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Abstract

Modeling and Control of Dielectric Elastomer Enabled Actuators for Soft
Robots

Wenjun Ye, Ph.D.
Concordia University, 2024

The field of robotics has undergone a significant transformation, extending its
scope well beyond its traditional role in manufacturing automation. It has now
found applications in various domains such as healthcare, field exploration, and
collaborative human-robot interactions. Nevertheless, a main concern across these
diverse applications remains the safety of interactions involving humans. Traditional
robots, comprised of rigid links and joints, inherently carry risks when operating
close to human beings. This risk is exacerbated by the absence of compliance in
their actuation mechanisms. In contrast, soft robots are constructed from inherently
soft or extensible materials, affording them the ability to deform and absorb energy
during collisions. This distinctive characteristic endows them with a continuously
deformable structure and muscle-like actuation, closely resembling biological systems
and offering a greater number of degrees of freedom. Consequently, soft robots hold
the potential to exhibit extraordinary levels of adaptability, sensitivity, and agility.

The emergence of soft robots marks a new frontier at the intersection of multiple
disciplines, including engineering, materials science, mechanics, physics, chemistry,
biology, and robotics. This interdisciplinary confluence catalyzes innovation, pushing
the boundaries of robotic capabilities and unlocking fresh avenues for exploration and
practical applications.

Among the materials ideally suited for soft robotics, Dielectric Elastomer (DE)
is one of the promising candidates due to its exceptional performance attributes.
However, the intricate nonlinear characteristics inherent to Dielectric Elastomer
Actuators (DEAs), including phenomena such as hysteresis, stress relaxation, and
various dependencies, pose great challenges in modeling and control.

This dissertation is dedicated to advancing the modeling and control strategies
for Dielectric Elastomer Actuators (DEAs) with the primary objective of integrating
them into soft robot applications.
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The research endeavors commence with a solid foundation in the form of extensive
experimental tests. These tests investigate the input-output characteristics of DEAs,
systematically exploring their responses under varying input amplitudes, frequencies,
and mechanical loads. The experimental results unveil intricate and multifaceted
behaviors influenced by factors such as input frequencies, amplitudes, and external
mechanical loads.

This study focuses specifically on conical and planar Dielectric Elastomer
Actuators (DEAs) and introduces two distinct models based on fundamental
physical principles. These proposed models are inspired by the concept of free
energy within viscoelastic materials, allowing them to comprehensively capture the
intricate behaviors exhibited by DEAs while considering their complex dependencies.
Particularly, these models can describe the intricate influences of multiple factors that
shape DEA behaviors. The precision and effectiveness of these models are rigorously
validated through meticulous comparisons with experimental data.

Due to the necessity for actuator-specific details in physics-based models, an
innovative approach is presented, namely a data-in-loop model. This groundbreaking
model adopts nonlinear elements, encompassing phenomena such as creep and
hysteresis, thus avoiding the need for geometry-specific information and effectively
representing the intricate behaviors of DEAs.

The presence of nonlinear effects in DEAs can lead to harmful consequences,
including inaccuracies, oscillations, and instability. To effectively counter these
effects, a controller design approach is proposed, adopting feedforward inverse
compensation methods for controller design. In this framework, a model based on
Prandtl-Ishlinskii (PI) hysteresis blocks is adopted to account for the nonlinearities
within DEAs. The direct inverse compensation technique is employed with the inverse
of the PI model. Building upon this foundation, a robust adaptive controller is then
developed. This comprehensive methodology is designed to mitigate the adverse
impacts of nonlinearities in DEAs, ultimately enhancing their control performance
and addressing the formidable challenges posed by dynamic behaviors.
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Chapter 1

Introduction

This dissertation sets out to provide a comprehensive exploration of the modeling
and control aspects pertaining to Dielectric Elastomer (DE) enabled Actuators, a
highly promising avenue for the advancement of soft robotics. Within this chapter,
we initiate by introducing both the advantages and drawbacks associated with these
materials, thereby establishing the motivation underlying our proposed research.

In light of the advancements within the realm of material sciences, Dielectric
Elastomers (DEs) have emerged as a frontrunner among actuation materials for soft
robots. The recognition of their potential has sparked the impetus to incorporate
DEs into the domain of soft robotics.

Within the literature, coupled with insights drawn from our own experiments,
it becomes evident that the input and output responses of DE-enabled actuators
encompass intricate dynamic behaviors. However, existing research findings are at a
relatively nascent stage and lack a control-oriented perspective. As a consequence,
these findings cannot be readily applied to our research objectives. To address this
gap, we have devised an independent experimental platform termed the Dielectric
Elastomers Actuators (DEAs) system. Through this platform, we have undertaken
a series of comprehensive tests encompassing different geometries, input amplitudes,
frequencies, and external loads. The objective of this empirical endeavor is to gain a
profound understanding of the input-output behaviors exhibited by DEAs.

Drawing upon the extensive data garnered from our experiments, we subsequently
propose modeling and control strategies. These strategies are developed with the
intent of enhancing the precision of control for DEAs, serving as the principal goal
that drives this dissertation.

1



1.1 A Brief Introduction to Soft Robots

Industrial robots predominantly consist of rigid materials like metal and plastic,
enabling them to excel in tasks requiring precise and repetitive actions within
controlled environments. However, this rigidity becomes a limitation when dealing
with unknown external constraints or obstacles, hindering their adaptability to
unstructured surroundings. Traditional industrial robots struggle to modify their
shapes to accommodate such dynamic environments.

As the field of robotics extends its reach from traditional manufacturing
automation to domains like healthcare, field exploration, and collaborative human-
robot manipulation, the significance of soft robots becomes increasingly evident. Soft
robots possess the unique ability to undergo substantial deformations and navigate
through unstructured and constrained environments. Unlike their hard-bodied
counterparts, soft robots are constructed using intrinsically soft and/or extensible
materials, allowing them to deform and absorb energy during collisions. This
unique characteristic results in a continuously deformable structure with muscle-like
actuation, resembling biological systems and providing a greater number of degrees
of freedom. Consequently, soft robots have the potential to exhibit remarkable levels
of adaptation, sensitivity, and agility.

This emergence of soft robots represents a new frontier at the intersection of
multiple disciplines, encompassing engineering, materials science, mechanics, physics,
chemistry, biology, and robotics. The convergence of these fields is driving innovation
and redefining the boundaries of what robots can achieve, opening up new avenues
for exploration and practical applications.

As depicted in Figure 1.1, soft robots possess the potential to showcase
unparalleled levels of adaptation, sensitivity, and agility. These robots are anticipated
to have the capability to flex and contort with remarkable curvatures, rendering
them suitable for operation within constrained spaces [5]. By changing their
structures in a continuous way, soft robots can achieve movements that closely mimic
biological motions [6]. Furthermore, they can dynamically adjust their form to
accommodate various environmental conditions, utilizing compliant locomotion for
object manipulation [7], traverse rugged terrains while maintaining resilience [8], or
execute rapid and agile maneuvers akin to evasive actions observed in fish [9].

In the last decade, the realm of soft robotics has experienced remarkable
expansion, resulting in the creation of a multitude of soft robot variations that employ
a diverse array of actuation technologies and mechanisms [8; 10–12]. The advancement

2



Figure 1.1: Mobile soft-robotic systems inspired by a range of biological systems. [1]

of soft robotics primarily derives its impetus from principles of bioinspiration
and biomimicry, harnessing the intrinsic potential for significant and continuous
deformations, often characterized by an ostensibly infinite spectrum of degrees of
freedom. Segmenting these soft robots based on disparities in their actuation
technologies, they can be effectively categorized into two principal groupings.

The first category centers around tendon-driven actuation, often referred to as
continuum robots, distinguishing them from discrete and serpentine robots that
incorporate rigid links [13]. Depending on the chosen tendon-driven mechanism,
which can involve intrinsic actuators, extrinsic actuators, or a combination of both
(intrinsic-extrinsic hybrid actuators), continuum robots can be designed to exhibit
elasticity along with an extensive array of infinite degrees of freedom (DOFs). These
characteristics have found successful applications within medical and search and
rescue domains. Nevertheless, it is noteworthy that such continuum robots typically
rely on conventional motors and transmission mechanisms (such as gears and ball
screws), which precludes them from embodying true softness in their structures.

The second category is rooted in soft smart materials actuation. In contrast to
tendon-driven actuation reliant on conventional motors and transmission mechanisms,
soft smart materials have the intrinsic capability to directly convert various physical
stimuli—such as force, electrical, thermal, magnetic, light, or chemical signals—into
tangible physical displacements. Within this category, the commonly employed soft
smart materials for the construction of soft robots encompass a range of options,
including shape memory alloys (SMAs), shape memory polymers (SMPs), pneumatic
fiber braids, elastomeric polymers, hydrogels [14], and electroactive polymers (EAPs).
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Among those materials mentioned, Dielectric Elastomers (DEs), which fall under
the category of electronic electroactive polymers (EAPs), hold particular promise
within the burgeoning domain of soft robotics. This promise is rooted in their notable
attributes, including lightweight composition, substantial deformability, elevated
energy density, rapid responsiveness, and inherent softness [4; 15; 16].

1.2 Dielectric Elastomer Actuators (DEAs)

1.2.1 Advancement of Dielectric Elastomer Actuators and
Their Benefits

The repertoire of commonly utilized soft smart materials for the construction of
soft robots encompasses several categories, including shape memory alloys (SMAs),
shape memory polymers (SMPs) [17], pneumatic fiber braids, elastomeric polymers,
hydrogels [14], and electroactive polymers (EAPs). Notably, Dielectric Elastomer
Actuators (DEAs) stand out as a distinctive electrically driven soft smart material
actuator [18]. DEAs operate by responding to an applied external voltage, yielding
substantial deformations. DEAs hold particular promise for applications within the
realm of soft robotics. This promise is rooted in the distinctive amalgamation
of attributes they possess: extensive deformation capabilities (> 100%), elevated
energy density (> 3.4MJm−3), rapid response times (in the millisecond range),
lightweight composition (approximating that of water), and cost-effectiveness (within
the range of hundreds of commercial elastomer products). An especially noteworthy
advantage lies in the fact that dielectric elastomers function as motion-generating
materials, mirroring the characteristics of natural human muscles in terms of force,
strain (displacement per unit length or area), and actuation pressure/density. This
distinctiveness positions them as superior compared to alternative contenders, as
illustrated in Figure 1.2[2]. Table 1.1 gives a comparison among the popular soft
materials for actuators.

1.2.2 Working Principle

The fundamental working principle of dielectric elastomer actuators (DEAs) is
easily comprehensible [3]. In general, Dielectric Elastomer Actuators (DEAs) are
constructed with a thin membrane of dielectric elastomer, wedged between two
compliant electrodes. This structural composition renders DEAs essentially as pliable
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Figure 1.2: Illustration of actuation strain versus actuation pressure/density for
various actuation technologies [2]

variable capacitors. The compliant electrodes, fashioned from an even more yielding
material, exhibit mechanical stiffness lower than that of the dielectric elastomers
[34]. The operational principle of DEAs hinges on what is referred to as electrostatic
deformation. Upon the application of an electric field across the electrodes, charges
traverse an external conducting pathway, moving from one electrode to the other.
The consequent electrostatic force between the opposing charges on the two electrodes
induces compression of the membrane’s thickness. Given that dielectric elastomers
are essentially impervious to compression, this compression results in a simultaneous
expansion of the membrane’s planar area. These alterations in shape seamlessly
convert electrical energy into mechanical energy, thereby furnishing the mechanism
of actuation. The working principle of this actuation is illustrated in Figure 1.3.
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Table 1.1: Comparison between EAP and widely used transducer actuators [4]

Property Electronic EAP SMA EAC
Actuation strain Over 300% < 8% (short fatigue life) Typically 0.1% − 0.3%

Force 0.1–25 MPa 200 MPa 30 − 40MPa
Reaction speed µ sec to min millisecond to minute microsecond to second
Drive voltage 1–2.5 g/cc 5 - 6 g/cc 6 - 8 g/cc

Consumed power 10 - 150 V/µm 5 V 50 - 800 V
Fracture behavior Resilient, elastic Resilient, elastic Fragile

Figure 1.3: Working principle of DEA [3]

1.2.3 Dielectric Elastomer Materials

The significance of the thin membrane composed of dielectric elastomers becomes
evident when examining Figure 1.3. In the realm of dielectric elastomer research,
materials possessing a broad spectrum of elastic moduli are imperative, coupled with
exceedingly low viscosity and electrical conductivity, in addition to high dielectric
constant and breakdown strength[19]. Over the course of the past two decades, a
considerable array of elastomeric materials has undergone rigorous testing. These
commonly utilized elastomers can be broadly categorized into two primary groups:
acrylics and silicones.

As indicated by reports [20; 21], acrylics emerge as a highly promising choice for
accomplishing significant strain in DEAs. The attractiveness of acrylics is further
bolstered by the availability of the cost-effective 3M VHB acrylic elastomer line,
prominently exemplified by widely employed variants such as VHB 4910 and VHB
4905. Recent advancements have spotlighted DEAs employing prestretched 3M VHB
acrylic elastomers, leading to the achievement of substantial voltage-induced linear
strains exceeding 380% and area strains surpassing 1000% [2]. Nonetheless, it is
important to note that acrylics do exhibit robust viscoelastic nonlinearity, a trait
that can potentially impact DEA performance, particularly if adequate measures are
not taken to accurately account for this viscoelastic behavior.
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DEAs employing silicone elastomers exhibit reduced actuation strains compared to
DEAs utilizing acrylics. Nevertheless, silicone elastomers hold the distinct advantage
of displaying lower viscoelastic tendencies when contrasted with acrylics. They are
known for their capability to operate at higher frequencies while incurring fewer
losses, as reported in [2]. However, akin to acrylics, silicones also exhibit a relatively
low dielectric constant. Consequently, achieving substantial strains mandates the
application of elevated electric fields. Table 1.2 compares two typical materials for
DEAs.

Table 1.2: Typical materials for DEAs

Polyacrylate Polydimethylsiloxane
VHB PDMS

Strong viscosity Relatively low viscosity
Very large deformation > 380% Relatively small deformation
Dielectric constant around 4.8 Dielectric constant around 2.8
Relative high actuating voltage Very high actuating voltage

1.3 Input-Output Responses of DEAs

The input and output responses in DEAs serve as a critical benchmark for evaluating
actuator performance. In the existing literature, the scrutiny of actuator input-output
responses remains an area that lacks comprehensive exploration. To the best of
our knowledge, a thorough investigation encompassing a diverse spectrum of input
frequencies, amplitudes, and mechanical loads has not yet been conducted. This
knowledge gap prompts our initiative to undertake experimental tests on the input-
output responses ourselves. Accordingly, we have developed a dedicated DEA testbed.
Subsequently, a series of experimental tests have been executed on this platform.
The acquired experimental data constitute valuable resources for our subsequent
endeavors in comprehending, modeling, and controlling the input-output responses
of the actuator within the context of this dissertation.

1.3.1 Description of the Experimental Platform

The test of input and output responses is conducted within the framework of
the designed DEA experimental system. As shown in Figure 1.4, this platform
encompasses the following components:
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Computer: Serving as the central control unit, a desktop computer orchestrates the
system’s operations.

I/O module: A data interface (Model number: PCIe-6361; Manufacturer: National
Instruments, USA). facilitates the transmission of voltage signals to the
amplifier and the retrieval of displacement signals from the laser sensor.

High voltage amplifier: A TREK high voltage amplifier (Model number: 10/40A-
HS-H-CE; Manufacturer: TREK, USA), characterized by a gain of 1000V/V ,
is employed to generate the necessary driving voltage to power the DEAs.

Laser distance sensor: Utilizing a KEYENCE laser sensor (Model number: LK-
H152; Manufacturer: Keyence, Japan) endowed with a resolution of 1µm, the
platform accurately measures the displacement exhibited by the DEA.

DE actuator: One conical and one planar DEAs are fabricated. They are
mainly assembled by five components: (1) DE membrane (Material: PDMS;
Manufacturer: Wacker Chemie AG, Germany; Undeformed thickness: d0 =
200µm). (2) Frame (Material: Polymethyl methacrylate (PMMA). (3) Load-
bearing plate (Material: PMMA). (4) Electrode (Material number: DD-10;
Manufacturer: Saidi Technology, China). (5) Adjustable external weight.

Figure 1.4: The experimental platform

1.3.2 The Input and Output Responses of DEAs

Utilizing the devised experimental platform, a series of investigations have been
conducted to scrutinize the operational characteristics of Dielectric Elastomer
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Actuators (DEAs), as visually depicted in Fig. 1.5. The adopted DEA consists
primarily of five distinct constituent elements:

1. Dielectric Elastomer (DE) membrane crafted from Polydimethylsiloxane
(PDMS), sourced from Wacker Chemie AG, Germany. The undeformed
thickness of the DE membrane is denoted as d0 = 200µm.

2. Structural frame constructed from Polymethyl methacrylate (PMMA),
featuring an inner circular geometry with a radius of R = 6cm.

3. Load-bearing plate, also fabricated from PMMA, possessing a circular geometry
with a radius of R0 = 3cm.

4. Electrode material identified as MG Chemicals-846-Carbon Conductive Grease,
sourced from MG Chemicals.

5. Weight element with a mass of m = 200g.

These components collectively constitute the conical DEA platform employed in
the study of DEAs’ behavior.

Figure 1.5: The conical shape DE actuator

The resulting input-output relationships of DEAs are depicted in Figures 1.6
to 1.11. These figures illustrate the outcomes obtained from the experimental trials.
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It can be observed that the input ouptut responses of DEAs are highly nonlinear.
Like the other smart materials, it shows the hysteresis nonlinearity behaviors.

In Figure 1.6, a range of input signals with distinct frequencies have been
applied to the system, revealing an evident frequency-dependent behavior in the
system’s responses. The validity of this dependency is confirmed through Figure
1.7, showcasing the response to varying frequency input signals.

Furthermore, Figures 1.8 and 1.9 underscore that the responses of DEAs are
intrinsically tied to the amplitudes of the input signals.

In the context of Figures 1.10 and 1.11, the exhibited responses demonstrate that
external loads exert a discernible influence on the input-output behaviors of DEAs.

Figure 1.6: Input-output relation of DEA with different frequencies

1.3.3 Experimental Results Summary

Based on the results derived from the aforementioned experimental tests, it can be
inferred that DEAs exhibit highly nonlinear behaviors, characterized by:

Memory effect The actuator’s output is not solely contingent on the current input,
but also on the input’s historical progression.

Multiple dependency As evidenced in Figs. 1.6 to 1.11, the configurations of
input-output relationships are influenced by signal frequency, signal magnitude,
and external loads.

Asymmetry The input-output relationships do not demonstrate symmetry; their
patterns are distinct in both input and output directions.
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Figure 1.7: Input-output relation of DEA with different frequencies

Dynamic diversity In practical applications, actuators are often interconnected
with the dynamics of the underlying system, adding an additional layer of
complexity to the problem.

These findings collectively emphasize the intricate and multifaceted nature of DEA
behaviors, underscoring the need for comprehensive modeling and control strategies.
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Figure 1.8: Input-output relation of DEA with different amplitudes

Figure 1.9: Input-output relation of DEA with different amplitudes
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Figure 1.10: Input-output relation of DEA with different external loads

Figure 1.11: Input-output relation of DEA with different external loads
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1.4 Objectives and Contributions

1.4.1 Objectives of the Dissertation Research

The experimental outcomes presented in Section 1.3 clearly demonstrate the intricate
and dynamic nonlinear behaviors observed in the input and output responses of
DEAs. This type of nonlinearity in actuator systems is widely recognized to lead
to inaccuracies, oscillations, and other unexpected behaviors within control systems.
Such effects present considerable challenges in applying these actuators effectively.
Consequently, the primary objective of this dissertation research is to devise a robust
modeling and control framework capable of mitigating the complexities arising from
these nonlinear effects. The ultimate goal is to enhance the tracking performance of
DEAs, enabling their more reliable and precise application.

In order to comprehensively comprehend and elucidate the intricate nonlinear
phenomenon evident in the input and output responses of DEAs, it is paramount
to formulate an encompassing model that aptly characterizes these behaviors. As
discussed earlier, the input-output characteristics of DEAs exhibit multifaceted
nonlinear attributes resulting from the interplay of diverse input frequencies and
mechanical loads. Notably, the existing literature does not offer models tailored to
these novel actuators that take into account these specific properties. Consequently,
the need arises to pioneer the development of new models capable of accurately
encapsulating these intricate behaviors. The forthcoming research endeavors will
be dedicated to crafting these innovative models that align with the distinctive
characteristics of DEAs.

Enhancing the positioning and tracking performance of DEAs necessitates the
development of a tailored control scheme grounded in the newly devised dynamic
model. The intricacy inherent in this endeavor lies in the integration of established
control methodologies with the bespoke dynamic model. The challenge pertains to
effectively amalgamating these existing control strategies with the unique attributes
of the developed dynamic model. To concur this challenge, a feedforward inverse
compensation approach rooted in the dynamic model will be formulated. This
approach will serve as a vital conduit, effectively linking the developed model with the
existing control methodologies. By leveraging feedforward inverse compensation, the
distinctiveness of the dynamic model can be incorporated into the control strategies,
enabling enhanced positioning and tracking capabilities for DEAs.
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1.4.2 Contributions of the Dissertation Research

Following the aforementioned objectives, the primary contributions of this dissertation
can be emphasized as follows:

1. A comprehensive set of experimental tests has been carried out to analyze
the input-output characteristics of DEAs across varying input amplitudes
(6.0kV −8.0kV ), frequencies (0.2Hz−1Hz), and mechanical loads (m = 100g−
500g). The experimental results have undergone meticulous scrutiny, yielding
significant insights. The experimentation reveals the following observations: (1)
The input-output responses of DEAs are marked by their intricate and complex
nature; (2) The observed responses exhibit notable dependency on factors such
as input frequencies, input amplitudes, and external mechanical loads. These
findings underscore the multifaceted behaviors exhibited by DEAs in response
to various input conditions and provide crucial groundwork for the subsequent
modeling and control strategies.

2. Focusing on conical DEAs and planar DEAs, this dissertation introduces two
distinct models derived from the fundamental principles of physics. Drawing
inspiration from the concept of free energy within viscoelastic materials, these
proposed models are designed to encapsulate the intricate behaviors exhibited
by DEAs, encompassing their complex dependencies. Notably, these models are
adept at capturing the interplay of multiple factors influencing DEA behaviors.
The accuracy and efficacy of the proposed models are substantiated through the
scrutiny of experimental results. These empirical validations serve to underscore
the models’ aptitude in accurately representing the nuanced behaviors of DEAs,
enhancing our understanding and control of these dynamic systems.

3. The models outlined above demand an extensive array of actuator-specific
details, necessitating the development of separate models for distinct actuators,
including detailed geometry specifications. To circumvent this limitation, a
more versatile approach is presented: a data-in-loop model. This innovative
model employs an array of nonlinear blocks, encompassing features such as
creep and hysteresis, thereby enabling the representation of intricate DEA
behaviors without relying on geometry-specific information. By employing this
approach, the model sidesteps the requirement for actuator-specific details and
can effectively capture the multifaceted behaviors of DEAs. Furthermore, this
data-in-loop model has the capacity to accommodate and represent the complex
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dependencies inherent in DEA systems.

4. The nonlinear effects exhibited in DEAs can lead to adverse consequences that
undermine their performance, resulting in inaccuracies and oscillations. To
counteract these detrimental effects, a strategic approach is employed: the
application of feedforward inverse compensation methods for controller design.
Anchored in this approach, a model founded on PI (Proportional-Integral)
hysteresis blocks is deployed to effectively characterize the nonlinear impact
within DEAs. The direct inverse compensation technique is then harnessed
to deduce the inverse of the PI model. Building upon this foundation, a
robust adaptive controller is meticulously formulated. By leveraging this
comprehensive methodology, the aim is to mitigate the adverse impacts
stemming from nonlinearities in DEAs, ultimately enhancing their control
performance and ameliorating the challenges posed by dynamic behaviors.

1.5 Organization of the Thesis

The structure of the dissertation is organized as follows:
In Chapter 2, an overview of modeling and control methodologies, along with

an in-depth exploration of the current state-of-the-art in the realm of Dielectric
Elastomer Actuators (DEAs) are provided.

In Chapter 3, the attention will be directed towards conical and planar DEAs.
Within this context, two physics-based models will be meticulously developed, each
tailored to the respective geometry. The chapter will also delve into methods
for identifying relevant parameters and will present experimental validations to
substantiate the efficacy of the models.

In Chapter 4, the development of a data-in-loop model tailored for DEAs is
investigated. It is designed to overcome the need for geometry-specific information.
This model comprises an array of selectable nonlinear blocks, including elements like
creep blocks, hysteresis blocks, and mechanical components. In practice, a model
featuring a first-order creep structure, a PI hysteresis structure, and a simplified
Kelvin model is employed as an implementation example, effectively showcasing
the validation of the proposed methodologies. This chapter elucidates the practical
application of the data-in-loop approach and its ability to encapsulate the intricate
behaviors of DEAs.

In Chapter 5, the nonlinear effects present in DEAs through compensation
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techniques are addressed. Specifically, feedforward inverse compensators are
constructed to counteract the nonlinear impact within the context of PI hysteresis.
Building upon this foundation, the chapter proceeds to develop an inverse-based
robust adaptive controller designed to effectively manage the complex behaviors of
DEAs. This chapter outlines the strategic approach taken to enhance the control
performance and stability of DEAs in the presence of nonlinearities.

In the concluding Chapter 6, the dissertation wraps up by providing a
comprehensive summary of the findings and outcomes. Furthermore, this chapter
offers recommendations for potential avenues of further research, highlighting areas
that can contribute to the ongoing advancement of the field.
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Chapter 2

Literature Review

DE-actuated soft robots encompass various research phases, including design and
fabrication, modeling, analysis of system behaviors, controller design, and closed-loop
system performance testing. This dissertation’s research will specifically concentrate
on the aspects of modeling and control.

2.1 Modeling of DEAs

The dynamics exhibited by soft robotic systems diverge from those observed in
traditional rigid-bodied robots. When comprised of a series of dielectric elastomer
(DE) actuation elements, these robots manifest behavior resembling a continuous
continuum. In theoretical terms, the ultimate configuration of the robot can be
elucidated through a continuous function, demanding the application of continuous
mathematical principles for its modeling. Given that the attributes of soft robots
deviate from those of conventional rigid linkage-based systems, researchers have
devised novel static, dynamic, and kinematic models to encapsulate their capacity
for bending and flexing [22].

Robots entirely fashioned from DEs currently lack well-established models or
planning and control algorithms. This predicament chiefly stems from their inherent
deformations, which are characterized by continuity, intricacy, and pronounced
compliance. Consequently, a pivotal stride in advancing the field pertains to the
formulation of control-centric models and analyses concerning DE actuators [23–25].

Early approaches to dynamic modeling of Dielectric Elastomer Actuators (DEAs)
utilized linear-elasticity and free boundary approximations to yield reasonable
predictions of DEA behavior within the regime of small strains (less than 10%)
[20; 26]. However, in response to the limitations imposed by small strains

18



and linear elasticity, nonlinear models emerged, grounded in hyper-elasticity
frameworks [27–29], and tailored to encapsulate DEA behavior [30; 31]. A more
sophisticated characterization of DEA responses was derived from the perspective
of thermodynamics in the work of Suo et al. [32]. This contribution furnished a
model proficient in accurately predicting substantial deformations. Consequently,
a repertoire of foundational models was developed to facilitate both linear and
nonlinear dynamic analysis of DEAs. While these first-principle models significantly
propelled DEA advancement, they frequently lack suitability for control-focused
analysis and design due to their inherent complexity, encompassing numerous terms
and parameters.

Moreover, DEAs frequently manifest time-varying traits, a facet inadequately
addressed by many current models or restricted to simplified assumptions regarding
time-dependent phenomena [31]. A noteworthy gap exists in the present methodology
concerning DEA modeling within the context of control-oriented tasks. Hence,
the development of modeling approaches meticulously tailored to control-focused
objectives is imperative.

So far, the main approaches in models for Dielectric Elastomer Actuators (DEAs)
has been developed by material scientists, who have primarily employed mechanistic
principles as the foundational basis for their modeling. The mechanism modeling
method undertakes a comprehensive analysis of the deformation mechanisms inherent
in Dielectric Elastomer Actuators (DEAs) by leveraging fundamental principles
and the laws of physics. Through rigorous mathematical derivation, a dynamic
model, which encapsulates their motion characteristics, is formulated. Currently,
two primary methodologies stand at the forefront of DEA dynamics modeling: the
modeling approach grounded in the principles of virtual work and the modeling
technique rooted in the Euler-Lagrange equation.

Employing the modeling methodology predicated on the virtual work principle,
Suo [32] meticulously formulated a comprehensive dynamics model framework
for Dielectric Elastomer Actuators (DEAs), firmly grounded in the principles of
continuum mechanics and thermodynamics. Central to this framework is the
articulation of the free energy density inherent in DE materials, for which a spectrum
of hyperelastic material models, including but not limited to the Neo-Hookean model
[33], the Gent model [34], and the Ogden model [28], has been aptly employed.
Expanding on this foundational work, Zhu et al. [35] advanced the field by crafting a
kinetic model tailored to spherical DEAs, leveraging the virtual work principle as their
analytical cornerstone, while simultaneously conducting a comprehensive analysis of
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their dynamic performance. In a parallel endeavor, Xiao et al. [36] extended this
modeling paradigm to encompass planar DEAs, once again rooted in the virtual work
principle. Furthermore, Gupta et al. [37] undertook an exhaustive examination of the
stresses inherent in planar antagonistic DEAs and proceeded to establish a dynamic
model firmly anchored in the virtual work principle. Concurrently, Gu et al. [38]
introduced a generalized Maxwell model to capture the intricate viscoelastic behavior
exhibited by DE materials. This pioneering approach underpinned the development
of a dynamic DEA model, aligning with the virtual work principle. Notably, Gu et
al. [38] extended their efforts by employing the generalized Maxwell model to forge
a kinetic model for DEAs. This kinetic model was specifically designed to provide
a quantitative elucidation of the motion characteristics exhibited by DEAs when
subjected to cyclic driving voltage.

In the modeling approach for Dielectric Elastomer Actuator (DEA) dynamics
founded upon the Euler-Lagrange equation, it is essential to note that the
potential energy incorporated into the Lagrange equation deviates from conventional
interpretations. Instead, it encompasses the integral of the system’s free energy
density function over its volumetric domain, encompassing elements such as
Helmholtz’s free energy and potential energy. Xu et al. [39] notably advanced
this modeling paradigm by formulating a dynamic model for planar DEAs grounded
in the Euler-Lagrange equation. Their diligent work encompassed a thorough
investigation into the dynamic response exhibited by DEAs under varying loads
through computational simulations. Simultaneously, Sheng et al. [40] contributed
significantly by developing a kinetic model specific to planar DEAs, also hinging
on the Euler-Lagrange equation. Through meticulous simulations, they provided
valuable insights into the pronounced temperature and frequency dependencies
characterizing the dynamic response of DEAs. Further enriching the field, Joglekar
[41] leveraged a diverse set of material models, including the Neo-Hookean, Mooney-
Rivlin, and Ogden models, to effectively describe the free energy density inherent
in DE materials. Subsequently, Joglekar established a dynamic model for planar
DEAs, rooted in the Euler-Lagrange equations. This endeavor was complemented by
a comprehensive investigation into the dynamic performance of DEAs, facilitated by
numerical simulations.

Upon scrutinizing the dynamics of the Dielectric Elastomer Actuator (DEA)
mechanisms as modeled in the aforementioned studies, a noteworthy commonality
emerges—they uniformly exhibit quadratic input characteristics. This shared trait
can be attributed to the conceptualization of the DEA as a variable capacitor denoted
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as C, where the voltage VC across this capacitor equates to the driving voltage V , i.e.,
VC = V . Furthermore, considering that the principal factor driving DEA deformation
is the Maxwell stress denoted as σ which is computed as explicated in Eq. (2.1) in
[21], it becomes apparent that the dynamical models developed in the cited literature
inherently entail a quadratic input term in the form of V 2. It is worth highlighting that
systems characterized by quadratic inputs present theoretical challenges with regard
to control. This inherent characteristic introduces a novel dimension of complexity
when it comes to both modeling and controlling DEAs. Consequently, it underscores
the necessity for innovative control strategies and modeling paradigms to effectively
grapple with these intricacies.

σ = εε0E
2 = εε0(

VC

d
)2 (2.1)

where ε0, ε, E and d are vacuum dielectric constant, the dielectric constant of the DE
material, the electric field strength and the thickness of the DE film, respectively.

Figure 2.1: Structure of mechanics based models

In Fig. 2.1, the electrical model is a kinetic equation that describes the response of
the capacitor voltage VC to the driving voltage V in a circuit consisting of RS, RL and
C. Its input V is the input of the DEA kinetic model, while the mechanical model
describes the stress-strain relationship of the DEA with the help of a hyperelastic
material model. The mechanical model describes the stress-strain relationship of
the DEA with the help of a hyperelastic material model. The two are coupled to
each other by means of the Maxwell stress σ, so that the input of the mechanical
model has the quadratic term variable V 2

C . Therefore, DEA is a class of coupled
electromechanical nonlinear systems where mechanical model has quadratic inputs.
Based on this modeling framework, [3] established the electrical model of DEA using
RS, RL and C, used the generalized Kelvin-Voigt model as the mechanical model, and
coupled the electrical model and mechanical model with each other using Maxwell
stress σ to establish the dynamics model of DEA.
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In light of the ongoing exploratory nature of research pertaining to the physical
mechanism underlying Dielectric Elastomer Actuator (DEA) electrodeformation, it
is evident that the current theoretical analyses remain insufficient in providing
a comprehensive elucidation of its intricate kinematic properties. This inherent
complexity presents formidable challenges when attempting to formulate dynamic
models for DEA systems. Furthermore, addressing the control aspects of a specific
subset of electromechanically coupled nonlinear systems, characterized by the absence
of quadratic inputs in the electrical model and quadratic inputs in the mechanical
model, presents an enduring and intricate challenge, as highlighted in prior research
[42]. This represents a significant theoretical impediment in the pursuit of achieving
precise motion control objectives within the realm of DEA technology.

2.2 Control of DEAs

In contrast to the control of rigid bodies, characterized by their movements describable
by a finite number of degrees of freedom, the motions of soft bodies evade confinement
to mere planar trajectories. Elastic soft materials are endowed with a spectrum
of deformations encompassing bending, twisting, stretching, compressing, buckling,
wrinkling, and more. This array of motion can be conceptualized as presenting
an unbounded multitude of degrees of freedom, which considerably amplifies the
intricacies associated with controlling soft robots. Effective control of soft robots
necessitates novel paradigms in modeling, control strategies, dynamic analysis,
and high-level planning. While considerable progress has been made in design
and modeling endeavors, the realm of control for Dielectric Elastomer Actuators
(DEAs) and DEA-driven robots remains relatively unexplored. Despite certain
attempts to control DEAs through adaptive [3; 23; 25] or feedback [43] techniques,
these approaches generally disregard nonlinear material behavior, viscoelasticity, and
hysteretic effects during their formulation. Consequently, their efficacy is often
confined to situations involving modest displacements or limited control durations.

The formidable control challenge intrinsic to soft robots employing DEAs can
largely be attributed to the profound nonlinearities stemming from substantial
deformations within the system, notably hysteresis and viscoelasticity.

Hysteresis nonlinearity holds a pervasive presence in oscillatory phenomena
observed in experimental tests of DEAs. For decades, hysteresis nonlinearity has
posed a formidable quandary for control design engineers. Traditional control
techniques, founded upon Laplace domain and state space control methodologies, were
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originally devised for differentiable linear or nonlinear systems. A common approach
involves formulating an inverse representation to counteract the effects of hysteresis,
a pioneering notion attributed to Tao and Kokotovic [44]. Recent advancements in
this approach are discussed in references such as [45]. However, due to the intricate
and uncertain nature of hysteresis, constructing its inverse description remains a
challenging endeavor. Additionally, this cancellation process introduces compensation
errors, potentially jeopardizing stability analysis for closed-loop systems, except for
specific scenarios [44].

The dynamics modeling of Dielectric Elastomer Actuators (DEA) remains a
nascent field, and achieving precise motion control objectives within this context
remains a vexing challenge. Notably, DEA constitutes an electromechanical coupled
nonlinear system that lacks quadratic inputs within its electrical model but possesses
quadratic inputs within its mechanical model. This unique attribute renders
the control problem exceptionally intricate and unresolved. Many extant control
strategies are formulated without dedicated attention to the quadratic term variables
within the DEA mechanical model, classifiable into two overarching categories: model
free control strategies, model-based control strategies.

2.2.1 Model Free Control Strategy

Instead of modeling the dynamics of DEA, the model-independent control strategy
designs a model-independent feedback controller and adjusts the parameters of the
controller through experiments to directly eliminate the deviation between the output
signal and the given signal of the system. Therefore, the model-independent feedback
control strategy has certain advantages in the practical application of DEA.

The traditional PID feedback control strategy is a typical model-independent
feedback control strategy, which has the advantages of simple structure and easy
realization, and has been widely used in engineering practice. Although the
traditional PID feedback control strategy can be used to realize the motion control
objective of DEA, the complex motion characteristics (especially the hysteresis
nonlinear characteristics) of DEA cannot be effectively dealt with by using only the
PID control strategy, which leads to poor control effect[46; 47]. Researchers have also
explored the application of other model-free control strategies in the motion control
of DEA. Druitt et al. [48]used a model-independent neural network-fuzzy controller
to realize the motion control of DEA. Li et al. [49] proposed a model-free control
strategy based on a deep reinforcement learning framework for the motion control of
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DEA, and realized its motion control objectives. agent-based sliding mode control
strategy to achieve the motion control objective of DEA.

In the model-independent feedback control strategy, the controller parameters
often need to be calibrated in real experiments. In order to solve the problem
of difficult parameter adjustment in practical applications, Huang et al. [47]
designed a model-independent nonlinear PID controller; then, the dynamics model
of DEA was used as the control object, and the controller parameters were coarsely
adjusted through simulation; finally, the controller parameters were finely adjusted
in experiments. Then, using the dynamics model of DEA as the control object, the
controller parameters are coarsely adjusted through simulation; finally, the controller
parameters are finely adjusted in the experiment to realize the tracking control
objective of DEA. In this study, the design of the controller is model-independent and
the model is only used for initial tuning of the controller parameters in the simulation.
Therefore, the above control strategy is favorable for rapid engineering applications.
However, due to the small number of model-independent control frameworks currently
available, the control strategy has significant limitations in terms of controller design.

2.2.2 Model Based Control Strategy

In Fig. 2.1, the mechanistic model of a Dielectric Elastomer Actuator (DEA) is
delineated into two interrelated components: an electrical model characterized by
the absence of quadratic inputs and a mechanical model that incorporates quadratic
term variables. This particular modeling structure poses a significant challenge when
addressing control problems associated with DEAs. Notably, the existing body of
research in this domain is rather limited, with only a scarcity of studies delving into
control strategies grounded in mechanistic models.

The prevailing mechanism-based control strategies within the realm of Dielectric
Elastomer Actuators (DEAs) have primarily been tailored to the dynamics model
characterized by quadratic inputs, with a notable omission of consideration for
the electrical model as depicted in the framework illustrated in Fig. 6. In such
approaches, the DEA is often simplistically treated as a variable capacitor. Notably,
Gupta et al. [37] and Gu et al. [50] have advanced mechanism-based dynamics
models specifically designed for planar antagonistic DEAs. In these works, an
analytical inverse of the comprehensive dynamics model is formulated by removing
the square root term, effectively rendering it a feed-forward inverse compensation
controller. This analytical inverse expression is subsequently employed to facilitate
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the attainment of tracking control objectives for the DEA. Similarly, Rizzello et al.
[51] have established a mechanical dynamics model for conical DEAs grounded in
mechanical dynamics principles. To address the quadratic inputs inherent in the
model, a square root module is introduced for compensation. Furthermore, a series
of robust Proportional-Integral-Derivative (PID) feedback controllers are designed,
each corresponding to an equilibrium point in the approximate linear model of the
DEA dynamics. These controllers are then cascaded with the square root module to
realize precise position control targets for the DEA. It is noteworthy that, within the
context of the electrical model encompassed by the modeling framework presented
in Fig. 2.1, research pertaining to control strategies grounded in mechanistic models
remains comparatively limited.

The aforementioned studies have indeed embarked upon an initial exploration
of mechanistic model-based control strategies for Dielectric Elastomer Actuators
(DEAs). Nevertheless, it is essential to acknowledge that the intrinsic complexity
of the mechanistic dynamics model governing DEAs has led these investigations to
adopt a relatively simplistic approach, namely, the utilization of a square-root module
for the purpose of mitigating the quadratic term variables. A notable gap in these
studies pertains to the limited attention paid to stability analysis within the context
of the control system. Consequently, a comprehensive investigation into the stability
aspects of these mechanistic model-based control strategies remains a crucial avenue
for future research and development in the field of DEA control methodologies.
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Chapter 3

Physics Based Modeling for
Dielectric Elastomer Actuators

3.1 Introduction

In this chapter, guided by fundamental principles of physics, two distinct dynamic
models will be formulated—one tailored to conical Dielectric Elastomer Actuators
(DEAs) and the other specifically designed for planar DEAs. In tandem, methods
pertinent to the identification of relevant parameters will be expounded. The efficacy
of these models will be substantiated through empirical validation using experimental
findings.

3.2 Physics Based modeling for Dielectric Elas-
tomer Actuators with Conical Shape

3.2.1 Model Development

In this section, we outline the formulation of a dynamic model tailored for a conically
shaped Dielectric Elastomer Actuator (DEA). To enhance clarity, we define three
distinct states of the DEA a priori, namely the "undeformed state," the "pre-stretched
state," and the "electro-deformed state." Visual depictions of these states are provided
in Figure 3.1. The detailed characteristics of each state are expounded upon in the
following subsections:

(A) Undeformed State:
In the initial undeformed state, a Dielectric Elastomer (DE) membrane possessing
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Figure 3.1: States of the DEA. (a) Undeformed state, (b) Pre-stretched state, and
(c) Electro-deformed state.

a thickness denoted as d0 is securely clamped within a frame featuring an inner
circular radius of R. Positioned at the geometric center of the DE membrane is a
load-bearing plate with a distinct radius of R0. The two annular regions flanking the
DE membrane are coated with compliant electrodes, yielding a radial extent for the
Dielectric Elastomer Actuator (DEA) denoted as L0 = R − R0.

(B) Pre-stretched State:
Transitioning to the pre-stretched state, a mass m is centrally placed upon the

load-bearing plate. Under the influence of gravitational force P , this mass descends
by a displacement of z1 to achieve equilibrium. Consequently, the DE membrane
undergoes a pre-stretching process, adopting a conical configuration. As depicted in
Figure 3.1(b), the dimensional attributes of the DEA in the pre-stretched state are
designated by L1, d1, and h1. Here, L1 signifies the generatrix length, d1 signifies the
thickness, and h1 quantifies the disparity in elevation between the upper and lower
surfaces.

(C) Electro-deformed State:
Upon the application of a driving voltage F to the electrodes, the DE membrane

undergoes a reduction in thickness accompanied by an expansion in surface area.
This phenomenon induces the mass to undergo a downward displacement of z2. The
dimensional parameters characterizing the electro-deformed state are portrayed in
Figure 3.1(c) and are denoted by L2, d2, and h2. Here, L2 represents the generatrix
length, d2 embodies the thickness, and h2 signifies the difference in height.
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The volumes associated with the Dielectric Elastomer Actuator (DEA) in its three
distinct states – undeformed, pre-stretched, and electro-deformed – are expressed as
follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V0 = πd0(R2 − R2

0)

V1 = πh1(R2 − R2
0)

V2 = πh2(R2 − R2
0)

(3.1)

To be precise, it is important to acknowledge that the deformation of the
conically shaped Dielectric Elastomer Actuator (DEA) is inherently characterized
by inhomogeneity, a point underscored by Zhang et al. [52]. However, for the
sake of streamlining the dynamic modeling process, the incorporation of deformation
inhomogeneity is intentionally excluded in the subsequent phases of development.
This approach aligns with the methodology proposed by Rizzello et al. [51].

Given the DEA’s inherent incompressibility, as expounded in the study by Suo et
al. [32], the volume of the DEA remains invariant throughout its various states. This
leads to the relationship V0 = V1 = V2. By referencing Eq. (3.1), we can derive:

d0 = h1 = h2 (3.2)

In accordance with Eq. (3.2), the interrelations among z1, z2, d1, and d2 are
described as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d1 = h1

L0

L1
= d0

L0√︂
z2

1 + L2
0

d2 = h2
L0

L2
= d0

L0√︂
(z1 + z2)2 + L2

0

(3.3)

The conical-shaped DEA under investigation in this paper is characterized by
its generatrix, thickness, and circumferential stretches, which are utilized for concise
representation of the DEA’s states. In the pre-stretched state, the DEA’s pre-stretches
are denoted as λpre,L, λpre,d, and λpre,C , respectively. In the electro-deformed state,
the stretches of the DEA are represented as λ1, λ2, and λ3, respectively. As illustrated
in Figure 3.1, the ensuing equations are upheld:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λpre,L = L1

L0

λpre,d = d1

d0

λpre,C = 2π

2π
= 1

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = L2

L0

λ2 = d2

d0

λ3 = 2π

2π
= 1

(3.5)

By referencing Equations (3.2) through (3.5), the subsequent equation is
established:

λ1λ2λ3 = λpre,Lλpre,dλpre,C = 1 (3.6)

The correlation between the charge Q and the voltage ϕ is given by:

Q = ϕC = ϕ
επL2(R + R0)

d2
= εϕπ(R2 − R2

0)λ2
1

d0
(3.7)

where ε represents the permittivity and C signifies the capacitance of the DE material.
Utilizing Equations (3.3) to (3.6), the correlation between δλ1 and δz2 can be

expressed as:

δz2

δλ1
= L2L0√︂

L2
2 − L2

0

(3.8)

By combining Equations (3.6) and (3.7), the alteration in charge on the electrode
can be described as follows:

δQ = επ(R2 − R2
0)

d0
(λ2

1δϕ + 2ϕδλ1) (3.9)

To compute the work associated with the inertial forces during the electromechani-
cal deformation, our analysis revolves around the utilization of cylindrical coordinates
as illustrated in Figure 3.2. Within this context, O, r, φ, and z respectively denote
the coordinate origin, the radial distance, the azimuth angle, and the height in the
cylindrical coordinate system.

As depicted in Figure 3.2(b), our focus shifts to an infinitesimal element

29



Figure 3.2: Displacement of element in cylindrical coordinates: (a) Cylindrical
coordinates, and (b) Displacement of element in each state.

characterized by an inner radius of r1 and an outer radius of r1 + dr1. In the electro-
deformed state, the element’s displacements along the r-direction, φ-direction, and
z-direction are 0, 0, and zr1, respectively. Consequently, the interrelation between zr1

and z2 is expressed as:

zr1 = (z1 + z2)
R − r1

R − R0
(3.10)

In each material element, the inertial forces are null along the r-direction and
φ-direction, while along the z-direction, it is represented as dFr1. By invoking
D’Alembert’s principle, the ensuing expression can be deduced:

dFr1 = −ρ · 2πd0r1dr1 · d2zr1

dt2 (3.11)

where ρ signifies the density of the DE material.
Consequently, the variations in the work accomplished by the inertial forces

amount to 0, 0, and δHI,z for the r-direction, φ-direction, and z-direction,
respectively. By making reference to Equations (3.10) and (3.11), the work executed
by the inertial force dFr1 can be defined as:

δHI,z =
∫︂ R

R0
δzr1dFr1 = −ρπd0L0(R + 3R0)

6
d2z2

dt2 δz2 (3.12)

The alteration in the free energy of the DEA corresponds to the aggregate of the
work accomplished by the driving voltage, the gravitational force, and the inertial
forces. This relationship can be expressed as follows:
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πd0(R2 − R2
0)δW = ϕδQ + Pδz2 + (0 + 0 + δHI,z) (3.13)

where W denotes the free energy density of the DEA, and δW signifies the alteration
in W .

By substituting Equations (3.9) and (3.12) into Equation (3.13), the variation in
the free energy density W is given by:

δW = εϕ(λ2
1δϕ + 2ϕλ1dλ1)

d2
0

+ Pδz2

πd0(R2 − R2
0) − ρ(R + 3R0)

6R + R0

d2z2

dt2 δz2 (3.14)

Upon inserting Equation (3.8) into Equation (3.14), we arrive at:

∂W

∂λ1
= 2εϕ2λ1

d2
0

+ PL2

πd0(R + R0)
√︂

L2
2 − L2

0

− ρL2L0(R3R0)
6(R + R0)

√︂
L2

2 − L2
0

d2z2

dt2 (3.15)

where

d2z2

dt2 = −L4
0

(L2
2 − L2

0)3/2 (dλ1

dt
)2 + L2L0√︂

L2
2 − L2

0

d2λ1

dt2 (3.16)

To encapsulate the viscoelastic nature of the DE material, we embrace the
rheological model featuring two parallel units, depicted in Figure 3.3 [53]. In this
configuration, section A comprises solely a spring α0, while section B incorporates four
parallel units. Each unit within section B is comprised of a spring αi in conjunction
with a dashpot connected in series. Within this modeling framework, we presume
each dashpot to behave as a Newtonian fluid possessing a viscosity ηi. Denoting ξi,j

(where j = 1, 2) as the stretches induced by the dashpots, the stretches of the spring
αi are determined through the multiplication rules λe

i1 = λ1/ξi1 and λe
i2 = λ2/ξi2.

The free energy density W of the DEA, as described in Suo et al.’s work [32], is
formulated as follows:

W = Ws + D2

2ε
(3.17)

where Ws signifies the Helmholtz free energy attributed to the elastomer’s stretching,
while D represents the electric displacement. The electric displacement D can be
defined as:

D = Q

πL2(R + R0)
(3.18)
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Figure 3.3: Rheological Model: Part A exclusively comprises a spring, whereas each
unit in Part B is composed of a spring in conjunction with a series-wound dashpot.

In this section, we opt to employ the Gent model [53] to characterize the elastic
energy density of the DEA. As such, the elastic energy density of the DEA is expressed
as follows:

Ws =
n∑︂

i=0
W αi

ela = −µ0J0

2 ln(1 − λ2
1 + λ2

2 + λ−2
1 λ−2

2 − 3
J0

)

−
n∑︂

i=1

µiJi

2 ln(1 − λ2
1ξ

−
i12 + λ2

2ξ
−
i22 + λ−2

1 λ−2
2 ξi12ξi22 − 3

Ji

)
(3.19)

where W αi
ela represents the elastic energy densities associated with the spring αi. The

parameters µi correspond to the shear moduli of the spring αi, while Ji denote the
deformation limits of the same spring αi.

By utilizing Equations (3.5) through (3.7), as well as Equations (3.17) to (3.19),
the free energy density of the DEA can be expressed as:

W =εϕ2λ2
1

2d2
0

+ µ0J0

2 ln(1 − λ2
1 + λ−2

1 − 2
J0

)

−
n∑︂

i=1

µiJi

2 ln(1 − λ2
1ξ

−2
i1 λ−2

1 ξ2
i2 + ξ2

i1ξ
2
i2 − 3

Ji

)
(3.20)

In accordance with Newton’s third law of motion, the stresses present in the spring
αi (where i = 1, 2, 3, . . . , n) are identical to the corresponding stresses in the dashpot.
As a result, the following relationship holds:
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−ξij
∂Wela

∂ξij

= ηi
dξij

dt
(i = 1, 2, 3, 4, · · · , n; j = 1, 2) (3.21)

By combining Equations (3.19) and (3.21), the strain rates attributed to the
dashpots can be formulated as:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξi1

dt
= µi

ηi

− −λ2
1ξ

−2
i1 + ξ2

i1ξ
2
i2

1 − λ2
1ξ−2

i1 λ−2
1 ξ−2

i2 +ξ2
i1ξ2

i2−3
Ji

ξi2

dt
= µi

ηi

− −λ2
1ξ

−2
i2 + ξ2

i1ξ
2
i2

1 − λ2
1ξ−2

i1 λ−2
1 ξ−2

i2 +ξ2
i1ξ2

i2−3
Ji

(3.22)

The viscoelastic relaxation time Ti of the DEA is defined as the quotient of ηi

divided by µi, where i = 1, 2, . . . , n. Consequently, the relationship is given by:

Ti = ηi

µi

(3.23)

Upon substituting Equation (3.20) into Equation (3.15), and subsequently
amalgamating the outcome with Equation (3.22), the dynamic model delineating
the behavior of the conical DEA can be elucidated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρλ2
1L

2
0(R + 3R0)

6(R + R0)(λ2
1 − 1)

d2λ1

dt2 = ρλ2
1L

2
0(R + 3R0)

6(R + R0)(λ2
1 − 1)(dλ1

dt
)2 + Pλ1

πd(R + R0)
√︂

λ2
1 − 1

+ εϕ2λ1

d2
0

+ µ0
λ1 − λ−3

1

1 − λ2
1+λ−2

2 −2
J)

−
n∑︂

i=1
µi

λ1ξ
−2
i1 − λ−3

1 ξ−2
i1

1 − λ2
1ξ−2

i1 +λ−2
1 ξ−2

i2 +ξi12ξ2
i2−3

Ji

dξi1

dt
= −µi

ηi

−λ2
1ξ

−2
i1 + ξ2

i1ξ
2
i2

1 − λ2
1ξ−2

i1 +λ−2
1 ξ−2

i2 +ξi12ξ2
i2−3

Ji

dξi2

dt
= −µi

ηi

−λ2
1ξ

−2
i2 + ξ2

i1ξ
2
i2

1 − λ2
1ξ−2

i1 +λ−2
1 ξ−2

i2 +ξi12ξ2
i2−3

Ji

(i = 1, 2, 3, · · · , n)

(3.24)
Up to this point, we have formulated a dynamic model that comprehensively

accounts for the inherent nonlinearity, intricate electromechanical interplay, and
time-evolving viscoelastic characteristics of the conical DEA. In the subsequent
phases of our study, we undertake experimental procedures to procure empirical data
pertinent to the conical DEA. Subsequently, we employ the differential evolution
algorithm to ascertain the values of the yet-to-be-determined parameters in Equation
(3.24), leveraging the acquired experimental data as a foundation for parameter
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identification.

3.2.2 Actuation Voltages

To ascertain the parameters inherent in the elaborated model, our initial step involves
introducing the applied driving voltage within the experimental setup. Subsequently,
we proceed to identify the undetermined parameters by leveraging the differential
evolution algorithm. Given considerations for precision and hardware limitations, we
opt to employ four spring-dashpot units within the dynamic model represented by
Equation (3.24), as an apt representation for characterizing the viscoelastic nature of
the DEA.

Figure 3.4: Picture of experimental platform, which mainly includes computer, high
voltage amplifier, laser distance sensor, I/O module and conical DEA.

In order to facilitate the acquisition of experimental data, we implement the
application of a multi-amplitude, multi-frequency driving voltage as outlined below:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tm = rem(t,
5∑︂
1

1
fi

)

v(tm) = a1sin(f1πtm), 0 ≤ tm ≤ 1/f1

v(tm) = a2sin(f2πtm − f2π/f1), f1 ≤ tm ≤
2∑︂
1

1/fi

v(tm) = a3sin(f3πtm − f3π
2∑︂
1

1/fi),
2∑︂
1

1/fi ≤ tm ≤
3∑︂
1

1/fi

v(tm) = a4sin(f4πtm − f4π
3∑︂
1

1/fi),
3∑︂
1

1/fi ≤ tm ≤
4∑︂
1

1/fi

v(tm) = a5sin(f5πtm − f5π
4∑︂
1

1/fi),
4∑︂
1

1/fi ≤ tm ≤
5∑︂
1

1/fi

(3.25)

The given equation represents the multi-amplitude, multi-frequency driving
voltage, with the following definitions: ai represents the amplitude, fi signifies the
frequency, t denotes the time, and rem(α/β) indicates the remainder of α divided by
β. By introducing the variable tm = rem(t,∑︁5

1
1
fi

), we are able to generate the periodic
driving voltage within the time interval t ∈ [0, +∞). By configuring various values of
ai and fi, we can produce driving voltages characterized by diverse amplitudes and
frequencies over a single period.

3.2.3 Parameters Identification

In the pre-stretched state, the vertical displacement of the weight is recorded as
z1 = 1.26, cm. The experimental sampling period is defined as T = 0.01, s. When the
parameters are set to ai = 5.5 + 0.5i kV, (for i = 1, 2, . . . , 5) and fi = 0.2i Hz, the
graph illustrating the driving voltage is presented in Figure 3.5. To circumvent the
occurrence of negative weight displacements, the maximum frequency of the driving
voltage is constrained to 1.0 Hz in all conducted experiments [54].

The Differential Evolution algorithm employed for parameters identification is
concisely outlined in Figure 3.6. Given our lack of prior knowledge regarding the
values of Ji, µi, and Ti, we opt to establish sufficiently broad search ranges to ensure
the efficacy of the differential evolution algorithm in locating the optimal solution.
Accordingly, the search range for Ji is defined as (0, 9 × 108], the search range for µi

is established as (0, 8 × 106], and the search range for Ti is designated as (0, 3 × 106].
To conveniently assess the predictive capabilities of the model, we introduce two
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Figure 3.5: Diagram of driving voltage applied in parameters identification.

performance metrics: the root-mean-square error (erms) and the maximum tracking
error (em).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
erms =

⌜⃓⃓⎷ 1
n

n∑︂
i=1

(zei − zmi)2 × 100%

em = max(|zei − zmi|)
max(zei) − max(zmi)

× 100%
(3.26)

Here, zei and zmi respectively denote the experimental data and the model-
predicted values of the vertical displacement. The variable n represents the number
of samples within the sampling time.

Figure 3.7 provides a visual comparison between the model predictions and
the experimental results. The discrepancy between the model predictions and the
experimental outcomes, i.e., ze − zm, is depicted in Figure 3.8. Table 1 presents the
identified parameters obtained for the dynamic model defined in Equation (3.24). The
root-mean-square error (erms) is calculated as 0.69%, while the maximum tracking
error (em) amounts to 1.60%.

3.2.4 Model Validation

The input to the dynamic model described by Equation (3.24) is the voltage outlined
in Equation (3.25). By varying the values of ai and fi, the current section aims to
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Figure 3.6: Differential Evolution algorithm used for identification

Table 3.1: Parameters of the conical DEA model.

i µi(kPa) Ji Ti = ηi/µi

i=0 0.1 6.8 × 107 −
i=1 5277.4 79.9 × 107 0.01
i=2 0.1 80.1 × 107 3945.71
i=3 33.1 7.9 × 107 9.82
i=4 571.2 3.7 × 107 8484.73

assess the generalization capability of the proposed dynamic model for the conical
DEA.

Model validation with different driving voltage amplitudes

The amplitudes of the driving voltage are defined as ai = 5.5 + 0.5i kV, for i =
1, 2, . . . , 5. Additionally, the frequencies are established as fi = 0.2, 0.4, 0.6, 0.8, 1.0
Hz correspondingly. Consequently, each test experiment utilizes a driving voltage
characterized by varying amplitudes while maintaining a single frequency.

By applying the driving voltage with a single frequency and multiple amplitudes,
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Figure 3.7: Comparison of model prediction and experimental result with different
driving voltage amplitudes and different frequencies.

the comparative analysis between the model predictions and the experimental results
for each individual test experiment is presented in Figures 3.9 to 3.13. The modeling
error associated with each test experiment is summarized in Table 3.2.

Based on the outcomes detailed above, it is evident that the root-mean-square
error of the modeling for each test experiment remains below 3%, and the maximum
modeling error for any given test experiment is less than 6%. Consequently, it can
be deduced that the proposed dynamic model for the DEA exhibits a commendable
level of generalization capability.
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Figure 3.8: Error between model prediction and experimental result.

Table 3.2: Errors of model validation with different driving voltage amplitudes.

i erms em

f=0.2 1.7734 5.4161
f=0.4 1.6875 4.1992
f=0.6 1.7013 4.3098
f=0.8 1.3202 3.6769
f=1.0 1.2557 2.6517

Model validation with different driving voltage frequencies

The amplitudes of the driving voltage are configured as ai = 6.0, 6.5, 7.0, 7.5, 8.0, kV
for i = 1, 2, . . . , 5. Concurrently, the frequencies are defined as fi = 0.2i, Hz
for i = 1, 2, . . . , 5. Consequently, each test experiment employs a driving voltage
characterized by varying frequencies while maintaining a single amplitude.

By applying the driving voltage with a single amplitude and multiple frequencies,
the comparative evaluation between the model predictions and the experimental
results for each individual test experiment is presented in Figures 3.14 to 3.18. The
modeling error associated with each test experiment is summarized in Table 3.3.

Based on the results presented above, it is evident that the root-mean-square
error of the modeling for each test experiment remains below 2%, and the maximum
modeling error for any given test experiment is less than 3%. These outcomes
reaffirm the exceptional performance of the developed dynamic model in terms of
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Figure 3.9: Comparisons of model prediction and experimental result with driving
voltage frequency 0.2Hz

its generalization ability.

Model validation corresponding to force analysis

To provide a more comprehensive validation of the proposed model, tests
evaluating the force-versus-displacement and force-versus-voltage dynamic responses
are conducted. The chosen amplitudes and frequencies of the driving voltage are
defined as ai = 5.5+0.5i kV and fi = 0.2i Hz, respectively. In this verification process,
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Figure 3.10: Comparisons of model prediction and experimental result with driving
voltage frequency 0.4Hz

real-time displacement data obtained from a laser sensor is employed to calculate
the accelerated velocity of the weight through a third-order differentiator. Utilizing
Newton’s second law, the output force of the DEA is determined based on the acquired
displacement and velocity data. Furthermore, the output force corresponding to
the model prediction is calculated using the proposed dynamic model presented in
Equation (3.24).

By employing this approach, a comprehensive comparison is conducted between
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Figure 3.11: Comparisons of model prediction and experimental result with driving
voltage frequency 0.6Hz

the model predictions and the experimental results across force-versus-time, force-
versus-displacement, and force-versus-voltage scenarios, as demonstrated in Figures
3.19 to 3.21. The root-mean-square error and the maximum tracking error associated
with all test cases are calculated as 0.0028% and 6.0011% respectively. This further
reinforces the validation and accuracy of the proposed dynamic model.

In the preceding sections, we established the validity of the model by subjecting it
to driving voltages characterized by varying amplitudes and frequencies. Additionally,
we conducted analyses involving force-versus-displacement and force-versus-voltage
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Figure 3.12: Comparisons of model prediction and experimental result with driving
voltage frequency 0.8Hz

scenarios, substantiating the reliability of the proposed dynamic model.
Subsequently, to further underscore the significance of the model, an amplitude-

frequency response analysis is undertaken. Sinusoidal voltages spanning frequencies
from 0.01, Hz to 10, Hz (with intervals of 0.01, Hz) are employed for theoretical
calculations. The resulting amplitude-frequency response curve is illustrated in Figure
3.22. Notably, as the frequency of the driving voltage increases, the amplitude of
the conical DEA gradually diminishes. This trend may stem from the viscoelastic

43



Figure 3.13: Comparisons of model prediction and experimental result with driving
voltage frequency 1.0Hz

properties inherent in the DE material [55].
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Figure 3.14: Comparisons of model prediction and experimental result with driving
voltage amplitude 6.0kV

Table 3.3: Errors of model validation with different driving voltage frequencies.

i erms em

a = 6.0 0.6047 1.7454
a = 6.5 0.7842 2.2600
a = 7.0 0.6878 1.5985
a = 7.5 1.2279 1.6069
a = 8.0 1.8889 2.5015
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Figure 3.15: Comparisons of model prediction and experimental result with driving
voltage amplitude 6.5kV
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Figure 3.16: Comparisons of model prediction and experimental result with driving
voltage amplitude 7.0kV
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Figure 3.17: Comparisons of model prediction and experimental result with driving
voltage amplitude 7.5kV
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Figure 3.18: Comparisons of model prediction and experimental result with driving
voltage amplitude 8.0kV
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Figure 3.19: Comparisons of model prediction and experimental result corresponding
to force versus time

Figure 3.20: Comparisons of model prediction and experimental result corresponding
to force versus displacement
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Figure 3.21: Comparisons of model prediction and experimental result corresponding
to force versus voltage

Figure 3.22: Amplitude-frequency response curve
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3.3 Physics Based modeling for Planar Dielectric
Elastomer Actuators

3.3.1 Model Development

In this section, we formulate a dynamic model for planar DEA, aiming to establish a
comprehensive representation of the interplay between deformation and input voltage.

Figure 3.23: States of the DEA. (a) Initial state. (b) Pre-stretching state. (c) Electro-
deformed state

Fig. 3.23 illustrates three distinct states of the Dielectric Elastomer Actuator
(DEA). In the initial state shown in Fig. 3.23(a), the dimensions of the DEA,
including length (L1), width (L2), and thickness (H), are defined. When an object
with mass P is suspended beneath the DEA, it transforms into the pre-stretching state
as depicted in Fig. 3.23(b). In this state, the stretches of the DEA are denoted by
λ1p and λ2p, and the length and width are described as λ1pL1 and λ2pL2 respectively.
The stresses parallel to the length and width are termed P1 and P2 respectively.

Upon application of voltage, the DEA enters the electro-deformed state
represented in Fig. 3.23(c). Here, the dimensions of the DEA are expressed as
l1, l2, and h for length, width, and thickness respectively. The stretches of the DEA
in this state are indicated by λ1 = l1/L1, λ2 = l2/L2, and λ3 = h/H. It is important
to note that the DEA is assumed to be incompressible, leading to the relationship
λ1λ2λ3 = 1.
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The true stresses parallel to the length and width directions of the Dielectric
Elastomer Actuator (DEA) are defined as σ1 = P1/(l2h) and σ2 = P2/(l1h),
respectively.

When the DEA is subjected to a voltage ϕ through its thickness, the accumulated
charge on the electrode is defined as Q. The true electric field is denoted by E = ϕ/h,
and the true electric displacement is represented as D = Q/(l1l2).

The free energy of the Dielectric Elastomer Actuator (DEA) is denoted as G.
When the dimensions parallel to the length and width directions of the DEA change
by δl1 and δl2 respectively, the work done by the mechanical force is expressed as
P1δl1 + P2δl2.

In the electro-deformed state, the change in charge is denoted as δQ, and the work
done by the electric field force is represented as ϕδQ. According to the principle of
nonequilibrium thermodynamics [32], the increase in free energy should not exceed
the total work done, specifically:

δG = P1δl1 + P2δl2 + ϕδQ (3.27)

The DEA can be regarded as a capacitor, allowing Q to be expressed as:

Q = εϕL1L2(λ1λ2)2/h (3.28)

The Helmholtz free energy density of the DEA is defined as W = G/(L1L2H).
Combining this with Eq. (3.27), we can obtain:

δW = σ1

λ1
δλ1 + σ2

λ2
δλ2 + 2ε( ϕ

H
)2(λ1λ

2
2δλ1 + λ2λ

2
1δλ2) (3.29)

Figure 3.24: The generalized Kelvin model, which is divided into two main parts

Figure 3.24 illustrates the generalized Kelvin model, which is divided into two
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parts. Part A consists of a spring, while Part B is composed of elements that include
springs and dampers in parallel arrangement, designated as element 1, element 2,
and so forth. The determination of the number of springs and dampers is based on
experimental results and the desired level of accuracy.

The generalized Kelvin model effectively characterizes the viscoelastic behavior
of the DEA. Here, ξij represents the elastic deformation of each element, where i

corresponds to the element number and j takes values of 1 or 2, denoting the vertical
and horizontal directions respectively.

In each element, the spring and damper are in parallel configuration, resulting in
consistent deformations between them. Since all elements are connected in series, the
overall deformation of the DEA is the sum of deformations across each element. As
a result, λ1 = ∑︁n

i=1 ξi1 and λ2 = ∑︁n
i=1 ξi2.

For the ideal DEA, W is assumed to be a function of ξij and D, and it can be
expressed as:

W (D, ξ11, ξ12, ξ21, ξ22, · · · ) = Ws(ξ11, ξ12, ξ21, ξ22, · · · ) + D2

2ε
(3.30)

where ε represents the permittivity of the DEA, and it can be expressed as ε =
D/E. Ws(ξ11, ξ12, ξ21, ξ22, · · · ), which is the elastic energy, is relevant to the internal
stretching of the DEA. The term D2/(2ε), which represents the electronic energy, is
relevant to the dielectric properties of the DEA.

The Gent model is employed to describe the free energy density of the DEA.
When combined with the expression of the generalized Kelvin model, the internal
free energy density Ws can be expressed as:

Ws(ξ11, ξ12, ξ21, ξ22, · · · ) = −
n∑︂

i=1

µiJi

2 ln(1 − ξ2
i1 + ξ2

i2 + ξ−2
i1 ξ−2

i2 − 3
Ji

) (3.31)

where µi represents the shear modulus of the ith spring, and Ji represents the
deformation limit of the ith spring, as illustrated in Fig. 3.24.

Combining Eqs. (3.29)–(3.31), we can obtain:
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ1 + εE2 = µ1
ξ2

11 − ξ−2
11 ξ−2

12

1 − ξ2
i1+ξ2

i2+ξ−2
i1 ξ−2

i2 −3
J1

σ2 + εE2 = µ1
ξ2

12 − ξ−2
11 ξ−2

12

1 − ξ2
i1+ξ2

i2+ξ−2
i1 ξ−2

i2 −3
J1

(3.32)
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Figure 3.25: Mechanical relation diagram of a spring and damper in an element of
the generalized Kelvin model

Figure 3.25 depicts the mechanical relationship of each element within the
generalized Kelvin model. The viscoelastic coefficient of the damper is defined as
ηi, where i denotes the damper number. By adhering to the principles of Newtonian
mechanics, we derive:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ1 = σi1 + ηi

dξi1

dt

σ2 = σi2 + ηi
dξi2

dt

(3.33)

Since there is prestretching stress in the vertical direction but no prestretching
stress in the horizontal direction, combining Eqs. (3.29)–(3.33), we obtain:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dξi1

dt
= 1

ηi

µi
ξ2

11 − ξ−2
11 ξ−2

12

1 − ξ2
11+ξ2

12+ξ−2
11 ξ−2

12 −3
J1

− 1
ηi

µi
ξ2

i1 − ξ−2
i1 ξ−2

i2

1 − ξ2
i1+ξ2

i2+ξ−2
i1 ξ−2

i2 −3
Ji

dξi2

dt
=0

(3.34)

where i(= 2, 3, 4, · · · ) represents the number of springs in the generalized Kelvin
model. When ϕ = 0, the DEA is only affected by the prestretching stress in the
vertical direction. In this case, we have λ1 = λ1p, λ2 = 1, ξi1 = λ1p, and ξi2 = 1.
Substituting these parameters into Eq. (3.31), we obtain:
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σ1 = µ1

⎛⎜⎝ λ2
1p − λ−2

1p

1 − λ2
1p+λ−2

1p −2
J1

⎞⎟⎠ (3.35)

Since σ1 = P1/(l2h), the prestretching stress P1 can be expressed as:

P1 = µ1L2H

⎛⎜⎝ λ2
1p − λ−2

1p

1 − λ2
1p+λ−2

1p −2
J1

⎞⎟⎠ (3.36)

By substituting σ1 = P1/(l2h) and E = ϕ/h into Eq. (3.32), we can derive the
relationship between P1 and ϕ, as well as ξi1 and ξi2, which can be expressed as:

P1 = l2h

⎛⎜⎝µ1
ξ2

11 − ξ−2
11 ξ−2

12

1 − ξ2
11+ξ2

12+ξ−2
11 ξ−2

12 −3
J1

− ε(ϕ

h
)2

⎞⎟⎠ (3.37)

Given that the volume of the DEA remains constant and there is no deformation
in the horizontal direction, we can deduce:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

l1l2h =L1L2H

l1 =L1

n

n∑︂
i=1

ξi1

l2 =L2

(3.38)

Combining Eqs. (3.37) and (3.38), we obtain:

P1 = L2
nH∑︁n
i=1 ξi1

⎛⎜⎝µ1
ξ2

11 − ξ−2
11 ξ−2

12

1 − ξ2
11+ξ2

12+ξ−2
11 ξ−2

12 −3
J1

− ε

(︄
ϕ
∑︁n

i=1 ξi1

nH

)︄2
⎞⎟⎠ (3.39)

When we differentiate both sides of Eq. (3.39) with respect to time, we obtain:

dP1

dt
= ∂P1

∂ϕ

dϕ

dt
+

n∑︂
i=1

∂P1

∂ξi1

dξi1

dt
+

n∑︂
i=1

∂P1

∂ξi2

dξi2

dt
(3.40)

Considering the fact that P1 given by Eq. (3.40) is constant, we have dP1/dt = 0.
Additionally, since the horizontal stretch of the DEA does not change with time, we
obtain dξi2/dt = 0. Therefore, Eq. (3.40) can be reformulated as:

ξ11

dt
= −

(︄
∂P1

∂ϕ

dϕ

dt
+

n∑︂
i=1

∂P1

∂ξi1

dξi1

dt

)︄
/

∂P1

∂ξ11
(3.41)

By combining Eqs. (3.34) and (3.41), we can derive the dynamic model of the
DEA, which can be expressed in a rearranged form as Eq. (3.42).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ11

dt
= −

(︄
∂P1

∂ϕ

dϕ

dt
+

n∑︂
i=1

∂P1

∂ξi1

dξi1

dt

)︄
/

∂P1

∂ξ11

dξ12

dt
=0

dξi1

dt
= 1

ηi

µi
ξ2

11 − ξ−2
11 ξ−2

12

1 − ξ2
11+ξ2

12+ξ−2
11 ξ−2

12 −3
J1

− 1
ηi

µi
ξ2

i1 − ξ−2
i1 ξ−2

i2

1 − ξ2
i1+ξ2

i2+ξ−2
i1 ξ−2

i2 −3
Ji

dξi2

dt
=0

(3.42)

3.3.2 Actuation Voltages

To determine the parameters of the developed model, it is essential to introduce the
driving voltage applied in the experiment. We will utilize the actuation signals for
conical DEAs, as described in Eq. (3.25).

Figure 3.26: Picture of experimental platform for planar DEA, which mainly includes
computer, high voltage amplifier, laser distance sensor, I/O module and planar DEA.
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3.3.3 Parameters Identification

In this section, the parameters of the proposed dynamic model are determined based
on experimental results. The amplitudes of the driving voltage are selected as ai =
5.5 + 0.5i kV, and the frequencies are chosen to be fi = 0.2i Hz, mirroring those used
in conical DEAs. Consequently, the driving voltage encompasses various amplitudes
and frequencies within a single period. To quantify the accuracy of the model, we
employ the root-mean-square error and the maximum modeling error, defined as per
Eq. (3.26), for the sake of accuracy description.

The differential evolutionary algorithm, as depicted in Figure 3.27, is employed
for the identification of parameters in the dynamic model given by Eq. (3.42). The
hyperparameters of the differential evolutionary algorithm are defined as follows: the
search ranges are set as Ω1 ∈ (103, 9×104), Ω2 ∈ (103, 2×104), and Ω3 ∈ (103, 3×104).
The maximum number of evolution generations, denoted by G, is set to be 150. The
constant d is set at 0.001. The mutation rate pm is 0.6, and the crossover rate pc is
0.9. Moreover, the permittivity of the DEA, denoted as e, is set to be 4.7ε0, where
ε0 is the permittivity of vacuum. The geometrical parameters of the DEA are listed
in Table 3.4.

Table 3.4: Geometry parameters of DEA for experiment platform

Parameter value
L1 0.075 m
L2 0.072 m
H 0.001 m
P 200 g

λ1pL2 0.082 m
λ1pL2 0.072 m

Considering both numerical accuracy and computational load, we opt for the 3-
links generalized Kelvin model to effectively describe the viscoelastic characteristics
of the DEA. This choice facilitates a comparison between the model’s prediction
output and the experimental results, as depicted in Figure 3.28. The outcomes of the
parameter identification process are presented in Table 3.5.

3.3.4 Model Validation

In this section, we establish the generalization of the dynamic model by conducting
two separate sets of experiments. In the first set of trials, we validate the model’s
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Figure 3.27: Differential Evolution algorithm used for identification

Table 3.5: Parameters of the planar DEA model.

i µi(kPa) Ji ηi

i=1 48637.812 9980.487 N/A
i=2 41184.378 4830.083 16392.456
i=3 58273.732 9768.832 19795.386

performance across a range of driving voltage amplitudes. Subsequently, in the second
set of experiments, we assess the model’s accuracy across a variety of driving voltage
frequencies.
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Figure 3.28: Comparison of model output and experimental result with different
amplitudes and frequencies.

Model validation with different driving voltage amplitudes

The driving voltage amplitudes are specified as ai = 5.5 + 0.5i kV, where i =
(1, 2, . . . , 5). Moreover, the frequencies are set as fi = 0.2i Hz, corresponding to
i = (1, 2, . . . , 5). Consequently, each experimental test involves a driving voltage with
varying amplitudes while maintaining a constant frequency.

At frequency values of 0.2 Hz, 0.6 Hz, and 1.0 Hz, the disparities between the
model’s predicted output and the experimental results are depicted in Figures 3.29–
3.31, respectively. Furthermore, Table 3.6 provides an overview of the modeling errors
for all the conducted test experiments.

Based on the aforementioned outcomes, it is evident that the root mean-square
error of the modeling in each test experiment remains below 8.3%. With the exception
of the first dataset, the highest modeling error among all experiments is under 6.9%.
Notably, the maximum modeling error becomes more pronounced when the driving
voltage frequency is set at 0.2 Hz. This disparity can be attributed to heightened
susceptibility to external disturbances in experimental data collection at such low
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Table 3.6: Modeling errors across various driving voltage amplitudes

f erms em

f = 0.2Hz 5.7994% 6.8414%
f = 0.4Hz 8.243% 2.6210%
f = 0.6Hz 3.5799% 2.4219%
f = 0.6Hz 4.9002% 2.6675%
f = 1.0Hz 4.9401% 2.3505%

Figure 3.29: Comparison between model output and experimental results at a driving
voltage frequency of 0.2 Hz

driving voltage frequencies. Nevertheless, it is crucial to acknowledge that even in
the case of this elevated maximum modeling error, the value remains well within
permissible limits. Consequently, the proposed dynamic model for the DEA showcases
commendable generalization capabilities.
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Figure 3.30: Comparison between model output and experimental results at a driving
voltage frequency of 0.6 Hz
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Figure 3.31: Comparison between model output and experimental results at a driving
voltage frequency of 1.0 Hz
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Validation of the model across varied driving voltage frequencies

The driving voltage amplitudes are established as ai = 5.5 + 0.5i kV, where
i = (1, 2, · · · , 5). Simultaneously, the frequencies are configured as fi = 0.2i Hz.
Consequently, each test experiment is characterized by driving voltage frequencies of
diverse values while maintaining a consistent amplitude.

At amplitudes of 6.0 kV, 7.0 kV, and 8.0 kV, the contrasts between the model’s
predicted output and the experimental results are depicted in Figs. 3.32-3.34,
respectively. Furthermore, Table 3.7 provides an overview of the modeling errors
across all test experiments.

Table 3.7: Modeling errors across various driving voltage amplitudes

a erms em

a = 6.0kV 3.2135% 7.9316%
a = 6.5kV 3.1338% 6.9211%
a = 7.0kV 3.9176% 7.1493%
a = 7.5kV 6.7447% 5.6465%
a = 8.0kV z 8.3204% 4.7142%

The root mean square error of the modeling in each test experiment remains below
8.5%, while the highest modeling error among all experiments remains under 8.0%.
This reaffirms the broader applicability and effectiveness of the proposed dynamic
model.

3.4 Concluding Remarks

Within this chapter, the focus is directed towards two distinct types of Dielectric
Elastomer Actuators (DEAs): conical DEAs and planar DEAs. For DEAs, a
dynamic model is introduced, underpinned by the framework of nonequilibrium
thermodynamics. The chapter begins by elucidating three discrete states inherent
to the DEA, followed by a comprehensive analysis of its deformation mechanism.

The subsequent approach involves the implementation of infinitesimal elements
possessing both conical and planar geometries, adapted to the respective coordinate
systems. This adaptation enables the quantification of the work executed by the
inertial force. To effectively encapsulate the elastic energy and viscoelastic attributes
of the DEA, the Gent model and the rheological model are harnessed, respectively.
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Figure 3.32: Comparison between model output and experimental results at a driving
voltage amplitude 6.0 kV

Further advancement entails the identification of unspecified parameters intrinsic
to the dynamic model of the DEA, facilitated by the employment of the differential
evolution algorithm. Crucially, the chapter culminates in a meticulous comparison
between experimental findings and model predictions, reaffirming the efficacy of the
proposed dynamic model. This model adeptly captures the inherent complexities,
encompassing nonlinearity, intricate electromechanical interactions, and the evolving
viscoelastic nature characteristic of DEAs.

Furthermore, empirical observations underscore the DEA’s manifest hysteresis
tendencies, creep behavior, and even rate-dependent hysteresis occurrences during
experimental procedures. The proposed model aptly accommodates these behaviors,
underscoring its accuracy in simulating a spectrum of dynamic responses. As such,
the dynamic model significantly contributes to the comprehensive comprehension of
the intricate motion characteristics exhibited by DEAs.
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Figure 3.33: Comparison between model output and experimental results at a driving
voltage amplitude 7.0 kV
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Figure 3.34: Comparison between model output and experimental results at a driving
voltage amplitude 8.0 kV
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Chapter 4

Data-in-Loop Modeling for
Dielectric Elastomer Actuators

4.1 Introduction

The two physics-based models introduced in Chapter 3 effectively encapsulate the
intricate behaviors exhibited by DEAs. Nevertheless, these models need the detailed
geometric specifications of the DEAs. In real-world applications, DEAs frequently
assume diverse shapes and dimensions. Developing bespoke models for each individual
actuator is impractical. Consequently, this chapter embarks on a novel approach,
drawing inspiration from analogous smart material-based actuators. Herein, a
data-in-loop model for DEAs is conceptualized. Notably, this model operates
independently of geometric specifics, making it adept at capturing the nuanced
nonlinear behaviors inherent to DEAs, even encompassing intricate multi-dimensional
dependencies.

4.2 Data-in-Loop Dynamic Model of DEAs

The dynamic model of DEA is proposed in this section, which includes the electrical
part, the mechanical part and the electromechanical coupling part.

4.2.1 Electrical Modeling

Following the research results developed in [3], the electrical model of the DEA is
built, whose schematic diagram is shown in Fig. 4.1. In Fig. 4.1, q, qs, qr, qc and qp

are the charge of each branch; R0 is the sum of the external circuit resistance and
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the electrode resistance. Considering the DE material is not completely insulated, we
use RL to represent the resistance of the DEA, thereupon q̇r is the leak current of the
DEA. C represents the capacitance of the DEA. M is a virtual driver, which will be
introduced in the following subsection; VA is the voltage across the virtual driver.

Figure 4.1: Schematic diagram of electrical model

Considering that the complex electrical characteristics of the DEA are different
to be described by using the combination of basic electrical components, inspired
by the phenomenological modeling method, we add a hysteresis module H (qs) and
a creep module C (qs) (they will be demonstrated in detail below) to improve the
generalization ability and the performance of the model. When these modules are
not considered, the proposed electrical model can be reduced to that of [3].

According to Fig. 4.1, the complete electrical equations of the DEA can be
expressed as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

R0q̇ + H (qs) + C (qs) + qs − qp

C
= v

q̇ − q̇s = v − R0q̇

RL

(4.1)
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which is,
R0RL

R0 + RL

q̇s + H (qs) + C (qs) + qs − qp

C
= RL

R0 + RL

v (4.2)

4.2.2 Mechanical Modeling

Also following the research results developed in [3], the mechanical model of the DEA
is mainly to match its viscoelastic characteristic. In general, there are two famous
viscoelastic models, that is, generalized Maxwell model and generalized Kelvin model.
Both models use the combination of springs and dampers to describe the viscoelastic
behavior, but their combining forms are different. The generalized Maxwell model is
shown in Fig. 4.2(a) and the generalized Kelvin model is shown in Fig. 4.2(b).

Figure 4.2: Schematic diagram of viscoelastic model

According to Newton’s laws of the motion, the dynamic model of the generalized
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Maxwell model is ⎧⎪⎪⎨⎪⎪⎩
mD̈ = F − k0D −

n∑︂
i=1

biεi

biε̇i = ki (D − εi) (i = 1, 2, . . . , n)
(4.3)

where F is the force; ki is the stiffness factor of each spring; bi is the damping factor
of each damper; ξi is the deformation of each damper; m is the weight of the external
load.

Moreover, the dynamic model of the generalized Kelvin model can be formulated
as ⎧⎪⎪⎨⎪⎪⎩

mD̈ = F − k0

(︄
D −

n∑︂
i=1

εi

)︄

biε̇i = F − kiεi (i = 1, 2, . . . , n)
(4.4)

4.2.3 Electromechanical Coupling

When the generalized Maxwell model is chosen, the schematic diagram of the
electromechanical coupling of the DEA is shown in Fig. 4.3. Meanwhile, the following
equations are established. ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F = TemVA

qp = TemD

VA = qs − TemD

C

(4.5)

where Tem is the electromechanical coupling coefficient of the DEA.
The electromechanical coupling shows that the voltage VA determines the force F

and then makes the DEA deform. On the contrary, the displacement of the DEA D

has the certain influence on the voltage VA. So, the electromechanical coupling of the
DEA is a bidirectional coupling. By combining (4.2), (4.3) and (4.5), the dynamic
model of the DEA can be obtained.
Remark 1. In [3], Maxwell stress is employed to realize the electromechanical
coupling of the DEA, whose formula is

p = ε0εr

(︃
U

d

)︃2
(4.6)

where p is Maxwell stress; ε0 is the permittivity of the vacuum; εr is the relative
permittivity of the DE material; U is the voltage across the DE material; d is the
thickness of the DE material.

However, the formula of Maxwell stress is nonlinear, which involves the calculation
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Figure 4.3: Schematic diagram of electromechanical coupling

of the square. Such nonlinear calculation may cause the dynamic model of the DEA
become complicated and bring the difficulty to the controller design of the DEA. Thus,
we employ the virtual driver with the linear relationship to simplify the dynamic
model of the DEA.

4.3 Creep Block

In this section, the creep model based on the mathematical operator is proposed to
describe the creep behavior of the DEA [56]. The expression of the creep operator is:

1
λi

ẏc
i (t) + yc

i (t) = v (t) (4.7)

where λi > 0 is the characteristic parameter; yc
i (t) is the output of the creep operator.

Fig. 4.4 shows the input-output relationship of creep operator (4.7).
When the sampling time is T , the digital form of the creep operator (4.7) can be

expressed as
yc

i (k) = e−λiT yc
i (k − 1) +

(︂
1 − e−λiT

)︂
v (k − 1) (4.8)

Thus, the creep model of the DEA can be formulated to be

C (v) =
nC∑︂
i=1

ciy
c
i [v] (t) (4.9)

where nC is the number of the creep operator; ci is the weighted constant for yc
i (t).

Since the creep model (4.9) is written as a weighted superposition of many
elementary creep operators (4.8) in the time domain, it is convenient to construct
an inverse compensator together with the hysteresis compensator based on the P-I
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Figure 4.4: Input-output relationship of creep operator (4.7

hysteresis model.

4.4 Hysteresis Block

4.4.1 Introduction to Hysteresis Nonlinearities Models

Hysteresis nonlinearities manifest prominently in actuators founded on smart
materials. These nonlinear phenomena present substantial challenges for controller
design, as the intrinsic nonlinearity becomes intertwined with the controlled system,
leading to unobservable outcomes arising from these nonlinear behaviors. In order
to alleviate the constraints imposed by hysteresis nonlinearities, the integration of
accurate hysteresis models becomes indispensable.

In the existing body of literature, hysteresis models have been broadly classified
into two primary categories: operator-based hysteresis models and differential
equation-based hysteresis models, as illustrated in Figure 4.5. Operator-based
hysteresis models, which encompass the Preisach model [57], the Prandtl-Ishlinskii
(PI) model [58], and the Krasnosel’skii-Pokrovkii (KP) model [59], are formulated by
aggregating weighted elementary operators like relay operators, play operators, and
KP kernels. These models based on operators demonstrate noteworthy predictive
capabilities concerning hysteresis phenomena. Nonetheless, the accuracy of these
models is directly tied to the quantity of integrated elementary operators. An
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increased number of operators leads to a substantial rise in computational complexity.
On the contrary, the differential equation-based hysteresis models exhibit finite

dimensions, thereby requiring a confined set of parameters to govern the magnitude
and overall configuration of the hysteresis curve. As a result, these models mitigate
the computational intricacies that emerge during the model identification phase.
However, the constrained count of model parameters can contribute to significant
estimation inaccuracies. In the subsequent sections, we present a succinct overview
of both the operator-based hysteresis models and the differential equation-based
hysteresis models..

Figure 4.5: Schematic diagram of electrical model

As depicted in Figure 4.5, the prevalent hysteresis models can be categorized
into three classes: differential equation-based models, operator-based models, and
alternative hysteresis models. This classification is determined by the mathematical
methodologies employed within the models. As depicted in Figure 4.5, the prevalent
hysteresis models can be categorized into three classes: differential equation-based
models, operator-based models, and alternative hysteresis models. This classification
is determined by the mathematical methodologies employed within the models.

Differential-equation-based Models

The category of differential equation-based models describes hysteresis nonlinear-
ities through the utilization of differential equations [60]. Among the prominent
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representatives of these differential equation-based hysteresis models are the Duhem
model, Bouc-Wen model, and Backlash-like model.

Duhem Model: The Duhem model, introduced to characterize magnetic
hysteresis nonlinearities [61], portrays the hysteresis phenomenon through an analogy
to a mass-spring-damper system. This model can also effectively capture hysteresis
in other smart materials. Within the Duhem model framework, the input denoted as
v and the corresponding output denoted as w of the hysteresis effect can be expressed
as [61]:

ẇ(t) = f1(w(t), v(t))v̇+(t) − f2(w(t), v(t))v̇−(t) (4.10)

where ⎧⎪⎨⎪⎩v+ = |v|+v
2

v− = |v|−v
2

(4.11)

Here, f1 and f2 represent the shape functions associated with both the input and
output of the hysteresis phenomenon.

Bouc-Wen model: The Bouc-Wen model constitutes a semi-physical extension
rooted in the Duhem model (4.10). It was initially introduced by Bouc and
subsequently extended by Wen [62]. Within the Bouc-Wen model framework, the
hysteresis input denoted as v and the corresponding output denoted as w are
formulated as follows:

ẇ = Av̇ − βv̇|w|n − α|v̇||w|n−1w (4.12)

where A, α, and β are shape parameters [62].

Backlash-like model: In order to introduce the backlash-like model, it is
necessary to present a simplified version of the Duhem model.

dw

dt
+ a|dv

dt
|g(v, w) = b

dv

dt
(4.13)

Building upon the foundation of the simplified Duhem model (4.13), a backlash-
like model was introduced [63], delineating the hysteresis nonlinearities in the
following manner:
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dw

dt
= α|dv

dt
|[cv − w] + B1

dv

dt
(4.14)

where the parameters α, c, and B1 assume roles as shape parameters. Notably, an
explicit solution was furnished in [63], presented as follows:

w(t) = cv(t) + d(v(t)) (4.15)

Through the utilization of this model, conventional robust controllers can be
effectively employed to counteract the hysteresis nonlinearities, obviating the need
to construct an inverse model of the hysteresis phenomenon.

In summary, differential equation-based models offer a means to represent
hysteresis nonlinearities through first-order differential equations. Nevertheless,
obtaining analytical solutions for these equations is challenging, and the development
of an inverse compensator for hysteresis nonlinearities grounded in differential
equation-based hysteresis models remains elusive.

Operator-based models

Operator-based hysteresis models constitute a category of models that describe
hysteresis nonlinearities by means of the integration of hysteresis operators [64].
Presently, they stand as the most prevalent hysteresis models in industrial
applications, particularly within the realm of smart material actuators. Based on
the specific hysteresis operators employed, the operator-based models encompass the
Preisach model [65], Krasnoselskii-Pokrovskii (KP) model [64], and Prandtl-Ishlinskii
(PI) model [58].

Preisach Model: The Preisach model is a hysteresis model that relies on the
utilization of a relay operator. As illustrated in Figure 4.6, the relay operator γ̂αβ[v(t)]
is defined by two thresholds α > β and two output states, +1 and -1. The output
w(t) remains constant until the input value v(t) crosses either the lower threshold α

from below or the upper threshold β from above.
The Preisach model provides a depiction of hysteresis according to [64]: The

Preisach model provides a depiction of hysteresis according to [64]:

w(t) = P [v](t) =
∫︂ ∫︂

β≤α
µ(α, β)γ̂αβ[v(t)]dαdβ (4.16)
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Figure 4.6: Relay Operator

where µ(α, β) is referred to as the weight function or density function, as illustrated
in Figure 4.7.

Figure 4.7: Preisach Model

Owing to the presence of the double integral, both parameter identification and
the construction of an inverse model pose considerable challenges. Moreover, the
inclusion of the control signal v within the integral further complicates the process of
controller design.

Krasnoselskii-Pokrovskii (KP) Model: Much like the Preisach model, the
Krasnoselskii-Pokrovskii (KP) model is also rooted in the KP operator kp[v, ξ(ρ)],
which can be regarded as an extension of the relay operator [64]. Illustrated in Figure
4.8, the KP model is likewise represented as a double integral of the corresponding
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KP operator:

w(t) = Λ[v](t) =
∫︂ ∫︂

ρ2≥ρ1
µ(ρ2, ρ1)kp[v, ξ(ρ)](t)dρ2dρ1 (4.17)

where µ(ρ2, ρ1) denotes the density function with ρ = (ρ2, ρ1). Owing to its
resemblance to the Preisach model, the KP model also shares characteristics such
as non-invertibility and the inclusion of the control signal within the integral, among
others.

Figure 4.8: Krasnoselskii-Pokrovskii (KP) model

Prandtl-Ishlinskii PI Model: The Prandtl-Ishlinskii (PI) model is con-
structed by integrating play operators Fr[v] or stop operators Er[v] [66]. Utilizing
the play operator as an illustration, as portrayed in Fig. 4.9, the output of the play
operator can be delineated as follows:

⎧⎪⎨⎪⎩w(0) = Fr[v](0) = fr(v(0), 0)

w(t) = Fr[v](t) = fr(v(t), w(ti)), for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1
(4.18)

with
fr(v, w) = max{v − r, min{v + r, w}} (4.19)

where 0 = t0 < t1 < . . . < tN = tE constitutes a partition of the interval [0, tE],
characterized by the property that the function v maintains monotonicity within
each of the subintervals [ti, ti+1] [58].

Hence, the Prandtl-Ishlinskii (PI) model grounded in the play operator can be
formulated as follows:
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Figure 4.9: Play operator and stop operator

w(t) = Π[v](t) = p0v(t) +
∫︂ R

0
p(r)Fr[v](t)dr (4.20)

In this equation, p(r) represents the density function, and p0 stands as a positive
parameter.

An inherent advantage of the PI model lies in its avoidance of the non-differentiable
relay operator, rendering the PI model invertible. In a study by Krejci [45], an
analytical inverse of the PI model was presented. Nonetheless, the PI model
is confined to describing symmetric and rate-independent hysteresis phenomena.
Ongoing research endeavors focus on expanding the capabilities of the PI model to
encompass more complex hysteresis while maintaining its invertibility. Given that
this thesis addresses the modified generalized PI model, comprehensive discussions
regarding the properties of the PI model and its extensions will be expounded upon
in the ensuing chapter.

Other Hysteresis Models

In addition to the differential equation-based and operator-based models, there
exist various other phenomenological hysteresis models. Many of these models
anticipate hysteresis nonlinearities using intelligent algorithms like Neural Networks
[67] and Support Vector Machines [68]. These models can effectively capture
hysteresis behaviors in certain specialized domains without resorting to first-order
differential equations or hysteresis operators. However, these models haven’t achieved
the same level of popularity as the differential equation-based and operator-based
models.
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4.4.2 Hysteresis Structure Selection

Certainly, various models have been developed to capture the hysteresis behavior in
nonlinear systems, including the Krasnosel’skii-Pokrovkii model, Bouc-Wen model,
Duhem model, Preisach model, and the classical PI model. Among these, the classical
PI model stands out for its simple structure and analytical reversibility. Consequently,
the PI model is chosen in this study to depict the hysteresis behavior of the DE
(Dielectric Elastomer) actuator.

Building upon the classical P-I model, an asymmetric hysteresis model denoted
as Ha is formulated to characterize the asymmetric hysteresis nonlinearity inherent
in the DE actuator [46]. The formulation of this model is as follows:

Ha[v](t) = Q + HP I (4.21)

The expression Q = g1v
5(t) + g2v

3(t) + g3v(t) + g4
3
√︂

v(t) consists of constant
ratios g1, g2, g3, and g4. Recognizing that the classical P-I model is solely capable
of portraying symmetric hysteresis behavior [69], the term Q is introduced to modify
the classical P-I model, thereby establishing a novel model capable of representing
asymmetric hysteresis nonlinearity. The PI model HP I = ∑︁nH

i=1 piForiv encompasses
density coefficients pi pertaining to Foriv, where nH denotes the count of Foriv. Given
the positive excitation nature of the DE (Dielectric Elastomer) actuator, the one-
sided play operators Foriv featuring thresholds ori > 0 are employed [69]. This can
be mathematically expressed as:

⎧⎪⎨⎪⎩Fori[v](0) = max{v(0) − ori, min{v(0), 0}}

Fori[v](t) = max{v(t) − ori, min{v(0), for[v](t − T )}}
(4.22)

where T represents the sampling time. The characteristics of the one-sided play
operator are depicted in Figure 4.10.

4.5 Mechanical Part

In this particular implementation, the simplified Kelvin-Voigt model, depicted in
Figure 4.11, can be considered a specific instance of the generalized Kelvin model.

Similar to the conventional spring-damper-mass system, the dynamic equations
governing the chosen mechanical component can be expressed as follows:

mD̈ + bḊ + kD = F (4.23)
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Figure 4.10: Oneside play operator

By combining this equation with the coupling effect characterized by F = TemVA

and V̇A = q̇p/C, the mechanical and coupling components can be formulated as the
following linear equation:

α0
...
+α1D̈ + α2Ḋ + α3D = β0q̇p = beta0HC(t) (4.24)

where HC(t) is the output of the nonlinear blocks.

4.6 Parameter Identification

Through the selections detailed in Sections 4.3 to 4.5, the all-encompassing model can
be depicted as illustrated in Figure 4.12. The inclusion of a first-order creep structure
and an asymmetric PI hysteresis structure were implemented for the nonlinear blocks
within the model.

Once more, we employ multi-frequency multi-amplitude voltage signals for the
purpose of identification, mirroring the signal employed in Equation (3.25).
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Figure 4.11: Simplified Kelvin-Voigt model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tm = rem(t,
5∑︂
1

1
fi

)

v(tm) = a1sin(f1πtm), 0 ≤ tm ≤ 1/f1

v(tm) = a2sin(f2πtm − f2π/f1), f1 ≤ tm ≤
2∑︂
1

1/fi

v(tm) = a3sin(f3πtm − f3π
2∑︂
1

1/fi),
2∑︂
1

1/fi ≤ tm ≤
3∑︂
1

1/fi

v(tm) = a4sin(f4πtm − f4π
3∑︂
1

1/fi),
3∑︂
1

1/fi ≤ tm ≤
4∑︂
1

1/fi

v(tm) = a5sin(f5πtm − f5π
4∑︂
1

1/fi),
4∑︂
1

1/fi ≤ tm ≤
5∑︂
1

1/fi

(4.25)
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Figure 4.12: Selected DEAs model

Once again, the differential evolutionary algorithm is utilized for parameter
identification in the dynamic model. In Equation (4.9), the count of creep operators
nC is set as 3, while the count of one-sided play operators nH is established at 10.
Additionally, the root-mean-square error erms and the maximum tracking error em are
introduced as evaluation metrics. Concerning the mechanical part of the identified
parameters, β0 = 3.5692 × 108, α0 = 1, α1 = 37.3570, α2 = 9.1934 × 106, and
α3 = 3.4330 × 108. Further details about the identified parameters can be found in
Table 4.1.

Table 4.1: Identified parameters of the data-in-loop model.

i ori pi gi λi ci

1 0 0.6859 −5 × 106 4.4731 -0.0085
2 1 0.0419 0.0020 0.0177 -1.0420
3 2 0.0041 -0.6821 0.0177 1.0507
4 3 1 × 104 0.0206
5 4 2 × 107

6 5 1 × 107

7 6 0.0042
8 7 0.0209
9 8 0.9654
10 9 0.4391

4.7 Model Validation

The effectiveness of the proposed dynamic model for the DE actuator’s generalization
capability is substantiated through a series of ten comprehensive test experiments.
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In the initial five test groups, the driving voltage exhibits varying amplitudes but
remains consistent in frequency. Conversely, the subsequent five test groups involve
a driving voltage with diverse frequencies while maintaining a consistent amplitude.

The comparative analysis between the model-generated outputs and the empirical
data is presented in Figs. 4.13–4.22, wherein the discernible modeling errors are
visually depicted. These test results unequivocally affirm the dynamic model’s
adeptness in accurately characterizing the DE actuator’s asymmetric hysteresis, creep
phenomenon, and even its rate-dependent hysteresis tendencies.

Figure 4.13: Model validation with driving voltage frequency 0.2Hz

4.8 Concluding Remarks

This chapter presents a dynamic model for Dielectric Elastomer Actuators
(DEAs) leveraging a data-in-loop modeling approach. The formulation integrates
considerations of DEA structures, along with the introduction of data-in-loop creep
and hysteresis blocks. As a result, the dynamic model effectively encompasses
asymmetric hysteresis, creep phenomena, as well as both rate-dependent and stress-
dependent hysteresis behaviors, concurrently capturing the multifaceted responses of
the DEA.
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Figure 4.14: Model validation with driving voltage frequency 0.4Hz

The comparison between empirical experimental results and model-generated
outputs underscores the commendable alignment between the dynamic model and
the DEA’s actual behaviors. The model’s composition involves the integration of two
nonlinear blocks and a simplified linear system, facilitated by the judicious selection
of these aforementioned blocks. Consequently, this dynamic model can be viewed
as an initial stride toward formulating a comprehensive control framework. Notably,
depending on specific applications, it also furnishes a robust foundation for diverse
controller design endeavors.
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Figure 4.15: Model validation with driving voltage frequency 0.6Hz

Figure 4.16: Model validation with driving voltage frequency 0.8Hz
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Figure 4.17: Model validation with driving voltage frequency 1.0Hz

Figure 4.18: Model validation with driving voltage amplitude 6.0 kV
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Figure 4.19: Model validation with driving voltage amplitude 6.5 kV
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Figure 4.20: Model validation with driving voltage amplitude 6.0 kV

Figure 4.21: Model validation with driving voltage amplitude 6.5 kV

89



Figure 4.22: Model validation with driving voltage amplitude 8.0 kV
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Chapter 5

Control Approach for Dielectric
Elastomer Actuators with
data-in-loop Model

5.1 Introduction

In Chapter 4, we propose an encompassing data-in-loop model tailored to elucidate
the intricate nonlinear and dynamic characteristics inherent in Dielectric Elastomer
Actuators (DEAs). Our empirical findings underscore the emergence of undesirable
and deleterious effects stemming from these nonlinear behaviors, with particular
emphasis on the pervasive influence of hysteresis. These effects have the potential
to engender performance degradation in DEAs, thereby introducing inaccuracies
and oscillatory tendencies. Consequently, this chapter meticulously directs its focus
toward the formulation of a cascading model framework. Within this framework,
a dynamic component precedes a hysteresis model. The overarching objective of
this endeavor is the conception and implementation of a robust adaptive controller,
strategically fortified to mitigate these challenges and ensure steadfast performance.
In this chapter, we will focus on the development of a model-based Adaptive Robust
Control (ARC) approach for the trajectory control of DEAs.

To facilitate the practical implementation of the algorithms on physical actuators,
certain assumptions were deemed necessary for the specific application:

1. Given the inherent complexity and parameter abundance characterizing the
physics-based models expounded in Chapter 3, these models are not suitable for
controller design purposes. Consequently, the development of control strategies
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is based on the data-in-loop model presented in Chapter 4.

2. Given the use of Polydimethylsiloxane (PDMS) materials, the creep effect is
deemed insignificantly pronounced. We treat this nonlinearity as external
disturbances and potential system parameter drift.

3. It is worth noting that the control of input-quadratic nonlinear systems remains
a formidable challenge within the control community [42]. In the context of
this application, we handle the square of the voltage, denoted as V 2, as virtual
control signals.

5.2 Problem Statement

Based on the aforementioned premise, the data-in-loop model developed in Chapter
4, as illustrated in Fig. 4.12, can be further simplified. In Fig. 5.1, we adopt the
square of the voltage, denoted as v(t) = V 2, as the system input. The hysteresis block,
represented by w(t) = Π[v](t), effectively captures the inherent hysteresis nonlinearity
observed in Dielectric Elastomer Actuators (DEAs). The mechanical component
is treated as a linear system, amenable to parameterization as φ(x)T θ. Notably,
the creep effect can be construed as either external disturbances or perturbations
occurring in the system parameters θ. For the purposes of controller design, we duly
consider them as bounded disturbances, denoted as ∆.

Figure 5.1: Simplified DEA model with assumptions

Based on the simplified model, the behaviors of the DEAs can be characterized
as:
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ẋ = φ(x)T θ + ∆ + BΠ[v](t) (5.1)

Here, x denotes the state of the dynamic system, θ encapsulates the parameter
vector of the system, and φ(x) represents the associated regressor. The majority of
nonlinear dynamic systems can be effectively cast within this structural framework
[70]. In this context, ∆ signifies the disturbance, B pertains to the actuation
parameter, and w(t)—as introduced coupling effects.

The system’s schematic overview is depicted in Figure 5.2. The primary goal
revolves around devising a controller v(t) that orchestrates the system’s state x to
trace the reference trajectory xd.

The pursuit of tracking control for such systems poses substantial challenges,
attributed to the following factors:

1. Coupled dynamics and actuator hysteresis: In practical scenarios, the system
dynamics are intricately intertwined with the behavior of actuators, which
inherently exhibit hysteresis effects. Consequently, the measurement of the
actuator’s output, denoted as w and serving as the input to the dynamics,
remains elusive.

2. Complex hysteresis nonlinearities: The hysteresis phenomena manifest as
intricate and nonlinear behaviors. Confronting and mitigating the adverse
consequences of this effect poses considerable difficulty.

3. Unknown dynamic parameters: Often, the system’s dynamic parameters are
uncharted territory. Designing controllers for systems with such limited
information is a nontrivial task.

4. Disturbance consideration: Incorporating disturbances into the control scheme
for these systems further compounds the challenge. Existing controller design
methodologies may not readily accommodate this requirement.

5.3 Prandtl-Ishlinskii (PI) Hysteresis Model

To tackle this intricate issue, the exploration necessitates the establishment of a
model that aptly characterizes the hysteresis nonlinear effect. Currently, available
hysteresis models can be broadly classified into two categories: physics-based models
and phenomenological models [61].
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Figure 5.2: Structure of the control problem for DEAs

Physics-based models are derived from the foundational physics principles or
phenomena. Notable examples encompass the Jiles-Atherton (J-A) Model [71] and
the domain wall model [72], both rooted in underlying physical mechanisms.

Operator based models stem from input-output relationships of hysteresis
behaviors, often neglecting certain intricate physics details. This category
encompasses models such as the Duhem model [61], the Backlash-like model [63],
and the Prandtl-Ishlinskii model (PI model) [58], among others.

Among the multitude of hysteresis models that have been proposed, the Prandtl-
Ishlinskii (PI) model has emerged as particularly prominent. This model’s allure
lies in its possession of an analytical inverse [45], a quality that bestows substantial
advantages upon controller design tailored to actuators grappling with hysteresis
effects. In the context of this paper, the PI model is chosen as the framework to
depict the hysteresis exhibited by actuators. The research endeavors will pivot on
the integration of this model with adaptive robust control techniques [73], aimed at
mitigating the limitations imposed by this nonlinear effect.

5.3.1 Play Operator

The Prandtl-Ishlinskii (PI) model belongs to the category of phenomenological
models. It characterizes hysteresis behavior through the incorporation of fundamental
hysteresis operators. Among these, two of the most widely recognized operators are
the play operator and the stop operator.

As illustrated in Figure 5.3, both of these fundamental operators exhibit memory
effects with a specified threshold denoted as r. To maintain a general perspective,
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Figure 5.3: Play operator and stop operator

the remainder of this paper will center its attention on the play operator and the
Prandtl-Ishlinskii (PI) model formulated on the foundation of play operators.

The conduct exhibited by the play operator, depicted in Figure 5.3, can be
delineated as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w(0) = Fr[v](0) = fr(v(0), 0)

w(ti+1) = Fr[v](ti+1) = fr(v(ti+1), w(ti)),

for ti < t ≤ ti+1, 0 ≤ i ≤ N − 1

(5.2)

with
fr(v, w) = max{v − r, min{v + r, w}} (5.3)

In this context, the symbols hold the following meanings:v(t) represents the input
signal, w(t) signifies the output signal, [0, tE] denotes a domain encompassing
monotone continuous functions [58], w(0) stands for the initial output, The
subsequent output of the operator hinges on the latest output w(ti).

5.3.2 Prandtl-Ishlinskii Model

Drawing upon the play operator elucidated in Section 5.3.1, the foundation is laid for
the play operator-based Prandtl-Ishlinskii model. Notably, Prandtl’s work [74] has
presented a formula conducive to describing hysteresis behavior, as detailed below:

w(t) = Π[v](t) = p0v(t) +
∫︂ R

0
p(r)Fr[v](t)dr (5.4)
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where p0 stands as a positive parameter, p(r) denotes a continuous density function,
adhering to the conditions p(r) > 0 and

∫︁∞
0 rp(r)dr < ∞. It’s noteworthy that

p(r) diminishes as r becomes sizable, thus warranting the introduction of an upper
integration limit R for practicality [58].

In practical applications, PI models are commonly employed in their discrete form:

w(t) = Π[v](t) = p0v(t) +
n∑︂

i=1
p(ri)Fri[v](t) (5.5)

where n signifies the count of engaged play operators, p(ri) represents a sequence of
weights associated with the play operators, Friv corresponds to the outputs of the
fundamental operators involved.

Figure 5.4: Hysteresis nonlinearities described by PI model

In Figure 5.4, the depicted plot elucidates the input-output correspondence of a
PI model. For this instance, the parameters were configured as follows: p0 = 1 and
p(r) = e−0.1r. The initial value was designated as w(0) = 0.

5.3.3 Some Advantages of PI Model

The PI model stands as a preeminent choice among hysteresis models, finding
extensive application across diverse realms of research and industries. This popularity
can be attributed to its distinct attribute of possessing an analytical inverse.
Furthermore, a decomposition method for the discrete PI model was put forth in
[75]. This model assumes a representation akin to the dot product involving a vector
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of fundamental play operators and a vector of weights. Capitalizing on these valuable
characteristics, the development of an adaptive robust controller becomes feasible for
addressing the intricate challenges presented by this system.

5.3.3.1 Inverse Prandtl-Ishlinskii Model (Inverse PI Model)

Among the numerous hysteresis models, the PI model and certain variations thereof
stand out due to their valuable characteristic of possessing an analytical inverse.
Notably, [45] has furnished an analytical methodology for constructing the inverse
of the PI model. This feat was accomplished by leveraging the initial loading curve
inherent to the PI model.

Ω(r) = p0r +
∫︂ r

0
p(ϵ)(r − ϵ)dϵ (5.6)

The construction of the inverse PI model is facilitated by the input-output
relationship, wherein Ω̇(0) = p0 and Ω̈(r) = p(r) hold true. By mirroring the loading
curve along the line y = x, the inverse PI model is effectively established. As a
consequence, the new threshold for the operators featured within the derived inverse
model can be determined:

si = p0ri +
i∑︂

j=1
p(rj)(ri − rj) (5.7)

where rj represents the thresholds of the play operators within the PI model, triggered
by the loading curve, si signifies the thresholds of the play operators within the inverse
model. Having established these relationships, the groundwork is laid for constructing
the inverse PI model:

Π−1[v](t) = Ω̇−1(0)v(t) +
∫︂ ∞

0
Ω̈−1(s)Fs[v](t)ds (5.8)

where Ω−1v(t) signifies the inverse loading curve, and its computation is accomplished
through the following expression:

Ω̇−1(0) = 1
p0

(5.9)

and
Ω̈−1(si) = pi

(p0 +∑︁i
j=1 p(rj))(p0 +∑︁i−1

j=1 p(rj))
(5.10)

In most previous research and practical applications, the identification of
hysteresis parameters has been a prerequisite for the development of an inverse model.
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This necessitated an offline approach, established prior to deployment. However, the
novel implementation presented in this paper harnesses adaptive control techniques,
enabling the online estimation of hysteresis density functions. As a result, the inverse
model can be formulated and dynamically updated during the course of the control
task. This progressive approach will be expounded upon in the subsequent sections
detailing the controller design.

5.3.3.2 Decomposition of Discrete Prandtl-Ishlinskii Model

As stated in the previous subsection, the discrete PI Model entails the integration of
multiple fundamental play operators. Consequently, the actuator’s output w(t) can
be aptly depicted in the following manner:

Bw(t) = BΠ[v](t)

= B(p0v(t) +
n∑︂

i=1
p(ri)Fri[v](t))

= OP [v](t)T P

(5.11)

where OPv = [v, Fr1(v), . . . , Frn(v)] ∈ R1×(n+1) represents a vector comprising the
outputs of the play operators. Notably, this vector is discernible, being reliant
on the input signals v and the thresholds ri associated with the play operators.
The thresholds are user-defined, while the control signals are accessible. P =
[Bp0, Bp(r1), . . . , Bp(rn)]T ∈ R(n+1)×1 denotes a vector embodying the weights
intended for estimation. The input to the dynamics Bw(t) can be presented as the
result of the product between these two components.

5.4 Controller Design

Leveraging the properties delineated above, the system model denoted as (5.1) can
be expressed in the subsequent manner:

ẋ = φ(x)T θ + ∆ + OP [v](t)T P (5.12)

where θ embodies the vector of unidentified parameters, φ(x) stands for the associated
regressor matrix, ∆ represents disturbances, OP [v] signifies the vector containing
the outputs derived from the fundamental play operators, P denotes the vector of
undetermined weights within the PI hysteresis model.
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Motivated by the adaptive controller proposed in [76], the current approach aims
to concurrently learn the system’s dynamic parameters θ and the enigmatic hysteresis
weights P in an online fashion throughout the tracking control process. Moreover,
to effectively address the influence of disturbances ∆, the design of the controller
for this novel system capitalizes on the adaptive robust control (ARC) methodology
introduced in [73].

5.4.1 Controller Structure

In the design of the adaptive robust controller, the following variables come into play:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e = x − xd

θ̃ = θ − θ̂

P̃ = P − P̂

(5.13)

wheree represents the tracking error of the system, θ̂ signifies the estimated dynamic
parameters vector θ, θ̃ embodies the estimation error associated with the dynamic
parameters θ, P̂ denotes the estimated hysteresis weights vector P , P̃ stands for the
estimation error pertaining to the weights vector P .

Hence, the controller can be formulated as follows:

v = Π−1
P̂

[u] (5.14)

where u represents a virtual adaptive robust control (ARC) signal, v stands for the
actual control signal, Π−1

Ŵ
denotes the inverse of the Prandtl-Ishlinskii hysteresis

model based on the estimated weights P̂ .

Property 1 When employing the control law (5.14), i.e., u = OP [v]T P̂ , the output
of the hysteresis actuator can be expressed as follows:

w(t) = OP [v]T P =OP [v]T (P̂ + P̃ )

=u + OP [v]T P̃
(5.15)

Hence, the output of the hysteresis actuators can be comprehended as comprising
the virtual control law u and an associated estimation error term OP [v]T P̃ .

99



Figure 5.5: The structure of the controller

5.4.2 Virtual Control Law Design

As depicted in Figure 5.5, the formulation of the virtual control law u(t) is illustrated:

u = −φ(x)T θ̂ + ẋd − Ke + ur (5.16)

where K denotes the control feedback gain, −φ(x)T θ̂ + ẋd represents the feed-forward
term, ur signifies the robust term, which will be elaborated upon in the subsequent
design process.

5.4.3 Dynamic Parameter and Hysteresis Adaptation

Due to the influence of system disturbances, the conventional adaptation law [76] is
enhanced by integrating a discontinuous projection operator [73]:

Figure

˙̂
θ = Proj(θ̂, Γ1φe) (5.17)

where Γ1 = diag(γ1,1, γ1,2, . . . , γ1,m) denotes the learning gain matrix for the dynamic
parameters, Proj(θ̂, ·) represents the discontinuous projection operation, which is
detailed as follows:

100



Proj(θ̂i, ·i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if θi = θimax and ·i > 0

0 if θi = θimin and ·i < 0

·i else

(5.18)

where θ̂i signifies the estimated value of the ith parameter within θ. θmax and
θmin represent the upper and lower bounds of the parameter values. Utilizing
this projection operator, the estimation θ gains advantages from the ensuing two
properties:

θmin < θ̂ < θmax (5.19)

and
−eT φT θ̃ + Proj(θ̂, Γ1φe)Γ−1

1 θ̃ ≤ 0 (5.20)

which will play a crucial role in the subsequent stability analysis of the controller.
Likewise, the tuning of hysteresis estimations involving the weight vector P̂ can

also be formulated with the assistance of the projection operator.

˙̂
P = Proj(P̂ , Γ2OP [v]e) (5.21)

where Γ2 = diag(γ2,0, γ2,1, . . . , γ2,n) represents the learning gain matrix for the
hysteresis weights.

Proj(P̂ , ·) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if Pi = Pimax and ·i > 0

0 if Pi = Pimin and ·i < 0

·i else

(5.22)

Moreover, the adaptation of the hysteresis weights P can draw benefits from the
properties (5.19) and (5.20).

5.4.4 Stability Analysis

In order to ensure the stability of the proposed controller and facilitate the design of
the robust term ur, the subsequent Lyapunov candidate is introduced:
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V = Vs + Vθ + VP = 1
2(eT e + θ̃T Γ−1

1 θ̃ + P̃ T Γ−1
2 P̃ ) (5.23)

Subsequently, the derivative V̇ is determined as follows:

V̇ =eT ė + θ̃T Γ−1
1

˙̃θ + P̃ T Γ−1
2

˙̃P (5.24)

By substituting controller (5.14) and (5.16) into the system dynamics (5.1), the
error dynamics of the closed-loop system can be derived as:

ė + Ke = −φT θ̃ − OP [v]T P̃ + ∆ + ur (5.25)

Combining equations (5.24) and (5.25), we can obtain:
⎧⎪⎨⎪⎩V̇ = −eT Ke + eT (∆ + ur)

V̇s = −eT Ke + eT (−φT θ̃ − OP [v]T P̃ + ∆ + ur)
(5.26)

Consequently, by selecting the robust term ur as:

ur = − 1
4ε

[∥θmax − θmin∥2 ∥φ∥2

+ ∥Pmax − Pmin∥2 ∥OP [v]∥2 + δ]e
(5.27)

where ε is a parameter to be designated, δ signifies the disturbance limit ∆.
As such, the derivative of the Lyapunov candidate becomes:

V̇s ≤ −eT Ke + ε (5.28)

Consequently, both V and Vs exhibit non-increasing behavior, affirming that the
designed controller ensures the system’s stability.

5.5 Simulation Study

In this section, the aforementioned approach will be demonstrated through the
application to a simple nonlinear system, which can be defined as follows:

ẋ = −3x2 + ∆ + w (5.29)
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in which ⎧⎪⎨⎪⎩ϕ(x) = −x2

θ = 3
(5.30)

For modeling the hysteresis effects of the actuators, the PI model is adopted, with
parameters set as p0 = 1 and pr = e(−0.1r).

The desired trajectory is defined as xd = 1−cos(t). The disturbance is specified as
∆ = 0.7(−1)round(t), oscillating periodically between +0.7 and −0.7. The simulation
is conducted within the Simulink environment, with a maximum step size of 1ms.

The controller parameters are detailed in Table 5.1. The results of the simulation
are depicted in Figures 5.6-5.8.

Table 5.1: Controller Parameters

Γ1 100 Γ2 100I
K 10
δ 0.7 ε 0.5
θ̂0 2 P̂0 0.5P

θmin 1 Pmin 5P
θmax 5 Pmax 0.2P

Figure 5.6: Trajectory tracking of the developed controller, with disturbances

As observed in Figures 5.6 and 5.8, it is evident that despite the challenges
elucidated earlier, the proposed controller is able to ensure commendable performance.
Furthermore, the controller is adept at estimating unknown system dynamic
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Figure 5.7: Prediction of system parameter θ = 3 , with and without disturbances

Figure 5.8: Tracking error of the system with hysteresis actuator, with and without
disturbances

parameters, as evident from Figure 5.7. Notably, when disturbances are absent, the
estimation rapidly converges to the actual parameter value of θ = 3.

5.6 Experimental verification

To further validate the efficacy of the proposed control approach, the developed
algorithm will be implemented on the conical actuators, as detailed in Chapter 1.3.
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The identified parameters in Chapter 4.6 will serve as initial estimations for the system
dynamics parameters and hysteresis density functions. In order to acquire velocity
signals for the Dielectric Elastomer Actuators (DEAs), a first-order low-pass filter
represented by H(S) = 1

1+0.2S
will be applied to the derivative of the position signals.

A reference trajectory of xd = 0.1(0.5 + sin(t)) mm is chosen for the validation.
Figure 5.9 illustrates the system’s response, showing that at the outset, the system
exhibits some errors, which are subsequently effectively mitigated by the controller.
Figure 5.10 provides a visual representation of the control signals employed for the
tracking task.

Figure 5.9: Trajectory tracking for xd = 0.1(0.5 + sin(t)) mm
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Figure 5.10: Control signal for xd = 0.1(0.5 + sin(t)) mm

5.7 Concluding Remarks

In this chapter, we present an adaptive robust controller as a viable solution to
tackle the challenges posed by uncertain dynamic systems coupled with actuators
characterized by unknown hysteresis and exposed to external disturbances. The
analysis of the Prandtl-Ishlinskii (PI) hysteresis model has yielded significant insights
that we leverage in this endeavor. By harnessing these insights, we explore the
integration of the hysteresis model with the adaptive robust control approach. The
resulting adaptive robust controller demonstrates proficiency in achieving tracking
objectives while simultaneously estimating system parameters, even in scenarios
characterized by limited system information and the presence of disturbances. We
substantiate the effectiveness of the proposed controller through a comprehensive
evaluation involving simulations and experimental results.
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Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

Dielectric Elastomer (DE) enabled actuators exhibit great promise for application
in the field of soft robotics, owing to their exceptional performance characteristics.
However, the complicated nonlinear nature of Dielectric Elastomer Actuators (DEAs),
which includes complexities such as hysteresis and numerous dependencies, makes the
modeling and control of DEAs inherently challenging. This dissertation represents a
comprehensive exploration of the modeling and control of DEAs, with the overarching
objective of laying a solid foundation for the advancement of soft robotic applications
integrating DE technology. The principal accomplishments of this research endeavor
can be succinctly summarized as follows:

1. Experimental Analysis: A comprehensive series of experimental tests were
conducted to analyze the input-output characteristics of Dielectric Elastomer
Actuators (DEAs) across varying input amplitudes (6.0kV −8.0kV ), frequencies
(0.2Hz − 1Hz), and mechanical loads (m = 100g − 500g). The results
revealed the intricate and complex nature of DEA responses, emphasizing
their dependence on input frequencies, amplitudes, and external mechanical
loads. These findings provide essential insights into DEA behavior, forming the
foundation for subsequent modeling and control strategies.

2. Physics-Based Models: Two distinct physics-based models for conical
and planar DEAs were introduced, based on the principles of free energy
within viscoelastic materials. These models accurately capture the intricate
behaviors of DEAs, including their complex dependencies on various factors.
Experimental validations demonstrated the models’ effectiveness in representing
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DEA behaviors, enhancing our understanding and control of these dynamic
systems.

3. Data-in-Loop Model: To address the need for actuator-specific details in
previous models, a versatile data-in-loop model was proposed. This innovative
model utilizes nonlinear blocks, incorporating features such as creep and
hysteresis, to represent intricate DEA behaviors without relying on geometry-
specific information. This approach accommodates the complex dependencies
inherent in DEA systems.

4. Robust Adaptive Controller: Nonlinear effects in DEAs can lead to
control performance issues. To mitigate these effects, feedforward inverse
compensation methods were applied for controller design. A PI hysteresis-
based model characterizes the nonlinear impact in DEAs, and the direct inverse
compensation technique is employed to derive the inverse of the PI model.
This forms the basis for a robust adaptive controller, aimed at improving
control performance and addressing the challenges posed by dynamic behaviors
in DEAs. Simulation and experimental results validated the efficiency of the
developed controller.

These achievements collectively contribute to advancing our understanding,
modeling, and control of DEAs, paving the way for their more effective utilization in
soft robotics applications.

6.2 Recommendations for Future Works

Continuing the trajectory of investigation within this dissertation’s research domain,
the following prospective research avenues hold considerable promise for future
exploration:

1. Building upon the physics-based model, there is a compelling need to develop
an automated modeling algorithm that incorporates the actuators’ parameters
seamlessly. This algorithmic approach aims to streamline the modeling process,
ensuring efficiency and accuracy in predicting the behavior of the actuators.

2. Building upon the established data-in-loop model, it becomes imperative to
incorporate considerations for the interaction with the environment. This step
is essential to not only enhance the model’s robustness and accuracy but also
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to enable the seamless integration of the developed methods into practical
applications within the realm of soft robotics.

3. The advanced inverse-based robust adaptive controller, as it stands, possesses
considerable potential for further extension, enabling its applicability to
intricate nonlinear behaviors exhibited by actuators and complex system
dynamics. This extension would not only enhance the controller’s versatility
but also broaden its scope of application in diverse engineering scenarios.
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