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Abstract

Sustainable Energy Management System for AIoT Solutions Using Multivariate and
Multi-step Battery State of Charge Forecasting

Farnaz Kashefinishabouri

The convergence of Artificial Intelligence (AI) with Internet of Things (IoT) technologies,

often referred to as AIoT, is transforming aspects of modern life, such as smart cities. This transfor-

mation, however, brings with it challenges, including energy management. In addressing this issue

while upholding responsible AI principles, it is important to prioritize the sustainability of AIoT

solutions by a promising approach which is using renewable energy sources. While renewable en-

ergy offers numerous advantages, its intermittent nature necessitates effective power management

systems. Developing a power management system serving as a decision-making platform for AIoT-

driven solutions is the goal of this study. This platform contains two critical components: accurate

forecasts of battery “State of Charge” (SoC), and the implementation of appropriate control strate-

gies. These strategies include adjusting energy consumption patterns to ensure stable and reliable

system operation. This study focuses on accurate battery SoC forecasting, to this end, an exper-

iment has been designed, and a data logging system has been developed to produce suitable data

since publicly available datasets do not align with the specific characteristics and requirements of

the research. The SoC forecasting in this study has been addressed as a multivariate and multi-step

time series forecasting problem, where various machine learning and deep learning models includ-

ing Decision Tree (DT), Random Forest (RF), Long Short-Term Memory (LSTM), Gated Recurrent

Unit (GRU), Bidirectional Long Short-Term Memory (Bi-LSTM), and Bidirectional Gated Recur-

rent Unit (Bi-GRU) were benchmarked. Extensive evaluations have been conducted for different

forecasting horizons on datasets with varying time intervals. It is concluded that the Bi-GRU model

outperformed other models across datasets with varying time intervals and forecast horizons accord-

ing to Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) evaluation metrics.
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Chapter 1

Introduction

1.1 Problem Statement

In our increasingly interconnected world, the Internet of Things (IoT) has emerged as a trans-

formative technology, changing how data is collected and used across various domains. As a broad

definition, IoT refers to the interconnected networking of everyday objects, often embedded with

intelligent capabilities [1]. As a result of this widespread adoption of IoT technology, many re-

markable innovations have taken place, particularly in the area of smart cities. These innovations

are, however, accompanied by significant challenges. The extensive volume of data collected from

different sensors and devices resulting from IoT solutions poses privacy issues that affect their

widespread adoption, as this data often contains sensitive information [2]. The transmission of

large amounts of data from IoT devices requires large bandwidth, and not all environments support

it [3]. Additionally, IoT data is often unstructured, large-scale and unclean, which poses challenges

in extracting meaningful insights from it [4]. On the other hand, a valuable contribution of Arti-

ficial intelligence (AI) is its capability to uncover insights through data analysis. When speaking

of AI, it is imperative to emphasize the importance of Responsible AI, which takes into account

privacy, ethics, and sustainability. Responsible AI ensures that AI technologies are developed and

used in ways that protect individual privacy, maintain ethical standards, and reduce environmental

impact by promoting energy-efficient practices and energy management [5]. AI integration with

IoT ecosystems has empowered them with the capability to analyze vast amounts of data, derive
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insights, and facilitate autonomous decision-making. The convergence of AI and IoT technologies,

known as AIoT, is introducing a new era of smart and adaptive systems, accelerating innovation

and increasing efficiency across a variety of industries [6]. Smart cities are one of the sectors where

AIoT is bringing significant innovation. In order to leverage the full power of AIoT, it is impor-

tant to address IoT challenges while adhering to responsible AI principles, in which privacy, ethics,

and sustainability are all taken into account. As a result, BusPas Inc., a Montreal-based company,

is offering a smart platform using AIoT in order to tackle these challenges and meet the current

demand for smart mobility. Their concept involves replacing regular bus stop signs with an intelli-

gent and interconnected display named “SCiNe” which stands for “Smart City Network”. Besides

showing real-time information regarding bus schedules, this device is equipped with several IoT

sensors, including a light sensor, various environmental sensors, an infrared sensor, microphones,

speakers, and a fisheye camera. These sensors enable the intelligent display to collect valuable data

at bus stops, making them strategic hubs for gathering information on passenger and vehicle flows,

environmental conditions, traffic patterns, ridership, and more. This data contributes to enhancing

mobility and optimizing transportation services. Despite this, what truly distinguishes this intelli-

gent display is its embedded computational capabilities. Through the use of AI on the edge, this

device enables real-time data processing at bus stops while preserving user privacy by only transmit-

ting descriptive information, not only safeguarding privacy but also streamlining data transmission

by reducing the volume of data that needs to be transmitted after processing.

The advancement of AI technologies has resulted in larger and more powerful models capable

of performing complex tasks. However, these larger models are energy-intensive, which poses a

challenge. Furthermore, IoT technologies are developing rapidly, creating new challenges, one of

which is managing energy resources efficiently [7]. This challenge is further compounded when

integrating AI with IoT - in AIoT-driven solutions. To address these challenges and uphold the

principles of responsible AI, it is important to ensure the sustainability of these solutions. The use

of renewable energy sources is a promising approach to addressing this challenge. Following this

approach, SCiNe is powered by a lithium-ion battery that derives its charge from a solar panel,

showcasing its dedication to sustainability.
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Energy generated from renewable sources provides numerous benefits, including reducing re-

liance on finite fossil fuels and the potential cost reductions [8, 9, 10]. Additionally, renewable

energy sources such as solar panels can be harnessed in various locations, reducing reliance on

centralized power grids and increasing energy self-sufficiency. However, there are several chal-

lenges associated with renewable energy that need to be addressed for it to be successfully used to

power AIoT devices. Due to the intermittent nature of these energy sources, such as solar and wind

power, they need to be carefully managed to ensure a consistent energy supply [11]. Factors such as

weather patterns and seasonal variations can make predicting renewable energy production difficult

[12]. Moreover, when renewable energy sources do not produce enough power, energy storage is re-

quired to ensure a reliable energy supply. However, current storage technologies have capacity and

efficiency limitations [13]. Therefore, an effective power management system is essential to miti-

gate these challenges. In systems based on renewable energy sources, predictive control techniques

have recently been offered as a way to cope with uncertainty and intermittency of energy produc-

tion and consumption [14]. The State-of-Charge (SoC) of batteries, which indicates the amount

of energy stored in them, is one of the main parameters for the development of these techniques.

Consequently, effective power management of renewable energy systems involves two key aspects:

accurately forecasting battery SoC, and the implementation of appropriate control strategies such as

adjusting energy consumption patterns, to ensure stable and reliable system operation. This power

management system serves as a decision-making system, defining different service levels for the

device. At each service level, certain functionalities of the device are limited to control power con-

sumption. Based on predicted SoC of a battery, and considering weather and solar conditions in the

future, the system switches between these service levels dynamically. The main objective of this

study is to develop an effective power management system for AIoT solutions, exemplified by our

work on SCiNe, with a specific focus on accurate battery SoC forecasting. This SoC forecasting

plays a central role within the broader decision-making system, all the while making efficient use

of renewable energy to ensure the practical sustainability of AIoT solutions.
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1.2 Contributions

The majority of previous research in battery State-of-Charge (SoC) forecasting has concen-

trated on microgrid systems, electric vehicles, and grid ancillary services. However, this study

distinguishes itself by focusing on a unique application domain, which involves developing a power

management system for a battery-powered AIoT device charged through a solar panel. This ap-

plication introduces unique challenges and features that differentiate it from traditional scenarios

in SoC forecasting. Notably, publicly available datasets, which have often been the foundation for

previous research, are not directly applicable to our specialized problem domain. The contributions

of this study can be summarized as follows:

1. Designing a Unique Experimental Setup: To address the scarcity of publicly available

datasets suitable for our specific problem domain of battery SoC forecasting, we designed

and implemented a unique experimental setup. To meet our research objectives, this setup

was carefully designed to collect data that is directly relevant to our research.

2. Development of a Custom Data Logging System: To facilitate our experimentation, we

configured and programmed a custom data logging system. This system played a pivotal

role in gathering relevant and accurate data, ensuring the availability of appropriate data for

subsequent analysis and model development.

3. Development of a Battery SoC Estimation Tool: Unlike other battery parameters, such as

voltage, current, and temperature, State-of-Charge (SoC) cannot be directly measured. In this

contribution, we employed a data-driven method to develop a battery SoC estimation tool for

the SCiNe device. This tool provides a means to measure the battery’s SoC, addressing the

challenge where direct measurement is not possible.

4. Multivariate and Multi-Step Time Series Forecasting for Battery SoC Forecasting: This

study addresses the challenge of Forecasting battery SoC as a multivariate and multi-step time

series, employing a diverse range of forecasting models, including machine learning and deep

learning approaches. We conducted a comprehensive evaluation of the forecasting models,

providing a benchmark for their performance.
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1.3 Thesis Overview

The rest of this thesis is organized as follows:

• In Chapter 2, we provide a literature review, exploring the state of the art in studies related to

battery State-of-Charge (SoC) forecasting across different domains. Additionally, this chapter

comprehensively covers the forecasting models that have been employed for battery SoC

forecasting.

• In Chapter 3, we lay the foundation for our research by detailing the experimental design,

setup and data collection. An overview of the plan for the experiment we designed, as well

as the configuration of the data logging system, is presented in this chapter. We describe the

methodologies employed to ensure the collection of relevant and precise data, which forms

the basis of our subsequent analysis and model development.

• In Chapter 4, we employed a data-driven method to develop a battery SoC estimation tool

for the SCiNe device, enabling direct estimation of the battery’s SoC. Then, as part of the

power management system, we preprocessed the collected data and applied a variety of mul-

tivariate and multi-step time series forecasting models on the data for forecasting battery SoC

for different forecasting horizons. Subsequently, as part of our evaluation process, we pro-

vide a comprehensive benchmark to assess the efficiency and accuracy of these models. In

conclusion, we provide important insights and future research directions, demonstrating the

significance of our research.

5



Chapter 2

Literature Review

Energy storage becomes necessary as a consequence of using renewable energies when they

fail to generate sufficient power. Batteries are commonly used for energy storage in Renewable

Energy Source (RES) systems and Lithium-ion batteries are often used in this context. The SoC

of batteries is one of the main parameters to be used in predictive control algorithms in the power

management of systems using renewable energies. The process of determining the current state

of charge of a battery is known as SoC estimation, whereas SoC forecasting involves predicting

the future state of charge based on past data and other factors. While numerous methods exist for

SoC estimation in batteries, limited research has been conducted specifically on SoC forecasting

which is an important aspect of battery management systems (BMS) reliant on renewable energy

sources, as it enables the development of effective power management strategies [15]. Unlike other

battery parameters, such as voltage, current, and temperature, SoC cannot be directly measured.

Researchers have studied various methods for SoC estimation, which can be divided into three cate-

gories: conventional, model-based, and data-driven methods [16]. Conventional techniques are easy

to understand and effective in terms of computation, such as the ampere-hour integral or Coulomb

counting methods, the open-circuit voltage (OCV) based method, and impedance tracking. How-

ever, they can suffer from accuracy degradation due to error accumulation and parameter variation

caused by temperature and aging. Model-based methods use equivalent circuit models (ECMs) for

batteries for SoC estimation. The two main ECMs are electrochemical ECM, which models electro-

chemical reactions but requires complex equations and lacks scalability for large-scale systems [17],
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and electrical ECM, represented by a simple circuit with a voltage source, resistance, and capacitor.

When compared with other approaches, model-based methods, which incorporate adaptive filter

algorithms like Kalman filters, generally achieve higher accuracy and minimize errors [18]. Data-

driven methods for SoC estimation, often referred to as model-less approaches, do not rely on a

battery model or in-depth knowledge of the battery. Numerous data-driven techniques have been in-

vestigated, including tree-based models like Decision Tree (DT) [19] and Random Forest (RF) [20],

Neural Network (NN) [21], Fuzzy Logic [22], Support Vector Machine (SVM) [23], and Genetic

Algorithm (GA) models [24]. By training these models with datasets containing SoC-related param-

eters such as voltage, current, and temperature, they can achieve highly accurate SoC estimation.

However, the limitation of such methods is that they generally require a large amount of training

data and perform best under similar conditions to those in which they were trained [25]. The main

focus of this study is on SoC forecasting rather than estimation. Several studies have investigated

SoC forecasting across different domains, employing various models and techniques. Researchers

have used several time series methods to forecast battery SoC in the field of grid ancillary services.

For instance, in [26] Ardiansyah et al. developed an approach for multi-step SoC forecasting of

battery energy storage systems (BESS) in grid ancillary services, using Long Short-Term Memory

(LSTM) neural networks. This model considers dynamic grid conditions and varying power de-

mand, enabling accurate and reliable predictions of the battery SoC over multiple time steps. [27]

proposed a Seq2Seq regression approach for multivariate and multi-step forecasting of BESS in

frequency regulation service. The model showed promising results in accurately predicting SoC,

enabling efficient use of BESS. Another domain in which SoC forecasting has been studied, is in

Micro grids, such as [15]. That paper developed an embedded system for real-time forecasting of

battery SoC, enabling effective energy management and decision-making in microgrid systems. In

[14], MAPCAST, an adaptive control approach enhanced by predictive analytics, one of which is

SoC forecasting, is used to achieve energy balance in microgrid systems. By combining predic-

tive analytics with adaptive control techniques, the proposed method optimizes energy usage and

ensures a stable energy balance, leading to improved energy management and reliable operation

in microgrid systems. One of the key concerns of electric vehicle (EV) customers is the driving

range which depends mainly on battery capacity. Forecasting battery SoC is therefore useful in this
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context as well. In [28] NaitMalek et al. introduced a hybrid method for accurate SoC forecasting

in EVs. The approach combines a machine learning algorithm with an EV model to forecast battery

SoC. The machine learning algorithm predicts vehicle speed, which is then used as input for the

EV model to determine the battery SoC. The work presented in [29] also explored the integration of

predictive analytics techniques for multi-horizon forecasting of battery SoC and contributes to the

development of an intelligent management system for battery-powered electric vehicle. A variety of

forecasting techniques and algorithms have been applied in battery SoC forecasting. [28] used lin-

ear regression for SoC forecasting, which offered simplicity and interpretability, making it suitable

for real-time SoC forecasting in battery-powered electric vehicles. However, to address the limita-

tion of not capturing complex nonlinear patterns in linear regression, alternative algorithms such as

decision trees (DT) were employed in [30]. It is worth noting that decision trees can be prone to

overfitting, and ensemble methods like random forests (RF) or gradient boosting can be employed

to mitigate this issue and further enhance SoC forecasting performance. In light of this, [30] also

applied random forest and Light Gradient Boosting Machine (LightGBM), whereas [29] leveraged

the power of Extreme Gradient Boosting (XGBoost). Moreover, in [26], advanced deep learning ar-

chitectures including LSTM, Gated Recurrent Unit (GRU), Bidirectional Long Short-Term Memory

(Bi-LSTM), and Bidirectional Gated Recurrent Unit (Bi-GRU) were investigated. These recurrent

neural network variants demonstrated their ability to capture temporal dependencies and long-term

patterns in SoC data, enabling more accurate multi-step forecasting of battery SoC. [27] proposed a

solution to the challenges of multi-step SoC forecasting by using a sequence-to-sequence (seq2seq)

model in deep regression learning. This model has demonstrated its effectiveness and robustness in

various scenarios, making it a reliable approach for accurate multivariate and multi-step forecast-

ing, as supported by previous studies [31]. In summary, prior research on battery SoC forecasting

has been mostly centered around domains such as microgrid systems, electric vehicles, and grid

ancillary services. The research presented here focuses on battery SoC forecasting that serves as

the foundation for the intelligent power management system designed to optimize the operation of a

battery-powered AIoT device using solar panel energy, addressing a crucial gap in the field of SoC

forecasting - specifically for this unique application. While existing datasets have contributed signif-

icantly to the field of battery SoC forecasting, it is crucial to note that the majority of these datasets
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are tailored to specific applications, such as electric vehicles (EVs) or grid ancillary services. Upon

careful examination, it became evident that the features included in these datasets were primarily

focused on the characteristics of the specific application, such as vehicle speed in the case of EVs.

Given the distinctive nature of our study, which revolves around the intelligent power management

system for a battery-powered AIoT device utilizing solar panel energy, the available datasets did

not align with the essential features required for our analysis. Considering the specific character-

istics and scale of this study, a custom dataset was required and created since publicly available

datasets did not meet the study’s needs and lacked the necessary features. As such, in this thesis,

firstly, in order to overcome the shortage of suitable datasets in this domain, an experimental setup

was designed and a custom data logging system was devised to ensure the acquisition of relevant

and accurate data. Following the crucial step of data collection, this study used various forecast-

ing models, including machine learning and deep learning approaches, to forecast battery SoC as

a multivariate and multi-step time series problem. Lastly, it conducted a comprehensive evaluation

of the forecasting models, providing valuable insights into their performance and their usage in the

domain of power management for autonomous solar-powered AIoT devices.
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Chapter 3

Experimental Framework: Design,

Setup, and Data Collection

In the pursuit of developing an effective power management system for AIoT solutions, this

study works on developing a tailored system, with the SCiNe serving as an example of AIoT tech-

nology. As a first step toward achieving this goal, it is essential to gain a comprehensive under-

standing of the SCiNe, including its various subsystems, their functions, and power consumption

associated with each. This foundational knowledge of the SCiNe is pivotal in the design of the ex-

periment and the development of the data logging system to gather the requisite data for this study.

In the following sections of this chapter, a detailed overview of the SCiNe device is provided. The

exploration begins with an examination of the different subsystems within the SCiNe, highlighting

their individual functions and power consumption. Subsequently, the chapter delves into the exper-

imental design, tailored for capturing the data required for the power management system. Finally,

it discusses the configuration and programming of the data logging system that played a key role in

data collection and provides an overview of the data gathered from the experiments.
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3.1 SCiNe

The development of the SCiNe is part of the concept of smart mobility and smart cities. Using

the power of the Internet of Things (IoT), the SCiNe contributes to the development of mobility as

a service (MaaS) 1, promotes multimodality from bus stops and allows the integration of additional

applications in an ecosystem dedicated to the city. The SCiNe is designed to be a building block

for smart mobility. Deploying the SCiNe displays at bus stops and enabling them to interact with

their environment enhances the transport service, line efficiency, service quality, and customer ex-

perience. This technology connects the transit agency to its passengers at the bus stop, aiming to

increase ridership and develop a lasting relationship of trust with users. Figure 3.1 provides a visual

representation of the SCiNe device.

Figure 3.1: SCiNe (Smart City Network)

3.1.1 SCiNe Subsystems

The SCiNes consist of many interconnected subsystems, each of which has specific functions

that contribute to its overall capabilities. The display subsystem of the SCiNe currently serves as an

information hub, providing real-time bus schedules and essential travel details to passengers. Be-

sides the display, the speaker subsystem offers an auditory interface, allowing passengers to activate
1MaaS refers to the integration and access to various transportation services (such as public transportation, ride-

sharing, car-sharing, bike-sharing, scooter-sharing, taxi, automobile rental, ride-hailing, and so on) in a single digital
mobility offer [32].
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and receive bus schedule announcements by pressing a button integrated into the SCiNe pole. This

feature, useful for individuals with disabilities, enhances accessibility and ensures that everyone can

access information. Additionally, the SCiNe is equipped with a camera and computational source,

enabling advanced computer vision capabilities. This subsystem is currently operational, playing

a crucial role in real-time passenger counting at bus stops. The passenger counting feature pro-

vides valuable data to transit agencies for informed decision-making in transportation planning and

scheduling adjustments. Notably, the SCiNe processes this data in real-time on the edge, ensuring

passenger privacy by transmitting only descriptive data, such as passenger counts, without compro-

mising personal information. In addition to these features, the SCiNe employs a combination of

motion and light sensors along with LEDs to enhance the safety and user experience at bus stops,

particularly during low-light conditions or darkness. The motion sensor is designed to detect the

presence of passengers or pedestrians near the bus stop. Simultaneously, the light sensor measures

the ambient brightness of the bus stop environment. When someone approaches the bus stop and

the light sensor registers that the illumination falls below a predefined threshold, a security LED

and display LED are activated. These LEDs provide valuable visibility and security for passengers

during nighttime or poorly lit conditions. This feature ensures that waiting passengers can navigate

the bus stop area more safely and comfortably. In cold weather, the SCiNe activates heaters to main-

tain optimal performance of the display and battery, ensuring uninterrupted service for passengers.

These heating elements ensure the SCiNe’s reliability even in extremely cold conditions.

While the current SCiNe enhances passenger experience with its functioning components, there

are some aspirational features that are under development as follows: The display subsystem, be-

yond schedule updates, is envisioned to offer dynamic content capabilities. This includes sharing

a wide range of information by allowing transit agencies to display advertisements, weather fore-

casts, promotional content, and announcements. The microphone subsystem, while not currently

implemented, is intended to provide passengers the ability to interact with the SCiNe through voice

commands. Moreover, the presence of speakers and microphones lays the foundation for the de-

velopment of an offline AI system, enabling advanced, AI-driven communication with passengers.

The camera’s capabilities, although currently used for passenger counting, are aspired to extend to
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detecting various issues at bus stops, such as trash buildup, contributing to a cleaner and more pleas-

ant environment for passengers. Additionally, this feature aims to support cost-efficiency measures

by identifying bus stops with low or zero passenger activity during specific time frames, potentially

leading to the rerouting of transport services through the SCiNe platform, such as taxis or rideshar-

ing, when buses are not needed. Table 3.1 provides an overview of these subsystems along with

brief descriptions of their functionalities.

Table 3.1: SCiNe Subsystems and their functionalities
Subsystem Usage Description

Display Showing real-time bus schedules and information for passengers
Speaker Announcements for passengers

Microphone(s) Voice commands from passengers
Camera + lens Passenger counter; infrastructure inspection
Motion sensor Determine if there are passengers / pedestrians near the appliance
Light sensor Measuring the brightness of the environment (bus stop)

LEDs Lightening bus stop and display
Heaters Heat display and battery during winter

Figure 3.2 illustrates how the SCiNe’s subsystems are arranged and positioned in the lower

section of the device, giving a visual overview of how these components are integrated.

Figure 3.2: Subsystems of the SCiNe: 1, 4: Microphones, 2: Camera and Lens, 3: Speaker, 5: Motion
Sensor, 6: Security LED

The detailed view of the SCiNe’s board, showing some other subsystems, can be seen in Figure

3.3.
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Figure 3.3: Detailed View of the SCiNe Board and other Subsystems

3.1.2 SCiNe’s Power Infrastructure

SCiNes use a solar panel to recharge a lithium-ion battery and harness renewable energy sources

for its operation. The power infrastructure of the SCiNe encompasses essential components: a solar

panel, a lithium-ion battery, a solar charge controller, and the device itself. Each component fulfills

a vital role in energy generation, storage, management, and consumption within the system. The

components of the power infrastructure of SCiNe are:

• The SCiNe is equipped with a monocrystalline solar panel installed on top of its pole, de-

signed to harness renewable energy. With a maximum power output of 50W at STC (Standard

Test Conditions) 2, it provides a sustainable power source for the system’s operation.

• To store the energy produced by the solar panel, the SCiNe features a lithium-ion battery with

a capacity of 532WH, installed at the back of the solar panel on top of the pole. The battery’s

output voltage ranges from 12 to 16.8 V ensuring a steady and reliable power supply. This

energy storage solution enables the SCiNe to operate even when sunlight is not available.
2STC stands for Standard Test Conditions in solar panel technology. It refers to a set of standard conditions un-

der which the performance of a solar panel is measured. The STC temperature is 25◦C, and the solar irradiance is
1000W/m2 with an air mass of 1.5.
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• At the heart of the SCiNe’s power infrastructure resides the Solar Charge Controller (SCC),

which harnesses MPPT (Maximum Power Point Tracker) technology to optimize the energy

flow generated by the solar panel into the lithium-ion battery. This essential component con-

tinuously monitors the energy generation process, actively tracking the maximum power point

by adjusting voltage and current. The MPPT controller ensures that the battery receives the

highest possible charging current, enhancing energy efficiency. This device acts as a bridge

linking the solar panel, battery, and the SCiNe itself, enabling seamless energy transfer while

safeguarding the lithium-ion battery against overcharging or deep discharge.

• The SCiNe serves as the primary energy consumer within its power ecosystem. Compris-

ing multiple interconnected subsystems, the SCiNe has varying power consumption require-

ments, each contributing to its overall functionality. Table 3.2 shows the average power con-

sumption of these subsystems.

Table 3.2: Average Power consumptions of SCiNe Subsystems
Subsystem Average Power Consumption (W)
Baseline 3 3.999

Security LED 5.056
Display LED 2.870

Speaker 0.449
People counting 1.500

Heater 15.913

3.1.3 Telemetry Data

Telemetry data refers to the data collected and transferred from remote or inaccessible sources

to a central point for monitoring, analysis, and control. Each SCiNe device collects Telemetry data

from its various sensors to improve mobility and optimize transportation services and sends it to

a cloud platform named “ORA” developed by BusPas. Thus, “ORA” acts as the central hub, to

facilitate their communication and efficient management across all of these interconnected devices.
3The “Baseline” power consumption represents the total power consumption of all subsystems except those mentioned

in the subsequent rows (i.e., LEDs, Speaker)
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Some of the parameters existing in the Telemetry data related to the subsystems’ power con-

sumption are shown in Table 3.3.

Table 3.3: Telemetry Data
Telemetry Parameter Telemetry Parameter Unit

InputVoltage Volts
InputCurrent Amps

Button Boolean
Security LED Brightness Percentage of brightness
Display LED Brightness Percentage of brightness

In terms of data requirements for the design of the power management system for the SCiNe,

it is imperative to collect data related to each component of the SCiNe’s power infrastructure: the

solar panel (energy generator), the lithium-ion battery (energy storage), and the SCiNe subsystems

(energy consumer). While telemetry data offers valuable insights into the SCiNe subsystems, gath-

ering data related to the battery and the solar panel is essential. These components, being external

to the SCiNe board, require a distinct data collection process. This data collection can be efficiently

executed through the solar charge controller, which serves as a link between the battery, the SCiNe,

and the solar panel. Collecting data directly from this central component is a fundamental step in

developing an effective power management system for the SCiNe. To address this requirement, an

experiment has been designed to simulate a real situation and in order to conduct the experiment,

an experimental setup has been configured and programmed to collect relevant and accurate data.

3.2 Design of Experiment

Design of experiments (DOE) refers to a structured and systematic approach to planning and

conducting experiments to obtain meaningful and reliable results [33]. An experimental plan has

been designed to observe and analyze the behavior of the SCiNe’s power infrastructure. The bat-

tery charging and discharging methodology were the two crucial aspects that the experimental plan

focused on. Since the experiment was conducted in a controlled lab environment without direct

sunlight, a programmable power supply was used to charge the battery instead of solar panel. To
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simulate the charging effect of the solar panel, solar radiation data for the desired location were ob-

tained from publicly available sources [34]. Based on solar radiation values for each hour, Equation

1 was used to calculate the voltage and current settings for the power supply simulator. The device’s

solar panel specifications indicated a power output of 50W under standard test conditions (STC)

with solar radiation at 1000W/m2. This information was used to calculate the amount of power

that the solar panel would deliver to the battery based on the actual solar radiation data.

Charge Power =
Solar Radiation

STC Solar Radiation
× Solar Panel Power at STC (1)

For instance, if the solar radiation for a particular hour was measured as 300W/m2, the power sup-

ply’s voltage and current were adjusted to deliver 15W ( 300W/m2

1000W/m2 × 50W) to the battery during that

hour. This approach facilitated the simulation of solar charging within the lab environment. As part

of SCiNe’s functionality, the device sends sensor data to the cloud at five-minute intervals which

is called telemetry data. This data reflects the activation and deactivation of various subsystems

of the device. In this study, for the discharging methodology, the telemetry data for the month of

February 2023 was used. The collected telemetry data were employed to precisely reproduce the

activation and deactivation patterns of the subsystems to simulate real-world scenarios throughout

the experiment. For the discharging methodology in this experiment, we focused on activating and

deactivating specific subsystems shown in Table 3.4. It’s worth noting that not all the SCiNe subsys-

tems were included in the experiment, as some are not yet fully developed, and their control options

have not been implemented. To ensure consistency in the data gathering process, the experiment

Table 3.4: Considered Subsystems in the Experiment
Subsystem

Security LED
Display LED

Speaker
People Counting Process

was initiated with a fully charged battery and incorporated a repetitive cycle. When the battery SoC

reached a critical level close to zero, the experiment was temporarily paused. The battery was then

charged back to its full capacity, and the experiment was resumed from the point at which the battery
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had reached the critical level. This process of discharging, pausing, recharging, and resuming was

repeated multiple times throughout the experiment, ensuring a reliable and controlled data collec-

tion approach. Through the carefully planned experiments, which encompassed the simulated solar

charging and the replication of real-world subsystem activation and deactivation, a comprehensive

dataset was obtained.

3.3 Experimental Setup

Experimental setup refers to the physical arrangement and configuration of the equipment, in-

struments, and apparatus used in an experiment. It involves the practical aspects of setting up an

experiment, ensuring that the conditions are controlled, and the data can be collected accurately. To

gather data for this project, a comprehensive experimental setup was designed to capture and analyze

the relevant parameters of the power infrastructure of the SCiNe. This system comprised essential

components, including a lithium-ion battery, a solar panel (substituted with a programmable power

supply for lab environment purposes), a load representing the SCiNe with various subsystems, and

an MPPT solar charge controller placed inside the battery pack. To facilitate data collection, we

replaced the MPPT charge controller within the battery pack with a programmable alternative. The

battery, power supply, and load were interconnected through the MPPT charge controller, while a

computer served as the central control unit for data collection and control of the power supply. The

computer was connected to both the MPPT charge controller and the power supply, allowing for

real-time monitoring and control of the power supply’s parameters. Figure 3.4 illustrates the setup

configuration. Detailed photographs of the actual configuration are included in Appendix A. To

control the power supply accurately based on solar data, a Python script was developed to adjust the

power supply’s parameters in real-time. Additionally, scripts were written to activate and deactivate

the SCiNe subsystems based on telemetry data, allowing for the simulation of real-world scenar-

ios. The comprehensive experimental setup and the development of these scripts and data logging

system were pivotal to the project’s success.
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Figure 3.4: Setup Configuration

3.4 Data Collection

A data logging system was developed to collect data from the programmable MPPT charge

controller at one-minute intervals. The system, developed using Python, Prometheus, and Grafana

tools, ensures seamless and uninterrupted data capture. This continuous data collection process

was essential to analyze and understand how the power infrastructure components interacted and

performed under varying conditions. The collected parameters from the MPPT charge controller

are presented in Table 3.5. The dataset produced for this study consists of 40,320 observations,

which corresponds to the number of minutes in 28 days (28 days × 24 hours × 60 minutes). This

dataset serves as the foundation for the subsequent analysis and model development.

Table 3.5: Description of Parameters Information Gathered from the MPPT Controller
Name Detailed Parameters

Solar Information Voltage, Current, Working State, Power
Battery Information Voltage, Current, Temperature, SoC, Battery State
Load Information Current, Voltage, Power

Controller Information Temperature, Working State
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Chapter 4

Methodology and Results

This chapter begins with the development of a specialized battery SoC estimation tool exclu-

sively tailored to the SCiNe device, addressing the challenge of direct battery SoC estimation. It then

delves into the battery SoC forecasting section, a crucial component of the SCiNe’s power manage-

ment system. We explore time series forecasting fundamentals, including various forecasting types,

models, and the associated data preprocessing, model development, and evaluation. Additionally,

this chapter introduces service levels, integral to the SCiNe’s power management, and concludes by

emphasizing the significance of addressing energy challenges in AIoT solutions, with a primary fo-

cus on accurate battery SoC forecasting as a foundational step toward building a sustainable power

management system for AIoT applications.

4.1 Battery SoC estimation

The State of Charge (SoC) in a battery cannot be measured directly; instead, it must be estimated

based on measurable parameters like current and voltage. This differs from other battery parame-

ters, such as voltage, current, and temperature, which can be directly measured [35]. The estimation

of the SoC of a battery is a fundamental aspect of managing and optimizing the operation of the

SCiNe device. Having an accurate estimation of the battery SoC is crucial to ensuring the device’s

efficiency and reliability, since it directly impacts the availability and performance of SCiNe’s ser-

vices. Therefore, a data-driven approach has been adopted to develop a battery SoC estimation tool
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tailored to the SCiNe device. This tool leverages available data sources, namely telemetry data and

solar data, to estimate the battery’s SoC based on data collected from the MPPT controller. This

approach offers a promising solution for addressing the challenges of estimating SoC in the context

of SCiNe’s power infrastructure setup. There are several stages involved in developing this tool,

including data preprocessing, model development, and thorough evaluation, all of which will be

elaborated on in the subsequent sections.

4.1.1 Data Preprocessing

Telemetry data and solar radiation data have been used as inputs in the development of the

battery SoC estimation tool. Telemetry data provides insights into the SCiNe subsystems’ behavior.

In the context of power management, telemetry data features of load voltage and load current serve

as crucial indicators of the system’s power consumption and operation. These features, measured at

5-minute intervals, enable us to assess the power dynamics within the SCiNe device. Furthermore,

the telemetry data reflects the activation and deactivation of various subsystems. The number of

LEDs activations and speaker activations were considered as relevant features as these subsystems

were focused on, in the experiments to collect data. Solar data, representing solar radiation, is

another resource integrated into the SoC estimation model. The solar radiation data serves as a

proxy for the energy input to the system, allowing us to consider the effect of solar power generation

in our estimation.

Feature Correlations

Figure 4.1 displays a correlation heatmap based on Pearson correlation coefficients, illustrating

the relationships between the input features and the battery State of Charge (SoC). Correlation

values range from -1 to 1 in the heatmap. A value of 1 indicates a perfect positive correlation,

meaning that as the input feature increases, the battery SoC also increases. Conversely, a value of

-1 signifies a perfect negative correlation, suggesting that as the input feature increases, the battery

SoC decreases. A correlation value of 0 indicates no linear correlation between the two variables.
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The pearson correlation coefficient r is calculated using Equation 2:

r =
Sxy√

Sxx · Syy

(2)

where Sxy represents the covariance between variables X and Y, Sxx is the variance of X and Syy is

the variance of Y.

Based on the heatmap, the highest correlations with battery SoC are observed for load voltage

and load current, indicating their significant influence on the battery SoC. Although solar radiation,

LEDs and speakers activation counts do not correlate with battery SoC as strongly as load voltage

and load current, their inclusion as inputs still adds value to the SoC estimation model. These fea-

tures, while individually having lower correlation, can still contribute to the model’s performance

when considered alongside other features, highlighting the potential synergy of various input fea-

tures in improving the overall predictive capability of the model.

Data Resampling and Normalization

The telemetry data, collected at 5-minute intervals, provides valuable information about the

SCiNe subsystems and their behavior. To align this data with the one-minute interval MPPT con-

troller data, we resampled it to 5-minute intervals, ensuring that both datasets could be integrated

effectively. Normalization is another step in data preprocessing. This process brings all the input

features and the output variable to a common scale. By scaling the data to the same range, each

feature contributes proportionally to the model training, preventing issues related to disparate data

ranges. In this study, MinMax scaling was employed, which scales the data within a range of 0

to 1 as shown in Equation 3. This approach ensures that the dataset is appropriately normalized,

facilitating effective model development and training.

Xnorm =
X −Xmin

Xmax −Xmin
(3)

where X is the original feature value, Xmin is the minimum value of the feature, Xmax is the maxi-

mum value of the feature, and Xnorm is the normalized feature value.
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Figure 4.1: Pearson correlation heatmap displaying the relationship between the input features and
the battery SoC

4.1.2 Model Development

In order to develop the battery SoC estimation model for the SCiNe device, we employed tree-

based models as the primary modelling approach. We considered Decision Tree (DT), Random

Forest (RF), and Extra Tree (ET) models. There are several reasons why tree-based models were

chosen. The main advantage of these solutions lies in their computational efficiency, making them

perfect for edge deployment. In order to maximize performance and minimize resource consump-

tion, the SoC estimation model has to be lightweight, which can be achieved by ensuring that it

runs on the SCiNe device itself. It should also be noted that battery behavior and SoC estimation

often involve complex, non-linear relationships between input features and the target variable. Tree-

based models are ideal for covering such non-linearities, as well as accommodating the real-world
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complexities of battery behavior. It is also possible to analyze feature importance with tree-based

models. Using the importance scores of different input features, we can gain insight into which

parameters greatly affect battery SoC, enabling us to optimize feature selection and engineering.

Tree-based models also provide interpretability, which is important for understanding the model’s

predictions, fostering trust, and providing transparency [19].

A decision tree is a fundamental machine learning model that has been widely used across

multiple applications because of its simplicity and interoperability. They are often described as hi-

erarchical structures that recursively partition the data based on a series of binary decisions. These

decisions are represented by the nodes of the tree, and the leaves contain the final predictions. Deci-

sion Trees, however, are prone to overfitting when they become too complex. They can be controlled

by adjusting parameters like the maximum depth of the tree, minimum samples required to split a

node, and others [36]. Based on the foundation of Decision Trees, Random Forests are a method of

ensemble learning. As part of the training process, multiple Decision Trees are constructed and their

predictions are aggregated to improve accuracy and reduce overfitting. The advantage of Random

Forests is that they can handle large and complex data while maintaining some degree of interpreta-

tion [37]. Developed on the Random Forest approach, Extra Trees, short for Extremely Randomized

Trees, are another ensemble learning method. They also create multiple Decision Trees, but with a

notable difference: the Extra Tree nodes are split based on random thresholds rather than the best

possible thresholds, resulting in greater diversity. As a result of this randomness, Extra Trees are

less likely to overfit and are faster to train, making them suitable for situations where efficiency

is crucial [38]. The dataset was divided into two subsets for the development of these tree-based

models for estimating the battery SoC: a training set and a testing set. 80% of the data was allo-

cated to the training set, while the remaining 20% was used for testing and evaluating the models’

performance.

4.1.3 Evaluation

To evaluate the battery SoC estimation models, we used commonly used regression metrics,

such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). These metrics provide

quantitative measures of the statistical quality of the estimations, allowing for a comprehensive
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evaluation of the accuracy in estimation of the SoC values. MAE measures the average magnitude

of prediction errors. It is calculated as the mean of the absolute differences between the predicted

values (ŷi) and the actual values (yi) for each observation in the dataset, as shown in Equation 4. In

this equation, n is the number of observations.

MAE =
1

n

n∑
i=1

|yi − ŷi| (4)

RMSE is the square root of the average of the squared differences between the predicted values (ŷi)

and the actual values (yi) for each observation in the dataset, represented by Equation 5.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

Both MAE and RMSE express average model prediction error in units of the variable of interest

and can take values from 0 to positive infinity. While MAE treats all errors equally, RMSE is more

sensitive to outliers because of its squaring operation, which assigns higher weight to larger errors.

Lower values for both metrics indicate better prediction performance. Table 4.1 summarizes the

MAE and RMSE values for each of the tree-based models — Decision Tree (DT), Random Forests

(RF), and Extra Trees (ET) — based on their performance on test data.

Table 4.1: Battery SoC estimation models’ performance on test data
Algorithm MAE RMSE

Decision Tree 0.081 0.117
Random Forest 0.080 0.108

Extra Tree 0.079 0.112

In the evaluation of battery SoC estimation models for the SCiNe device, the performance re-

sults indicate the effectiveness of the Extra Trees model, which exhibits the best performance with

the lowest MAE of 0.079 and RMSE of 0.122. As a comparison, Decision Trees and Random

Forests yield similar performance, based on RMSEs and MAEs. Overall, these findings point to

the efficiency of the Extra Trees model in SoC estimation, resulting in enhanced reliability and

precision, which are critical for optimizing SCiNe’s operation.

A comparison of actual and predicted SoC values for test data provides valuable insight into the
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performance of the SoC estimation models. In Figure 4.2, the scatter plot illustrates how well the

predicted values align with the actual SoC values. A model’s performance can be evaluated based

on the proximity between data points and the 45-degree reference line, which signifies the accu-

racy of predictions. Extra Trees (ET) exhibit a remarkable alignment between actual and predicted

values, demonstrating its effectiveness in accurately estimating battery SoC. This visualization not

only confirms the quantitative performance metrics but also provides valuable insights into the dis-

tribution of errors. It further emphasizes the ET model’s ability to capture complex relationships

within the dataset, resulting in accurate SoC estimation.

To further enhance the models, an investigation into potential input features was conducted.

The analysis revealed that “Solar Voltage”, obtainable from the MPPT controller, presented a high

correlation with Battery SoC as shown in Figure 4.1. The improved performance of these tree-based

models after adding this feature are shown in Table 4.2.

Table 4.2: Battery SoC estimation models’ improved performance on test data
Algorithm MAE RMSE

Decision Tree 0.040 0.079
Random Forest 0.039 0.071

Extra Tree 0.037 0.064

Incorporating this feature into the models had a significant impact on their performance. For

instance, it led to a reduction in MAE to 0.037 and RMSE to 0.064 for the ET model. This reduction

in error highlights the potential of incorporating additional features into the model and emphasizes

its importance for accurate battery SoC estimation. In In Figure 4.3, the scatter plots confirm the

improvement of the models. The predicted values align more closely with the actual values, as the

points cluster tightly around the 45-degree reference line.

Feature Importance Analysis

Shapely (SHapley Additive Explanations) has emerged as a valuable tool for understanding the

driving forces behind model predictions in the realm of machine learning and model interpretabil-

ity. For analyzing the importance of individual features within a predictive model, Shapely offers a

comprehensive framework. In order to do so, it draws inspiration from cooperative game theory and
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Figure 4.2: Actual vs Predicted Battery SoC Estimation Models
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Figure 4.3: Actual vs Predicted of Improved Battery SoC Estimation Models

28



Shapley values, which are used to fairly distribute the contributions of the features to the prediction.

Based on Shapely, each feature is given a specific “Shapley value”, which represents its impact. A

Shapley value is calculated by comparing the prediction of the model with and without a feature,

taking into account all possible combinations in order to calculate the importance of a feature. In

practice, Shapely assigns numerical values to each feature, indicating the extent to which they influ-

ence the model’s outcomes. A deeper understanding of model behavior can be gained by exploring

these Shapley values [39]. Figure 4.4 shows the SHAP Summary plot for the input features for the

Battery SoC estimation models. Summary plots combine feature importance with feature effects.

Each point is a Shapley value of an instance per feature. The y-axis is determined by the feature,

and the x-axis is determined by the Shapley value. The features are ordered according to their im-

portance. It is shown that “Solar Voltage” is the most important and has the highest Shapley value

range among the features. This is why incorporating this feature substantially reduced the errors of

the estimation models

4.2 Battery SoC Forecasting

Developing an efficient power management system for the SCiNe device relies on accurate bat-

tery State of Charge (SoC) forecasting. In renewable energy systems, managing power effectively

involves two fundamental aspects. Firstly, battery SoC, a critical parameter that indicates how

much energy they store, must be accurately predicted. Secondly, it necessitates the implementa-

tion of tailored control strategies, including adjustments to energy consumption patterns, all geared

towards ensuring stable and reliable system operation, with these adjustments being influenced by

the forecasted SoC of the battery. As part of the battery SoC forecasting approach, we explore the

fundamentals of time series forecasting.

4.2.1 Time Series Forecasting

The term “time series” refers to a sequence S of historical measurements yt of an observable

variable y at equal time intervals. A time series data set typically consists of two main components:

1. Time Stamps: The time stamps represent the chronological moments when each observation
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Figure 4.4: Feature Importance - SHAP values
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is made. Depending on the context, time stamps can be expressed in seconds, minutes, hours,

days, months, or years.

2. Values or Measurements: Data values are linked to each time stamp. In the context of battery

SoC forecasting, these values indicate the state of charge of the battery at each recorded time

point.

Forecasting future values of an observed time series is a fundamental practice with applications

across various scientific and engineering domains [40]. In the context of this study, which centers on

battery SoC forecasting, this forecasting process assumes a notably crucial role. By analyzing prior

patterns and assuming that future trends will be similar to historical ones, time series forecasting

enables you to forecast future events. Essentially, forecasting involves establishing models from

historical data and using them to make observations and guide future strategic decisions. It involves

making predictions based on historical data.

4.2.2 Types of Time Series Forecasting

A forecasting approach depends on the underlying objectives and characteristics of the data to

be forecasted. Two factors determine the nature of forecasting tasks are the time horizon and the

number of variables involved. Forecasting can be categorised into single-step and multi-step fore-

casting based on time horizon. When single-step forecasting is used, the value of the time series is

predicted at a single, specific future time point. Such forecasts are often used for forecasting im-

mediate or very short-term predictions. Multi-step forecasting consists of predicting multiple future

values beyond a single time point. The goal is to forecast a sequence of future observations, typi-

cally denoted as [yN+1, . . . , yN+H ], where H > 1 represents the forecasting horizon. Furthermore,

univariate and multivariate forecasts differ based on its involvement of variables. Univariate Time

Series Forecasting involves predicting the future values of a time series based solely on its historical

data. In contrast, Multivariate Time Series Forecasting, also known as using exogenous variables,

incorporates additional predictors beyond the primary time series to make forecasts [41]. Multi-step

and multivariate time series forecasting techniques are used in this study in order to provide accurate

forecasts.
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Multi-step Forecasting Strategies

For multi-step forecasting, three strategies can be considered:

1. Recursive Strategy: The recursive strategy involves one-step-ahead forecasting based on

actual observed values from previous steps, which serve as inputs to forecast the next step.

Although adaptable, this approach can be computationally intensive.The strategy begins with

the initial training of a one-step model, denoted as f , which predicts yt+1 using historical

data yt, . . . , yt−n+1 and wt+1. This model is trained for t within the range of n, . . . , N − 1.

Subsequently, the model is employed recursively to provide multi-step predictions, following

the equation:

yt+1 = f(yt, . . . , yt−n+1) + wt+1 (6)

2. Direct Strategy: Instead of making iterative predictions one step at a time, the direct strategy

efficiently generates forecasts for multiple future time steps simultaneously. This approach

is computationally efficient but may require a more complex modeling approach. It involves

the independent training of H models, each represented by fh, to predict yt+h based on

historical data yt, . . . , yt−n+1 and the term wt+h. This strategy operates for t in the range of

n, . . . , N −H and h in the range of 1, . . . ,H . The multi-step forecast is derived through the

following equation:

yt+h = fh(yt, . . . , yt−n+1) + wt+h (7)

This equation describes the process of forecasting yt+h by concatenating predictions made by

the H models.

3. Multiple Output Strategy: The multiple output strategy revolutionizes multi-step forecast-

ing by departing from single-output mappings. Conventional techniques model a multi-input

single-output mapping, but when long-term predictions are needed in a stochastic setting, this

approach may introduce biases. Instead, the multiple output strategy embraces multi-output

dependencies, utilizing multi-output techniques. In this approach, the forecasted value is
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represented as a vector of future values, as shown by the equation:

[xt+H , . . . , xt+1] = F (xt, . . . , xt−n+1) + w. (8)

where t varies within the range from n to N − H . This approach accounts for complex

dependencies among inputs, inputs-outputs, and among the outputs themselves, making it

ideal for addressing long-term forecasting challenges [42].

The forecasting models employed in this study utilize the multi-output strategy to enhance multi-

step forecasting accuracy.

4.2.3 Forecasting Models

In this study, a variety of models are employed for multi-step multivariate forecasting of Battery

SoC. These models encompass both machine learning methods, such as Decision Trees (DT) and

Random Forests (RF), which were previously used in the Battery SoC Estimation section, and deep

learning models. The deep learning models used in this study include Long Short-Term Memory

(LSTM), Bidirectional LSTM (Bi-LSTM), Gated Recurrent Unit (GRU), and Bidirectional GRU

(Bi-GRU).

Long-short Term Memory

Recurrent neural networks (RNNs) are designed to effectively handle sequential data, making

them suitable for applications like multi-step time series forecasting. While RNNs are capable of

modeling sequences, they face a challenge known as the “vanishing gradient problem”, which hin-

ders their ability to capture long-range dependencies in data. LSTM, or Long Short-Term Memory,

is an advanced RNN architecture devised to address this issue [31]. LSTM introduces key compo-

nents to overcome the limitations of traditional RNNs. Its architecture includes several specialized

mechanisms called “gates”. These gates allow LSTM to control the flow of information over ex-

tended sequences by selectively remembering and forgetting information, thus enabling more effec-

tive learning from data. In essence, LSTM gates serve as control units that regulate the network’s
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memory state and decision-making processes, ensuring that relevant information is retained and un-

necessary information is discarded [43]. To delve deeper into the LSTM architecture, it’s essential

to understand the functionality of its gates. An LSTM cell architecture is illustrated in Figure 4.5,

highlighting its key components and their interconnections.

Figure 4.5: LSTM Structure [44].

In LSTM cell, there are four main gates which are mentioned as follows:

• Forget Gate: Responsible for deciding what to retain and what to discard from the previous

cell state (Ct−1). It prevents irrelevant information from affecting the current state, addressing

issues like the vanishing gradient problem. The gate’s output, ft, ranges between 0 and 1,

determining what should be remembered and forgotten.

Equation for the forget gate:

ft = σ(Wf · [ht−1, xt] + bf ) (9)

• Input Gate: Regulates the introduction of new information into the memory state (Ct). It

consists of the input modulation gate, it, which decides what values should be updated, and

the candidate update, C∼
t , which represents new proposed values. The gate plays a crucial

role in determining what information is worthy of being stored and what should be ignored.
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Equation for the input modulation gate:

it = σ(Wi · [ht−1, xt] + bi) (10)

Equation for the candidate update:

C∼
t = tanh(WC · [ht−1, xt] + bC) (11)

• Cell State: Serves as a central repository for information, continuously updated by the forget

and input gates. It blends past knowledge with new candidate values (C∼
t ) to make informed

decisions about what to keep and what to discard.

Equation for updating the cell state:

Ct = ft · Ct−1 + it · C∼
t (12)

• Output Gate: Determines the relevance of information from the cell state (Ct) for generating

predictions or the final output. It acts as a filter, controlling which parts of the cell state

contribute to the hidden state (ht) and, consequently, the output or prediction. The gate’s

output, ot, ranges between 0 and 1, allowing selective information flow.

Equation for the output gate:

ot = σ(Wo · [ht−1, xt] + bo) (13)

Additional equation to compute the hidden state:

ht = ot · tanh(Ct) (14)
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Bidirectional Long Short-Term Memory

The Bidirectional Long Short-Term Memory (Bi-LSTM) is a variant of the standard LSTM

model that captures dependencies in both forward and backward directions. A forward-end LSTM

processes the input sequence from the beginning to the end of the layer, while the backward-end

LSTM process the sequence from the beginning to the end. The outputs are then concatenated. Bi-

LSTM has the same gating mechanisms as standard LSTM models, including the forget gate, input

gate, cell state gate, and output gate. By analyzing sequences bidirectionally, it captures contextual

information effectively, so it can be used for tasks like natural language understanding and time

series forecasting, where both past and future information are essential [45].

Gated Recurrent Unit

As a RNN architecture, the gated recurrent unit (GRU) addresses the limitations of traditional

RNNs. In the same way as LSTM, GRU is geared toward sequential data processing, but its structure

is more simplified, making it computationally efficient. The core idea behind the GRU is to maintain

and update a hidden state that captures essential information from past time steps. In contrast to the

LSTM, the GRU has two gates: the update gate and the reset gate. The GRU can adjust its memory

efficiently and control the flow of information effectively with these gates [46].

• Update Gate: This gate determines how much of the previous hidden state should be retained

and how much of the current candidate state should be added. By balancing remembering and

forgetting, it allows the model to selectively update its memory.

• Reset Gate: This gate determines which information from the previous time step should be

forgotten or reset. It aids the GRU model in learning which past information is irrelevant to

the current time step.

Bidirectional Gated Recurrent Unit

The Bidirectional Gated Recurrent Unit (Bi-GRU) follows a similar principle to Bi-LSTM, but

uses GRU as its core units. GRUs have two main gates, the reset gate and the update gate, which
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facilitate the flow of information. A Bi-GRU is composed of two sets of GRU layers - one process-

ing the sequence from beginning to end (forward GRU) and one from beginning to end (backward

GRU). A comprehensive representation of the input sequence is obtained by concatenating the out-

puts from both directions. Similar to Bi-LSTM, Bi-GRU captures bidirectional dependencies effec-

tively, but with a simpler architecture due to a reduced number of gates. The Bi-LSTM and Bi-GRU

models are both used widely for sequence-to-sequence tasks, including time series forecasting, due

to their ability to capture complex patterns and dependencies [47].

4.2.4 Data Preprocessing

The dataset produced for this study consists of 40,320 observations, which corresponds to data

collected at one-minute intervals over a 28-day period. The data was collected at one-minute in-

tervals to ensure a high level of detail in capturing the behavior of the battery system. To assess

the impact of different time intervals on forecasting accuracy, the dataset was resampled into three

subsets: 15-minute, 30-minute, and 1-hour intervals. This resampling was done to make a balance

between data granularity and computational efficiency, as the original dataset contained a large vol-

ume of one-minute interval observations. Based on the resampled datasets, time series forecasting

models were evaluated and results were compared across different temporal resolutions. The subsets

consisted of 2,688 observations (15-minute interval), 1,344 observations (30-minute interval), and

672 observations (1-hour interval). This approach enables a comprehensive analysis of the dataset

and provides insight into the effect of temporal granularity on forecasting accuracy. An exploratory

data analysis (EDA) is performed to preprocess the dataset and select the important features to

include in the SoC forecasting model. In Figure 4.6, the correlation heatmap, which is based on

Pearson correlation coefficients, clearly shows that the battery voltage and SoC are positively cor-

related, with a correlation coefficient of 1. This high correlation is not surprising, considering that

the MPPT controller relies on the battery voltage as a crucial factor in determining the SoC.

According to the correlation values, the SoC is more correlated with load voltage, solar voltage,

and load current. Therefore, these features become crucial factors to consider in order to improve the

SoC forecasting model. To further improve the feature selection process, mutual information (MI) is

employed alongside correlation analysis. While correlation focuses on linear relationships between
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Figure 4.6: Pearson correlation heatmap displaying the relationship between the gathered features
and the SoC of the battery

variables, MI takes into account both linear and nonlinear dependencies. It quantifies the amount of

information one variable provides about another, capturing a broader range of relationships beyond

what correlation alone can reveal. The MI is calculated as:

MI(X,Y ) =
∑∑

P (X,Y ) log2

(
P (X,Y )

P (X) · P (Y )

)
(15)

where P (X,Y ) represents the joint probability distribution of variables X and Y , and P (X) and

P (Y ) represent their marginal probability distributions [48]. Normalized mutual information (NMI)

is used to standardize evaluations across feature scales. A high NMI score indicates strong depen-

dence between the target feature and the input feature. NMI scores range from 0 to 1, with 1

representing perfect correlation (0 = no mutual information). Figure 4.7 shows NMI scores between
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all the features and battery SoC. Battery voltage, solar voltage, load voltage, and battery current

have the highest NMI scores, all with NMI score above 0.2. Therefore, based on both analyses, the

following features can be considered as features for improving the SoC forecasting model: battery

voltage, load voltage, solar voltage, load current, and battery current.

Figure 4.7: Normalized mutual information score between SoC and the features

To enhance our SoC forecasting models, we expanded our feature selection beyond the data

collected by the MPPT controller. In addition to the selected variables, we integrated three ad-

ditional features: solar radiation data, subsystem activation counts, and a categorical time-of-day

variable. Solar radiation data accommodates energy input variations, while subsystem activation

counts reveal the device’s operational status, enriching our forecasting context. The time-of-day

feature categorizes data into morning, afternoon, evening, and night based on available daylight for

device charging and discharging

In the experiment, the Date and Time were set as the time series index. The SoC percentage and

the features selected based on the Pearson correlation and NMI score and additional features were

used as input data. The dataset was then divided into training and testing sets, with proportions

of 70% and 10%, respectively. Additionally, 20% of the data was allocated for hyper-parameter
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validation during model development. Furthermore, MinMax scaling with a 0 to 1 range was used

to normalize the dataset. To handle the categorical feature of time-of-day, we employed one-hot

encoding. This method involved creating binary dummy variables for each category within the

time-of-day feature, allowing us to represent it in a way suitable for our modeling process.

4.2.5 Model Development

Various multi-step and multivariate time series forecasting models were applied to the resam-

pled datasets with different time intervals to forecast the SoC of the battery. Both machine learning

and deep learning modeling approaches were used in this study. Initial benchmarks were established

using machine learning models such as decision trees (DT) and random forests (RF). The data was

then modeled using deep learning models including Convolutional Neural Networks (CNN), Long

Short-Term Memory (LSTM), Gated Recurrent Units (GRU), Bidirectional LSTM (Bi-LSTM), and

Bidirectional GRU (Bi-GRU), in order to capture complex temporal patterns. Forecast horizons of

2 hours, 5 hours, and 10 hours were used to evaluate the effectiveness of these models. Training and

testing of the models were conducted on resampled subsets of data for each forecast horizon. Using

this approach, we were able to evaluate model performance over various time intervals and forecast

horizons. The look-back window determines the amount of historical data used for forecasting fu-

ture time steps. In this study, the look-back windows are set to the same duration as the forecast

horizons in each model. For instance, in the case of the 15-minute scale dataset, a forecast horizon

of 2 hours corresponds to a look-back window size of 8 (4 data points per hour x 2 hours), indicat-

ing that the model considers the previous 8 time steps to make predictions. In order to optimize the

performance of the forecasting models, hyperparameter tuning was carried out using a grid search

approach to identify the most suitable parameter values for the models. The hyperparameters that

were tuned include the number of layers, the number of units for each layer, dropout rate, L2 reg-

ularization parameter (lambda), activation function, and learning rate. Adam optimizer is used for

tuning the developed deep learning models, and the dropout regularization to avoid overfitting. The

forecasting models were implemented using Keras 2.6.0 API with Tensorflow 2.12.0 as the back-

end, within the Python 3.11.4 environment. Figure 4.8 illustrates an example of model optimization

results based on the parameters specified in Table 4.3 for the Bi-GRU model. The plot demonstrates
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the decreasing training and validation losses over multiple epochs, indicating a well-fitted curve.

It is evident that the optimal number of epochs for this model is approximately 40, as both losses

reach a stable point.

Table 4.3: Parameters set for the models
Parameter Value

Training portion 70% of total data
Validation portion 20% of total data

Testing portion 10% of total data
Normalization MinMax normalization (range 0 to 1)
Regularization Dropout, L2 regularization

Early stop to avoid overfitting patience = 30
look-back window size range 2-40 data points

forecast horizons 2 hours, 5 hours, 10 hours
Optimization algorithm Adam

Maximum number of epochs 150
Testing evaluation metrics MAE and RMSE

Hyperparameter Tuning Method Grid Search

Tuned Hyperparameters
Number of layers, Number of units per layer, Dropout rate,

L2 regularization parameter (lambda),
Activation function, Learning rate

4.2.6 Evaluation

Figure 4.9 provides a detailed comparison of the forecasting models used in this study, based on

the MAE and RMSE performance metrics. Three resampled datasets with 15-minute, 30-minute,

and 1-hour scales are used to evaluate the forecasting models, covering forecast horizons of 2 hours,

5 hours, and 10 hours. The figure displays the errors for each model’s last time step forecast,

providing insights into the effectiveness of the models for long-term forecasting. It is observed

that RMSE errors are generally higher than MAE errors, indicating RMSE’s sensitivity to large

errors. Additionally, and as expected, errors for all models tend to increase with increasing forecast

horizons, reflecting the complexity and uncertainty of long-term forecasts. The Bi-GRU model

outperforms other models across various forecast horizons and dataset scales, making it a good

choice for more accurate predictions.

Further quantative evaluation of forecasting models was conducted in addition to visual analysis
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Figure 4.8: Training and Validation Loss Curves for Bi-GRU Model
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Figure 4.9: Comparison of forecasting models for the last time step on each dataset
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from the figure. While the figure enabled comparison of forecasts for the last time step, Table 4.4

provided an assessment of the models’ overall performance. This evaluation involved comparing

the average errors for all time steps across the longest forecast horizon of 10 hours. In this way,

the assessment allowed for evaluating the model’s accuracy and reliability across the entire forecast

period, gaining a better understanding of their overall performance and forecasting capabilities. Bi-

GRU model has the lowest MAE and RMSE, indicating the highest accuracy among all models. It

shows that a bidirectional architecture and gated recurrent units make the Bi-GRU model a proper

model for Battery SoC forecasting.

Table 4.4: Overall Forecast performance on test data for the horizon of 10 hours
Models 15 min dataset 30 min dataset 1 hour dataset

MAE RMSE MAE RMSE MAE RMSE
DT 6.02 7.33 4.76 6.91 6.20 7.46
RF 4.49 5.71 3.56 5.36 4.70 5.84

CNN 4.45 5.60 3.91 4.92 4.39 5.59
LSTM 4.63 5.34 3.88 4.69 4.24 5.46
GRU 4.46 5.30 3.71 4.55 3.39 4.34

Bi-LSTM 3.88 4.69 3.70 3.42 2.93 3.72
Bi-GRU 3.61 4.57 2.55 3.26 2.79 3.66

4.3 Power Management Service Levels

In developing an effective power management system for the SCiNe device, defining distinct

service levels that optimize power consumption and functionality is a key consideration. Service

levels are designed to achieve a balance between maintaining the device’s core functions and extend-

ing its operational life. The power management system operates as a decision-making framework,

allowing the SCiNe device to adapt to varying energy conditions and prioritize its tasks accordingly.

To achieve this, the system leverages battery State of Charge (SoC) forecasting, adjusting service

levels in real-time to ensure an optimal balance between functionality and power conservation.
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Three service levels can be implemented in the power management system, each tailored to

specific SoC ranges. These service levels are:

• Normal Mode : Normal Mode allows the device to operate at full functionality, providing all

its services and features. It is activated when the SoC is within a range of 100% to 60%. In

Normal Mode, the device uses all of its energy resources.

• Power Saving Mode : SCiNe enters Power Saving Mode when the SoC falls between 59%

and 20%. This mode optimizes energy consumption by activating various power-saving

mechanisms. LEDs are dimmed by 50%, the device reduces data transmission frequency

to send telemetry data to the cloud, screen updates ocurr less frequently, conserving energy

while maintaining essential functions.

• Emergency Mode : The Emergency Mode is activated when the SoC reaches 19% to 1%.

In Emergency Mode, the device prioritizes essential functions, like displaying the bus sched-

ule, while conserving energy by dimming LEDs to 25% brightness and disabling subsystems

like the speaker, microphone, and people counting module. In Emergency Mode, the device

focuses on preserving energy to extend its operational duration and provide essential services.

As a result of implementing these service levels, the SCiNe device can dynamically adapt to

changing energy conditions and operational requirements. As a result, the SCiNe device operates

optimally while maximizing energy efficiency, enhancing its reliability and longevity. As part of

the seamless transition between these service levels, battery SoC forecasting plays a crucial role,

ensuring that the device can respond effectively to fluctuations in its energy supply regardless of the

level of service.
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Chapter 5

Conclusions and Future Work

The integration of Artificial Intelligence (AI) and the Internet of Things (IoT) in AIoT-driven

solutions presents innovation, but also energy challenges. To tackle these challenges while adhering

to the principles of responsible AI, it is crucial to prioritize the sustainability of these solutions

through the promising adoption of renewable energy sources. Despite the benefits of renewable

energy, challenges such as its intermittent nature necessitate the implementation of an effective

power management system. This study focused on developing an effective power management

system, serving as a decision-making framework for AIoT solutions. This was done through the

development of a power management system for a battery-powered AIoT device charged through

a solar panel named “SCiNe”, with a specific emphasis on accurate battery State of Charge (SoC)

forecasting. To understand the behavior of the system, an experiment was designed and a custom

data logging system was developed to gather relevant data, enabling accurate analysis and model

development. The study explored the multivariate and multi-step time series forecasting domain,

using a variety of models, including decision trees (DT) and random forests (RF), to deep learning

models of CNN, LSTM, GRU, Bi-LSTM, and Bi-GRU. The models were evaluated using both

last time step forecasts for a comparative view and average errors over the entire forecast period

for a comprehensive evaluation. The Bi-GRU model outperformed other models across datasets

with varying time intervals and forecast horizons. These findings highlight the potential of the Bi-

GRU model for real-world applications in similar systems. Incorporating additional input features,

exploring alternative time series forecasting models, and integrating the SoC forecasting solution
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into the decision-making system, offer promising avenues for future enhancements in the study.

This study has primarily addressed the first phase of the decision-making system for managing

AIoT device power – accurate battery SoC forecasting. The next step is to design and implement

control strategies that enable dynamic adjustments to service levels of the device. These service

levels define specific operating modes for the device, with each level corresponding to different

functionalities and power consumption limits, ensuring both system stability and power efficiency.

These enhancements lead to the development of a sustainable power management system for AIoT

applications.
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Appendix A

Setup Configuration

Figure A.1: Setup Configuration
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