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Abstract

Bayesian Parameter Estimation of Probabilistic Models for Information Retrieval and

Clustering in Discrete Data Spaces

Sahar Salmanzade Yazdi

In the contemporary era, a substantial amount of data is generated, prompting a critical need

to effectively model data for thorough analysis and extraction of meaningful patterns. This is par-

ticularly crucial in various real-world applications, with natural language processing standing out

as an area urgently requiring data analysis. Tasks such as document retrieval, spam email filtering,

smart assistant applications, and sentiment analysis exemplify the extensive scope of natural lan-

guage processing (NLP) and text mining. Addressing this context, various Bayesian models have

been developed to aptly model data and extract essential information by considering latent topics.

These models, grounded in probabilistic graphical models like Bayesian networks, capture the prob-

abilistic dependencies between variables. Their ability to incorporate evidence from previous user

knowledge enhances retrieval performance significantly. Furthermore, Bayesian network models

exhibit effectiveness and generality surpassing classical information retrieval models like boolean,

vector, and probabilistic models. This versatility positions Bayesian models as valuable approaches

in information retrieval. Topic modeling, a valuable technique in text mining, plays a key role in

uncovering concealed thematic structures within document collections, facilitates the identification

of clusters of ºtopicsº or co-occurring words, and aids in understanding underlying themes and pat-

terns from data. The unsupervised classification of documents, akin to clustering in numeric data,

allows for the discovery of natural document groups, even in the absence of predefined topics.

However, significant challenges persist, including the management of queries not present in data

collection, sparsity within datasets, especially in the age of big data, and addressing correlations be-

tween observations. This thesis suggests innovative Bayesian extensions for data modeling, utilizing
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the Generalized Dirichlet distribution and the Beta-Liouville distribution as prior probability distri-

butions to incorporate new queries into the topic space. Furthermore, these priors are integrated into

a probabilistic clustering-projection model to evaluate their impact on both clustering and projection

jointly. Lastly, in addressing the issues and hurdles associated with data sparsity, the Generalized

Dirichlet distribution and the Beta-Liouville distribution are advocated as prior probability distri-

butions to confront these challenges. The selection of a suitable prior is crucial in Bayesian data

modeling, and these distributions are explored for their ability to model various non-Gaussian data

and overcome the limited covariance structures of other distributions like the Dirichlet distribu-

tion. Following the determination of prior probabilities, the next step involves estimating optimized

parameters for the distribution and model. An iterative parameter estimation model, utilizing the

Expectation Maximization algorithm, is developed to maximize data likelihood. The simplicity of

the proposed iterative algorithms allows these models to successfully handle real-time data, making

them applicable across a broad range of practical scenarios.
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Chapter 1

Introduction

1.1 Background

In the realm of Natural Language Processing (NLP), Information Retrieval involves the identi-

fication of relevant documents within unstructured datasets. This concept is not novel, tracing its

roots back to 1949 post-World War II when American soldiers endeavored to decipher messages

sent by Nazis. Inspired by this, Weaver (1952) proposed constructing a translation system. His

idea centered on studying the common features present in the roots of all languages, positing that

languages, being human creations with individuals sharing the same vocal organs and brain struc-

ture, would exhibit similarities. Weaver believed that ºa book written in Chinese is simply a book

that was written in English and later was coded into Chinese codeº. Over time, numerous scientists

worked on automating the document search process. Luhn (1957) suggested employing a dictionary

of ’notions’, constructed by experts closely associated with the subject field. These notions, selected

to optimally represent the material, would form the basis for automatically weighting them within

documents. Luhn extended this concept to include the use of words themselves, aiming to extract

vital sentences for automatic document abstracts Luhn (1958). While Luhn’s systems were never

built due to the technological constraints, they laid the groundwork for significant research ideas in

subsequent decades. The 1970s and 1980s witnessed advancements building upon the groundwork

laid in the 1960s. Various models of document retrieval emerged, demonstrating effectiveness on
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small text collections. However, the scalability of these models to larger corpora remained uncer-

tain.

In the late 20th century, with significant developments in the field of natural language process-

ing and machine learning, the concept of topic modeling gained widespread interest and attention

among researchers in various fields. The evolution of topic modeling is marked by key milestones,

such as:

• Latent Semantic Analysis (LSA): Proposed by Deerwester et al. Deerwester, Dumais, Fur-

nas, Landauer, and Harshman (1990), Latent Semantic Analysis (LSA) laid the groundwork

for topic modeling. LSA sought to unveil latent structures within large textual corpora by

examining relationships between terms and documents.

• Probabilistic Latent Semantic Analysis (pLSA): Serving as a precursor to LDA, Proba-

bilistic Latent Semantic Analysis (pLSA) was proposed by Hofmann Hofmann (1999) as a

statistical technique that models document generation in terms of topics, relying on a proba-

bilistic generative model.

• Latent Dirichlet Allocation (LDA): The introduction of Latent Dirichlet Allocation by Blei,

Ng, and Jordan in 2003 D. M. Blei, Ng, and Jordan (2003) marked a significant advancement

in topic modeling. LDA is a generative probabilistic model, explains sets of observations

through unobserved groups, elucidating why certain data parts are similar. LDA has become

widely employed in text mining and natural language processing.

The evolution of topic modeling has been characterized by the development of state of the art

algorithms, the application of topic models to various types of texts, and the exploration of new

research directions. Continuous efforts aim to enhance the capabilities and applications of topic

modeling techniques. Bayesian models, known for their adept handling of uncertainty and inte-

gration of prior knowledge, are integral tools in text mining. Providing a probabilistic framework,

they enable tasks like document classification, topic modeling, and sentiment analysis Ribeiro-Neto,

Silva, and Muntz (2000). The role of prior knowledge is paramount in shaping topic and word dis-

tributions. In Bayesian topic modeling, the prior represents initial beliefs about topic and word
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distributions before observing the actual data. Incorporating prior knowledge in Bayesian models

offers several benefits, including:

• Improved Model Performance: Utilizing prior knowledge can boost the performance of

topic models by guiding the inference process and aligning the model’s output with existing

domain knowledge. This guidance can result in more precise and understandable topic assign-

ments, ultimately enhancing the overall quality of the model Yang, Downey, and Boyd-Graber

(2015).

• Enhanced Topic Coherence: The integration of prior knowledge into topic models can gen-

erate more dependable and semantically meaningful topics that line up with human under-

standing and domain-specific concepts. This integration promotes results that are not only

more interpretable but also more practical Wood, Tan, Wang, and Arnold (2017).

• Effective Handling of Sparse or Noisy Data: Prior knowledge serves as a valuable tool in

addressing the challenges posed by sparse or noisy data. It provides additional constraints

and guidance during the topic modeling process, leading to more resilient and dependable

outcomes, particularly in situations with limited data Nguyen, Nguyen, Nguyen, Than, et al.

(2021).

• Facilitation of Interactive Topic Modeling: The incorporation of prior knowledge facilitates

interactive topic modeling by reducing the waiting time for model updates and enhancing the

overall user experience. This improvement enables more efficient and effective collaboration

between human experts and the topic modeling process Yang et al. (2015).

• Improved Hierarchical Topic Discovery: Using prior knowledge can elevate hierarchical

topic modeling, resulting in the identification of topic hierarchies organized into interpretable

order. This approach yields more structured and insightful representations of topics within

the data Wang et al. (2022).

Bayesian method was first proposed by Bayes and Laplace in 18th century. The Baye’s Theorem

is defined as:
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p(X|Y ) =
p(Y |X)p(X)

p(Y )
(1)

where p(X|Y ) is the posterior probability, and p(Y |X) and p(X) express data likelihood and prior

probability, respectively Berrar (2018).

One of the most common used prior distribution is the Dirichlet distribution, which is a benefi-

cial prior in Bayesian topic modeling owing to numerous advantages:

• Conjugate Prior: The Dirichlet distribution is the conjugate prior of the categorical and

multinomial distributions. This means that when the prior distribution of the multinomial

parameters follows the Dirichlet distribution, the posterior is also a Dirichlet distribution.

This characteristic simplifies the computation of the posterior distribution Ferguson (1973).

• Mathematical Convenience: Using the Dirichlet distribution as a prior makes the mathemat-

ical calculations more straightforward and also simplifies the inference process and facilitates

the computation of the posterior distribution Smucker and Allan (2005).

• Modeling Uncertainty: The Dirichlet distribution can be used to model the uncertainty of a

random vector of probabilities, making it suitable for representing the distribution of topics

within documents and the distribution of words within topics Hinneburg, Gabriel, and Gohr

(2007).

• Applications in Bayesian Inference: Dirichlet distributions are commonly used as prior

distributions in Bayesian inference, since they provide a flexible framework for representing

prior beliefs and incorporating prior knowledge into the modeling process Gopalan and Berry

(1998).

Let X = (x1, x2, ..., xK) and α = (α1, α2, ..., αK) be vectors of K parameters where for

i = 1, ...,K, xi ≥ 0, αi > 0 and
∑K

i=1 xi = 1. The probability density function (pdf) of the

Dirichlet distribution is given by:

p(X|α) =
Γ(α0)∏K
i=1 Γ(αi)

K∏

i=1

x
(αi−1)
i (2)
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where α0 =
∑K

i=1 αi. The mean, the variance, and the covariance of the Dirichlet distribution

SËahin, Evren, Tuna, SËahinbasËoğlu, and Ustaoğlu (2023), for i = 1, ...,K, are as follows:

E(xi) =
αi
α0

(3)

V ar(xi) =
αi(α0 − αi)

α2
0(α0 + 1)

(4)

Cov(αiαj) = −
αiαj

α2
0(α0 + 1)

(5)

Nevertheless, despite the advantageous characteristics of Dirichlet distributions, there are chal-

lenges associated with working with them. Specifically, when employing the Dirichlet distribution

as a prior for the multinomial distribution, certain limitations emerge. All entries in the random

vector must share a common variance, and their sum must equate to one. This restricts our ability to

incorporate individual variance information for each entry of the random vector, as we are confined

to a single degree of freedom, the total prior sample size, to express our confidence in prior knowl-

edge. Additionally, all entries within the distribution are always negatively correlated. In simpler

terms, if the probability of one entry increases, the probabilities of the remaining entries must either

decrease or remain unchanged to ensure the total sums to one.

1.2 Contributions

The primary goal of this thesis is to assess the efficacy of employing alternative distributions,

such as the generalized Dirichlet distribution and the Beta-Liouville distribution, as priors in recur-

sive parameter estimation within latent topic modeling methods. This is pursued due to the enhanced

flexibility these distributions offer in modeling diverse sets of data.

In this context, the contributions are listed as follows:

• Bayesian Folding-In Using Generalized Dirichlet and Beta-Liouville Kernels for Infor-

mation Retrieval We propose a novel approach using generalized Dirichlet (GD) distribution

and Beta-Liouville (BL) distribution as kernel densities in a Bayesian framework to involve

the topic mixtures of the known documents and accurate modeling of these topic mixtures.
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This contribution has been published in 2022 IEEE Symposium Series on Computational In-

telligence (IEEE SSCI)) Yazdi, Najar, and Bouguila (2022)

• Generalized Probabilistic Clustering Projection Models for Discrete Data We extend our

previous work by employing the generalized Dirichlet distribution and the Beta-Liouville

distribution as priors to study the mutual effect of clustering and projection in a probabilistic

framework and the impacts of prior knowledge in the perplexity of the model. This contribu-

tion has been published in 2023 IEEE International Symposium on Networks, Computers and

Communications (ISNCC’23) Yazdi, Najar, and Bouguila (2023)

• Generalizing Conditional Naive Bayes model We build upon our prior research efforts by

expanding the scope of the conditional Naive Bayes model, incorporating the generalized

Dirichlet and Beta-Liouville distributions in two distinct sets of experiments. In the first

experiment, tailored for real-valued data, we adopt a Gaussian distribution to model the ob-

served features. In the second experiment, designed for a categorical dataset, we consider

discrete distributions to characterize the features. This contribution has been submitted to

2024 International Conference on Enterprise Information Systems (ICEIS) Yazdi, Najar, and

Bouguila (n.d.)

1.3 Thesis Overview

Each chapter provides a detailed explanation of the models we have developed.

• Chapter 2 presents an introduction to our Bayesian folding-in model, incorporating the gen-

eralized Dirichlet distribution and the Beta-Liouville distribution as priors. This model aims

to determine the topic mixture proportions of new queries and capture dependencies between

these topic mixtures and the topic mixture of the corpus. We illustrate the effectiveness of our

model by comparing it with Bayesian folding-in using the Dirichlet distribution as a prior,

utilizing real-life datasets.

• Chapter 3 delves deeper into examining the impact of the prior distribution on the perplexity

of the probabilistic clustering-projection model. We conducted a comparison between the

6



Dirichlet distribution, the generalized Dirichlet, and the Beta-Liouville distributions using two

datasets: the Reuters financial newswire service dataset and the 20 newsgroup data collection.

• Chapter 4 takes a different approach by focusing on a subset of features within the data col-

lection, conditioning a Naive Bayes model. By employing exponential family distribution, we

investigate the perplexity of the model under two scenarios: the generalized Dirichlet prior

and the Beta-Liouville prior. This analysis utilizes data collections with both real-valued

features and discrete features.

• In Chapter 5, we summarize all of our contributions and engage in a discussion to make a

conclusion.
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Chapter 2

Bayesian Folding-In Using Generalized

Dirichlet and Beta-Liouville Kernels for

Information Retrieval

2.1 Introduction

With the development of digital databases and networks, a large public would have access to

vast libraries of textual data. Creating intelligent interfaces for human-machine interaction that

assist users in their search for pertinent information is one of the biggest challenges facing the infor-

mation science today. It is important to train a model which can distinguish between what users may

say and what their actual intention is, especially since a user’s request can be ambivalent, imprecise,

or even unclear. To achieve that aim, latent semantic indexing (LSI) was proposed by Deerwester

et al. Deerwester et al. (1990) to map terms as well as documents in the latent semantic space via

singular value decomposition (SVD). However, LSI was expensive to compute, and it could not

solve the polysemy problem. Therefore, probabilistic latent semantic indexing (PLSI) Hofmann

(1999) was introduced to define a proper generative model of the data. PLSI has been presented

to automatically index textual documents by representing them as mixtures of latent topics since it

has a stronger statistical base than the traditional LSI. Yet, new queries had to be folded into the
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latent topic space. PLSI folding-in and Bayesian folding-in were introduced to get the topic mix-

ture proportions of new queries or documents that were not included in the document collection

Brants, Chen, and Tsochantaridis (2002); Hinneburg et al. (2007). Studies have shown that topic

mixtures for a new query could be ignored in PLSI folding-in which leads into a poor model of

extended documents Hinneburg et al. (2007), whereas using Bayesian framework and maximum a

posteriori estimate can express the correlation between topics. Furthermore, dependencies between

topics also could be captured by modeling the prior using Dirichlet kernel in Bayesian framework.

Although results have shown an affection in both precision and recall Hinneburg et al. (2007), the

restrictive negative covariance structure of Dirichlet distribution makes its use as a prior in case of

positively correlated data inappropriate. Thus, in this study, we propose using alternative priors such

as generalized Dirichlet and Beta-Liouville kernels for accurate modeling of these topic mixtures.

Although generalized Dirichlet distribution has a more general covariance structure than Dirich-

let distribution Bakhtiari and Bouguila (2011), it still needs more parameters to be learned (i.e. a

D-variate GD distribution has 2D parameters, while D+2 parameters for a D-variate Dirichlet distri-

bution) Bouguila and Ziou (2009). Similar to generalized Dirichlet, Beta-Liouville distribution has

a general covariance structure that can be either positive or negative. However, unlike generalized

Dirichlet distribution, Beta-Liouville requires fewer parameters (i.e. a D-variate BL distribution has

D+2 parameters), which considered as an important property of this distribution Najar and Bouguila

(2021b).

In section 2 we review the PLSI and PLSI folding-in framework. Section 3 consists of Bayesian

framework for folding new queries into latent topic space. The differences between Dirichlet, gener-

alized Dirichlet, and Beta-Liouville kernels are examined in this section. In section 4, we describe

our experiments on real text data and discuss the outcomes, and finally, in section 5 we make a

conclusion.
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2.2 PLSI FOLDING-IN

2.2.1 Probabilistic Latent Semantic Indexing (PLSI)

To overcome the problems with LSI, a statistical model was proposed by Hoffman as proba-

bilistic latent semantic indexing (PLSI), which is based on likelihood principle Hofmann (1999).

This way, it is possible to deal with polysemous words and distinguish between meanings and

word usage patterns. A statistical model known as the aspect model serves as the foundation of

PLSI Hofmann, Puzicha, and Jordan (1998); Saul and Pereira (1997). In aspect model, an unob-

served class variable z ∈ Z = {z1, z2, . . . , zK} is associated with each occurrence of the word

w ∈ W = {w1, w2, . . . , wM} in a document d ∈ D = {d1, d2, . . . , dN}. The generative model

is defined by selecting document d with probability P (d), while the latent class z with probabil-

ity P (z|d) is picked to produce a word w with probability P (w|z). Respectively, the latent class

variable z is ignored and the observation pair (d, w) is gained. To maximize the log-likelihood of

occurring word w in document d with respect to z, the Expectation-Maximization (EM) algorithm is

used. First, in the E-step, the probability that a word w in document d is explained by hidden factor

z:

P (z|d, w) =
P (z)P (d|z)P (w|z)∑
z
′ P (z′)P (d|z′)P (w|z′)

(6)

Then, the obtained probability is used to update the parameters of the model in the M-step.

P (w|z) =

∑
d
′ n(d, w)P (z|d, w)∑

d,n
′ n(d, w′)P (z|d, w′)

(7)

P (d|z) =

∑
w

′ n(d, w)P (z|d, w)∑
d
′
,n n(d

′ , w)P (z|d′ , w)
(8)

P (z) =
1

R

∑

d,w

n(d, w)P (z|d, w) (9)

where,

R =
∑

d,w

n(d, w) (10)

n(d,w) indicates the number of occurrence of the word w in document d Hofmann (1999); Jin, Zhou,
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and Mobasher (2004).

2.2.2 PLSI Folding-in

PLSI is a more adaptable method than LSI, therefore, it can be used in a range of information

retrieval applications, text mining, and web usage mining. However, PLSI is not a generative model

Hinneburg et al. (2007) and we cannot take advantage of it in case of new documents (queries).

Therefore, a new document must be folded into the data collection through a process known as

folding-in in order to determine the topic mixture proportions for that document.

The PLSI folding-in approach is similar to PLSI. However, in folding-in the obtained topic-

word associations P (w|z) from PLSI will be used to estimate the probability that a new query is

described by the topic z, P (z|dq). Hence, by running the original EM algorithm with fixed topic-

word associations P (w|z), the EM algorithm turns down into:

E-step : P (zj |wi, dq) =
P (wi|zj)P (zj |dq)∑K

j′=1 P (wi|zj′)P (zj′|dq)
(11)

M-step : P (zj |dq) =

∑V
i=1 n(dq, wi)P (zj |wi, dq)

n(dq)
(12)

The term P (zj |wi, dq) is calculated in E-step in each iteration using the updated P (zj |dq) cal-

culated from M-step Hinneburg et al. (2007).

Although the major drawback of PLSI folding-in is that in terms of short queries it is not able

to find all latent aspects and that results in poor estimation and retrieving of relevant documents. As

a consequence, a Bayesian way to estimate those topic mixtures for new queries (documents) was

suggested, which instead of maximizing the likelihood, it maximizes the posterior P (θ⃗q|w⃗q, θ⃗, w⃗).

2.3 Bayesian Folding-in Using Dirichlet Kernel as Prior - Using EM

Algorithm

Topic mixtures of documents in the collection could have been ignored in the former PLSI

folding-in process, which can lead to inferior model of the extended collection. Folding-in technique

in a Bayesian framework was introduced to eliminate such problems. In this method, topic mixtures
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proportions θ⃗q for a new query (document) will be estimated in a Bayesian way through maximizing

the posterior probability P (θ⃗q|w⃗q, θ⃗, w⃗) while the prior is modeled using kernel density estimate.

An alternative method for estimating the probability density function of a random variable is kernel

density estimation (KDE), which is non-parametric. Kernel density estimation is a fundamental data

smoothing problem where conclusions about the population are drawn from a small data sample. A

kernel density estimate of a univariate probability density function f of independent and identically

distributed sample of size N, (X1, X2, . . . , XN ), would be as follows:

f̂h(x) = N−1
N∑

i=1

h−1K(
x− xi
h

) (13)

where h is a smoothing parameter called bandwidth and K is a non-negative kernel Parzen (1962);

Rosenblatt (1956).

In this method, a maximum a posteriori (MAP) estimator is used instead of maximum likeli-

hood. The MAP approach is a form of Bayes estimate of a vector parameter where there is no

information about the loss function. It provides a way to make use of prior knowledge in the train-

ing phase. This is especially useful to deal with the inaccuracies caused by sparse training data in

maximum likelihood (ML) approach Bouguila (2009). The main difference between MAP and ML

estimation is in the proposition of the suitable prior distribution of the parameter which is going to

be estimated Gauvain and Lee (1994). For this MAP estimator, a kernel density estimate is em-

ployed using a Diriclet kernel as a prior. This kernel density estimate has the benefit of requiring

very few model assumptions. Moreover, similar to the correlated topic model, such a prior can

reflect correlations between topics.

In the study conducted by A. Hinneburg, et al. Hinneburg et al. (2007), they proposed using a

kernel density estimate with Dirichlet distribution as the kernel function in MAP estimate to capture

the relationships between topic mixtures of documents in the collection and topic mixtures of the

new query. Since the Dirichlet distribution is a conjugate prior to the multinomial Bouguila (2007,

2009); Bouguila and Ziou (2004a), it is widely used as a prior in Bayesian statistics.

According to the definition of Dirichlet distribution Fang, Kotz, and Ng (2018), (y1, ..., yk) is

said to follow a Dirichlet distribution with parameters (α1, ..., αk):
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(y1, ..., yK) ∼ Dir(α1, ..., αK) (14)

where:

∀yi : yi is non-negative and

K∑

i=1

yi = 1

Therefore, the probability density function follows:

f(y1, .., yK ;α1, ..., αK) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏

i=1

yαi−1
i (15)

Although Dirichlet distribution is unimodal and assumes independence between topics, using

it as the kernel can be multimodal and measures the dependencies between topics Hinneburg et al.

(2007), which makes it more useful for the purpose of the study.

To derive the topic mixtures θ⃗q of the new document dq which maximizes P (θ⃗q|w⃗q, θ⃗, w⃗), the

following three parameters are needed:

• w⃗q: word vector for new document (query)

• θ⃗: topic mixtures of the documents in the collection (training set)

• w⃗: topic-word associations.

Equation 16 shows posterior is related to the product of word likelihood P (w⃗q|θ⃗q, θ⃗, w⃗) and

topic mixture prior P (θ⃗q|θ⃗, w⃗).

P (θ⃗q|w⃗q, θ⃗, w⃗) ∝ P (w⃗q|θ⃗q, θ⃗, w⃗)P (θ⃗q|θ⃗, w⃗) (16)

First, considering the righthand side of (16), because of the independency between the word

likelihood of the query and topic mixtures of the documents in the collection (θ⃗), and also the basic

assumption that all query words are independent, the word likelihood can be written as follow:

P (w⃗q|θ⃗q, θ⃗, w⃗) =

M∏

i=1

K∑

j=1

P (wi|aj)P (aj |dq) =

M∏

i=1

K∑

j=1

wijθqj (17)

Second, modeling prior by a kernel density estimate using Dirichlet kernels imposed two con-

straints mentioned in (14), which means topic mixtures are vectors with non-negative components

13



and the summation of all components of the vector is equal to one. To obtain the prior probability,

this kernel density estimate sums over the topic mixtures of the documents in the training set. Since

the prior does not depend on the word-topic association, we can write it as:

P (θ⃗q|θ⃗) =
1

N

N∑

l=1

Dir(θ⃗q|α(θ⃗l)) (18)

Since it is difficult to maximize the righthand side of (16), two hidden variable vectors (y⃗andz⃗)

are defined for word likelihood and prior distribution. It can be seen that the likelihood of a single

word in a new document is a mixture model of K topics, so to show which topic aj explains the

word wi, a hidden binary variable y⃗i ∈ {0, 1}K is defined. Similarly, z⃗ ∈ {0, 1}N is defined as a

hidden binary variable to show the relationship between the Dirichlet component and the setting of

the topic mixture of a new document.

According to the definitions and for the ease of calculations, the logarithm of the posterior will

be maximized instead.

logP (θ⃗q|w⃗q, y⃗, z⃗, w⃗) = log
(
P (w⃗q, y⃗|θ⃗q, w⃗)P (θ⃗q, z⃗|θ⃗, w⃗)

)

=

M∑

i=1

K∑

j=1

yij(logwij + log θqj) +

N∑

l=1

zl

[
log

1

N
+ logDir(θ⃗q|α(θ⃗l))

]
+ c

(19)

Using EM algorithm, the probability for each hidden variable is calculated in the E-step and the

topic mixture of the query is updated in the M-step. These two steps are done repeatedly to obtain

the optimal topic mixture. Consequently, the maximum value for the posterior can be computed

by putting the final value of topic mixtures in (19). The following equations show the E-step and

M-step respectively Hinneburg et al. (2007).

E-step:

P (yij = 1|wi, θ⃗q
(s)
, w⃗) =

wij . θ
(s)
qj∑K

j′=1wij′ . θ
(s)
qj′

= gij (20)

P (zl = 1|θ⃗q
(s)
, θ⃗) =

Dir(
⃗
θ
(s)
q |α(θ⃗l))

∑N
l′=1Dir(

⃗
θ
(s)
q |α(θ⃗l′))

= hl (21)

M-step:

θ
(s+1)
qj =

∑M
i=1 gij +

1
h

∑N
l=1 hlθlj

M + 1
h

(22)
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2.4 Proposed Approaches

2.4.1 Bayesian Folding-In with Kernel Density Estimate using GD Kernel

In this part, we employ the kernel density estimate using a Generalized Dirichlet Distribution as

the kernel.

Generalized Dirichlet (GD) Distribution

The GD was introduced to overcome the limitations of Dirichlet distribution as mentioned in

Bouguila and ElGuebaly (2008a, 2008b); Bouguila and Ghimire (2010), particularly with model-

ing covariances, since using Dirichlet distribution as a prior requires random variables to be nega-

tively correlated, where generalized Dirichlet does not have that restriction (as shown in Bakhtiari

and Bouguila (2014)). Similar to the Dirichlet distribution, the generalized form of the Dirich-

let distribution is also conjugate to multinomial distributionBouguila and Ghimire (2010); Na-

jar and Bouguila (2022a); Wong (1998) however, its more general covariance structure not only

makes it flexible and useful, especially in Bayesian analysis Bouguila (2011b); Connor and Mosi-

mann (1969) but also provides high flexibility and simplicity of use for the approximation of

both symmetric and asymmetric distributions Bouguila and Ziou (2007). The probability den-

sity function of the GD distribution is shown in equation (23). Note that, the random vector

X has to be completely neutral. Connor and Mosimann Connor and Mosimann (1969) intro-

duced the concept of neutrality as they faced the problem of analyzing the effects of eliminat-

ing one proportion, X1, on the proportions (X2/[1 − X1], . . . , Xk/[1 − X1]). Assume X =

(X1, X2, . . . , Xk) is a random vector of proportions. X1 is neutral if it is independent of the

vector (X2/[1 − X1], . . . , Xk/[1 − X1]) and has no effect on that. More generally, if we divide

X into (X1, X2, . . . , Xj) and (Xj+1, Xj+2, . . . , Xk), X is completely neutral if for all j < K ,

(X1, X2, . . . , Xj) would be independent of (Xj+1, Xj+2, . . . , Xk)/(1−
∑j

i=1Xi). Therefore, the

density function for X following GD distribution with parameters (α1, ..., αk;β1, ..., βk) in dimen-

sion k is given as follows:

f(x) = P (X1, X2, . . . , Xk) =
k∏

i=1

1

B(αi, βi)
Xαi−1
i (1−

i∑

j=1

Xj)
γi (23)
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where, B(αi, βi) = Γ(αi)Γ(βi)/Γ(αi + βi) and γi = βi − (αi+1 + βi+1) for i = 1, ..., k-1, and

γk = βk − 1 Bouguila and ElGuebaly (2008b). For βi = αi+1 + βi+1, GD distribution would

be reduced to Dirichlet distribution. That indicates Dirichlet distribution is a special case of GD

distribution Bouguila (2012); Bouguila and ElGuebaly (2009); Najar and Bouguila (2022b).

To use the generalized Dirichlet distribution instead of the Dirichlet distribution we need to

redefine the prior as follow:

P (θ⃗q|θ⃗) =
1

N

N∑

l=1

GD(θ⃗q|α(θ⃗l), β⃗) (24)

Subsequently, the probability related to the specific setting of the topic mixture of the query

changes. Since the probability of the hidden variable y⃗i is independent from the kernel estimate, it

would remain as before. Therefore, the equations would be updates as follows:

E-step:

P (yij = 1|wi, θ⃗q
(s)
, w⃗) =

wij . θ
(s)
qj∑K

j′=1wij′ . θ
(s)
qj′

= gij (25)

P (zl = 1|θ⃗q
(s)
, θ⃗) =

GD(θ⃗q|α(θ⃗l), β⃗)∑N
l′=1GD(θ⃗q|α(θ⃗l′), β⃗)

= fl (26)

M-step:

θ
(s+1)
qj =

∑M
i=1 gij +

1
h

∑N
l=1 flθlj

M + 1
h

(27)

By replacing the topic mixture obtained from the EM algorithm in (19) the logarithm of the

posterior is given as follows:

log(P (θ⃗q|w⃗q, y⃗, z⃗, w⃗)) = log
(
P (w⃗q, y⃗|θ⃗q, w⃗)P (θ⃗q, z⃗|θ⃗,

−→w )
)

=
M∑

i=1

K∑

j=1

yij [logwij + log θqj ] +
N∑

l=1

zl

[
log

1

N
+ logGD(θ⃗q|α(θ⃗l), β⃗)

]
+ c

(28)

2.4.2 Bayesian Folding-In with Kernel Density Estimate using BL Kernel

In addition of using generalized Dirichlet as a prior in Bayesian framework, here we modeled

the prior with a member of Liouville family of distributions called Beta-Liouville Fan and Bouguila

(2015) distribution. Beta distribution was selected as a generating density because of its flexible
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shape and ability to approximate nearly any arbitrary distribution Bouguila and Ziou (2007); Najar

and Bouguila (2022b).

Beta-Liouville (BL) Distribution

Despite the fact that Dirichlet involves a small number of parameters (D+1 parameters for a D-

variate Dirichlet), its negative covariate matrix makes its application restrictive in many areas, such

as pattern recognition, data mining, and computer vision. Thus, the generalized Dirichlet distribu-

tion was proposed to overcome the problem of negative covariance matrix since it has a more general

covariance structure, which includes positive and negative values. However, compared to Dirichlet,

generalized Dirichlet has more parameters (2D parameters are needed to define a D-variate gener-

alized Dirichlet). In this section, we use Beta-Liouville as a kernel since it has been demonstrated

to be a good substitute for the Dirichlet and generalized Dirichlet distributions in statistically rep-

resenting of proportional data Daghyani, Zamzami, and Bouguila (2019); Fan and Bouguila (2015)

and an appropriate choice for classification in case of positive data Zamzami and Bouguila (2020a).

Similar to generalized Dirichlet, Beta-Liouville has a general covariance structure but compared

to GD, less parameters are needed to define Beta-Liouville (a D-variate Beta-Liouville is defined

by D+2 parameters) Bouguila (2010, 2012). The probability density function of a D-dimensional

vector X⃗ = (X1, X2, . . . , XD) following the Beta-Liouville distribution with positive parameters

(α1, α2, . . . , αD, α, β) is given by (29) while
∑D

d=1Xd < 1 and Xd > 0 for d = 1, ..., D .

P (X⃗|α1, α2, ,̇αD, α, β) =
Γ(
∑D

d=1 αd)Γ(α+ β)

Γ(α)Γ(β)

D∏

d=1

Xαd−1
d

Γ(αd)

× (
D∑

d=1

Xd)
α−

∑D
d=1

αd

(
1−

D∑

d=1

Xd

)β−1 (29)

Note that the Dirichlet is a special case of Beta-Liouville. This can be proved assuming that the

density generator has a Beta distribution with parameters
∑D

d=1 αd and αD+1 Bouguila (2010).

Equation (30) shows using Beta-Liouville distribution as a kernel in defining the prior. Again,

because there is no dependency between the hidden variable y⃗i and the kernel estimate, the calcula-

tion for P (yij = 1|wi, θ⃗q
(s)
, w⃗) would be the same as (20). However the value for P (zl = 1|θ⃗q

(s)
, θ⃗)

needs to be updated for this part (equation 31).
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P (θ⃗q|θ⃗) =
1

N

N∑

l=1

BL(θ⃗q|α(θ⃗l), α⃗, β⃗) (30)

P (zl = 1|θ⃗q
(s)
, θ⃗) =

BL(θ⃗q|α(θ⃗l), α⃗, β⃗)∑N
l′=1BL(θ⃗q|α(θ⃗l′), α⃗, β⃗)

= tl (31)

By replacing the value obtained from (31) in (19) the topic mixture of the query would be

calculated in M-step. The resulted topic mixture of the query would be used to determine the

maximum value of the logarithm of the posterior (33).

θ
(s+1)
qj =

∑M
i=1 gij +

1
h

∑N
l=1 tlθlj

M + 1
h

(32)

log[P (θ⃗q|w⃗q, y⃗, z⃗, w⃗)] = log
(
P (w⃗q, y⃗|θ⃗q, w⃗)P (θ⃗q, z⃗|θ⃗, w⃗)

)

=



M∑

i=1

K∑

j=1

yij [logwij + log θqj ]




+

N∑

l=1

zl

[
log

1

N
+ logBL(θ⃗q|α(θ⃗l), α⃗, β⃗)

]
+ c

(33)

The general approach to maximize a posterior is presented in Algorithm 1. Consider using GD

distribution as a prior. After assigning initial values to the model parameters and the kernel pa-

rameters we begin by calculating the probability of each hidden variable gig, and fl according to

equations 25 and 26. In the next step, using the calculated variables, we update the topic mixtures

(θ
(s+1)
qj ) using equation 27. Using those values, we calculate the logarithm of the posterior prob-

ability P (θ⃗q|w⃗q, θ⃗, w⃗) using equation 28. In this recursive classification algorithm, we receive the

query data in real time and update the parameters gig, fl, and θ
(s+1)
qj , and repeat the process in an

iteration loop until we meet the termination criterion (the difference between the new log-posterior

and the old log-posterior in iteration t and t− 1 is less than a threshold ϵ = 0.5).

2.5 Experimental Results

The aim of this study is to find out how Bayesian folding-in framework using GD and BL ker-

nels can affect retrieving information compared with using Dirichlet kernels as a prior in Bayesian
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Algorithm 1 Maximum a posteriori algorithm with GD and BL kernels as prior

Result: Log-psteriori P (θ⃗q|w⃗q, θ⃗, w⃗)
Input: Text document collection

1: Initialization: initialize model parameters P (wi|zj) and P (zj |dq), (α⃗, β⃗) for the GD prior and (α⃗, α, β)

for the BL prior.

2: While new Log Posteriori - old Log Posteriori < ϵ do

3: E step:

4: Calculate the values of gij and P (zl = 1|
⃗
θ
(s)
q , θ⃗)

5: M step:

6: Update the topic mixtures θ
(s+1)
qj

7: Calculate the new log-posteriori P (θ⃗q|w⃗q, θ⃗, w⃗)
8: end While

framework. To achieve that purpose, 3 text-based document collections are used, namely CISI

(Centre for Inventions and Scientific Information), CRAN (aerodynamic, aeroelastic analysis), and

MED (medical records)1. Each collection consists of the training documents, query documents, and

the ground truth document. The ground truth document represents the queries with their relevant

documents. To evaluate the performance and efficiency of methods that were mentioned in pre-

vious sections, precision and recall are defined as comparison parameters. For a given document

collection and a query, precision and recall are defined in (34) and (35), where a is a set of relevant

documents and b represents retrieved documents Hinneburg et al. (2007).

Precision :
|a ∩ b|

|b|
(34)

Recall :
|a ∩ b|

|a|
(35)

First step is preprocessing documents for further assessments. This includes elimination of

stop words and infrequent words. The term infrequent refers to the words that occur in less than

δ documents. In order to insure that no queries will be empty, δ is considered to be 5. Therefore,

documents that have less than 5 words are neglected. Moreover, all terms are reduced to their stems

using Porters stemmer.

After preprocessing, PLSI is performed on training documents for 32 topics to estimate a vector

of learned document topic mixtures in the latent topic space. Then, queries are folded into ob-

tained co-occurrence model through 4 approaches. The observed query-topic mixtures are used to

1http://ir.dcs.gla.ac.uk/resources/
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determine the similarities between each query and the training documents using cosine similarity.

Table 2.1 shows the observed values of recall and precision after the 3rd iteration in each frame-

work for the datasets.

Table 2.1: Recall and precision values observed for different Datasets

Dataset Framework Recall Precision

CISI

PLSI 0.063925 0.020842

Dir 0.625763 0.019796

GD 0.858015 0.019333

BL 0.758432 0.019270

CRAN

PLSI 0.112745 0.005896

Dir 0.640523 0.005906

GD 0.803922 0.005845

BL 0.611112 0.005734

MED

PLSI 0.004316 0.008746

Dir 0.303597 0.022579

GD 0.766906 0.0225695

BL 0.726619 0.022836

According to Fig. 2.1, for the first two methods, PLSI folding-in and Bayesian folding-in using

Dirichlet kernel, the value for recall decreases after each iteration which indicates reduction in the

ability of the method to find relevant documents and queries. Whereas for Bayesian folding-in

using generalized Dirichlet kernel and Bayesian folding-in using Beta-Liouville kernel, the value

for recall increases gradually after each iteration. Unlike stable changes in recall values, the value

for precision changes quietly in every iteration because of the dependency between precision and

retrieved documents. Moreover, results show that apparent constraints on covariances in GD and BL

distributions result in better modeling of sparse topic correlations in natural language documents.

Consequently, empirical likelihood and information retrieval metrics perform better using these

priors.

2.6 Conclusion

The purpose of this study was to employ different techniques to extract the relevant documents

given a new query. Generalized Dirichlet and Beta-Liouville distributions had been used as kernels

in Bayesian framework to examine the performance of the method compared to PLSI folding-in
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Figure 2.1: A comparison between recall and precision in different frameworks for three datasets.

and Bayesian folding-in using Dirichlet kernel. Generalized Dirichlet and Beta-Liouville had been

proven to be more efficient due to their more general covariance structure while Dirichlet has restric-

tive negative covariance. Moreover, less variables are required to define Beta-Liouville distribution.

Observations indicated an improvement in recall values for generalized Dirichlet and Beta-Liouville

kernels compared to former techniques. Prospective studies could be devoted to apply different ini-

tialization methods or to employ other distributions as kernel in Bayesian framework in order to

investigate the effect of the initial values and the kernel function on the accuracy of parameter esti-

mation at the end.
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Chapter 3

Generalized Probabilistic Clustering

Projection Models for Discrete Data

3.1 Introduction

Information can be retrieved from numerous databases using data mining techniques. When it

comes to textual data, data warehouses were found to be ineffective yet successful for numerical

information. Unlike traditional information retrieval systems that required users to identify rela-

tionships within and across documents, methods such as GD-LDA Caballero, Barajas, and Akella

(2012), Pachinko Allocation Model (PAM) W. Li and McCallum (2006), Dirichlet Process Mixture

Model with Feature Partition (DPMFP) Huang, Yu, Wang, Zhang, and Shi (2012), and PCP model

Yu, Yu, Tresp, and Kriegel (2005) have demonstrated increased efficiency and the ability to provide

relevant results based on user requests. The process of extracting valuable information from text-

based data which is called text mining, generally entails formatting the input text, looking for the

patterns in formatted data, assessing, and then interpreting the results. Topic models are considered

generative models and are typically used in natural language processing to automatically categorize,

comprehend, search, and summarize large data archives. The term ’topic’ refers to the unobserved

relations between words in a vocabulary and their occurrence in data collection. Yet, finding out

those topics in high-dimensional text data is challenging.

Different methods have been proposed to overcome that challenge. The first step is to transfer
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the data into a lower-dimensional space. Projection techniques such as PCA Abdi and Williams

(2010), and Linear discriminant analysis Xanthopoulos, Pardalos, and Trafalis (2013) help us to

project the data into a lower dimension space by mapping the features to find a new representation

of the data. Additionally, clustering methods such as k-means Hartigan and Wong (1979), PAM (K-

Medoids) Reynolds, Richards, and Rayward-Smith (2004), and DBSCAN Ester, Kriegel, Sander,

Xu, et al. (1996) are used to group similar documents based on their structural pattern. Several

studies were conducted to model the connections between the documents based on the relationships

between terms and their occurrence in documents D. M. Blei et al. (2003); Deerwester et al. (1990);

Hofmann (1999); Yu et al. (2005). Latent semantic indexing (LSA) was introduced by Deerwester

et al. Deerwester et al. (1990) as an unsupervised learning technique, to uncover similarities among

documents by building a word-document matrix, in which rows are individual words, columns are

documents, and each cell represents the word frequency associated with the appearance of the word

in its row in the document denoted by its column. By applying singular value decomposition (SVD)

on the matrix a K-dimensional vector (known as a topic vector) is derived which LSA uses for its

semantic space. Finally, similarities are determined between entities in the reduced-dimensional

space instead of the original term-document matrix Dumais et al. (2004). LSA has demonstrated its

ability to simulate a wide range of human cognitive phenomena, including the acquisition of recog-

nition vocabulary during development, word categorization, semantic priming between sentences

and words, comprehension of discourse, and evaluations of essay quality, through its generation of

word and passage meaning representations. However, LSA has some limitations. It does not take

into account word order, syntactic relations, logic, or morphology. Surprisingly, despite the absence

of these factors, LSA manages to capture passage and word meanings quite accurately. Nonethe-

less, there is still a possibility of occasional incompleteness or errors. Furthermore, the relationship

between certain neighboring words in LSA space can be perplexing, with some expected pairs not

appearing close together. The exact reasons behind these anomalies are difficult to determine, but

it is plausible that words with multiple contextual meanings (polysemous words) are assigned an

average placement in high-dimensional space, which may not convey any specific meaning when

taken out of context. Additionally, many words may be inadequately represented due to insufficient

sampling. It is also possible that LSA’s reliance on the ’bag of words’ approach, which disregards
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syntactical, logical, and non-linguistic implications, occasionally results in missed or scrambled

meaning Landauer, Foltz, and Laham (1998). Therefore, a probabilistic version of LSA called

PLSA (probabilistic latent semantic analysis) was introduced by Hofmann Hofmann (1999) to de-

fine a generative model of the data. In PLSA, the conditional probability between documents d

and words w is modeled through a latent variable z called topic. Hofmann showed that in addition

to reducing word perplexity, PLSA can take advantage of statistical standard methods for model

fitting, controlling overfitting, and combining models. His evaluations demonstrated that PLSA

achieves significant improvements in precision compared to both standard term matching and LSA,

which clearly confirmed the advantages of PLSA. Latent Dirichlet Allocation (LDA) D. M. Blei et

al. (2003) was presented as an alternative approach to generating a probabilistic model of a corpus.

Since LDA models documents in a Bayesian framework, it is more useful, especially because of

using adjustable priors which are nearly similar to the structure of the documents, topics, and terms.

LDA assumes that K latent topics are hidden in a collection of N documents. Also, each of those

topics follows a multinomial distribution over words in the extracted vocabulary from the document

collection. The final topic-word and document-topic mixtures are obtained by maximizing the pos-

terior with Gibbs sampling Chen, Zhang, Liu, Ye, and Lin (2019). Although mentioned methods

have been applied with remarkable success in different text-processing tasks, still the joint effects

of projection and clustering are needed to be considered since both of them capture the inherent

structure of the data and are expected to mutually strengthen each other. For that purpose, the prob-

abilistic clustering-projection (PCP) model was introduced by Yu et al. Yu et al. (2005) to examine

the mutual impact of projection and clustering for discrete data. In their model, a Dirichlet prior

was put for topic mixtures over the topic space, which was denoted as a vector of cluster centers.

However, due to the restrictive negative covariance structure of Dirichlet distribution, its applica-

tions as a prior in the case of positively correlated data would be limited. Thus, in this paper, we

propose to use alternative distributions namely generalized Dirichlet (GD) distribution and Beta-

Liouville (BL) distribution as priors in defining topic mixtures since due to their broader covariance

structures, using them as a prior would lead to a more precise model.

The chapter is structured as follows, section 2 is a brief review of the PCP model. In section
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3, we propose our alternative PCP model using GD and BL distributions and we discuss the differ-

ences them. Using real text documents, in section 4, we describe our experiments and interpret the

outcomes. And finally, in section 5, we have the conclusion.

3.2 Probabilistic clustering-projection model

Probabilistic clustering-projection (PCP) model was proposed as a generative model to consider

both projection and clustering together. In this model, β is defined as a K×V projection matrix spec-

ifying the probability of generating each word given the corresponding topic, while topic mixtures

are presented by cluster centers in a K-dimensional topic space. A specific document-topic mixture

θd is obtained after generating document d by choosing a cluster from M clusters which leads to

defining an indicator value cd to show that among M clusters which cluster document d would take

on. Given those topic mixtures, each word is generated by choosing a topic from the topic mixtures

and then sampling the word given β. The PCP model could be considered as a clustering model

when the projection β is known. The probability that document d belongs to the cluster M is cal-

culated by projecting the words into the topic space and measuring the distance of all words to the

cluster center. In the PCP model, topics are modeled by cluster centers, so if the clustering structure

is known, PCP can use the information in the cluster center to learn the projection β to map words

to topics. Therefore, this way PCP could be explained as a projection model Yu et al. (2005).

Assuming that α, λ, and β are model parameters, and θ, π, and wd denote cluster centers,

mixing weights, and sequence of the words in document d respectively, the likelihood of the corpus

D would be calculated as:

L(D;α, λ, β) =

∫

π

∫

θ

D∏

d=1

p(wd|θ, π;β) dP (θ;λ) dP (π;α) (36)

However, since we are working with high dimensional discrete data (text documents) cal-

culating the integrals would be intractable and highly cost time-wise. Thus, a variational EM

algorithm has been derived which iteratively maximizes the lower bound of the log-likelihood.

q(π, θ, c, z|η, γ, ψ, ϕ) is proposed as the variational distribution and it is a function of the current

mixture parameters and a variational distribution over latent variables.
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q(π, θ, c, z|η, γ, ψ, ϕ) = q(π|η)
M∏

m=1

q(θm|γm)
D∏

d=1

q(cd|ψd)

Nd∏

n=1

q(zd,n|ϕd,n) (37)

η, γ, ψ, and ϕ are representing the variational parameters describing an arbitrary distribution

over model parameters:

• η: M-dim. Dirichlet for π

• γ: K-dim. Dirichlet over θ

• ψ: M-dim. multinomial for indicator value cd

• ϕ: K-dim. multinomial over latent topics for word wd,n

3.2.1 Variational EM Algorithm

Suppose that y is the observed data, and x and Θ are vectors of latent variables and parameters,

respectively. To obtain the maximum likelihood estimate of Θ and the posterior distribution of x we

have to calculate the maximum log-likelihood log p(y; Θ). Maximum log-likelihood computation,

however, is usually challenging. Using Baye’s rule we can break down p(y; Θ) concerning the

variational distribution and calculate log p(y; Θ) as in (38) T. Li and Ma (2023).

log p(y; Θ) =

∫
q(x) log (

p(y, x; Θ)

q(x)
) dx−

∫
q(x) log (

p(x|y; Θ)

q(x)
) dx

= L(q(x); Θ) +KL(q(x) || p(x|y; Θ))

(38)

By moving the DKL(. || .) to the left side of the equation we would have:

L(q(x); Θ) = log p(y; Θ)−KL(q(x) || p(x|y; Θ)) (39)

Since the Kullback-Leibler divergence between the two distributions is non-negative, L(q(x); Θ)

would be the lower bound (ELBO) on the log-likelihood. Therefore, instead of maximizing the log-

likelihood, we can maximize the ELBO T. Li and Ma (2023); Verbeek, Vlassis, and Nunnink (2003).

Using Jensen’s inequality the lower bound would be derived as follows:
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L(q(x); Θ) =
D∑

d=1

Nd∑

n=1

Eq[log p(wd,n|zd,n, β) p(zd,n|θ, cd)] + Eq[log p(π|α)]

+

M∑

m=1

Eq[log p(θm|λ)] +

D∑

d=1

Eq[log p(cd|π)]− Eq[log q(π, θ, c, z)]

(40)

Consequently, the E-step and the M-step are calculated by setting the partial derivatives con-

cerning each variational and model parameter to zero. Since the goal is to propose a probabilistic

projection-clustering model, these equations are divided into two clustering and projection parts.

Clustering task

The clustering task is related to the computation of the latent variables (ψd,m, γm,k, and ηm)

corresponding to the clustering variables which are cluster centers θm, document indicators cd, and

the mixing weights π. Following, the updating equations for clustering and the definition for each

latent variable are represented.

ψd,m = exp

{
K∑

k=1

[(
Ψ(γm,k)−Ψ(

K∑

i=1

γm,i)
) Nd∑

n=1

ϕd,n,k

]
+Ψ(ηm)−Ψ(

M∑

i=1

ηi)

}
(41)

γm,k =
D∑

d=1

ψd,m

Nd∑

n=1

ϕd,n,k + λk (42)

ηm =

D∑

d=1

ψd,m +
α

M
(43)

ψd,m is a posteriori probability referring to the probability that document d belongs to the cluster

m among M clusters (p(cd = m)). Cluster centers are represented by γm,k and it can be considered

as the kth component of θm in the topic space. Note that here, ϕ⃗ is considered to be a constant

vector as it related to the words projection and represents the a posteriori probability that word wd,n

is sampled from topic k in the topic space. Lastly, ηm controls the mixing weights π for clusters and

determines the probability of cluster m Yu et al. (2005).
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Projection task

In the projection phase, we consider ψ⃗, γ⃗, and η⃗ to be fixed, thus the variational parameter ϕ⃗ that

is referring to a posteriori probability that word wd,n is sampled from topic k, and the projection

parameter β⃗ would be updated.

ϕd,n,k = βk,wd,n
exp

{
M∑

m=1

ψd,m

[
Ψ(γm,k)−Ψ(

K∑

i=1

γm,i)
]}

(44)

βk,j =

D∑

d=1

Nd∑

n=1

ϕd,n,k δj(wd,n) (45)

δj(wd,n) is a binary variable, it equals 1 if the index j is associated with the word wd,n, other-

wise, it is 0 Yu et al. (2005).

In both clustering and projection parts, we iterate through the equations until convergence to

reach the maximum data likelihood as it is in the variational EM algorithm.

A Dirichlet prior Dir(λ) was proposed for all the cluster centers θ⃗ in this model. The Dirichlet

distribution is commonly used as a prior for the multinomial distribution, known for its flexibility

and simplicity Bouguila (2009); Koochemeshkian, Zamzami, and Bouguila (2020), but it has some

limitations. The negative covariance structure and the constraint of the constant sum are some of the

most significant limitations of the Dirichlet distribution which can be restrictive in important appli-

cations Zamzami and Bouguila (2019b). In this study, we propose using the generalized Dirichlet

distribution and the Beta-Liouville distribution as alternative priors to examine the complexity of

the model. In the next section, we would review the generalized Dirichlet distribution and the Beta-

Liouville distribution and update the equations regarding those distributions.

3.3 Proposed Approaches

In this section, we briefly review the generalized Dirichlet distribution and the Beta-Liouville

distribution since we are using them as the alternative prior distributions, and update the equations

based on the new priors.
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3.3.1 Probabilistic clustering-projection model using GD prior

To overcome the restrictions of the Dirichlet distribution Bouguila and ElGuebaly (2008a,

2008b); Bouguila and Ghimire (2010), Connor and Mosimann Connor and Mosimann (1969) intro-

duced the generalized Dirichlet distribution by using the concept of neutrality. A random vector X⃗

is considered to be completely neutral, if for all values of j (j < K), (x1, x2, ..., xj) is independent

of (xj+1, xj+2, ..., xK)/(1 −
∑

(x1, x2, ..., xj)). By supposing a beta distribution with parame-

ters αj+1 and βj+1 for each element of (xj+1, xj+2, ..., xK)/(1 −
∑

(x1, x2, ..., xj)), the density

function for the generalized Dirichlet distribution was derived as follows:

GD(X⃗|λ1, ..., λK , ρ1, ..., ρK) =

K∏

i=1

Γ(λi + ρi)

Γ(λi)Γ(ρi)
x
(λi−1)
i (1−

i∑

j=1

xj)
γi (46)

where for i = 1, 2, ...,K, xi ≥ 0 and
∑K

i=1 xi ≤ 1, and for i = 1, 2, ...,K − 1, γi = ρi − (λi+1 +

ρi+1), and γK = ρK − 1 Epaillard and Bouguila (2019); Wong (2009).

When βi = λi+1 + ρi+1, the generalized Dirichlet distribution is reduced to the Dirichlet distri-

bution. Therefore, we can conclude that the Dirichlet distribution is a special case of the generalized

Dirichlet distribution Bouguila (2008); Bouguila and Ziou (2004b). Similar to the Dirichlet distri-

bution, the GD distribution is also a conjugate to the multinomial distribution Bouguila and Ghimire

(2010); Najar and Bouguila (2022a). However, despite the Dirichlet distribution, the GD distribu-

tion has a more general covariance structure; meaning that variables with the same means do not

necessarily have the same covariance, and unlike the Dirichlet distribution covariance between two

variables is not negative Najar and Bouguila (2021a). These properties of the GD distribution make

it a good prior for Bayesian classifiers Koochemeshkian et al. (2020).

For this study, we put a GD prior GD(λ⃗,ρ⃗) for all the cluster centres, where λ⃗ = [λ1, ..., λK ]

and ρ⃗ = [ρ1, ..., ρK ] and we show it as θGD. Therefore, equation (40) would be updated as follows:

L(q(x); Θ) =
D∑

d=1

Nd∑

n=1

Eq[log p(wd,n|zd,n, β) p(zd,n|θGD, cd)] +
M∑

m=1

Eq[log p(θGD(m)|λ⃗, ρ⃗)]

+ Eq[log p(π|α)] +
D∑

d=1

Eq[log p(cd|π)]− Eq[log q(π, θGD, c, z)]

(47)
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where p(θGD(m)|λ⃗, ρ⃗) represents the probability density function of a K-dimensional vector θ⃗m =

[Xm1
, Xm2

, . . . , XmK
] following a GD distribution with positive parameter vectors λ⃗ and ρ⃗.

It can be proved that the GD distribution is part of the exponential family Bouguila (2011a);

Zamzami and Bouguila (2019a, 2019b, 2022), so its expected value would be calculated by taking

the derivative of its cumulant function A(η) as it is shown in Appendix A.1.

3.3.2 Probabilistic clustering-projection model using BL prior

In addition to the GD distribution, in this study we will utilize a member of the Liouville dis-

tributions called Beta-Liouville distribution as a prior for the cluster centres θm. Studies showed

that the BL distribution is a good alternative compared to the Dirichlet and GD distributions in the

statistical presentation of proportional data. The BL distribution is also a conjugate to the multino-

mial distribution, and similar to the GD distribution has a more general covariance structure than

the Dirichlet distribution Zamzami and Bouguila (2019b). The probability density function of a

random vector X⃗ following a BL distribution with positive parameters (λ1, λ2, ..., λK , λ, ν) is:

BL(X⃗|λ1, λ2, ..., λK , λ, ν) = Γ(
K∑

k=1

λk)
Γ(λ+ ν)

Γ(λ)Γ(ν)

K∏

k=1

X
(λk−1)
k

Γ(λk)

×

(
K∑

k=1

Xk

)λ−∑K
k=1

λk (
1−

K∑

k=1

Xk

)ν−1
(48)

Note that the Beta-Liouville includes Dirichlet as a special case Bouguila (2010); Fan and

Bouguila (2015). Interested readers are referred to Bakhtiari and Bouguila (2012); Bouguila (2010);

Daghyani et al. (2019); Fan and Bouguila (2013) for more discussions about Beta-Liouville distribu-

tion. Like the previous part, we put a BL prior for all the cluster centres θm ∼ BL(λ1, λ2, ,̇λK , λ, ν)

and update (40) accordingly:

L(q(x); Θ) =
D∑

d=1

Nd∑

n=1

Eq[log p(wd,n|zd,n, β) p(zd,n|θBL, cd)]

+

M∑

m=1

Eq[log p(θBL(m)|λ1, λ2, ,̇λK , λ, ν)] + Eq[log p(π|α)]

+
D∑

d=1

Eq[log p(cd|π)]− Eq[log q(π, θBL, c, z)]

(49)
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p(θBL(m)|λ1, λ2, ,̇λK , λ, ν) denotes the probability density function of a K-dimensional vector θm

(θ⃗m = [Xm1
, Xm2

, . . . , XmK
]) following BL distribution with parameters [λ1, λ2, ..., λK , λ, ν].

Subsequently, since the BL distribution is part of the exponential family Bouguila (2011a);

Zamzami and Bouguila (2020b), therefore same as the GD, the expected value of the BL distribution

is calculated by taking the derivative of its cumulant function A(η) (Appendix A.2).

3.4 Experimental Results

The purpose of this study is to determine the performance of the GD prior and BL prior in a

probabilistic clustering projection algorithm. In the previous study, the traditional projection and

clustering methods were compared with the PCP model using the Dirichlet distribution as a prior

for the cluster centers. The results showed that in the case of projection, the PCP model has less

complexity rather than the traditional PLSI and LDA models. On the other hand, in document clus-

tering, PCP outperformed the NMF algorithm and K-means. However, choosing Dirichlet as a prior

comes with limitations. As a result, GD and BL distributions have been suggested as alternative

priors to overcome such restrictions.

This section presents experimental outcomes for the PCP model, which are compared with other

models based on three criteria: document modeling, word projection, and document clustering. Two

text data collections are used for comparison: Reuters-21578, in which we selected 5 categories

earn, acq, money-fx, grain, crude, and a four-group sample from 20Newsgroup consisting of autos,

motorcycles, baseball, and hockey. The first step for both data collections is preprocessing includ-

ing removing stop words and the words that occurred in less than 5 documents, tokenization, and

stemming. As a result, 8210 documents and 4856 unique words are obtained for the Reuters-21578

dataset and 3979 documents and 6175 words are acquired from 20Newsgroup.

3.4.1 Document Modelling

In this study, we compare the performance of the PCP model using three different priors: Dirich-

let, generalized Dirichlet, and Beta-Liouville. As in the previous study Yu et al. (2005), we use

perplexity as the comparison metric and split the dataset into 80% training data and 20% testing
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data. We calculate perplexity for each model using the same method as in the previous study (Equa-

tion 50), with the exception that we now use the respective priors for each model. We optimize the

smoothing term for each model and train them until the improvement is less than 0.01%. Tables

3.1 and 3.2 show the comparison of the perplexity between our different models for the different

number of topics (K). It is illustrated that the PCP model using the GD prior outperforms the other

two PCP models, indicating a better fit to the data.

Prep(D) = exp (− log p(D)/
∑

d

|wd|) (50)

where |wd|, refers to the length of the document d. The lower the perplexity is, the better fit the

model would be.

Table 3.1: Calculated Perplexity for Reuters-21578 Dataset

Reuters-21578

K 10 20 30 40 50

Dir PCP 1046.61 1009.84 965.63 772.85 666.68

GD PCP 888.74 796.74 658.4 543.67 489.67

BL PCP 987.33 866.59 832.33 768.97 536.25

Table 3.2: Calculated Perplexity for 20Newsgroup Dataset

20Newsgroup

K 10 20 30 40 50

Dir PCP 1992.88 1883.98 1692.91 1568.11 1455.45

GD PCP 1692.9 1663.23 1551.89 1395.09 1265.8

BL PCP 1894.18 1727.75 1564.51 1474.46 1306.5

3.4.2 Word Projection

As mentioned in Section 2 of this chapter, we can explain PCP as a projection model when the

clustering structure is known. To evaluate the quality of the models, we used the same method as

in the previous study, we split the data into training and testing sets, set the number of topics to

10, and for each category, we create an SVM classifier on the low-dimensional representations of
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Y . When the two sets of document clusters, X and Y , are identical, the mutual information reaches

its maximum value, which is equal to the higher entropy of either X or Y . On the other hand, when

the two sets are completely independent, the mutual information becomes zero, indicating no shared

information between them.

Instead of using mutual information (MI(X,Y )), we use a normalized measure termed M̂I

(equation 52) to make it easier to compare various pairs of cluster sets. With a range of zero to one,

this measure makes it simpler to read and analyze the data Ji and Xu (2006).

M̂I(X,Y ) =
MI(X,Y )

max(H(X), H(Y ))
(52)

The M̂I is calculated for different methods we employed in this study, as illustrated in Table

3.3, using the true cluster numbers, which is 5 for Reuters data collection, and 4 for Newsgroup.

Table 3.3: Document Clustering Comparison

Dir PCP GD PCP BL PCP

Reuters 0.406 0.578 0.471

20Newsgroup 0.58 0.721 0.648

3.5 Conclusion

In this chapter, we proposed a probabilistic clustering-projection model using three different

distributions as a prior, namely Dirichlet, generalized Dirichlet, and Beta-Liouville, and aimed to

investigate the combined influence of clustering and projection within a single model, while also ex-

ploring the impact of different prior knowledge on information retrieval. The experiments were con-

ducted on two text datasets, Reuters-21578 and 20Newsgroup, and analyzed document modeling,

word projection, and document clustering. Results showed improvements in the case of generalized

Dirichlet and Beta-Liouville as a prior rather than Dirichlet distribution. This research provides

valuable insights into enhancing the accuracy and effectiveness of information retrieval methods,

highlighting the potential benefits of incorporating diverse prior knowledge in similar studies.
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Chapter 4

Generalized Conditional Naive Bayes

model

4.1 Introduction

In the realm of unsupervised learning, the structure of the data remains hidden from the observer

which prompted the development of probabilistic mixture models. Indeed, a powerful approach

aimed at figuring out this hidden structure, given that the data comprises a mixture of multiple

underlying components X. Li, Ling, and Wang (2016). Naive-Bayes (NB) models are a type of gen-

erative mixture models known for their simplicity, accuracy, and speed, making them widely used in

tasks like product recommendations, medical diagnoses, software defect predictions, and cyberse-

curity. In addition, researchers have shown that these models tend to outperform other approaches,

such as C4.5, PEBLS, and CN2 classifiers, especially in cases with small datasets Domingos and

Pazzani (1997); Wickramasinghe and Kalutarage (2021). In the era of big data, it is common to

encounter issues like sparsity, missing values, and unobserved data. This is often due to the fact

that users have limited knowledge about the vast number of available items. Hence, employing tra-

ditional NB models won’t be advantageous when dealing with such large-scale datasets. To tackle

the sparsity problem, a generalized form of the Naive Bayes model, referred to as the conditional

Naive Bayes (CNB) model, was introduced Taheri, Mammadov, and Bagirov (2010). This model
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calculates the likelihood of each class for a given feature vector by utilizing a subset of observed fea-

tures, rather than incorporating all of them, thus addressing the sparsity problem. However, unlike

the traditional Naive Bayes model, the CNB model does not consider the assumption of feature inde-

pendence. To tackle this limitation, alternative models were suggested including multi-case model

Sahami, Hearst, and Saund (1996), overlapping mixture model Fu and Banerjee (2008); Kyoya and

Yamanishi (2021), aspect model Hofmann (2001); Minka and Lafferty (2012), LDA D. M. Blei et

al. (2003), and LD-CNB model Banerjee and Shan (2007). Latent Dirichlet Allocation (LDA) is a

probabilistic generative model of a corpus, where documents are represented as random mixtures

over latent low-dimensional topic space. Assuming K latent topics, a document is generated by

sampling a mixture of these topics, with each topic represented as a probability distribution over the

words in the document, and then sampling words from that mixture. The key aspect of LDA is that

despite the CNB model, it allows documents to be associated with two or more topics D. Blei, Ng,

and Jordan (2001); D. M. Blei et al. (2003). The latent Dirichlet conditional Naive-Bayes (LD-CNB)

model was presented as a more adaptable model since it utilizes exponential family distribution in

variational approximation for model inference and learning. In the research conducted by Banerjee

et al. Banerjee and Shan (2007), they applied Gaussian and Discrete distributions as specific ex-

amples of such exponential family distributions. Through a comparison between the LD-CNB and

the CNB models, it has been demonstrated that the LD-CNB model consistently outperforms the

CNB model in terms of having lower perplexity. However, using Dirichlet as a prior distribution in

the model can lead to some constraints. To address the limitations associated with the constricting

negative covariance structure of Dirichlet distribution, this paper introduces an approach where we

suggest employing alternative distributions, specifically the generalized Dirichlet (GD) distribution

and the Beta-Liouville (BL) distribution, as priors to define the mixing weights for the data point in

the model.

The chapters’s organization is as follows: In section 2, we provide an overview of the LD-CNB

model, its instantiations for exponential family distributions such as Gaussian and Discrete distri-

butions, and the variational Expectation Maximization algorithm used for learning and inference.

Section 3 covers a review of the properties of the generalized Dirichlet (GD) distribution and the

Beta-Liouville (BL) distribution, our proposed approaches, and the updated model based on each of
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those prior distributions. Section 4 presents the experimental results obtained from the UCI bench-

mark repository Frank (2010) and Movielens recommendation system datasetHarper and Konstan

(2015). Finally, in section 5, we offer our conclusions.

4.2 Latent Dirichlet Conditional Naive Bayes

In this section, we will examine the LD-CNB model and discuss the constraints of both the

LDA model and the Naive-Bayes model, which led to the development of LD-CNB. Additionally,

we will delve into the details of the variational EM algorithm and the computational steps taken to

accomplish the goals of model learning and inference.

The LD-CNB model was proposed in response to the limitations of NB models in handling

sparsity within large-scale data sets. Because the observer has limited knowledge regarding the

magnitude of the items, the likelihood of encountering missing or unobserved values rises. Although

NB models demonstrated their accuracy and ability in processing small datasets, they are still not

able to handle the sparsity in the case of big data. Furthermore, in the NB model, it is assumed

that features come from a single mixture component, which imposes significant limitations on the

modeling capabilities of the NB model.

In order to address the challenges associated with sparsity, the Conditional Naive-Bayes (CNB)

model was introduced. This model conditions a Naive-Bayes model on only a subset of observed

features. Let’s assume that d represents the total number of features in the dataset, a subset of

features is denoted as f = {f1, ..., fm}, where m < d. The conditional probability of the feature

vector x is then computed as follows:

p(x|π,Θ, f) =
K∑

z=1

p(z|π)
m∏

j=1

pψ(xj |z,Θ, fj) (53)

where π represents prior distribution over K components. The term ψ refers to the appropriate

exponential family model for feature fj and pψ(xj |z,Θ, fj) is the exponential family distribution

for fj . z = (1, ...,K) and Θ = {θz} are defined as the parameters for the exponential family

distribution.

In the context of LDA, a ’data point’ is presented as a sequence of tokens (feature), with each
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token generated from the same discrete distribution, since they are considered semantically identical

Griffiths and Steyvers (2004). In some applications, instead of considering a feature as a token, each

feature is associated with a measured value, which can be real or categorical. Besides that, various

features within the feature set can carry distinct semantic meanings. Because the NB model assumes

that features come from the same mixture component, they took a Dirichlet prior with parameter α

for the mixing weight π to overcome the problem caused by that assumption. Therefore, the process

of generating a sample x following the LD-CNB model can be outlined as follows:

(1) Choose π ∼ Dir(α)

(2) For each of the observed feature fj (j=1, ..., m):

(a) Choose zj ∼ Discrete(π)

(b) Choose a feature value xj ∼ pψ(xj |zj ,Θ, fj)

When taking the model parameters into account, the joint distribution of (π, z, x) can be ex-

pressed as:

p(π, z, x|α,Θ, f) = p(π|α)

m∏

j=1

p(zj |π)pψ(xj |zj ,Θ, fj) (54)

Given the feature set of the entire data set denoted as F = {f1, ..., fN}, the probability of the

entire data set X = {x1, ..., xN} can be calculated as follows:

p(X|α,Θ, f) =

N∏

i=1

∫

π

p(π|α)




mi∏

j=1

K∑

zij=1

p(zij |π)pψ(xij |zij ,Θ, fij)


 dπ (55)

It can be seen from equation 55, that the model is dependent on the observed features and their

potential values. Thus, when generating the value xj for the feature fj , it is necessary to select the

suitable exponential family model (ψ). It’s important to note that the choice of family distribution

depends on the specific feature because each feature may have a different family distribution.

In the research conducted by Banerjee et al. Banerjee and Shan (2007), they utilized a univari-

ate Gaussian distribution for real-valued features and a Discrete distribution for categorical features

within each class. For the Gaussian distribution model (LD-CNB-Gaussian), the model parameters
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are denoted as Θ = {(µ(z,fj), σ
2
(z,fj)

)}, where j = 1, ..., d, and z = 1, ...,K (d and K representing

the total number of features and the number of latent classes in the dataset, respectively). Therefore,

in equation 55, pψ(xij |zij ,Θ, fij) can be updated as p(xj |µ(z,fj), σ
2
(z,fj)

). In the case of Discrete

distribution (LD-CNB-Discrete model), each feature is allowed to be of a different type and a dif-

ferent number of possible values. Assuming K latent classes (z = 1, ...,K), and d features with rj

(j = 1, ..., d) possible values for each feature, the model parameters for latent class z and feature

fj are represented by discrete probability distribution over possible values Θ = {p(z,fj)(r)}, where

r = (1, ..., rj).

4.2.1 Model Learning and Inference

Variational EM Algorithm

Consider y as the observed data generated through a set of latent variables x. Let Θ denotes the

model parameter describing the dependencies between variables. Consequently, the likelihood of

observing the data can be expressed as a function of Θ. The objective is to identify the optimal value

for Θ that maximizes the likelihood, or equivalently, the logarithm of the likelihood, as illustrated

in equation 56.

log p(y|Θ) = log

∫
p(x, y|Θ) dx (56)

However, the computation of maximum log-likelihood is typically a complex task. As a so-

lution, an arbitrary distribution for hidden variables, denoted as q(x), is defined. The marginal

likelihood can then be broken down with respect to q(x) as outlined below:

log p(y|Θ) = log

∫
q(x)

p(x, y|Θ)

q(x)
dx− log

∫
q(x)

p(x|y,Θ)

q(x)
dx

= L(q(x)|Θ) +KL(q(x)||p(x|y,Θ))

(57)

The term L(q(x)|Θ) is referred to as the evidence lower bound (ELBO), serving as a lower

bound for log p(y|Θ) due to the non-negativity of KL(q(x)||p(x|y,Θ)) T. Li and Ma (2023). To

achieve the maximum log-likelihood, we can either minimize KL(q(x)||p(x|y,Θ)) or maximize
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the evidence lower bound (ELBO), denoted as L(q(x)|Θ). Consequently, rather than directly max-

imizing the log-likelihood, the focus is on maximizing the ELBO T. Li and Ma (2023); Verbeek et

al. (2003). This approach leads to the development of a variational EM algorithm, which iteratively

optimizes the lower bound of the log-likelihood.

q(π, z|γ, ϕ, f) = q(π|γ)

m∏

j=1

q(zj |ϕj) (58)

q(π, z|γ, ϕ, f) is introduced as a variational distribution over the latent variables conditioned on

free parameters γ and ϕ, where γ is a Dirichlet parameter, and ϕ = (ϕ1, ..., ϕm) is a vector of

multinomial parameters.

Based on the information above, the associated ELBO can be computed as follows:

L(γ, ϕ;α,Θ) = Eq[log p(π|α)] + Eq[log p(z|π)] + Eq[log p(x|z,Θ)] +H(q(π)) +H(q(z))

(59)

The variational EM-step is derived by setting the partial derivatives, with respect to each vari-

ational and model parameter, to zero. The ELBO can be optimized iteratively by employing the

following set of update equations:

ϕ(zj ,fj) ∝ exp


Ψ(γzj )−Ψ(

K∑

zj′=1

γzj′ )


pψ(xj |zj ,Θ, fj) (60)

γzj = αzj +
m∑

j=1

ϕ(zj ,fj) (61)

As previously shown, the respective distributions for LD-CNB-Gaussian and LD-CNB-Discrete

will be substituted with pψ(xj |zj ,Θ, fj) in (60). The updated corresponding parameter (Θ) for each

model is then calculated as follows:

• LD-CNB-Gaussain

µ(zj ,fj) =

∑N
i=1 ϕi(zj ,fj)xij∑N
i=1 ϕi(zj ,fj)

(62)
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σ2(zj ,fj) =

∑N
i=1 ϕi(zj ,fj)(xij − µ(zj ,fj))

2

∑N
i=1 ϕi(zj ,fj)

(63)

• LD-CNB-Discrete

p(zj ,fj)(r) ∝
N∑

i=1

ϕi(zj ,fj)xij1(r|i, fj) + ϵ (64)

In equation 64, the term 1(r|i, fj) refers to the indicator matrix of observed value r for feature

fj in observation xi.

However, using Dirichlet as a prior presents some restrictions, especially when modeling cor-

related topics. First, all data features are bound to share a common variance, and their sum must

be equal to one. Consequently, we cannot introduce individual variance information for each com-

ponent of the random vector. In addition, when using a Dirichlet distribution, we have only one

degree of freedom to convey our confidence in the prior knowledge. All the entries in the Dirichlet

prior are always negatively correlated which means if the probability of one component increases,

the probabilities of the other components must either decrease or remain the same to ensure they

still sum up to one Caballero et al. (2012); Eita, Ennajari, and Bouguila (2023). These limitations

motivated us to employ a generalized form of Dirichlet distribution, namely generalized Dirichlet

distribution, and Beta-Liouville distribution as potential priors for the multinomial distribution.

4.3 Proposed Approaches

In this section, we provide a concise overview of the generalized Dirichlet distribution and the

Beta-Liouville distribution. We then proceed to adjust the equations in accordance with these new

priors.

4.3.1 Latent Generalized Dirichlet Conditional Naive Bayes

To overcome the limitations associated with the Dirichlet distribution, Bouguila and ElGue-

baly (2008a, 2008b); Bouguila and Ghimire (2010), Connor and Mosimann introduced the concept

of neutrality and developed the generalized Dirichlet distribution Connor and Mosimann (1969)
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is conjugate to the multinomial distribution Bouguila and Ghimire (2010); Najar and Bouguila

(2022a). In this context, a random vector X⃗ is considered completely neutral when, for all val-

ues of j (j < K), the vector (x1, x2, ..., xj) is independent of the vector (xj+1, xj+2, ..., xK)/(1−

∑
j(x1, x2, ..., xj)), which means that a neutral vector does not impact the proportional division of

the remaining interval among the rest of the variables. By assuming a univariate beta distribution

with parameters α and β for each component of (x1, x2, ..., xK−1), the probability density function

for the generalized Dirichlet distribution is derived as follows:

GD(
−→
X |α1, ..., αK , β1, ..., βK) =

K∏

i=1

Γ(αi + βi)

Γ(αi)Γ(βi)
x
(αi−1)
i (1−

i∑

j=1

xj)
γi (65)

where

for i = 1, 2, ...,K − 1, γi = βi − (αi+1 + βi+1)

and γK = βK − 1.

Note that αi, βi > 0. For i = 1, 2, ...,K, xi ≥ 0 and
∑K

i=1 xi ≤ 1 Epaillard and Bouguila

(2019); Wong (2009). Assuming βi−1 = αi+βi the generalized Dirichlet distribution is reduced to

the Dirichlet distribution, which indicates Dirichlet distribution as a special case of the generalized

Dirichlet distribution Bouguila (2008); Bouguila and Ziou (2004b). The mean, the variance, and the

covariance in the case of the generalized Dirichlet distribution, for i = 1, ...,K − 1 are as follows:

E(Xi) =
αi

αi + βi

i−1∏

j=1

βj + 1

αj + βj
(66)

V ar(Xi) = E(Xi)


 αi + 1

αi + βi + 1

i−1∏

j=1

βj + 1

αj + βj + 1
− E(Xi)


 (67)

COV (Xi, Xd) = E(Xd)


 αi
αi + βi + 1

i−1∏

j=1

βj + 1

αj + βj + 1
− E(Xi)


 (68)

Unlike Dirichlet distribution, the GD distribution has a more general covariance structure, and

variables with the same means are not obligated to have the same covariance. Moreover, for GD

distribution covariance between two variables is not negative Najar and Bouguila (2021a). This
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flexibility and properties of the GD distribution make it desirable prior to the topic modeling and

finding the hidden structure of the data Koochemeshkian et al. (2020).

4.3.2 Model Learning and Inference

Variational EM algorithm

In the proposed approach, we consider a GD prior with parameters α, β for the mixing weights

of the data points of the model (π ∼ GD(α, β)), and Θ as the model parameter. Therefore, the

joint distribution of (π, z, x) is calculated as:

p(π, z, x|α, β,Θ, f) = p(π|α, β)
m∏

j=1

p(zj |π)pψ(xj |zj ,Θ, fj) (69)

Following that, the variational distribution for updated model parameters is defined as:

q(π, z|γ, λ, ϕ, f) = q(π|γ, λ)

m∏

j=1

q(zj |ϕj) (70)

where γ and λ are the parameters for the generalized Dirichlet distribution, and ϕ = (ϕ1, ..., ϕm)

denotes a vector of parameters for the multinomial distribution.

Further, in order to determine the maximum likelihood of the data, we seek to maximize the

associated lower bound (ELBO), computed as follows:

L(γ, λ, ϕ;α, β,Θ) = Eq[log p(π|α, β)] + Eq[log p(z|π)] + Eq[log p(x|z,Θ)]

+H(q(π)) +H(q(z))

(71)

It has been demonstrated that the GD distribution belongs to the exponential family, so its ex-

pected value is calculated by taking the derivative of its cumulant function (Appendix A.1). By

setting the partial derivatives to zero with regard to each parameter and subsequently deriving the

revised equations for variational and model parameters (equations 72,73, and 74), we can find the

maximum value for the ELBO.

ϕ(zj ,fj) ∝ pψ(xj |zj ,Θ, fj) exp

(
Ψ(γzj )−Ψ(λzj )− (

zj∑

i=1

Ψ(γi + λi)−Ψ(λi))

)
(72)
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γzj = αzj +
m∑

j=1

ϕ(zj ,fj) (73)

λzj = βzj +

m∑

j=1

ϕ(zj ,fj) (74)

Given that the model parameter Θ form is independent of the prior distribution, the update

equations for exponential family parameters remain unchanged, as presented in (62,63, and 64).

4.3.3 Latent Beta-Liouville Conditional Naive Bayes

In this section, we will incorporate another distribution known as the Beta-Liouville (BL) dis-

tribution as a prior in our model. Research has demonstrated that the BL distribution offers a viable

alternative to the Dirichlet and GD distributions for statistically representing proportional data. The

BL distribution also serves as a conjugate prior for the multinomial distribution and, similar to the

GD distribution, it has a more general covariance structure Luo, Amayri, Fan, and Bouguila (2023).

The probability density function for a random vector X⃗ following a BL distribution with positive

parameter vector Φ⃗ = (α1, ..., αK , α, β) is expressed as:

BL(X⃗|Φ⃗) = Γ(
K∑

k=1

αk)
Γ(α+ β)

Γ(α)Γ(β)

K∏

k=1

X
(αk−1)
k

Γ(αk)

(
K∑

k=1

Xk

)α−∑K
k=1

αk
(
1−

K∑

k=1

Xk

)β−1

(75)

The Beta-Liouville distribution transforms into the Dirichlet distribution when the generator

density follows a beta distribution with parameters
∑K−1

i=1 αi and αK , as explained in Bouguila

(2010); Fan and Bouguila (2015). The mean, the variance, and the covariance of the Beta-Liouville

distribution are calculated as follows:

E(Xi) =
α

α+ β

αk∑K
k=1 αk

(76)

V ar(Xi) = E(Xi)

(
α+ 1

α+ β + 1

αk + 1
∑K

k=1 αk + 1

)
− E(Xi)

2

(
α2
k

(
∑K

k=1 αk)
2

)
(77)

COV (Xi, Xd) =
αiαd∑K
i=1 αi

( −α2

(α+ β)2
∑K

k=1 αk
+

α(α+ 1)

(α+ β)(α+ β + 1)(
∑K

k=1 αk + 1)

)
(78)
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By considering a Beta-Liouville (BL) prior with parameter vector Φ⃗ from which the mixing

weight π is generated, we compute the joint distribution of (π, z, x), the associated variational

distribution, and the lower bound, respectively, as outlined below:

p(π, z, x|Φ⃗,Θ, f) = p(π|Φ⃗)
m∏

j=1

p(zj |π)pψ(xj |zj ,Θ, fj) (79)

q(π, z|Φ⃗, ϕ, f) = q(π|Ω⃗)

m∏

j=1

q(zj |ϕj) (80)

L(Ω⃗, ϕ; Φ⃗,Θ) = Eq[log p(π|Φ⃗)] + Eq[log p(z|π)] + Eq[log p(x|z,Θ)] +H(q(π)) +H(q(z))

(81)

where, Ω⃗ = (γ1, ..., γK , γ, λ) is the Beta-Liouville parameter vector and ϕ = (ϕ1, ..., ϕm) are the

multinomial parameters. The BL distribution is also a member of the exponential family (Appendix

A.2), thus the expected value will be obtained by computing the derivative of its cumulant function

Bakhtiari and Bouguila (2016). Consequently, the corresponding variational parameters are updated

as follows:

ϕ(zj ,fj) ∝ pψ(xj |zj ,Θ, fj) exp


Ψ(γzj )−Ψ(

K∑

zj=1

γzj ) + Ψ(λ)−Ψ(γ + λ)


 (82)

γzj = αzj +

m∑

j=1

ϕ(zj ,fj) (83)

4.4 Experimental Results

To evaluate the performance of our LGD-CNB and LBL-CNB models and to compare them with

LD-CNB model for each experiment, we selected different sets of data. This assessment examines

how three different priors affect the Gaussian and Discrete models.
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4.4.1 Gaussian Models

As mentioned earlier, Gaussian models are suitable for features with real values. Table 4.1

displays the calculated perplexities for LD-CNB-Gaussian, LGD-CNB-Gaussian, and LBL-CNB-

Gaussian models across five different datasets. These datasets are chosen from the UCI benchmark

repository, in which all features are available for every instance. The model was trained using 70%

of the data, and the remaining 30% was utilized for testing. Perplexity values are then computed on

the testing set using equation 84, with the same number of selected features for all instances in the

dataset. The perplexity values after 10 iterations are presented in Table 1. According to equation 32,

lower perplexity indicates a higher log-likelihood probability, suggesting a better fit for the model.

Perplexity(X) = exp
{
−

∑N
i=1 log p(xi)∑N

i=1mi

}
(84)

Table 4.1: Perplexity of LD-CNB, LGD-CNB, and LBL-CNB Gaussian models.

Dataset LD-CNB LGD-CNB LBL-CNB

Wine 0.9936 0.9804 0.93262

Balance 0.9966 0.9810 0.9953

HeartFailure 0.9837 0.8792 0.7987

WDBC 0.9967 0.9943 0.9925

Yeast 0.9974 0.9963 0.9959

Results indicate that LGD-CNB-Gaussian and LBL-CNB-Gaussian models perform better than

LD-CNB-Gaussian, showing that the generalized structure of GD distribution and BL distribution

makes them more suitable as prior distributions. Table 4.2 displays the outcomes of assessing the

models on the WDBC dataset Wolberg and Street (1995). These results represent the averages

obtained from 20 runs with distinct randomly assigned initial values. According to the table, both

the LGD-CNB model and LBL-CNB model outperform the LD-CNB model, showcasing higher

accuracy in those instances.
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Table 4.2: Accuracy, precision, recall, and f-score in percent for LD-CNB, LGD-CNB, LBL-CNB

using the WDBC dataset.

Method Accuracy Precision Recall F-score

LD-CNB 0.63 0.55 0.075 0.132

LGD-CNB 0.85 0.75 0.90 0.818

LBL-CNB 0.82 0.92 0.55 0.688

4.4.2 Discrete Models

To assess Discrete models, we utilized the 100K MovieLens dataset from the Grouplens Re-

search Project Harper and Konstan (2015). This dataset comprises 100, 000 ratings (1-5) provided

by 943 users for 1682 movies. Users with fewer than 20 ratings or incomplete demographic infor-

mation were excluded. Due to users not rating all movies, there is sparsity in this dataset. Similar to

the prior experiment, we conducted the experiment on our three models and computed the perplexity

for each using equation 86.

Perplexity(X) = exp
{
−

∑N
i=1 log p(xi)

N

}
(85)

The disparity in the number of rated movies among users serves as evidence for the dataset’s

sparsity, a notable distinction between the Discrete model and the Gaussian model. Moreover, there

are no constraints on the covariance of data points, implying that a user rating fewer movies does not

necessitate another user to rate more. As illustrated in Figure 4.1, despite the sparsity, the perplexity

of the LGD-CNB-Discrete model is lower than that of the LBL-Discrete model, which, in turn, is

lower than the LD-CNB-Discrete model. This finding suggests that similar to real-valued features,

the more general covariance structure of the GD and BL priors allows them to better describe pro-

portional data, leading to their superior performance over the Dirichlet prior to categorical features.

Additionally, the presence of two vector parameters in the GD distribution enhances its flexibility

with sparse data, enabling it to assign low values effectively Najar and Bouguila (2022c). In this

experiment, we compute similarly the accuracy, precision, recall, and F-score for this model using
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(CNB) model, we conditioned the model on observed feature subsets, enhancing sparsity manage-

ment. The traditional approach assumed a Dirichlet distribution as a prior, LD-CNB acknowledges

that feature values are generated from an exponential family distribution, varying depending on the

considered feature. We have outlined the advantages of employing GD and BL distributions over the

Dirichlet distribution. Our investigation into the Gaussian and Discrete distributions as exponential

families for LGD-CNB and LBL-CNB models revealed that the more generalized covariance struc-

ture of GD and BL distributions makes them desirable as prior distributions for uncovering latent

structures in sparse data, especially when feature vectors follow a discrete distribution.
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Chapter 5

Conclusion

In conclusion, this thesis has delved into the realm of Bayesian models within natural language

processing, presenting a series of innovative unsupervised learning approaches designed for the

identification of pertinent documents and text mining. The challenges of incorporating new queries

into the topic space, addressing data sparsity, and handling positively correlated data were success-

fully navigated by applying various distributions within our Bayesian framework. While mixture

models have been extensively explored in previous research, the selection of an appropriate prior

distribution remains a critical consideration. Chapter 2 focused on developing an iterative statistical

method to address the challenge of folding new queries into the topic space. This involved estimat-

ing model parameters and hidden variables, specifically topic mixtures, to establish the relevance

between new queries and documents within the data collection. Moving to Chapter 3, we concen-

trated on the utilization of large datasets and explored the joint impact of clustering and projection in

our probabilistic model. The investigation encompassed document clustering, word projection, and

document modeling. In Chapter 4, our attention turned to the performance of different prior distribu-

tions in managing data sparsity. Gaussian and Discrete distributions were considered as exponential

family distributions for the dataset features, forming the basis of our model. In our modeling endeav-

ors, we opted to substitute the Dirichlet distribution with both the generalized Dirichlet distribution

and the Beta-Liouville distribution within each model. This strategic choice was grounded in the

favorable properties exhibited by these distributions, showcasing their proficiency in representing
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proportional data. In contrast to the Dirichlet distribution, both the generalized Dirichlet distribu-

tion and the Beta-Liouville distribution have more general covariance structures. This implies the

absence of negative covariance restrictions on the data, allowing for a broader range of relation-

ships to be accommodated. Furthermore, the decision to introduce these alternative distributions

comes with the added advantage of defining more independent parameters. This deliberate increase

in the number of parameters injects additional degrees of freedom into our model. Consequently,

this augmentation affords our model greater flexibility to adapt and offer a more precise fit to the

intricacies of the data. The surplus degrees of freedom provide the model with increased adapt-

ability, enabling it to better account for variability within the dataset. Notably, both the generalized

Dirichlet distribution and the Beta-Liouville distribution possess the capacity to capture a more in-

tricate dependence pattern among variables. This heightened flexibility allows these distributions to

excel in capturing complex relationships within the data, making them valuable assets for modeling

scenarios characterized by nuanced and interrelated variables. In summary, the incorporation of the

generalized Dirichlet distribution and the Beta-Liouville distribution not only broadens the scope

of covariance structures but also enhances the adaptability and flexibility of our models, making

them more adept at handling diverse and complex datasets. Ultimately, a text mining model aims

to efficiently discover and retrieve relevant information based on user queries in terms of both time

and cost-effectiveness. By presenting an iterative algorithm and offering a flexible choice of prior

distribution, Bayesian models emerge as valuable tools in text mining. The contributions made in

this thesis pave the way for enhanced approaches in natural language processing and signify the

ongoing importance of addressing delicate challenges in unsupervised learning.

51



Appendix A

Appendix

A.1 Exponential Form of the Generalized Dirichlet Distribution

The exponential family of distributions is a group of parametric probability distributions with

specific mathematical characteristics, making them easily manageable from both statistical and

mathematical perspectives. This family encompasses various distributions like normal, exponen-

tial, log-normal, gamma, chi-squared, beta, Dirichlet, Bernoulli, and more. Given a measure η,

an exponential family of probability distributions is identified as distributions whose density (in

relation to η) follows a general form:

p(x|η) = h(x) exp (ηTT (x)−A(η)) (86)

where, h(x) is referred to as the base measure, T (x) is the sufficient statistic. η is known as natural

parameter, and A(η) is defined as the cumulant function.

It has been shown that the generalized Dirichlet distribution is a member of the exponential

family distributions Zamzami and Bouguila (2019a, 2019b, 2022), as evidenced by its representation

in the aforementioned form, as illustrated below:
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GD(X⃗|α1, ..., αK , β1, ..., βK) = exp

[ K∑

k=1

(log(Γ(αk + βk))− log(Γ(αk))

− log(Γ(βk))) + α1 log(X1) +
K∑

k=2

αk

(
log(Xk)− log(1−

k−1∑

t=1

Xt)
)

+ β1 log(1−X1) +

K∑

k=2

βk

(
log(1−

k∑

t=1

Xt)− log(1−
k−1∑

t=1

Xt)
)

−

K∑

k=1

log(Xk)− log(1−

K∑

k=1

Xk)

]

(87)

Based on that we can calculate the base measure, the sufficient statistic, and the cumulant func-

tion as Bouguila (2011a); Epaillard and Bouguila (2019):

h(X⃗) = −
K∑

k=1

log(Xk)− log(1−
K∑

t=1

Xt) (88)

T (X⃗) =

(
log(X1), log(X2)− log(1−X1), log(X3)− log(1−X1 −X2), ..., log(1−X1),

log(1−X1 −X2)− log(1−X1), ..., log(1−

K∑

t=1

Xt)− log(1−

K−1∑

t=1

Xt)

)

(89)

A(η) =

( K∑

k=1

log(Γ(αk)) + log(Γ(βk))− log(Γ(αk + βk))

)
(90)

given η = (α1, ..., αK , β1, ..., βK).

A.2 Exponential Form of the Beta-Liouville Distribution

Besides the generalized Dirichlet distribution, the Beta-Liouville distribution can also be ex-

pressed in the framework of exponential family distributions as it is shown below:
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BL(X⃗|α1, ..., αK , α, β) = exp

[
log(Γ(

K∑

k=1

αk))− log(Γ(α+ β))− log(Γ(α))− log(Γ(β))

−

K∑

k=1

log(Γ(αk))− log(Γ(β))−

K∑

k=1

log(Γ(αk)) +

K∑

k=1

αk

(
log(XK)− log(

K∑

k=1

Xk)

)

+ α log(
K∑

k=1

Xk) + β log(1−
K∑

k=1

Xk)−
K∑

k=1

log(Xk)− log(1−
K∑

k=1

Xk)

]

(91)

In this scenario, the determination of the base measure, sufficient statistic, and cumulant func-

tion is carried out as follows:

h(X⃗) = −
K∑

k=1

log(Xk)− log(1−
K∑

t=1

Xt) (92)

T (X⃗) =

(
log(X1)− log(

K∑

k=1

Xk), log(X2)− log(

K∑

k=1

Xk), ..., log(XK)− log(

K∑

k=1

Xk)

)
(93)

A(η) = log
(
Γ(

K∑

k=1

αk)
)
+ log(Γ(α+ β))− log(Γ(α))− log(Γ(β))−

K∑

k=1

log(Γ(αk)) (94)

given η = (α1, ..., αK , α, β).
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