
Linear Quadratic Control using Reinforcement

Learning and Quadratic Neural Networks

Soroush Asri

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science in Electrical and Computer

Engineering

Concordia University

Montréal, Québec, Canada

January 2024

© Soroush Asri, 2024

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Soroush Asri

Entitled: Linear Quadratic Control using Reinforcement Learning and Quadratic

Neural Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Electrical and Computer Engineering

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final Examining Committee:

Chair

Dr. R. Selmic

External Examiner

Dr. W. Lucia

Examiner

Dr. R. Selmic

Supervisor

Dr. L. Rodrigues

Approved by

Dr. Y. R. Shayan, Chair

Department of Electrical and Computer Engineering

2023

Dr. M. Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Linear Quadratic Control using Reinforcement Learning and Quadratic Neural Networks

Soroush Asri

This thesis focuses on the application of reinforcement learning (RL) techniques to design

optimal controllers and observers for linear time-invariant (LTI) systems, namely linear

quadratic regulator (LQR), linear quadratic tracker (LQT), and linear quadratic estima-

tor (LQE), utilizing measured data. The closed-form solution and wide-ranging engineering

applications of the linear quadratic (LQ) problems have made it a preferred benchmark for

assessing RL algorithms. The primary contribution lies in the introduction of novel pol-

icy iteration (PI) methods, wherein the value-function approximator (VFA) is designed as

a two-layer quadratic neural network (QNN) trained through convex optimization. To the

best of our knowledge, this is the first time that a convex optimization-trained QNN is em-

ployed as the VFA. The main advantage is that the QNN’s input-output mapping has an

analytical expression as a quadratic form, which can then be used to obtain an analytical

linear expression for policy improvement. This is in stark contrast to available techniques

that must train a second neural network to obtain the policy improvement. Due to the

quadratic input-output mapping of the QNNs and the quadratic form of the value-function

in the LQ problems, the QNN is a suitable VFA candidate. The thesis designs the LQR

and LQT without requiring the system model. The thesis also designs the LQE correcrtion

term provided that the system model is given. The thesis establishes the convergence of the

learning algorithm to the LQ solution provided one starts from a stabilizing policy. To assess

the proposed approach, extensive simulations are conducted using MATLAB, demonstrating

the effectiveness of the developed method. Furthermore, the proposed observer is designed

for a nonlinear pendulum with a given linearized model and it is shown that the proposed

observer is improved over utilizing only linearized model. This shows the adaptability for

nonlinear systems.

iii

Acknowledgements

I would like to express my heartfelt gratitude to all those who have contributed to the

completion of this thesis. First and foremost, I extend my deepest appreciation to my thesis

supervisor, Dr. Luis Rodrigues, whose guidance, expertise, and unwavering support have

been invaluable throughout this journey. His insightful feedback and encouragement have

been instrumental in shaping the direction of this research. I am also indebted to MITACS

for their generosity and support in funding my research, without which this work would

not have been possible. I’m incredibly grateful to SII Canada for their support during my

master’s project. It really helped with my thesis and gave me great experiences.

My sincere thanks go to my friends, girlfriend, and colleagues for their constant encour-

agement and understanding during the challenging times of this research. Their willingness

to lend a helping hand have made this endeavor more enjoyable. I would like to express my

gratitude to Concordia’s faculty and staff for their continuous support during my graduate

studies. Lastly, I want to express my deepest gratitude to my family for their unending love,

support, and patience. Their unwavering belief in my abilities has been the driving force

behind my pursuit of knowledge

This thesis would not have come to fruition without the collective efforts and encour-

agement of all these individuals, and I am truly honored and thankful for their significant

contributions to my academic journey.

iv

Contents

List of Figures viii

List of Tables x

Glossary xi

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Survey . 3

1.3 Contributions . 7

1.4 Thesis Structure . 8

2 Theoretical Preliminaries 9

2.1 Reinforcement Learning . 9

2.1.1 Fundamental Concepts in Reinforcement Learning 9

2.1.2 Policy Iteration Method . 11

2.2 Optimal Controllers for Discrete-Time Linear Time-Invariant Systems 14

2.2.1 Linear Quadratic Regulators . 14

2.2.2 Linear Quadratic Trackers . 17

2.2.3 Linear Quadratic Estimators . 20

2.3 Two-layer Quadratic Neural Networks . 22

2.3.1 Training the QNN with a Convex Optimization 23

v

2.3.2 Obtaining the Optimal Weights . 25

3 Linear Quadratic Controller with Quadratic Neural Networks and Rein-

forcement Learning 27

3.1 LQR Design . 27

3.1.1 Problem Statement . 28

3.1.2 Policy Evaluation . 29

3.1.3 Policy Improvement . 31

3.1.4 The Proposed Algorithm . 33

3.1.5 Simulations . 34

3.1.5.1 Pendulum Example . 34

3.1.5.2 Quadrotor Example . 38

3.2 LQT Design . 42

3.2.1 LQT as an LQR Problem . 43

3.2.2 Policy Evaluation . 45

3.2.3 Policy Improvement . 47

3.2.4 The Proposed Algorithm . 48

3.2.5 Simulation . 50

4 Optimal Observer by Policy Iteration and Quadratic Neural Networks 54

4.1 Problem Statement . 55

4.2 Modified Policy Iteration . 57

4.2.1 Refining the Bellman Equation . 58

4.2.2 Policy Evaluation Step . 60

4.2.3 Policy Improvement Step . 61

4.3 QNNs as the Policy Evaluator . 62

4.4 Simulation Results . 65

4.4.1 Pendulum Linear Model Results . 66

vi

4.4.2 Pendulum Nonlinear Model Results 68

4.4.2.1 Simulation Results with γ = 1 69

4.4.2.2 Simulation Results with γ = 0.4 70

5 Conclusions and Future Work 72

References 74

vii

List of Figures

2.1 Interaction between the agent and the environment 10

2.2 Overview of policy iteration method . 14

2.3 Block diagram showing LQR as a RL problem 16

2.4 Block diagram showing LQT as a RL problem 18

2.5 Block diagram showing LQE as a RL problem 21

2.6 Two-layer QNN with one output . 23

3.1 Overview of LQR proposed design . 34

3.2 The simple pendulum . 35

3.3 Convergence to LQR controller for the pendulum 37

3.4 Free body diagram of the quadrotor . 38

3.5 Convergence to LQR controller for the quadrotor 42

3.6 Position and speed trajectory using the optimal policy 43

3.7 The desired trajectory of the quadcopter’s poistion 50

3.8 Convergence to LQT controller for the quadrotor 52

3.9 Comparison of yk and rk using the optimal policy 52

4.1 Overview of LQE proposed design . 66

4.2 QNN as the policy evalautor to obtain Ĥπ
i in i-th iteration 67

4.3 LQE pendulum - Convergence of Hπj . 68

4.4 LQE pendulum - Cost-to-go from the initial state with γ = 1 69

4.5 LQE pendulum - Output error comparison with γ = 1 70

viii

4.6 LQE pendulum - Cost-to-go from the initial state with γ = 0.4 71

4.7 LQE pendulum - Output error comparison with γ = 0.4 71

ix

List of Tables

3.1 LQR pendulum - The random initial stabilizing policies 36

3.2 LQR quadrotor - The random initial stabilizing policies 42

3.3 LQT quadcopter - The random initial stabilizing policies 51

x

Glossary

ANN artificial neural network.

ARE algebraic Riccati equation.

LQ linear quadratic.

LQE linear quadratic estimator.

LQR linear quadratic regulator.

LQT linear quadratic tracker.

LTI linear time-invariant.

NN neural networks.

PE persistent excitation.

PI policy iteration.

QFA Q-function approximator.

QNN quadratic neural network.

RL reinforcement learning.

VFA value-function approximator.

xi

Chapter 1

Introduction

1.1 Motivation

Optimal controllers and observers minimize a given cost function subject to a dynamic model.

This design method has received a lot of attention, especially due to its potential in applica-

tions such as autonomous vehicle navigation and robotics, economics and management, as

well as energy optimization, to cite a few [1]. Traditionally, optimal control and observer de-

sign relies on well-established techniques like dynamic programming, calculus of variations,

and Pontryagin’s maximum principle [2]. While these methods have proven effective in many

cases, they often face challenges when dealing with large-scale, nonlinear, or uncertain sys-

tems [3][4]. To address these problems data-driven methods such as RL have been studied

for optimal control problems [5][6]. RL algorithms learn from their interactions with the

system, dynamically adapting the control strategies to minimize the cost function [7]. The

rise of RL in artificial intelligence has demonstrated remarkable success in learning complex

decision-making strategies in uncertain situations [8].

The motivation for exploring the integration of RL in optimal control and observer design

stems from several key factors: [5][9]

1. Adaptability: In practical applications, optimal control problems can be complex

1

with varying dynamics and uncertainties in the system model. While traditional control

methods often derive analytical solutions for each specific problem, RL can provide a

general real-time data-driven approach to optimize control policies. Therefore, RL can

adapt to this varying dynamics and uncertainties, distinguishing it from traditional

methods.

2. Handling Complex Dynamics: Many real-world systems have nonlinear dynamics

and are subject to uncertainties. Traditional optimal control methods struggle to find

optimal control solution in such cases, whereas RL algorithms can leverage function

approximators and neural networks (NN) to approximate complex optimal control

policies efficiently, even in high-dimensional state spaces.

3. Overcoming Model Inaccuracies: In practice, obtaining an accurate system model

may be challenging. RL can acquire optimal control policies even without the system

model.

4. Combining Traditional with Data-Driven Control Methods: RL offers a unique

opportunity to combine traditional control strategies with data-driven learning ap-

proaches. This integration can result in improved performance and ensure safety in

critical applications.

The LQ problem is an optimal control task that seeks to find a control strategy that

minimizes a quadratic cost function over a given time horizon for a linear dynamic system.

The closed-form solution and wide-ranging engineering applications of the LQ problem have

made it a preferred benchmark for assessing RL algorithms [10][11]. Consequently, the RL

community has shown significant interest in solving LQ problems using different techniques

to ultimately address nonlinear optimal control problems effectively [12][9]. As indicated in

articles [13][14][15], a considerable number of papers utilize NNs within their RL algorithms

to solve optimal control problems. However, employing a artificial neural network (ANN) as

a function approximator in RL algorithms presents several noteworthy drawbacks [16]:

2

1. The optimization of the NN’s weights is not a convex optimization and training the

NN yields locally optimal weights.

2. Selecting the appropriate architecture for the NN typically involves a trial and error

procedure.

3. The NN lacks a straightforward analytical expression.

Hence, this led us to explore the integration of RL techniques and quadratic neural

networks (QNN) [17] to solve LQR, LQT, and LQE with the specific objective to overcome

the drawbacks associated with employing ANNs.

1.2 Literature Survey

Typically, optimal control and observer problems are solved through two primary approaches.

One method, dynamic programming, relies on Bellman’s principle of optimality [18]. Another

approach involves Pontryagin’s maximum principle [2].

However, most real systems exhibit nonlinear dynamics, which can pose challenges when

attempting to solve nonlinear optimal control problems. To address this issue, practical

approaches often involve approximating nonlinear systems with linear models, enabling the

use of an LQ controller with a closed-form solution [19][20]. The LQ problem including

LQR [21], LQT [22], LQE [23], LQ Gaussian (LQG) [21] can then be formulated as finding

the solution of a Riccati equation [2]. An iterative technique for computing solutions of the

Riccati equation is discussed in article [24]. Nevertheless, employing this iterative technique

to solve the LQ problem results in an off-line backward-in-time procedure, necessitating

an accurate linear model of the system. There are also instances where complex nonlinear

systems cannot be adequately approximated by linear models or where the system’s dynamics

remain unknown.

Therefore, conventional techniques for solving optimal control problems may not be ap-

plicable. As a result, researchers have explored data-driven methods such as RL, system

3

identification, imitation learning, Gaussian process regression, and evolutionary algorithms

to find approximations to the optimal solution [25][26][27].

1. Imitation Learning: In this approach, data from expert demonstrations or optimal

control trajectories is used to learn a control policy that imitates the demonstrated

behavior. It is particularly useful when access to an optimal control solution is available

for a few scenarios [25].

2. System Identification: In this approach, data is utilized to acquire a model for the

system through diverse methods such as dynamic mode decomposition (DMD), and

subsequently, the optimal control is formulated based on the obtained model [26].

3. Gaussian Process Regression (GPR): GPR is a non-parametric data-driven method

that can be used for system identification and control. It models the underlying dy-

namics as a Gaussian process and uses Bayesian inference to make predictions about

the system’s behavior [27].

4. Evolutionary Algorithms: Evolutionary algorithms, such as genetic algorithms, can

be used to search for control policies. These algorithms explore the solution space by

iteratively evolving a population of candidate policies [28].

5. RL algorithms: RL is a powerful data-driven approach that enables an agent to learn

optimal control policies by interacting with the environment and adjusting its actions

or control policies to maximize cumulative rewards [29]. The majority of the research

focusing on RL in optimal control explores discrete-time optimal control [6].

This thesis focuses on integrating RL into discrete-time optimal control problems. There

are two main RL methods: model-based RL, and model-free RL [30] [14].

1. Model-Based RL: In model-based RL, the agent uses a learned or known model of

the environment, which includes information about the system dynamics, transition

4

probabilities [7], and rewards. Model-based methods can be more sample-efficient in

some situations because they can use the model to generate hypothetical data for

learning, reducing the need for real-world interactions with the environment.

2. Model-Free RL: In model-free RL, the agent does not explicitly learn a model of the

environment but instead learns a policy or value-function [7] directly from interacting

with the environment providing simplicity and robustness in handling complex envi-

ronments with uncertain dynamics [7]. Model-free methods do not require knowledge

of the system dynamics, making them more applicable to a wider range of problems,

especially when the dynamics are complex or unknown.

Model-free RL has gained increasing attention due to its interpretation as direct adaptive

control [31][32]. Its growing popularity stems from the fact that model-free RL does not

rely on system identification, making it a compelling choice for handling complex nonlinear

systems [33]. Model-free RL can be divided into two categories: value-based and policy-based

algorithms [11].

1. Value-based RL: Value-based RL is a broad category of RL algorithms that focus

on estimating value-functions, such as the state-value-function (V-function) or the

action-value-function (Q-function) [5]. By learning these value-functions, value-based

RL algorithms can subsequently derive the optimal policy. One popular approach to

estimate the value-function is using the temporal difference (TD) equation [34], where it

minimizes the Bellman error by iteratively updating the value-function. The Bellman

error is the difference between the estimated value-function and the value-function

defined by the Bellman equation. Value-based algorithms that use TD equation are

called adaptive dynamic programming (ADP) [6].

2. Policy-based RL: Policy-based RL is an approach where the agent directly learns a

strategy to select actions in different states, without explicitly estimating the value-

function.

5

ADP is widely favored in RL due to its link with dynamic programming and its capacity

for online learning without the system model [35]. The applications of ADP methods, the

policy-iteration (PI) and the value-iteration algorithms (VI), to feedback control are dis-

cussed in references [6][36]. For optimal control, PI is preferred over VI due to its stability

arising from the policy improvement guarantee, which leads to reliable convergence to the

optimal policy. Additionally, PI’s incremental policy updates help avoid large policy swings

and ensure more robust learning in complex environments [37].

The PI algorithm has two phases: policy evaluation and policy improvement. Instead of

directly solving the Hamilton-Jacobi-Bellman (HJB) equation, it first evaluates the value-

function of a given initial stabilizing policy. The value-function associated with this policy

is then minimized to derive an improved policy. The two phases are then repeated until the

optimal policy is obtained.

In the motivation section, it was mentioned that LQ problems have been implemented

with various RL algorithms to address their wide range of applications and to serve as

benchmarks for evaluating the performance of these RL algorithms. Therefore, PI has been

applied to solve discrete-time LQR in [38], discrete-time LQG in [39][40], and discrete-time

LQT in [41][42] without the system model. References [43][44] use the PI algorithm to obtain

the discrete-time LQE to estimate all the states using the system model.

Generally, ANNs are utilized to approximate the value-function in the policy evaluation

step [13][14]. However, in addition to the mentioned issues of ANNs in the motivation

section, using ANNs for policy evaluation requires employing another ANN to minimize the

value-function with respect to the control policy, as ANNs lack a simple analytical input-

output mapping [5]. To address the mentioned issues, a two-layer QNN, trained by convex

optimization and introduced in [17], can be chosen as the value-function approximator. It

is shown in [16][45] that QNNs work well in applications such as regression, classification,

system identification and control of dynamical systems. The advantages of using the two-

layer QNN as the value-function approximator compared to non-quadratic neural networks

6

are:

1. Two-layer QNNs are trained by solving a convex optimization. Therefore, the global

optimal weights are obtained [17].

2. The optimal number of neurons in the hidden layer is obtained by solving the convex

optimization problem [16].

3. The input-output mapping of the QNN is a quadratic form [16]. As a result, one can

analytically minimize the value-function with respect to the control policy instead of

using a second neural network in the policy improvement step.

Consequently, we were encouraged to choose two-layer QNNs as the value-function ap-

proximator in a PI algorithm to solve discrete-time LQ problems.

1.3 Contributions

This thesis proposes a novel approach to design discrete-time LQR, LQT, and LQE using

the PI algorithm with a two-layer QNN as the policy evaluator. The LQR and LQT are

designed without requiring the system model. Replacing the ANN with a two-layer QNN in

the PI algorithm, a step taken for the first time, reveals an extensive range of benefits:

1. The value-function can be analytically minimized with respect to the control policy,

eliminating the requirement for a second neural network in the policy improvement

step.

2. Both the input-output mapping of the two-layer QNN and the value-function of the

LQ problems are quadratic. This allows for the direct derivation of a linear control

policy. Therefore, the two-layer QNN is a suitable candidate to approximate the value-

function.

7

3. The global optimal weights are achieved by training two-layer QNNs using a convex

optimization problem.

4. By solving the convex optimization problem, the optimal number of neurons in the

hidden layer is determined.

5. Demonstration that QNN can be used effectively in RL.

The thesis verifies the convergence to LQ problem solutions through both theoretical proofs

and practical case studies using MATLAB simulations.

1.4 Thesis Structure

This thesis is organized into several chapters. Firstly, chapter 2 offers an overview of the

theoretical concepts necessary for this work. It covers discrete-time LQR, LQT, LQE, as

well as reinforcement learning, focusing on the PI algorithm, and a detailed review of the

two-layer QNN. In Chapter 3, the proposed algorithm for solving LQR is presented, and

it is further extended to address LQT problems. Lastly, chapter 4 outlines the proposed

algorithm for solving LQE, leveraging the duality between LQR and LQE [46]. Chapter 5

closes the thesis by presenting the conclusions.

8

Chapter 2

Theoretical Preliminaries

This chapter gives essential theoretical concepts to establish the foundation for this work. It

covers discrete-time LQR, LQT, LQE, and presents reinforcement learning, with a specific

focus on the PI algorithm. Additionally, a comprehensive review of the two-layer QNN is

provided.

2.1 Reinforcement Learning

First, we introduce some terms in RL [7].

2.1.1 Fundamental Concepts in Reinforcement Learning

• Agent: Agent is an entity that interacts with an environment, making decisions based

on the observed states to minimize cumulative cost through a learning process.

• Environment: The environment in RL is the system where the agent operates and

from which it receives observed states and penalties based on its actions.

• State: The state sk represents the situation or configuration of the environment at

time step k, containing all relevant information that the agent uses to take actions.

9

Figure 2.1: Interaction between the agent and the environment

• Action: The action ak is a decision or a move made by the agent at the state sk.

• Policy: A policy π(.) is a strategy or rule that an agent follows to make decisions in

an environment, specifying how it selects actions based on states to minimize costs.

• Observed state: The observed state refers to the state that the agent have access,

which serves as input for decision-making and action selection.

• Local cost: the local cost c(sk, ak) typically refers to the immediate cost associated

with taking action ak in the state sk. It represents the immediate impact of the chosen

action ak.

• V-function: V-function V π(sk) is a function that estimates the expected cumulative

cost an agent experiences from the given state sk while following the policy π(.). It

represents the long-term value of being in that state.

Mathematically, it is written as:

V π(sk) =
∞∑
i=k

γi−k · c(si, ai) (2.1)

where 0 < γ ≤ 1 is a discount factor to prioritize the costs that occur in the near

future over those that occur further in the future.

10

• Q-function: Minimizing the V-function to improve the policy may require knowledge

of the environment’s dynamics [6]. To address this limitation and avoid relying on

system dynamics, an alternative approach uses the Q-function [47]. The Q-function

Qπ(sk, ak) estimates the expected cumulative cost by taking the action ak at the state

sk and following the policy π(.) thereafter.

The RL objective is to find the optimal policy π∗(.) that minimizes V π(sk) for all states

sk. Figure 2.1 shows the interaction between the agent and the environment.

2.1.2 Policy Iteration Method

PI is a RL algorithm with the assumption that a stabilizing policy π0(.) is known. The PI

has two steps:

1. Policy Evaluation: Policy evaluation estimates V π(.) for a given stabilizing policy

π(.). It involves solving the Bellman equation (2.2), obtained from equation (2.1), for

V π(sk).

V π(sk) = c(sk, ak) + γV π(sk+1) (2.2)

2. Policy Improvement: Once the V-function V π(.) has been estimated, the policy

improvement step aims to find a better policy π′(.) that improves the agent’s cumulative

cost. The new stabilizing policy π′(.) is found by

π′(sk) = argmin
π

[c(sk, ak) + γV π (sk+1)] (2.3)

The PI algorithm using a V-function is given in Algorithm 1.

11

Algorithm 1 Policy iteration using V-function

Select an initial stabilizing policy π0(.). Then, for j = 0, 1, 2, . . . perform policy evaluation
and policy improvement steps until convergence
Policy Evaluation:
Obtain V πj(.) by solving

V πj(sk) = c(sk, ak) + γV πj(sk+1) (2.4)

Policy improvement:
Obtain πj+1(.) by solving

πj+1(sk) = argmin
πj

[c(sk, ak) + γV πj (sk+1)] (2.5)

Nevertheless, applying the policy improvement step using Algorithm 1 may demand

knowledge of the environment’s dynamics, which could be inaccessible. To tackle this chal-

lenge, one can estimate the Q-function during policy evaluation instead [47].

This is achieved by employing the definition of the Q-function, which is given as

Qπ(sk, ak) = c(sk, ak) + γV π(sk+1) (2.6)

Utilizing Bellman’s principle of optimality [6], the equation (2.6) can be written as

Qπ(sk, ak) = c (sk, ak) + γQπ (sk+1, π (sk+1)) (2.7)

Hence, utilizing equation (2.7), one can estimate the Q-function to carry out PI without

requiring knowledge of the system parameters. This leads to the development of Algo-

rithm 2 [48].

12

Algorithm 2 Policy iteration using Q-function

Select an initial stabilizing policy π0. Then, for j = 0, 1, 2, . . . perform policy evaluation
and policy improvement steps until convergence
Policy Evaluation:
Obtain Qπj(.) by solving

Qπj(sk, ak) = c(sk, ak) + γQπj(sk+1, πj(sk+1)) (2.8)

Policy improvement:
Obtain πj+1(.) by solving

πj+1(sk) = argmin
ak

Qπj(sk, ak) (2.9)

Solving equations (2.4) and (2.8) can be challenging as the Bellman equation is a Lya-

punov function [6]. Given that the Bellman equation is a fixed point equation [6], we can

derive V π(·) and Qπ(·) for the stabilizing policy π(·) by employing equations (2.10) and

(2.11), respectively. These iterative processes, starting with any initial value V π
0 and Qπ

0 ,

converge to the limit V π
i → V π and Qπ

i → Qπ [14]. Consequently, (2.4) and (2.8) can be

replaced by iterative quations (2.10) and (2.11), respectively.

V π
i+1(sk) = c(sk, ak) + γV π

i (sk+1) (2.10)

Qπ
i+1(sk, ak) = c(sk, ak) + γQπ

i (sk+1, π(sk+1)) (2.11)

This thesis uses a two-layer QNN as the VFA to solve iterative equations (2.10) and (2.11)

for the LQ problems.

Figure 2.2 illustrates the PI method through a flowchart, offering a simplified and com-

prehensive overview with the stopping criterion ϵ.

Remark 1. PI algorithms require persistent excitation (PE) [6][39]. To achieve PE, a

probing noise term nk can be added to the action ak. It is shown in reference [39] that the

solution computed by PI differs from the actual value corresponding to the Bellman equation

13

Figure 2.2: Overview of policy iteration method

when the probing noise term nk is added. It is discussed in reference [39] that adding the

discount factor γ reduces this harmful effect of nk.

2.2 Optimal Controllers for Discrete-Time Linear Time-

Invariant Systems

In this section, we examine discrete-time LQR, LQT, and LQE, along with the conventional

approaches for solving them.

2.2.1 Linear Quadratic Regulators

Consider a discrete-time LTI dynamical system described by the state equation:

xk+1 = Axk +Buk (2.12)

14

where xk is the state vector at time step k, uk is the control input at time step k, A and B are

constant matrices that represent the system dynamics. Assume the system is controllable [49]

and all states can be measured without noise.

The objective is to find a sequence of control inputs that minimizes the quadratic cost

function

V π(xk) =
∞∑
i=k

γi−k
(
xT
i Qxi + uT

i Rui

)
(2.13)

where 0 < γ ≤ 1 is the discount factor, Q and R are both symmetric positive definite [50]

weighting matrices that penalize the state and control effort, respectively, and V π(xj) is the

value-function at time step j,.

The optimal control law can be obtained by solving the discrete-time algebraic Riccati

equation (ARE) [51]

P π = Q+ γATP πA− γ2(ATP πB)(R + γBTP πB)−1(BTP πA) (2.14)

where P π is the solution to the discrete-time ARE, and the optimal control law is given

by

uk = −Kπxk (2.15)

where Kπ = (R + γBTP πB)−1(γBTP πA).

Remark 2. To solve the ARE (2.14) for P π, the iterative equation (2.16) can be initiated

starting with any P π
0 , which leads to the convergence of P π

i towards P π [52].

P π
i+1 = Q+ γATP π

i A− γ2(ATP π
i B)(R + γBTP π

i B)−1(BTP π
i A) (2.16)

The resulting closed-loop system with the optimal control law is

xk+1 = (A− BKπ)xk (2.17)

15

Figure 2.3: Block diagram showing LQR as a RL problem

This linear control law, provides a stable and optimal control strategy that minimizes the

specified cost function over an infinite time horizon for the given linear system.

The LQR problem can be considered as a RL problem as shown by the block diagram in

Fig 2.3, where the controller is the agent, uk is the action, xk is the state, the LTI system is

the environment, and the policy is

π(xk) = −Kπxk (2.18)

Note that the V-function has the following quadratic form [6]

V π(xk) = xT
kP

πxk (2.19)

Based on the definition of the Q-function, the Q-function of the LQR can be expressed as

follows

Qπ(xk, uk) = ck(xk, uk) + γV π(xk+1)

= xT
kQxk + uT

kRuk + γ(Axk +Buk)
TP π(Axk +Buk)

=

[
xk uk

]
Hπ

[
xk uk

]T (2.20)

where

16

Hπ =

Q+ γATP πA γATP πB

γBTP πA R + γBTP πB

 (2.21)

As a result, both the Q-function and V-function have quadratic forms. Also note that both

Hπ and P π are symmetric positive definite matrices.

2.2.2 Linear Quadratic Trackers

The LQT is an extension of the LQR that deals with the problem of controlling a LTI system

while also tracking a desired reference trajectory. LQT combines the control objectives of

stabilization and tracking, where the goal is that the output of the system tracks a specified

reference rk.

Consider a discrete-time LTI system with the state equation

xk+1 = Axk +Buk

yk = Cxk (2.22)

where xk is the measured state vector, uk is the input vector, and yk is the output of the

system. A, B, and C are constant matrices that represent the system dynamics. Assume

(A,B) is controlable and (A,C) is observable.

The goal is to find a series of control inputs that minimizes the quadratic value-function

V π(xk, rk) =
∞∑
i=k

γi−k
(
(Cxi − ri)

T Q (Cxi − ri) + uT
i Rui

)
(2.23)

where 0 < γ ≤ 1 is the discount factor, Q and R are both symmetric positive definite

weighting matrices that penalize the tracking error and control effort, respectively.

The reference trajectory rk is produced by (2.24) where F is a constant matrix.

rk+1 = Frk (2.24)

17

Figure 2.4: Block diagram showing LQT as a RL problem

Define the augmented state Xk [41]

Xk =

xk

rk

 (2.25)

and construct the augmented system as

Xk+1 = ĀXk + B̄uk (2.26)

where

Ā =

A 0

0 F

 , B̄ =

B
0

 (2.27)

As a result, the objective is to solve the following optimization problem:

argmin
ui

∞∑
i=k

γi−k
(
XT

i Q̄Xi + uT
i Rui

)
s.t. Xi+1 = ĀXi + B̄ui

(2.28)

where Q̄ =

[
C −I

]T
Q

[
C −I

]
and I is the identity matrix. Hence, the LQT problem

can be formulated as an LQR problem with the state Xk. The optimal control input has the

18

following form

uk = π(Xk) = −KπXk (2.29)

where

Kπ = γ(R + γB̄TP πB̄)−1B̄TP πĀ (2.30)

and P π is the solution of the following ARE

P π = Q̄+ γĀTP πĀ− γ2ĀTP πB̄(R + γB̄TP πB̄)−1B̄TP πĀ (2.31)

The LQT problem can be considered as a RL problem as shown by the block diagram in

Fig 2.4, where controller is the agent, uk is the action, Xk is the state, the LTI system and

the reference signal dynamics make the environment, and the policy is given by

uk = π(Xk) = −KπXk (2.32)

Note that the V-function has the following quadratic form

V π(Xk) = XT
k P

πXk (2.33)

The Q-function of the LQT can be expressed as

Qπ(Xk, uk) = c(Xk, uk) + γV π(Xk+1)

= XT
k Q̄Xk + uT

kRuk + γ(ĀXk + B̄uk)
TP π(ĀXk + B̄uk)

=

[
Xk uk

]
Hπ

[
Xk uk

]T (2.34)

where

19

Hπ =

Q̄+ γĀTP πĀ γĀTP πB̄

γB̄TP πĀ R + γB̄TP πB̄

 (2.35)

2.2.3 Linear Quadratic Estimators

Consider the discrete-time LTI system

xk+1 = Axk +Buk

yk = Cxk (2.36)

where xk is the unknown state vector, uk is the input vector, yk is the measured output

vector, and A, B, C are system matrices. Assume (A,C) is observable.

The goal is to design an optimal observer for system (2.36) and minimize a quadratic

performance index.

The dynamics of the observer are as follows

x̂k+1 = Ax̂k +Buk + wπ
k

ŷk = Cx̂k (2.37)

where x̂k and ŷk are states and outputs estimates, respectively, and wπ
k is the correction term

to be designed later. Combining (2.36) and (2.37) results in the following error dynamics

x̃k+1 = Ax̃k − wπ
k

ỹk = Cx̃k (2.38)

where x̃k = xk− x̂k and ỹk = yk− ŷk are the state estimation error and the output estimation

error, respectively. The performance index is considered as (2.39) to penalize correction term

20

Figure 2.5: Block diagram showing LQE as a RL problem

effort and output estimation error, where Q > 0, R > 0 are weighting matrices to be chosen.

V π(x̃k) =
∞∑
i=k

γi−k
(
ỹTi Qỹi + (wπ

i)
T Rwπ

i

)
(2.39)

Therefore, the goal is to solve the following optimization problem

argmin
wπ

k

∞∑
i=k

γi−k
(
ỹTi Qỹi + (wπ

i)
T Rwπ

i

)
s.t. x̃i+1 = Ax̃i − wπ

i

ỹi = Cx̃i

(2.40)

which can be rewritten as

argmin
wπ

k

∞∑
i=k

γi−k
(
x̃T
i Q̄x̃i + (wπ

i)
T Rwπ

i

)
s.t. x̃i+1 = Ax̃i − Iwπ

i

(2.41)

where Q̄ = CTQC, I is the identity matrix. Note that (A,−I) is controllable. Therefore,

the optimization problem (2.41) can be considered as an LQR problem for the observer

error dynamics. As a result, the optimal correction term can be obtained by solving the

discrete-time ARE

21

P π = Q̄+ γATP πA− γ2(ATP π)(R + γP π)−1P πA (2.42)

where P π is the solution to the discrete-time ARE, and the optimal correction term is given

by [44]

wπ
k = −Kπx̃k (2.43)

where Kπ = −γ(R + γP π)−1P πA.

The LQE problem can be considered as a RL problem as shown by the block diagram in

Fig 2.5, where wπ
k is the action, ỹk is the observed state, the LTI system and the observer

make the environment, and x̃k is the state.

The value-function has the quadratic form

V π(x̃k) = x̃T
kP

πx̃k (2.44)

2.3 Two-layer Quadratic Neural Networks

This section discusses the training of a two-layer QNN with one output using convex opti-

mization. Consider the neural network in Fig 2.6 with one hidden layer, one output, and

a degree two polynomial activation function, where Xi ∈ Rn is the i-th input data given to

the neural network, Ŷi ∈ R is the output of the neural network for the input Xi, Yi ∈ R

is the output label corresponding to the input Xi, L is the number of hidden neurons,

f(z) = az2 + bz + c is the polynomial activation function, and a ̸= 0, b, c are pre-defined

constant coefficients. The notation wkj represents the weight from the k-th input-neuron

to the j-th hidden-neuron, and ρj represents the weight from the j-th hidden-neuron to the

output.

The input-output mapping of the neural network is

22

Figure 2.6: Two-layer QNN with one output

Ŷi =
L∑

j=1

f(X T
i Wj)ρj (2.45)

where Wj =

[
w1j w2j . . . wnj

]T
.

2.3.1 Training the QNN with a Convex Optimization

Reference [17] proposes the training optimization

min
Wk,ρk

l(Ŷ − Y) + β
L∑

j=1

|ρj|

s.t. Ŷi =
L∑

j=1

f(X T
i Wj)ρj

∥Wk∥2 = 1, k = 1, 2, ..., L i = 1, 2, ..., N

(2.46)

where β ≥ 0 is a pre-defined regularization parameter, l(.) is a convex loss function, N is the

number of data points, Ŷ =

[
Ŷ1 Ŷ2 . . . ŶN

]T
, and Y =

[
Y1 Y2 . . . YN

]T
.

23

The optimization problem (2.46) can be equivalently solved by the dual convex optimization

min
Z+,Z−

l(Ŷ − Y) + β Trace(Z+
1 + Z−

1)

s.t. Ŷi = aX T
i (Z

+
1 − Z−

1)Xi + bX T
i (Z

+
2 − Z−

2) + c Trace(Z+
1 − Z−

1),

Z+ =

 Z+
1 Z+

2

(Z+
2)

T Trace(Z+
1)

 ≥ 0, Z− =

 Z−
1 Z−

2

(Z−
2)

T Trace(Z−
1)

 ≥ 0,

i = 1, 2, . . . N

(2.47)

where Z+
1 , Z

+
2 , Z

−
1 , Z

−
2 are optimization parameters [17]. After training the neural network

and obtaining Z+, Z− from (2.47), the quadratic input-output mapping is

Ŷi =

Xi

1


T

H

Xi

1

 (2.48)

where

H =

 a(Z+
1 − Z−

1) 0.5b(Z+
2 − Z−

2)

0.5b(Z+
2 − Z−

2)
T c

[
Trace

(
Z+

1 − Z−
1

)]


Remark 3. If b = c = 0, and a = 1 are chosen, the input-output mapping is

Ŷi = X T
i (Z

+
1 − Z−

1)Xi (2.49)

Hence, selecting a QNN with b = c = 0 and a = 1 as the VFA for LQ problems leads to the

least number of parameters required for approximation. As a result, this thesis adopts this

parameter choice.

Remark 4. Selecting a lower value for β is an approach to decrease the cost l(Ŷ − Y).

However, it’s essential to be cautious, as a decreased β can potentially result in overfitting,

making the neural network more sensitive to noise. [16][45]

24

Algorithm 3 Decomposition with Tolerance tol

procedure Decomposition(Z, tol)
Output: list V
Calculate the rank-1 decomposition Z =

∑r
j=1 qjq

T
j using eigenvector decomposition,

retaining eigenvectors corresponding to eigenvalues surpassing the threshold tol.
Create a list of vectors q = {q1, . . . , qr}
for k = 1, . . . , r − 1 do

q1 ← qk
if qT1 Gq1 = 0 then

v ← q1
else

find j ∈ {k + 1, . . . , r} such that (qT1 Gq1)(q
T
j Gqj) < 0 and set v =

q1+Γqj√
1+Γ2 where

G =

[
In 0
0 −1

]
, Γ =

−2qT1 Gqj +
√
△

2qTj Gqj
,

△ = 4
[(
qT1 Gqj

)2 − (
qT1 Gq1

) (
qTj Gqj

)]
, (2.50)

and In represents an n× n identity matrix.
end if
Remove qk from list q and insert

qj−Γq1√
1+Γ2 at the end of the list

Add v to the list V
end for
Add last element of list q to list V
Return V

end procedure

2.3.2 Obtaining the Optimal Weights

One can also adopt the neural decomposition method outlined in references [17][16] to derive

the weights of the trained two-layer QNN and determine the optimal number of hidden

neurons with Algorithm 3.

In order to acquire the weights, the method involves providing both Z+ and Z− matrices

as Z to the Algorithm 3. The outcomes of Decomposition(Z+, tol) and Decomposition(Z−, tol)

are denoted as {v1, . . . vr+} and {vr++1, . . . vr++r−}, respectively, where

vj =

sj
fj

 , sj ∈ Rn, fj ∈ R (2.51)

25

The weights can be obtained by

Wj =
sj
∥sj∥2

, ρj =


(fj)

2, j ∈ {1, 2, . . . , r+}

−(fj)2, otherwise

(2.52)

The optimal number of hidden neurons is

L = r+ + r− (2.53)

26

Chapter 3

Linear Quadratic Controller with

Quadratic Neural Networks and

Reinforcement Learning

In section 2.2, we covered discrete-time LQR and LQT design using conventional methodolo-

gies, emphasizing the necessity of a precise system model. This section presents the proposed

PI algorithm, which utilizes a two-layer QNN as VFA to design LQR and LQT in the absence

of a system model.

3.1 LQR Design

This section designs LQR using the proposed PI algorithm that does not require the sys-

tem model. The key contribution is to perform PI by designing the policy evaluator as

a two-layer QNN. This network is trained through convex optimization. To the best of

our knowledge, this is the first time that a QNN trained through convex optimization is

employed as the Q-function approximator (QFA). The main advantage is that the QNN’s

input-output mapping has an analytical expression as a quadratic form, which can then be

used to obtain an analytical expression for policy improvement. This is in stark contrast to

27

available techniques in the literature that must train a second neural network to obtain the

policy improvement. The thesis establishes the convergence of the learning algorithm to the

optimal control provided the system is controllable and one starts from a stabilitzing control

policy. A pendulum and a quadrotor example demonstrate the effectiveness of the proposed

approach.

3.1.1 Problem Statement

An unknown controllable linear system model is written as

xk+1 = Axk +Buk (3.1)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the input vector and A, B are unknown

matrices constrained to be such that the pair (A,B) is controllable. Define the policy π(.)

as a linear mapping from the state vector to the input vector as

uk = π(xk) = −Kπxk (3.2)

where Kπ is a matrix to be determined by the designer and xk is measured without noise

and is available for feedback.

Define the local cost as

c(xk, uk) = xT
kQxk + uT

kRuk (3.3)

where Q, and R are both positive definite. The value function when one follows the control

policy π(.) is defined as

V π(xk) =
∞∑
i=k

γi−k
(
xT
i Qxi + uT

i Rui

)
(3.4)

28

where 0 < γ ≤ 1 is a discount factor.

The objective is to obtain the optimal policy π∗(.) that minimizes V π(xk) for all states

xk subject to the unknown dynamics of the system. This is done using QNNs as a VFA.

3.1.2 Policy Evaluation

This section presents how to perform policy evaluation by designing a two-layer QNN. The

Bellman equation can be written as:

Qπ(xk, uk) = xT
kQxk + uT

kRuk + γQπ(xk+1, uk+1) (3.5)

As discussed in section 2.2, the Q-function has a quadratic form. As a result, a two-layer

QNN with coefficients b = c = 0, a = 1 is the perfect candidate to approximate the Q-

function. The policy evaluation step is as follows:

Obtain Hπ for the stabilizing policy π(.), solving:

xk

uk


T

Hπ

xk

uk

 = xT
kQxk + uT

kRuk + γ

xk+1

uk+1


T

Hπ

xk+1

uk+1

 (3.6)

Remark 5. Note that (3.6) is a scalar equation, Hπ is symmetric, and

xk

uk

 ∈ Rnx+nu (3.7)

Therefore, the matrix Hπ has M = (nx+nu)(nx+nu+1)
2

unknown independent elements and

N ≥M data samples are needed to obtain Hπ from equation (3.6).

We propose to obtain Hπ in the policy evaluation step by employing the iterative equa-

tion (3.8). The proof of convergence is presented in Lemma 1.

29

Lemma 1. One can obtain Hπ for the stabilizing policy π(.) using the iterative equation

(3.8) starting with any initial value Hπ
0 with guaranteed convergence to the limit Hπ

i → Hπ.

xk

uk


T

Hπ
i+1

xk

uk

 = xT
kQxk + uT

kRuk + γ

xk+1

uk+1


T

Hπ
i

xk+1

uk+1

 (3.8)

Proof. The proof follows the same strategy of the proof of Lemma 1 in reference [14]. Ap-

plying equation (3.8) recursively yields

xk

uk


T

Hπ
i+1

xk

uk

 =c(xk, uk) + γ

xk+1

uk+1


T

Hπ
i

xk+1

uk+1


=c(xk, uk) + γc(xk+1, uk+1) + γ2

xk+2

uk+2


T

Hπ
i−1

xk+2

uk+2


=

i∑
j=0

γjc(xk+j, uk+j) + γi+1

xk+i+1

uk+i+1


T

Hπ
0

xk+i+1

uk+i+1



(3.9)

It should be noted that the policy π(.) is a stabilizing policy, therefore limi→∞ xk+i+1 = 0

and limi→∞ uk+i+1 = 0 for all k. Consequently, for any Hπ
0 ,

lim
i→∞

γi+1

xk+i+1

uk+i+1


T

Hπ
0

xk+i+1

uk+i+1

 = 0 (3.10)

and therefore

lim
i→∞

xk

uk


T

Hπ
i+1

xk

uk

 =
∞∑
j=0

γjc(xk+j, uk+j) =

= c(xk, uk) + γQπ(xk+1, uk+1) (3.11)

30

Thus, from equations (3.5), (3.6) and (3.11) Hπ
i → Hπ when i→∞.

Remark 6. In practice the condition

∥Hπ
i −Hπ

i−1∥ < ϵ, (3.12)

is used as the stopping criterium of the algorithm.

Due to the implications of Lemma 1, the problem of policy evaluation transforms into

the task of computing] Hπ
i+1 from equation (3.8) given Hπ

i . This can be done by training a

two-layer QNN as follows.

Since it is assumed that one has access to the state xk, one can calculate Yk defined as

Yk = xT
kQxk + uT

kRuk + γ

xk+1

uk+1


T

Hπ
i

xk+1

uk+1

 . (3.13)

Therefore, from (3.8),

X T
k H

π
i+1Xk = Yk (3.14)

where X T
k =

[
xT
k uT

k

]
. Thus, Hπ

i+1 can be obtained from the training of a two-layer QNN

as the solution of the convex optimization (2.47) using a set of input data points Xk and the

corresponding labels Yk, as well as the coeffficients a = 1, b = 0, c = 0.

3.1.3 Policy Improvement

In this section, the policy improvement step is addressed for the stabilizing policy π(·) using

Hπ from the policy evaluation. We first partition Hπ as

xk

uk


T

Hπ

xk

uk

 =

xk

uk


T  Hπ

xx Hπ
xu

(Hπ
xu)

T Hπ
uu


xk

uk

 (3.15)

31

Lemma 2. The policy improvement for the stabilizing policy π(.) is given by

π′(xk) = −(Hπ
uu)

−1(Hπ
xu)

Txk (3.16)

Proof. The improved policy π′(.) is obtained by

π′(xk) = argmin
uk

Qπ(xk, uk) (3.17)

Since Qπ(xk, uk) is a quadratic form, the ecessary and sufficient conditions of optimality are

∂Qπ(xk, uk)

∂uk

= 0

∂2Qπ(xk, uk)

∂u2
k

> 0 (3.18)

The Q-function can be written as

Qπ(xk, uk) =

xk

uk


T  Hπ

xx Hπ
xu

(Hπ
xu)

T Hπ
uu


xk

uk

 =

xT
kH

π
xxxk + xT

kH
π
xuuk + uT

k (H
π
xu)

Txk + uT
kH

π
uuuk (3.19)

Therefore, the solution to the first constraint yields

∂Qπ(xk, uk)

∂uk

= 0⇔ Hπ
uuuk + (Hπ

xu)
Txk = 0⇔

uk = −(Hπ
uu)

−1(Hπ
xu)

Txk (3.20)

Note that the matrix Hπ is positive definite. Therefore, all matrices on the main diagonal

of Hπ, including Hπ
uu, are also positive definite. As a result, the inverse of Hπ

uu does exist.

The second constraint in (3.18) is thus satisfied since Hπ
uu > 0. Therefore, the policy obtained

in (3.20) is the unique minimizer π′(xk).

32

3.1.4 The Proposed Algorithm

We have presented a detailed explanation of the policy evaluation and policy improvement

procedures. The complete algorithm to design the LQR is presented in Algorithm 4.

Algorithm 4 Designing LQR with QNN

Choose ϵ, N , γ.
Select the initial stabilizing policy π0. Then, for j = 0, 1, 2, . . . perform policy evaluation
and policy improvement steps until convergence

Policy Evaluation:
i← 0
Choose a random H

πj

0

repeat
Train the QNN by N data samples with Xk as the inputs and Yk as the output

labels with

Yk = xT
kQxk + uT

kRuk + γ

[
xk+1

uk+1

]T
Hπ

i

[
xk+1

uk+1

]
, Xk =

[
xk

uk

]
(3.21)

Obtain the input-output mapping as

X T
k HXk = Ŷk (3.22)

i← i+ 1
H

πj

i ← H
Until ||Hπj

i −H
πj

i−1|| < ϵ
Hπj ← H

πj

i

Policy Improvement:
Obtain πj+1 such that

πj+1(xk) = −(Hπj
uu)

−1(Hπj
xu)

Txk (3.23)

Figure 3.1 presents an overview of the proposed algorithm.

33

Figure 3.1: Overview of LQR proposed design

3.1.5 Simulations

This thesis applies Algorithm 4 to address both controlling a simple pendulum and a quadro-

tor flying at a constant altitude and direction. It is shown that the control policy converges

to the LQR solved by conventional methods.

As an illustrative example, we also determine the optimal weights of the QNN for the

pendulum’s optimal value-function, benefiting from its limited number of weights.

3.1.5.1 Pendulum Example

The simple pendulum is given in Fig 3.2, where g is the gravitational acceleration, l is the

length, m is the bob’s mass, and θ(t) is the angle between the pendulum and the vertical

axis.

The pendulum can be modeled by:

ml2θ̈ (t) + bθ̇ (t) +mgl sin (θ (t)) = u (t) (3.24)

34

Figure 3.2: The simple pendulum

where u(t) is the torque input, and b is the damping coefficient. Assume g = 10 m
s2
, m =

1 kg, l = 1m, b = 0.1 kg.m2

s
, and sin(θ(t)) ≈ θ(t).

Hence, the pendulum can be modeled in state-space as

ẋ1(t)

ẋ2(t)

 =

 0 1

−10 −0.1


x1(t)

x2(t)

+

0
1

 u(t) (3.25)

where x1(t) = θ(t), x2(t) = θ̇(t) with the chosen initial state

x1(0)

x2(0)

 =

−0.5
0

 . (3.26)

The proposed method is applied to the pendulum case with sampling time Ts = 0.05

seconds. To compare the results of the proposed method with the optimal controller, we

need to obtain a discrete-time model. The discretized model given in equation (3.27) with

sampling time Ts is calculated using Tustin’s method [53].

x1,k+1

x2,k+1

 =

 0.99 0.05

−0.50 0.98


x1,k

x2,k

+

0.0012
0.0497

 uk (3.27)

35

Simulation number Kπ0

Simulation 1
(
−0.84 4.75

)
Simulation 2

(
−0.35 1.58

)
Simulation 3

(
−0.11 0.45

)
Simulation 4

(
−0.01 0.14

)
Simulation 5

(
−0.61 3.99

)
Simulation 6

(
−0.31 2.11

)
Simulation 7

(
−1.41 5.30

)
Simulation 8

(
1.57 2.18

)
Simulation 9

(
0.14 1.30

)
Simulation 10

(
3.13 2.83

)
Table 3.1: LQR pendulum - The random initial stabilizing policies

We choose β = 0.005, γ = 1, N = 100, Q =

5 3

3 10

, R = 20 and rewrite the policy πj(.)

as:

πj(xk) =

[
k
πj

1 k
πj

2

]x1,k

x2,k

 (3.28)

The optimal controller and the optimal value-function can be obtained by the method

detailed in section 2.2 as follows

P π∗
=

 137 −23

−23 36

 (3.29)

π∗(xk) =

[
k∗
1 k∗

2

]x1,k

x2,k

 =

[
0.0738 −0.0674

]x1,k

x2,k

 (3.30)

Therefore, it is expected that with the increase in policy number j, k
πj

1 converges to

0.0738 and k
πj

2 converges to −0.0674 starting from any stabilizing policy π0(.). To show the

convergence for any initial stabilizing policy π0(.), we have started the simulation with ten

random initial stabilizing policies. Fig 3.3 shows that in all simulations πj(.) converges to

the optimal policy before policy j = 4. The random initial stabilizing policies used are

36

Figure 3.3: Convergence to LQR controller for the pendulum

given in the table 3.1.

Next, the weights to approximate the optimal value-function are calculated. This reveals

both the optimal architecture and the ideal number of hidden neurons for the two-layer

QNN. After obtaining the optimal policy, Z+ and Z− are obtained as:

Z+ =



138.8 −23.7 −1.5 0

−23.7 36.7 1.3 0

−1.5 1.3 20.1 0

0 0 0 195.7


, Z− = 10−7 ×



0.055 0.001 0.0001 0

0.001 0.056 −0.0001 0

0.0001 −0.0001 0.057 0

0 0 0 0.168



37

Figure 3.4: Free body diagram of the quadrotor

Hence, the weights of the QNN are given as follows (see algorithm 3 in chapter 2):

W =


0.005 0.214 0.916 0.994 −0.866 −0.190 0.491 −0.538

0.088 0.958 −0.394 −0.028 0.496 −0.981 0.275 −0.219

−0.996 0.188 0.072 −0.099 0.041 −0.027 −0.826 −0.813


ρ =

[
18.11 27.06 75.26 75.26 10−8 ×−0.41 10−8 ×−0.42 10−8 ×−0.42 10−8 ×−0.42

]
(3.31)

where W =

[
W1 W2 . . . W8

]
, ρ =

[
ρ1 ρ2 . . . ρ8

]
. Note that the optimal number of

hidden neurons is L = 8.

3.1.5.2 Quadrotor Example

To provide another practical example with increased number of states, we use a quadcopter

moving in a straight line with a constant altitude. The free body diagram of the quadrotor

is given in Fig 3.4, where FD is the viscous drag force, m is the quadrotor’s mass, g is the

gravitational acceleration, θ(t) is the pitch angle, r is the distance from each propeller to

the center of mass, T1(t) and T2(t) are the thrust forces produced by the left and the right

propellers, respectively.

38

The equations of motion are as follows

(T1 + T2)sin(θ)− FD = mv̇x

(T1 + T2)cos(θ) = mg

(T1 − T2)r = Iẇ (3.32)

where I represents the moment of inertia, w denotes the pitch rate of change, and vx is the

speed of the quadcopter. The viscous drag force can be modeled as

FD = CD(vx − vw) (3.33)

where CD is the coefficient of the drag, and vw is the wind speed.

The quadcopter’s behavior can be modeled by the state-space



ẋ1

ẋ2

ẋ3

ẋ4


=



0 1 0 0

0 −CD

m
g 0

0 0 0 1

0 0 0 0





x1

x2

x3

x4


+



0

0

0

r
I


u+



0

CDvw
m

0

0


(3.34)

where x1 is the horizontal position, x2 is the horizontal speed, x3 is the pitch angle, x4 is

the pitch rate of change, and the system input is u = T1 − T2. Assume vw = 0 m
s
, CD = 0.2,

m = 2 kg, g = 10 m
s2
, I = 0.046 kg.m2, and r = 0.2m.

As a result, the state-space of the quadrotor is



ẋ1

ẋ2

ẋ3

ẋ4


=



0 1 0 0

0 −0.1 10 0

0 0 0 1

0 0 0 0





x1

x2

x3

x4


+



0

0

0

4.35


u(t) (3.35)

39

where the initial state is 

x1(0)

x2(0)

x3(0)

x4(0)


=



−10

0

0

0


(3.36)

Take note that this initial state implies that the objective is to move ten meters forward.

The proposed method is applied for the quadrotor with sampling time T = 0.1 seconds.

The discretized model (3.37) with sampling timg T = 0.1 seconds is obtained using Tustin’s

method.



x1,k+1

x2,k+1

x3,k+1

x4,k+1


=



1 0.1 0.05 0.003

0 0.99 0.99 0.05

0 0 1 0.1

0 0 0 1





x1,k

x2,k

x3,k

x4,k


+



0.001

0.011

0.022

0.435


uk (3.37)

Rewrite the policy πj(.) as

πj(xk) = −
[
k
πj

1 k
πj

2 k
πj

3 k
πj

4

]


x1,k

x2,k

x3,k

x4,k


(3.38)

40

We choose the following parameter values

β = 0.005, γ = 1, N = 100, R = 1,

Q =



0.01 0 0 0

0 1 0 0

0 0 1 0

0 0 0 10


(3.39)

The optimal controller and value-function are as follows

P π∗
=



0.95 0.77 3.36 0.24

0.77 9.27 38.31 2.83

3.36 38.31 313.81 24.93

0.24 2.83 24.93 15.82


(3.40)

π∗(xk) = −
[
0.046 0.464 4.347 2.014

]


x1,k

x2,k

x3,k

x4,k


(3.41)

The Fig 3.5 demonstrates the convergence of k
πj

1 , k
πj

2 , k
πj

3 , k
πj

4 towards their optimal

values. To illustrate this convergence, we conducted five simulations using random initial

stabilizing policies. The random initial policies are given in the Table 3.2.

Lastly, the trajectory of the quadrotor’s position and its speed over time using the optimal

policy are depicted in Fig. 3.6.

41

Figure 3.5: Convergence to LQR controller for the quadrotor

Simulation number Kπ0

Simulation 1
(
0.082 0.169 1.592 0.838

)
Simulation 2

(
0.236 0.420 2.978 1.156

)
Simulation 3

(
0.626 0.998 5.578 1.660

)
Simulation 4

(
1.851 1.709 7.491 1.858

)
Simulation 5

(
0.701 0.781 4.380 1.379

)
Table 3.2: LQR quadrotor - The random initial stabilizing policies

3.2 LQT Design

The LQT is an extension of the LQR problem. The LQT objective is to stabilize the LTI

system while making sure the output yk tracks a desired reference rk. We formulate an

LQT as an LQR problem to design the LQT with the Algorithm 4. It is assumed that the

reference trajectory rk has the linear dynamic (3.42) for some matrix F .

rk+1 = Frk (3.42)

42

Figure 3.6: Position and speed trajectory using the optimal policy

3.2.1 LQT as an LQR Problem

An unknown controllable, observable linear system model is written as

xk+1 = Axk +Buk

yk = Cxk (3.43)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the input vector, yk ∈ Rny is the output

vector and A, B, C are unknown matrices constrained to be such that the pair (A,B) is

controllable and (A,C) is observable.

The goal is to find a series of control inputs that minimizes the quadratic value-function

as follows

V π(xk, rk) =
∞∑
i=k

γi−k
(
(Cxi − ri)

T Q (Cxi − ri) + uT
i Rui

)
(3.44)

where 0 < γ ≤ 1 is the discount factor, Q > 0, R > 0.

Define the augmented state Xk ∈ Rnx+ny as

Xk =

xk

rk

 (3.45)

43

and construct the augmented system as

Xk+1 = ĀXk + B̄uk (3.46)

where

Ā =

A 0

0 F

 , B̄ =

B
0

 (3.47)

As a result, the objective is to solve the following optimization problem

argmin
ui

∞∑
i=k

γi−k
(
XT

i Q̄Xi + uT
i Rui

)
s.t. Xi+1 = ĀXi + B̄ui

(3.48)

where Q̄ =

[
C −I

]T
Q

[
C −I

]
and I is the identity matrix. Hence, the LQT problem

can be considered as an LQR problem with the state Xk.

The value-function and the input policy can be written as

V π(Xk) = XT
k P

πXk

Qπ(Xk, uk) =

Xk

uk


T

Hπ

Xk

uk


uk = π(Xk) = −KπXk (3.49)

for some matrices

P π ∈ R(nx+ny)×(nx+ny), Hπ ∈ R(nx+ny+nu)×(nx+ny+nu), Kπ ∈ Rnu×(nx+ny) (3.50)

We assume xk and rk are measured without noise and are available for feedback.

44

3.2.2 Policy Evaluation

The policy evaluation step is as follows

Obtain Hπ for the stabilizing policy π(.), such that

Xk

uk


T

Hπ

Xk

uk

 = c(Xk, uk) + γ

Xk+1

uk+1


T

Hπ

Xk+1

uk+1

 (3.51)

where

c(Xk, uk) = XT
k Q̄Xk + uT

kRuk (3.52)

Remark 7. Note that (3.51) is a scalar equation, Hπ is symmetric, and

Xk

uk

 ∈ Rnx+ny+nu (3.53)

Therefore, the matrix Hπ has M = (nx+ny+nu)(nx+ny+nu+1)

2
unknown independent elements

and N ≥M data samples are needed to obtain Hπ from equation (3.51).

We suggest calculating Hπ in the policy evaluation using the iterative equation (3.54).

The proof of convergence can be found in Lemma 3.

Lemma 3. Hπ for the stabilizing policy π(·) can be obtained by applying the iterative equation

(3.54). Convergence to the limit Hπ
i → Hπ is guaranteed, commencing from an arbitrary

initial value Hπ
0 provided that 0 < γ < 1.

Xk

uk


T

Hπ
i+1

Xk

uk

 = c(Xk, uk) + γ

Xk+1

uk+1


T

Hπ
i

Xk+1

uk+1

 (3.54)

45

Proof. Applying equation (3.54) recursively yields

Xk

uk


T

Hπ
i+1

Xk

uk

 =c(Xk, uk) + γ

Xk+1

uk+1


T

Hπ
i

Xk+1

uk+1


=c(Xk, uk) + γc(Xk+1, uk+1) + γ2

Xk+2

uk+2


T

Hπ
i−1

Xk+2

uk+2


=

i∑
j=0

γjc(Xk+j, uk+j) + γi+1

Xk+i+1

uk+i+1


T

Hπ
0

Xk+i+1

uk+i+1



(3.55)

For any Hπ
0 ,

lim
i→∞

γi+1

Xk+i+1

uk+i+1


T

Hπ
0

Xk+i+1

uk+i+1

 = 0 (3.56)

and therefore

lim
i→∞

Xk

uk


T

Hπ
i+1

Xk

uk

 =
∞∑
j=0

γjc(Xk+j, uk+j) (3.57)

Also

Qπ(Xk, uk) =

Xk

uk


T

Hπ

Xk

uk

 =
∞∑
j=0

γjc(Xk+j, uk+j) (3.58)

Thus, from equations (3.57) and (3.58) Hπ
i → Hπ when i→∞.

The problem of policy evaluation turns into the computation of Hπ
i+1 using equation (3.54)

with the provided Hπ
i . This task can be accomplished by training a two-layer QNN as

outlined below.

46

Assuming access to Xk, one can compute Yk defined as

Yk = XT
k Q̄Xk + uT

kRuk + γ

Xk+1

uk+1


T

Hπ
i

Xk+1

uk+1

 . (3.59)

Therefore, from (3.54),

X T
k H

π
i+1Xk = Yk (3.60)

where X T
k =

[
XT

k uT
k

]
. Thus, Hπ

i+1 can be obtained from the training of a two-layer QNN

as the solution of the convex optimization (2.47) using a set of input data points Xk and the

corresponding labels Yk, as well as the coeffficients a = 1, b = 0, c = 0.

3.2.3 Policy Improvement

We first partition Hπ as

Xk

uk


T

Hπ

Xk

uk

 =

Xk

uk


T  Hπ

xx Hπ
xu

(Hπ
xu)

T Hπ
uu


Xk

uk

 (3.61)

Lemma 4. The policy improvement for the stabilizing policy π(.) is

π′(Xk) = −(Hπ
uu)

−1(Hπ
xu)

TXk (3.62)

Proof. The improved policy π′(.) is acquired by

π′(Xk) = argmin
uk

Qπ(Xk, uk) (3.63)

Since Qπ(Xk, uk) is a quadratic form, the necessary and sufficient conditions of optimality

47

are

∂Qπ(Xk, uk)

∂uk

= 0

∂2Qπ(Xk, uk)

∂u2
k

> 0 (3.64)

The Q-function can be written as

Qπ(Xk, uk) =

Xk

uk


T  Hπ

xx Hπ
xu

(Hπ
xu)

T Hπ
uu


Xk

uk

 =

XT
k H

π
xxXk +XT

k H
π
xuuk + uT

k (H
π
xu)

TXk + uT
kH

π
uuuk (3.65)

Therefore, the solution to the first constraint yields

∂Qπ(Xk, uk)

∂uk

= 0⇔ Hπ
uuuk + (Hπ

xu)
TXk = 0⇔

uk = −(Hπ
uu)

−1(Hπ
xu)

TXk (3.66)

Take note that the matrix Hπ is a positive definite matrix. Consequently, all matrices

situated on the main diagonal of Hπ, which includes Hπ
uu, are also positive definite. Thus,

the inverse of Hπ
uu does indeed exist. The second constraint in (3.64) is satisfied since

Hπ
uu > 0. Therefore, the policy derived in (3.66) is the unique minimizer π′(xk).

3.2.4 The Proposed Algorithm

The proposed method to design the LQT is presented in Algorithm 5.

Remark 8. The initial policy π0(.) can be chosen as

π0(xk, rk) = −
[
kπ 0

]xk

rk

 (3.70)

48

Algorithm 5 Designing LQT with QNN

Choose ϵ, N , γ, F
Select the initial stabilizing policy π0. Then, for j = 0, 1, 2, . . . perform policy evaluation
and policy improvement steps until convergence

Policy Evaluation:
i← 0
Choose a random H

πj

0

repeat
Train the QNN by N data samples with Xk as the inputs and Yk as the output

labels with

Yk = XT
k QXk + uT

kRuk + γ

[
Xk+1

uk+1

]T
Hπ

i

[
Xk+1

uk+1

]
, Xk =

[
Xk

uk

]
(3.67)

Obtain the input-output mapping as

X T
k HXk = Ŷk (3.68)

i← i+ 1
H

πj

i ← H
Until ||Hπj

i −H
πj

i−1|| < ϵ
Hπj ← H

πj

i

Policy Improvement:
Obtain πj+1 such that

πj+1(Xk) = −(Hπj
uu)

−1(Hπj
xu)

TXk (3.69)

where

uk = −kπxk (3.71)

derives the state xk towards the origin.

49

Figure 3.7: The desired trajectory of the quadcopter’s poistion

3.2.5 Simulation

Consider the quadrotor described by equation (3.72) with a sampling time of Ts = 0.1

seconds, as was presented in section 3.1.5.



x1,k+1

x2,k+1

x3,k+1

x4,k+1


=



1 0.1 0.05 0.003

0 0.99 0.99 0.05

0 0 1 0.1

0 0 0 1





x1,k

x2,k

x3,k

x4,k


+



0.001

0.011

0.022

0.435


uk

yk = x1,k (3.72)

where the initial state is 

x1,0

x2,0

x3,0

x4,0


=



−10

0

0

0


(3.73)

The reference trajectory rk has the following linear dynamics

rk+1 = 0.98rk (3.74)

50

Simulation number Kπ0

Simulation 1
(
0.62 0.99 5.57 1.66 0

)
Simulation 2

(
0.23 0.41 2.97 1.15 0

)
Simulation 3

(
1.27 1.92 9.35 2.36 0

)
Simulation 4

(
0.11 0.22 1.92 0.92 0

)
Simulation 5

(
1.85 1.70 7.49 1.85 0

)
Table 3.3: LQT quadcopter - The random initial stabilizing policies

with the initial condition r0 = −10. Therefore, the objective is for the quadcopter’s position

to reach the origin following the trajectory depicted in Fig 3.7

Rewrite the policy πj(Xk) as

πj(Xk) = −KπjXk (3.75)

We choose the following parameter values

β = 0, γ = 1, N = 200, R = 1, Q = 5

The optimal controller and value-function obtained from the conventionol method presented

in section 2.2 are as follows

P π∗
=



36.8 13.1 32.9 4.3 −34.2

13.1 7.4 22.5 3.5 −11.7

32.9 22.5 81.3 15.4 −28.5

4.3 3.5 15.4 4.0 −3.7

−34.2 −11.7 −28.5 −3.7 31.9


(3.76)

51

Figure 3.8: Convergence to LQT controller for the quadrotor

Figure 3.9: Comparison of yk and rk using the optimal policy

π∗(xk) = −
[
1.2496 1.0679 4.9719 1.4235 −1.0435

]


x1,k

x2,k

x3,k

x4,k

rk


(3.77)

The Fig 3.8 illustrates the convergence of Kπj toward its optimal value Kπ∗
. We performed

five simulations with randomly initialized stabilizing policies to visualize the convergence.

The random initial policies are given in the Table 3.3. Lastly, the trajectory of the quadrotor’s

52

position yk with different initial conditions using the optimal policy is compared with the

desired trajectory rk in Fig 3.9.

53

Chapter 4

Optimal Observer by Policy Iteration

and Quadratic Neural Networks

This chapter introduces an innovative PI approach to obtain an optimal observer with a

quadratic cost function. The observer is designed for systems with a given linearized model

and a stabilizing Luenberger observer gain. We utilize a two-layer QNN for policy evaluation

and derive a linear correction term using the input and output data. This correction term

effectively rectifies inaccuracies introduced by the linearized model employed within the

observer design.

A unique feature of the proposed methodology is that the QNN is trained through convex

optimization. The main advantage is that the QNN’s input-output mapping has an analytical

expression as a quadratic form, which can then be used to obtain a linear correction term

policy. This is in stark contrast to the available techniques in the literature that must train

a second neural network to obtain policy improvement.

It is proven that the obtained linear correction term is optimal for linear systems, as

both the value function and the QNN’s input-output mapping are quadratic. The proposed

method is applied to a simple pendulum, demonstrating an enhanced correction term policy

compared to relying solely on the linearized model as section 2.2. This shows its promise for

54

addressing nonlinear systems.

This chapter is organized as follows. Section 4.1 presents the problem statement. After

section 4.2 gives the PI algorithm, section 4.3 presents how to perform the PI algorithm

using the two-layer QNN. Section 4.4 shows the simulation results.

4.1 Problem Statement

Consider a system that is linear in the input with a linearized model

xk+1 = Axk +Buk

yk = Cxk (4.1)

around the origin, where xk ∈ Rnx is the unknown state vector, uk ∈ Rnu is the input vector,

yk ∈ Rny is the measured output vector, and A, B, C are system matrices. Assume (A,C)

is observable. The goal is to design an optimal observer for the nonlinear system that is

linear in the input using the linearized model and the available data. The dynamics of the

observer utilizing the provided model are

x̂k+1 = Ax̂k +Buk + wπ
k

ŷk = Cx̂k (4.2)

where x̂k and ŷk are states and outputs estimates, respectively, and wπ
k = π(.) is the correction

term policy to be designed later.

The value-function following policy π(.) is written as

V π(x̃k) =
∞∑
i=k

γi−k
(
ỹTi Qỹi + (wπ

i)
T Rwπ

i

)
=

∞∑
i=k

γi−kc(ỹi, w
π
i) (4.3)

where Q = QT ≥ 0, R = RT > 0 are chosen, c(ỹk, w
π
k) is the local cost at time step k,

55

Algorithm 6 General Policy Iteration to Design Optimal Observer

Select the initial policy π0 that stabilizes the observer error dynamics. Then, for j = 0, 1, 2, . . .
perform policy evaluation and policy improvement steps until convergence
Policy Evaluation:
Solve for V πj (.) such that

V πj (x̃k) = ỹTk Qỹk + (w
πj

k)TRw
πj

k + γV πj (x̃k+1) (4.5)

Policy improvement:
Obtain w

πj+1

k such that

w
πj+1

k = argmin
πj

V πj (x̃k) (4.6)

0 < γ ≤ 1 is the discount factor, ỹk = yk − ŷk, and x̃k = xk − x̂k.

The objective is to design the correction term policy wπ
k that minimizes the value-function

using PI algorithm.

The Bellman equation is

V π(x̃k) = ỹTk Qỹk + (wπ
k)

TRwπ
k + γV π(x̃k+1) (4.4)

In order to use the PI algorithm, we must add the assumption that an initial policy π0(.)

which stabilizes the observer error dynamics is known. The general PI algorithm to obtain

the optimal policy π∗(.) is given in Algorithm 6.

When the system can be precisely described by the linear model, the error dynamics is

x̃k+1 = Ax̃k − wπ
k

ỹk = Cx̃k (4.7)

56

and the goal is to solve

argmin
π

∞∑
i=k

γi−k
(
ỹTi Qỹi + (wπ

i)
T Rwπ

i

)
, ∀k

s.t. x̃i+1 = Ax̃i − wπ
i

ỹi = Cx̃i

(4.8)

The optimization problem (4.8) can be rewritten as

argmin
π

∞∑
i=k

γi−k
(
x̃T
i Q̄x̃i + (wπ

i)
T Rwπ

i

)
, ∀k

s.t. x̃i+1 = Ax̃i + (−Inx)w
π
i

(4.9)

where Q̄ = CTQC and Inx is the nx×nx identity matrix. Note that (A,−Inx) is controllable.

Therefore, the optimization problem (4.9) can be considered as an LQR problem for the

observer error dynamics. Thus, the optimal policy π∗(.) is a linear function, and the optimal

value-function V π∗
(.) is quadratic. Therefore, we consider π(x̃k) = Kπx̃k for some matrix

Kπ, and the corresponding value-function approximator V π(x̃k) = x̃T
kP

πx̃k for a matrix

P π > 0.

Remark 9. If x̃k is known, one can perform algorithm 6 as presented in [38]. However, x̃k

is unknown and one cannot perform the policy evaluation step. To address this problem, we

write the Bellman equation in terms of previous measured data instead of x̃k and x̃k+1 and

revise the PI algorithm accordingly.

4.2 Modified Policy Iteration

In this section, we present the proposed PI algorithm by first refining the Bellman equation

and then performing policy improvement.

57

4.2.1 Refining the Bellman Equation

Following the approach in reference [39], we reconstruct x̃k by previous measured data and

replace x̃k in the Bellman equation. Consider the observer error dynamics (4.1) as the

expanded state equation [39]

x̃k = Anx x̃k−nx + Cwπ
k−1,k−nx

ỹk−1,k−nx = Ox̃k−nx + Twπ
k−1,k−nx

(4.10)

where

wπ
k−1,k−nx

=



wπ
k−1

wπ
k−2

...

wπ
k−nx


, ỹk−1,k−nx =



ỹk−1

ỹk−2

...

ỹk−nx


, T =



0 −C −CA . . . −CAnx−2

0 0 −C . . . −CAnx−3

...
...

.
...

0 . . . 0 −C

0 0 0 0 0


,

C =
[
−Inx −A −A2 . . . −Anx−1

]
, and the observability matrix O is

O =



CAnx−1

CAnx−2

...

CA

C


∈ R(nxny)×nx . (4.11)

Note that (A,C) is observable, and the observability matrix O has full column rank nx.

Therefore, O+ = (OTO)−1OT is its left inverse. Lemma 5 based on reference [39] allows us

to replace x̃k with measured data.

58

Lemma 5. One can reconstruct x̃k from measured data as

x̃k =

[
Mw Mỹ

]wπ
k−1,k−nx

ỹk−1,k−nx

 (4.12)

where Mw = C − AnxO+T and Mỹ = AnxO+.

Proof. Equation (4.10) yields

x̃k − Cwπ
k−1,k−nx

= Anx x̃k−nx

= AnxInx x̃k−nx

(4.13)

Note that Inx = O+O. Therefore,

x̃k − Cwπ
k−1,k−nx

= AnxO+(Ox̃k−nx) (4.14)

From (4.10), we can replace Ox̃k−nx with ỹk−1,k−nx − Twπ
k−1,k−nx

in equation (4.14) and get

x̃k − Cwπ
k−1,k−nx

= AnxO+
(
ỹk−1,k−nx − Twπ

k−1,k−nx

)
(4.15)

which can be recast as

x̃k =

[
C − AnxO+T AnxO+

]wπ
k−1,k−nx

ỹk−1,k−nx


=

[
Mw Mỹ

]wπ
k−1,k−nx

ỹk−1,k−nx


(4.16)

59

4.2.2 Policy Evaluation Step

Using Lemma 5 and V π(x̃k) = x̃T
kPx̃k , the Bellman equation can be rewritten based on

previous measured data as

wπ
k−1,k−nx

ỹk−1,k−nx


T

Hπ

wπ
k−1,k−nx

ỹk−1,k−nx

 = ỹTk Qỹk + (wπ
k)

TRwπ
k + γ

wπ
k,k−nx+1

ỹk,k−nx+1


T

Hπ

wπ
k,k−nx+1

ỹk,k−nx+1


(4.17)

where Hπ =

[
Mw Mỹ

]T
P π

[
Mw Mỹ

]
is a symmetric matrix. One contribution of this

chapter is to use the available measurements to train a two-layer QNN with a single output

to find the matrix Hπ of equation (4.17) and evaluate the policy π(.). An overview of

two-layer QNNs is provided in section 2.3. The section 4.3 gives the training of the neural

network within the algorithm.

Remark 10. Note that equation (4.17) is a scalar equation.

wπ
k−1,k−nx

ỹk−1,k−nx

 ∈ Rnx(nx+ny) (4.18)

and Hπ is symmetric. Therefore, the matrix Hπ has M = nx(nx+ny)(nx(nx+ny)+1)

2
unknown

independent elements and N ≥M data samples are needed to obtain Hπ from (4.17).

Remark 11. To achieve PE in practice, we add a probing noise term nk such that wπ
k =

Kπx̃k + nk. It is shown in reference [39] that the solution computed by PI differs from the

actual value corresponding to the Bellman equation when the probing noise term nk is added.

It is discussed that adding the discount factor 0 < γ < 1 to the Bellman equation reduces

this harmful effect of nk.

60

4.2.3 Policy Improvement Step

We now address how to improve the policy π(.) after evaluating the policy and obtaining

the matrix Hπ with a two-layer QNN.

The policy improvement step can be written as

π′(x̃k) = argmin
wπ

k

ỹTk Qỹk + (wπ
k)

TRwπ
k + γ

wπ
k,k−nx+1

ỹk,k−nx+1


T

Hπ

wπ
k,k−nx+1

ỹk,k−nx+1


 (4.19)

where π′(.) is the improved policy over the policy π(.).

Partition

wπ
k,k−nx+1

ỹk,k−nx+1


T

Hπ

wπ
k,k−nx+1

ỹk,k−nx+1

 as


wπ

k

wπ
k−1,k−nx+1

ỹk,k−nx+1


T 

Hπ
11 Hπ

w Hπ
ỹ

(Hπ
w)

T Hπ
22 Hπ

23

(Hπ
ỹ)

T (Hπ
23)

T Hπ
33




wπ
k

wπ
k−1,k−nx+1

ỹk,k−nx+1

 (4.20)

One can solve (4.19) and get the improved policy as

wπ′

k = −γ(R + γHπ
11)

−1(Hπ
wwk−1,k−nx+1 +Hπ

ỹ ỹk,k−nx+1) (4.21)

Therefore, we can use the PI Algorithm 7 and obtain the optimal policy π∗(.) with data.

Remark 12. For linear systems, the optimal Hπ can be obtained using the following closed-

form solution

Hπ =

[
Mw Mỹ

]T
P π

[
Mw Mỹ

]
(4.22)

where P π can be calculated from solving the Riccati equation (4.23) as discussed in section 2.2

61

Algorithm 7 Modified Policy Iteration with Quadratic Value Function

Select the initial policy wπ0
k that stabilizes the observer error dynamics. Then, for j =

0, 1, 2, . . . perform policy evaluation and policy improvement steps until convergence

Policy Evaluation:
Find Hπj such that[
w

πj

k−1,k−nx

ỹk−1,k−nx

]T
Hπj

[
w

πj

k−1,k−nx

ỹk−1,k−nx

]
= ỹTk Qỹk +(w

πj

k)TRw
πj

k + γ

[
w

πj

k,k−nx+1

ỹk,k−nx+1

]T
Hπj

[
w

πj

k,k−nx+1

ỹk,k−nx+1

]
Policy improvement:

Obtain πj+1 such that

w
πj+1

k = −γ(R + γH
πj

11)
−1(Hπj

w wk−1,k−nx+1 +H
πj

ỹ ỹk,k−nx+1)

with the system model.

P π = CTQC + γATP πA− γ2ATP π(R + γP π)−1P πA (4.23)

Then the optimal correction term can be designed as

wπ
k = −γ(R + γHπ

11)
−1(Hπ

wwk−1,k−nx+1 +Hπ
ỹ ỹk,k−nx+1) (4.24)

4.3 QNNs as the Policy Evaluator

This section shows how a two-layer QNN can be trained to do policy evaluation and how

to obtain Hπ. Then, the proposed algorithm to find π∗(.) without the system model is

presented. First, we introduce the following Lemma.

Lemma 6. Let Ĥπ
i denote the i-th approximation of Hπ for the policy π(.) that stabilizes

the observer error dynamics. Starting with i = 1 and any symmetric Ĥπ
0 , iterating through

62

equation (4.25) will result in Ĥπ
i converging to Hπ provided 0 < γ ≤ 1.

wπ
k−1,k−nx

ỹk−1,k−nx


T

Ĥπ
i

wπ
k−1,k−nx

ỹk−1,k−nx

 = ỹTk Qỹk+(wπ
k)

TRwπ
k+γ

wπ
k,k−nx+1

ỹk,k−nx+1


T

Ĥπ
i−1

wπ
k,k−nx+1

ỹk,k−nx+1


(4.25)

Proof. Applying the equation (4.25) recursively yields

wπ
k−1,k−nx

ỹk−1,k−nx


T

Ĥπ
i

wπ
k−1,k−nx

ỹk−1,k−nx

 =
i−1∑
j=0

γjc(ỹk+j, w
π
k+j)+

γi

wπ
k+i−1,k+i−nx

ỹk+i−1,k+i−nx


T

Ĥπ
0

wπ
k+i−1,k+i−nx

ỹk+i−1,k+i−nx


Let i→∞. Then,

wπ
k−1,k−nx

ỹk−1,k−nx


T

Ĥπ
∞

wπ
k−1,k−nx

ỹk−1,k−nx

 =
∞∑
j=0

γjc(ỹk+j, w
π
k+j)+

lim
i→∞

γi

wπ
k+i−1,k+i−nx

ỹk+i−1,k+i−nx


T

Ĥπ
0

wπ
k+i−1,k+i−nx

ỹk+i−1,k+i−nx

 (4.26)

Since limi→∞ γi = 0, for any Ĥπ
0 we also get

lim
i→∞

γi

wπ
k+i−1,k+i−nx

ỹk+i−1,k+i−nx


T

Ĥπ
0

wπ
k+i−1,k+i−nx

ỹk+i−1,k+i−nx

 = 0 (4.27)

63

Replacing (4.27) in (4.26) yields

wπ
k−1,k−nx

ỹk−1,k−nx


T

Ĥπ
∞

wπ
k−1,k−nx

ỹk−1,k−nx

 =
∞∑
j=0

γjc(ỹk+j, w
π
k+j) (4.28)

According to the Bellman equation (4.17), we also have

wπ
k−1,k−nx

ỹk−1,k−nx


T

Hπ

wπ
k−1,k−nx

ỹk−1,k−nx

 =
∞∑
j=0

γjc(ỹk+j, w
π
k+j) (4.29)

As a result of (4.28)(4.29), Ĥπ
i converges to Hπ.

Therefore, we can calculate Hπ if we can obtain Ĥπ
i in equation (4.25) from the previous

known Ĥπ
i−1 in the i-th iteration. We use a two-layer QNN Fig 4.2 to obtain Ĥπ

i . More

specifically, defining the input Xk and output label Yk for the QNN as

Xk =

wπ
k−1,k−nx

ỹk−1,k−nx

 ,

Yk = ỹTk Qỹk + (wπ
k)

TRwπ
k + γ

wπ
k,k−nx+1

ỹk,k−nx+1


T

Ĥπ
i−1

wπ
k,k−nx+1

ỹk,k−nx+1

 (4.30)

and given N >> M data points, we train the QNN and obtain the quadratic input-

output mapping from (2.48) and set Ĥπ
i = H. The detailed methodology is described in

Algorithm 8 with a convergence stopping criterium of ||Ĥπj

i − Ĥ
πj

i−1|| < ϵ for a small ϵ.

Figure 4.1 presents an overview of the proposed algorithm.

64

Algorithm 8 The PI algorithm with a QNN as the VFA

Choose ϵ, N , γ.
Select the initial policy wπ0

k that stabilizes the observer error dynamics. Then, for j = 0, 1, 2, . . .
do

Policy Evaluation:
i← 0
Choose a random Ĥ

πj

0

repeat
i← i+ 1
Train the QNN by N data samples with Xk as the input and Yk as the output label

Xk =

[
w

πj

k−1,k−nx

ỹk−1,k−nx

]
,

Yk = ỹTk Qỹk + (w
πj

k)TRw
πj

k + γ

[
w

πj

k,k−nx+1

ỹk,k−nx+1

]T
Ĥ

πj

i−1

[
w

πj

k,k−nx+1

ỹk,k−nx+1

]
(4.31)

Obtain the input-output mapping as

X T
k HXk = Ŷk (4.32)

Ĥ
πj

i ← H

Until ||Ĥπj

i − Ĥ
πj

i−1|| < ϵ

Hπj ← Ĥ
πj

i

Policy Improvement:
Obtain w

πj+1

k such that

w
πj+1

k = −γ(R+ γH
πj

11)
−1(H

πj
w wk−1,k−nx+1 +H

πj

ỹ ỹk,k−nx+1) (4.33)

4.4 Simulation Results

A pendulum is first considered as a simple linear system to show how the proposed method

converges to the optimal correction term policy for the LQE (refer to Remark 12). Then,

a nonlinear model of the pendulum is considered to highlight the benefits of the proposed

method compared to relying solely on the provided linearized pendulum model.

65

Figure 4.1: Overview of LQE proposed design

4.4.1 Pendulum Linear Model Results

Consider a pendulum modeled as (4.34) with sampling time Ts = 0.1s.

x1,k+1

x2,k+1

 =

 0.95 0.10

−0.98 0.94


x1,k

x2,k

+

0.005
0.098

 uk

yk =

[
0 1

]x1,k

x2,k


(4.34)

As a result, Mỹ and Mw are obtained as

Mw =

−1 0 −0.95 −0.92

0 −1 0.98 0.95

 , Mỹ =

−0.82 0.96

1.89 −0.99

 (4.35)

We choose γ = 1, N = 200, β = 0, Q = 10 and R =

1 0

0 1

.
66

Figure 4.2: QNN as the policy evalautor to obtain
Ĥπ

i in i-th iteration

From the closed-form solution for LQE we get

P π∗
=

 1.45 −0.80

−0.80 10.80

 (4.36)

Hπ∗
=



1.4 −0.8 2.2 2.1 2.7 −2.2

−0.8 10.8 −11.3 −11.0 −21.1 11.5

2.2 −11.3 13.2 12.8 23.2 −13.3

2.1 −11.0 12.8 12.4 22.6 −12.9

2.7 −21.1 23.2 22.6 42.2 −23.5

−2.2 11.5 −13.3 −12.9 −23.5 13.5


(4.37)

The objective is to show that with any initial stabilizing policy π0(.), the proposed algo-

rithm 8 converges to the matrix Hπ∗
and therefore the optimal policy π∗(.) is achieved. We

ran ten simulations with random initial stabilizing policies. It is shown in Fig 4.3 that πj(.)

converges to the optimal policy π∗(.) in all ten runs of the algorithm since Hπj converges to

Hπ∗
.

67

Figure 4.3: LQE pendulum - Convergence of Hπj

4.4.2 Pendulum Nonlinear Model Results

The proposed method is also applied to the nonlinear model of the simple pendulum. The

results will show that the data-driven method gives an improved observer compared to

obtaining the correction term closed-form solution using the provided linearized model.

Consider the pendulum with dynamic model

θ̈ (t) + 0.1θ̇ (t) + 10 sin (θ (t)) = u(t) (4.38)

where θ(t) represents the pitch angle and the measured output is θ̇ (t).

We choose N = 200, β = 0, Q = 10 and R =

1 0

0 1

. The A, B, C matrices in (4.34)

which are derived from linearization aroundθ
θ̇

 =

0
0

 (4.39)

are used for the linearized model used in the observer dynamics (4.2).

68

Figure 4.4: LQE pendulum - Cost-to-go from the initial state with γ = 1

4.4.2.1 Simulation Results with γ = 1

First, we choose γ = 1. One can first obtain the correction term policy wπ
k solely using the

linearized model with the closed form solution given in (4.37). To compare this result with

obtaining the correction term using the proposed data-driven method, we ran ten simulation

with different initial stabilizing policies and the initial state

x0 =

θ(0)
θ̇(0)

 =

3
0

 (4.40)

. Figure 4.4 shows that the proposed method consistently yields lower initial cost-to-go values

than the closed-form solution, wich is shown with a dash line. In this instance, the selection

of Q and R matrices prioritizes minimizing the output error. As depicted in Fig 4.5, the

proposed approach outperforms the correction term derived from the closed-form formula

and reduces the output error over time.

69

Figure 4.5: LQE pendulum - Output error comparison with γ = 1

4.4.2.2 Simulation Results with γ = 0.4

We select γ = 0.4 to enhance performance by mitigating the impact of noise nk. Figure 4.6

demonstrates that the proposed method consistently achieves lower initial cost-to-go values

compared to the closed-form solution, represented by the dashed line. Additionally, Fig 4.7

showcases how our approach reduces the output error over time. As anticipated, the selection

of γ = 0.4 notably enhances the observer’s performance..

70

Figure 4.6: LQE pendulum - Cost-to-go from the initial state with γ = 0.4

Figure 4.7: LQE pendulum - Output error comparison with γ = 0.4

71

Chapter 5

Conclusions and Future Work

In this thesis, the application of RL in optimal control has been explored to address tradi-

tional control methods limitations when dealing with nonlinear, uncertain, large-scale sys-

tems, or systems with unknown dynamics. The integration of RL with optimal control tackles

these challenges by offering adaptability, the ability to handle complex dynamics, and the

capacity to overcome model inaccuracies. Many RL algorithms have employed ANNs to

approximate complex functions, aiming for broad applicability. However, this approach has

drawbacks, including difficulties associated with non-convex optimization, complex architec-

ture selection, and the absence of straightforward analytical input-output mapping.

The primary goal was to utilize QNNs within the RL algorithm to design discrete-time

LQR, LQT, and LQE, particularly without the need for system model knowledge. This

idea stemmed from (i) observed drawbacks in using ANNs within RL algorithms, (2) both

the input-output mapping of the two-layer QNN and the value-function of LQ problems are

quadratic, (iii) the effectiveness of QNNs in various fields.

The convergence of the proposed methods to optimal solutions was established through

rigorous theoretical proofs and practical case studies. MATLAB simulations confirmed the

theoretical claims, validating the proposed methodology with various control problems. The

simulations also suggest that the proposed algorithm for optimal observer design yields

72

favorable results when applied to nonlinear systems provided a linearized model is given.

Moving forward, future research should aim to extend this approach to nonlinear systems,

leveraging deep QNNs trained via convex optimization. This extension will enhance the

methodology’s applicability and effectiveness in real-world applications.

73

Bibliography

[1] A. E. Bryson and Y.-C. Ho, Applied optimal control: optimization, estimation, and

control. Routledge, 2018.

[2] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons, 2012.

[3] M. Gan, J. Zhao, and C. Zhang, “Extended adaptive optimal control of linear sys-

tems with unknown dynamics using adaptive dynamic programming,” Asian Journal of

Control, vol. 23, no. 2, pp. 1097–1106, 2021.

[4] Y. Jiang and Z.-P. Jiang, “Global adaptive dynamic programming for continuous-time

nonlinear systems,” IEEE Transactions on Automatic Control, vol. 60, no. 11, pp. 2917–

2929, 2015.

[5] D. Bertsekas, Reinforcement learning and optimal control. Athena Scientific, 2019.

[6] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming

for feedback control,” IEEE circuits and systems magazine, vol. 9, no. 3, pp. 32–50, 2009.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,

2018.

[8] C. Szepesvári, Algorithms for reinforcement learning. Springer Nature, 2022.

[9] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal and au-

tonomous control using reinforcement learning: A survey,” IEEE transactions on neural

networks and learning systems, vol. 29, no. 6, pp. 2042–2062, 2017.

74

[10] N. Matni, A. Proutiere, A. Rantzer, and S. Tu, “From self-tuning regulators to rein-

forcement learning and back again,” in 2019 IEEE 58th Conference on Decision and

Control (CDC). IEEE, 2019, pp. 3724–3740.

[11] F. A. Yaghmaie, F. Gustafsson, and L. Ljung, “Linear quadratic control using model-

free reinforcement learning,” IEEE Transactions on Automatic Control, 2022.

[12] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep

reinforcement learning for continuous control,” in International conference on machine

learning. PMLR, 2016, pp. 1329–1338.

[13] S. G. Khan, G. Herrmann, F. L. Lewis, T. Pipe, and C. Melhuish, “Reinforcement

learning and optimal adaptive control: An overview and implementation examples,”

Annual reviews in control, vol. 36, no. 1, pp. 42–59, 2012.

[14] D. Zhao, Z. Xia, and D. Wang, “Model-free optimal control for affine nonlinear systems

with convergence analysis,” IEEE Transactions on Automation Science and Engineer-

ing, vol. 12, no. 4, pp. 1461–1468, 2014.

[15] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim,

“Applications of deep reinforcement learning in communications and networking: A

survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174,

2019.

[16] L. Rodrigues and S. Givigi, “Analysis and design of quadratic neural networks for

regression, classification, and lyapunov control of dynamical systems,” arXiv preprint

arXiv:2207.13120, 2022.

[17] B. Bartan and M. Pilanci, “Neural spectrahedra and semidefinite lifts: Global convex

optimization of polynomial activation neural networks in fully polynomial-time,” arXiv

preprint arXiv:2101.02429, 2021.

75

[18] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[19] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic methods. Courier

Corporation, 2007.

[20] V. Sima, Algorithms for linear-quadratic optimization. CRC Press, 2021.

[21] R. E. Kalman et al., “Contributions to the theory of optimal control,” Bol. soc. mat.

mexicana, vol. 5, no. 2, pp. 102–119, 1960.

[22] J. C. Doyle, “Guaranteed margins for lqg regulators,” IEEE Transactions on automatic

Control, vol. 23, no. 4, pp. 756–757, 1978.

[23] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.

[24] D. Kleinman, “On an iterative technique for riccati equation computations,” IEEE

Transactions on Automatic Control, vol. 13, no. 1, pp. 114–115, 1968.

[25] D. Tailor and D. Izzo, “Learning the optimal state-feedback via supervised imitation

learning,” Astrodynamics, vol. 3, pp. 361–374, 2019.

[26] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition with

control,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1, pp. 142–161,

2016.

[27] J. Boedecker, J. T. Springenberg, J. Wülfing, and M. Riedmiller, “Approximate real-

time optimal control based on sparse gaussian process models,” in 2014 IEEE sympo-

sium on adaptive dynamic programming and reinforcement learning (ADPRL). IEEE,

2014, pp. 1–8.

[28] D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their

application to optimal control studies,” Physical Review A, vol. 64, no. 2, p. 023420,

2001.

76

[29] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”

Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[30] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforcement learning:

Applications on robotics,” Journal of Intelligent & Robotic Systems, vol. 86, no. 2, pp.

153–173, 2017.

[31] R. Tedrake, “Underactuated robotics: Algorithms for walking, running, swimming, fly-

ing, and manipulation,” Course Notes for MIT, vol. 6, 2016.

[32] F. L. Lewis and D. Liu, Reinforcement learning and approximate dynamic programming

for feedback control. John Wiley & Sons, 2013.

[33] H. Liu, B. Kiumarsi, Y. Kartal, A. Taha Koru, H. Modares, and F. L. Lewis, “Reinforce-

ment learning applications in unmanned vehicle control: A comprehensive overview,”

Unmanned Systems, vol. 11, no. 01, pp. 17–26, 2023.

[34] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference models: Model-free deep

rl for model-based control,” arXiv preprint arXiv:1802.09081, 2018.

[35] D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, “Adaptive dynamic programming for

control: A survey and recent advances,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 51, no. 1, pp. 142–160, 2020.

[36] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE transactions on

Neural Networks, vol. 8, no. 5, pp. 997–1007, 1997.

[37] B. Pang and Z.-P. Jiang, “Robust reinforcement learning: A case study in linear

quadratic regulation,” in Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 35, no. 10, 2021, pp. 9303–9311.

77

[38] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic control using

policy iteration,” in Proceedings of 1994 American Control Conference-ACC’94, vol. 3.

IEEE, 1994, pp. 3475–3479.

[39] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for partially observable dy-

namic processes: Adaptive dynamic programming using measured output data,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41, no. 1,

pp. 14–25, 2010.

[40] S. A. A. Rizvi and Z. Lin, “Experience replay–based output feedback q-learning scheme

for optimal output tracking control of discrete-time linear systems,” International Jour-

nal of Adaptive Control and Signal Processing, vol. 33, no. 12, pp. 1825–1842, 2019.

[41] B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, and M.-B. Naghibi-Sistani, “Re-

inforcement q-learning for optimal tracking control of linear discrete-time systems with

unknown dynamics,” Automatica, vol. 50, no. 4, pp. 1167–1175, 2014.

[42] B. Kiumarsi, F. L. Lewis, M.-B. Naghibi-Sistani, and A. Karimpour, “Optimal tracking

control of unknown discrete-time linear systems using input-output measured data,”

IEEE transactions on cybernetics, vol. 45, no. 12, pp. 2770–2779, 2015.

[43] J. Na, G. Herrmann, and K. G. Vamvoudakis, “Adaptive optimal observer design via

approximate dynamic programming,” in 2017 American Control Conference (ACC).

IEEE, 2017, pp. 3288–3293.

[44] J. Li, Z. Xiao, P. Li, and Z. Ding, “Networked controller and observer design of discrete-

time systems with inaccurate model parameters,” ISA transactions, vol. 98, pp. 75–86,

2020.

[45] L. Rodrigues and S. Givigi, “System identification and control using quadratic neural

networks,” IEEE Control Systems Letters, vol. 7, pp. 2209–2214, 2023.

78

[46] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley-interscience, 1969,

vol. 1072.

[47] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

[48] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292, 1992.

[49] R. Kalman, P. L. Falb, and M. A. Arbib, “Controllability and observability for linear

systems,” IEEE Transactions on Automatic Control, vol. 9, no. 3, pp. 291–292, 1964.

[50] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins University

Press, 1996.

[51] W. L. Root and H. W. Lee, “A riccati equation arising in stochastic control,” SIAM

Journal on Control, vol. 8, no. 4, pp. 401–414, 1970.

[52] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods.

Dover Publications, 1990.

[53] K. Ogata, Modern control engineering fifth edition, 2010.

79

