing words in the dataset with their synonyms and definitions using ConceptNet

and Wikidata. They evaluated their approach to the sexiest tweet dataset using Long Short-Term

Memory (LSTM) Networks and Convolutional Neural Networks (CNNs). The results show that

augmenting data by replacing all words in the dataset improves the models’ classification.

Marivate and Sefara (2020) investigated the impact of different text augmentation methods on

short text classification. The authors employed three datasets, including social media and formal

news articles, to study the effects of four augmentation approaches, namely, WordNet-based syn-

onym, Word2vec-based, Round Trip Translation, and mixup augmentation. They found that the

mixup strategy leads to improved performance across all text-based augmentations and reduces

overfitting in deep learning models.

Rizos et al. (2019) developed novel data augmentation techniques for short text classification,

particularly for hate speech detection. The study proposed three augmentation methods: synonym

replacement based on word embedding vector closeness, warping of word tokens along the padded

sequence, and class-conditional recurrent neural language generation. They evaluated their ap-

proach using several deep-learning architectures and hate speech databases. Their results indi-

cated that the proposed augmentation techniques significantly improve hate speech detection per-

formance. The most notable improvements were observed in multi-class hate speech detection,
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where their proposed framework outperformed the baseline models, achieving a 5.7% increase in

Macro F1-score.

The previous studies focused on comparing different augmentation approaches for text classifi-

cations. Our work differs from and complements the prior work in two ways. First, we concentrate

on augmenting training datasets for SE chatbots. Second, the main goal of this thesis is to explore

the potential of using ChatGPT to augment SE datasets. Thus, it helps chatbot practitioners by pro-

viding easy accessibility and not requiring any pretraining, distinguishing it from other approaches

suggested in prior work. This distinction is particularly significant given the scarcity of SE bench-

marks for intent classification. Finally, our work complements the studies augmenting text and

contributes to that body of research by providing a thorough evaluation of ChatGPT’s performance

in augmenting SE datasets.

2.2 ChatGPT for Software Engineering

Recently, several studies have explored the potential of using ChatGPT for various Software

Engineering tasks Ahmed et al. (2023); Ebert and Louridas (2023); Y. Feng et al. (2023); Mad-

digan and Susnjak (2023); Ozkaya (2023). Ahmed et al. (2023) conducted a large-scale study at

Microsoft exploring the usefulness of large language models (like ChatGPT) in the context of in-

cident management for cloud services. The researchers leveraged several LLMs from OpenAI to

root-cause and suggest mitigation steps on more than 40,000 cloud incidents at Microsoft. The in-

cident owners were then asked to evaluate the usefulness of the responses generated by the LLMs.

The findings reveal that the majority (over 70%) of incident owners find the LLM response to be

useful for root-causing and mitigating cloud-related incidents.

Y. Feng et al. (2023) investigated the code generation performance of ChatGPT using a crowd-

sourcing approach, where they analyzed 316K relevant tweets and 3.2K Reddit posts. The results

highlight that users leverage ChatGPT to generate code in various programming languages, with

Python being the most popular. Using LDA topic modelling, the researchers report 17 distinct top-

ics where ChatGPT code generation ability is applied, including debugging, testing, and interview

preparation. Finally, the study highlights that the attention on ChatGPT remained consistent over
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time, indicating that users find ChatGPT to be helpful for code generation.

Maddigan and Susnjak (2023) proposed an end-to-end approach called NL2VIS, which con-

verts natural language examples into visualizations. More specifically, NL2VIS leverages Large

Language Models (e.g., ChatGPT) to generate Python scripts that visualize data based on the user’s

queries. The results show that NL2VIS outperforms state-of-the-art tools that use symbolic NLP

and deep learning techniques to visualize data.

J. Zhang, Chen, Niu, Wang, and Liu (2023) conducted an empirical evaluation of ChatGPT’s

performance in retrieving requirements information from SE documents. The study focused on

zero-shot settings, where ChatGPT was not pre-trained or fine-tuned for specific requirements en-

gineering (RE) tasks. The evaluation framework designed by the authors includes a combination

of two popular information retrieval (IR) tasks and two common types of artifacts used in RE (e.g.,

software requirements specification). The results show that ChatGPT’s performance in classifying

requirements statements matches that of the baseline with an average F Measure of 0.84, indicat-

ing a strong capability in understanding and categorizing requirements. However, when extracting

features from app descriptions, ChatGPT exceeded the baseline’s average F Measure, scoring 0.75

against the baseline’s 0.54, demonstrating a significant improvement in identifying key features

from app descriptions.

Sun et al. (2023) evaluated the performance of ChatGPT in automatic code summarization tasks

compared to state-of-the-art code summarization models. The authors used a Python dataset from

the CodeSearchNet corpus to conduct this evaluation. The findings indicate that although ChatGPT

is capable of performing code summarization and generating detailed comments, it falls short in

BLEU and ROUGE-L metrics compared to leading models. For example, ChatGPT achieved a

BLEU score of 10.28 and a ROUGE-L score of 20.81, whereas CodeT5 scored 20.0 and 37.7 in

these metrics, respectively. However, in terms of the METEOR score, ChatGPT’s performance

(14.4) is nearly on par with other models, like CodeT5, which scored 14.7. The paper highlights

ChatGPT’s limitations and opportunities for improvement in generating concise, relevant comments

for code summarization in SE.
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Li et al. (2023) explored the effectiveness of ChatGPT in identifying failure-inducing test cases

in software programs. Initially, the study reported that ChatGPT was only 28.8% successful in locat-

ing the correct failure-inducing test cases for buggy programs. The low performance was attributed

to ChatGPT’s struggle in distinguishing certain nuances that often lead to bugs, such as subtle code

differences. To address this weakness, the authors introduced a novel approach called ‘Differential

Prompting’. This approach aims to help ChatGPT with the task of identifying failure-inducing test

cases by dividing it into three sub-tasks: program intention inference, program generation, and dif-

ferential testing. The study then compared this approach to conventional ChatGPT prompting and

the state-of-the-art Python unit test generation tool (i.e., PYNGUIN). The results reveal that ‘Differ-

ential Prompting’ significantly outperforms other techniques in finding failure-inducing test cases.

For instance, when applied to QuixBugs programs, ‘Differential Prompting’ achieved a success rate

of 75.0%, outperforming the best baseline by 2.6 times. Furthermore, for Codeforces programs, the

success rate of ‘Differential Prompting’ was 66.7%, which is 4 times higher than the baseline.

Our work both differs and complements prior studies in several ways. First, we explore the

application of ChatGPT to augment the datasets of SE chatbots. To the best of our knowledge, this

is the first work to employ ChatGPT for this domain. Furthermore, our work contributes to the

body of work on ChatGPT’s generative abilities in SE by providing insights into the performance of

ChatGPT in various SE contexts (e.g., repository-related questions, etc). Additionally, our findings

shed light on some challenges that need to be addressed by the community.

2.3 Software Engineering Chatbots

A number of studies propose chatbots to support practitioners in their development tasks Ab-

dellatif, Badran, and Shihab (2020); Serrano Alves et al. (2022); Wolfinger, Fotrousi, and Maalej

(2022); N. Zhang et al. (2022).

Wolfinger et al. (2022) developed a chatbot designed to elicit contextual information from user

feedback on software applications. This chatbot, built using the Rasa NLU platform, aims to ad-

dress the challenge of collecting valuable, informative, and actionable feedback from user responses,
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which are often vague. Lastly, this chatbot significantly streamlines the feedback process by gener-

ating structured reports for development teams, thereby enhancing the review and prioritization of

user feedback. The chatbot can elicit 13 different contextual information items from user conversa-

tions, significantly reducing the time and resources needed to review user feedback. In a case study

with a large German company, the chatbot accurately detected 96.8% of contextual information,

compared to only 31.3% in traditional surveys. Moreover, the manual effort required for extract-

ing or verifying this information with the chatbot was about four times less than that required for

surveys.

Serrano Alves et al. (2022) proposed a chatbot that assists newcomers in selecting appropriate

tasks in Open Source Software (OSS) projects. The chatbot filters the available tasks to match the

users’ skills. To evaluate the chatbot, the study involved 40 participants and compared the chatbot

with the traditional GitHub issue tracker interface. The results highlighted that users found the

chatbot to be easier to use than the GitHub issue tracker, with a mean perceived ease of use score

of 4.55 for the chatbot compared to 4.18 for the GitHub issue tracker. Furthermore, users indicated

that the chatbot was particularly beneficial for newcomers and less experienced contributors.

Saini, Mussbacher, Guo, and Kienzle (2020) developed a chatbot, called DoMoBOT, that gener-

ates domain models from problem descriptions in natural language. Moreover, it allows modellers

to interact with the bot for swift updates to the extracted domain models.

N. Zhang et al. (2022) developed Chatbot4QR, a chatbot that assists practitioners in refining

their search queries on Stack Overflow to retrieve more relevant questions to the user. More specifi-

cally, the chatbot detects missing technical details in queries and interacts with users to help clarify

these missing details. This work evaluated Chatbot4QR through six user studies with 25 partic-

ipants. The results indicated that Chatbot4QR responds quickly to participants, with an average

response time of 1.3 seconds. Moreover, for 48% to 88% of the given tasks, interacting with Chat-

bot4QR led to more desired results compared to using standard search engines, such as Google and

Stack Overflow.

Abdellatif, Badran, and Shihab (2020) developed a chatbot, called MSRBot, that answers soft-

ware repository-related questions. The proposed chatbot was designed using five components: user

10



interaction, entity recognizer, intent extractor, knowledge base, and response generator. The effec-

tiveness of the bot was validated through a case study involving 12 participants. The study reported

that the MSRBot significantly outperformed manual methods in terms of helping the participant

complete the tasks (i.e., task completion rate). The chatbot also helped the participants to complete

the tasks faster (i.e., shorter completion time). The majority of the participants (90%) found the

MSRBot chatbot to be useful or very useful.

Xu et al. (2017) introduced AnswerBot, which assists software developers in finding relevant

information. More specifically, AnswerBot automatically generates summaries of answers to de-

velopers’ technical questions from Q&A sites like Stack Overflow. The chatbot was designed to re-

trieve relevant questions, select useful answer paragraphs, and generate diverse answer summaries.

To validate the effectiveness of their approach, the authors conducted user studies using a dataset

of Java-related questions and their corresponding answers. The results demonstrated AnswerBot’s

ability to provide relevant, useful, and diverse summaries, with mean relevance, usefulness, and di-

versity scores of 3.450, 3.720, and 3.830 respectively, outperforming conventional search methods.

The growing interest in developing chatbots to support developers in their daily tasks inspires

our work, with the goal of assisting practitioners in augmenting datasets to train their chatbots.

We believe that our work highlights the usefulness of using ChatGPT in augmenting SE training

datasets. Thus, chatbot practitioners can focus on the core functionalities of their chatbots rather

than augmenting the training dataset.
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Chapter 3

Background

3.1 NLUs and Training Data

A vital component to any chatbot is the Natural Language Understanding (NLU) component.

The NLU takes the user’s input, identifies the intent behind it, and then guides the chatbot to the next

steps. For example, if a developer asks, ºHow many commits were introduced in the last week?º,

the NLU’s job is to determine that the user is inquiring about the number of commits in a specific

period. Once this intent is understood, the chatbot can provide an appropriate response or solution.

The ability of the NLU to accurately interpret the intent behind user’s message relies heavily on the

quality of the training dataset. In other words, the better the training examples, the better the NLU

becomes at classifying the user’s intent.

Figure 3.1 illustrates a typical training dataset for an NLU. The dataset consists of various in-

tents, each accompanied by multiple examples. These examples reflect the diverse ways a user

might express a particular intent. For instance, to train the NLU to identify the intent ‘GetNum-

berOfCommitsByDate’, the dataset includes training examples such as ªDetermine the number of

commits that happened in the past 30 daysº and ªNumber of commits last yearº. These examples

both ask about the same intent (‘GetNumberOfCommitsByDate’) but differ syntactically. The vari-

ety in the training data allows the NLU to capture the intent behind the user’s message, regardless

of how it’s phrased.

To obtain training datasets for chatbots, practitioners often utilize publicly available datasets
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for their chatbot domain. Additionally, where data is scarce, chatbot developers often resort to

crafting the training examples manually, a process that consumes much of their time and effort.

Lastly, chatbot developers can augment their training dataset using examples from authentic user

interactions with the chatbot.

Figure 3.1: NLU Training Data.

3.2 ChatGPT

ChatGPT is a large language model from the GPT (Generative Pre-trained Transformer) family

of models, developed by OpenAI. This model has shown excellent performance in the domain of

text generation OpenAI (2023a). ChatGPT’s proficiency lies in its ability to generate coherent,

contextually relevant text, making it a promising tool for diverse applications.

ChatGPT employs a transformer architecture, which means it uses layers of attention mecha-

nisms to capture contextual information from input data over various distances. Nonetheless, what

sets this model apart is its training methodology. It was trained using Reinforcement Learning from

Human Feedback (RLHF). In this approach, initial model outputs are ranked by humans, and the

model then fine-tunes itself based on this feedback to produce better results. This method ensures

that the model generates outputs that are closely aligned with human preferences, making it more

effective and context-aware.

OpenAI facilitates interactions with ChatGPT through both an API and a UI, providing users
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with flexibility in their mode of engagement. However, it’s worth noting that ChatGPT’s output is

not deterministic, meaning that repeated queries may result in different responses.

Within the software engineering landscape, ChatGPT has also been established as an important

tool that can help practitioners in various tasks such as code and test generation. In this thesis, we

aim to further explore ChatGPT’s effectiveness in generating training examples for SE chatbots.
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Chapter 4

Methodology

ChatGPT Initial 
Dataset

Construct 
prompts

Extract 
Information

Prompt

Merge

Repository

Dataset Selection

Stack 
Overflow

MSA Ask Ubuntu

Augmentation

Augmented 
Dataset

Figure 4.1: Overview of the methodology. Only one dataset (e.g., Repository) is selected for aug-

mentation at a time.

The goal of this thesis is to empirically explore ChatGPT’s potential in augmenting SE chatbots’

training datasets. Figure 4.1 presents an overview of the case study we conduct in this thesis. We

start by selecting four human-written datasets for SE chatbots. From here, we choose one dataset

to augment at a time. We derive essential information from the dataset (e.g., intent definition) to

formulate prompts for ChatGPT. These prompts are designed to guide ChatGPT in producing new

training examples that complement the existing dataset. We then merge these ChatGPT-generated

examples with the initial (human-written) dataset. Lastly, we evaluate the effectiveness of this
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augmentation process based on the performance gains observed on an NLU platform. This section

outlines the SE datasets employed in our evaluation, details the specific prompt we send to ChatGPT,

and explains the experimental settings.

4.1 Dataset

To assess the potential of ChatGPT in augmenting SE datasets, we choose four datasets, namely,

Repository, Stack Overflow, Ask Ubuntu, and MSA that have been used in prior work Abdellatif et

al. (2021); Abdellatif, Badran, and Shihab (2020); Braun, Hernandez Mendez, Matthes, and Langen

(2017); Lin, Ma, and Huang (2020). Furthermore, the selected datasets represent questions that

cover various SE tasks, such as working with software repositories or managing microservices.

Table 4.1 presents the intents, their corresponding definitions, and the number of training examples

associated with each intent in the four datasets. In what follows, we provide a description of each

dataset:

• Repository: This corpus is used to train the MSRBot Abdellatif, Badran, and Shihab (2020),

a chatbot designed to answer developers’ questions about their software repositories, such

as ªWhat commits resolved the bug ticket KAFKA 1521º from the ‘FixingCommitsFor-

BugTicket’ intent. The dataset contains both the examples written by the MSRBot devel-

opers, and queries posed by users to evaluate the MSRBot. In total, the dataset contains ten

intents and 398 training examples.

• Stack Overflow (SOF): This dataset captures a range of software development questions that

developers ask. Ye et al. (2016) collected questions posted under the most popular tags on

Stack Overflow. Subsequently, Abdellatif et al. (2021) labelled these questions (used later as

training examples) and categorized them into different intents, one of which is ‘FacingError’.

This intent encompasses use cases where developers encounter exceptions and are seeking

solutions (e.g., ªPHP mysqli query returns empty error messageº). The StackOverflow dataset

comprises five intents and 215 examples.

• Ask Ubuntu: Braun et al. (2017) collected some of the most popular questions from the
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Table 4.1: Intent names, definitions and number of examples.

Dataset Intent Definition Examples

Repository

BuggyCommitsByDate Present the buggy commit(s) which

happened during a specific time period.

79

IntroducedBugsByCommit Identify the bugs that are introduced be-

cause of certain commits.

61

MostFileContainsBugs Determine the most buggy files in the

repository to refactor them.

50

FixingCommitsForBugTicket Identify the commit(s) which fix a spe-

cific bug.

42

FixingCommitsIntroducedBugs Identify the fixing commits that intro-

duce bugs at a particular time

39

GetNumberOfCommitByDate Identify the number of commits that

were pushed during a specific time pe-

riod.

32

GetDevelopersWho-

HasExperianceToFixBug

Identify the developer(s) who have ex-

perience in fixing bugs related to a spe-

cific file.

29

MostDeveloperHasOpenedBugs Determine the overloaded developer(s)

with the highest number of unresolved

bugs.

24

GetCommitsInfoAbout-

SpecificClass

View details about the changes that oc-

curred on a file.

22

GetCommitBodyByDatePeriod Present the commit information (e.g.,

commit message) at a specific time.

20

SOF

LookingForCodeSample Looking for information related to im-

plementation (e.g., code snippets).

132

UsingMethodImproperly An improper use of a method is causing

unexpected behaviour.

51

LookingForBestPractice Looking for the recommended (best)

practice, approach or solution for a

problem.

12

FacingError Facing an error or a failure in a pro-

gram, mostly in the form of an error

message.

10

PassingData Passing data between different frame-

works or method calls.

10
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Dataset Intent Definition Examples

Ask Ubuntu

SoftwareRecommendation Questions seeking suggestions for spe-

cific software or tools that can be used

in Ubuntu to perform certain tasks or

meet specific needs.

57

MakeUpdate Questions related to upgrading or up-

dating software or versions in Ubuntu,

specifically regarding the decision to

upgrade or steps involved in upgrad-

ing.

47

ShutdownComputer Questions about the proper methods

and techniques to shut down the com-

puter in Ubuntu, including considera-

tions for different scenarios and user

sessions.

27

SetupPrinter Questions about configuring and set-

ting up printers in Ubuntu, includ-

ing troubleshooting printer recogni-

tion, wireless setup, and instructions

for specific printer models.

23

MSA

ServiceInfo Browsing a service’s information. 12

ServiceUsingInfo Tracking the usage of a service. 14

ServiceApiList Reading the API documentation for a

service.

11

ServiceEnv Viewing t+he environmental settings

of a service.

8

ServiceHealth Checking the service health status. 10

ServiceDependencyGraph Viewing the service dependency graph

for all Microservices in a project.

10

ServiceOnly Setting and viewing the service for a

Microservice project

12

LastBuildFail Understanding the reason behind the

build failure for a service.

6
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Ubuntu Q&A community on Stack Exchange, a popular online discussion forum. Then, they

annotated the intent of those questions through Amazon Mechanical Turk. An instance of a

training example from this dataset is ªHow to upgrade Ubuntu 9.10 to 12.10 via terminal?º

from the ‘MakeUpdate’ intent. This dataset includes 154 examples, split into four intents

(e.g., ‘Make Update’). We excluded the ‘Other’ intent from our evaluation due to the insuffi-

cient number of examples (i.e., three) for our evaluation.

• MSA: Lin et al. (2020) introduced the MSA dataset, used to train the MSABot, a chatbot to

assist with developing Microservice architectures. Practitioners can ask the MSABot about

their microservice environment settings (i.e., ‘ServiceEnv’) using a query like ªTell me the

server’s environment settingº. This dataset consists of eight intents captured using 83 training

examples.

4.2 Prompt Engineering

Prompt engineering refers to the way of phrasing the question to large language models, and it

plays a critical role in the quality of the model’s response Reynolds and McDonell (2021). To design

the prompt for our evaluation, we follow the best practices outlined in the official OpenAI guidelines

for creating prompts OpenAI (2023b). More specifically, OpenAI’s guidelines recommend splitting

complex tasks into simpler subtasks. Therefore, we split the complex task of augmenting a full

dataset into simpler tasks of augmenting one intent at a time. The guidelines also highlight that the

prompt can incorporate instructions on the required actions for ChatGPT, contextual information

regarding the task, input data to steer the model, and output indicators. Following these instructions,

we design our prompt to include the following components:

• Intent Name: OpenAI recommends incorporating any important context in the prompt to

obtain more relevant outcomes. The first obvious information is the intent name. It acts

as a unique identifier for that intent (similar to a variable name in programming) and often

captures the goal of the intent (e.g., ‘LookingForBestPractice’).

19



• Intent Definition: A comprehensive description of the intent’s objective, clarifying the exam-

ples it is designed to answer. The definition of the intent provides more contextual information

to the large language model. In this thesis, we use the intent name and definition as defined

in the original studies Abdellatif et al. (2021); Abdellatif, Badran, and Shihab (2020); Braun

et al. (2017); Lin et al. (2020) that construct the datasets. Notably, when intent definitions

were not available, the first author formulated the definitions based on the intent’s training

examples. These definitions were subsequently reviewed by the second author for accuracy.

• Intent Examples: Training examples for the intent written by the developers of the chatbot.

These examples help the model better comprehend the intent and generate similar training

data. Prior work refers to the addition of this component as a few-shot scenario Reynolds and

McDonell (2021), which involves giving the large language models a sample of the expected

output.

• Task Boundaries: To ensure that the ChatGPT model generates a diverse set of examples that

are relevant to the intent, we add the task parameter component. More specifically, the task

boundaries explicitly instruct the model to yield diverse output while preserving the intent.

(i.e., ªEnsure the generated examples maintain the intent and are diverse.º).

Lastly, we follow the recommended practice of specifying the output format by adding the

sentence ªReturn the answer as a numbered list.º to the prompt. A template of the complete prompt

is presented here:
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Generate training examples for the intent {Intent_name}. The

intent is described as follows: {intent_description}. Here are

some pre-existing training examples for this intent:

- {training_example_1}

- {training_example_2}

- ...

Ensure that the generated examples are diverse, relevant, and

aligned with the intent description and the provided examples.

Return the answer as a numbered list.

4.3 ChatGPT Model

To conduct our evaluation, we chose Open-AI’s GPT-3.5-turbo as our ChatGPT model, primar-

ily because of its robustness and proficiency in understanding and generating natural language Ope-

nAI (n.d.). Notably, GPT-3.5-turbo is the model utilized when users interact with ChatGPT through

its user interface (UI). This means that our work closely mirrors the experiences and outcomes that

practitioners can expect when using ChatGPT through the UI. Furthermore, the model was trained

on data up to September 2021, and it has been used in similar work Dong, Jiang, Jin, and Li (2023);

Tihanyi et al. (2023). We access the model via its API, as it allows for a higher number of requests.

Moreover, using this model is cost-effective, which encourages replication of our work by other

researchers. Lastly, we use the default parameters recommended by OpenAI when interacting with

the model.
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4.4 Rasa NLU platform

There are many NLU platforms that seamlessly integrate with third-party applications, such as

Google’s Dialogflow and IBM Watson. Among these options, we select Rasa v3.5.4 in our eval-

uation, which was the latest version available during our evluation. Our decision to employ Rasa

stems from its popularity and extensive adoption within both the research and practitioner com-

munities Dominic, Houser, Steinmacher, Ritter, and Rodeghero (2020b); Lin et al. (2020). Rasa

stands out as an open-source and free NLU solution that can be easily installed and run locally. This

ensures that the Rasa’s implementation remains consistent throughout our evaluation, unlike other

NLUs. Thus, it facilitates the replication of our work by other researchers. Additionally, prior work

shows that Rasa delivers performance comparable to other NLU platforms (e.g., Dialogflow) Ab-

dellatif et al. (2021). In our evaluation, we use the default pipeline recommended by Rasa when

training the NLU model.
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Chapter 5

Results

In this section, we will discuss the motivation, approach and results of each research question.

5.1 RQ1: Can ChatGPT’s generated examples improve the NLU’s

performance?

Motivation: Prior work shows that crafting a training dataset for SE chatbots is a tedious task

that consumes significant resources and requires costly effort Abdellatif et al. (2021); Abdellatif,

Badran, and Shihab (2020); Dominic et al. (2020a). This often results in insufficient training data,

hindering the chatbot’s capability to comprehend users’ queries effectively. ChatGPT shows poten-

tial in automating a range of SE tasks Ahmed et al. (2023); Ebert and Louridas (2023); Y. Feng et al.

(2023); Ozkaya (2023). In this research question (RQ), we set out to examine the potential of using

ChatGPT to augment SE training datasets, and how this impacts the performance of the chatbot’s

NLU. In addition to resource savings, the automated augmentation of training examples lowers the

barrier to entry for developing SE chatbots.

Approach: To answer this research question, we conduct a case study that emulates a real-life

scenario where chatbot developers have a few initial training examples (i.e., initial dataset) and

want to further augment their training dataset to enhance the NLU’s performance. Therefore, we

randomly select three training examples per intent to obtain an initial dataset. Notably, we reserve

any examples not selected for the initial dataset for a separate, held-out test set. Then, we use
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Table 5.1: The number of generated examples per intent by ChatGPT.

Dataset Repository SOF Ask Ubuntu MSA

Min 5.0 5.0 10.0 5.0

Max 20.0 25.0 20.0 20.0

Mean 9.9 10.2 10.2 10.0

Median 10.0 10.0 10.0 10.0

the initial dataset to construct the prompts for each intent, as discussed in Section 4.2. Next, we

query ChatGPT using the filled prompts to generate new training examples. Finally, we merge (i.e.,

augment) the generated examples with the initial dataset to obtain the augmented dataset.

To explore the potential of ChatGPT in augmenting the training datasets for SE chatbots, we in-

vestigate the performance gain of the NLU. Specifically, we train the NLU on the augmented dataset

and evaluate its performance using the held-out test set, considering the weighted average F1-score

as our evaluation metric. Notably, when measuring the contribution of the generated examples to the

NLU’s performance, we utilize the same test set to evaluate both the initial and augmented exam-

ples. Given that ChatGPT responses might vary for the same prompt, we conduct our experiment 50

times to mitigate the influence of this randomness on our findings and report the average of all runs.

Additionally, we employ a nonparametric unpaired Mann-Whitney U test to assess the statistical

significance of our results. We follow the same evaluation procedure for the four datasets discussed

in Section 4.1.

Results: Table 5.1 presents statistics of generated examples per intent for all datasets. The results

show that ChatGPT can generate at least 5 and up to 25 new examples for each intent. Chatbot

practitioners can benefit from having multiple generated examples, as they can select the most

suitable subset to augment their dataset with. Interestingly, the number of examples augmented

by ChatGPT remains consistent across the majority of intents and all datasets (a median of 10

examples per intent). This occurs despite not specifying the number of examples to generate in our

prompt, which highlights a level of consistency and stability in the generative process of ChatGPT.

Nonetheless, the consistent number of examples might also imply potential internal constraints in

diversity or creativity, as the model seems to default to a specific pattern of generation.
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Figure 5.1: Improvement to NLU’s performance (F1-score) when using augmented examples.

Table 5.2 presents a sample of the human-written examples (from the initial dataset) and Chat-

GPT’s generated examples, alongside their corresponding intents for all datasets. The examples in

the table highlight ChatGPT’s ability to generate training examples that are syntactically different

from the initial examples. For instance, the intent ‘FixingCommitsForBugTicket’ from the Repos-

itory dataset has the initial example ªWhat commits resolved the bug ticket KAFKA 1521º and

ChatGPT generated the example ªTell me which commit(s) resolved the bug ticket PQR-654º for

this intent.

Figure 5.1 presents the improvement in the NLU’s performance when trained on the augmented

examples (depicted in green), contrasting it with the NLU’s performance without augmentation.

From the figure, we observe that using the augmented examples by ChatGPT improves the NLU’s

performance across all datasets. The performance gain ranges from 3.9% in the Repository dataset

to 11.6% in the Stack Overflow dataset. Moreover, the improvement in the NLU performance across

all datasets is statistically significant, as confirmed by a Mann-Whitney U-test (p− value < 0.05),

which underscores the reliability of the results. Our findings highlight that ChatGPT can generate

new examples that contribute to the NLU’s performance, reducing the manual efforts required in
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creating training examples.

ChatGPT consistently generates an average of 10 examples per intent. Training the NLU using

the examples generated by ChatGPT enhances the NLU’s performance across all datasets, with

performance gains ranging from 3.9% to 11.6%. Our findings underscore the effectiveness of

using ChatGPT to augment datasets for SE chatbots.

5.2 RQ2: How well do the generated examples reflect real-world ex-

amples?

Motivation: NLU providers recommend training the NLU on examples that exhibit syntactic diver-

sity while possessing similar semantics Dialogflow (n.d.). Therefore, in this RQ, we first measure

the similarity between human-written examples and those generated by ChatGPT. This analysis will

examine whether ChatGPT simply duplicates the examples written by humans, or does in fact gen-

erate new examples. Moreover, we measure whether the generated examples preserve (or deviate

from) the intent from the prompt. This analysis aims to give chatbot practitioners insight into the

quality of output they can expect when using ChatGPT’s generated examples.

Approach: To evaluate the similarity between the examples generated by ChatGPT and those in

the initial training dataset (i.e., crafted by humans), we apply two similarity metrics on the output of

RQ1. These metrics have been used in prior work Ahmed et al. (2023); Mastropaolo et al. (2021),

and are defined as follows:

(1) Bilingual Evaluation Understudy (BLEU): BLEU metric measures the similarity between

machine-generated and human-written text by counting the matching n-grams between them.

The resulting BLEU score ranges between 0% and 100%. A lower BLEU value suggests

that the generated examples are syntactically distinct from the initial (i.e., human-written)

examples. In contrast, higher BLEU values indicate greater similarity between the generated

and human-written examples. Prior work in SE often uses the BLEU-4 variant Ahmed et al.

(2023); Mastropaolo et al. (2021); however, some examples in our datasets have less than four
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Table 5.2: A sample of human-written and ChatGPT-generated examples.

Dataset Intent Human-Written Examples ChatGPT-Generated Examples

Repository FixingCommitsForBugTicket What commits resolved the bug ticket KAFKA 1521 - Tell me which commit(s) resolved the bug ticket

PQR-654

- Which commits addressed the issue STU-321?

- List all the commits that resolved the bug ticket

ABC-123

SOF LookingForCodeSample I need to get Facebook photo stream into my appli-

cation using their Facebook id javascript

- How can I implement a login system in Python us-

ing Flask and SQLAlchemy?

- Is there a way to implement a pagination system in

AngularJS for displaying large datasets?

- How can I validate an email address using regular

expressions in C#? Any code snippets available?

Ask Ubuntu MakeUpdate How to upgrade Ubuntu 9.10 to 12.10 via terminal? - Can you provide a step-by-step guide on upgrading

Ubuntu Server from version 18.04 to 20.04?

- How can I upgrade from Ubuntu 20.04 to Ubuntu

20.10 using the command line?

- Can you guide me on upgrading Ubuntu 16.04 LTS

to the latest version?

MSA ServiceEnv Tell me the server’s environment setting. - What is the current environment setup of the

server?

- I would like to know the environment setting of the

server.

- Can you provide me with the server’s environment

details?

2
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tokens (e.g., ªAPI listº training example from the ‘ServiceApiList’ intent), which presents a

limitation when computing this variant. Thus, we compute four variants of the BLEU metric,

namely, BLEU-1, BLEU-2, BLEU-3, and BLEU-4.

(2) Recall-Oriented Understudy for Gisting Evaluation (ROUGE): Measures the overlap of

words, phrases, or sentences between the machine-generated and a human-written (reference)

text and has been used by prior work in SE Ahmed et al. (2023); Mastropaolo et al. (2021).

The ROUGE score, like BLEU, ranges from 0% to 100%. A higher percentage indicates

a closer resemblance between the generated and initial (human-written) examples. In our

evaluation, we use ROUGE-L, which computes the longest common subsequence between

the machine-generated and reference text.

First, for each intent, we compute the similarity metric (e.g., BLEU) for each pair of generated

and initial examples. Next, we determine the mean similarity score for all pairs, an approach com-

monly referred to as pairwise mean similarity. Finally, we compute the weighted average similarity

for the entire dataset, taking into consideration the number of augmented examples per intent.

in the datasets discussed in Section 4.1.

Intent Preservation. To assess how well the generated examples preserve the intent in the

prompt, we randomly sample the generated examples from each dataset with a confidence level of

95% and a confidence interval of 5%. Our random sample size for each dataset yields a total of

1,367 examples: 359 for the Repository, 333 for Stack Overflow, 351 for MSA, and 324 for Ask

Ubuntu. The first author annotates the sampled examples to determine if they uphold the intent

(i.e., the intent used in the prompt to generate the sampled examples). Then, the second author

randomly samples 50 examples from each dataset (totalling 200 examples) to ensure the accuracy

of the labels. Both annotators refer to the intent name, definition, and initial examples to understand

the purpose of each intent before proceeding with the annotation. In case there is a disagreement,

both annotators revisit the examples and discuss them to reach an agreement. Furthermore, to

measure the reliability of the annotations, we calculate the Cohen kappa score based on the 200

examples labelled by both annotators. Our analysis yields a Cohen kappa score of 0.63, indicating

a substantial agreement between the annotators. Notably, this Cohen kappa score is higher than the
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one documented in prior work Abdellatif, Costa, et al. (2020).

Results: Table 5.4 presents the similarity scores between the initial and generated examples for each

dataset (measured using the BLEU and ROUGE scores) and the percentages of augmented examples

preserving the intent. From the table, we find that the generated examples in the Stack Overflow

dataset are the most distinct (i.e., low similarity) compared to the initial ones, with BLEU-1 and

ROUGE-L scores of 28.8% and 11.7%, respectively. Among all datasets, the augmented examples

in the Repository dataset show the highest similarity to the initial ones, with a BLEU-1 score of

48.7% and ROUGE-L score of 21.7%. The augmented examples in the Ask Ubuntu and MSA

datasets reveal moderate similarity with the initial examples, having BLEU-1 scores of 43.8% and

40.1%, respectively. These moderate to low similarity scores highlight ChatGPT’s effectiveness

in generating syntactically distinct examples, as opposed to replicating the initial human-written

examples.

To gain deeper insights into the results, we manually examine the examples generated by Chat-

GPT. We observe that the scope of the intent considerably influences the diversity of the generated

examples. For instance, the examples pertaining to the ‘FixingCommitsForBugTicket’ intent from

the Repository dataset are narrowly focused, as they mainly inquire about fixing commits for spe-

cific bugs (e.g., ªTell me which commit(s) resolved the bug ticket PQR-654º and ªWhich commits

addressed the issue STU-321?º). Conversely, the examples of the ‘LookingForCodeSample’ intent

from the Stack Overflow dataset have a wider scope, inquiring about code snippets that implement

various functionalities across different programming languages (e.g., ªHow to create a JS object

from scratch using an HTML button?º and ªHow to manipulate a BLOB in Java?º). In other words,

the intents in the Stack Overflow dataset are broader than those in the Repository dataset, leading

ChatGPT to generate a more diverse range of examples compared to the initial dataset.

For preserving the intent in the generated examples, the results (except the MSA dataset) show

that there is a high degree of intent preservation overall, as shown in Table 5.4. For example,

99% of the generated examples in the Ask Ubuntu dataset preserve the intent. On the other hand,

80% of the generated examples in the MSA dataset are aligned with their intents. Upon closer

examination of the generated examples in the MSA dataset, we find that the generated examples that

are misaligned with the intent often ask about the ‘How’ instead of the ‘What’. For instance, in the
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Table 5.4: Similarity and intent preservation of augmented examples. All scores are percentages.

Repository SOF Ask Ubuntu MSA

BLEU-1 48.9 28.5 43.8 40.1

BLEU-2 20.5 10.4 16.6 15.8

BLEU-3 9.0 3.9 6.5 6.4

BLEU-4 3.9 1.5 2.5 2.6

ROUGE-L 27.6 11.5 23.3 21.6

Intent preservation 96.7 93.1 99.1 79.8

‘ServiceUsingInfo’ intent (e.g., ªWhat’s the GroceryInventory’s using overview?º), the generated

example ªHow can I monitor the usage for the GroceryInventory service?º is misaligned with the

intent.

Building on the insights from RQ1, where we found that ChatGPT enhances the NLU’s perfor-

mance, our current results demonstrate that ChatGPT is also capable of generating examples with

distinct syntax (i.e., low similarity compared to the initial examples) while preserving the semantics

(i.e., intents). This emphasizes the potential of using ChatGPT to augment SE chatbot datasets.

ChatGPT generates a range of examples that have syntactic diversity while possessing similar

semantics across all datasets. Moreover, the intent’s scope influences the similarity between

the initial and augmented examples.

5.3 RQ3: What factors influence the performance of ChatGPT when

generating examples?

Motivation: Previous studies show that large language models are sensitive to the input prompts Reynolds

and McDonell (2021). In our evaluation, we design a prompt that includes four components; the

‘Intent Name’, ‘Intent Definition’, ‘Intent Examples’, and ‘Task Boundaries’, as discussed in Sec-

tion 4.2. In this RQ, we set out to perform an ablation study to investigate the impact of each

component in the prompt on the NLU’s performance and the diversity of the generated examples.

This analysis provides insights to chatbot practitioners on the significance of each component in the

prompt when augmenting training datasets for SE chatbots using ChatGPT.
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Table 5.5: The NLU’s performance and example similarity when removing prompt components.

All scores are percentages.

Repository SOF Ask Ubuntu MSA Avg

F1-score

Full Prompt 83.8 47.0 91.2 87.3 77.3

w/o Intent Name 82.6 (-1.2) 44.1 (-2.9)* 90.6 (-0.6) 86.5 (-0.8) 75.9 (-1.4)

w/o Intent Definition 84.1 (+0.3) 43.7 (-3.3)* 89.7 (-1.5)* 85.5 (-1.8) 75.7 (-1.6)

w/o Intent Examples 83.4 (-0.4) 43.9 (-3.1)* 88.1 (-3.1)* 87.4 (+0.1) 75.7 (-1.6)

w/o Task Boundaries 83.4 (-0.4) 45.8 (-1.2) 91.4 (+0.2) 87.3 (0.0) 77.0 (-0.3)

BLEU-3

Full Prompt 9.0 3.9 6.5 6.4 6.4

w/o Intent Name 9.0 (0.0) 4.0 (+0.1) 6.3 (-0.2) 6.2 (-0.2) 6.4 (0.0)

w/o Intent Definition 9.4 (+0.4)* 4.4 (+0.5)* 6.1 (-0.4)* 7.0 (+0.6)* 6.7 (+0.3)

w/o Intent Examples 6.6 (-2.4)* 3.7 (-0.2)* 5.8 (-0.7)* 4.4 (-2.0)* 5.1 (-1.3)*

w/o Task Boundaries 9.7 (+0.7)* 4.0 (+0.1) 6.6 (+0.1) 7.0 (+0.6)* 6.8 (+0.4)

Approach: To study the impact of each prompt component on the NLU’s performance and the simi-

larity of the generated examples, we successively remove one component (e.g., ‘Intent Name’) from

the full prompt shown in Figure. Using the modified prompt, we follow the same evaluation process

described in RQ1 to measure the impact of the augmented examples on the NLU’s performance. We

then employ the BLEU and ROUGE metrics from RQ2 to calculate the similarity between the initial

and the generated examples. We follow the same process for all datasets discussed in Section 4.1.

We use the nonparametric unpaired Mann-Whitney U test to determine the statistical significance

of the results when each component is removed, compared to results from the full prompt. While

we evaluate all BLEU and ROUGE-L scores, we only showcase BLEU-3 in this RQ. Nonetheless,

we include the results for all BLEU and ROUGE-L scores in the appendix A.

Results:

From Table 5.5, we find that the ‘Intent Definition’ and ‘Intent Examples’ components have a

significant effect on the NLU’s performance (-1.6% in F1-score on average). The impact of remov-

ing either of these components is more pronounced in the Stack Overflow and Ask Ubuntu datasets,

where removing one of these components leads to a drop in performance of up to -3.3% in F1-score.

These findings highlight the relative importance of the ‘Intent Definition’ and ‘Intent Examples’

components in generating effective examples that enhance the NLU’s performance. One possible
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reason for this observation is that these two components are the most informative, offering richer

context to ChatGPT and guiding it toward generating more valuable examples. Unsurprisingly, ex-

cluding the ‘Task Boundaries’ and ‘Intent Name’ components has a negligible impact (except for

removing the intent name in the Stack Overflow dataset) on the NLU’s performance across datasets.

Excluding the intent name leads to a drop in performance of -1.4% on average, while removing the

task boundaries component leads to a drop of -0.3% in performance on average. This is likely be-

cause the ‘Task Boundaries’ and ‘Intent Name’ components offer relatively less context to ChatGPT

in comparison to the ‘Intent Definition’ and ‘Intent Examples’ components.

From Table 5.5, we find that the ‘Intent Definition’ and ‘Intent Examples’ components have a

significant effect on the NLU’s performance, with an average decrease in F1-score by -1.6%. The

impact of removing either of these components is more pronounced in the Stack Overflow and Ask

Ubuntu datasets, where the removal of one of these components leads to a drop in performance of

up to -3.3% in F1-score. These findings underscore the relative importance of the ‘Intent Defini-

tion’ and ‘Intent Examples’ components in generating effective examples that enhance the NLU’s

performance. One possible reason for this is that these two components are the most informative,

providing richer context to ChatGPT and guiding it to generate more valuable examples. Unsurpris-

ingly, excluding the ‘Task Boundaries’ and ‘Intent Name’ components has a negligible impact on

the NLU’s performance across datasets, except when removing the ‘Intent Name’ in the Stack Over-

flow dataset. Excluding the ‘Intent Name’ results in an average performance drop of -1.4%, while

removing the ‘Task Boundaries’ component leads to an average drop of -0.3% in performance. This

minor impact may be because the ‘Task Boundaries’ and ‘Intent Name’ components offer relatively

less context to ChatGPT compared to the ‘Intent Definition’ and ‘Intent Examples’ components.

When examining the diversity of the generated examples, we find a significant reduction in sim-

ilarity (in terms of BLEU scores) across all datasets upon the exclusion of ’Intent Examples’ as

depicted in Table 5.5. In other words, removing the ‘Intent Examples’ yields generated examples

that are less similar to the initial examples. This phenomenon could be attributed to ChatGPT rely-

ing significantly on the intent examples when they are included in the prompt. Therefore, ChatGPT

generates examples that closely resemble the initial examples, leading to a higher level of similarity

between them. Furthermore, excluding the ‘Intent Definition’ component leads to an increase in
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example similarity across all datasets except for Ask Ubuntu. This is likely because removing the

‘Intent Definition’ makes ChatGPT put more emphasis on the ‘Intent Examples’ component, lead-

ing to generated examples that are more syntactically similar to the ‘Intent Examples’. Similar to

the performance results, the removal of the ‘Task Boundaries’ and ‘Intent Name’ components from

the prompt has a minor impact on the BLEU scores of the generated examples.

The ‘Intent Definition’ and ‘Intent Examples’ components play a crucial role in generating ex-

amples that closely resemble human-written ones and enhance the NLU’s performance. Con-

versely, the exclusion of the ‘Task Boundaries’ and ‘Intent Name’ components has a slight

impact on both the similarty of the generated examples and the NLU’s performance.
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Chapter 6

Discussion

In this section, we delve into the evaluation results to gain deeper insights into ChatGPT’s tem-

perature sensitivity, along with evaluating the performance of the NLU trained solely on ChatGPT-

generated examples. Finally, we provide a set of actionable recommendations to chatbot practition-

ers and researchers to achieve better NLU’s performance using ChatGPT.

6.1 Examining The Impact of Temperature on The NLU’s Performance

Table 6.1: F1-Score and Intent Preservation with varying temperature settings. All scores are per-

centages.

Score Temperature 0.0 0.5 1 1.5

F1-score

Repository 83.9 84.0 83.8 83.3

SOF 47.3 47.5 47.0 45.1

Ask Ubuntu 91.1 91.5 91.2 89.9

MSA 86.9 86.6 87.3 87.1

Avg 77.3 77.4 77.3 76.4

Intent Preservation

Repository 100.0 92.0 96.7 92.0

SOF 88.0 92.0 93.1 96.0

Ask Ubuntu 100.0 100.0 99.1 96.0

MSA 84.0 72.0 79.8 72.0

Avg 93.0 89.0 92.0 89.0
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Prior work highlights that the temperature parameter is an important factor that impacts Chat-

GPT’s response quality Ahmed et al. (2023). Ranging from 0.0 to 2.0, a lower temperature pro-

duces more deterministic output, while higher temperatures typically increase the randomness in

the response. Selecting the optimal temperature can benefit chatbot developers, as it may result in

generating higher quality training examples that improve the NLU’s performance. Therefore, in this

section, we explore the impact of using different temperature settings on the NLU’s performance.

To achieve this, we use the same evaluation process described in Section 5.1, while varying the

temperature to the values [0.0, 0.5, 1.0, 1.5, and 2.0].

Table 6.1 presents the NLU’s performance, measured using the weighted average F1-score,

when using different temperature values for ChatGPT. The results show that the NLU’s performance

remains constant overall when different temperatures are used. In other words, there is no signifi-

cant impact of using different temperature values on the NLU’s performance. To better understand

the impact of the temperature on the intent preservation of the generated examples, we manually

examined 400 examples (25 examples for each dataset, in each temperature). The results show that

there is no significant change in intent preservation per dataset across the different temperatures, as

shown in Table 6.1.

Interestingly, we observed that ChatGPT produced outputs that were excessively random and

challenging to parse when using a temperature value of 2.0. For example, ChatGPT often generated

full paragraphs of text instead of providing a list of training examples. Training the chatbot on

paragraphs might cause it to learn to mimic lengthy and formal language, potentially missing the

casual and short messages often anticipated in conversational interactions. Therefore, we excluded

the results obtained using a temperature value of 2.0 from our analysis.

Based on our findings, we recommend that chatbot practitioners opt for temperatures within

the range of [0 - 1.5] when employing ChatGPT to augment their chatbot dataset and avoid

excessively high temperature values (e.g., 2.0). Nevertheless, we advise practitioners to explore

the optimal temperature setting based on their specific context.
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6.2 Training the NLU Using the Generated Examples Only
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Figure 6.1: The NLU’s performance (F1-score) when using generated examples only compared to

human-written examples.

Augmenting the initial dataset with ChatGPT’s generated examples improves the NLU’s per-

formance, as discussed in RQ1. However, it is critical to understand the impact of solely relying

on generated examples (without augmenting them to the initial dataset). Therefore, we conduct an

analysis mirrors a real-world scenario where chatbot practitioners lack any initial examples, requir-

ing them to create a training dataset from scratch. In this analysis, we adopt a similar methodology

described in RQ1, with the distinction that we removed ‘Intent Examples’ from the prompt. To put

the results into perspective, we evaluate the NLU’s performance when trained on three initial (i.e.,

human-written) examples per intent, which serves as the baseline in this analysis. Additionally,

we randomly select three generated examples per intent from ChatGPT’s output to align with the

number of examples in the baseline, ensuring a fair comparison

Figure 6.1 presents the NLU’s performance when using ChatGPT’s generated examples only,

compared to the baseline. Overall, we find the NLU’s performance trained solely using ChatGPT’s

generated examples decrease compared to the baseline. For example, in the Repository dataset, the
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NLU’s performance drops by about half when using ChatGPT’ generated examples. This might

be attributed to the specificity inherent to these datasets, which might be difficult for ChatGPT to

capture without any examples in the prompt. For instance, in the intent ‘GetDevelopersWhoHas-

ExperianceToFixBug’ from the Repository dataset, the initial examples (e.g., ªWho is the top bug

fixing developer in relation to SetSchemaMetadata.javaº) possess specific context, focusing on indi-

vidual file names. On the other hand, ChatGPT’s generated examples, such as ªFind me developers

who are skilled in fixing bugs related to SQL filesº take on a broader scope, focusing on generic

programming languages and not files. In contrast, the Ask Ubuntu dataset experiences a moderate

drop in performance from 84.4% (baseline) to 72.4%, while the Stack Overflow dataset shows a

slight performance increase, moving from 35.4% (baseline) to 38.7%. The relatively higher per-

formance shown by these two datasets when using the generated examples only to train the NLU

can be attributed to the broad scope of intents in these datasets, which cover more generic questions

related to software development and using the Ubuntu operating system. This indicates ChatGPT’s

relative familiarity with programming and Ubuntu-related examples, which likely contributes to the

model’s ability to craft questions related to these topics.

Overall, our findings suggest that relying exclusively on ChatGPT’s generated examples tends

to yield lower performance compared to using human-written examples, though in some cases,

the performance gap is less pronounced. On the other hand, augmenting human-written ex-

amples with those generated by ChatGPT generated leads to more optimal performance, as

demonstrated in RQ1 (Section 5.1).

6.3 Implications

In the following, we discuss the implications of our results for practitioners and researchers.

6.3.1 Implications For Practitioners

Our results show that including the ‘Intent Examples’ and ‘Intent Definition’ in the prompt leads

to further improvement in the NLU’s performance after augmentation, as shown in RQ3. Although
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ChatGPT is trained on a massive amount of data, our results emphasize the importance of providing

ChatGPT with the relevant context in the prompt. Contextual details become more critical when

working on niche domains, primarily because ChatGPT tends to generalize when context is not

provided in the prompt. Practitioners should provide ChatGPT with the specific context of their

chatbot in the prompt, as it not only leads to improvement in the NLU’s performance but also

results in a more relevant output.

Our findings from RQ2 reveal that the majority (92.2% on average) of ChatGPT-generated ex-

amples successfully retain their intent. Nevertheless, a small fraction of these generated examples

do not align with the intent. Chatbot practitioners need to manually review the generated examples

to ensure they preserve their intent. Moreover, by reviewing ChatGPT’s generated examples, prac-

titioners can be inspired to craft additional examples that hadn’t been previously considered. This

iterative process, where ChatGPT’s output feeds into human ideation, could lead to a richer dataset.

Our results can help chatbot practitioners select the appropriate temperature setting for Chat-

GPT. Setting the temperature value too low results in more deterministic outcomes OpenAI (2023c),

which often leads to nearly identical responses for repeated prompts. This makes it challenging for

practitioners to obtain diverse sets of examples. On the other hand, setting the temperature value

too high can cause ChatGPT to produce responses that are both lengthy and random, as mentioned

in section 6.1. Thus, we recommend that practitioners aim for a moderate temperature setting (e.g.,

0.5, 1.0, and 1.5) to balance the variety and specificity of the generated examples. One possible ap-

proach is to begin with a lower temperature, given its tendency to generate less random responses.

Then, as ChatGPT’s generated examples begin to duplicate, to gradually increase the temperature.

The greater range of outputs at higher temperatures may not only help in reducing repetition but also

inspire practitioners to craft novel examples. Nonetheless, we encourage practitioners to investigate

the temperature values that yield the best outcomes for their specific application.

6.3.2 Implications For Researchers

Our findings show a consistent pattern in ChatGPT’s output, producing an average of ten exam-

ples, although there is no explicit number indicated in the prompt. These results open new research

directions related to the number of generated examples and their quality. For example, researchers
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can assess how specifying a desired number of examples in the prompt impacts both the quality of

examples and NLU’s performance after augmentation. Furthermore, we plan (and encourage re-

searchers) to study the relationship between the prompt’s components (e.g., ‘Intent Definition’ and

‘Intent Examples’) and the number of generated examples. Identifying the optimal number of ex-

amples to include in the prompt is another avenue for future research. It’s crucial to strike a balance

between providing sufficient context (i.e., enough examples) and overloading the model with infor-

mation, which might lead to less relevant responses. Thus, there is a need for approaches to select

which examples to include in the prompt. One approach could involve choosing examples that are

maximally different in their syntax, thereby encouraging the model to generate diverse responses.

This diversity might result in broader coverage of possible phrasings or structures, which in turn

could lead to more robust training datasets for chatbot development.

Although ChatGPT-generated examples improve the NLU’s performance, we observed that not

all generated examples align with the intent, making manual review necessary. This indicates a

need for post-processing techniques to vet and refine ChatGPT’s output. Such techniques could

automatically filter out generated examples that are misaligned with the intent, ensuring that only

relevant examples are retained. Moreover, they can filter out similar examples to ensure that the

remaining output is diverse. By implementing these techniques, developers can save the time and

effort otherwise spent on inspecting the generated examples.
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Chapter 7

Threats to Validity

In this section, we discuss the threats to internal, construct, and external validity of this thesis.

7.1 Internal Validity

Internal validity concerns factors that could have influenced our results. We manually label

a sample of ChatGPT’s generated examples to assess intent preservation. Manual labelling could

introduce bias due to its subjectivity. To mitigate this threat, we had multiple annotators label a

sample of the example and measured the interrater-agreement using the Cohen-Kappa test. We

found substantial agreement (Kappa = 0.63) among the annotators. Another threat to internal valid-

ity is that ChatGPT is based on a transformer-based architecture, which introduces randomness in

its responses. Thus, it might bias the results and conclusions in this thesis. To alleviate this threat,

we repeat our evaluation 50 times and report the average of the results to minimize the impact of

randomness.

7.2 Construct Validity

Construct validity considers the relationship between theory and observation, in case the mea-

sured variables do not measure the actual factors. We followed OpenAI’s guidelines and best prac-

tices to construct the prompt to generate new training examples OpenAI (2023b). However, using
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different templates might yield different output. We purposely decided to resort to OpenAI’s doc-

umentation to evaluate ChatGPT’s performance of a user that follows the online guidelines. Fur-

thermore, we plan to explore the impact of using different prompts on ChatGPT’s output in future

research.

7.3 External Validity

Threats to external validity concern the generalizability of our findings. To assess the influence

of ChatGPT-generated examples on the NLU’s performance, we conducted a case study utilizing the

Rasa platform. However, our findings may not necessarily apply to other NLUs (e.g., IBM Watson).

Rasa is a widely-adopted open-source NLU tool, and it has consistently exhibited performance

comparable to other NLUs Abdellatif et al. (2021). Furthermore, Rasa is frequently employed by

practitioners in the development of software engineering chatbots Lin et al. (2020). One additional

benefit of selecting Rasa is that it makes our work reproducible, as Rasa’s implementation stays

consistent. In our evaluation, we used four SE datasets; however, our results might not generalize

to other datasets. Nonetheless, these datasets represent a variety of tasks from the SE domain,

such as questions related to a project’s repository or development-related questions. Moreover,

these datasets have been used in similar studies to evaluate the NLU’s performance Abdellatif et al.

(2021); Braun et al. (2017).
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Chapter 8

Conclusion, Contributions, and Future

Work

This chapter presents the conclusion of the thesis, and discusses areas for future work.

8.1 Conclusion

Chatbots are gaining momentum within the SE domain, successfully performing various SE

tasks, such as code refactoring and answering technical questions, which results in resource sav-

ings. However, prior work shows a scarcity of training data, which hinders the chatbots’ ability to

comprehend users’ questions. Recently, ChatGPT has demonstrated its effectiveness in numerous

SE tasks. In this thesis, we explore ChatGPT’s potential in augmenting four SE datasets. More

specifically, we design a prompt comprising four different components (e.g., ‘Intent Definition’

and ‘Intent Examples’) to ask ChatGPT to generate new training examples. Then, we evaluate the

impact of using ChatGPT-generated examples on the NLU’s performance. We find that ChatGPT

generates training examples that improve the NLU’s performance, ranging from 3.9% to 11.6%.

Subsequently, we examined the similarity between ChatGPT’s examples and human-written ones

and assessed whether ChatGPT’s examples preserve the intent. Our findings reveal that while Chat-

GPT’s generated examples have syntactical differences from those written by humans, they largely
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(92.2% on average) preserve the intent. Furthermore, we observe that varying the temperature set-

tings in ChatGPT has minimal impact on the NLU’s performance. However, higher temperatures

can produce excessively random outputs. Our results show that ChatGPT can be a valuable tool for

chatbot practitioners looking to augment their datasets, especially during the initial stages of chatbot

development when there are limited training examples available.

8.2 Contributions

This thesis makes the following contributions to practitioners and the research community:

• To the best of our knowledge, this is the first work that investigates the use of ChatGPT for

augmenting SE chatbot training datasets.

• We conduct an empirical evaluation across four distinct SE datasets, offering insights into

ChatGPT’s generative capabilities in diverse contexts for the SE domain.

• We provide actionable recommendations to SE chatbot practitioners aiming to harness Chat-

GPT in their workflows.

• We make our replication package publicly available to enable replication and encourage fur-

ther studies by the chatbot community Zenodo (2023).

8.3 Future Work

Our work opens the door for future work in various areas:

8.3.1 Optimize the Augmentation Process with Post-processing Techniques

Using ChatGPT to augment SE chatbot datasets has the potential to streamline the chatbot de-

velopment process; however, manual review of the generated examples is still necessary. Future

work could focus on refining ChatGPT’s output by developing post-processing techniques to filter

out any undesirable examples, especially those with misaligned intents. This approach aims to en-

hance the efficiency and accuracy of the augmentation process, potentially leading to a significant
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reduction in the time and effort required by developers.

8.3.2 Explore the Effectiveness of Advanced Models like GPT-4

Our investigation into ChatGPT’s performance focused on the GPT-3.5-turbo model. However,

with the introduction of more advanced models like GPT-4 by OpenAI, there is a potential that using

these advanced models could lead to a more effective augmentation process. More specifically, these

models may have a better understanding of the provided context and may generate more relevant

output. In turn, this might lead to better NLU performance after augmentation and a higher quality

of generated examples. Considering that more advanced models tend to be costlier, future studies

could compare the effectiveness of different models against their associated costs.

8.3.3 Evaluate the Impact of Different Prompt Templates

While this thesis has explored the augmentation of SE datasets using a specific prompt template,

the impact of varying the prompt template on NLU’s performance and diversity of the generated

examples remains an open question. Future research could systematically analyze different prompt

phrasings and their impact on NLU performance. Additionally, investigating the optimal number

of human-written examples to include in the prompt, which may yield better results, is another

promising avenue. Such studies would offer valuable insights into how prompt design influences

the effectiveness of ChatGPT in the augmentation process.

8.3.4 Extend the Assessment Across Diverse SE Datasets

Our findings in this thesis have demonstrated the potential of ChatGPT in augmenting SE chat-

bot datasets. This opens up opportunities for future research to explore the use of ChatGPT in

augmenting datasets for other SE applications, such as requirement analysis. Priority could be

given to areas with text-based datasets and where data scarcity is a significant challenge.
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Appendix A

Appendix-A

In Chapter 5.3, we presented the results of removing individual components from the prompt

with regard to the F1-score and BLEU-3 metrics. In this appendix, we add detailed results from all

metrics, including BLEU-1 through BLEU-4 and ROUGE-L.
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Table A.1: The NLU’s performance and example similarity when removing prompt components.

All scores are percentages.

Scenario Repository SOF Ask Ubuntu MSA Avg

F1-score

Full Prompt 83.8 47.0 91.2 87.3 77.3

w/o Intent Name 82.6 44.1 90.6 86.5 75.9

w/o Intent Definition 84.1 43.7 89.7 85.5 75.7

w/o Intent Examples 83.4 43.9 88.1 87.4 75.7

w/o Task Boundaries 83.4 45.8 91.4 87.3 77.0

BLEU-1

Full Prompt 48.9 28.5 43.8 40.1 40.3

w/o Intent Name 49.0 28.6 43.3 39.9 40.2

w/o Intent Definition 50.2 30.4 42.0 41.6 41.1

w/o Intent Examples 43.0 27.8 41.5 31.5 36.0

w/o Task Boundaries 50.1 28.5 44.1 42.3 41.3

BLEU-2

Full Prompt 20.5 10.4 16.6 15.8 15.8

w/o Intent Name 20.5 10.5 16.3 15.5 15.7

w/o Intent Definition 21.3 11.4 15.7 16.8 16.3

w/o Intent Examples 16.6 10.0 15.3 11.6 13.4

w/o Task Boundaries 21.4 10.5 16.8 16.9 16.4
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Scenario Repository SOF Ask Ubuntu MSA Avg

BLEU-3

Full Prompt 9.0 3.9 6.5 6.4 6.4

w/o Intent Name 9.0 4.0 6.3 6.2 6.4

w/o Intent Definition 9.4 4.4 6.1 7.0 6.7

w/o Intent Examples 6.6 3.7 5.8 4.4 5.1

w/o Task Boundaries 9.7 4.0 6.6 7.0 6.8

BLEU-4

Full Prompt 3.9 1.5 2.5 2.6 2.6

w/o Intent Name 4.0 1.5 2.4 2.4 2.6

w/o Intent Definition 4.2 1.7 2.3 2.9 2.8

w/o Intent Examples 2.6 1.4 2.2 1.7 2.0

w/o Task Boundaries 4.4 1.5 2.6 2.9 2.9

ROUGE-L

Full Prompt 27.6 11.5 23.3 21.6 21.0

w/o Intent Name 27.5 11.6 22.4 21.3 20.7

w/o Intent Definition 29.1 13.3 21.4 23.3 21.8

w/o Intent Examples 20.5 9.6 19.4 13.9 15.9

w/o Task Boundaries 29.1 11.5 23.6 23.6 22.0
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