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Abstract

Quadratic Hedging in a Non-causal AR(1) Model

Caleb Kwame Danquah

This thesis explores hedging strategies for European-type derivatives under the non-causal AR(1) Cauchy

model. Recently, such non-causal models have raised much attention in the finance literature due to their

ability to replicate bubbles often observed in the cryptocurrency market, as well as their tractability for

pricing standard European options. However, these discrete-time models are incomplete, meaning that it

is impossible to perfectly replicate a derivative’s payoff in such a market. This thesis explores the use of

quadratic hedging approaches to manage the risk of a derivative trader.
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Chapter 1

Introduction

1.1 Background

Cryptocurrencies like Bitcoin (BTC) have inspired a lot of research in Economics and Finance. Several

papers showed that their price feature bubbles [see e.g. Garcia, Tessone, Mavrodiev, and Perony (2014),

and Kristoufek (2015)], that is, their price process feature epochs of steady increase, followed by a sharp

decrease. Investors who buy BTC have been concerned about how their investment can be protected against

abrupt fluctuations. It is also known that traditional ARMA and GARCH-type models cannot well replicate

this kind of bubble phenomenon.

Noncausal models have received much attention in the time series literature in the past 15 years [see Lanne et

al. (2011), Hencic and Gouriéroux (2015), Gourieroux and Jasiak (2016), Davis and Song (2020), Gourieroux,

Hencic, and Jasiak (2021)], thanks to their ability to capture bubbles. Some of their theoretical properties

have been investigated by Gouriéroux and Zaköıan (2017), which showed that the noncausal Cauchy AR(1)

model is a stationary martingale. This makes this model not just empirically relevant, but also compatible

with the no-arbitrage condition.

Recently, Gouriéroux and Lu (2023) showed that such noncausal models have also the advantage of leading

to semi-analytical formulas for the price of many derivatives. However, these discrete-time models are in-

complete, meaning that it is impossible to perfectly replicate the payoff of a derivative in such a market. In

replicating the payoff of a derivative, a popular approach is to conduct hedging.
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Hedging is a risk management strategy that seeks to find a portfolio whose value at maturity is as close

as possible to the payoff of underlying assets. Here, the closeness is measured by the mean-squared error.

The literature has mainly considered two hedging strategies: local and global. Local quadratic hedging

is a strategy that minimizes the mean squared error at each time interval. In contrast, global quadratic

hedging minimizes the error over the entire lifespan without removing or adding funds to the portfolio (also

referred to as a self-financing portfolio). To the best of our knowledge, an application of these techniques in

a noncausal AR(1) model is yet to be identified. Our motivation for this thesis is to fill this gap.

1.2 Literature Review

1.2.1 Modelling and forecasting of cryptocurrencies

Diverse methodologies have been employed to better understand the complexities of cryptocurrency price

dynamics. Yiying and Yeze (2019) used Artificial Neural Networks (ANN) and Long Short-Term Memory

(LSTM) Recurrent Neural Networks to analyze the price behaviour of major cryptocurrencies such as BTC,

Ethereum, and Ripple. Hayes (2017) focused on the cost of production as a primary determinant of cryp-

tocurrency value, analyzing factors like production rate and mining difficulty across 66 cryptocurrencies.

Matic et al. (2023) also proposed jump-diffusion models.

To effectively replicate the bubble phenomena observed in cryptocurrency markets, this thesis will adopt the

noncausal Cauchy model used by Gouriéroux and Zaköıan (2017). As an illustration, Figure 1.1 shows a sim-

ulated path of a non-causal Cauchy process with ρ = 0.9, and this is compared with Figure 1.2 displaying the

historical BTC price evolution. Figure 1.1 below clearly demonstrates recurring bubble patterns, illustrating

how the non-causal Cauchy model can effectively capture the kinds of trends seen in real cryptocurrency

markets.

Figure 1.2 depicts a distinctly time-varying BTC market behaviour across a specific period. Placing Figure

1.2 side by side with Figure 1.1 unveils visual parallels: The BTC bullish (blue) segment replicates the

bubble-like rises and falls captured in the ρ = 0.9 scenario of Figure 1.2. The sharp BTC price dip in March

2020 mirrors the sudden bubble collapse in the non-causal model. These visual overlaps suggest that the

non-causal AR(1) model may provide a robust framework for capturing the multifaceted behaviours of the

BTC market. While this visual similarity isn’t definitive evidence, it presents a compelling starting point
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Figure 1.1: Simulated path of noncausal Cauchy process with ρ = 0.9. Source: Figure 3 of Gouriéroux and
Zaköıan (2017)

for deeper, more rigorous investigations.

Figure 1.2: BTC Closing Price Trajectory from figure 1 of Matic et al. (2023)

1.2.2 Pricing of cryptocurrencies

Recently, notable progress has been made in the pricing of cryptocurrency literature. Example, Hou et al.

(2020) highlighted the importance of jumps and cojumps in cryptocurrency markets, particularly BTC, for

option pricing. They suggested using a stochastic volatility model with a correlated jump (SVCJ) to account

for the market’s unique behaviours, including speculation, sentiment, and the absence of typical market

fundamentals. This model, however, does not allow to capture bubbles. Noncausal AR(1) models have also

been used to price financial derivatives by Gouriéroux and Lu (2023). However, these papers are based on

the existence of a unique pricing measure, which assumes liquid derivative and underlying asset markets.

Currently, the market for cryptocurrency derivatives is highly non-liquid. Therefore, such derivatives need

to be ”hedged” in an incomplete market framework, using techniques such as quadratic hedging.
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1.2.3 Quadratic hedging

The two main techniques of quadratic hedging considered in the literature are local and global quadratic

hedging and were intensively explored by Schweizer (Schweizer (1988), Schweizer (1991), and Schweizer

(1995)). Augustyniak, Godin, and Simard (2017) investigated the effectiveness of these two quadratic hedg-

ing strategies under GARCH models. They found that for long-term vanilla options (a year or longer), global

quadratic hedging offers a significant risk reduction advantage, especially evident at three-year maturities.

Rémillard and Rubenthaler (2013) rectified misconceptions about local optimization techniques that had

been previously presented as globally optimal solutions. Their research established explicit formulas that ex-

tended the work of Černỳ and Kallsen (2007) (on the structure of general mean-variance hedging strategies)

and Schweizer (1995), focusing particularly on situations where the asset value process is either Markovian

or forms part of a Markov process. Using dynamic programming approximation techniques, they derived an

optimal solution for the discrete-time local quadratic hedging problem, emphasizing the superiority of this

optimal hedging over conventional delta hedging, especially when considering models like geometric random

walks and NGARCH.

Matic et al. (2023) adopted affine jump-diffusion models and infinite activity Lévy processes to investigate

hedging strategies for the BTC market. They used both Monte Carlo simulations to replicate the dynamics

of the BTC market. They leveraged various hedging strategies, including the Greeks (Delta, Delta–Gamma,

Delta–Vega) and the global quadratic approach. The difference between these strategies is that quadratic

hedging aims to reduce the total expected hedging errors ensuring the portfolio remains self-financing. Delta

hedging protects a hedged position against first-order changes in the underlying asset, whereas Delta–Gamma

and Delta–Vega hedging (or multiple instrument hedges) protects the position against higher-order sensitiv-

ities in the underlying asset and volatility respectively. A small gamma value implies gradual fluctuations

in delta, thereby indicating a reduced frequency of rebalancing. Whereas a high gamma value suggests that

the delta is very sensitive to changes in the price of the underlying asset. In their analysis, they found that

multiple-instrument hedges substantially reduced tail risk for longer-dated options.

This thesis contributes to the literature by addressing quadratic hedging of cryptocurrency derivatives, such

as European options, under the noncausal AR(1) Cauchy model of Gouriéroux and Zaköıan (2017). This

modelling has several advantages. First, under this model, the asset price is a martingale, hence compatible
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with non-arbitrage conditions. Second, it can replicate the bubble phenomenon. We start with a simple

framework of a one-period derivative. Then we extend to multiple periods.

1.3 Plan of the Thesis

The rest of the thesis is structured as follows. The non-causal AR(1) model’s properties are reviewed and the

groundwork is laid for simulating the paths of AR(1) processes in Chapter 2. Chapter 3 discusses quadratic

hedging starting with an overview of hedging as a way to reduce risk, then gradually introduces global, and

local hedging techniques, breaking down how they work and what they can be used for. We also show how

these hedging strategies work in real life by looking at how they work with one-period European vanilla

options. In Chapter 4, we evaluate the chosen hedging strategies in the volatile cryptocurrency markets.

This chapter is mostly made up of three analytical sections: the relationship between at-the-money (ATM)

local hedging strategy values, node counts, and steps; the interaction between asset maturity periods and

hedging strategies; and a comparison of hedging techniques across a range of strike prices.
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Chapter 2

Non-Causal Process

This chapter reviews the non-causal autoregressive model of order 1 (AR(1)) and discusses its effectiveness

in capturing complex patterns such as financial bubbles. A standard (causal) AR(1) process is defined by:

Xt = ϕXt−1 + εt, (2.1)

where (εt) represents i.i.d. sequence, and |ϕ| < 1 such that the process (Xt) is stationary. While the AR(1)

model has its merits and is widely applied in various fields, it may not always sufficiently capture the intrica-

cies of financial time series. For instance, phenomena like bubbles or sudden market crashes, often observed

in cryptocurrency markets like Bitcoin, can elude traditional AR structures. This prompts the exploration

of more advanced models, specifically the non-causal AR(1) Cauchy model. Before we talk about the Non-

Causal Cauchy model, we first review the Cauchy distribution.

2.1 The Cauchy Distribution

The Cauchy distribution is a continuous probability distribution on R. Its probability density function (pdf)

as given by Feller (1991) is:

fX(x) = 1

πγ

[
1 +

(
x−x0

γ

)2
] , ∀x ∈ R, (2.2)

where the scale parameter γ > 0 and x0 is the location parameter (indicating the peak of the distribution).

The distribution is also symmetric about the axis x = x0.
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The cumulative distribution function (cdf) is given by:

FX(x) = 1
π

tan−1
(
x− x0

γ

)
, (2.3)

and the characteristic function is given by

φ(u) = E[eiXu] =
∫ ∞

−∞
e−ixufX(x;x0, γ)dx = eix0u−γ|u|. (2.4)

The Cauchy distribution has an undefined mean and variance (Johnson, Kotz, and Balakrishnan (1995)).

It also belongs to the larger family of α-stable distributions. That is, for n independent Cauchy distribu-

tions, X1, X2, . . . , Xn with scale parameters γ1, γ2, . . . , γn and location parameters x1, x2, . . . , xn, the sum∑n
i=1 ciXi, where c1, c2, . . . , cn are real numbers is also Cauchy with scale

∑n
i=1 |ci|γi and location

∑n
i=1 cixi.

See appendix A for more information on α-stable distributions.

2.1.1 Graphical representation

Figure 2.1 plots the pdfs of the Cauchy distributions with different scale parameters: γ = 1, 2, and 5 and

the same location parameter x0 = 0.

Figure 2.1: Pdfs of the Cauchy distribution for fixed shape and different scale parameters.
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2.2 Non-Causal Cauchy Model

The non-causal AR(1) model is obtained by time-reversing the standard, causal AR(1) model.

Xt = ρXt+1 + εt, (2.5)

where |ρ| < 1 and (εt) is an i.i.d. sequence.

It is well known that if (εt) follows the Gaussian distribution, this process has also a standard causal AR(1)

representation [see Breidt et al. (1992) and Hamilton (2020)]. However, when (εt) is non-Gaussian, the

resulting noncausal process can no longer be written as a standard causal Autoregressive Moving Average

(ARMA) process.

In particular, Gouriéroux and Zaköıan (2017) studied the case where (εt) is α-stable, such as Cauchy or

Lévy. The Cauchy case is particularly interesting for financial applications since we will see later on that

this leads to a martingale model, which is compatible with the no-arbitrage condition. Moreover, in this case,

the conditional distribution has closed-form density, making the model particularly tractable for prediction

and hedging purposes. We will consider the case where (εt) is Cauchy, with location parameter 0 and scale

parameter σ, denoted C (0, σ).

Proposition 1. The stationary distribution of the noncausal Cauchy linear AR(1) process is Cauchy C
(

0, σ
1−|ρ|

)
.

Proof. The strictly stationary solution of (2.5) defined above is:

Xt =
∞∑

h=0
ρhεt+h.

When α = 1, the characteristic function of Xt is given by

E[eiuXt ] =
∞∏

h=0
E[eiuρhεt+h ]

= exp
{
−

∞∑
h=0

σ|u||ρ|h
}

= exp
{
−σ|u|
1− |ρ|

}
, (2.6)

which corresponds to a Cauchy distribution with location parameter 0 and scale parameter σ
1−|ρ| . Note
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that if (εt) follows other non-Cauchy α-stable distribution, the marginal distribution is still α-stable, see

Gouriéroux and Zaköıan (2017).

From now on, we will consider the case where ρ is real and between 0 and 1, which is the most relevant case

for financial modelling. For instance, in an application to NASDAQ price data, Gouriéroux and Zaköıan

(2017) found that ρ = 0.978. The next proposition gives the conditional distribution of the noncausal process

in the causal direction.

Proposition 2. The h-step causal transition pdf of the noncausal cauchy linear AR(1) process as proposed

by Gouriéroux and Zaköıan (2017) is given by:

fXt
(xt|Xt−h = xt−h) = 1

πσh

1
1 + (xt−h − ρhxt)2/σ2

h

σ2 + (1− ρ)2x2
t−h

σ2 + (1− ρ)2x2
t

, (2.7)

where σh = σ 1−ρh

1−ρ .

In particular, if h = 1, we get

fXt
(xt|Xt−1 = xt−1) = 1

πσ

1
1 + (xt−1 − ρxt)2/σ2

σ2 + (1− ρ)2x2
t−1

σ2 + (1− ρ)2x2
t

. (2.8)

Recall that 1
πσ

1
1+(xt−1−ρxt)2/σ2 is Cauchy pdf, but the additional multiplier term σ2+(1−ρ)2x2

t−1
σ2+(1−ρ)2x2

t
makes fXt

(xt|Xt−1 =

xt−1) non Cauchy.

Proof. At horizon h+ 1, the forward recursive equation is given by,

Xt−1 = ρh+1Xt+h + (εt−1 + ρεt + · · ·+ ρhεt+h−1)

= ρh+1Xt+h + εt−1,h. (2.9)

The distribution of (εt−1,h) is Cauchy with location parameter 0 and scale parameter σh. We denote its pdf

by fε,h and the pdf of Xt−1 given Xt+h by fε,h(xt−1 − ρh+1xt+h). Recall from Bayes’ theorem that, if X

and Y are two continuous random variables, the conditional density is defined by,

fX(x|Y = y) = fY (y|X = x)fX(x)
fY (y) . (2.10)
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Applying Bayes’ formula above, we write the conditional pdf of Xt+h given Xt−1 as:

fXt+h
(xt+h|Xt−1 = xt−1) =

fε,h(xt−1 − ρh+1xt+h)fXt+h
(xt+h)

fXt−1(xt−1) . (2.11)

Therefore, similarly, we can write the pdf of Xt given Xt−h as:

fXt
(xt|Xt−h = xt−h) = fε,h−1(xt−h − ρhxt)fXt

(xt)
fXt−h

(xt−h)

= 1
πσh

1
1 + (xt−h − ρhxt)2/σ2

h

σ2 + (1− ρ)2x2
t−h

σ2 + (1− ρ)2x2
t

, (2.12)

after substituting the various distributions, where σh = σ 1−ρh

1−ρ . Note that, the conditional distribution

fε,h−1 corresponds to the distribution of
∑h−1

i=0 ρ
iεt−i, which is C(0, σh), and Xt ∼ C

(
0, σ

1−ρ

)
as established

in Proposition 1.

The conditional CDF of Xt|Xt−1 can be obtained by calculating the primitive of the conditional pdf (2.8).

Gouriéroux and Zaköıan (2017) show that when σ = 1,

FXt
(xt|Xt−1 = xt−1) = α(xt−1, ρ)

π
log
{

1 + (1− ρ)2x2
t

1 + (xt−1 − ρxt)2
ρ2

(1− ρ)2

}
+ β(xt−1, ρ)

π

{π
2 − tan−1(xt−1 − ρxt)

}
+ 1− β(xt−1, ρ)

π

{
tan−1[(1− ρ)xt] + π

2

}
, (2.13)

where,

α(xt−1, ρ) = ρ(1− ρ)2xt−1

(1− 2ρ)2 + (1− ρ)2x2
t−1

,

β(xt−1, ρ) =
ρ{(1− ρ)2x2

t−1 − (1− 2ρ)}
(1− 2ρ)2 + (1− ρ)2x2

t−1
.

Remark 1. For a noncausal Cauchy process satisfying Xt = ρXt+1 +εt where the Cauchy sequence (εt) has

scale parameter σ, then Xt

σ = ρXt+1
σ + εt

σ . That is, Yt = Xt

σ is noncausal Cauchy such that the error term

εt := εt

σ is Cauchy with unit scale parameter.

Thus, by change of variable, we also get the conditional CDF in the case where σ is an arbitrary positive
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number:

FYt(yt|Yt−1 = yt−1) = α(yt−1, ρ)
π

log
{

1 + (1− ρ)2(σyt)2

1 + σ2(yt−1 − ρyt)2
ρ2

(1− ρ)2

}
+ β(yt−1, ρ)

π

{π
2 − tan−1[σ(yt−1 − ρyt)]

}
+ 1− β(yt−1, ρ)

π

{
tan−1[σ(1− ρ)yt] + π

2

}
, (2.14)

where,

α(yt−1, ρ) = σρ(1− ρ)2yt−1

(1− 2ρ)2 + (1− ρ)2(σyt−1)2 ,

β(yt−1, ρ) = ρ{(1− ρ)2(σyt−1)2 − (1− 2ρ)}
(1− 2ρ)2 + (1− ρ)2(σyt−1)2 .

Gouriéroux and Zaköıan (2017) also derived (see their proposition 3.5) the first and second-order moment

for the non-causal Cauchy AR(1) process when ρ ∈ (0, 1):

E(Xt|Xt−1) = Xt−1, (2.15)

E(X2
t |Xt−1) = 1

ρ
X2

t−1 + σ2

ρ(1− ρ) . (2.16)

In other words, (Xt) is a martingale. Moreover, the existence of the conditional first and second-order mo-

ments of Xt indicates the existence of the conditional variance of Xt, in contrast to the first-order marginal

moment, which does not exist. This suggests that quadratic hedging based on (conditional) variance criterion

can likely be considered.

2.3 The Limiting Behavior while in the Bubble

Recently, Fries and Zakoian (2019) showed that in a non-causal AR(1) model, given |Xt−1| > a, the distri-

bution of Xt

Xt−1
converges to a binomial distribution with discrete values 0 and 1

ρ , when a goes to infinity.

However, the conditioning set |Xt−1| > a they used is not the conditioning set used for predictive distribution.

In this section, we prove a similar result for the noncausal AR(1) process, concerning the conditional distri-

bution of Xt|Xt−1. Indeed, in the forecasting and hedging context, the conditional distribution of Xt|Xt−1 is

more relevant. Also, because of the scaling property discussed in the previous section, it suffices to consider

the case where σ = 1.
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We first introduce Rt = Xt

Xt−1
, and consider the rescaled conditional distribution of fRt

(rt|Xt−1 = xt−1). By

change of variable formula, its CDF is:

FRt
(rt|Xt−1 = xt−1) = α(xt−1, ρ)

π
log
{

1 + (1− ρ)2(rtxt−1)2

1 + (xt−1 − ρrtxt−1)2
ρ2

(1− ρ)2

}
+ β(xt−1, ρ)

π

{π
2 − tan−1(xt−1 − ρrtxt−1)

}
+ 1− β(xt−1, ρ)

π

{
tan−1[(1− ρ)rtxt−1] + π

2

}
, (2.17)

where

α(xt−1, ρ) = ρ(1− ρ)2xt−1

(1− 2ρ)2 + (1− ρ)2x2
t−1

, (2.18)

β(xt−1, ρ) =
ρ{(1− ρ)2x2

t−1 − (1− 2ρ)}
(1− 2ρ)2 + (1− ρ)2x2

t−1
. (2.19)

Theorem 2.1. When Xt−1 → +∞, Rt|Xt−1 converges in distribution to the binomial distribution with

masses at 0 and 1/ρ and probabilities 1− ρ and ρ, respectively.

Proof. It suffices to show that FRt(rt|Xt−1 = xt−1) converges to the CDF of a binomial distribution. To

find limXt−1→∞ FRt
(rt|Xt−1 = xt−1), each component is considered separately below.

The expression (2.18) can be simplified as:

α(xt−1, ρ) = ρ(1− ρ)2/xt−1

(1− 2ρ)2/x2
t−1 + (1− ρ)2 ,

and limxt−1→∞ α(xt−1, ρ)→ 0. From (2.19), we also have

β(xt−1, ρ) =
ρ{(1− ρ)2 − (1− 2ρ)/x2

t−1}
(1− 2ρ)2/x2

t−1 + (1− ρ)2 ,

and limxt−1→∞ β(xt−1, ρ)→ ρ.

The first term in (2.17) can be simplified as:

α(xt−1, ρ)
π

log
{

1 + (1− ρ)2(rtxt−1)2

1 + (xt−1 − ρrtxt−1)2
ρ2

(1− ρ)2

}
= α(xt−1, ρ)

π
log
{1/x2

t−1 + (1− ρ)2r2
t

1/x2
t−1 + (1− ρrt)2

ρ2

(1− ρ)2

}
. (2.20)
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Let us now analyze this limit for different values of rt. For an arbitrary value z, we have that:

• If rt = 0,

α(xt−1, ρ)
π

log
{1/x2

t−1 + (1− ρ)2r2
t

1/x2
t−1 + (1− ρrt)2

ρ2

(1− ρ)2

}
= α(xt−1, ρ)

π
log
{ 1/x2

t−1
1/x2

t−1 + 1
ρ2

(1− ρ)2

}
∼ lim

z→0
z log{z}

→ 0. (2.21)

• If rt = 1/ρ,

α(xt−1, ρ)
π

log
{1/x2

t−1 + (1− ρ)2r2
t

1/x2
t−1 + (1− ρrt)2

ρ2

(1− ρ)2

}
= α(xt−1, ρ)

π
log
{1/x2

t−1 + (1/ρ− 1)2

1/x2
t−1

ρ2

(1− ρ)2

}
∼ lim

z→0
z log{z}

→ 0. (2.22)

• If rt < 0, or 0 < rt < 1/ρ, or rt > 1/ρ, we have

α(xt−1, ρ)
π

log
{1/x2

t−1 + (1− ρ)2r2
t

1/x2
t−1 + (1− ρrt)2

ρ2

(1− ρ)2

}
→ 0. (2.23)

This implies that, regardless of the value of rt, the term (2.20) goes to zero when xt−1 goes to infinity.

Let us now analyze the second term in (2.17). We have:

lim
xt−1→∞

β(xt−1, ρ)
π

(π
2 − tan−1(xt−1 − ρrtxt−1)

)
= ρ

π
lim

xt−1→∞

(π
2 − tan−1(xt−1 − ρrtxt−1)

)
= ρ

2 −
ρ

π
lim

xt−1→∞
tan−1(xt−1 − ρrtxt−1). (2.24)

Similarly, the last term in (2.17):

lim
xt−1→∞

1− β(xt−1, ρ)
π

(
tan−1[(1− ρ)rtxt−1] + π

2

)
=

1− limxt−1→∞ β(xt−1, ρ)
π

(
lim

xt−1→∞
tan−1[(1− ρ)rtxt−1] + π

2

)
= 1− ρ

π

(
lim

xt−1→∞
tan−1[(1− ρ)rtxt−1] + π

2

)
= 1− ρ

π

(
lim

xt−1→∞
tan−1[(1− ρ)rtxt−1]

)
+ 1− ρ

2 . (2.25)
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The following table provides tan−1[(1 − ρrt)xt−1] and tan−1[(1 − ρ)rtxt−1] for different values of rt, when

xt−1 goes to infinity.

Table 2.1: Evaluating the tan−1(.) term in Equation (2.17) given different rt conditions.

rt < 0 rt = 0 0 < rt < 1/ρ rt = 1/ρ rt > 1/ρ
limxt−1→∞ tan−1[(1− ρrt)xt−1] π/2 π/2 π/2 0 −π/2
limxt−1→∞ tan−1[(1− ρ)rtxt−1] −π/2 0 π/2 π/2 π/2

Combining all three terms, the behaviour of the limiting CDF under the conditions presented in the above

table is examined.

When rt < 0,

lim
xt−1→∞

FRt(rt|Xt−1 = xt−1) = 1
2 −

ρ

π

(
lim

xt−1→∞
tan−1[(1− ρrt)xt−1]

)
+ 1− ρ

π

(
lim

xt−1→∞
tan−1[(1− ρ)rtxt−1]

)
= 1

2 −
ρ

π

(π
2

)
+ 1− ρ

π

(
−π2

)
= 1

2 −
ρ

2 −
1− ρ

2

= 0. (2.26)

When rt = 0,

lim
xt−1→∞

FRt
(rt|Xt−1 = xt−1) = 1

2 −
ρ

π

(
lim

xt−1→∞
tan−1[(1− ρrt)xt−1]

)
+ 1− ρ

π

(
lim

xt−1→∞
tan−1[(1− ρ)rtxt−1]

)
= 1

2 −
ρ

π

(π
2

)
+ 1− ρ

π
(0)

= 1
2 −

ρ

2

= 1− ρ
2 . (2.27)

When 0 < rt < 1/ρ,

lim
xt−1→∞

FRt
(rt|Xt−1 = xt−1) = 1

2 −
ρ

π

(
lim

xt−1→∞
tan−1[(1− ρrt)xt−1]

)
+ 1− ρ

π

(
lim

xt−1→∞
tan−1[(1− ρ)rtxt−1]

)
= 1

2 −
ρ

π

(π
2

)
+ 1− ρ

π

(π
2

)
= 1

2 −
ρ

2 + 1− ρ
2

= 2− 2ρ
2

= 1− ρ. (2.28)
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When rt = 1/ρ,

lim
xt−1→∞

FRt(rt|Xt−1 = xt−1) = 1
2 −

ρ

π

(
lim

xt−1→∞
tan−1[(1− ρrt)xt−1]

)
+ 1− ρ

π

(
lim

xt−1→∞
tan−1[(1− ρ)rtxt−1]

)
= 1

2 −
ρ

π
(0) + 1− ρ

π

(π
2

)
= 1

2 + 1− ρ
2

= 2− ρ
2 . (2.29)

When rt > 1/ρ,

lim
xt−1→∞

FRt
(rt|Xt−1 = xt−1) = 1

2 −
ρ

π

(
lim

xt−1→∞
tan−1[(1− ρrt)xt−1]

)
+ 1− ρ

π

(
lim

xt−1→∞
tan−1[(1− ρ)rtxt−1]

)
= 1

2 −
ρ

π

(
−π2

)
+ 1− ρ

π

(π
2

)
= 1

2 + ρ

2 + 1− ρ
2

= 1. (2.30)

Figure 2.2 below is a plot of the limiting CDF computed above for ρ ∈ {0.978, 0.8, 0.5}. It can be seen that,

for each ρ value, the distribution of the limiting function is equal to the CDF of the binomial distribution

with masses at 0 and 1/ρ and probabilities 1− ρ and ρ, respectively.
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Figure 2.2: Convergence of FRt(rt|Xt−1 = xt−1) to the binomial CDF with masses at 0 and 1/ρ and
probabilities 1− ρ and ρ, respectively when xt−1 → +∞, for different values of ρ.

2.4 Illustration

As an illustration, fRt
(rt|Xt−1 = xt−1) is plotted for different values of xt−1 ∈ {100, 250, 500}, from top to

down and ρ ∈ {0.978, 0.8, 0.5}, from left to right respectively. It can be seen that the peak of the distribution

occurs at 0 and 1
ρ as expected.

16



Figure 2.3: Probability density curves for fRt(rt|Xt−1 = xt−1).

Also, the weak convergence through the convergence of some integrals is illustrated. It is well known that the

weak convergence of a sequence of probability measures implies the convergence of the sequence of Laplace

transforms. One consequence of the convergence of distribution of Rt|Xt−1 is that, we have

∫ ∞

−∞
e−iurfRt(rt|Xt−1 = xt−1)dr −−−−−−−→

Xt−1→+∞

∫ ∞

−∞
e−iur[ρδ0(r) + (1− ρ)δ 1

ρ
(r)]dr (2.31)

= (1− ρ) + ρe−i u
ρ , (2.32)

for all real u, where i is the pure imaginary number such that i2 = −1. That is, its real part converges to

(1− ρ) + ρcos( u
ρ ) and its imaginary part converges to ρsin( u

ρ ). We take u ∈ {0.1, 0.2}, ρ ∈ {0.5, 0.8, 0.978}

and plot the left-hand side of (2.31) as a function of Xt−1, and report also the limiting value (2.32)

in the same figure, where the left-hand side of (2.31) is computed by simulation. Figure 2.4 displays∫∞
−∞ cos(ur)fRt

(rt|Xt−1 = xt−1)dr and (1 − ρ) + ρcos( u
ρ ) (in red), which represents the real part of (2.32).

For the imaginary case, Figure 2.5 also displays
∫∞

−∞ sin(ur)fRt(rt|Xt−1 = xt−1)dr and ρsin( u
ρ ) (in red).

The difference of the limiting values is explained by the fact that sin(0) = 0 and cos(0) = 1.
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Figure 2.4: Convergence of
∫∞

−∞ cos(ur)fRt(rt|Xt−1 = xt−1)dr to (1−ρ)+ρcos( u
ρ ) (in red) when xt−1 → +∞,

for different values of u and ρ.
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Figure 2.5: Convergence of
∫∞

−∞ sin(ur)fRt(rt|Xt−1 = xt−1)dr to ρsin( u
ρ ) (in red) when xt−1 → +∞, for

different values of u and ρ.

2.5 Simulation of Trajectories of AR(1) Processes

There are two primary approaches to simulating trajectories of AR(1) processes. The first involves generating

a path from a terminal condition, working backward without fixing an initial value, as used by Gouriéroux

and Zaköıan (2017). This approach requires known terminal conditions which is not the case in practice.

The second, which is our chosen approach, simulates forwardly given an initial value and requires the use of

conditional density. This research uses parameters detailed in Section 7 of Gouriéroux and Zaköıan (2017),

particularly σ = 1.048 and ρ = 0.978. We set the initial condition, X0 = 100, and observe the changes in the

distribution as the parameter ρ approaches 0.5. The following subsections briefly discuss some simulation

methods that can be used for simulating trajectories of the AR(1) process.
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2.5.1 Inverse Transform method

Given a continuous random variable X with a known CDF F (x), the Inverse Transform Method can be

used to generate random variables following the distribution of X. This method is particularly efficient

when F−1(u) has a closed form. The algorithm for this method involves first generating a random variable

U ∼ U(0, 1). After, X = F−1(U) is computed to obtain a random variable following the distribution F (x).

The CDF of the non-causal AR(1) Cauchy model exists, therefore, this method could be used. Specifically,

the CDF (2.13) and (2.14) could be used when σ = 1 and σ ̸= 1 respectively by computing their inverse

CDF and following the algorithm.

2.5.2 Sampling Importance-Resampling method

Sampling Importance Resampling (SIR) is a simulation technique used to generate a random sample with

a given density by generating random variables from another density that is different from the desired one,

similar to the concept of importance sampling. Subsequently, the algorithm performs resampling from this

pool of generated values to obtain the desired random vector. Specifically, suppose X is a random variable

with density f(x), the algorithm begins by selecting an alternative (or proposal) distribution g(x) that is

relatively simple to sample from and close to the target distribution f(x). Next, a set of N samples {xi}N
i=1

is drawn from this proposal distribution. For each sample xi, an importance weight wi is computed as

wi = f(xi)
g(xi) , which assesses how representative each sample is to the target distribution. These weights are

then normalized to ensure their sum equals 1, giving ŵi = wi∑N

j=1
wj

. The algorithm proceeds by resampling

N times with replacement from the set {xi} based on the normalized weights {ŵi}. This step adjusts the

distribution of the samples to more closely resemble f(x). The resulting set of resampled points now follows

the initial distribution f(x). For the non-causal model (2.8), a proposal distribution capturing the peaks

at 0 and Xt−1
ρ could be used. That is, a mixed Cauchy density weighted with (1 − ρ) and ρ and location

parameters 0 and Xt−1
ρ as presented below could be used:

g(x) = (1− ρ)× 1
π

σ

x2 + σ2 + ρ× 1
π

σ

(x− xt−1
ρ )2 + σ2 . (2.33)

2.5.3 Acceptance-Rejection method

The Acceptance-Rejection Method is another method for simulating random variables, especially when an

explicit formula for the inverse of the CDF is not readily available or computationally feasible. Given a

continuous random variable X with target pdf f(x), this method uses a proposal distribution G with pdf
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g(x) which can be easily sampled, and is bound by the relation:

0 ≤ f(x)
g(x) ≤ c ∀x ∈ R

where c is a constant. To implement this method, begin by generating a random variable Y distributed as G,

the proposal distribution. Then, generate an independent random variable U ∼ U(0, 1) so that if U ≤ f(Y )
cg(Y ) ,

set X = Y (i.e., ”accept” Y ); else, ”reject” Y .

All the three simulation methods presented above can be used to simulate the non-causal AR(1) process,

however, the acceptance-rejection method was used in this thesis. Figure 2.3 indicates that the non-causal

AR(1) Cauchy model has two components, as seen in the last column, which is the ρ = 0.5 case. There-

fore, we ran our simulations using the acceptance-rejection algorithm with the constant c chosen such that,

c = max
{

f(x)
g(x)

}
. The mixed Cauchy density (2.33) was used as the proposal density. Using a single Cauchy

distribution would lead to a very low acceptance rate (approximately 2% in our simulation) compared to

approximately 78% with the mixed distribution. Considering a time horizon of h = 1, we simulate X1

given X0 = 100 and the constant c = 3.733, 6.039, 3.999 when ρ = 0.978, 0.8, 0.5 respectively. Figure 2.6

below shows the probability density curves for both the simulations and the non-causal AR(1) Cauchy model.

Figure 2.6: Probability density curves for simulated (blue) and target(red) non-causal model with X0 = 100.
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Chapter 3

Hedging Strategies

Financial markets are often classified into two main categories: complete and incomplete. In a complete

market, every contingent claim can be perfectly hedged. An example of this concept is the Black-Scholes-

Merton model (Black and Scholes (1973) and Merton (1973)) in continuous time. In the real-world context,

many markets are incomplete. An example of an incomplete market is one where certain types of risks,

like currency risk or political risk, cannot be fully hedged due to a lack of corresponding financial instru-

ments or inefficiencies in the market. In such markets, perfect hedging is unattainable. To address this

limitation, super-replicating strategies can be employed. A super-replicating portfolio is any self-financing

strategy where the portfolio’s value at maturity is always greater than or equal to the contingent claim value.

While effective, these strategies are expensive. An alternative is quadratic hedging, offering a middle ground

between cost and risk. This approach, which Föllmer and Sondermann (1986) first used in the framework

of finance, looks for a strategy that reduces the total expected squared hedging errors. Within quadratic

hedging, two approaches will be considered: global and local strategies. Global quadratic hedging aims to

determine a sequence of hedging decisions to minimize the expected squared terminal hedging error, ensuring

the hedging portfolio remains self-financing. The local quadratic hedging, on the other hand, allows for some

intermediate errors and dynamically minimizes the local hedging errors based on new information. This

approach identifies optimal positions using a blinded approach by minimizing quadratic costs for each time

interval. The upcoming sections will introduce the mathematical terminologies and tools that are essential

for a detailed understanding of these methods.
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3.1 Terminology

This subsection introduces some tools and notations that will be used in explaining the hedging methods.

Consider a series of trading events that happen at regular intervals within a predetermined finite time

frame, denoted by T ∈ N. The sequence T is used to represent these discrete times, where each element

corresponds to an integer ranging from 0 up to and including T . {Xt}t∈T is a stochastic process, defined

on a probability space (Ω,FT ,P) where the filtration Ft represents stock price information till time t, and

P represents the real-world probability measure. {βt}t∈T is also a risk-free asset price process assumed to

grow at a risk-free rate r such that βt = ert. A trading strategy is defined as a pair of stochastic processes

{ϕt}t∈T = {ϕt,1, ϕt,2}t∈T , where the Ft-measurable random variables ϕt,1 and ϕt,2 respectively denotes the

quantity of risky asset and the amount of risk-free asset held at time t, where t = 0, 1, ..., T −1. The hedging

portfolio value sums up the values of all hedging investments up to time t, and it is given by,

Vt = ϕt,1Xt + ϕt,2. (3.1)

The payoff P for a European option with maturity T is the maximum of either the difference between the

asset price XT at maturity and a predetermined price, known as the strike price K, or zero. Specifically, for

a European call option, the payoff is max(XT −K, 0), and for a European put option, it is max(K −XT , 0).

Let Wt denote the accumulated value of a position where ϕt−1,1 shares of the risky asset are bought at time

t− 1, and a cash position ϕt−1,2 is held from time t− 1 to t. That is,

Wt = ϕt−1,1Xt + erϕt−1,2, (3.2)

for t = 1, . . . , T., where ϕt−1,2 = Vt−1 − ϕt−1,1Xt−1 since we consider two assets.

A special hedging strategy is a self-financing strategy. This strategy is one where the hedger neither adds

nor withdraws money from the hedging portfolio, regardless of the changes in the prices of assets. In our

setting, this means that there’s no difference between the accumulated portfolio value (Wt) and the hedging

strategy value (Vt) at time t = 0, . . . , T . It only allows errors at maturity if any. Let ΦT denote the set of

all self-financing hedging strategies between 0 and T .
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Proposition 3. For a self-financing strategy with two assets, the value of the strategy at time t is given by,

Vt = βt

(
V0 +

t∑
i=1

ϕi−1,1∆Xi

)
, (3.3)

for t = 1, . . . , T − 1, where ∆Xi = β−1
i Xi − β−1

i−1Xi−1.

Proof. By induction, and from the definition of self-financing, at time 1 the value of the strategy is equal to

the accumulated portfolio value (i.e. V1 = W1). Using the definition of Wt in (3.2), we have

V1 = ϕ0,1X1 + β1ϕ0,2

= ϕ0,1X1 + β1(V0 − ϕ0,1X0)

= β1(V0 + ϕ0,1β
−1
1 X1 − ϕ0,1X0)

= β1(V0 + ϕ0,1∆X1), (3.4)

which verifies that (3.3) is true for t = 1. Next, assume that (3.3) is true for t.

Now at time t+ 1, Vt+1 = Wt+1 by the definition of self-financing. So we have

Vt+1 = ϕt,1Xt+1 + βt+1

βt
ϕt,2

= ϕt,1Xt+1 + βt+1

βt
(Vt − ϕt,1Xt)

= βt+1

βt
(Vt + ϕt,1

βt

βt+1
Xt+1 − ϕt,1Xt)

= βt+1

βt

(
βt

(
V0 +

t∑
i=1

ϕi−1,1∆Xi

)
+ ϕt,1

βt

βt+1
Xt+1 − ϕt,1Xt

)

= βt+1

(
V0 +

t∑
i=1

ϕi−1,1∆Xi + ϕt,1β
−1
t+1Xt+1 − ϕt,1β

−1
t Xt

)

= βt+1

(
V0 +

t∑
i=1

ϕi−1,1∆Xi + ϕt,1∆Xt+1

)

= βt+1

(
V0 +

t+1∑
i=1

ϕi−1,1∆Xi

)
, (3.5)

which completes the proof.
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3.2 Binomial Framework

In this section, we explore the binomial asset-pricing model, also known as the CRR model (Cox, Ross, and

Rubinstein (1979)), a fundamental framework for understanding concepts in arbitrage pricing theory. We

begin with the most basic form of this model, which is the one-period model. Then we look at the more

general multi-period case. The binomial model creates a replicating portfolio by holding a certain number

of shares of the underlying stock and a risk-free asset, ensuring perfect payoffs. This model, under specific

conditions, aligns with the results discussed in Section 2.3, where the conditional distribution of asset returns

converges to a binomial distribution. The discussion in this section is mostly based on content from Shreve

(2005).

3.2.1 One-period binomial model

Consider a discrete-time one-period binomial model. Suppose at time 0 we have the price of one share of

stock X0 > 0, at time 1 the price either goes up to X1
1 = uX0 or down to X0

1 = dX0. For the binomial

model to be arbitrage-free and complete; the up factor (u) and down factor (d) must satisfy u > er > d.

Unless stated otherwise, superscripts in this section would represent the number of up movements. If we are

considering the European call option, for instance, its payoff at maturity under a one-period model is given

as P = max(X1 − K, 0). We want to create a hedging portfolio that will mimic the payoff of the option.

Hence, we want our accumulated hedging portfolio at time one to be equal to the option payoff. That is,

W1 = P. (3.6)

It means that the hedging portfolio replicates the payoff of this option at time one by choosing ϕ0 such that,

the hedging strategy at time one in the up state (W 1
1 ) is equal to the value of the payoff in the up state (P 1)

and similarly, for the down states. That is, we want W 1
1 = P 1 and W 0

1 = P 0. Using (3.2), we get

ϕ0,1X
1
1 + er(V0 − ϕ0,1X0) = P 1, (3.7)

ϕ0,1X
0
1 + er(V0 − ϕ0,1X0) = P 0. (3.8)

Solving (3.7) and (3.8) for ϕ0,1, we get:

ϕ0,1 = P 1 − P 0

X1
1 −X0

1
, (3.9)
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and substituting (3.9) back into (3.7), we have:

V0 = e−rP 1 −
[
P 1 − P 0

X1
1 −X0

1

] (
e−rX1

1 −X0
)
. (3.10)

The no-arbitrage condition imposes that the value of the option is V0. Equation (3.10) can further be

simplified using the definitions X1
1 = uX0 and X0

1 = dX0 to get the value at time zero as,

V0 =
[
er − d
u− d

]
e−rP 1 +

[
1− er − d

u− d

]
e−rP 0

= p̃e−rP 1 + (1− p̃)e−rP 0

= Ẽ[e−rP ], (3.11)

where p̃ = er−d
u−d and Ẽ[·] is the expected value under the risk-neutral probability measure Q. In the special

case discussed in the previous chapter where u = 1
ρ and d = 0, p̃ = erρ.

3.2.2 Multi-period binomial model

The one-period binomial model introduced in the previous subsection can be extended to a multi-period

case where instead of moving from time 0 to 1, we go from time 0 to T , where the hedging portfolio can

be rebalanced at time t = 0, . . . , T − 1. The initial price of the stock is still X0. Using the same idea as

the one-period case, the stock price can either go up or down at time 1. The stock price will continue this

process for each time step. That is, given the stock price Xn
t at time t where n = 0, . . . , t is the total number

of up moves since the beginning, the stock price can either go up to Xn+1
t+1 = uXn

t or down to Xn
t+1 = dXn

t

at time t+ 1. For example, when maturity T = 3, Figure 3.1 represents a three-period recombining binomial

model with the bold nodes being the points where the tree recombines.

It can be seen from this figure that, Xn
t = undt−nX0 for 0 ≤ n ≤ t. Similar to the one-period case, the

prices of derivative securities can be constructed by a replication portfolio. The expression for ϕt and Vt can

be obtained recursively. That is, at time T − 1, we choose a ϕT −1 such that Wn+1
T = Pn+1 and Wn

T = Pn

for node n = 0, . . . , T − 1. Hence, using (3.2), we get

ϕT −1,1X
n+1
T + er(V n

T −1 − ϕT −1,1X
n
T −1) = Pn+1, (3.12)

ϕT −1,1X
n
T + er(V n

T −1 − ϕT −1,1X
n
T −1) = Pn. (3.13)
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X0

X0
1 = dX0

X0
2 = d2X0

X0
3 = d3X0

X1
3 = ud2X0

X1
2 = udX0

X1
3 = ud2X0

X2
3 = u2dX0X1

1 = uX0

X1
2 = udX0

X2
2 = u2X0

X2
3 = u2dX0

X3
3 = u3X0

Figure 3.1: A special case of the binomial tree with maturity T = 3.

Solving (3.12) and (3.13) for ϕT −1,1, we get

ϕT −1,1 = Pn+1 − Pn

Xn+1
T −Xn

T

, (3.14)

and substituting (3.14) back into (3.12), we have

V n
T −1 = e−rPn+1 −

[
Pn+1 − Pn

Xn+1
T −Xn

T

] (
e−rXn+1

T −Xn
T −1

)
. (3.15)

Given the information available at time T − 1 (FT −1) and the no-arbitrage condition, the option value at

time T − 1 is VT −1. Using Xn+1
T = uXn

T −1 and Xn
T = dXn

T −1, Equation (3.15) can be simplified to get the
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value at time T − 1 as,

V n
T −1 = p̃e−rPn+1 + (1− p̃)e−rPn

= Ẽ[e−rP |FT −1]. (3.16)

Similarly, going from time t + 1 to t, ϕt,1 and Vt can be found by replacing Pn in (3.14) and (3.16) with

V n
t+1, given Xn

t as,

ϕt,1 =
V n+1

t+1 − V n
t+1

Xn+1
t+1 −Xn

t+1
, (3.17)

V n
t = Ẽ[e−rVt+1|Ft]. (3.18)

This recursive process will continue until time 0 to find ϕ0,1 and V0.

In this process where the portfolio’s composition is adjusted at each step (or node in the binomial tree) with-

out injecting or withdrawing funds, the strategy is self-financing. Also to point out, the relation between the

binomial model and the non-causal process in our case is that, as established in Section 2.3, the conditional

distribution of Xt

Xt−1
given Xt−1 converges to a binomial distribution with d = 0 and u = 1

ρ .

3.3 Quadratic Hedging: One-period

The one-period quadratic hedging involves setting a hedging strategy at the beginning of the period and not

adjusting it until the period ends. This constitutes a portfolio where ϕ0,1 shares of the risky asset are held

without any further adjustment until maturity. The optimal value of ϕ0,1 (shares of the risky asset) and

initial value V0 are determined through the optimization problem

min
ϕ0

E
[
(β−1

1 (P −W1))2|X0
]
.
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The expression in the expectation can be expanded by using the definition of W1 as follows:

β−1
1 (W1 − P ) = β−1

1 (P − (ϕ0,1X1 + β1ϕ0,2))

= β−1
1 [P − (ϕ0,1X1 + β1(V0 − ϕ0,1X0))]

= β−1
1 P − (β−1

1 ϕ0,1X1 + V0 − ϕ0,1X0)

= β−1
1 P − (V0 + ϕ0,1(β−1

1 X1 −X0)). (3.19)

Therefore, the values for V0 and ϕ0,1 can be obtained by solving the optimization problem

min
ϕ0,1,V0

E
[
(β−1

1 P − V0 − ϕ0,1(β−1
1 X1 −X0))2|X0

]
.

Suppose the objective function of the optimization problem is represented by O(ϕ0,1, V0), or shortly O. That

is,

O(ϕ0,1, V0) = E
[
(β−1

1 P − V0 − ϕ0,1(β−1
1 X1 −X0))2|X0

]
. (3.20)

To find the values V0 and ϕ0,1 that minimizesO, we find the derivative of O with respect to V0 and ϕ0,1, equate

to zero. Differentiating the expectation in the optimization problem is possible because of the existence of

the first and second moments of the noncausal process. That is,

∂O
∂V0

= −2E[β−1
1 P − V0 − ϕ0,1(β−1

1 X1 −X0)]. (3.21)

Solving ∂O
∂V0

= 0, we have

0 = E[β−1
1 P − V0 − ϕ0,1(β−1

1 X1 −X0)], (3.22)

and we get

V0 = E[β−1
1 P − ϕ0,1(β−1

1 X1 −X0)], (3.23)

= E[β−1
1 P ]− ϕ0,1 E[(β−1

1 X1 −X0)]. (3.24)

Now for ϕ0,1,

∂O
∂ϕ0,1

= −2E[(β−1
1 X1 −X0)(β−1

1 P − V0 − ϕ0,1(β−1
1 X1 −X0))]. (3.25)
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Again, when ∂O
∂ϕ0,1

= 0 we have

0 = E[(β−1
1 X1 −X0)(β−1

1 P − V0 − ϕ0,1(β−1
1 X1 −X0))]

= E[β−1
1 P (β−1

1 X1 −X0)]− V0 E[β−1
1 X1 −X0]− ϕ0,1 E[(β−1

1 X1 −X0)2]

= E[β−1
1 P (β−1

1 X1 −X0)]− E[β−1
1 P ]E[β−1

1 X1 −X0] + ϕ0,1(E[β−1
1 X1 −X0])2 − ϕ0,1 E[(β−1

1 X1 −X0)2]

= Cov[β−1
1 P, (β−1

1 X1 −X0)]− ϕ0,1V ar[β−1
1 X1 −X0], (3.26)

and we get

ϕ0,1 = Cov[β−1
1 P, (β−1

1 X1 −X0)]
V ar[β−1

1 X1 −X0]
. (3.27)

3.4 Quadratic Hedging: Multiple-period

While one-period quadratic hedging involves setting a hedging strategy at the beginning of the period and

holding it until the period ends, multiple-period quadratic hedging involves hedging over multiple periods

by adjusting the strategy at each period or considering the entire hedging horizon as a single optimization

problem. The one-period local and global quadratic hedging reduces to one-period quadratic hedging due to

the absence of intermediate rebalancing opportunities.

3.4.1 Local approach

The local quadratic hedging employs a backward recursive scheme, refining the hedging strategy based on

the most recent observations. The fundamental objective of this strategy is to minimize the squared expected

local hedging errors. That is, keeping the difference between the projected hedge and actual market movement

as small as possible. In essence, we seek to find the trading strategy ϕ that minimizes:

min
ϕt−1

E[e−r(Vt −Wt)2|Ft−1],

for t = 1, . . . , T , where VT = P to get an expression for the optimal quantity ϕ of the risky asset to be

held at time t. To do this, it can be seen that the above optimization problem is similar to the one-period

quadratic approach where P is replaced with Vt. Thus, using (3.27) we have

ϕt−1,1 = Cov[e−rVt, ∆t|Ft−1]
V ar[∆t|Ft−1] , (3.28)

30



where ∆t = Xte
−r −Xt−1. Similarly, using (3.23), Vt−1 is computed as:

Vt−1 = E[e−rVt − ϕt−1,1∆t|Ft−1]. (3.29)

The relationship in (3.29) ties our current portfolio’s value to its anticipated value for the ensuing period,

leveraging all information up to t − 1. The quadratic hedging strategy has a mean self-financing property.

A mean self-financing trading strategy has an expected hedging error of zero.

The local quadratic hedging can be implemented using dynamic programming. Begin by initializing VT as

the payoff of the option. Next, compute Vt−1 and ϕt−1,1 recursively for t = T, . . . , 1 as

ϕt−1,1 = At

Dt
, (3.30)

where

At = e−r E[Vt∆t|Ft−1]− e−r E[Vt|Ft−1]E[∆t|Ft−1], (3.31)

Dt = E[∆2
t |Ft−1]− (E[∆t|Ft−1])2, (3.32)

Vt−1 = e−r E[Vt|Ft−1]− At

Dt
E[∆t|Ft−1]. (3.33)

Begin by computing AT using VT = P , and calculate also DT . These values will be used to calculate

VT −1 and ϕT −1,1. VT −1 will be used to calculate AT −1 which is used for VT −2 and ϕT −2,1. This algorithm

continues recursively for t = T, . . . , 1.

3.4.2 Global approach

Global hedging involves finding a self-financing strategy ϕ, and initial value V0 that minimizes the squared

expected difference between the payoff of the derivative, and the value of the portfolio. Schweizer (1995)

presented a theoretical solution to the global quadratic hedging problem. This solution was efficiently

implemented by Bertsimas, Kogan, and Lo (2001) and Černỳ (2004) using dynamic programming. If we

have a derivative paying P at time T , with the present time being 0, the optimal global hedging challenge

entails finding the initial investment V0, and the sequence of investment quantities ϕt−1,1, t = 1, ..., T that

minimizes:

min
{ϕ0,...,ϕT −1}∈Φ

E[β−2
T (P −WT )2|F0].
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The recursive formula for ϕt−1,1 is given by Equation 4.8 of Föllmer and Schweizer (1988):

ϕt−1,1 =
Cov

(
β−1

T P −
∑T

i=t ϕi,1∆Xi+1, ∆Xt|Ft−1

)
V ar[∆Xt|Ft−1] . (3.34)

For the rest of the section, we assume r = 0. In this case, we can simplify the above expression using the

martingale property of Xt, we have

E[∆Xt|Ft−1] = 0.

The linearity of covariance makes the numerator of (3.34)

Cov

(
P −

T∑
i=t

ϕi,1∆Xi+1, ∆Xt|Ft−1

)
= Cov(P,∆Xt|Ft−1)−

T∑
i=t

ϕi,1Cov(∆Xi+1,∆Xt|Ft−1). (3.35)

Considering the orthogonal increments of a martingale, for any i ̸= t, the increments ∆Xi and ∆Xt are

uncorrelated. Thus, Cov(∆Xi+1,∆Xt|Ft−1) = 0 for i ̸= t. Hence, (3.35) becomes:

Cov

(
P −

T∑
i=t

ϕi,1∆Xi+1, ∆Xt|Ft−1

)
= Cov(P,∆Xt|Ft−1). (3.36)

Combining the derived results, we get a similar result as the one-period case:

ϕt−1,1 = Cov (P, ∆Xt|Ft−1)
V ar[∆Xt|Ft−1] . (3.37)

From (3.23), the value is given as

Vt−1 = E[P − ϕt−1,1∆Xt|Ft−1]. (3.38)

However, due to the martingale property of Xt, the value process can be expressed as Vt = E[P |Ft] for

t = 0 . . . , T . The expression (3.37) involves the conditional expectation and co-variances with respect to Xt

instead of X0. But for the non-causal AR(1) Cauchy model, the conditional distribution of Xt+h given Xt

belongs to the same parametric family for any value of h [see Proposition 4 of Gouriéroux and Zaköıan (2017)].

The recursive formula for ϕt aligns with the goal of minimizing E[(P −WT )2|F0] by adjusting our hedge at

each time point. This ensures the hedging strategy remains adaptive to market changes, thus maintaining

minimized total hedging error.
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Schweizer (1995) found that the local and global quadratic hedging strategies are equivalent when discounted

asset prices are assumed to be martingales. We derive that the two strategies are also equivalent for the

noncausal process. That is, from (3.37) we have for t = 1, . . . , T that

ϕt−1,1 = E[P (Xt −Xt−1)|Ft−1]− E[P |Ft−1]E[Xt −Xt−1|Ft−1]
V ar[Xt −Xt−1|Ft−1]

= E [E[P (Xt −Xt−1)|Ft]|Ft−1]− E[E[P |Ft]|Ft−1]E[Xt −Xt−1|Ft−1]
V ar[Xt|Ft−1]

= E [Vt(Xt −Xt−1)|Ft−1]− E[Vt|Ft−1]E[Xt −Xt−1|Ft−1]
V ar[Xt|Ft−1]

= Cov[Vt, (Xt −Xt−1)|Ft−1]
V ar[Xt|Ft−1] , (3.39)

which is equal to (3.28) when r = 0.

Therefore the two approaches are indeed equivalent, and the dynamic programming algorithm presented for

the local approach could be used for the global. Even though these two approaches are equivalent, depending

on how they are implemented numerically, they might yield different results.
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Chapter 4

Numerical Analysis

As discussed in the previous chapter, quadratic hedging seeks strategies that reduce the total expected

squared hedging errors. Whether we take a broad view (global) or a myopic view (local). We begin the

analysis by recalling some notations. ϕBin
0,1 , ϕV H

0,1 , and ϕGH
0,1 are the initial quantities of the risky assets to

invest using the binomial model, local quadratic hedging, and global quadratic hedging approach respec-

tively. Similarly, V Bin
0 , V LH

0 and V GH
0 represent the value of the portfolio at time zero using the three

different approaches. h will be used to represent the number of trading steps between time 0 to maturity

T . Therefore, for a one-year maturity option, h = 12 means that trading occurs monthly and h = 1 means

trading occurs once a year. K is the strike price. Unless stated, consider option values to be an at-the-money

European call option (i.e. K = X0), maturity (T ) of one year, h = 12, r = 0, X0 = 250 and ρ = 0.978.

Next, the local and global quadratic hedging strategies are implemented for the non-causal process.

Algorithm 1 presents a dynamic programming approach for the local quadratic hedging of European-type

options. It computes the optimal hedging strategy over discretized time and value nodes, capturing the

dynamics of the underlying asset. It begins by constructing a discretized state space, which represents dif-

ferent prices of the underlying asset. For each node in this space, the algorithm calculates the corresponding

probabilities based on the proposed rectangular filtration, by integrating the asset’s probability distribution

function. Due to the martingale property of the asset process, the proposed rectangular filtration is used

in order to capture the mass at zero. Subsequently, the algorithm enters a dynamic programming loop,

iterating over time steps and nodes. In each iteration, the algorithm computes the hedging strategy quantity

and value for each node then utilizes the ”solnp” function, a nonlinear optimization solver, to minimize the

squared hedging error, and determines the optimal hedging parameters at each node and time step. Finally,
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Algorithm 1 Local Quadratic Hedging
1: Given: X0,K, T, h, n, r, σ, ρ, where n represents the dimension of the rectangular filtration.
2: Construct discretized state space for the stock price (X[i]) and probabilities:
3: for i = 1 to n do
4: X[i] = Minimize

(
F (x|X0)− i

n+1

)2

5: for j = 1 to n do
6: Calculate probabilities pj(X[i]) for each node:
7: if i = 1 then
8: pj(X[1])←

∫X[1]
−∞ f(x|X0)dx

9: else if i = n then
10: pj(X[n])←

∫∞
X[n−1] f(x|X0)dx

11: else
12: pj(X[i])←

∫X[i]
X[i−1] f(x|X0)dx

13: end if
14: end for
15: end for
16: Calculate the hedging strategy ϕt and portfolio value Vt:
17: Set VT = P
18: for t = T × h to 1 do
19: for i = 1 to n do
20: Compute V [i] for the current node and time step
21: Update probabilities for the current node and time step
22: Define the loss function L(ϕt[i])←

∑n
j=1 pj(X[i]) · (V [j]− ϕt,1[i] ·X[j]− ϕt,2[i] · β−1

1 )2

23: Minimize L(ϕt[i]) to find optimal values of ϕt,1[i] and ϕt,2[i]
24: end for
25: end for
26: Compute the initial portfolio value as: V0 = ϕ0,1 ·X0 + ϕ0,2
27: Output: V0 and ϕ0,1
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the algorithm outputs the portfolio value and hedging strategy at the initial time step.

Algorithm 2 Global Quadratic Hedging
1: Given: X0,K, T, h, n, r, σ, ρ, nsimul, where n represents the number of nodes at each time step.
2: Define weight parameters w1 and w2 to be used for a mixed proposal density, where w1 ← 1−ρ, w2 ← ρ
3: Setup of Distributions:
4: Define a target density function f(x), which again is f(Xt|Xt−1) in our case.
5: Define a proposal density g(x) as a mixture of two cauchy distributions

g(x)← w1 ×
1
π

σ

(x− 0)2 + σ2 + w2 ×
1
π

σ

(x− Xt

ρ )2 + σ2

6: Compute Multiplier c such that:
7: c← max

(
f(x)
g(x)

)
8: Simulation of Stock Prices:
9: for t = 0, . . . , T do

10: for s = 1 to nsimul do
11: Simulate stock price using acceptance-rejection:
12: repeat
13: Generate sample X from g(X)
14: Accept X with probability f(X)

c·g(X)
15: until Xt samples are accepted
16: end for
17: end for
18: Compute initial value V0 ← E[P ]
19: Compute ϕ0,1 ← Cov(P,X1−X0)

E(X1−X0)2

20: Output: V0 and ϕ0,1

To compute the global hedging strategy, we see from (3.37) that, an expression for the covariance term

is needed. However, a closed-form expression for the covariance is not available, so we use simulations.

In algorithm 2, the acceptance-rejection simulation method described in Section 2.5.3 is used to simulate

100, 000 asset prices from the noncausal model, and these values are used to compute the covariance and

variance terms of (3.37). The target distribution for the simulation is the noncausal density f(Xt|Xt−1),

while the proposal distribution chosen is a mixture of two Cauchy distributions described in Section 2.5.3.

The multiplier constant c was calculated as the maximum ratio of the target to the proposal function. After

simulating the asset prices, the initial portfolio value V0 and hedging strategy (ϕ0) is computed for a given

strike price using (3.34).

4.1 One-period Options

In this section, we put the hedging strategy into practice using a one-period European vanilla call and put

options with payoffs of P = (X1 −K)+ and P = (K −X1)+, respectively. We next observe how the cumu-
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lative cost at time 1 is distributed and how hedging errors change for various strikes K at given X0. Since

the local and global quadratic hedging strategies are equivalent in this setting, the hedging strategy for just

the global is calculated and compared with the binomial. The local case is implemented in the next section,

which involves multi-periods.

Table 4.1: ϕ0,1 and V0 values for ρ = 0.978 and different K’s.

K 0.8X0 0.85X0 0.9X0 0.95X0 X0 1.02X0 1.05X0 1.1X0 1.15X0 1.2X0
European Call

ϕGH
0,1 0.2814 0.2344 0.1865 0.1373 0.0866 0.0666 0.0558 0.0488 0.0443 0.0409
ϕBin

0,1 0.2176 0.1687 0.1198 0.0709 0.0220 0.0024 0.0000 0.0000 0.0000 0.0000
V GH

0 54.1313 41.9894 29.8872 17.8574 6.0637 1.8435 0.5945 0.3326 0.2339 0.1775
V Bin

0 54.4000 42.1750 29.9500 17.7250 5.5000 0.6100 0.0000 0.0000 0.0000 0.0000
European Put

ϕGH
0,1 -0.7186 -0.7656 -0.8135 -0.8627 -0.9134 -0.9334 -0.9442 -0.9511 -0.9557 -0.9591
ϕBin

0,1 -0.7824 -0.8313 -0.8802 -0.9291 -0.9780 -0.9976 -1.0000 -1.0000 -1.0000 -1.0000
V GH

0 3.9518 4.3099 4.7076 5.1778 5.8842 6.6640 12.9149 25.1531 37.5544 49.9979
V Bin

0 4.4000 4.6750 4.9500 5.2250 5.5000 5.6100 12.5000 25.0000 37.5000 50.0000

Table 4.2: ϕ0,1 and V0 values for ρ = 0.5 and different K’s.

K 0.8X0 0.85X0 0.9X0 0.95X0 X0 1.02X0 1.05X0 1.1X0 1.15X0 1.2X0
European Call

ϕGH
0,1 0.6003 0.5755 0.5506 0.5258 0.5010 0.4910 0.4761 0.4513 0.4265 0.4016
ϕBin

0,1 0.6000 0.5750 0.5500 0.5250 0.5000 0.4900 0.4750 0.4500 0.4250 0.4000
V GH

0 150.2153 143.9231 137.6345 131.3495 125.0685 122.5569 118.7904 112.5151 106.2425 99.9732
V Bin

0 150.0000 143.7500 137.5000 131.2500 125.0000 122.5000 118.7500 112.5000 106.2500 100.0000
European Put

ϕGH
0,1 -0.3997 -0.4245 -0.4493 -0.4742 -0.4990 -0.5089 -0.5239 -0.5487 -0.5735 -0.5984
ϕBin

0,1 -0.4000 -0.4250 -0.4500 -0.4750 -0.5000 -0.5100 -0.5250 -0.5500 -0.5750 -0.6000
V GH

0 98.9417 105.1496 111.3610 117.5760 123.7949 126.2834 130.0169 136.2416 142.4689 148.6997
V Bin

0 100.0000 106.2500 112.5000 118.7500 125.0000 127.5000 131.2500 137.5000 143.7500 150.0000

From Tables 4.1 and 4.2, we can see that the quantity needed to be longed, and the initial portfolio value

decreases as the call option becomes more and more out of the money. Especially for the Binomial model

whose values become zero quickly after the option becomes out of the money. The put case is different,

though. In this case, as the strike price rises, so do the amount to be shorted and the portfolio value. Com-

paring the two methods when ρ = 0.978, the portfolio value of the quadratic approach tends to be cheaper

when the option is in the money and becomes expensive than the binomial when it is about, or out of the

money. When ρ decreases to 0.5, the two approaches a very similar except when the option is very out of,

or in the money.
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4.2 Local Hedging Convergence

Table 4.3: V LH
0 for different steps and nodes.

Nodes h
1 2 3 4 6 12

200 54.4580 53.5727 52.3141 50.6684 46.1158 30.7085
500 54.7711 54.3826 53.9193 53.4569 51.1996 39.6751
1000 54.9151 54.6950 54.4797 54.1651 53.2858 47.4838
1500 54.9740 54.8158 54.6621 54.4389 53.9302 50.4397

Table 4.3 demonstrates how the hedging strategy values for the local quadratic hedging approach behave for

different steps and number of nodes. These values are compared with the one year maturity hedging strategy

value for the global approach, which is 55.6753, since varying h for does not impact the V0. It can be seen

that, the local hedging strategy value converges to the global when the number of nodes is increased. This

observation particularly stands out when h remains constant and the nodes increase. For instance, if we fix

h = 3, the value refines from 52.3141 with 200 nodes to 54.4797 with 1000 nodes. This behaviour suggests

that a more granular node count could lead to a more accurate representation in our model. However,

increasing the number of nodes for higher h value increases the computation time significantly. Therefore,

we will use 1000 nodes for the rest of our analysis.

4.3 Comparing Strike Prices for Various Hedging Methods

Table 4.4: ϕ0,1 and V0 values for different K’s.

K 0.8X0 0.85X0 0.9X0 0.95X0 X0 1.02X0 1.05X0 1.1X0 1.15X0 1.2X0
European Call

ϕBin
0,1 0.3874 0.3491 0.3109 0.2726 0.2343 0.2190 0.1960 0.1577 0.1194 0.0811
ϕLH

0,1 0.3872 0.3470 0.3067 0.2663 0.2258 0.2096 0.1853 0.1450 0.1051 0.0664
ϕGH

0,1 0.4300 0.3958 0.3615 0.3270 0.2924 0.2786 0.2578 0.2234 0.1894 0.1562
V Bin

0 96.8573 87.2859 77.7145 68.1431 58.5717 54.7431 49.0002 39.4288 29.8574 20.2860
V LH

0 85.6299 75.9346 66.3347 56.8436 47.4838 43.7826 38.2841 29.2911 20.5878 12.3891
V GH

0 92.6620 83.2533 73.9464 64.7474 55.6753 52.0896 46.7621 38.0499 29.6150 21.6132
European Put

ϕBin
0,1 -0.6126 -0.6509 -0.6891 -0.7274 -0.7657 -0.7810 -0.8040 -0.8423 -0.8806 -0.9189
ϕLH

0,1 -0.6128 -0.6530 -0.6933 -0.7337 -0.7742 -0.7904 -0.8147 -0.8550 -0.8949 -0.9336
ϕGH

0,1 -0.5944 -0.6286 -0.6629 -0.6974 -0.7320 -0.7458 -0.7666 -0.8010 -0.8350 -0.8682
V Bin

0 46.8573 49.7859 52.7145 55.6431 58.5716 59.7431 61.5002 64.4288 67.3574 70.2860
V LH

0 35.6299 38.4346 41.3347 44.3436 47.4837 48.7826 50.7841 54.2911 58.0878 62.3891
V GH

0 41.3962 44.4876 47.6807 50.9817 54.4096 55.8239 57.9964 61.7841 65.8492 70.3474

Table 4.4 presents a comparison across different strike prices relative to X0 for the three approaches when

ρ = 0.978. The hedging strategies, represented by ϕ0,1, differ across all methods. For instance, at K = 0.8X0,

the global hedging exhibits a notably higher ϕ0,1 than either binomial or local hedging, suggesting a more

38



aggressive strategy under the global method for this particular strike price. A closer look reveals that as the

strike price moves closer to X0, the differences between the ϕ0,1 values of the different approaches tend to

decrease, indicating a similarity in hedging strategies as the option becomes at the money. Regarding the

hedging strategy values V0, for both call and put options, the value of the binomial approach is higher than

the quadratic approaches with high differences observed when the option because more in or out of the money.

4.4 Impact of ρ

Table 4.5: ϕ0,1 and V0 values for different values of ρ.

ρ 0.5 0.8 0.978
European Call

ϕBin
0,1 0.9998 0.9313 0.2343
ϕLH

0,1 0.5960 0.3980 0.2258
ϕGH

0,1 0.9529 0.9345 0.2924
V Bin

0 249.9390 232.8201 58.5717
V LH

0 151.5789 100.4808 47.4837
V GH

0 238.6421 232.4055 55.6753

ρ 0.5 0.8 0.978
European Put

ϕBin
0,1 -0.0002 -0.0687 -0.7657
ϕLH

0,1 -0.4040 -0.6020 -0.7742
ϕGH

0,1 0.0003 -0.0734 -0.7320
V Bin

0 249.9390 232.8201 58.5716
V LH

0 151.5789 100.4808 47.4837
V GH

0 251.9637 233.2690 54.4096

Table 4.5 explores how the three hedging approaches respond to different values of the ρ parameter, for

at-the-money European Call and Put options. The results show differences in both trading strategies and

initial portfolio values as ρ changes, with noticeable distinctions across methods and option types. The global

quadratic hedging’s behaviour varies between European Call and Put options, highlighting the interplay

between option type, hedging strategy, and the underlying ρ parameter. It can be seen that the values for

the three approaches seem to be reasonably close when ρ = 0.978 than other values of ρ. However, recall

from the one-period case that, the values were rather similar for ρ = 0.5 than they were for 0.978. This

suggests that when the frequency of trading is increased, a bigger ρ will produce more accurate results.
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4.5 Impact of X0

Table 4.6: ϕ0,1 and V0 values for different values of X0.

X0 250 350 500 1000
European Call

ϕBin
0,1 0.2343 0.2343 0.2343 0.2343
ϕLH

0,1 0.2258 0.2044 0.1749 0.1274
ϕGH

0,1 0.2924 0.2772 0.2709 0.2481
V Bin

0 58.5717 82.0003 117.1433 234.2866
V LH

0 47.4838 63.1933 80.0357 121.1883
V GH

0 55.6753 78.7166 113.7171 229.5554

X0 250 350 500 1000
European Put

ϕBin
0,1 -0.7657 -0.7657 -0.7657 -0.7657
ϕLH

0,1 -0.7742 -0.7956 -0.8251 -0.8726
ϕGH

0,1 -0.7320 -0.7333 -0.7458 -0.7474
V Bin

0 58.5716 82.0003 117.1433 234.2866
V LH

0 47.4837 63.1932 80.0356 121.1882
V GH

0 54.4096 76.8738 111.5528 230.2473

Table 4.6 provides insights into the relationship between various hedging strategies for European call and

put options, alongside portfolio values for different initial stock values X0. For the call case, it can be seen

that ϕBin
0,1 remains unchanged across all X0 values. In contrast, ϕLH

0,1 decreases as X0 increases, whereas the

decrement in ϕGH
0,1 is comparatively moderate. With respect to the hedging strategy values, all methods

exhibit an increasing trend with an increasing X0. Similar behaviour can be observed in the put case. The

margin of difference between the binomial and global approach seems to be consistent across the X0 values.

The difference in the local on the other hand becomes more pronounced for bigger X0 values. Therefore,

when a larger X0 is chosen, the number of nodes in the numerical implementation of the local quadratic

hedging needs to be increased for accurate results.

4.6 Impact of T

Table 4.7: V0 values for different maturity months.

T (in months) = h
1 2 3 4 6 12 18 24

V Bin
0 5.5000 10.8790 16.1397 21.2846 31.2374 58.5717 82.4905 103.4207
V LH

0 5.9766 11.2977 16.2780 20.9850 29.6601 47.4838 57.0583 60.8795
V GH

0 6.0637 11.5623 16.7114 21.6490 30.9075 55.6753 77.5285 97.1838

Table 4.7 provides insights into the behaviour of three strategies as the maturity varies. In this table, the

portfolio values of each approach are observed for an equal number of steps (in months) and time to maturity

(also in months). For instance, 4 represents a four-month maturity option with four trading months. It can

be seen that as T increases, the values for all approaches also increase, which is expected given the greater

uncertainty associated with longer durations. When T = 3, the values for all three approaches are closer.

After, when T is more than 4 months, the value of the binomial becomes higher than the quadratic approach.
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4.7 Local Hedging Strategy Values for Different h’s and T ’s

Table 4.8: V0 values for different steps and maturities.

T (in years) V LH
0 for different values of h

V GH
01 2 3 4 6 12

1 54.9151 54.6950 54.4797 54.1651 53.2858 47.4838 55.6753
2 93.8443 92.6463 91.6311 88.0435 75.4782 56.0505 97.1838
3 123.6416 117.5850 108.4273 99.2819 81.9881 59.2179 133.4878

In Table 4.8, the V LH
0 values are tabulated for varying maturities (in years) and step counts (in months).

The V GH
0 and V Bin

0 values are also presented for different maturity years. For a given maturity, there is a

noticeable decrease in V LH
0 as the step count rises, indicating that less frequent adjustments are associated

with reduced initial portfolio value. Concurrently, for a fixed step count, an increase in maturity generally

corresponds to a rise in V LH
0 , highlighting the time value of option values. This behaviour is observed for the

V GH
0 values too. Comparing the local and global portfolio values, it is observed that when h = 1, the V LH

0

values are closest to the V GH
0 values for all maturity years. As the frequency of adjustments increases, the

local portfolio values become more different and smaller compared with the global values. This is because,

increasing the frequency of adjustments reduces the risk of the portfolio, thereby decreasing its value.

The discussion in this chapter offers a perspective on the behaviour of different hedging strategies across

various parameters. It can be seen that selecting the optimal strategy requires a balance between precision

(as seen with the choice of node count) and the inherent behaviour of the strategy across different maturities

and strike prices.
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Chapter 5

Conclusion

This research explored quadratic hedging using the noncausal AR(1) Cauchy model by Gouriéroux and

Zaköıan (2017). The noncausal AR(1) Cauchy model effectively preserves the martingale property of cryp-

tocurrency prices as implied by Schilling and Uhlig (2019). This indicates that within our model, future

price movements remain uninfluenced by past price dynamics, aligning well with the non-arbitrage principle

in financial mathematics. An advantage of our model is its capacity to emulate the bubble phenomena, a key

feature of the cryptocurrency markets. We showed that, when Xt−1 goes to infinity, the limiting distribution

of the re-scaled noncausal AR(1) process (2.17) approaches the binomial distribution with masses at 0 and

1/ρ and probabilities 1− ρ and ρ, respectively.

This thesis implemented two quadratic hedging approaches, local and global, and compared them with the

binomial model. For the quadratic hedging, it was observed that the convergence of the local hedging ap-

proach towards the global method, as evidenced in Table 4.3, is influenced by the number of steps and nodes

in the model. Tables 4.1, 4.2 and 4.5 reveal that the ρ parameter plays a role in yielding accurate results,

especially in frequent trading scenarios where a higher ρ tends to yield more accurate results. The sensitivity

of the hedging strategies and portfolio values to the initial stock value X0, as shown in Table 4.6, and the

influence of maturity T on option pricing, demonstrated in Tables 4.7 and 4.8, should be considered when

implementing the quadratic hedging strategies.

The impact of various parameters when using the noncausal AR(1) Cauchy discussed in this thesis highlights

the importance of a tailored approach in derivative trading, especially in complex and dynamic markets like

cryptocurrencies. The results extend a broader understanding of hedging strategies and contribute to the
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field of mathematical finance. Future research could include the incorporation of real-world cryptocurrency

market data to compare with the findings in this thesis.
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Appendix A

Stable Distribution

A random variable has a stable distribution, also known as α-stable distribution if the distribution is such

that, up to location and scale parameters, the distribution of a linear combination of two independent ran-

dom variables with this distribution is the same. The stable distribution has four parameters: the stability

parameter α ∈ (0, 2], the skewness or asymmetry parameter β ∈ [−1, 1], the scale parameter σ ∈ (0,∞), and

the location parameter µ ∈ (−∞,∞). Therefore, we use X ∼ S(α, β, σ, µ) to denote a random variable X

that follows a stable distribution.

Whereas the probability density function for a stable distribution cannot be defined analytically, the general

characteristic function is given as:

ψ(s) = e(iµs − σα|s|α{1 − iβ(sign s)Φ}), (A.1)

log ψ(s) = iµs − σα|s|α{1 − iβ(sign s)Φ},

given that

Φ =


tan( πα

2 ) if α ̸= 1

− 2
π log|s| if α = 1

and sign(t) is equal to the sign of the constant t.

From (A.1), we can see that when α = 2 and β = 0, we get the characteristic function of a Normal distribution

N(µ, σ2). On the other hand, when α = 1 and β remains 0, we get the Cauchy distribution C(µ, σ).
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Appendix B

Complementary Results

This section contains additional results and figures that supplement the main text’s findings. We only

consider the initial value X0 = 100 for illustration purposes. Figure B.1 shows the density curves for

100, 000 simulations from the noncausal AR(1) process using the acceptance-rejection simulation method,

and a single Cauchy distribution centred at X0 as the proposal density for each ρ ∈ {0.978, 0.8, 0.5}.

Figure B.1: Density curves for simulated (blue) and target (red) Cauchy AR(1) model for different ρ’s.

The table below presents the simulation acceptance rates using the single and mixed Cauchy distribution.

ρ 0.978 0.8 0.5
Mixed Cauchy

Acceptance rate 0.9606675 0.843947 0.781313
Single Cauchy

Acceptance rate 0.4734415 0.4734415 0.0267495
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