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Abstract

A 5G Security Recommendation System Based on Multi-Modal Learning and Large
Language Models

Jia Wei Yao

Deploying 5G networks on top of cloud-native environments provides unique benefits includ-

ing cost-effectiveness, flexibility, and scalability. However, the increased complexity of a cloud-

native 5G deployment also brings new security challenges to existing solutions for security moni-

toring and security auditing. A security analyst may need to analyze events coming from various

sources, such as security monitoring (e.g., Falco) and security auditing (e.g., Kubescape) systems

deployed at both the 5G and cloud (container) levels. Understanding the relationships between

events coming from those different sources is usually challenging since those security solutions

may have very different monitoring/auditing criteria and scopes. Relying on manual analysis and

domain knowledge may also be too slow and error-prone considering the sheer scale of a cloud-

native 5G deployment. In this paper, we propose 5GSecRec, a 5G security recommendation system

that leverages multi-modal learning to correlate alerts from four aspects of a cloud-native 5G de-

ployment, i.e., security monitoring and security auditing systems, deployed at both 5G/Kubernetes®

levels. Also, 5GSecRec further eases security analysts’ job by answering their questions expressed

in a natural language (e.g., “What is the impact of a Kubernetes alert on the 5G level?”) using

large language models (LLMs) fine-tuned with the learned knowledge about correlated alerts. We

implement 5GSecRec based on free5GC, Kubernetes, and LLMs from HuggingFace, and our ex-

perimental results demonstrate the effectiveness of our solution (e.g., up to 89.5% of correlation

accuracy, and comparable question-answering performance to ChatGPT but without data confiden-

tiality and privacy concerns).
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Chapter 1

INTRODUCTION

This chapter describes the context and problem, discusses the research gap, presents our moti-

vation, outlines our solution, and provides an overview of the thesis organization.

1.1 Context and Problem Statement

The cloud-native technology (i.e., the design, implementation, and deployment of applica-

tions in cloud environments [1]) can empower telecommunication providers to provide more cost-

effective, flexible, and scalable 5G services (e.g., AWS is used to deploy an entire cloud-native

5G network [2] and VMware Telco Cloud platform is designed for a similar purpose [3]). A

cloud-native 5G service deployment is typically more complex as it may involve many comple-

mentary technologies, such as Network Function Virtualization (NFV) [4], containerization (e.g.,

Docker [5]), orchestration (e.g., Kubernetes® [6]), etc. Those technologies work together to sup-

port a cloud-native 5G service deployment at two major abstraction levels, i.e., the service level that

contains virtual 5G network functions [7] (e.g., Unified Data Management (UDM), Access Mobility

Management Function (AMF), and User Plane Function (UPF)), and the virtualization level which

abstracts the underlying virtual infrastructure in terms of containers to provide isolated compute

network and storage resources.

The increased complexity of a cloud-native 5G deployment brings novel security challenges.

Security analysts would now face an overwhelming amount of events coming from both the service
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level and virtualization level, such as alerts raised by security monitoring (e.g., Falco [8]) and se-

curity auditing (e.g., Kubescape [9]) tools. Understanding the relationships between events coming

from different levels (service and virtualization) and from different tools (monitoring and auditing)

can usually provide critical insights about an attack, e.g., how a 5G function may be impacted by an

underlying container-related attack, and whether a policy breach (reported by Kubescape) has been

exploited in attacks (detected by Falco). However, correlating events between those different levels

and tools can be challenging due to the inherent complexity of a cloud-native 5G deployment and

the fact that different security solutions may have incompatible criteria and scopes. The sheer scale

of a cloud-native 5G deployment also means that relying on security analysts to perform manual

analysis based on their domain knowledge would be too slow and error-prone.

1.2 Research Gap

Existing solutions on event correlation (e.g., [10–12]) typically rely on predefined rules or de-

pendency graphs, which necessitates significant human intervention and domain knowledge. Fur-

thermore, the scale and complexity of a cloud-native 5G deployment may render rule-based ap-

proaches practically infeasible, and the self-service and highly dynamic nature of the virtual envi-

ronment could also make it difficult to keep up with the need for constantly updating rules. Addi-

tionally, those existing solutions usually stop at correlated events, leaving a gap between the corre-

lations and their interpretation for answering actual questions from security analysts. To that end,

most recent efforts on question-answering systems [13–15] fall short since they prioritize knowl-

edge retrieval over cause-consequence analyses (which are often required by security analysts).

Finally, although there exist powerful question-answering systems like ChatGPT [16], a 5G oper-

ator may be reluctant to adopt them directly due to well-known concerns about data privacy and

confidentiality [17, 18].

1.3 Motivation

Figure 1 illustrates an attack on a cloud-native 5G deployment (bottom) and the challenges

faced by a security analyst toward understanding the attack (top). Specifically, the deployment is
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composed of a service level (containerized 5G core network) and a virtualization level (Kubernetes

container cluster). The attack exploits a Kubernetes vulnerability (CVE-2023-3893 [19]) to gain

privilege escalation to launch DoS attacks on the 5G network functions. In analyzing the attack, the

security analyst is overwhelmed by a large number of alerts and breaches separately reported by the

security monitoring and auditing tools deployed at both the 5G and Kubernetes levels. First, it re-

quires significant manual effort and domain knowledge for the analyst to understand the correlations

between those alerts and breaches, both across different levels and across different tools. Second,

even if such correlations can be obtained, it would still be challenging to interpret them for answer-

ing practical questions, e.g., whether the highlighted K8S-level alert Created Privileged Containers

indicates the exploitation of any existing K8S-level breaches, whether the alert relates to, or impact

5G level, and whether this alert has any supporting evidence reported by other tools. Finally, as

shown on the right, although Large Language Models (LLMs) like chatGPT [16] are promising

for understanding and answering users’ questions, data confidentiality and privacy concerns may

prevent the 5G operator from sending data to third-party LLMs.

1.4 Our Solution

To address those limitations, we propose 5GSecRec, a 5G security recommendation system

based on multi-modal learning and LLM. Specifically, our ideas are twofold. First, by regarding the

four aspects of a cloud-native 5G deployment (i.e., security monitoring and security auditing sys-

tems, deployed at both 5G/Kubernetes levels) as different modalities, 5GSecRec leverages multi-

modal learning to correlate events (alerts and breaches) from different aspects of the deployment.

For instance, an unexpected connection alert from the Kubernetes Monitoring System and an ab-

normal traffic alert from the 5G Monitoring System might be correlated, indicating a coordinated

attack. Second, 5GSecRec further eases security analysts’ job by applying such learned knowl-

edge about correlations to fine-tune an LLM, such that analysts may directly query 5GSecRec in

a natural language (e.g., “What is the impact of a Kubernetes alert on the 5G level?”). This LLM

is hosted on the premise of the 5G operator and thus may ease the latter’s data confidentiality or

privacy concerns. Furthermore, as shown by our experimental results in Chapter 6, once fine-tuned

3
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with knowledge specific to event correlations in the 5G deployment, our LLM can provide more

meaningful and coherent answers than a general-purpose LLM (e.g., ChatGPT) does. In summary,

the main contributions of this thesis are as follows.

• We propose the novel solution of applying multi-modal learning for correlating events be-

tween different abstraction levels (service and virtualization) and different security tools

(monitoring and auditing) of a cloud-native 5G deployment to a comprehensive view of po-

tential security threats.

• We design a 5G security recommendation system, 5GSecRec, based on an on-premise LLM

fine-tuned with the learned knowledge about event correlations (as contextual information),

such that security analysts may directly query 5GSecRec with various security-related ques-

tions expressed in a natural language about this specific 5G deployment.

• We implement 5GSecRec based on a containerized 5G testbed using free5GC and Kuber-

netes, and we evaluate its effectiveness and efficiency through experiments. Our results show

that 5GSecRec can provide accurate results (e.g., 89.5% accuracy for correlating alerts us-

ing multi-modal learning) with a reasonable training time (e.g., 71 minutes for training over

90,000 events with 15 million tokens).

1.5 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 reviews the existing works in the re-

lated domain, and compares and contrasts them with our work. Chapter 3 provides the necessary

background knowledge to understand 5GSecRec and defines the threat model and its scopes. Chap-

ter 4 describes the methodology and working principles of 5GSecRec. Chapter 5 describes how

5GSecRec was implemented. Chapter 6 presents experimental results and performance evaluation

of 5GSecRec. Chapter 7 describes other contributions to this thesis. Chapter 8 concludes the thesis

with the potential future research directions and limitations.
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Chapter 2

RELATED WORK

To provide a comprehensive understanding of the subject matter, this chapter discusses the re-

lated literature related to our work. The latter falls into (1) Cloud-native 5G and its requirements;

(2) Alert correlation; (3) Large Language Models (LLMs) question-answering approaches; and (4)

Recommendation systems in security.

2.1 Cloud-Native 5G

Transitioning to 5G necessitates the use of cloud-native technologies, which consist of intricate

service-oriented cloud architecture, as well as cloud-native functions and applications [20]. This

infrastructure and service layers [21] allow various suppliers to create open-source software by

combining a variety of possible combinations within and between the layers [22]. Considering

different formats of the data, and volume of the generated data, service providers must also figure

out ways to reduce operating and capital expenditure expenses while increasing efficiency.

According to Intel, a cloud-native 5G core must comply with customer service level agreements

for performance, as well as meet regulatory, privacy, monitoring, security, and auditing standards.

All of this must be achieved within a limited power and space capacity while ensuring a satisfactory

return on investment [23].

5G network vulnerabilities include hardware, firmware, and software weaknesses, as well as

issues with signaling and control plane protocols, containers, and Kubernetes. This is a call to a
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comprehensive, multi-layered approach required to assess network security and address all service

aspects and internal components [24].

2.2 Multi-Aspect Alert Correlations

Some works focus on alert correlation across different aspects. Inam et al. [25] summarizes the

use of alert correlations in the auditing investigation process, where they divide existing works into

similarity and causality-based correlation while mentioning data sources that show gaps in corre-

lating data from multiple sources. [26] also classifies the correlation approaches into two distinct

groups: single and multiple, depending on the data sources used.

Elsoush et al. [10] introduced a framework that streamlines alerts by efficiently filtering irrel-

evant and false alerts of the intrusion detection system (IDS) by using filter-based correlation and

assigning priority to each alert. [11] also offers a general correlation model for IDS that considers

all components and shows effectiveness based on different datasets. [27,28] correlates an alert with

an attack graph-based approach to minimize memory usage and predict future alerts and missing

alerts. [12] presents an IDS system that uses their proposed ADeLe language to define the correla-

tion properties that correlate either events in the analyzer or alerts in the manager using finite state

automata. However, the data source is limited to only a single aspect (e.g., network), therefore it

may not be capable of handling data from multiple sources or tools. Additionally, many parts of

the solution depend on one or more knowledge bases (e.g., a network information database, CVE,

etc.), which makes maintenance difficult and raises security and privacy concerns. Yu et al. [29]

propose a framework for alert event reduction by correlating events using neural network and data

mining techniques, with simulated data used to demonstrate multiple correlations. There are some

studies on alert correlation in software vulnerability detection. By combining different Static Anal-

ysis Tools (SATs), [30,31] enhance software vulnerability detection and lower false alarms through

the use of machine learning. While [32] combines various dynamic and static tools with varying

degrees of criticality to improve the efficacy of security vulnerability detection. However, these

approaches analyze data from only a single aspect (e.g., infrastructure) and are capable of clas-

sifying vulnerabilities or non-vulnerabilities, but they fail to address dynamic environments like
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service-based architectures (e.g., 5G).

Attribute-based alert correlation and attack graphs are used by [33] to reconstruct APTs in large

networks. Another attack correlation and scenario reconstruction method are illustrated in [34]

through the utilization of an abnormal states relationship graph, graph aggregation, and clustering.

Both works make use of an existing IDS dataset that, in reality, only encompasses data from a sin-

gle perspective (e.g., network). By employing correlation among suspicious information flows, [35]

suggests an APT detection method that generates a graph representing the actions of the attacker.

Nine real-time attack scenarios were utilized to assess the solution. [36] correlates Endpoint De-

tection and Response (EDR) alert threats with Tactical Provenance Graphs (TPGs) for multi-stage

attack investigation. SIRAJ [37] also combines the detection results from different security tools,

such as anti-malware engines, through the application of self-supervised learning and pre-training

of an embedding model. Furthermore, [35, 36] also mention that correlation is also used in indus-

try, such as security information and event management (SIEM) tools [38, 39] that use statistical

and rule-based approaches to correlate and combine alerts where the correlation is determined by

the similarity of events within a specified time interval. However there is no causal relationship

between them, and there are no automated suggestions about what caused the alert. Our approach

can be used to strengthen decision support in such technologies by capturing the rationale behind

potential attacks in an automated manner. This is achieved by going beyond the observability line of

such tools and providing recommendations based on contextual information gathered from different

aspects. To have good event correlation decision support, the Question-answering capabilities of

LLMs need to be investigated, which is introduced in the sequel.

2.3 Multi-Modal and Self-supervised Learning

The combination of multi-modal and self-supervised learning techniques provides a more holis-

tic view of cyber security scope. By integrating diverse data sources and leveraging unsupervised

learning methods, security solutions can adapt and learn from different data types, thus, enhancing

the ability to gain insights on potential threats, and enabling better analysis for cyber security ex-

perts. In the prevailing of these facts, we studied this field from two different perspectives, namely,

8



multi-modal and self-learning techniques in different scopes, and specific use cases related to cyber

security.

Multi-model with self-supervised learning [40] has been extensively used in diverse fields, vary-

ing from social networks [41–43], medical field [44], emotion and speech recognition [45], media

description, retrieval, and generation [46, 47]. The different works pinpoint diverse challenges re-

lated to the nature of data, in the name of representation, translation, alignment, fusion, and co-

learning. In our use case, we emphasize on events-based data representation and alignment ex-

tracted from different logs and auditing results in 5G standalone architecture. The main motivation

is to capture the context through the textual nature of log data as well as auditing results, thus, a

need to align (sequencing) events and represent them as tokens for a better contextual prediction.

To cyber security, multi-modal deep learning has been employed in some use cases spanning

malware detection, cyber threat intelligence, online illicit activities detection, detection of deep

fakes, software security as well as network-based detection. For the sake of illustration, Android

malware detection using diverse feature types is introduced in [48]. In [49], authors used a multi-

modal classification method to identify the dark web’s illicit activities. In [50], authors defined an

approach to safeguard videos in smart cities against face-faking attacks using deep learning method-

ologies [50]. In [51], Zhang et al. introduced EX-Action, a framework dedicated to supporting cyber

threat intelligence through the extraction of threat actions out of complex and unstructured reports.

Software security sees the potential of multi-modal learning with the introduction of the MVDSC-

C dataset with a focus on vulnerability detection [52]. In [53], He et al. proposed a multi-modal

sequential intrusion detection approach based on packet, traffic, and generic features. The approach

performed well on specific binary and multiple classification tasks. In this work, we use a multi-

modal approach to capture contextual correlation between different outcomes out of cyber-security

tools. In the sequel, we introduce different works related to the correlation.

2.4 Question-Answering by LLMs

Recent work explores the capabilities of LLMs for recommendation systems based on question-

answering (QA), especially in domain-specific contexts.
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Garza et al. [54] use LLM (GPT-3.5) to examine the understanding of threat behavior in MITRE

ATT&CK through the exploration of various input prompts that generate questions and evaluate

the quantity of question/answer pairs accuracy with a subject matter expert’s opinion. It has been

demonstrated that prompts designed with context yield the highest response accuracy on the GPT-

3.5, although the LLM level of understanding is still unclear. This study [55] aims to evaluate the

efficacy of three language models (OpenAI ChatGPT, Google Bard, and Microsoft Bing) in provid-

ing accurate responses to professional certification inquiries and successfully resolving capture-the-

flag (CTF) challenges. Additionally, they demonstrate that it is relatively easy to circumvent and

undermine the ethical safeguards of LLMs by utilizing jailbreak prompts. Finally, authors in [56]

use LLM in network log processing and demonstrate LLM’s effective log data parsing capabilities.

Nonetheless, LLM was unable to accurately detect future events from the log data or to properly

summarize or analyze the log data due to the randomness of the data. One effort [57] tackled the

absence of adequate AIoT QA datasets by crafting an AIoT corpus to further pre-trained models

like Roberta and BERT, achieving notable enhancements in AIoT QA tasks. Another study [58]

introduced LeanContext, a method to curtail the cost of domain-specific LLM responses by judi-

ciously extracting key contextual sentences, showcasing its efficacy against diverse context reduc-

tion strategies. A study augmented an LLM with medical textbooks, marking a significant uptick in

the professionalism and accuracy of responses for medical QA [59]. Investigations into the ability

of LLMs to respond to programming questions laden with source code by fine-tuning them achieved

leading results on standard benchmarks [60]. Remarkably, even without task-specific tuning, certain

LLMs house relational knowledge that rivals traditional NLP methods and excels in open-domain

QA endeavors [13]. Lastly, research illuminated the adaptability of the retriever-reader paradigm,

particularly in the Telecom sector, via synthetic data generation, and discerned that sparse retrievers

can occasionally overshadow dense counterparts [14].

Recent studies have also concentrated on utilizing LLMs in the telecommunications sector. [61]

proposed a framework for identifying technical documents (text classification) in the 3rd Genera-

tion Partnership Project (3GPP) (2021-2023) using pre-trained LLMs (BERT [62], RoBERTa [63],

and GPT-2 [64]) that have been fine-tuned using 3GPP data (2009-2019). Authors in [65] also use

LLM (specifically, BERT) for the question-answering (QA) task in the telecommunication domain.
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A LLM based foundation model for 6G communications named NetGPT (Network Generative Pre-

trained Transformer) [66] highlights security and privacy concerns (such as backdoor installation

and user data privacy) and data governance concerns (such as data proprietary rights, formats, qual-

ities, etc.). Besides data security and privacy, [67] describes other challenges to the telecom indus-

try’s adoption of LLM. For instance, the nature and characteristics of telecom data differ from those

of common data modalities (e.g., image, text, video), which complicates the process of fine-tuning

available LLM with these data for a particular task. Whereas [68] emphasizes on LLMs’ parameter

adjustment sensitivity, output inconsistency, and computation complexity as telecommunications

implementation challenges.

2.5 Recommendation System in Security

Surveys on recommendation systems (RS) in cyber security [69, 70] provide a summary of the

most recent work done in the field of cyber security recommendations and show that not many works

have been done in this area. RS is predominantly utilized to predict the next probable network at-

tack and to suggest measures to mitigate it. Using collaborative filtering and K nearest neighbor

algorithms, Polatidis et al. [71, 72] propose RS to recommend the next probable attack or breach in

the network. Soldo et al. [73] use RS for predicting the origins of future attacks based on previous

behavior. McDonnell et al. [74] developed CyberBERT, a system based on BERT [62], for identify-

ing malware and predicting the next click. Sayan et al. [75] employ RS to identify potential threats,

forecast forthcoming attacks, and propose measures to prevent them. Whereas, Lyons [76] suggests

an RS that offers potential courses of action for addressing network intrusions in a specific context.

Franco et al. [77] also developed an RS that suggests the most appropriate preventive steps to be

implemented during a cyber attack and Sula et al. [78] have suggested utilizing a recommender sys-

tem to aid in the prevention of Distributed Denial of Service (DDoS) attacks. These studies either

concentrated on particular forms of attack or were deficient in terms of data privacy and confiden-

tiality. While certain studies [79, 80] have aimed to enhance the privacy and confidentiality of user

data in recommendation systems, they have not provided sufficient detail regarding the utilization

of recommendation systems in the field of security.
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According to the administrator’s preferences and ratings, Esposte et al. [81] provide a recom-

mender system designed to filter and sort alerts arriving from multiple external sources. SecureFal-

con [82] utilizes LLM to distinguish between vulnerable and non-susceptible C code samples and

to offer recommendations for repairing and recovering vulnerable C code. Ferrag [83] employs the

BERT [84] model to detect potential threats and subsequently utilizes FalconLLM [85] to suggest

appropriate measures based on incident response and recovery. Nevertheless, both of these works

are restricted to specific categories of data.
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Chapter 3

PRELIMINARIES

This chapter provides preliminaries, including background information on the cloud-native 5G

core network, multi-modal learning, and Large Language Models (LLMs), as well as the threat

model.

3.1 Background

3.1.1 Cloud-Native 5G Core Network

At the heart of the fifth-generation mobile network, the 5G Core Network (5GC) employs a

service-based architecture (SBA), facilitating communication between various network functions

through standardized interfaces [7]. There is a growing shift towards hosting 5GC on cloud-native

platforms, where its functions are virtualized, encapsulated in containers, and seamlessly orches-

trated. As shown in Figure 2, a cloud-native 5G core network contains components from two levels:

(i) The service level includes the 5G network functions, such as the UDM for data management,

AMF for user access, UPF for packet direction, Unified Data Management (UDM) for data man-

agement, Authentication Server Function (AUSF) for authentication, and Network Slice Selection

Function (NSSF) for network selection, Unified Data Management (UDM), Unified Data Reposi-

tory (UDR) (Table 1 lists common acronyms used in this paper). User Equipment (UE), including

smartphones and IoT devices, communicates wirelessly with the core network through the Radio

Access Network (RAN), which consists of base stations called gNodeBs (gNBs). These gNBs
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Figure 2: Architecture of cloud-native 5G core network
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connect UEs to the service layer, initiating the flow of data and signaling. AMF manages device

registration, authentication, and session management. Simultaneously, the SMF is responsible for

establishing and overseeing user data sessions. UPF handles the actual user data traffic, ensuring

low latency and high data throughput. AUSF plays a vital role in authenticating and authorizing

UEs, ensuring that only authorized devices can access the network. NSSF selects the appropri-

ate network slice based on service requirements and user profiles. PCF enforces policies related

to traffic management and resource allocation, optimizing network performance. UDM stores and

manages user-related data, while UDR stores and manages network configuration information for

UEs. These network functions communicate through standardized interfaces and APIs, enabling

seamless interaction. Control plane functions handle signaling and network management, while

user plane functions manage user data traffic. Key interfaces like N1 (UE to gNodeB), N2 (AMF

to UPF), N3 (SMF to UPF), N4 (SMF to PCF), and N6 (UPF to data networks) facilitate commu-

nication between specific functions, ensuring efficient service delivery (ii) The virtualization level

includes the virtual resources (e.g., containers, virtual machines, and virtual switches) used to host

the 5G network based on a cloud infrastructure. A widely adopted container orchestrator at this level

is Kubernetes, which supports automated deployment, scaling, and operation of containers across

many hosts, with numerous benefits such as auto-scaling, self-healing, service discovery, and load

balancing [6].

3.1.2 Multi-Modal Learning

Multi-modal learning in the context of machine learning is an approach that processes and cor-

relates information from multiple types of data (modalities), e.g., text, image, audio, and video.

The main motivation for multi-modal learning comes from the fact that real-life objects are usually

described in different modalities, e.g., adding a caption to an image, or conversely using an image to

describe textual information. Multi-modal learning aims at obtaining a unified model to jointly rep-

resent information from different modalities such that the model can capture the correlation struc-

ture and apply it for prediction (i.e., recover missing modalities given observed ones). For instance,

multi-modal learning has been applied to visual-based question-answering tasks [46,86,87], fusion

of information from multiple sensors for semantic perceptions in autonomous driving [88–90], and
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the visual analysis and reasoning of medical images [91, 92].

Figure 3 presents a general example of a multi-modal learning approach employed to train a

classifier. Three different types of data—texts, images, and audio are used as inputs. Each data

type is processed by its corresponding encoder to extract feature embeddings. These embeddings

are high-dimensional vectors that capture the contextual information within each data type. Subse-

quently, the feature embeddings from the three modalities are concatenated to form a unified feature

embedding. This concatenated embedding encapsulates the combined contextual information of all

three data types. This composite embedding is then fed into a classification neural network, which is

trained to learn the relationships between classes and the combined contextual information. In this

work, we regard alerts and breaches coming from different levels of the 5G deployment as different

modalities (of the same attack) and apply multi-modal learning to identify the correlations.

3.1.3 Large Language Models (LLMs)

Large Language Models (LLMs) usually refer to deep learning models that have been pre-

trained with a large amount of data using a transformer (a deep neural network architecture that

utilizes self-attention mechanisms) [93]. Today’s LLMs exhibit state-of-the-art performance across

various natural language processing (NLP) tasks, such as sentiment analysis, translation, and question-

answering. LLMs can be broadly classified as (i) encoder-only models (e.g., Bidirectional Encoder

Representations from Transformers (BERT) [62]) mostly for text classification, (ii) decoder-only

models (e.g., Generative Pretrained Transformer (GPT) [64]) mostly for generating contextual and

coherent text based on given prompts, and (iii) encoder-decoder models (e.g., Text-to-Text Transfer

Transformer (T5) [94]) for both understanding and generating text. The details of some typical

models are shown as follows.

• BERT [62].It is solely based on the encoder part of the Transformer model. This unique fo-

cus on the encoder, without incorporating a decoder, is central to BERT’s ability to compre-

hend text context and meaning, rather than producing text. Each encoder in the Transformer

model includes a self-attention mechanism and a feed-forward neural network. BERT em-

ploys several of these encoders in a stacked configuration. The BERT-Base version contains

12 encoders, while the BERT-Large includes 24. Such an arrangement allows the model to
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interpret and analyze text at different levels of complexity. One of the standout features of

these encoders is the self-attention mechanism. This enables BERT to evaluate each part of

the input text, determining how each word relates to and influences others within a sentence.

This capability is vital for grasping the subtle context and meaning of words about their sur-

rounding text. BERT is trained in two primary phases: pre-training and fine-tuning. In the

pre-training stage, BERT undergoes training on a large text corpus (3.3 billion words from

sources like Wikipedia and Google’s BooksCorpus) without specific supervision. The train-

ing consists of two tasks: Masked Language Modeling (MLM) and Next Sentence Prediction

(NSP). In MLM, BERT learns to predict words hidden in a sentence, using their context for

guidance. In NSP, BERT learns to discern if one sentence logically follows another, enhancing

its grasp of language structure and context. The fine-tuning stage involves adapting BERT for

particular NLP tasks. This is achieved by adding a few task-specific layers to the pre-trained

model and training it on a smaller, task-focused dataset. During this stage, BERT fine-tunes

its parameters to excel in specific tasks such as question answering, sentiment analysis, or

named entity recognition.

• GPT [64]. The development of Generative Pre-trained Transformer (GPT) models began with

the debut of the original GPT by OpenAI [16]. This initial model set the stage for subsequent

versions, each more advanced than the last. Progressing from GPT-2 through to the latest,

GPT-4, these models have seen significant enhancements in both their size and their ability to

handle complex tasks. In contrast to models like BERT, which are based solely on an encoder

mechanism, GPT models uniquely utilize only the decoder component of the Transformer

architecture. This specific focus equips them with a natural proficiency in generating text. The

decoder-centric design of GPT models renders them particularly effective for text-generation

tasks. This includes creative writing, producing content, and crafting responses that closely

mimic human conversation in chatbots. Additionally, this architecture makes GPT models apt

for scenarios that demand sequential decision-making or output generation, as seen in gaming

or interactive storytelling.

• T5 [94]. It has the encoder-decoder architecture which is commonly designed for machine
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translation. Unlike other models that are tailored for specific tasks, T5 distinguishes itself

by applying this framework across a broad spectrum of natural language processing (NLP)

tasks such as question-answering tasks, summarization, and text-generation tasks through a

text-to-text method. In this setup, the encoder part of the model first interprets the input text,

grasping its context and subtle meanings. Following this, the decoder section comes into play,

using the processed information from the encoder to produce the output text. This dual-step

approach equips T5 with the ability to efficiently navigate and interpret complex linguistic

relationships.

In this work, we leverage encoder-decoder LLMs fine-tuned with the knowledge about correla-

tions for automatically answering security analysts’ questions.

3.2 Threat Model

The in-scope threats of this work include any attacks on a cloud-native 5G deployment that can

be identified using existing security monitoring and auditing tools. Such attacks may exploit vul-

nerabilities, implementation flaws, or misconfigurations at either the service level or virtualization

level (or both) of the deployment. The out-of-scope threats include zero-day attacks or unknown

vulnerabilities/flaws that cannot be identified using monitoring or auditing tools and attacks that can

tamper with the integrity of such tools (including their inputs and results) or 5GSecRec itself. We

assume the availability of necessary training data for the machine learning models behind 5GSecRec

to be periodically re-trained to capture system dynamics, and such training is not subject to adver-

sarial attacks (e.g., leveraging existing approaches [95–97]). We also assume loose synchronization

of events across different aspects of the 5G deployment such that machine learning can properly

identify their correlations. Finally, 5GSecRec is designed as a security recommendation system to

ease the job of security analysts in understanding attacks. As such, it is neither intended to replace

human experts nor designed as a standalone attack detection, auditing/verification, or prevention

system.
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Term Description Term Description
3GPP 3rd Generation Part-

nership Project
5GC 5G Core

AUSF 5G Authentication
Server Function

CN Core Network

K8S Kubernetes LLM Large Language
Model

AMF Access and Mobility
Management Func-
tion

NF Network Functions

NRF 5G Network Reposi-
tory Function

NSSF 5G Network Slice Se-
lection Function

SMF 5G Session Manage-
ment Function

UDM 5G Unified Data
Management

UDM Unified Data Man-
agement

UDR Unified Data Reposi-
tory

UE User Equipments UPF 5G User Plane Func-
tion

RAN Radio Access Net-
work

PCF Policy Control Func-
tion

Table 1: Acronyms used in this thesis
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Chapter 4

METHODOLOGY

This chapter first provides a high-level overview of the 5GSecRec methodology and then details

its two stages.

4.1 Overview

Figure 4 shows an overview of the 5GSecRec approach which contains two main stages as

follows.

• The learning stage is to learn (a) alert correlation as well as (b) answers to security analysts’

customized questions. Specifically, to learn alert correlation, 5GSecRec first collects and

pre-processes historic results from various 5G security solutions (e.g., Kubescape [9], Falco

[8], and anomaly detector based on LSTM [98]) and trains a multi-modal model where the

results reported by each security solution are considered as a modality. To learn answers

to customized questions from security analysts, it first prompts powerful LLMs (e.g., GPT-

4 [16]) to generate high-quality training data by obtaining experts’ knowledge of historical

results, and then fine-tune that LLM model (noted as “QA-LLM”) for question-answering

tasks.

• The running stage is to discover alert correlations among new alert results from those 5G

security solutions as well as to respond to specific security analysts’ questions about those
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alerts. Specifically, to discover alert correlations, 5GSecRec utilizes the trained “multi-

modal” model to deduce potential alert correlations and express them in natural language.

To respond to analysts’ queries, it first determines the most appropriate question-answering

task and its relevant prompt template by using sentiment analysis, then combines with the

current alert correlation result to finalize the prompt selection for this specific task (follow-

ing the effective prompt engineering principles [99]), and finally generates recommendations

using the selected prompt into the “QA-LLM” model.

4.2 Learning Stage: Learning Correlations among Security Events

In this stage, 5GSecRec learns correlations among security events (alerts or breaches) generated

by both auditing and monitoring solutions deployed at both 5G and Kubernetes levels.

Challenges. Attacks on a cloud-native 5G core network can cause security appliances, such

as auditing and monitoring tools of Kubernetes (K8S) and 5G core network, to report a substantial

volume of alerts and breaches within a short period of time. Therefore, manually identifying the

correlations between these alerts and breaches to understand their potential dependencies and see

the big picture is usually non-trivial. Additionally, this task becomes more challenging as alerts

or breaches from the K8S and 5G levels typically do not share a common data source, and the

corresponding security tools may not be compatible with each other (e.g., different scopes, differ-

ent criteria for triggering alerts and breaches, and different formats of their results). Furthermore,

5G security currently lacks large-scale publicly available labeled datasets which are necessary for

training popular machine learning models. In the following, we describe how we overcome these

challenges.

Our solution. To streamline this process, we leverage multi-modal (to understand the correla-

tion among security results from various security solutions) and self-supervised learning techniques

(to avoid the need for very large-scale datasets). Specifically, for multi-modal learning, we aggregate

security results from four aspects: Kubernetes monitoring, Kubernetes auditing, 5G monitoring, and

5G auditing, while designating each aspect as a unique ‘modality’ due to the complementary na-

ture of those four aspects. Within each modality, results are represented as tokens, and these result
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tokens are organized to form result sequences, creating a unique context. Then we leverage the

contextual understanding capability of LLMs to learn a joint representation of contexts from those

sequences. For self-supervised learning, given a set of results with specific details, we selectively

and randomly hide (a.k.a. mask) part of the details of each result. The masking could be applied

to either the title of a result or all its details. The model is then trained to predict or fill in these

masked parts, essentially reconstructing the original, unmasked set of events. The accuracy of the

model’s reconstruction, measured by a loss value, is used to guide the continual improvement of

the model. Consequently, when provided with an incomplete set of data, the model can predict the

hidden parts of events and their details. In doing so, the model also learns how the events in the set

are contextually related to each other.

In particular, for self-supervised learning, Our solution applies transformer-based models [62,

64, 94, 100]. During training, the models learn the correlations between different events across the

four modalities. For example, the models will learn how Falco alerts such as unusual inbound con-

nections and sensitive pod actions, often occur with Kubernetes breach of privileged containers, and

how these are linked to certain 5G alerts or breaches. Once the models can leverage the transformer

architecture to understand the context created by these combinations, they can be applied to predict

events from other modalities based on a given event and the context.

More formally, let Ei = [ei1, e
i
2, e

i
3, . . .] be the sequence of events from modality i, and let

Si be a special token that represents the separator for modality i. The concatenated sequence C

with separators can be represented in Equation 1, where [Si, Ei] represents the concatenation of the

separator and the event sequence for modality i.

C = [S1, E1, S2, E2, S3, E3, . . .] = [S1, e11, e
1
2, . . . , S

2, e21, e
2
2, . . .] (1)

The reconstruction loss can be represented as the difference between the predicted events and the

original events as follows:

Reconstruction Loss =
∑
j∈J

L(êj , ej) (2)

where:
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• Σj∈J denotes the sum over the set of indices J , where the events have been masked.

• L(êj , ej) represents the loss function comparing the predicted event êj at position j with the original

event ej .

• L is a specific loss function such as Mean Squared Error (MSE) or Cross-Entropy.

• êj is the model’s prediction for the masked event at position j.

• ej is the actual (original) event at position j.

Example. Figure 5 shows an example (with the security results from Falco and Kubescape

corresponding to the attack scenario described in our motivating example) of our two learning cor-

relation steps. In (1a), from Falco alerts and Kubescape breaches, 5GSecRec keeps the information

that is common to multiple results, the titles of alerts (unexpected inbound connections and exec

into pod) and breaches (privileged containers and sensitive mounts), and removes other informa-

tion, such as timestamps and IDs, which typically vary in each result, to assist the learning in the

following step. In (1b), we group the filtered results from both Falco and Kubescape, order results

from each group, and combine them into a sequence, using markers, [Falco] and [Kubescape], for

separation. In (2), 5GSecRec converts those sequences into text embedding as mentioned above.

5GSecRec applies transformer-based models for the reconstruction. As mentioned in Section

3.1, transformer-based models such as BERT, GPT, and T5 leverage transformer architecture to

achieve state-of-the-art performance in a wide range of NLP tasks (e.g., text generation, question

answering, etc.). This is because the transformer architecture can process effectively long-range

dependencies, where the model maintains accuracy even across extensive sequences. Additionally,

the scalability of transformers is a key advantage. As these models grow in size, they continue to

improve, making the most of larger datasets and enhanced computational resources. This growth

enables transformers to develop a deeper understanding of nuanced language patterns and subtleties.

Its core strength lies in its ability to interpret contextual relationships. This feature is not limited

to words in text; it’s equally effective in analyzing visual data, like the relationships between pixels

in an image. The way transformers approach learning is also noteworthy. By employing strategies

like pre-training and fine-tuning, they adeptly capture and replicate complex language structures and

patterns. Figure 6 shows a visual representation of the transformer architecture. The transformer
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Figure 6: Overview of the transformer architecture
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has two primary components: the encoder and the decoder, each comprising several layers that

process data in different ways. In the encoder, the input embeddings convert the words or tokens

in the input data into vectors. These vectors are numerical representations that encapsulate the

semantic and syntactic characteristics of each word. The self-attention mechanism in the encoder

then allows each word to interact with every other word in the input, helping the model understand

the context and relationship between words. After the self-attention process, each encoder layer

applies a feedforward neural network to the data, further refining the understanding of the input.

Layer normalization is another critical component applied within each layer of both the encoder

and decoder. It normalizes the data across features, which helps in stabilizing the learning process

and leads to more efficient training of the model. In the decoder part, which is responsible for

generating output, things work a bit differently. The output embeddings convert the previously

generated tokens into vectors. The decoder then uses a masked self-attention mechanism, which is

crucial as it prevents the model from seeing future tokens in the sequence. This ensures that the

output is generated one token at a time in a forward direction. After processing the data through its

layers, the decoder’s final step involves a linear layer followed by a softmax function. The linear

layer adjusts the size of the decoder’s output to match the size of the vocabulary. Then, the softmax

function turns these outputs into a probability distribution, indicating the likelihood of each token

being the next element in the sequence. The model selects the token with the highest probability as

its output, and this output is then fed back into the model as part of the input for generating the next

token.

In 5GSecRec, during training, the models learn the correlations between different events across

the four modalities. For example, the models will learn how Falco alerts such as unusual inbound

connections and sensitive pod actions, often occur with Kubernetes breach of privileged containers,

and how these are linked to certain 5G alerts or breaches. Once the models can leverage the trans-

former architecture to understand the context created by these combinations, they can be applied to

predict events from other modalities based on a given event and the context.
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4.3 Learning Stage: Fine-tuning Large Language Models (LLMs)

To answer 5G security analysts’ customized questions, it is desirable to utilize popular large

language models (e.g., GPT-4 [16], and Llama-2 [100]). However, data confidentiality and privacy

concerns may prevent a 5G operator from uploading their data to third parties hosting such models

and using those general-purpose models without fine-tuning them with domain-specific data may

lead to inaccurate or misleading results (as shown by our evaluation results in Chapter 6). To address

this challenge, we first generate fine-tuning data with our domain-related question-and-answer tasks

spanning a diverse range of desired use cases (e.g., identifying false alarms, gauging attack impacts,

and what-if analyses) using popular LLMs (e.g., GPT-4). We then utilize those data to fine-tune an

open-source LLM (e.g., Llama-2). We elaborate on these steps as follows.

Generating Fine-Tuning Data by Powerful LLMs. Generating fine-tuning data, typically with

question-answer pairs, requires significant human effort. We thus leverage powerful LLMs, like

GPT-4, to produce the necessary diverse fine-tuning data at scale. For instance, we provide GPT-4

with historic results and cybersecurity experts’ insights elucidating the meaning of the results, the

essence of the question-answering tasks, standard question templates, etc. These instruct GPT-4

about the generation criteria for fine-tuning data. Once GPT-4 yields raw fine-tuning data, human

intervention is essential to assess, modify, or filter question-answer pairs. The historical results sent

to GPT-4 originate from a 5G testbed designed to simulate the production system, which mitigates

potential concerns related to confidentiality or privacy (for operators who would be reluctant to send

even such simulated data to third-party LLMs like GPT-4, open-source LLMs can be considered as

alternatives for this step).

More specifically, we first collect some simulated historical security results from the four aspects

(Kubernetes Monitoring, Kubernetes Auditing, 5G Monitoring, and 5G Auditing) of the testbed.

We then utilize expert knowledge to construct scenarios that illustrate how certain responses might

assist security analysts, given these security results. Additionally, we provide templates of questions

that security analysts are likely to pose. Finally, we leverage the powerful LLMs to utilize their

pre-trained knowledge for generating high-quality candidate fine-tuning data, which can then be

further refined and tailored to better meet our requirements. An important consideration here is
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adaptability, i.e., as the questions at runtime might differ from those in the training dataset due to

varying contexts, the question-answering LLM is considered effectively fine-tuned to recognize the

desired response pattern, if it can infer the most probable answers when confronted with slightly

different questions (as evaluated through experiments in Chapter 6).

General Guidance for Experts. To effectively guide powerful LLMs in producing high-quality

data, experts are advised to adhere to the following:

• Clarity in Task Definition. Define the task clearly by detailing its specifics, including the task’s

purpose, and the context in which it is performed, and providing diverse question-answering

samples that encompass various scenarios relevant to the task’s domain.

• Explanation of Insights in Historic Results. Provide a clear explanation of how security events

within the context are indicative of insights, such as potential attacks.

• Quantity and Quality of the Generated Data. Indicate the required amount of data and define

quality standards. These standards should encompass the accuracy and relevance of the data

generated.

• Human Evaluation. Utilize trained and diverse reviewers to perform evaluations on fine-

tuning data based on accuracy, and relevance.

Example. Figure 7 shows an example of generating fine-tuning data using GPT-4 based on

given expert knowledge and historical results. The expert knowledge is obtained by studying the

correlation results (from Example 3.1) as follows.

• Domain Specification. This includes detailed insight into the correlation results. First, based

on its purpose, the task is titled as Identify Attack Evidence. Second, the content of the task

(e.g., purposes) is described. Third, the expert enlists sample question formats, such as “Given

the Falco alert (created privileged container), are there any correlated alerts or breaches from

other aspects to support this alert as a real attack?“ as prompt and “Yes, this suggests a real

attack. The detection of a privileged container’s creation by Falco, combined with historical

data of suspicious HTTP requests to UDM, indicates remote access and privilege escalation.“

as the desired answer. Finally, the expert provides his/her explanation on how a Falco alert
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indicting a privileged container creation might lead to a 5G audit breach for suspicious HTTP

requests to UDM.

• Instructions for Generating Fine-tuning Data. This includes the instructions (e.g., data format

and quantity) to LLMs about the training data. First, an expert indicates the data format

containing: a prompt (for questions and historic results) and completion (for the answers with

explanation). Second, s/he mentions generating five prompt-completion pairs based on our

question format.

Fine-Tuning Open-source LLMs for Question-Answering. This step is to fine-tune a pre-trained

LLM such that it can be more specialized for our intended security recommendation tasks. We

choose an open-source encoder-decoder LLM such as Llama-2 [100] to facilitate the fine-tuning.

Although such LLMs are already trained on vast amounts of general-purpose data (which gives

them a broad understanding of natural languages and the ability to generate coherent text), they are

not specialized for any particular security task, such as providing security recommendations for 5G

networks based on correlated security events. Therefore, we first provide additional context and

prompt (following the typical question-answer pair input format of those LLMs) about a specific

security task. We then fine-tune the LLMs by training them with such specific data. The fine-tuning

process does not fundamentally change the model’s core abilities but simply causes the model’s

parameters to be slightly adjusted such that the model becomes more proficient for this particular

security task.

4.4 Running Stage: Inferring Correlations and Formulating Prompts

This is the first step during the runtime stage where 5GSecRec infers correlations among the

current security results using the learned multi-modal model, and formulates the prompt to be fed

to fine-tuned LLMs for security recommendations.

Inferring Alert Correlations by Multi-Modal Model. This step is to apply the learned multi-

modal model for inferring correlations among the events from the four aspects (Kubernetes mon-

itoring, Kubernetes auditing, 5G monitoring, and 5G auditing). The inference of correlations can
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enhance the capability of question-answering LLMs to respond to security analysts’ queries with

greater accuracy and relevance. Specifically, at runtime, when a security analyst selects some spe-

cific events from one or more aspects, these selected events serve as the input for the trained multi-

modal model to perform inference of correlations. As the training process has employed masked

token prediction for the model to supplement missing event tokens to complete potential event se-

quences, the model can now make inferences about the probability of potentially correlated events

from other aspects based on the given event selected by the security analyst. The inference deter-

mines potential sequences of correlated events while assigning each event a probability and ranking

the event sequences in descending order based on their respective probabilities. We can decide to

select the top n most probable event sequences. If the predicted correlated events occur together in

the runtime events, then they are marked as correlated, otherwise as uncorrelated or reserved for

future.

Example. Figure 8 illustrates an example to show how 5GSecRec finds correlated security

events for a specific set of selected events: unexpected inbound connection alert from Falco, privi-

leged container and sensitive mount breaches from Kubescape, and anomalous traffic to UDM from

5G detect. First, 5GSecRec introduces a placeholder token, [M] (i.e., masked events), to represent

any potential missing events in those sequences. Second, it leverages the trained multi-modal model

to infer candidate sequences, filling the [M] token with probable events for each aspect. If the multi-

modal model predicts that no missing events are needed to replace [M], [M] will be replaced with an

empty string. Third, it produces two candidate event sequences from the model prediction results:

Candidate 1 including unexpected outbound connection (Falco), clusterrole binding (Kubescape),

and suspicious HTTP requests to UDM (5G auditing), and Candidate 2 with different events. Fi-

nally, 5GSecRec marks the events from these candidates that are also found among the runtime

events as correlated events, and those among the runtime events but not in candidate sequences

as uncorrelated. The events that are not present among runtime events may be reserved for other

purposes such as predictive tasks in prevention strategies.

Algorithm 1 is designed to analyze user-selected events within various aspects (e.g., K8S Mon-

itoring, 5G Auditing) and correlate them with events occurring at runtime. It utilizes separators to

format event groups into sequences and then processes them using a multi-modal model. The top
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Algorithm 1 InferEventCorrelation(Events, Aspects, Runtime Events, Separators)

Require: Events - Set of user-selected events
Require: Aspects - Set of aspects (K8S Monitoring, K8S Auditing, 5G Monitoring, 5G Auditing)
Require: RuntimeEvents - Events occurring in the system at runtime
Require: Separators - ([Falco], [Kubescape], [5G Audit], [5G Detect])

Group Events by Aspects into EventGroups
Format EventGroups into Sequence S using Separators
Process S through the multi-modal model
Let C be the set of candidate sequences from the model
Select top n sequences from C as TopSequences
for each sequence seq in TopSequences do

if seq ⊆ RuntimeEvents then
Add seq to CorrelatedEvents

else
Add seq to PreventionSequences

end if
end for
Set UncorrelatedEvents = RuntimeEvents \ CorrelatedEvents
Return (CorrelatedEvents, UncorrelatedEvents)

Algorithm 2 ProcessWhatIf(Q)
Require: User’s question Q

isWhatIf← AnalyzeSentiment(Q) ▷ Determine if Q is a what-if analysis
if isWhatIf then

E ← ExtractTargetEvents(Q)
S candidate← InferEventCorrelation(Seq new,

[appropriateAspects], [RuntimeEvents], [Separators])
for each sequence in S candidate do

Check for the existence of events in runtime data
Classify sequences into correlated or uncorrelated groups

end for
return the classified sequences S

end if
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candidate sequences are selected based on predefined criteria. These sequences are classified as

correlated or uncorrelated with runtime events. The resulting sets, “CorrelatedEvents“ and “Uncor-

relatedEvents“, are the outcomes. Algorithm 2 evaluates a user’s question, determining if it pertains

to a what-if analysis. If so, it extracts target events from the question, generates a new sequence,

and utilizes the “InferEventCorrelation” algorithm to identify candidate event sequences. These

sequences are then checked for correlation with runtime events and classified accordingly.

Formulating Prompts. This step is to formulate a prompt for a specific query from security an-

alysts. We first analyze the sentiment of analysts’ queries to identify the type of question-answering

tasks (e.g., identifying attack evidence and identifying attack impact). Second, to make sure our

QA-LLM (obtained in Section 4.3) correctly understands these queries, we use prompt engineer-

ing, as discussed in [99]. This step is crucial to prevent the LLM from giving wrong or irrelevant

answers since a well-designed prompt template is known to improve the quality of answers from

QA-LLMs. The template is obtained based on the domain specifications introduced in Section 4.3

(which helps to create better training data using advanced LLMs). For each question-answering

task, the template describes the task’s goal and any special instructions for the QA-LLM. We will

provide more details about these templates in Table 2 in the following section.

Example. Figure 9 considers a scenario where a security analyst poses the following queries:

Query 1: “what are the current attack methods?”, Query 2: “What are the consequences of those

5G-level alerts?”, and Query 3: “How often do those Falco alerts occur?”. Following sentiment

analysis, Query 1 is associated with the task Identify Attack Evidence, and Query 2 with Identify

Attack Impact. For Query 3, the NLP engine is unable to determine the question-answering task and

hence 5GSecRec marks it as Unknown, which will be returned for the analyst to rephrase them for

more accurate processing.

4.5 Running Stage: Generating Recommendations

This step is to formulate recommendations based on security analysts’ queries. Specifically,

once the task template is accessed and correlation is inferred, 5GSecRec first combine them to form

the final prompt directed to the fine-tuned QA-LLM from Section 4.3. 5GSecRec then leverages
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the acquired question-answering capabilities of QA-LLM to formulate recommendations grounded

in correlation results to answer analysts’ queries. Table 2 lists several representative categories of

question-answering tasks that are typically part of a security analyst’s workload [101] as follows.

• Identify Attack Evidence: This is to determine if there is additional evidence of an attack

based on the correlation results. The task involves analyzing alerts, such as Falco alerts or

5G breaches, to identify (the lack of) correlated events from other aspects. The absence of

such correlated events might suggest a false alarm, while their presence can trigger further

analysis to determine if they provide sufficient evidence for a genuine attack. The typical

question template is: “Are there any indications from other data sources that validate the

current alerts as evidence of a real attack?”.

• Identify Attack Impact: This focuses on assessing the consequences of an attack. This task

analyzes the impact of specific events based on correlated events, especially those from as-

pects more interesting to analysts (e.g., 5G-level impact). The typical question template is:

“What are the potential consequences of the current alerts on other aspects?”.

• Identify False Alarms: Unlike the first category that focuses on identifying the actual evi-

dence, this focuses on the mere absence of correlated events. The goal is to identify alerts

that lack supporting evidence from other aspects, such as corresponding security breaches,

which can trigger further analysis as potential false alarms. The typical template is: “Which

recent alerts are likely to be false alarms?”.

• Prevention: This allows analysts to reason about how to prevent certain events from occurring

based on known correlations, e.g., fix a security breach to prevent an imminent attack known

to exploit that breach or block certain attacks to prevent a given impact. The typical question

template is: “What alerts or breaches should be prevented in the future given the current

events?”.

• What-if Analysis: This is to enable analysts to explore hypothetical scenarios, e.g., to under-

stand the potential benefit of deploying a security tool, or to forecast the potential consequence
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of current events. The typical question template is: “What possible outcomes might arise if

we solve these alerts or breaches, or if we see new alerts or breaches in the current context?”.

The description of each of those tasks can function as a prompt template, guiding the QA-LLM to

align its responses with the intended objective of each task (as illustrated in the following example).

Example. Table 4 shows examples on how 5GSecRec responds to two types of question-

answering tasks: (i) identifying attack evidence, and (ii) what-if analysis. For the first task, the

analyst’s question is “Given the Falco events, is there evidence from other aspects to prove it is

a real attack?”, which aligns with the identifying attack evidence task. In this context, alerts and

breaches have been reported from four aspects: Falco, Kubescape, 5G Audit, and 5G Detect. QA-

LLM then provides an explanation regarding the logic behind these correlations (as shown in the

‘Answers’ column) as an answer to the query. For the second task, the query is “What if I resolve

the Kubescape breaches (privileged container and sensitive mount) in the current context?”, which

is categorized as a What-if analysis task. This task explains the potential correlations that could

arise in a hypothetical scenario where the user would resolve the Kubescape breaches (privileged

container and sensitive mount). Similar to the first task, in this context, alerts and breaches are

gathered from Falco, Kubescape, 5G Audit, and 5G Detect. The QA-LLM provides an explanation

regarding the logic behind these correlations (in the ‘Answers’ column) as an answer to the query.
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Chapter 5

IMPLEMENTATION

This chapter presents 5GSecRec testbed implementation and the details of its components and

integration.

5.1 Testbed Implementation

We implement a 5G testbed with several security tools as follows.

5.1.1 5G Core Network

To implement the 5G core network in a container environment, we utilize free5GC [102] to

simulate the 5G core and deploy it on Kubernetes (K8S) [6] by Towards5GS-helm [103] within a

Vagrant VM. The RAN and UE are simulated using UERANSIM [104] for executing 5G function-

alities. Free5GC is installed and deployed atop Kubernetes within a Vagrant virtual machine, which

is hosted on a remote OpenStack [105] server. UERANSIM is encapsulated in a Kubernetes pod,

enabling it to communicate with 5G network function pods within the “free5gc” namespace.

5.1.2 Security Tools

For both K8S and 5G, we leverage existing open-source security tools as well as our imple-

mented customized security solutions. For K8S, we use open-source tools, Falco [8] for detection
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on system calls and Kubernetes audit logs, and Kubescape [9] for verification on K8S configu-

rations (e.g., role bindings, cronjobs, etc.). Implementation and deployment details of Falco and

Kubescape are described in Section 7.2. As there currently exists no open-source auditing/detection

tool for 5G, we implement an LSTM-based detection tool, which analyzes 5G traffic logs collected

by Kubeshark [106] in the .pcap format, and a script-based auditing tool to verify custom rules on

5G network functions. Their details are shown as follows:

• LSTM-based detection tool. First, we deploy Kubeshark in the “free5gc” namespace, which

exclusively contains pods functioning as 5G network functions. Kubeshark captures the net-

work communications occurring within these 5G network functions, outputting the data as

.pcap files. We then assign the names of the network functions to the IP field of each traffic

packet, based on the IP addresses assigned to these network functions. Following this, we

train an LSTM model using a dataset obtained from [107], which also forms the basis for the

5G-level attacks implemented in this work. The process involves implementing the 5G-level

attacks, utilizing Kubeshark to collect traffic packets, and then employing the trained LSTM

model to determine whether any traffic packets in the collected data are abnormal.

• Custom rules for auditing 5G. We collect application logs from the network function pods

within free5gc using the command “kubectl logs”, which includes all 5G-level events. The

rules we have defined are tailored to identify the footprints of the 5G-level attacks as de-

scribed by [107, 108]. For example, in the case of the “AMFLookingForUDM” attack,

the logs will show an NRF Discovery event similar to “http://$NRF’s IP$/nnrf-disc/v1/nf-

instances?requester-nf-type=$randomString&target-nf-type=...”. This attack takes advantage

of the absence of input validation in free5gc. To verify if the 5G functions are compromised,

we validate the values of “requester-nf-type” and “target-nf-type” in these requests.

5.1.3 Implementation Challenges

While implementing the 5G testbed, we encountered several challenges as follows. (i) While

deploying security solutions for K8S, we faced a memory limit issue and hence reconfigured the

kube-apiserver.yaml file and set–audit-webhook-mode to blocking so that the K8S API server does
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not exhaust the limited memory. (ii) When configuring the audit policy for K8S, the initial approach

is to audit every security event captured by the K8S API, without filtering events based on resources,

levels, groups, etc. This approach can lead to an overload of non-essential security events, which

may overwhelm and cause failures in the webhook backend, subsequently disrupting Falco’s moni-

toring process. By refining the audit policy (e.g., setting verbs to [watch, list, create, update, delete],

etc.) to capture those security events that might trigger Falco alerts as required, Falco’s monitoring

can be maintained. (iii) Also, we have encountered a significant challenge in the deployment of the

5G core network: the UPF pod fails to start due to issues with its N6 interface. Specifically, an IP

address cannot be bound to the N6 interface, a problem attributed to the network plugins. To resolve

this issue, we found it necessary to manually configure the N6 interface to eth0. This manual inter-

vention allows the UPF pod to be successfully created. This addresses the limitation in the network

plugin’s automatic configuration and ensures the proper functioning of the UPF pod.

5.2 5GSecRec Implementation

This section describes the 5GSecRec architecture and its implementation details.

5.2.1 System Architecture

Figure 10 shows a high-level system architecture of 5GSecRec with two major modules.

• Model Training Module. This module takes the security results from the auditing and monitor-

ing system as inputs and feeds into the data processing component which encompasses a log

processor that refines raw logs, succeeded by a log processor that concatenates multiple event

logs sequentially. This concatenated data is subsequently employed to train a multi-modal

model. Additionally, there is a question-answering Model Builder that exploits a fine-tuning

data generator. This generator, based on experts’ knowledge, produces question-answering

pairs which are sent to a Model Trainer for fine-tuning LlaMA-2.

• Inference and Response Module. This module starts with the Prompt Builder module that
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takes in the user’s queries and processes them using an NLP sentiment analyzer. This ana-

lyzer’s role is crucial as it classifies the user’s queries into distinct tasks, selecting appropriate

templates for each. Following this classification, an alert correlator is involved to receive

the security results to determine if any alerts or security breaches from the security data are

correlated to the alerts or breaches selected by users. Once alert correlations are found, the

Recommendation Generator is activated. It utilizes the capabilities of LLM text-generation

pipelines powered by LangChain [109] to craft responses or recommendations.

5.2.2 Implementation Details

The Hugging Face [110] transformer library is utilized for the implementation of fine-tuning,

multi-modal learning, and self-supervised learning. This library offers classes such as trainer, Auto-

Tokenizer, and DataCollator, enabling the efficient downloading, training, saving, and using LLMs.

For multi-modal correlation and question-answering tasks, the LlaMA-2 model [100] with both

encoder and decoder architecture is selected as it is an open-source LLM and has a comparable

performance with GPT-4 on certain NLP tasks. In our initial approach to learning correlations from

historical data, we plan to utilize efficient models like BERT and RoBERTa. These models are

selected for their ability to minimize computational resources while still delivering robust perfor-

mance in NLP tasks. We recognize the trade-off between reducing computational costs and poten-

tial performance impacts. Additionally, it is noted that fine-tuning large language models (LLMs),

particularly more resource-intensive ones like LlaMA-2, with specific knowledge such as alert cor-

relations, is often inefficient. However, we discover a method mentioned in Section 5.2.3 to lower

the high computational demands of fine-tuning these larger LLMs, allowing us to leverage their

advanced capabilities. Moreover, we also consider other open-source LLMs as feasible alternatives.

However, given the complexity and difficulty of our question-answering and correlation tasks and

the demonstrated performance of LlaMA-2, we believe that LlaMA-2 is well-suited for testing our

solution. The implementation of training LlaMA-2 by Hugging Face is shown as follows:

• Load a pre-trained model and its tokenizer. We first use the AutoTokenizer.from pretrained()

function to download and cache the tokenizer. It’s important to set tokenizer.pad token to the
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eos token, which represents the end-of-sequence token in LlaMA-2. Aligning the padding

token with the model’s understanding of sequence endings is crucial for correct input format-

ting. For the model itself, we utilize AutoModelForCausalLM.from pretrained() to download

and prepare LlaMA-2 for use.

• Prepare the training and evaluation dataset. Our training and evaluation datasets consist

of input-output pairs. The datasets.load dataset() function from the Hugging Face’s Datasets

library is used to load these datasets, ensuring they are in the correct format for model training

and evaluation.

• Define training arguments and initialize the training. The TrainingArguments() function is

used to define various training parameters, such as learning rate, batch size, gradient accu-

mulation steps, and the number of epochs. We then instantiate the Trainer class with these

arguments to kick off the training process. This class manages the training loop, handling the

forward and backward passes, loss computation, model updates, and evaluation.

5.2.3 Implementation Challenges

During this implementation, we encountered the following challenges. The smallest LlaMA-2

model has around seven billion parameters, which require a lot of memory and computing power

for both training and using the model. We often ran into memory problems during training, and

the training process is slow when using all seven billion parameters across our GPUs. To solve

this, we use parameter-efficient fine-tuning (PEFT) [111], specifically low-rank adaptation (LoRA)

[112], which allows us to decrease the trainable parameters to 4.9 million from seven billion. This

approach still provides good training performance, especially with a specific LoRA configuration

(lora alpha=16, lora dropout=0.05, r=8). The number of training parameters decreases to 4,194,304

(trainable%: 0.062). Additionally, we employ Quantization [113] to reduce the precision of the

numerical values to 4-bit in the model, which helps in using less memory and speeding up the

process.
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Chapter 6

EVALUATION

This chapter first describes our experimental setups and then presents the evaluation results of

the effectiveness of 5GSecRec.

6.1 Experimental Setups

For our experiments, we use eight Quadro RTX 4000 GPUs with a total of 64GB VRAM to

perform learning steps (i.e., training and evaluation). To prepare a training dataset, as shown in

Table 5, we design attacks based on the MITRE ATT&CK framework [114], intended to trigger

detection alerts in both Kubernetes and 5G verification tools. On Kubernetes, we deploy attack pat-

terns from APT 29 [115] (T1087.02, T1110.03, T1005, T1068, T1083), APT17 [116] (T1070.004,

T1057, T1083, T1059), and APT1 [117] (T1016, T1049, T1016, T1007, T1057, T1005). For 5G

attacks [107, 108], we focus on Network Function (NF) level DoS attacks, compromising NF dis-

covery services, executing Packet Forwarding Control Protocol (PFCP) deletions and modifications,

and extracting subscriber data from UDMs. We use Caldera [118], a cybersecurity platform that fo-

cuses on automating adversary emulation, supporting manual red-team operations, and facilitating

automated incident response. This tool is particularly notable for its use in simulating advanced per-

sistent threat (APT) actors and helping organizations test and improve their defenses against such

threats. We utilize it to automate the emulation of attacks on Kubernetes and 5G infrastructures.
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Since our 5G testbed implementation mentioned in Section 5.1.1 is based on a vagrant virtual ma-

chine, which is hosted on a remote OpenStack server, we first install Caldera on the OpenStack

server to serve as a Command and Control (C2) server. This C2 server communicates with the

vagrant machine, directing it to execute attack commands on the 5G testbed.

Attack Name Kubernetes Aspect 5G Aspect
Custom Attack 1 APT 29 [115]: T1133, T1087.02,

T1110.03, T1005, T1068, T1083
Network Function (NF) level
DoS attacks [107]

Custom Attack 2 APT 17 [116]: T1070.004, T1057, T1083,
T1059

Compromising NF discovery
services (e.g., AMFLooking-
ForUDM [107], etc.)

Custom Attack 3 APT 1 [117]: T1016, T1049, T1016,
T1007, T1057, T1005

Compromising PFCP ser-
vices [108], user data
exfiltration from UDM [107]

Table 5: Summary of attacks on Kubernetes and 5G aspects

6.2 Hyperparameter Tuning

This set of experiments is to perform hyperparameter tuning for our solution. Figure 11 illus-

trates the Bayesian optimization output for identifying influential hyperparameters using the Tree-

structured Parzen Estimator algorithm [119]. The examined hyperparameters encompassed gradient

accumulation steps within {8, 16, 32, 64}; epochs within {1, 2, 3}, learning rates from 2 × 10−3

to 2 × 10−5, masking rates from 0.2 to 0.8, and data augmentation factors within {2, 4, 6, 8, 10}.

Specifically, Figure 11(a) correlates loss values with the optimal hyperparameter combination for up

to 20 trials and finds 0.265 as the optimal loss value. Figure 11(b) indicates a broad exploration of

learning rates, with 6.5× 10−4 determined as optimal. Figure 11(c) contrasts the observed uniform

value of gradient accumulation steps with the optimal value of 1. Figure 11(d) shows trails with a

range for the number of epochs, where epoch=2 is the most optimal value. Figure 11(e) depicts

a targeted range for the masking rate, with 0.44 identified as optimal. Figure 11(f) associates an

augmentation factor of 2 with optimal model generalization, with no additional gains from higher

values. These findings confirm the optimal hyperparameters’ efficacy within specified ranges. The
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learning rate and masking rate exhibit precise optima, while epochs and gradient accumulation steps

appear less sensitive. Data augmentation has a defined beneficial limit on model performance.

6.3 Evaluation on Alert Correlation

This set of experiments is to evaluate the accuracy of our alert correlation step using the multi-

modal model. We employ three metrics to assess the performance of our multi-modal model. First,

perplexity [120], is used to gauge the alignment between the model’s predicted probability distribu-

tion and the actual word distribution in the text. Second, accuracy evaluates the model’s accuracy

in filling masked events given a partially incomplete event sequence. Finally, F1 Score, is used to

provide a holistic assessment of the model’s performance via the harmonic mean of precision and

recall.

6.3.1 Evaluation Approach

After performing hyperparameter tuning, we choose the best combination of hyperparameters

from Section 6.2 for training our multi-modal model. For evaluating the model’s performance,

we use about 10% of the dataset as the evaluation dataset and 90 % of the dataset as the training

dataset. In this evaluation dataset, we applied within-aspect and across-aspect alert correlations to

mask events within each ground-truth event sequence from the training data. This process resulted

in creating two to three masked event sequences for each original event sequence. Note that all

the masked event sequences in the evaluation dataset are ensured to be distinct from those in the

training data. This evaluation dataset is designed to assess whether the model could correctly predict

the missing events and complete the original event sequence. We utilize this dataset to test the

performance of our multi-modal model by having it remove the masked events and generate the

complete original event sequences. The summary of this dataset is shown in Table 6.
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Size of Training Data Size of Evaluation Data Accuracy (%) Perplexity F1 Score

38,131 4,236 89.5 1.30 0.85

Table 6: Overall evaluation result of the multi-modal model

6.3.2 Evaluation Results

Figure 12 shows the performance of our multi-modal model in predicting the correlation among

four different aspects (i.e., Kubernetes Monitoring (KM), Kubernetes auditing (KA), 5G Monitor-

ing (5GM), and 5G Auditing (5GA)). Specifically, we evaluate the model’s performance for ten

prediction combinations (“Given KM, Predict 5GM”, “Given KA, Predict 5GA”, “Given KM, Pre-

dict KA”, “Given KA, Predict KM”, “Given 5GM, Predict KM”, “Given 5GA, Predict KA”, “Given

5GM, Predict 5GA”, “Given 5GA, Predict 5GM”, “Given 5GM & 5GA, Predict KM & KA”, and

“Given KM & KA, Predict 5GM & 5GA”). We selected these ten combinations based on the as-

sumption that security analysts concentrate on both ”within-layer” and ”across-layer” event correla-

tions. ”Within-layer” correlation involves linking events from security tools operating on the same

layer. For example, correlating events from Falco and Kubescape, both of which monitor the K8S

layer, represents a ”within-layer” correlation. On the other hand, ”across-layer” correlation refers

to connecting events from security tools deployed on different layers, such as correlating events be-

tween K8S and 5G layers. As shown in Figure 12, the tasks “Given KA, Predict 5GA” and “Given

5GM & 5GA, Predict KM & KA” demonstrate the highest accuracy and F1-scores among different

scenarios, indicating that the models employed in these scenarios are highly effective.

Such high metrics suggest not only a high rate of correct predictions but also a strong balance

between precision and recall. There is also a consistency in the performance across different predic-

tive scenarios. For instance, the tasks “Given KM, Predict 5GM” and “Given 5GM, Predict KM”

both display high accuracy (0.92) and robust F1 scores (0.84 and 0.87, respectively). This suggests

that the models or methods used are versatile and robust, capable of adapting to various types of

predictions.

However, the task “Given KM, Predict KA” presents a lower accuracy (0.78) and F1-score

(0.74) compared to others. This indicates that this predictive scenario might be more challenging,
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or the models used are not as effective in this context, or KM and KA have more diverse event types

and details than those of 5GM and 5GA, or the training dataset is limited. Most of the predictive

tasks, including “Given KA, Predict KM” and “Given 5GA, Predict 5GM,” showcase a good balance

between accuracy and F1-score. This balance is crucial as it suggests that the models are not just

accurate but also maintain a good balance between precision and recall, ensuring the reliability of

the predictions.

6.4 Evaluation on Question-Answering

This set of experiments is to measure the quality of the question-answering step of our solution.

6.4.1 Evaluation Metrics.

To assess the performance of the LLM in question-answering, we utilize three distinct metrics.

First, we use BLEU (Bilingual Evaluation Understudy) [121] to gauge the quality of text produced

by machine translation systems. Second, METEOR (Metric for Evaluation of Translation with

Explicit ORdering) [122] is employed to examine the linguistic alignment between the candidate

and reference sentences, offering a correlation with human judgments. Finally, BERTscore [123] is

adopted to determine the similarity between the candidate text and the reference text, leveraging the

cosine similarity of pre-trained word embeddings in the sentences.

6.4.2 Experimental Approaches.

For this set of experiments, we designed three approaches. 1) We directly use fine-tuned LLM

for question-answering with the input format as follows: task template + “Context: run-time

alerts/events” + “External References:”. 2) We use fine-tuned LLM coupled with the multi-modal

model’s outputs with the input format: task template + “Context: Multi-modal model’s outputs”

+ “External References:”.3) We use fine-tuned LLM coupled with multi-modal model outputs but

with a different input format: task template + “Context: run-time alerts/events” + “External Ref-

erences: Multi-modal model’s outputs”. Approach 1 serves as a baseline. Approach 2 aims to

assess if the event correlations predicted by the multi-modal model enhance question-answering
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tasks. Approach 3 retains these predicted event correlations from the multi-modal model and intro-

duces raw logs alongside the event correlations. This is to determine if the raw logs, which offer

richer but less precise context compared to the model’s event correlations, further improve question-

answering tasks. ”External References” and ”Context” act as separators, ensuring that inputs are

clear and comprehensible to the QA-LLM.

6.4.3 Evaluation Results.

Figure 13 (a) shows that the scores for all metrics fall between 0.4 and 0.75. The “Identify false

alarms” task has the top METEOR Score at 0.75, while the lowest is seen in the “Identify Attack

Evidence” task at 0.5. The BERTScore is quite steady across tasks, with scores ranging from 0.6 to

0.67. In contrast, the BLEU Score has more variation, with the highest being 0.7 for “Identify false

alarms” and the lowest at 0.4 for both “What-if analysis” and “Prevention.” In Figure 13 (b), the

scores are again between 0.4 and 0.75. The METEOR Score is highest for the “What-if analysis”

task at 0.94. BERTScore remains stable across different tasks, showing scores from 0.82 to 0.87.

The BLEU Score is fairly consistent, though a bit lower than BERTScore, with scores from 0.8 to

0.92.

Figure 13 (c) presents scores that are similar to Figure 2, mainly between 0.8 and 0.92. The

top METEOR Score is 0.92, seen in both the “Identify false alarms” and “What-if analysis” tasks.

BERTScore continues its stable performance with scores from 0.83 to 0.9. The BLEU Score varies

from 0.8 to 0.89, with the “Prevention” task scoring the highest.

The results above indicate that merely fine-tuning the QA-LLM is insufficient for accurately

recalling the event correlations necessary to answer user questions, leading to answers that may

not meet expectations. This limitation could stem from the focus on fine-tuning data on question-

answering tasks, rather than on correlating events. The fine-tuning process primarily trains the

QA-LLM to respond to users’ questions based on specific prompts. Hence, it is challenging for the

QA-LLM to capture the underlying event correlations when using raw logs as context. Especially,

for ”What-if analysis”, a hypothetical situation diminishes the performance of the QA-LLM. Using

the outputs from the multi-modal model, both Approach 2 and Approach 3 improve the QA-LLM’s

performance. This is because they provide more precise event correlations, enabling the QA-LLM
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to respond directly with insights to users’ questions based on these correlations, rather than having to

infer event correlations from raw logs. However, there is no significant difference in the performance

between Approach 2 and Approach 3. This could be due to the noise in the raw logs in contrast to

the more refined outputs of the multi-modal model.

An alternative approach involves training the QA-LLM to understand both event correlations

and question-answering tasks. This would require labeling event correlations and compiling them

with question-answering patterns into question-answer pairs. These pairs would then be used to

teach the QA-LLM to map relationships among events across the four aspects. However, this

method faces two significant challenges: (i) the scarcity of labeled datasets, and (ii) overheads

mentioned in Section 6.6. More specifically, within a question-answer pair, the event mappings are

structured such that on the question side, there are events from one or multiple aspects, along with

the questions. On the answer side, there are responses to these questions, which incorporate the

correlated events. We systematically enumerate these mappings.

6.5 Experiments with ChatGPT

This set of experiments is to compare our solution with ChatGPT (GPT-3.5). Table 7 compares

the question-answering capabilities of ChatGPT (GPT-3.5 without multi-modal model results) and

our solution in an identify-attack-evidence task. In the first instance, ChatGPT fails to confirm a real

attack, showing a lack of understanding of the context. In the second instance, it does not provide a

meaningful analysis. However, our solution can identify the absence of a real attack, demonstrating

its effectiveness. Differences observed in the responses of ChatGPT compared to our solution could

likely be due to ChatGPT’s lack of domain-specific knowledge such as alert correlations of the four

aspects. ChatGPT depends on its general pre-trained knowledge and struggles to respond accurately

to domain-specific questions. For example, it uses the basic concept that attacks often begin with

privilege escalation to infer that a combination of a privileged container and a sensitive mount could

lead to attacks in 5G such as data theft from UDM and suspicious HTTP traffic.

Table 8 presents a comparison between ChatGPT (GPT-3.5 with multi-modal model results) and

our solution in responding to the same question in Table 7. Although ChatGPT’s responses differ in
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style from what we expected based on the fine-tuning data, both ChatGPT and our solution display

comparable accuracy, correctly identifying the absence of a real attack due to a missing Kubescape

breach (privileged container), indicating their understanding of the context. However, a significant

concern arises with data security: ChatGPT operates on third-party servers, which could pose risks

to privacy and confidentiality.

Questions with the context Responses
ChatGPT (GPT-3.5) Our solution

Given Falco events and alerts
from other tools, is there
sufficient evidence to confirm
a real attack? Context:[Falco]
Launch Priviledged Container,
Launch Sensitive Mount,
other events [Kubescape]
Sensitive mount, other
events [5G verification]
Steal Data from UDM, other
events [5G detection] Suspi-
cious HTTP traffic. External
Knowledge:

Yes, there is strong evi-
dence to confirm a real at-
tack. The correlation between
Falco events (privileged con-
tainer and sensitive mount),
and 5G alerts (data theft from
UDM and suspicious HTTP
traffic) points to a coordinated
attack involving unauthorized
access, sensitive data theft,
and potentially malicious net-
work activity. This pattern of
events strongly indicates a real
attack.

No, Falco alerts (launch privi-
leged container) should be re-
lated to Kubescape breaches
(Privileged container), both of
them together lead to 5G at-
tacks like suspicious HTTP
traffic. Hence, it is not a real
attack.

ChatGPT (GPT-3.5) Our solution
Given Falco events and alerts
from other tools, is there
sufficient evidence to confirm
a real attack? Context:[Falco]
Launch Priviledged Container,
Launch Sensitive Mount,
other events [Kubescape]
Sensitive mount, other
events [5G verification]
Steal Data from UDM, other
events [5G detection] Suspi-
cious HTTP traffic. External
Knowledge:

Based on your provided infor-
mation, I can not analyze the
context and answer the ques-
tion

No, Falco alerts (launch privi-
leged container) should be re-
lated to Kubescape breaches
(Privileged container), both of
them together lead to 5G at-
tacks like suspicious HTTP
traffic. Hence, it is not a real
attack.

Table 7: Comparisons of question-answering between ChatGPT
(GPT-3.5 without multi-modal model’s results) and our solution

We can further refine ChatGPT to respond in the desired question-answering style, using a fine-

tuning process similar to that used for LLaMA-2. Given LLaMA-2’s comparable capabilities in
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natural language processing tasks [100], we anticipate that ChatGPT will meet our expectations in

responding to user inquiries. However, concerns about data confidentiality and privacy when trans-

mitting data to ChatGPT remain unresolved. Therefore, we do not perform comparisons between

the outputs of the fine-tuned ChatGPT and our solution.

6.6 Overheads

The final set of experiments is to measure the overhead of our solution.

6.6.1 Training Time

Figures 14(a) and 14(b) show the training times of our multi-modal model and QA-LLM. For

the multi-modal model, training times increase as the dataset size grows, starting at 15 minutes for

a dataset size of 50, 000 and going up to 71 minutes for a dataset size of 90, 000. These events are

gathered using our 5G testbed, which utilizes free5GC. After pre-processing, each event typically

consists of about 50 tokens on average. In a dataset of 50,000 events, we accumulate approximately

1000 time windows, each containing an average of 50 events across the four aspects. This suggests

a proportional increase in training time with larger datasets. In contrast, the QA-LLM requires

more time to train across all dataset sizes, with training times beginning at 81 minutes for the

smallest dataset and reaching 176 minutes for the largest. The higher training times for the QA-

LLM compared to the multi-modal model could be attributed to factors such as the number of

tokens in the training data.

However, it is not optimal to enumerate mappings of events from different aspects in question-

answer pairs and use them to train a QA-LLM. Although this approach can teach the QA-LLM to

learn labeled event correlations across different aspects and question-answering simultaneously, the

scalability is limited. As the number of aspects grows, the increase in enumeration substantially

enlarges the size of the question-answer pairs and extends the training time.
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6.6.2 Inference Time

Figures 14(c) and 14(d) compare the inference times of these two models for Approaches 2 and

3, respectively. In Approach 2, both models process only the outputs of the multi-modal model.

Here, the QA-LLM consistently shows higher latency than the multi-modal model, indicating a

slower processing capability. The latency for the multi-modal model ranges from 40 to 106 seconds,

whereas for the QA-LLM, it ranges from 170 to 183 seconds across various numbers of events.

Approach 3 introduces a variation where runtime events from the multi-modal model’s outputs

are added to the prompt for the QA-LLM. This change results in increased prompt lengths and,

consequently, longer inference times for the QA-LLM. As the throughput increases, the QA-LLM’s

inference time also increases, starting at 263 seconds and going up to 329 seconds. This rising trend

in latency with increasing throughput is not observed in the multi-modal model, suggesting that the

QA-LLM’s processing is more significantly affected by the increased prompt length in Approach

3. Since the difference in their effectiveness for answering questions is minimal, Approach 2 is the

more suitable option. Although the QA-LLM takes minutes to generate answers based on event

correlation, this is more efficient compared to the hours a security analyst would spend correlating

events and deriving insights from them.
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Chapter 7

OTHER CONTRIBUTIONS

This Chapter focuses on the other contributions made to this thesis.

7.1 Overview of Our Work on Security Posture Evaluation for 5G

Networks

Assessing 5G network security poses significant challenges due to its scale and new security

threats. Traditional methods, often yielding simple binary outcomes, fail to capture the network’s

complex security status. This work introduces an event-state model for evaluating 5G security, com-

bining audit-derived state models with surveillance-based event models. The state model identifies

attacker-induced non-compliances, while the event model monitors attacker actions. These models

are fused horizontally to correlate audit and surveillance findings, and vertically across different net-

work layers. The culmination is a probabilistic model using Bayesian networks, offering a nuanced

view of 5G network security. Thus, this work proposes a framework for security posture evaluation

in 5G networks (namely, 5GSPE [124]).

7.2 Implementation of 5GSPE

The main contribution to this thesis from 5GSPE is based on the implementation and deploy-

ment of security tools (Falco, and Kubescape).
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• Falco [8]. Falco is a cloud-native security solution, open-source and designed for continuous

detection of threats and risks within Kubernetes, containers, and cloud-native environments.

Its primary focus is on runtime security, which involves monitoring the activities of running

applications and containers to maintain compliance with set rules. Initially, monitoring was

implemented manually using journalctl, combined with a Kubernetes plugin for auditing Ku-

bernetes events. Subsequently, the system transitioned to utilizing docker run in the least priv-

ileged permission configuration. This was facilitated by using the falcosecurity/falco-driver-

loader image along with an eBPF probe. eBPF (Extended Berkeley Packet Filter) [125]

represents a significant innovation in Linux kernel development, enabling the execution of

sandboxed programs directly in the kernel, which was previously a concern for system sta-

bility and security. The adoption of an eBPF probe has made Kubernetes monitoring more

effective, flexible, and secure. For alerting, the system configuration outputs alerts via syslog

in JSON format.

• Kubescape [9]. KubeScape is an auditing tool tailored for Kubernetes environments. Its

core function is to analyze Kubernetes configurations and resource definitions, aligning them

with established best practices and compliance standards. To perform an audit, KubeScape is

initiated using the command “Kubescape scan mitre”. This command triggers a verification

process under the MITRE attack framework. Following the scan, any identified breaches are

extracted using bash scripts. The results of this extraction are then compiled into a report,

which is formatted in JSON and saved into a file.
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Chapter 8

CONCLUSION

8.1 Summary

In cloud-native environments, the deployment of 5G services is structured across multiple lay-

ers. These layers range from the service layer, where network functions are instantiated in con-

tainers, to the virtualization layer, which manages infrastructure virtualization and resource provi-

sioning. Although each layer has its specific function, they’re interconnected for the sake of overall

service delivery. Each layer may have security solutions tailored to its needs. However, due to differ-

ences in their auditing and monitoring methods, correlating outcomes from these diverse solutions

becomes a challenge. The rapidity of incidents, often driven by automation, misconfigurations, and

vulnerabilities, burdens SOC teams with an excessive number of alerts, among which a significant

portion can be false positives. The traditional approach, relying on SOC teams’ expertise to extract

context from these correlations, frequently falls short.

In this thesis, we addressed these challenges by introducing 5GSecRec, an innovative solu-

tion that combines multi-modal learning, self-supervised learning, and Large Language Models

(LLMs). 5GSecRec excels at identifying correlations in security alerts from both the virtualization

and service layers, providing actionable insights for security analysts. This solution was built on the

foundations of free5gc and Kubernetes. We also implemented and deployed security tools target-

ing four key aspects of a cloud-native 5G system: Kubernetes monitoring, Kubernetes auditing, 5G

monitoring, and 5G auditing. Our evaluation results demonstrated that our solution can effectively
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leverage LLMs to correlate alerts across these four aspects and provide domain-specific answers to

questions about such event correlations.

8.2 Limitations and Future Works

One limitation of our study is the assumption that attackers cannot compromise the integrity

of results from deployed security solutions. Should they manage to manipulate these results, our

multi-modal model may struggle to accurately correlate alerts. Also, zero-day attacks often lead to

unexpected combinations of alerts or breaches across different aspects. However, our work specifi-

cally excludes such scenarios if they present combinations that are distinct from those documented

in historical results as training data. Furthermore, we currently focus on short-term alert correla-

tions, without considering potential long-term dependencies between alerts from different aspects.

In future research, we aim to address this by creating new self-supervised tasks to discern these

long-term dependencies. Also, given our work’s generic nature and its good performance with tex-

tual data correlation, we plan to expand its scope to include results of security solutions that cover

layers (e.g., physical) other than service layer and virtualization layer. We will extend our work by

further correlating 3GPP specifications as an extra reference with alerts. This aims to improve the

interpretability of alert correlations and the reliability of the generated recommendation.
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