
Pull Request Abandonment in
Open-Source Projects

SayedHassan Khatoonabadi

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Computer Science)

at Concordia University

Montréal, Québec, Canada

November 2023

© SayedHassan Khatoonabadi, 2023

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

 Doctor Of Philosophy

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:
 Chair

External Examiner

Examiner

Examiner

 Examiner

Thesis Supervisor (s)

Approved by

Chair of Department or Graduate Program Director

Dean,

Date of Defence

SayedHassan Khatoonabadi

Pull Request Abandonment in Open-Source Projects

Computer Science

Dr. Sang Hyeok Han

Dr. Andy Zaidman

Dr. Ferhat Khendek

Dr. Nikolaos Tsantalis

Dr. Tse-Hsun (Peter) Chen

Dr. Emad Shihab

Dr. Leila Kosseim

January 19, 2024

Dr. Mourad Debbabi Gina Cody School of Engineering and Computer Science

Abstract

Pull Request Abandonment in Open-Source Projects

SayedHassan Khatoonabadi, Ph.D.

Concordia University, 2023

Pull-based development is a common paradigm for contributing to and reviewing code changes in numerous

open-source projects. However, a considerable amount of Pull Requests (PRs) with valid contributions are

not finalized because their contributors have left the review process unfinished. Such abandoned PRs waste

a considerable amount of time and effort from both their contributors and their maintainers. Furthermore,

PRs that are neither progressed nor resolved, clutter the list of PRs, and eventually make it difficult for the

maintainers to manage and prioritize unresolved PRs. Recognizing these challenges, this thesis aims to

investigate the underlying dynamics of abandoned PRs, evaluate the helpfulness of common solutions to

PR abandonment, and propose ways to mitigate PR abandonment in large open-source projects. We start

by studying the characteristics of abandoned PRs, the reasons why contributors abandon their PRs, and the

perspectives of project maintainers on dealing with PR abandonment. Our findings indicate that contributors

and the review process play a more prominent role in PR abandonment than projects and PRs themselves.

Our survey with project maintainers also indicates that Stale bot is commonly adopted by many open-source

projects to deal with abandoned PRs. However, there are ongoing debates on whether using Stale bot alleviates

or exacerbates PR abandonment. Therefore, in our next study, we investigate the reliance of projects on Stale

bot to deal with their PR backlog, the impact of Stale bot on pull-based development, and the kind of PRs

usually intervened by Stale bot. Our findings indicate that despite its benefits, Stale bot tends to further

aggravate contributor abandonment. To help better mitigate PR abandonment, in our last study, we propose a

machine learning approach to predict the first response latency of the maintainers and the contributor of a

PR. We demonstrate the effectiveness of our approach in both project-specific and cross-project settings and

also discuss the importance and impact of different features on the predicted waiting times. The awareness

fostered by these predictions enables both the maintainers and the contributor to take proactive actions to

mitigate potential challenges during the review process of the PR before it gets abandoned.

iii

Acknowledgments

This journey of pursuing my Ph.D. has been a profound experience, filled with challenges, learning, and

growth. It would not have been possible without the support and guidance of many individuals to whom I

owe my deepest gratitude.

First and foremost, I extend my sincerest thanks to my supervisor, Dr. Emad Shihab, for his continued

support, encouragement, and mentorship. His expertise, patience, and insightful feedback have been

instrumental in shaping my research and academic development.

I am deeply grateful to my committee members, Dr. Andy Zaidman, Dr. Nikolaos Tsantalis, Dr. Tse-Hsun

(Peter) Chen, and Dr. Ferhat Khendek. Their constructive criticism and valuable comments have significantly

contributed to the depth and quality of my research.

I would also like to acknowledge the collaboration and mentorship of our ex-postdocs, Dr. Diego Costa and

Dr. Ahmad Abdellatif. Working alongside them has been an enriching experience, contributing significantly

to my academic growth and the quality of our joint publications.

A special thanks goes to my colleagues at DAS Lab. The discussions and collaborative spirit we shared

have been a constant source of motivation. The lab has been more than just a workplace; it has been a

community of friends who have supported each other through both academic and personal challenges.

Lastly, I must express my profound gratitude to my dear family and friends for their love, understanding,

and unwavering belief in my abilities. Their constant encouragement and support have been my strength

throughout this journey.

This thesis is not only a reflection of my work but also a testament to the collective effort and support of

all these remarkable individuals.

iv

Dedication

To Reihan, my beloved wife, whose profound love and unwavering companionship have been my refuge

in both challenging and joyous times. Your enduring strength and support are the heartbeat of my every

achievement.

To Effat, my dear mother, whose love and devotion have not only shaped this achievement but also the

individual I am today. Your continual belief in my abilities has been a guiding force, lighting my way through

every obstacle and success on this journey.

And in loving memory of Reza, my father, whose cherished memories remain a source of inspiration in

my life. I deeply wish he could have witnessed this moment; his absence is felt with every milestone I reach.

He is forever in my heart, unforgettable, and dearly missed.

Their unconditional love, sacrifices, and faith in me have been the cornerstones of my success, making

this journey not just possible, but also meaningful.

v

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction and Research Statement 1

1.1 Introduction . 1

1.2 Research Statement . 3

1.3 Thesis Overview . 3

1.4 Thesis Contributions . 6

1.5 Related Publications . 7

1.6 Thesis Organization . 7

2 Background and Related Work 9

2.1 Reasons and Consequences of PR Abandonment 9

2.2 Usage and Challenges of Stale bot . 10

2.3 Impact of Tools on Pull-based Development . 11

2.4 Review Latency and Decision of PRs . 11

2.5 Duplicated PRs and Redundant Changes . 13

2.6 Chapter Summary . 14

3 Understanding the Dynamics of Contributor-Abandoned Pull Requests 15

3.1 Introduction . 15

3.2 Methodology . 17

vi

3.3 RQ1: What are the significant features of contributor-abandoned PRs in the studied

projects? . 23

3.4 RQ2: How do different features impact the probability of PR abandonment in the

studied projects? . 27

3.5 RQ3: What are the probable reasons why contributors abandon their PRs in the

studied projects? . 34

3.6 Perspectives of the Project Maintainers . 38

3.7 Discussion . 47

3.8 Limitations . 49

3.9 Chapter Summary . 50

4 Understanding the Helpfulness of Stale Bot for Pull-based Development 52

4.1 Introduction . 52

4.2 Dataset . 55

4.3 RQ1: How much do the studied projects use Stale bot to deal with their PR backlog? 56

4.4 RQ2: What is the impact of Stale bot on pull-based development in the studied

projects? . 59

4.5 RQ3: What kind of PRs are usually intervened by Stale bot in the studied projects? 66

4.6 Implications . 71

4.7 Limitations . 73

4.8 Chapter Summary . 74

5 Predicting the First Response Latency of Maintainers and Contributors in Pull Requests 76

5.1 Introduction . 76

5.2 Study Design . 79

5.3 Maintainer Response Latency . 87

5.4 Contributor Response Latency . 91

5.5 Cross-Project Setting . 95

5.6 Limitations . 97

5.7 Chapter Summary . 97

vii

6 Conclusion and Future Work 99

6.1 Conclusion . 99

6.2 Future Work . 100

Bibliography 103

Appendices 119

viii

List of Figures

3.1 Spearman’s 𝜌 correlation among different pairs of features across the combined data of the

studied projects. 28

3.2 ALE plots showing how review participants responses varies the abandonment probability of

PRs across the studied projects. 32

3.3 ALE plots showing how review contributor responses varies the abandonment probability of

PRs across the studied projects. 32

3.4 ALE plots showing how contributor acceptance rate varies the abandonment probability of

PRs across the studied projects. 33

3.5 ALE plots showing how contributor pulls varies the abandonment probability of PRs across

the studied projects. 33

3.6 ALE plots showing how project age varies the abandonment probability of PRs across the

studied projects. 34

4.1 An example prompt by Stale bot. 53

4.2 Variation in (a) the number of merged PRs, (b) the number of closed PRs, (c) the first response

latency of merged PRs, (d) the resolution time of closed PRs, (e) the number of commits in

merged PRs, and (f) the number of active contributors each month during our observation

period. 64

4.3 Differences between PRs with and without intervention from Stale bot in the cleverraven/cataclysm-

dda project regarding (a) the number of follow-up commits, (b) the number of follow-up

changed lines, and (c) the number of follow-up changed files after the submission. 69

ix

4.4 Differences between the contributors of PRs with and without intervention from Stale bot

in the homebrew/homebrew-core project regarding (a) the number of prior PRs, (b) the

acceptance rate, and (c) the contribution period. 70

4.5 Differences between the review processes of PRs with and without intervention from Stale

bot in the homebrew/homebrew-core project regarding (a) the number of participants, (b) the

number of comments from the participants, (c) the number of comments from the contributors,

(d) the first review latency, (e) the mean review latency, and (f) the resolution time. 72

5.1 Ranking of the importance of different features for predicting the first response latency of

maintainers across the studied projects. 90

5.2 Impact of the top 5 most important features on the prediction of the first response latency of

maintainers across the studied projects. 91

5.3 Ranking of the importance of different features for predicting the first response latency of

contributors across the studied projects. 94

5.4 Impact of the top 5 most important features on the prediction of the first response latency of

contributors across the studied projects. 95

x

List of Tables

3.1 Overview of the projects selected to study contributor-abandoned PRs. 18

3.2 Overview of the features extracted to characterize PRs, their contributors, their review process,

and their projects. 21

3.3 Significance of different features across the studied projects. 25

3.4 Difference of the project features between abandoned and nonabandoned PRs. 27

3.5 Performance scores of our model for each studied project. 30

3.6 Importance of different features across the studied projects. 31

3.7 Probable reasons why contributors abandon their PRs. 36

3.8 Overview of the explanation of our findings based on our survey responses. 44

4.1 Overview of the projects selected to study the helpfulness of Stale bot for pull-based development. 56

4.2 Usage of Stale bot during its first year of adoption across the studied projects. 58

4.3 Overview of the indicators measured to quantify the performance of the pull-based development

workflow in the studied projects. 62

4.4 Overview of the factors measured to characterize PRs, their contributors, and their review

processes. 66

4.5 Differences in the characteristics of PRs with and without intervention from Stale bot across

the studied projects. 68

5.1 Overview of the projects selected for our study. 80

5.2 Features extracted to predict the first response latency of maintainers (M) and contributors (C). 82

5.3 AUC-ROC of different models for predicting the first response latency of maintainers across

the studied projects. 88

xi

5.4 AUC-PR of different models for predicting the first response latency of maintainers across

the studied projects. 89

5.5 AUC-ROC of different models for predicting the first response latency of contributors across

the studied projects. 92

5.6 AUC-PR of different models for predicting the first response latency of contributors across

the studied projects. 93

5.7 Performance of the models for predicting the first response latency of maintainers and

contributors in a cross-project setting. 96

xii

Chapter 1

Introduction and Research Statement

1.1 Introduction

Pull-based development has become a common paradigm for contributing to and reviewing code changes

in numerous open-source projects [1, 2]. Pull Requests (PRs) are the driving force behind the maintenance

and evolution of these projects, encompassing everything from bug fixes to new features. This development

model offers higher information centralization, process automation, and tool integration, which facilitates

communication and increases awareness during the code review process [3, 1]. This in turn reduces the time

and effort required to contribute, review, improve, and integrate code changes [1, 2]. Contributors initiate this

collaborative process by submitting a PR that proposes changes for integration into the project. The PR then

undergoes a review process, during which the contributor revises the changes based on feedback from the

project maintainers. This cycle repeats until the PR satisfies the maintainers’ requirements for getting merged

[4, 5].

The streamlined contribution mechanism enabled by PRs has encouraged numerous developers to

contribute to open-source projects with fewer barriers [1, 6, 2]. However, a considerable amount of PRs

with valid contributions are not finalized because their contributors have left the review process unfinished

[7, 8]. Unfortunately, abandoned PRs waste a considerable amount of time and effort that is often put in both

by the contributors to prepare and submit such PRs and by the maintainers to manage and review them [8].

Furthermore, PRs that are neither progressed nor resolved, accumulate over time, clutter the list of PRs, and

eventually make it difficult for the maintainers to manage and prioritize unresolved PRs [8, 9]. As a real-world

example, a large backlog of unresolved PRs led the DefinitelyTyped project to declare “bankruptcy” in June

1

2016. Consequently, they closed all unresolved PRs submitted before May 2016 just to be able to start afresh

[10].

The great opportunity cost and wasted efforts arising from PR abandonment make it a non-trivial challenge

for the open-source community. To mitigate this challenge, we first need to better understand the underlying

dynamics of abandoned PRs. Therefore, we start by investigating the characteristics of abandoned PRs, the

reasons why contributors abandon their PRs, and the perspectives of project maintainers on dealing with

PR abandonment. Our findings indicate that most PRs are abandoned because of the obstacles faced by

the contributors and the hurdles imposed by the maintainers during the review process. We also find that

contributors and the review process play a more prominent role in PR abandonment than projects and PRs

themselves. Additionally, our survey with project maintainers indicates that Stale bot [11] is commonly

adopted by many open-source projects on GitHub to automatically triage inactive and abandoned PRs [12, 13].

However, there are ongoing debates on whether using Stale bot alleviates or exacerbates the problem of

inactive and abandoned PRs [14, 15, 16, 17, 18, 19, 20]. Therefore, in our next study, we aim to better

understand the helpfulness of Stale bot for pull-based development. Specifically, we investigate the reliance

of projects on Stale bot to deal with their PR backlog, the impact of Stale bot on pull-based development, and

the kind of PRs usually intervened by Stale bot. Our findings indicate that despite its helpfulness in dealing

with a backlog of unresolved PRs, Stale bot tends to decrease community engagement and increase the risk of

contributor abandonment.

However, to help better mitigate PR abandonment, we need to acknowledge the significant role of the

responsiveness of the maintainers and the contributor during the review process of a PR as indicated by the

findings of our first study. The first responses are of particular importance as they not only directly influence

the duration [21, 22] and the outcome [23, 24, 8] of the review process, but also the likelihood of future

contributions by the contributor [25, 21]. Therefore, we propose a machine learning approach to predict: (1)

the first response latency of the maintainers following the submission of a PR, and (2) the first response latency

of the contributor after receiving the first response from the maintainers. We believe that by predicting the

first response latencies, our approach helps open-source projects facilitate collaboration between maintainers

and contributors during the review process of PRs. Contributors, when aware of anticipated waiting times,

can adjust their schedules accordingly, reducing uncertainty and preserving their motivation throughout the

review process [24, 26]. Maintainers, aware of possible delays in contributor responses, can proactively offer

additional support or take action to mitigate potential blockers [24, 9]. This awareness also allows maintainers

2

to better allocate their time and resources and prioritize PR reviews [9]. Furthermore, analyzing response time

trends can help projects pinpoint and rectify bottlenecks, thereby enhancing the efficiency and effectiveness

of their PR review workflows.

1.2 Research Statement

Motivated by the challenges of abandoned PRs, the goal of this PhD thesis is to explore the reasons and

the solutions to PR abandonment. We state our research statement as follows:

PR abandonment is a non-trivial challenge that results in a significant opportunity cost for the

open-source community. We investigate the underlying dynamics of abandoned PRs, evaluate the

helpfulness of common solutions to PR abandonment, and propose ways to mitigate PR abandonment

in large open-source projects.

1.3 Thesis Overview

In this section, we provide an overview of the work presented in this thesis and highlight the main results

of each work.

Chapter 3: Understanding the Dynamics of Contributor-Abandoned Pull Requests

Pull-based development has enabled numerous volunteers to contribute to open-source projects with

fewer barriers. Nevertheless, a considerable amount of PRs with valid contributions are abandoned by

their contributors, wasting the effort and time put in by both the contributors and maintainers. To better

understand the underlying dynamics of contributor-abandoned PRs, we conduct a mixed-methods study

using both quantitative and qualitative methods. We curate a dataset consisting of 265,325 PRs that include

4,450 abandoned ones from 10 large and popular open-source projects on GitHub and extract 16 features

characterizing PRs, contributors, review processes, and projects.

First, we analyze the characteristics of abandoned PRs to understand which features of PRs, their

contributors, their review processes, and their projects are associated with PR abandonment. We find that

abandoned PRs are usually more complex, their contributors are usually less experienced, and their review

process is usually lengthier than nonabandoned PRs. We also observe that the project features play both a

3

positive and negative role in PR abandonment, where abandoned PRs have become more frequent in three

projects and less frequent in five other projects as the projects mature. Then, we rely on machine learning

techniques to determine the relative importance of the features and describe how each feature varies the

predicted abandonment probability of PRs. We find that the features of review processes, contributors, and

projects are more important for predicting PR abandonment than the features of PRs themselves. Specifically,

PRs with more than three responses from either the participants or the contributors, and those submitted by

novice contributors are more likely to get abandoned. Also, the abandonment probability changes as the

projects evolve, with half the projects showing a decrease in abandonment in their mature stages and the other

half showing an increase in abandonment.

Next, we manually examine a random sample of abandoned PRs to identify the probable reasons why

contributors abandon their PRs. We find that difficulty addressing the maintainers’ comments, lack of timely

review from the maintainers, difficulty resolving the CI failures, and difficulty resolving the merge issues are

the most frequent reasons why contributors abandon their PRs. Afterward, we survey the top core maintainers

of the projects to gain additional insights on how they deal with or suggest dealing with abandoned PRs

and their perspectives on our findings. We find that Stale bot is commonly used to automatically deal with

abandoned PRs. However, the maintainers recommend establishing a triage mechanism to help find problems

and support PRs that need assistance before they become abandoned. Finally, we combine the findings from

our research questions and survey responses to discuss the role of PRs, contributors, review processes, and

projects in PR abandonment. Our findings indicate that contributors and the review process play a more

prominent role in PR abandonment than projects and PRs themselves. This work has been published in the

ACM Transactions on Software Engineering and Methodology journal [24].

Chapter 4: Understanding the Helpfulness of Stale Bot for Pull-based Development

PRs that are neither progressed nor resolved clutter the list of PRs, making it difficult for the maintainers

to manage and prioritize unresolved PRs. To automatically track, follow up, and close such inactive PRs, Stale

bot was introduced by GitHub. Despite its increasing adoption, there are ongoing debates on whether using

Stale bot alleviates or exacerbates the problem of inactive PRs. To better understand the helpfulness of Stale

bot for pull-based development, we conduct a quantitative empirical study. We curate a dataset of 20 large

and popular open-source projects on GitHub and measure 13 performance indicators covering resolved PRs,

review latency, resolution time, review discussion, PR updates, and contributor retention. We also extract 16

4

factors characterizing PRs, contributors, and review processes.

First, we analyze the configuration and activity of Stale bot to understand the extent to which the projects

rely on Stale bot to automatically deal with their unresolved PRs. We find that the usage level of Stale bot

widely varies among the projects. On average each month, Stale bot intervened in less than 25% of open PRs

in nine projects, between 25% and 50% of open PRs in five projects, and more than 50% of open PRs in

six projects. Then, we apply interrupted time-series analysis [27] as a well-established quasi-experiment

to understand if and how adopting Stale bot improves the efficiency and effectiveness of the pull-based

development workflow. We find that the projects closed more PRs within the first few months of adopting

Stale bot, but overall closed and merged fewer PRs afterward. The adoption of Stale bot is also associated

with faster first reviews in merged PRs, faster resolutions in closed PRs, slightly fewer updates in merged PRs,

and considerably fewer active contributors in the projects.

Next, we analyze the characteristics of PRs intervened by Stale bot, as well as their contributors and

review processes, to understand the factors that are associated with a higher probability of getting intervened

by Stale bot. We find that Stale bot tends to intervene more in complex PRs, PRs from novice contributors,

and PRs with lengthy review processes. Specifically, besides the resolution time of PRs, the largest differences

are observed in the number of prior PRs by contributors, the mean response latency of PRs, the acceptance

rate of contributors, and the contribution period of contributors. Finally, we combine our findings to discuss

the advantages and disadvantages of adopting Stale bot for pull-based development. Our findings indicate that

Stale bot can help projects deal with a backlog of unresolved PRs and also improve the review process of PRs.

However, Stale bot can also negatively affect the contributors (especially novice or casual contributors) of

projects. Therefore, relying solely on Stale bot to deal with inactive PRs may lead to decreased community

engagement and an increased probability of contributor abandonment. This work has been published in the

ACM Transactions on Software Engineering and Methodology journal [28].

Chapter 5: Predicting the First Response Latency of Maintainers and Contributors in Pull

Requests

The success of a PR depends on the responsiveness of the maintainers and the contributor during the

review process. Being aware of the expected waiting times can lead to better interactions and managed

expectations for both the maintainers and the contributor. Therefore, we propose a machine learning approach

5

to predict the first response latency of the maintainers following the submission of a PR, and the first response

latency of the contributor after receiving the first response from the maintainers. We curate a dataset of 20

large and popular open-source projects on GitHub and extract 21 features to characterize projects, contributors,

PRs, and review processes.

First, we evaluate seven types of classifiers to identify the best-performing models. We find that our

best-performing models achieve an average improvement of 29% in AUC-ROC and 51% in AUC-PR for

maintainers, as well as 39% in AUC-ROC and 89% in AUC-PR for contributors compared to a no-skilled

classifier across the projects. Then, we conduct permutation feature importance and SHAP analyses to

understand the importance and impact of different features on the predicted response latencies. We find that

PRs submitted earlier in the week, containing an average or slightly above-average number of commits, and

with concise descriptions are more likely to receive faster first responses from the maintainers. Similarly, PRs

with a lower first response latency from maintainers, that received the first response of maintainers earlier in

the week, and containing an average or slightly above-average number of commits tend to receive faster first

responses from the contributors. Additionally, contributors with a higher acceptance rate and a history of

timely responses in the project are likely to both obtain and provide faster first responses.

Finally, we evaluate our approach in a cross-project setting, where the models achieve an average

improvement of 33% in AUC-ROC and 58% in AUC-PR for maintainers, as well as an average improvement

of 42% in AUC-ROC and 95% in AUC-PR for contributors. Furthermore, we find that the key predictors in

the cross-project setting are: submission day, number of commits, contributor acceptance rate, historical

maintainers responsiveness, and historical contributor responsiveness for maintainers’ first response latency;

and first review latency, review day, historical contributor responsiveness, number of commits, and contributor

activity within the PR for contributors’ first response latency. We believe that the awareness fostered by these

predictions not only leads to managed expectations for both the maintainers and the contributor of a PR but

also enables them to take proactive actions to mitigate potential challenges during the review process before

the PR gets abandoned. This work has been submitted to the IEEE Transactions on Software Engineering

journal for review.

1.4 Thesis Contributions

The main contributions of this thesis are as follows:

6

• We provide empirical evidence on the characteristics of abandoned PRs, the reasons why contributors

abandon their PRs, and the perspectives of project maintainers on dealing with PR abandonment.

• We provide empirical evidence on the reliance of projects on Stale bot to deal with their PR backlog,

the impact of Stale bot on pull-based development, and the kind of PRs usually intervened by Stale bot.

• We propose machine learning models for predicting the first response latency of maintainers and

contributors in PRs and discuss the importance and impact of different factors on the anticipated waiting

periods.

• We publicly share our scripts and datasets online to promote the reproducibility of our research and

facilitate future work related to this thesis.

1.5 Related Publications

The work presented in this thesis has been published in or submitted to the following venues:

• SayedHassan Khatoonabadi, Diego Elias Costa, Rabe Abdalkareem, and Emad Shihab. On wasted

contributions: understanding the dynamics of contributor-abandoned pull requests–A mixed-methods

study of 10 large open-source projects. ACM Transactions on Software Engineering and Methodology,

32(1):1–39, 2023. DOI:10.1145/3530785.

• SayedHassan Khatoonabadi, Diego Elias Costa, Suhaib Mujahid, and Emad Shihab. Understanding

the helpfulness of Stale bot for pull-based development: an empirical study of 20 large open-

source projects. ACM Transactions on Software Engineering and Methodology, early access, 2023.

DOI:10.1145/3624739.

• SayedHassan Khatoonabadi, Ahmad Abdellatif, Diego Elias Costa, and Emad Shihab. Predicting the

first response latency of maintainers and contributors in pull requests. IEEE Transactions on Software

Engineering, under review, 2023. DOI:10.48550/arXiv.2311.07786.

1.6 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 reviews the related work to our thesis. Then,

Chapters 3 and 4 presents our studies on understanding the dynamics of contributor-abandoned PRs and the

7

http://dx.doi.org/10.1145/3530785
http://dx.doi.org/10.1145/3624739
https://doi.org/10.48550/arXiv.2311.07786

helpfulness of Stale bot for pull-based development. Next, Chapter 5 provides our approach for predicting the

first response latency of maintainers and contributors in PRs. Finally, Chapter 6 summarizes the thesis and

discusses the key directions for future work.

8

Chapter 2

Background and Related Work

In this chapter, we provide an overview of the relevant work to our thesis. First, we review studies on

the reasons and consequences of PR abandonment. Then, we review studies on the usage and challenges

of Stale bot before moving on to the studies on the impact of tools on pull-based development. Finally, we

provide a summary of studies on the review latency and decision of PRs, followed by an overview of studies

on duplicated PRs and redundant changes. At the end of each section, we also explain how each work in our

thesis contributes to the body of knowledge.

2.1 Reasons and Consequences of PR Abandonment

In pull-based development, developers fork a project (i.e., create a personal copy of the project) before

making their changes. Whenever ready, the developers request their changes to get merged into the project by

submitting a PR. The PR then undergoes a review process, during which the contributor revises the changes

based on feedback from the project maintainers. This cycle repeats until the PR satisfies the maintainers’

requirements for getting merged [4, 5]. However, an industrial report [7] estimates that 8% of PRs are wasted

and never merged. In contrast to rejected PRs, abandoned PRs are valid contributions that are not finalized

because their contributors have left the review process unfinished. Unfortunately, abandoned PRs waste a

considerable amount of time and effort that is often put in both by the contributors to prepare and submit

such PRs and by the maintainers to manage and review them. However, PR abandonment as a challenge that

results in a great opportunity cost for the open-source community has only recently received attention from Li

et al. [8]. They manually examined 321 abandoned PRs from five open-source projects on GitHub (namely,

9

Cocos2d-x, Kubernetes, Node.js, Rails, and Rust) to identify the reasons why PRs get abandoned by their

contributors, the impact of abandoned PRs on the maintainers, and the strategies adopted by the projects to

deal with abandoned PRs. Then, they quantified the frequency of the identified reasons, impacts, and strategies

by surveying 710 developers. They observed that PRs are abandoned mostly due to the lack of maintainers’

responsiveness and the lack of contributors’ time and interest. They also reported that PR abandonment

increases the efforts needed to manage and maintain projects because abandoned PRs clutter the list of PRs,

waste review efforts, require additional attention for a careful close, delay landing of interdependent PRs,

result in duplicated PRs, disorder project milestones, and finally leave a bad impression.

While this study discussed the developers’ perspective on PR abandonment, the influence of the factors

related to PRs, contributors, review processes, and projects on the abandonment probability of PRs is still not

known. To fill this knowledge gap, in Chapter 3, we conduct a mixed-methods study using both quantitative and

qualitative methods on a larger dataset consisting of 10 large open-source projects on GitHub. Specifically,

we investigate the characteristics of abandoned PRs, the reasons why contributors abandon their PRs, and

the perspectives of project maintainers on dealing with PR abandonment.

2.2 Usage and Challenges of Stale bot

Stale bot was released in 2017 to automatically triage abandoned issues and PRs and is adopted by many

open-source projects on GitHub [11, 13, 12]. However, little is known about the usage and challenges of Stale

bot in the literature. In a preliminary study, Wessel et al. [12] investigated how projects adapt and maintain

Stale bot over time by analyzing its configuration history in 765 open-source projects. They found that most

projects use Stale bot to triage both their issues and PRs. Furthermore, they found that while most projects do

not modify the configuration of Stale bot after its initial setup, the few that do rarely make more than three

modifications subsequently. Therefore, they concluded that setting up and using Stale bot does not require

much effort from the projects. Several studies [16, 17, 18, 19, 20] have also incidentally mentioned that Stale

bot introduces noise and friction for both the contributors and the maintainers.

Nevertheless, if and how Stale bot can actually be helpful to open-source projects has not yet been

studied. To fill this knowledge gap, in Chapter 4, we conduct a quantitative empirical study to understand the

helpfulness of Stale bot in the context of pull-based development. Specifically, we investigate the reliance of

projects on Stale bot to deal with their PR backlog, the impact of Stale bot on pull-based development, and

10

the kind of PRs usually intervened by Stale bot.

2.3 Impact of Tools on Pull-based Development

Open-source projects are adopting various automation tools and bots to improve the efficiency and

effectiveness of their pull-based development workflow [29, 30, 31]. Several studies have evaluated the

impact of adopting such tools in open-source projects by applying interrupted time-series analysis [27] (a.k.a.

regression discontinuity design). Zhao et al. [32] was the first to apply this method for understanding the

impact of adopting Travis CI. They found that the adoption slows down the increasing trend in the number of

merge commits, accelerates the decreasing trend in the merge commit churn, and reverses the increasing trend

in the number of closed PRs. Cassee et al. [33] further studied the impact of adopting Travis CI and found

that it also slows down the increasing trend in the number of discussion comments in PRs.

Wessel et al. [34] studied the impact of adopting code review bots and found that it accelerates the

increasing trend in the number of merged PRs, accelerates the decreasing trend in the number of closed PRs,

decreases the number of comments in all PRs, increases the resolution time of merged PRs, and reverses

the increasing trend in the resolution time of closed PRs. In another study, Wessel et al. [35] investigated

the impact of adopting GitHub Actions and found that it decreases the number of both merged PRs and

closed PRs, increases the number of discussion comments in merged PRs, decreases the number of discussion

comments in closed PRs, increases the resolution time of merged PRs, and decreases the resolution time of

closed PRs.

However, our study in Chapter 4 focuses on investigating the impact of adopting Stale bot to better

understand its helpfulness for pull-based development.

2.4 Review Latency and Decision of PRs

The literature has extensively studied how various technical, social, and personal factors influence the

review latency and decision of PRs. Gousios et al. [1] was the first to investigate how technical factors affect

the merge decision and merge time of PRs. They found that the merge decision is mainly affected by whether

the PR touches recently modified code, while the merge time is affected by the track record of the developer,

as well as the size of the project, its test coverage, and its openness to external contributions. Gousios et al. [9]

11

reports that the decision of integrators to accept a contribution is based on its quality, especially conformance

to the project style and architecture, source code quality, and test coverage.

Tsay et al. [36] showed that in addition to technical factors, social factors could influence the acceptance

of PRs. They found that while PRs with lots of comments are associated with a lower probability of getting

accepted, the prior interactions of submitters in the project moderate this effect. Additionally, they found

that well-established projects are more conservative while evaluating contributions. Soares et al. [37] found

that the programming language, the number of commits, and the number of files added in a PR, as well as

whether its contributor is an external developer and whether it is the contributor’s first PR, influence the merge

decision and merge time. Yu et al. [38] found that projects prefer PRs that are small, have less controversy,

and are submitted by trusted contributors.

Kononenko et al. [39] found that the size of PRs, the number of participants in the review discussions,

and the contributor’s experience and affiliation influence both the review time and merge decision. Moreover,

they reported that developers consider PR quality, type of change, and responsiveness of the contributor as

important factors in the merge decision. Developers perceive the quality of a PR by its description, complexity,

and revertability; and the quality of a review by its feedback, tests, and discussions. Pinto et al. [40] found that

in company-owned open-source projects, external contributors compared to the employees face significantly

more rejections and have to wait longer to receive a decision on their contributions. Zou et al. [41] found

that PRs that violate the code style of projects are more likely to get rejected and take longer to get closed.

Lenarduzzi et al. [42] found that code quality does not affect the acceptance of PRs, and suggested that other

factors such as the maintainer’s reputation and the feature’s importance might be more influential on PR

acceptance.

Several studies have also investigated how demographic characteristics of contributors can influence

the outcome of PRs. Terrell et al. [43] found that among external contributors, women whose gender is

identifiable have lower acceptance rates. Rastogi [44] and Rastogi et al. [45] also found that PRs are more

likely to get accepted when both the contributors and the maintainers are from the same geographical location.

Moreover, Nadri et al. [46] found evidence of bias against perceptible non-White races. Later, Nadri et al. [47]

found that contributions from perceptible White developers have a higher acceptance chance, and perceptible

non-White contributors are more likely to get their PRs accepted if the maintainer is also from the same race.

Furtado et al. [48] also found that contributors from countries with low human development indexes submit

fewer PRs but face the most rejections.

12

Besides social and technical factors, Iyer et al. [49] also studied how personality traits [50] influence the

decision of PRs. They found that personal and technical factors play a significant and comparable role in PR

acceptance, but still not to the extent of social factors. Additionally, they observed that contributors who

are more open and conscientious but less extroverted have a higher chance of getting their PRs accepted.

Similarly, maintainers who are more conscientious, extroverted, and neurotic accept more PRs. Recently,

Zhang et al. [22] conducted a large-scale empirical study to understand how a range of factors, identified

through a systematic literature review, can explain the latency of PRs under different scenarios. They found

that the description length is the most influential factor when PRs are submitted. When closing PRs, using CI

tools, or when the contributor and the integrator differ, the presence of comments is the most influential factor.

When comments are present, the latency of the first comment is the most influential.

Zhang et al. [23] also conducted a similar comprehensive empirical study to investigate how a range

of factors, identified through a systematic literature review, can explain the decision of PRs under different

scenarios. Most notably, they found that the area hotness of PR is influential only in the early stage of project

development and becomes less influential as projects mature.

Hasan et al. [21] is the first to conduct an exploratory study on the time-to-first-response of PRs in GitHub.

They found that first responses in PRs are often generated by bots. They also observed that complex PRs with

lengthy descriptions and inexperienced contributors with less communicative attitudes tend to experience

longer delays in receiving the first human response. Kudrjavets et al. [51] reported the waiting time from the

proposal of code changes until the first response as nonproductive time that negatively affects code velocity.

While these studies focus on understanding the review latency and outcome of PRs, our work in Chapter 5

specifically predicts the first response latency of maintainers following the submission of a PR. Besides, we

also predict the first response latency of the contributor of a PR after receiving the first response from the

maintainers.

2.5 Duplicated PRs and Redundant Changes

Li et al. [52] found that duplicate PRs waste human and computing resources and adversely impact OSS

development. To facilitate studies on duplicated PRs, Yu et al. [53] compiled a dataset of duplicated PRs

from 26 popular GitHub projects. To identify duplicate PRs, Li et al. [54] proposed an approach that uses

textual information within PRs to automatically identify similar PRs. Li et al. [55] extended the previous

13

work by also considering the change information of PRs. Ren et al. [56] proposed an approach to identify

redundant code changes in forks as early as possible. Wang et al. [57] enhanced the performance of the

previous approach by considering the time factor.

While abandoned PRs can lead to duplicated PRs, this thesis explores the reasons and the solutions to PR

abandonment.

2.6 Chapter Summary

PR abandonment as a challenge that results in a great opportunity cost for the open-source community

has only recently received attention from Li et al. [8]. While their findings shed light on PR abandonment

from the perspective of developers, the influence of the factors related to PRs, contributors, review processes,

and projects on PR abandonment is still unknown. To gain a more comprehensive understanding of the

underlying dynamics of contributor-abandoned PRs, we conduct a mixed-methods study in Chapter 3. As part

of this study, we found that Stale bot is commonly used to deal with inactive and abandoned PRs. However,

the helpfulness of Stale bot has not yet been empirically validated. Therefore, in Chapter 4, we conduct

a quantitative study to better understand if and how adopting Stale bot helps open-source projects in their

pull-based development workflow. This study revealed that Stale bot tends to further aggravate contributor

abandonment. Therefore, in Chapter 5 we explore an alternative approach to better mitigate PR abandonment.

Our approach predicts the first response latency of maintainers and contributors of PRs that enable them

to take proactive actions to mitigate potential challenges during the review process of the PR before it gets

overdue and eventually abandoned.

14

Chapter 3

Understanding the Dynamics of

Contributor-Abandoned Pull Requests

3.1 Introduction

Pull-based development has been popularized by social coding platforms such as GitHub and is widely

adopted by distributed software teams, especially within the open-source community [1]. In this development

model, developers fork a project (i.e., create a personal copy of the project) before making their changes.

Whenever ready, the developers request their changes to get merged into the project by submitting a PR. The

maintainers then review the PR and decide whether to merge it into their project. Compared to traditional

methods, pull-based development reduces the time taken to review and merge the contributions [1, 2].

The streamlined contribution mechanism enabled by PRs has encouraged numerous external developers

to contribute to open-source projects with fewer barriers [1, 6, 2]. However, an industrial report [7] estimates

that 8% of PRs are wasted and never merged. Such PRs are either rejected by the maintainers or abandoned

by their contributors. In contrast to rejected PRs, abandoned PRs are valid contributions that are not finalized

because their contributors have left the review process unfinished. Unfortunately, abandoned PRs waste a

considerable amount of time and effort that is often put in both by the contributors to prepare and submit such

PRs and by the maintainers to manage and review them.

The literature has extensively studied how various technical, social, and personal factors influence the

acceptance and review process of PRs. However, PR abandonment as a challenge that results in a great

15

opportunity cost for the open-source community, especially for the contributors and the reviewers of abandoned

PRs, has only recently received attention from Li et al. [8]. Based on a survey of open-source developers,

they explained how abandoned PRs impact project maintainers and discussed why developers abandon their

PRs. While their findings shed light on PR abandonment from the perspective of developers, the influence of

the factors related to PRs, contributors, review processes, and projects on PR abandonment is still unknown.

To gain a better and more comprehensive understanding of the underlying dynamics of contributor-

abandoned PRs, we conduct a mixed-methods study using both quantitative and qualitative methods [58].

For the sake of brevity, we refer to external contributors as contributors throughout this chapter. First,

we curate a dataset consisting of 265,325 contributor PRs from 10 popular and mature GitHub projects

(namely, Homebrew Cask, Kubernetes, Kibana, Ansible, DefinitelyTyped, Rust, Odoo, Legacy Homebrew,

Elasticsearch, and Swift). Then, we devise heuristics to identify 4,450 candidate PRs with a high chance

of being truly abandoned by their contributors. Next, we measure 16 features to characterize the PRs, their

contributors, their review processes, and their projects for our quantitative analyses. We aim to answer the

following three research questions in this chapter:

RQ1: What are the significant features of contributor-abandoned PRs in the studied projects? We

find that contributor-abandoned PRs are usually more complex, their contributors are usually less

experienced, and their review process is usually lengthier than nonabandoned PRs. Furthermore, as

the projects mature, contributor-abandoned PRs have become more frequent in three projects (i.e.,

Kubernetes, Swift, and DefinitelyTyped) and less frequent in five other projects (i.e., Kibana, Ansible,

Elasticsearch, Odoo, and Homebrew Cask).

RQ2: How do different features impact the probability of PR abandonment in the studied projects? We

find that the features of the review process, contributor, and project are more important in predicting

PR abandonment than the features of PRs themselves. Specifically, PRs with more than three responses

from the participants or the contributors, and those submitted by novice contributors are more likely

to get abandoned. Also, the abandonment probability changes as the projects evolve, with half of

the projects showing a decrease in abandonment in their mature stages and the other half showing an

increase in abandonment.

RQ3: What are the probable reasons why contributors abandon their PRs in the studied projects?

We find that the most frequent abandonment reasons are related to the obstacles faced by contributors

16

followed by the hurdles imposed by maintainers during the review process. Specifically, difficulty

addressing the maintainers’ comments, lack of review from the maintainers, difficulty resolving the

CI failures, and difficulty resolving the merge issues are the most common reasons why contributors

abandon their PRs.

3.1.1 Our Contributions

In summary, we make the following key contributions in this chapter:

• We identify the features of PRs, their contributors, their review processes, and their projects that

significantly differ between abandoned and nonabandoned PRs.

• We rank the features based on their relative importance for predicting PR abandonment and describe

how different values of these features vary the predicted probability of abandonment.

• We identify the probable reasons why contributors abandon their PRs and survey the core developers of

studied projects to understand their perspectives on dealing with PR abandonment and our findings.

• To promote the reproducibility of our study and facilitate future research, we also share our dataset at

https://doi.org/10.5281/zenodo.4892276.

3.1.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 3.2 presents our research methodology and

Sections 3.3 to 3.5 present our findings for each research question. Then, Section 3.6 reports the perspectives

of maintainers on dealing with PR abandonment and our findings. Next, Section 3.7 further discusses our

findings. Finally, Section 3.8 discusses the limitations of our study and Section 3.9 concludes this chapter.

3.2 Methodology

In the following, we explain how we design our study (Section 3.2.1), select the study projects

(Section 3.2.2), collect the required data (Section 3.2.3), identify abandoned PRs (Section 3.2.4), and

extract features from PRs (Section 3.2.5).

17

https://doi.org/10.5281/zenodo.4892276

Table 3.1: Overview of the projects selected to study contributor-abandoned PRs.

Project PRs Stars Contributors Months Domain Language(s)

Homebrew Cask 78,446 17,077 7,246 98 Package Manager Ruby
Kubernetes 56,721 66,644 3,628 71 Container Orchestration Go
Kibana 43,324 14,313 896 87 Analytics Dashboard TypeScript
Ansible 42,338 43,333 7,168 98 Automation Platform Python
DefinitelyTyped 38,645 28,316 13,866 91 Type Definitions TypeScript
Rust 38,361 45,261 3,181 116 Programming Language Rust
Odoo 38,241 17,636 1,822 72 Business Apps JavaScript, Python
Legacy Homebrew 33,577 27,786 7,904 75 Package Manager Ruby
Elasticsearch 33,411 49,134 2,350 116 Analytics Engine Java
Swift 31,984 51,831 974 54 Programming Language C++, Swift

3.2.1 Study Design

To gain a more comprehensive understanding of the underlying dynamics of contributor-abandoned PRs,

we conduct a mixed-methods study using both quantitative and qualitative methods [58]. First, we perform

statistical analysis to identify the significant features of abandoned PRs in RQ1 (Section 3.3). Then, we use

machine learning techniques to determine the relative importance of the features and describe how each

feature varies the predicted probability of abandonment in RQ2 (Section 3.4). Finally, we manually examine

a random sample of 4,450 abandoned PRs to identify the reasons why contributors abandon their PRs in RQ3

(Section 3.5).

3.2.2 Studied Projects

For our study, we need open-source projects that are popular among the community and have a rich

history of adopting pull-based development. For this purpose, we rely on GitHub as a pioneer in supporting

the PR model and the largest open-source ecosystem [59], which have also been the subject of many software

engineering studies [60]. To focus on the most popular projects, we use the number of stars as a proxy [61]

and retrieve the list of the top 1,000 most-starred projects. Among these projects, we focus on the top 10 with

the most number of PRs to ensure that each project has enough historical data for our study. As shown in

Table 3.1, the studied projects cover multiple application domains and programming languages, with each

project having at least 14 thousand stars, 31 thousand PRs, 800 external contributors, and 4 years of PR

history.

18

3.2.3 Data Collection

To identify abandoned PRs, we require the timeline activity of PRs, which records all the events during

the lifecycle of a PR. For this purpose, we use the PyGithub package [62] to retrieve the required data from

GitHub. On May 30th, 2020, we collected the timeline, commits, and changed files metadata [63, 64] for the

435,048 PRs of the studied projects.

3.2.4 Abandoned PRs Identification

After collecting the PRs data, we need to identify those abandoned by their contributors. Each PR in

GitHub has one of the following three states: (i) open indicates that the PR is not finalized and might be in

progress, (ii) closed indicates that the PR is either rejected by the maintainers or abandoned by its contributor,

and (iii) merged indicates that the PR is merged into the project. Abandoned PRs are a subset of the open or

closed PRs that are wasted because their contributors have left them unfinished. The contributors of such

PRs may either explicitly declare their abandonment decision or implicitly stop addressing the maintainers’

comments. The maintainers often employ bots like Stale [11] to close abandoned PRs after a period of

inactivity [12], or they manually find and close the abandoned PRs.

However, GitHub does not assign a specific status for abandoned PRs to explicitly distinguish them from

nonabandoned ones. Therefore, we cannot simply retrieve the list of abandoned PRs neither directly through

the GitHub API [65] nor using existing archives such as GHTorrent [66] and GH Archive [67]. Therefore, we

resort to heuristics to identify abandoned PRs based on the collected metadata. Heuristics are not guaranteed

to be optimal and are subject to an inherent tradeoff between their accuracy and completeness [68]. To

determine the best balance between the precision and recall of our dataset, we experimented with different

heuristics before finalizing the following:

Step 1: Exclude PRs from core developers. Our study focuses on contributions from external developers,

which are more prone to get abandoned. Therefore, we exclude the PRs from core developers to focus on

external contributions. GitHub defines different roles for the authors of PRs within a project [69]. Among

these roles, owner refers to the owners of the project, member refers to the members of the organization

owning the project, and collaborator refers to those invited to collaborate on the project. Since these three

roles typically have push/merge permissions within a GitHub repository, we consider them as core developers

and exclude their PRs from our dataset.

19

Step 2: Exclude PRs from deleted accounts. GitHub allows its users to remove their accounts

permanently and afterward refers to the contributors of PRs from such accounts as ghost. Since there is no

straightforward way to distinguish between the contributors of such PRs [60], we exclude them from our study.

Step 3: Exclude recently updated PRs. To minimize the chance of marking PRs that are still in progress

as abandoned, we exclude the PRs that their contributors have recently updated. To be conservative, we

exclude the PRs that their contributors have updated (i.e., new comments or commits) within the last six

months of the data collection date (i.e., May 30th, 2020).

Step 4: Exclude merged PRs. We consider merged PRs as not wasted and thus not abandoned. However,

the maintainers may not always use the merging methods provided through the GitHub interface to merge PRs.

To account for such PRs, we resort to heuristics similar to Kalliamvakou et al. [60]. Specifically, we exclude

the PRs with a merged status (i.e., merged using the GitHub interface) and those PRs that are closed without a

merged status, but have a merged commit inside the project that references them (e.g., “Close #123”).

Step 5: Search keywords in discussion comments. As the last step for identifying abandoned PRs,

we rely on keyword searching within all the discussion comments of PRs similar to Li et al. [8]. First, we

remove code snippets and reply quotes from these comments and then search for keywords representing the

unresponsiveness of contributors. To determine such keywords, we consider the keywords used in Li et al. [8]

as our initial set. Then, we manually examine a sample of known abandoned PRs from our studied projects

and iteratively refine our keywords. Finally, we find the following keywords are commonly used to refer to

abandoned PRs:

{abandon, stale, any update, lack of update, no update, inactive, inactivity, lack of activity, no activity,

not active, lack of reply, no reply, lack of response, and no response}.

Using our heuristics, we identified 4,450 abandoned PRs among the curated 265,325 PRs. As with any

heuristic, ours may return some nonabandoned PRs (i.e., false positives), given that the review process of

PRs often involves social interactions between the contributors and the reviewers before getting finalized. To

validate the quality of our dataset, we manually analyze 100 PRs (10 PRs from each project) to verify if they

have been truly marked as abandoned. We find seven false positives out of the 100 examined PRs as these

PRs were rejected while including the keywords representing abandonment (e.g., [70]). Still, we believe that

a false-positive rate of 7% gives us enough confidence to rely on this dataset for our study.

20

Table 3.2: Overview of the features extracted to characterize PRs, their contributors, their review process, and
their projects.

Dimension Feature Description

Pull Request

pr description Number of words in the title and description of the PR
pr commits Number of commits during the lifecycle of the PR
pr changed lines Number of changed lines during the lifecycle of the PR
pr changed files Number of changed files during the lifecycle of the PR

Contributor

contributor contribution period Number of months since the first PR of the contributor in the project
contributor pulls Number of prior PRs by the contributor in the project
contributor acceptance rate Ratio of previously merged PRs by the contributor in the project
contributor abandonment rate Ratio of previously abandoned PRs by the contributor in the project

Review Process

review response latency Number of days till the first response in the PR
review participants Number of participants during the lifecycle of the PR
review participants responses Number of responses by the participants during the lifecycle of the PR
review contributor responses Number of responses by the contributor during the lifecycle of the PR

Project

project age Number of months since the starting date of the project
project pulls Number of prior PRs in the project
project contributors Number of prior contributors in the project
project open pulls Number of open PRs in the project at the submission time of the PR

3.2.5 Feature Extraction

To identify the features that are possibly associated with PR abandonment, we consult the literature on

pull-based development [71, 72, 22, 23]. As shown in Table 3.2, we extract 16 features covering four different

dimensions: (i) PR features, (ii) contributor features, (iii) review process features, and (iv) project features. In

the following, we describe the extracted features for each dimension in more detail.

PR Features:

Description Length. The description length of PRs is found to negatively impact their acceptance

probability and review time [38]. We aim to understand whether PRs with shorter descriptions are more

frequently abandoned than verbosely described PRs. To characterize a PR’s description length, we measure

the number of words that have been used in its title and description (denoted by pr description).

Change Complexity. The complexity of changes has been extensively shown to negatively impact the

acceptance probability and the review time of PRs [36, 37, 38, 39]. We aim to understand whether complex

PRs are more prone to get abandoned. To characterize a PR’s change complexity, we measure the number of

commits that have been submitted during the PR’s lifecycle (denoted by pr commits); the number of lines

(denoted by pr changed lines); and the number of files (denoted by pr changed files) that have been changed

21

(i.e., additions or deletions) as part of the submitted commits.

Contributor Features:

Experience Level. The experience of contributors has been extensively shown to positively impact the

acceptance probability and the review time of PRs [1, 37, 38, 39]. We aim to understand whether more

experienced contributors are less likely to abandon their PRs. To characterize a contributor’s experience

within a project, we measure the number of months that have been elapsed since the first submitted PR of the

contributor to the project (denoted by contributor contribution period); the number of PRs that the contributor

has previously submitted to the project (denoted by contributor pulls); and the ratio of the previously submitted

PRs by the contributor that had been merged into the project (denoted by contributor acceptance rate).

Abandonment History. To the best of our knowledge, the abandonment history of contributors has not

been previously studied. We aim to understand whether contributors who have a long history of abandonment

are more likely to abandon their PRs. To characterize a contributor’s abandonment history within a project,

we measure the ratio of the previously submitted PRs by the contributor that we have marked as abandoned in

the project (denoted by contributor abandonment rate).

Review Process Features:

Response Latency. The response latency is found to negatively impact the acceptance probability and

the review time of PRs [38]. We aim to understand whether PRs that take longer to receive a first response

from the reviewers are more likely to get abandoned. To characterize a PR’s response latency, we measure

the number of days that have been taken to receive their first response (i.e., comment or review) from the

participants (denoted by review response latency).

Participants Activity. The activity of participants (i.e., anyone participating in the review process

except the contributor) is found to negatively impact the acceptance probability of PRs [36, 39]. We aim to

understand whether PRs with a higher activity from their participants are more likely to get abandoned. To

characterize the participants’ activity in a PR, we measure the number of participants in its review process

(denoted by review participants); and the number of responses (i.e., comments or reviews) that have been

submitted by the participants (denoted by review participants responses) during the review process.

Contributor Activity. Similar to the participants’ activity, we aim to understand whether PRs with a

22

higher activity from their contributors are also more likely to get abandoned. To characterize the contributor’s

activity in a PR, we measure the number of responses (i.e., comments or self-reviews) that the contributor has

submitted during the review process of the PR (denoted by review contributor responses).

Project Features:

Maturity Level. The maturity of projects is found to have a mixed impact on the acceptance probability

and the review time of their PRs [36, 38]. We aim to understand whether the rate of abandoned PRs changes

as projects become more mature. To characterize a project’s maturity, we measure the number of months

that have been elapsed since the creation date of the project until the submission date of the PR (denoted by

project age); the number of PRs that have been previously submitted to the project (denoted by project pulls);

and the number of developers who have previously contributed to the project (denoted by project contributors)

at the submission time of the PR.

Maintainers Workload. The workload of maintainers is found to negatively impact the acceptance

probability and the review time of PRs [38]. We aim to understand whether the high workload of maintainers

increases the rate of abandoned PRs. To characterize a project’s workload, we measure the number of

submitted PRs that were still open at the submission time of the PR (denoted by project open pulls).

3.3 RQ1: What are the significant features of contributor-abandoned PRs in

the studied projects?

PR abandonment is a challenge that results in a significant opportunity cost for the open-source community,

especially for the contributors and the reviewers of abandoned PRs. A recent study by Li et al. [8] has surveyed

open-source developers to explain why PRs become abandoned. However, the influence of different factors on

PR abandonment has not been studied yet. As our first research question, we aim to understand which features

of PRs, their contributors, their review processes, and their projects are associated with PR abandonment.

Specifically, we want to investigate how significantly abandoned PRs differ from nonabandoned ones.

3.3.1 Approach

We perform statistical analyses to identify the significant features of abandoned PRs compared with

nonabandoned PRs. First, we compare the distribution of the extracted features between abandoned and

23

nonabandoned PRs and then test their statistical and practical significance. In the following, we explain each

step in more detail:

Step 1: Compare distribution of features. To compare the distribution of features between abandoned

and nonabandoned PRs, we generate violin plots [73] for each project using the ggstatsplot package [74].

The generated plots for each feature are presented in Section 6.2.5, specifying their median values (denoted

by 𝑀), interquartile ranges (the box inside the violin), and probability densities (the width of the violin at

each value).

Step 2: Test statistical significance of features. To test the statistical difference between the features of

abandoned and nonabandoned PRs, we apply the MannWhitney 𝑈 test [75] with a 95% confidence level (i.e.,

𝛼 = 0.05). We use this nonparametric test because we cannot assume the distribution of our features to be

normal. To calculate this statistic, we use the stats package [76] and add the results to the plots generated in

Step 1. For easier comparison, we denote 𝑝 < 0.05 with *, 𝑝 < 0.01 with **, and 𝑝 < 0.001 with ***.

Step 3: Test practical significance of features. While statistical significance verifies whether a difference

exists between the features of abandoned and nonabandoned PRs, we also need to test their practical difference

[77]. For this purpose, we use Cliff’s delta [78] to estimate their magnitude of difference (i.e., effect size).

The value of Cliff’s delta (denoted by 𝑑) ranges from −1 to +1: a positive 𝑑 implies that the values of the

feature in abandoned PRs are often greater than those of nonabandoned PRs, while a negative 𝑑 implies the

opposite. To calculate this statistic, we use the effectsize package [79] and add the results to the plots

generated in Step 1. For easier comparison, we convert the 𝑑 values to qualitative magnitudes based on the

following thresholds as suggested by Hess and Kromrey [80]:

Effect size =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Negligible, if |𝑑 | ≤ 0.147

Small, if 0.147 < |𝑑 | ≤ 0.33

Medium, if 0.33 < |𝑑 | ≤ 0.474

Large, if 0.474 < |𝑑 | ≤ 1

3.3.2 Findings

Table 3.3 summarizes the significance of different features across the studied projects. We consider a

feature significant if its difference between abandoned and nonabandoned PRs is both statistically significant

24

Table 3.3: Significance of different features across the studied projects.

Dimension Feature Significant Small Medium Large

Pull Request

pr description 8 7 (↑) 1 (↑) –
pr commits 6 6 (↑) – –
pr changed lines 3 1 (↑) – 2 (↑)
pr changed files – – – –

Contributor

contributor pulls 10 4 (↓) 3 (↓) 3 (↓)
contributor acceptance rate 10 5 (↓) 4 (↓) 1 (↓)
contributor contribution period 5 2 (↓) 1 (↓) 2 (↓)
contributor abandonment rate 2 2 (↑) – –

Review Process

review participants responses 10 1 (↑) 1 (↑) 8 (↑)
review participants 10 2 (↑) 1 (↑) 7 (↑)
review contributor responses 7 3 (↑) 3 (↑) 1 (↑)
review response latency 4 4 (↑) – –

Project

project age 8 6 (↑↓) – 2 (↑↓)
project pulls 8 6 (↑↓) – 2 (↑↓)
project contributors 8 6 (↑↓) – 2 (↑↓)
project open pulls 6 4 (↑↓) – 2 (↑↓)

↑ shows that abandoned PRs have values greater than nonabandoned ones, ↓ shows that abandoned
PRs have values smaller than nonabandoned ones, and ↑↓ shows a mixed relationship.

(i.e., 𝑝 < 0.05) and practically significant (i.e., the effect size is small, medium, or large) in at least one project.

Overall, we observe that the most significant features are related to the review process and contributors of

PRs. We also find that four features (characterizing the review process and contributor) are significant across

all the projects, and eight other features (encompassing all the dimensions) are significant in at least half the

projects. In the following, we discuss the significance of each dimension in more detail.

Abandoned PRs are usually more complex than nonabandoned PRs. As shown in the PR dimension

of Table 3.3, abandoned PRs tend to have lengthier descriptions (8 projects), contain more commits (6

projects), and involve more changed lines (3 projects). However, abandoned and nonabandoned PRs tend to

be similar in their number of changed files across all the projects. The results suggest that abandoned PRs

receive even more effort from their contributors, highlighting the waste resulting from the abandonment.

The contributors of abandoned PRs usually have less experience than the contributors of nona-

bandoned PRs. As shown in the contributor dimension of Table 3.3, the contributors of abandoned PRs

tend to have previously submitted fewer PRs (all the projects), have a lower acceptance rate (all the projects),

have a lower contribution period (5 projects), and have a higher abandonment rate (2 projects). However, the

25

results cannot be attributed to the expected higher familiarity and expertise of the maintainers because we

only consider external contributors in our study (see Section 3.2.4).

The review process of abandoned PRs is usually lengthier than the review process of nonabandoned

PRs. As shown in the review process dimension of Table 3.3, the review process of abandoned PRs tends to

receive more responses from its participants (all the projects), involve more participants (all the projects),

receive more responses from the contributors (7 projects), and have a higher latency to receive the first

response from the participants (4 projects). The results suggest that abandoned PRs are not just abandoned

after the PR was submitted but have received even more effort from both their contributors and reviewer,

again highlighting the waste resulting from the abandonment.

The project features play both a positive and negative role in PR abandonment. As shown in the

project dimension of Table 3.3, we observe contrasting patterns in how the rate of abandoned PRs change

alongside the project maturity (8 projects) or workload (6 projects). For easier comparison, we group these

projects based on their similarities (i.e., positive or negative) in Table 3.4. In the first group (i.e., Kubernetes,

Swift, and DefinitelyTyped), abandoned PRs tend to become more frequent as the projects become more

mature (i.e., an increase in project age, project pulls, or project contributors). In two of these projects (i.e.,

Kubernetes and Swift), abandoned PRs also become more frequent as they experience a higher workload

(i.e., an increase in project open pulls). In contrast to the first group, the second group (i.e., Kibana, Ansible,

Elasticsearch, Odoo, and Homebrew Cask) experienced fewer abandoned PRs as the projects become more

mature (i.e., an increase in project age, project pulls, or project contributors). Surprisingly, in four of these

projects (i.e., Kibana, Ansible, Elasticsearch, and Odoo), abandoned PRs are more frequent when the projects

have a lower workload (i.e., a decrease in project open pulls). The results may be associated with the change

in the team structure, policies, or processes. For example, DefinitelyTyped has refined its review process

since 2016 by rotatively assigning a TypeScript employee each week to focus on merging PRs [81].

Answer to RQ1. Our findings suggest that contributor-abandoned PRs are usually more complex,

their contributors are usually less experienced, and their review process is usually lengthier than

nonabandoned PRs. Furthermore, as the projects mature, contributor-abandoned PRs have become

more frequent in three projects (i.e., Kubernetes, Swift, and DefinitelyTyped) and less frequent in five

other projects (i.e., Kibana, Ansible, Elasticsearch, Odoo, and Homebrew Cask).

26

Table 3.4: Difference of the project features between abandoned and nonabandoned PRs.

Maturity Workload
Group Project project age project pulls project contributors project open pulls

I
Kubernetes Large (↑) Large (↑) Large (↑) Large (↑)
Swift Small (↑) Small (↑) Small (↑) Small (↑)
DefinitelyTyped Small (↑) Small (↑) Small (↑) –

II

Kibana Large (↓) Large (↓) Large (↓) Large (↓)
Ansible Small (↓) Small (↓) Small (↓) Small (↓)
Elasticsearch Small (↓) Small (↓) Small (↓) Small (↓)
Odoo Small (↓) Small (↓) Small (↓) Small (↓)
Homebrew Cask Small (↓) Small (↓) Small (↓) –

3.4 RQ2: How do different features impact the probability of PR abandon-

ment in the studied projects?

In RQ1, we investigated what features of PRs, their contributors, their review processes, and their projects

are associated with PR abandonment. As our second research question, we aim to better understand which

PRs have a higher probability of getting abandoned by their contributors. Specifically, we want to identify

which features are the most important for predicting PR abandonment and describe how each feature can

influence the abandonment probability of PRs.

3.4.1 Approach

We use machine learning techniques to understand how each feature varies the predicted probability of

PRs getting abandoned. First, we consider the features that we found to be significant in abandoned PRs and

remove correlated and redundant features to ensure the quality of our models. Then, we build and evaluate

the classifier models that we later use to analyze the relative importance and impact of each feature on the

abandonment probability. In the following, we explain each step in more detail:

Step 1: Remove insignificant features. In RQ1, we found that the number of changed files in a PR

(i.e., pr changed files) does not significantly differ between abandoned and nonabandoned PRs in any of the

studied projects. Therefore, we exclude this feature because it is not valuable for analyzing the abandonment

probability of PRs and consider the remaining 15 features for our analysis.

Step 2: Remove correlated features. To focus on the most important features, we eliminate highly

correlated features, which negatively affect the interpretation of models [82]. To check the monotonic

27

pr
_d

es
cr

ip
tio

n

pr
oj

ec
t_

ag
e

pr
oj

ec
t_

pu
lls

pr
oj

ec
t_

co
nt

rib
ut

or
s

co
nt

rib
ut

or
_a

ba
nd

on
m

en
t_

ra
te

co
nt

rib
ut

or
_a

cc
ep

ta
nc

e_
ra

te

co
nt

rib
ut

or
_p

ul
ls

co
nt

rib
ut

or
_c

on
tr

ib
ut

io
n_

pe
rio

d

re
vi

ew
_c

on
tr

ib
ut

or
_r

es
po

ns
es

re
vi

ew
_p

ar
tic

ip
an

ts

re
vi

ew
_p

ar
tic

ip
an

ts
_r

es
po

ns
es pr

_c
om

m
its

pr
_c

ha
ng

ed
_l

in
es

re
vi

ew
_r

es
po

ns
e_

la
te

nc
y

pr
oj

ec
t_

op
en

_p
ul

ls

1.
0

0.
6

0.
2

S
pe

ar
m

an
 ρ

Figure 3.1: Spearman’s 𝜌 correlation among different pairs of features across the combined data of the studied
projects.

relationship between each pair of features, we use Spearman’s 𝜌 [83] as a nonparametric test because we

cannot assume the distribution of our features to be normal. We measure correlations on the combined data of

the studied projects to ensure that any correlation exists across all of them. Figure 3.1 presents a hierarchical

cluster of the correlations generated using the Hmisc package [84]. For each group of strongly correlated

features (i.e., |𝜌 | ≥ 0.6 as suggested by Evans [85]), we keep the feature that is easier to interpret for our

study and remove the rest. Accordingly, we drop the following four features from our analysis: project pulls,

project contributors, contributor contribution period, and review participants.

Step 3: Remove redundant features. While we remove highly correlated features in Step 1, we also

need to eliminate redundant features to focus on the most important ones. To identify redundant features, we

use the Hmisc package [84], which applies flexible parametric additive models to measure how well each

feature can be predicted from other features. Similar to our correlation analysis, we measure redundancy on

the combined data of the studied projects to ensure that any redundancy exists across all of them. Accordingly,

we did not find any redundant features.

Step 4: Build classifier models. To gain deeper insights on PR abandonment, we build a random forest

classifier for each project using the ranger package [86]. To model the abandonment probability, we consider

28

the type of PR (i.e., abandoned or nonabandoned) as the dependent variable and the selected 11 features

as the independent variables. Random forests [87] are commonly used in various domains and outperform

linear models in both the predictive power and the ability to learn complex relations. To boost the predictive

power of each model, we use the tuneRanger package [88]. This package automatically tunes the following

three hyperparameters of random forests using sequential model-based optimization [89]: (i) the number of

variables randomly drawn for each split, (ii) the fraction of instances randomly drawn for training each tree,

and (iii) the minimum number of samples that a node must have to split.

Step 5: Evaluate performance of models. To ensure that the models are reliable for our analysis, we

evaluate their predictive power using the following two recommended metrics for binary classifiers [90]:

• AUC-ROC: which measures the area under the Receiver Operating Characteristic (ROC) curve [91].

The ROC curve plots the true positive rate (i.e., the ratio of correctly classified abandoned PRs to

truly abandoned PRs) against the false positive rate (i.e., the ratio of incorrectly classified abandoned

PRs to nonabandoned PRs) across different thresholds. The value of AUC-ROC ranges from 0 to

1, with values more than 0.5 indicating better performance than a no-skill classifier (i.e., baseline).

Note that the value of AUC-ROC is the same for both positive (i.e., abandoned PRs) and negative (i.e.,

nonabandoned PRs) classes.

• AUC-PR: which measures the area under the Precision-Recall (PR) curve [92]. The PR curve plots

the precision (i.e., the ratio of correctly classified abandoned PRs to all classified abandoned PRs)

against recall (i.e., the ratio of correctly classified abandoned PRs to truly abandoned PRs) across

different thresholds. The value of AUC-PR also ranges from 0 to 1, but the performance of a no-skill

classifier (i.e., baseline) is determined by the distribution of classes in a dataset (i.e., distribution of

abandoned and nonabandoned PRs). Note that, unlike AUC-ROC, the value of AUC-PR is different

between positive (i.e., abandoned PRs) and negative (i.e., nonabandoned PRs) classes.

To reduce bias in our performance evaluations, we perform a stratified 10-fold cross-validation with 10

repeats (a total of 100 iterations) for each model using the mlr package [93]. Table 3.5 presents the results of

our performance evaluation for each model, where the baseline column shows the ratio of the minority class

(i.e., abandoned PRs). We observe that our models have a good performance with an average AUC-ROC of

0.87 and perform at least four times better than the baseline in terms of AUC-PR.

29

Table 3.5: Performance scores of our model for each studied project.

Project AUC-ROC AUC-PR Baseline AUC-PR / Baseline

Ansible 0.88 0.042 0.006 7.08x
DefinitelyTyped 0.86 0.262 0.054 4.84x
Elasticsearch 0.86 0.021 0.003 6.14x
Homebrew Cask 0.96 0.063 0.001 42.78x
Kibana 0.96 0.095 0.002 50.27x
Kubernetes 0.89 0.375 0.060 6.23x
Legacy Homebrew 0.92 0.116 0.013 8.85x
Odoo 0.77 0.029 0.002 17.25x
Rust 0.81 0.109 0.020 5.50x
Swift 0.82 0.059 0.003 19.36x

Step 6: Analyze importance of features. So far, we have built classifiers that can aptly model the

abandonment probability of PRs. To compare the relative importance of different features, we perform

permutation feature importance analysis [94] for each model using the iml package [95]. This approach

permutes a feature to break the association between the feature and the outcome (i.e., the abandonment

probability in our case). The importance of the feature is then measured by how much error the permutated

data introduces compared to the original error (i.e., loss in AUC in our case) after 100 iterations. Therefore,

the most important features have the largest impact on the performance of our models and thus are more

valuable for predicting PR abandonment.

Step 7: Analyze impact of features. After measuring the relative importance of the features in Step 6,

we aim to describe how each feature varies the abandonment probability. For this purpose, we generate

Accumulated Local Effects (ALE) plots [96] using the iml package [95]. ALE shows the effect of a feature at

a certain value compared to the average prediction of the data. In other words, a downward trend implies a

reduced probability of abandonment, an upward trend implies an increased probability of abandonment, and a

stable ALE implies no changed probability of abandonment. To focus on the most common values of features,

we filter out the values over the 99th percentile for each feature in each project. The plots are then created by

dividing a feature into 10 intervals selected based on its quantiles. For each interval, the PRs that fall into that

interval are considered for calculating the difference in their prediction when replacing the value of the feature

with the upper and lower limits of the interval. We model the abandonment probability as a function of the

selected features, and thus, any relationship is causal for the model and may not hold in the real world [97].

30

Table 3.6: Importance of different features across the studied projects.

Dimension Feature A
ns

ib
le

D
ef

en
ite

ly
Ty

pe
d

El
as

tic
se

ar
ch

H
om

eb
re

w
C

as
k

K
ib

an
a

K
ub

er
ne

te
s

Le
ga

cy
H

om
eb

re
w

O
do

o

R
us

t

Sw
ift

O
ve

ra
ll

R
an

k

Av
er

ag
e

Lo
ss

Pull Request
pr changed lines 7 8 7 3 6 9 2 7 6 9 6 1.55
pr description 8 3 4 5 8 6 9 9 7 10 8 1.48
pr commits 10 5 10 11 10 10 10 10 10 8 11 1.21

Contributor
contributor acceptance rate 5 4 1 6 5 5 8 3 1 3 2 1.95
contributor pulls 3 9 3 4 3 7 6 4 4 1 3 1.81
contributor abandonment rate 11 11 11 8 11 8 11 11 9 6 10 1.24

Review Process
review participants responses 1 1 2 1 1 1 1 1 5 2 1 4.45
review contributor responses 9 6 6 2 2 4 3 5 2 11 4 1.74
review response latency 2 10 9 9 9 11 5 2 11 5 9 1.33

Project project age 6 2 5 7 4 2 4 8 3 7 5 1.73
project open pulls 4 7 8 10 7 3 7 6 8 4 7 1.49

3.4.2 Findings

Table 3.6 summarizes the importance of different features in each project. We find that the features of the

review process, contributors, and projects play a more prominent role in PR abandonment than the features of

PRs themselves. Specifically, the number of responses from the participants is the most important feature

by a large margin, indicating that the activity of reviewers is essential in classifying abandoned PRs. The

second and third most important features are the acceptance rate and the number of previously submitted PRs

of the contributor, respectively, highlighting the impact of the contributor experience on PR abandonment.

The fourth and fifth most important features are the number of responses from the contributor and the age of

the project. Other features, except for the abandonment rate of the contributor, are also among the top five

in at least one project, showing that different features have a different impact on PR abandonment due to

the inherent differences between the projects. Unexpectedly, we also observe that the number of commits in

the PR, the abandonment rate of the contributor, and the latency to the first response from the participants

are overall the least important features, respectively. In the following, we describe how the top five features

impact the predicted abandonment probability of PRs. The ALE plots for the rest of the features can be found

in Section 6.2.5.

PRs with long discussions are more likely to get abandoned. Figures 3.2 and 3.3 show how the number

31

Figure 3.2: ALE plots showing how review participants responses varies the abandonment probability of
PRs across the studied projects.

Figure 3.3: ALE plots showing how review contributor responses varies the abandonment probability of PRs
across the studied projects.

of responses from the participants and from the contributor varies the abandonment probability of a PR

across the studied projects, respectively. We find that the probability of abandonment increases in most of the

projects as the number of responses from the participants or the contributor increase (i.e., upwards trend). We

also observe that PRs that receive more than three responses from either the participants or the contributor

have an increased probability of abandonment in most of the projects. The results provide further evidence

that abandoned PRs often demand more time and effort from both their reviewers and their contributors (see

Section 3.3.2).

Novice contributors are more likely to abandon their PRs. Figures 3.4 and 3.5 show how the acceptance

rate and the number of previously submitted PRs by the contributor vary the abandonment probability of a PR

across the studied projects, respectively. We observe that contributors with zero experience have the highest

probability of abandonment in almost all the projects. Surprisingly, highly experienced contributors also

32

Figure 3.4: ALE plots showing how contributor acceptance rate varies the abandonment probability of PRs
across the studied projects.

Figure 3.5: ALE plots showing how contributor pulls varies the abandonment probability of PRs across the
studied projects.

have an increased probability of abandonment in a few projects. The results suggest that the contributors of

abandoned PRs may need more guidance and attention from the maintainers.

PR abandonment has changed throughout the history of projects. Figure 3.6 shows how the age of

projects varies the abandonment probability of a PR across the studied projects. Similar to RQ1 (Section 3.3.2),

we observe two contrasting patterns: PR abandonment improves throughout the time in some projects and

worsens in some other projects. In the first group (i.e., Ansible, DefinitelyTyped, Elasticsearch, Kibana, and

Odoo), the abandonment probability is highest when the project age is low (i.e., downwards trend). However,

in the second group (i.e., Homebrew Cask, Kubernetes, Legacy Homebrew, and Swift), the abandonment

probability increases when the project age increases (i.e., upwards trend). While this fluctuation may be

associated with the expected change in the workload of projects as they grow, we found that the number of

open PRs is less important to our models than the age of the project.

33

Figure 3.6: ALE plots showing how project age varies the abandonment probability of PRs across the studied
projects.

Answer to RQ2. Our findings suggest that the features of the review process, contributor, and project

are more important in predicting PR abandonment than the features of PRs themselves. Specifically,

PRs with more than three responses from the participants or the contributors, and those submitted by

novice contributors are more likely to get abandoned. Also, the abandonment probability changes as

the projects evolve, with half of the projects showing a decrease in abandonment in their mature stages

and the other half showing an increase in abandonment.

3.5 RQ3: What are the probable reasons why contributors abandon their

PRs in the studied projects?

In RQ1 and RQ2, we quantitatively analyzed contributor-abandoned PRs to understand how different

factors influence their abandonment probability. As our last research question, we aim to complement our

previous findings and gain a deeper understanding of the underlying dynamics of abandoned PRs. Specifically,

we want to look for clues in the review discussions of abandoned PRs to better understand why contributors

abandon their PRs.

3.5.1 Approach

We perform a manual examination to establish a taxonomy of the abandonment reasons by following

the coding guidelines presented by Seaman [98]. First, we label a sample of abandoned PRs to identify the

probable reasons why contributors abandon their PRs and then calculate our interrater agreement. In the

34

following, we explain each step in more detail:

Step 1: Identify abandonment reasons. First, we randomly select 354 PRs from 4,450 abandoned

PRs of the studied projects (confidence level of 95% with a ±5% confidence interval). Then, the first three

authors are required to manually examine the discussion comments of each PR and try to pinpoint the primary

reason(s) why its contributor has abandoned the PR. In most cases, the contributor has abandoned the PR

without any explanation, and thus we look for clues in the interactions between the contributor and the

reviewers to identify the most probable reasons for the abandonment. In cases where the contributor provided

a reason for their abandonment decision, we also investigate other major reasons that might have led to their

abandonment.

We perform the labeling in two rounds. In the first round, three annotators independently label a random

sample of 60 PRs from the selected 354 PRs to establish the classification scheme. In the second round, we

divide the sample 354 abandoned PRs (including the 60 PRs from the first round) into two sets to be labeled

using the classification scheme from the previous round: the first set was labeled independently by the first

and second authors, and the second set was labeled independently by the first and third authors. Finally, the

annotators merged the labels and further refined the labels. In each round, when the annotators had different

opinions, they discussed until they reached an agreement and then retroactively updated all the previously

labeled PRs to ensure a coherent classification.

Step 2: Calculate interrater agreement. To ensure the quality of our taxonomy, we calculate the

Cohen’s Kappa coefficient [99] using the scikit-learn package [100]. This statistic is commonly used to

evaluate the interrater agreement in different domains. The value of Cohen’s Kappa ranges from −1.0 to +1.0,

with values more than 0 indicating an agreement better than chance. We obtained a Kappa score of 0.73,

which is considered a substantial agreement as suggested by Landis and Koch [101].

3.5.2 Findings

As shown in Table 3.7, we identified 10 major reasons why contributors abandon their PRs, grouped

into three categories: (i) contributor-related reasons, (ii) maintainer-related reasons, and (iii) PR-related

reasons. Note that the total frequency of the identified reasons is greater than 100% because we observe

multiple reasons for some abandoned PRs. We find that the most frequent abandonment reasons are related

to the obstacles faced by contributors followed by the hurdles imposed by maintainers during the review

process. Particularly, difficulty addressing the maintainers’ comments, lack of review from the maintainers,

35

Table 3.7: Probable reasons why contributors abandon their PRs.

Category Reason Frequency (%)

Contributor-related

Difficulty addressing the maintainers’ comments 45.8
Difficulty resolving the CI failures 20.9
Difficulty resolving the merge issues 14.1
Difficulty complying with the project requirements 1.4

Maintainer-related

Lack of review from the maintainers 22.6
Lack of answer from the maintainers 9.3
Lack of integration by the maintainers 6.5
Lack of consensus among the maintainers 4.5

PR-related Existence of duplicated work 3.1
Dependency on upcoming changes 1.4

and difficulty resolving the CI failures are the most frequent reasons (observed in more than 20% of abandoned

PRs). In the following, we discuss the identified reasons in the order of their frequency.

Difficulty addressing the maintainers’ comments (45.8%). In almost half of the abandoned PRs, their

contributors found it difficult to address the maintainers’ comments, questions, or change requests. The

contributors did not have the required technical knowledge or enough time to continue the work (e.g., [P198]

said “Nope. Had no time and will to take on this.”). Interestingly, contributors may ask others to continue the

work (e.g., [P340] said “If you don’t mind taking it over, that would be fantastic. Happy to provide whatever

help I can!”).

Lack of review from the maintainers (22.6%). The second common reason why contributors abandon

their PRs is that they did not receive a timely (if any) review from the maintainers. Sometimes, a PR gets

reviewed, and the contributor addresses the maintainers’ comments, but the maintainers do not follow it up.

For example, [P7] was closed after multiple rounds of discussions, even though the contributor addressed the

maintainers’ comments (“Oh dang, I guess it doesn’t warn you after the first time. I’ll get this re-made soon

and try to be a little more proactive about getting input.”). Not receiving timely reviews from the maintainers

may also send a signal to the contributors that their work is not treated seriously (e.g., [P182] said “I’m happy

to resolve these merge conflicts now, but before I do, I am curious if I have messed something else up in

my contribution? Since this didn’t get a comment since July of last year, I am afraid I’ve missed something

crucial.”). If PRs are not reviewed in a timely manner, they may become outdated and require extra work

from their contributors to rebase and update them.

Difficulty resolving the CI failures (20.9%). The third reason includes cases where the contributors

36

found it difficult to resolve the Continuous Integration (CI) failures arisen during the review process. Such

failures are often brought up by the project bots even before the PR gets a review from the maintainers.

Sometimes, the contributors do not even know how to fix the CI failures and ask the maintainers for help (e.g.,

[P346] said “I’ve looked at the errors in Travis. Most of them seem unrelated to the PR. Could you please

help me out with this?”).

Difficulty resolving the merge issues (14.1%). The fourth reason includes cases where the contributors

found it difficult to resolve the merge issues arisen during the review process. If the project codebase has

been updated, the contributors are asked to rebase their local branch, resolve any merge conflicts, and then

push their changes again. Such issues typically arise when the maintainers take a long time to review the

PR, and the PR becomes outdated (e.g., [P181] said “I am willing to keep rebasing (and certainly willing to

continue responding to comments), but not without some indication that it will eventually be merged.”). We

also observe that contributors are sometimes asked to squash their pushed commits into a single commit to

reduce the noise in the revision history, which also requires additional effort and time from them.

Lack of answer from the maintainers (9.3%). In some cases, we observe the reason for abandonment is

because the contributors had not received a timely (if any) answer from the maintainers when they asked for

help to complete a task (e.g., [P300] said “CI is timing out. Everything is fine until the timeout. Anything I can

do to get this merged?”) or asked for clarification (e.g., [P313] said “Modifying the passed in proxyTransport

cannot be considered ‘safe’?”) or asked for confirmation (e.g., [P273] said “Is that the right way?”). Note

that this reason is different from “lack of review from the maintainers” as such PRs are blocked because the

contributor is awaiting an answer to a question from the maintainer and not awaiting a review for the applied

changes.

Lack of integration by the maintainers (6.5%). This reason includes cases where a PR has been already

approved by the reviewers but has been pending integration. In some projects, such as Kubernetes, a PR

should undergo a two-phase review process. In the first round, reviewers approve the changes, and then

project integrators need to merge the changes. However, contributors may abandon their PRs if the integrators

do not attempt to merge the PR in a timely (if any) manner after the reviewers have approved the PR. For

example, in [P1], the PR has been approved for integration multiple times. However, since the integrators

were not responsive, the PR needs to be rebased, requiring additional work from the contributor. In [P307], a

reviewer suggested “Might be worth pinging the reviewers too if that is all that is stopping progress.”

Lack of consensus among the maintainers (4.5%). This reason includes cases where the reviewers

37

could not reach a consensus on how to continue with the PR. This disagreement typically arises when there

is no straightforward solution to resolve the PR issues, and each alternative has its own advantages and

disadvantages. Such PRs often undergo a long discussion and demand lots of time and effort from both

reviewers and contributors (e.g., [P354]). However, the PR eventually gets abandoned by the contributor due

to inconsistent feedback and often overlong discussions.

Existence of duplicated work (3.1%). This reason includes cases where the work is either a duplicate of

an existing PR (e.g., [P294] said “I am abandoning this PR in favor of npm-ramda, but I wont close it in case

someone want to make use of it.”), another contributor has submitted a more comprehensive PR, or the issue

addressed in the PR is no longer applicable (e.g., [P340] said “pkg-config should no longer be able to pick up

non-deps under superenv. Hopefully that means this is resolved.”).

Difficulty complying with the project requirements (1.4%). This reason includes rare cases where the

contributors found it difficult to comply with the project-specific requirements. In projects such as Kubernetes,

the contributors are asked to sign the contribution level agreements before their PR even gets reviewed by

the maintainers (e.g., [P149]). Also, many projects provide templates for the PR description and ask the

contributors to update the description according to the templates (e.g., [P134]).

Dependency on upcoming changes (1.4%). In rare cases, the abandoned PRs were not valuable on their

own and depended on other changes that must be merged first before the proposed changes can be considered

(e.g., [P11] said “Hopefully, once mappable and partial types land in TS, I will fix this.”).

Answer to RQ3. Our findings suggest that the most frequent abandonment reasons are related

to the obstacles faced by contributors followed by the hurdles imposed by maintainers during the

review process. Specifically, difficulty addressing the maintainers’ comments, lack of review from the

maintainers, difficulty resolving the CI failures, and difficulty resolving the merge issues are the most

common reasons why contributors abandon their PRs.

3.6 Perspectives of the Project Maintainers

To gain deeper insights on PR abandonment, we design a survey asking the core maintainers of the studied

projects about their perspectives on our findings and how to tackle PR abandonment. After explaining the goal

of this research and presenting a summary of our findings, we ask the following three open-ended questions in

38

the survey:

• Does your team implement any approaches to deal with abandoned PRs? If so, what approaches does

your team use?

• Do you suggest any approaches that can minimize the risk of a PR being abandoned by its contributor?

(these can be approaches that your team does or does not use).

• Do you have any feedback about the four findings of our study? (we would love to hear it, positive or

negative).

We send emails to the top 25 core developers of each studied project (a total of 250 emails) to invite them

to participate in our survey. From these invitations, we receive a total of 16 responses (6.5%) to our survey.

Our response rate is similar to the 5% response rate, commonly observed in software engineering studies

[102]. From the 10 studied projects, we received responses from all the projects except Elasticsearch. As our

sample is small, we refrain from discussing particular projects and instead present the overarching themes

that appeared in the participant responses.

3.6.1 How do projects deal with abandoned PRs?

In this question, we aim to understand the processes and practices that the projects have already put in

place to deal with abandoned PRs. Out of the 16 participants, six responded that their team had implemented

approaches to deal with abandoned PRs. These approaches are:

Holding triage meetings (4x). The most commonly mentioned approach to deal with abandoned PRs is

holding (recurrent) triage meetings, where developers review the status of PRs and support PRs that need

attention. According to the survey participants, triage meetings streamline the communication and help find

problems before it causes the PRs to become abandoned.

“We have regular triage meetings to review the status of PRs that abandoned or about to be abandon.

We also help new comers and new maintainers for reviving the old PRs and merge them.” [S1]

“Better upfront planning and communication help eliminate abandoned PRs. Many times, a quick zoom

with a teammate to talk through the proposed change goes a long way into finding problems before a

large effort is needed.” [S6]

39

Using bots to auto-close abandoned PRs (2x). While all the projects use Stale bot [11] or a similar

in-house implementation (e.g., fejta-bot in Kubernetes [103]) to follow up with PRs that are about to get

abandoned and auto-close already abandoned PRs, two participants explicitly mentioned their use of such

bots. As a respondent explained:

“A bot first pings owners of the code after a week. Then it pings the submitter a couple of weeks later,

telling them that it will be closed soon.” [S2]

Most of the participants (10 responses) reported that their project does not implement any particular

approach to deal with abandoned PRs. Of these participants, four explained why their team had not adopted

any specific approach to prevent PR abandonment:

The maintainers are overwhelmed with work (2x). Two maintainers reported that they are overwhelmed

with work and thus have decided to reduce their efforts on retaining PRs from external contributors. As a

respondent explained:

“We are overwhelmed with work, and most community PRs have a low ration value/effort needed to

merge it, so we essentially gave up, except for rare cases.” [S13]

The project does not rely on open source contributions (2x). Two participants mentioned that their

project does not rely on external contributions for the implementation of new features or improvements.

Therefore, there is little incentive to spend special time and effort in retaining PRs from external contributors.

As a respondent explained:

“We appreciate community PRs, but the vast majority of the contributors to our project are employees

and so we don’t rely on open source contributions for features or improvements. Community PRs are

usually applicable to a specific niche usecase which we’d be happy to accept if the contributor is willing

to go through the process with us.” [S5]

3.6.2 How do maintainers recommend to mitigate PR abandonment?

In this question, we aim to understand the approaches that the maintainers recommend to minimize the

risk of PRs getting abandoned by their contributors, whether their team has adopted them yet or not. Out

of the 16 participants, 15 responded with suggestions that they believe could mitigate PR abandonment. In

40

the following, we summarize these recommendations into suggestions for contributors and suggestions for

maintainers.

Maintainers should strive to make the contributor experience as smooth as possible (6x). It stands to

reason that the more obstacles contributors face, the higher the chances of abandonment. One participant (S5)

mentioned that having helpful and understandable error messages can help contributors fix issues in their

PRs. Another participant (S3) mentioned that maintainers should “put kid gloves on” when dealing with

newcomers and make community contributions as painless as possible. One participant (S15) even suggested

that maintainers merge PRs with minor issues and then either make the required changes themselves or open

an issue in the project. As one respondent aptly summarizes:

“Responding quickly and encouragingly, and making your PR contributor experience as seamless as

possible (automatic CI, helpful and understandable error messages) are likely all you can do. It’s a lot

of work even to submit a PR, the extra work necessary when updates are needed isn’t something most

people will be willing to give.” [S5]

The participants also mentioned that improving the project’s testing documentation (S1) and contribution

guidelines (S2), and making bot instructions more understandable (S2) could help to mitigate PR abandonment.

One participant (S13) also cited that projects need to increase their available resources, with another participant

(S1) mentioning that increasing community reach and having maintainers from the community may help

maintainers better handle the required workload.

Maintainers should establish a triage process for external contributions (2x). Once again, the

participants mentioned the importance of a triage process in mitigating PR abandonment. A triage process

helps assign reviewers to a PR based on their expertise and experience and may lead to timely responses to

contributors. One participant (S14) suggested that PRs should preferably be assigned to one reviewer instead

of an entire team to compel reviewers to act and prevent idleness. Another respondent described that the triage

process should also monitor the status of PRs and act if reviewers have not responded to the contributors yet:

“[Projects should have] a human rotation that triages pull requests and checks if they are progressing,

or if someone has dropped the ball or is waiting on some event that will never happen.“ [S16]

Contributors should create PRs that are clear and concise (3x). The participants emphasized the

importance of PRs to focus only on a single use case and provide a clear description of changes. PRs that

41

include multiple unrelated changes create a burden for reviewers that need to ensure all changes are correct.

As two participants responded:

“Make the proposal clear and concise. The reviewer might take 10 or 15 seconds to figure out the

problem being solved and the solution. If it takes longer, the reviewer will probably give up.” [S11]

“Smaller PRs are obviously better. We try not to nit-pick though it is human nature that a 100 line diff

gets no nitpicking and a 4 line diff gets plenty. This can hardly make people want to contribute and is

unfortunate.” [S9]

Contributors should assess the project’s interest in the proposed changes before submitting PRs

(3x). Managing expectations is important in contributing to open source projects. As different projects have

different philosophies and needs regarding community contributions, contributors should assess whether

maintainers value their PRs. Typically, new features are harder to integrate than bug fixes and performance

improvement patches.

“In large projects, a performance improvement or a bug fix proposed by an external contributor is more

likely to be merged than a new feature. Not only because it’s usually simpler, but because the feature

might not be in line with the project’s interests. A bug fix or a performance improvement is always in line

with the project’s interest.” [S10]

“Managing expectations could be a factor. We won’t merge entirely new features just like that, simply

because it is really important that Odoo remains and improves on being kept simple. E.g. PRs could

come from a client project that needs a certain feature, but merging it like this, might do harm to a lot of

other clients or cause more further problems where we need some distance to really think about the best

solution.” [S12]

One way to assess the validity of the contribution is to open an issue in the project. The contribution

guidelines of the majority of the projects explicitly state that contributors should first open an issue to discuss

their contributions and defer the implementation until when the maintainers have agreed on the usefulness of

the proposed changes. As a participant responded:

42

“Opening issues to discuss changes prior to posting PRs helps reduce abandoned PRs. Discussing the

change ahead of time gives developers and the community time to explore the change and ensure that the

1) proposed change is one that the project wants to maintain, 2) proposed change is scalable, 3) proposed

change is a feature that is needed by many use cases and not a one off for specific use case, 4) proposed

implementation is maintainable and fits with the architecture and future of the project.” [S6]

Both contributors and maintainers should be more upfront about their intentions (2x). Two

participants stated that communication should be improved from both sides. Maintainers need to be upfront

about their intentions on merging (or not) the contribution from contributors to avoid wasting effort and time.

As a participant responded:

“There needs to be a clear signal from the project to the PR contributor if there is no interest at all in the

PR, or if there is interest, what needs to be fixed to be accepted. Then participate or help, or signal when

the effort can no longer be sustained. If there is no clear signal, the contributor has no idea what’s going

on. Automated ”closer-bots” cannot solve this problem (or make it worse).” [S8]

Similarly, contributors should mention their willingness to make the requested changes. One participant

mentioned that anxiety could play an important factor leading to PR abandonment, particularly when

miscommunication happens to newcomers to the project:

“Anxiety about contribution probably leads to some abandonment. I suggest to all newish contributors

that they remember the people in charge of these projects where just like them once.” [S9]

3.6.3 How do developers interpret our findings?

We provided participants with a pre-print of this manuscript and encouraged participants to report

any negative or positive remarks they had about our findings. Out of the 16 participants, 14 participants

commented on our findings (87.5%). Table 3.8 overviews the explanations provided by survey participants

regarding each of our main findings. In the following, we discuss the survey responses for each of our findings

in more detail.

43

Table 3.8: Overview of the explanation of our findings based on our survey responses.

Study Findings Survey Explanations

Complex PRs are more likely to get abandoned. • Complex PRs are less likely to get a timely review.
• Contributor becomes frustrated by frequent change requests.

Novice contributors are more likely to abandon their PRs. • Maintainers expect quality changes regardless of the contributor experience.
• Novice contributors may find the contribution process difficult.

PRs with long discussions are more likely to get abandoned. • Long discussions often indicate a controversial PR.
• Lack of unanimous decisions lengthens the review process.

Projects have a significant influence on the likelihood of PR abandonment. • Maintainer team structure, attitude, and workload influence PRs.
• Project scope, architecture, and ownership influence PRs.

44

Complex PRs are more likely to get abandoned. Our findings suggest that PRs with lengthier

descriptions, more commits, or more changed lines are more likely to get abandoned (RQ1–RQ2). The

participants argued that such complex PRs require extra efforts from both their contributors and reviewers.

Therefore, such PRs might linger for a while before getting reviewed, and also might require more changes

from the contributor to become satisfactory:

“The more complex a PR is, the less likely a reviewer is going to spend valuable time on it, in particular

if the contributor is not well known.” [S11]

“Either the maintainers leave them open for months or the contributor is frustrated by the numerous

requested changes.” [S9]

Novice contributors are more likely to abandon their PRs. Our findings suggest that contributors

who submitted fewer PRs, have a lower acceptance rate, have a lower contribution period, or have a higher

abandonment rate within a project are more likely to abandon their PRs (RQ1–RQ2). The participants suggested

that this can be due to projects expecting high-quality changes (with proper formatting, documentation, and

description of changes) that often require access to experienced maintainers. However, projects can lower

their expectations from external contributors:

“Like any wall in life, it is scary and something to throw yourself against. The project can help-making

contributions feel more welcome. Unfortunately if you are too welcoming to contribution you get rapidly

overwhelmed by contribution and cannot accept it all.” [S9]

“The main issue I see with abandoned PRs is that the bar for a commit is too high. To give you some

perspective, new developers in my team take a few weeks to land their first commit. And that is with

constant access to experienced developers/mentors. This is because we expect our commit to have:

proper tests, linting, inline documentation, references to relevant commits, documentation in some cases,

good commit message, and targetting the correct branch. I think we should lower the bar for external

contributors (so they can quickly land a fix), but eventually, still add an additional commit with a test or

something if needed. Clearly, doing that requires some resources. I tried doing that a few years ago, and

was quickly slammed with pings everywhere to ask me to work on those PRs!” [S13]

PRs with long discussions are more likely to get abandoned. Our findings suggest that PRs involving

more participants, more responses from the participants or from the contributor, or with higher latency to get

45

a response from a reviewer in a project are more likely to get abandoned (RQ1–RQ2). The participants argued

that long discussions could indicate a controversial PR lacking a unanimous solution to address the PR issues:

“Long discussions themselves are not a problem. However, they are often indicative of disagreement, a

complex topic, or an absence of a solution (the solution in the PR is not correct, but commenters on the

PR don’t have a good suggestion either).” [S16]

“[long discussions] seems like a proxy for controversial PRs, which I suspect is also a factor at play. In my

personal experience, open source projects are often lead by passionate individuals with strong opinions

about the way things should be done, which often conflict with the opinions of new people to the project.

I think this could be addressed by discussing changes beforehand but this is another hurdle which makes

contributing more challenging.” [S5]

However, a strong leadership team could prevent such controversial PRs from becoming extra lengthy:

“Good projects have strong leaders that make decisions and don’t deliberate too long. Bitcoin suffered

here greatly after Satoshi left.” [S9]

Projects have a significant influence on the likelihood of PR abandonment. Our findings suggest that

projects have a significant influence over PR abandonment and that throughout the history of projects, the rate

of PR abandonment has significantly fluctuated as the projects evolved. The participants suggested that such

fluctuations might be related to changes in the attitude of the team, scope and architecture of the software, and

popularity and ownership of the project:

“It’s a multitude of factors. Attitudes of maintainers. Software architecture of the projects (if well

designed you can expect well designed PRs). Scope of the projects (ie. documentation is clear on the

scope to prevent PRs that feature creep). Fame: too big a project will get too much contribution and

likely there will be insufficient people to manage it.” [S9]

“You might also take into account the ownership of the project: is it a community project? A company

project? Who is writing the roadmap of the project? A company project has a roadmap in line with its

business development, which is not the case for a community project.” [S10]

46

3.7 Discussion

Combining the results from our quantitative (RQ1–RQ2) and qualitative (RQ3) investigation provides

evidence that contributors and the review process play a more prominent role in PR abandonment than projects

and PRs themselves. In the following, we integrate the findings from our three research questions and our

survey with core developers and further discuss the implications of our findings.

3.7.1 The Role of Contributors in PR Abandonment

Our findings indicate that the contributors of abandoned PRs usually have less experience than the

contributors of nonabandoned PRs. Specifically, we observed that novice contributors who have submitted

fewer PRs, have a lower acceptance rate, or have a lower contribution period within a project are more likely

to abandon their PRs in most of our studied projects (RQ1–RQ2). Our survey results suggest that novice

contributors often find the contribution process more difficult as maintainers typically expect high-quality

changes (with proper tests, formatting, documentation, and description of changes) regardless of contributor

experience before approving the changes to get merged (Section 3.6). We also observed that the contributors

of abandoned PRs have frequently faced many obstacles (due to lack of enough knowledge, time, or even

interest) to continue and complete the review process (RQ3). Indeed, inexperienced contributors face various

barriers in making their contributions accepted [104, 105, 106]. Prior studies have also reported the positive

impact of contributor experience in acceptance and review time of PRs [1, 37, 38, 39]. Our survey respondents

recommend maintainers either lower their expectations or be more attentive and supportive towards external

contributors (especially casual contributors or newcomers) throughout the review process. Also, contributors

can discuss their proposed changes before submitting a PR to facilitate the review process, especially if the

change introduces new features or involves large changes. This discussion helps contributors to ensure that

their proposed changes align with the project roadmap and design. Contributors are also expected to adhere

to contribution guidelines and project conventions as it helps them have a better grasp of the review process.

3.7.2 The Role of Review Processes in PR Abandonment

Our findings indicate that the review process of abandoned PRs is usually lengthier than the review

process of nonabandoned PRs. Specifically, we observed that lengthy PRs, which involve more participants,

or more responses from the participants or from the contributor are more likely to get abandoned in most

47

of our studied projects (RQ1–RQ2). Our survey results suggest that long discussions are often indicative

of a controversial PR that is addressing a complex issue or does not have a unanimously accepted solution

(Section 3.6). We also observed that abandoned PRs frequently lack a (timely) review, response, or even action

from the maintainers, which also unnecessarily lengthens the review process of a PR (RQ3). Prior studies

have also reported that high response latencies and lengthy discussions negatively impact the acceptance and

review time of PRs [36, 38, 39]. Our survey respondents recommend maintainers be more responsive and

support external contributors (especially casual contributors or newcomers) till the completion of their PRs.

In cases that a PR needs only trivial changes, maintainers can merge the PR as is and either implement the

changes themselves or open a new issue for the required changes. Also, maintainers can hold recurrent triage

meetings to review the status of PRs and support PRs that need attention to mitigate PR abandonment. In

cases where a PR has become lengthy, lead maintainers should involve and decide on the outcome of the PR

using a voting process.

3.7.3 The Role of Projects in PR Abandonment

Our findings indicate that projects have a significant influence over PR abandonment. Specifically, we

observed that the rate of abandoned PRs has significantly fluctuated throughout the history of projects, with

some projects constantly decreasing the abandonment rate as they become mature, i.e., Ansible, Kibana,

and Odoo (RQ1–RQ2). Our survey results suggest that projects typically undergo changes in their team,

size, architecture, scope, policies, practices, or even ownership during their development lifecycle. Such

changes bring with them both positive and negative aspects, which can fluctuate the rate of PR abandonment

(Section 3.6). Prior studies have also reported that project maturity has a mixed impact on the acceptance

and review time of PRs [36, 38]. Our survey respondents recommend projects streamline their contribution

process as much as possible to better accommodate new contributors.

3.7.4 The Role of PRs in PR Abandonment

Our findings indicate that abandoned PRs are usually more complex than nonabandoned PRs. Specifically,

we observed that complex PRs, which have lengthier descriptions or more commits are more likely to get

abandoned in most of our studied projects (RQ1–RQ2). A PR can be complex at submission time, when it

contains too many commits or an abnormally lengthy description, or become more complex as its contributor

48

submit additional commits (and thus makes more changed lines) during the review process to address the

changes requested by the maintainers. Our survey results suggest that a complex PR is more likely to linger

for a while before getting a first or even a follow-up review, especially if its contributor is not well-known to

the maintainers (Section 3.6). We also observed the lack of review from the maintainers as a frequent reason

among abandoned PRs (RQ3). Prior studies have also reported that complex PRs negatively impact their

acceptance and review time [36, 37, 38, 39]. Our survey respondents recommend contributors make their PRs

clear, concise, and focused as complex PRs are more difficult to review and require more interactions with the

contributor to become ready. Also, maintainers expect PRs to have proper tests, formatting, documentation,

and description of changes according to the project requirements.

3.8 Limitations

3.8.1 Threats to Internal Validity

Threats to internal validity are concerned about the issues that might affect the validity of our findings.

The first threat is related to our definition of abandoned PRs. We define abandoned PRs as those promising

PRs that have been neither integrated nor rejected because their contributors have left the review process

unfinished. While in our preliminary investigation, we rarely found cases where another developer continues

an abandoned PR, but this can be systematically investigated in future studies. The second threat is related to

the process of identifying abandoned PRs. Our heuristics may have missed some truly abandoned PRs and

wrongly marked some PRs as abandoned. To mitigate this threat, we considered as many relevant keywords

as possible by iteratively refining our keywords as we observed new patterns in the discussion comments of

known abandoned PRs. Also, we assessed the quality of our dataset by manually investigating 100 abandoned

PRs. The third threat is related to the process of identifying the reasons why PRs get abandoned by their

contributors. We may have drawn wrong conclusions in card sorting because the coders may have had

preconceptions. To minimize this bias, each PR was independently labeled by at least two authors, and then

the three authors discussed and merged the labels. The fourth threat is related to the completeness of the

abandonment reasons. To further minimize this risk, we coded all the remaining cards when saturation was

reached in card sorting. We also performed a second pass over all cards to ensure that we did not miss any

important information.

49

3.8.2 Threats to External Validity

Threats to external validity are concerned with the generalizability of our findings across different projects.

To conduct our study, we focused on 10 popular GitHub projects with the richest historical PR data. Although

the studied projects cover several different application domains and programming languages, they do not

represent the entire open-source ecosystem. Therefore, our findings may not generalize beyond our studied

projects, especially since we observe conflicting patterns across different projects due to their inherent

differences. Future replication studies with a more diverse selection of projects both inside and outside the

open-source ecosystem are required to obtain more widely applicable insights. Also, our survey findings are

based on the responses from 16 participants. While these participants are all among the top core maintainers

of the studied projects, different maintainers may have different perspectives, and thus our findings may not

be generalized to other settings.

3.9 Chapter Summary

Abandoned PRs waste the time and effort of their contributors and their reviewers. To provide more

comprehensive insights into the underlying dynamics of PR abandonment, we conducted a mixed-methods

study on 10 popular and mature GitHub projects. Using statistical techniques, we found that abandoned PRs

tend to be more complex, their contributors tend to be less experienced, and their review processes tend to be

lengthier than nonabandoned PRs. We then relied on machine learning techniques to determine the relative

importance of the features and describe how each feature varies the predicted abandonment probability of PRs.

We found that the features of review processes, contributors, and projects are more important for predicting

PR abandonment than the features of PRs themselves. Specifically, PRs with more than three responses from

either the participants or the contributors, and those submitted by novice contributors are more likely to get

abandoned. Also, the abandonment probability changes as projects evolve, with half the projects showing a

decrease in abandonment in their mature stages and the other half showing an increase in abandonment. To

identify the probable reasons why contributors abandon their PRs, we manually examined a random sample

of abandoned PRs. We found that difficulty addressing the maintainers’ comments, lack of review from the

maintainers, difficulty resolving the CI failures, and difficulty resolving the merge issues are the most common

reasons why contributors abandon their PRs. Finally, we surveyed the top core maintainers of the studied

projects to gain additional insights on how they deal with or suggest dealing with abandoned PRs and their

50

perspectives on our findings. Combining the findings from our research questions and survey responses, we

discussed the role of PRs, contributors, review processes, and projects in PR abandonment.

Nevertheless, as mentioned by our surveyed maintainers, Stale bot is commonly used to automatically

deal with abandoned PRs. Therefore, in the next chapter, we aim to better understand if and how Stale bot

helps the pull-based development workflow of large open-source projects.

51

Chapter 4

Understanding the Helpfulness of Stale Bot

for Pull-based Development

4.1 Introduction

Open-source projects widely adopt pull-based development as a more efficient and effective alternative

to traditional methods for contributing and reviewing code changes [1, 2]. In this development model,

contributors submit a PR to suggest changes for integration into the project. The PR is then reviewed by the

project maintainers and updated by the contributor until it is ready to be merged. However, the review process

of some PRs is left unfinished due to either the contributor not addressing the maintainers’ comments or the

maintainers not following up on the progress of the PR [24, 8, 107]. If neither progressed nor resolved, such

inactive PRs accumulate over time, clutter the list of PRs, and eventually make it difficult for the maintainers

to manage and prioritize unresolved PRs [8, 9]. As a real-world example, a large backlog of unresolved

PRs led the DefinitelyTyped project to declare “bankruptcy” in June 2016. Consequently, they closed all

unresolved PRs submitted before May 2016 just to be able to start afresh [10].

Manually keeping track of inactive PRs, following up on their progress, and closing them if needed places

an additional burden on the project maintainers who are already occupied with other development tasks

[24, 8, 9]. To free the maintainers from manually triaging such PRs, Stale bot [11] was released in 2017 and

since then has been increasingly adopted by open-source projects on GitHub1. As shown in Figure 4.1, Stale

bot aims to make the status of open and not progressing PRs explicit by automatically labeling, commenting,

1We observed that on average 7% more projects had adopted Stale bot each month till October 2021.

52

Figure 4.1: An example prompt by Stale bot.

and closing PRs after a pre-configured period of inactivity [13]. Nevertheless, there are ongoing debates

within the open-source community on whether using Stale bot alleviates or exacerbates the problem of inactive

PRs. The creators of Stale bot claim that based on the experience of hundreds of projects and organizations,

Stale bot is an effective method for focusing on the work that matters most [13]. Conversely, part of the

community regards Stale bot as “harmful” [14] and a “false economy” [15]. They argue that while Stale bot

may initially seem helpful, it results in duplicated PRs, fragmented information, and eventually frustration in

the community. Some studies have also incidentally mentioned that Stale bot can introduce noise and friction

for both the contributors and the maintainers [16, 17, 18, 19, 20].

Despite all these positive and negative claims, the helpfulness of Stale bot has not yet been empirically

validated. Therefore, we set out to better understand if and how adopting Stale bot helps open-source projects

in their pull-based development workflow. This investigation is particularly important as Stale bot is commonly

used to deal with inactive or abandoned PRs. Towards this goal, we perform an empirical study [108, 58] of

20 large and popular open-source projects on GitHub that have used Stale bot for at least one consecutive year.

Specifically, we aim to answer the following research questions in this chapter:

RQ1: How much do the studied projects use Stale bot to deal with their PR backlog? We analyze the

configuration and activity of Stale bot to understand the extent to which large open-source projects rely

on Stale bot to automatically deal with their unresolved PRs. Our results show that the usage level of

Stale bot widely varies among the studied projects. On average each month, Stale bot intervened in less

than 25% of open PRs in nine projects, between 25% and 50% of open PRs in five projects, and more

than 50% of open PRs in six projects. Unexpectedly, the projects with a larger backlog of unresolved

PRs have typically not relied more aggressively on Stale bot to deal with their unresolved PRs.

53

RQ2: What is the impact of Stale bot on pull-based development in the studied projects? We apply

interrupted time-series analysis [27] as a well-established quasi-experiment to understand if and how

adopting Stale bot improves the efficiency and effectiveness of the pull-based development workflow in

large open-source projects. Our results show that the studied projects closed more PRs within the first

few months of adopting Stale bot, but overall closed and merged fewer PRs afterward. The adoption of

Stale bot is also associated with faster first reviews in merged PRs, faster resolutions in closed PRs,

slightly fewer updates in merged PRs, and considerably fewer active contributors in the projects.

RQ3: What kind of PRs are usually intervened by Stale bot in the studied projects? We analyze the

characteristics of PRs intervened by Stale bot, as well as their contributors and review processes, to

understand the factors that are associated with a higher probability of getting intervened by Stale bot

in large open-source projects. Our results show that Stale bot tends to intervene more in complex

PRs, PRs from novice contributors, and PRs with lengthy review processes. Specifically, besides the

resolution time of PRs, the largest differences are observed in the number of prior PRs by contributors,

the mean response latency of PRs, the acceptance rate of contributors, and the contribution period of

contributors.

Our findings imply that adopting Stale bot helped the studied projects deal with their accumulated backlog

of unresolved PRs. Stale bot has also improved the efficiency of the review process of PRs by helping the

maintainers focus on PRs that are more likely to get merged. Despite these advantages, the adoption of Stale

bot also brings some disadvantages. For example, the projects experienced a decrease in their number of

active contributors after the adoption. Besides, Stale bot also tends to intervene more in PRs submitted by

novice contributors. However, such contributors are the ones who face the most barriers and thus need the

most guidance from the maintainers [109, 105, 104]. Prior studies have also highlighted the importance of

attracting newcomers to ensure the sustainability of projects [110]. Therefore, relying solely on Stale bot

to deal with inactive PRs may lead to decreased community engagement and an increased probability of

contributor abandonment. In conclusion, our study provides a better understanding of the potential benefits

and drawbacks of employing Stale bot within a pull-based development workflow.

4.1.1 Our Contributions

In summary, we make the following contributions in this chapter:

54

• To the best of our knowledge, this is the first in-depth study investigating the helpfulness of Stale bot for

the pull-based development workflow in large open-source projects.

• We provide empirical evidence on the reliance of projects on Stale bot to deal with their PR backlog,

the impact of Stale bot on pull-based development, and the kind of PRs usually intervened by Stale bot.

• To promote the reproducibility of our study and facilitate future research on this topic, we publicly

share our dataset online at https://doi.org/10.5281/zenodo.7978381.

4.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 4.2 overviews the dataset used for our study.

Then, Sections 4.3 to 4.5 report our approach and findings to answer each research question, and Section 4.6

discusses the implications of our study. Finally, Section 4.7 describes the limitations of our study, and

Section 4.8 concludes this chapter with a summary of our study.

4.2 Dataset

For our study, we need large and popular open-source projects as their higher workload makes them more

likely to benefit significantly from the adoption of Stale bot. The projects should also have a rich history

of using Stale bot as part of their pull-based development workflow to ensure that we have enough data for

our analyses. To identify such projects, we rely on GH Archive [67], which archives all the public events

happening on GitHub [111]. First, we query the GH Archive’s public dataset on Google BigQuery [112] and

look for all the events performed by Stale bot on PRs (i.e., the actor name is stale[bot] and the payload

string contains "pull request"). Then, we use the retrieved events to identify the projects that have ever

used Stale bot in their pull-based development workflow. Next, we collect the timeline of activities for the

identified projects using the PyGithub package [62] on November 17th, 2021. The timeline of activities of

PRs is provided by the GitHub API [65] and includes the details (e.g., type, actor, and time) of all the events

(e.g., commits, comments, labelings, and resolutions) that happened during their lifecycle [113, 64, 63].

We then determine the adoption time of each project by looking for the first event performed by Stale

bot in the PRs of the project. Following the recommendation of Wagner et al. [27], we consider 12 months

before and 12 months after the adoption (a total of two years) as our observation period. This period allows

55

https://doi.org/10.5281/zenodo.7978381

Table 4.1: Overview of the projects selected to study the helpfulness of Stale bot for pull-based development.

Project PRs Stars Contributors Maintainers Age Months Domain Languagein Months Since Adoption

nixos/nixpkgs 121,998 8,013 4,629 300 111 17 Package Manager Nix
homebrew/homebrew-core 84,686 10,203 6,747 50 67 54 Package Manager Ruby
ceph/ceph 43,885 9,826 1,573 73 120 35 Storage Platform C++
automattic/wp-calypso 38,301 11,922 707 151 70 29 WordPress Frontend JavaScript
home-assistant/core 34,922 47,437 3,875 51 96 19 Home Automation Python
cleverraven/cataclysm-dda 33,239 5,762 1,686 36 107 26 Video Game C++
homebrew/linuxbrew-core 23,259 1,171 285 13 64 47 Package Manager Ruby
istio/istio 21,236 28,423 1,053 78 58 15 Microservice Mesh Go
qgis/qgis 19,587 5,092 569 39 124 39 GIS System C++
devexpress/devextreme 19,412 1,521 152 21 53 18 Web Framework JavaScript
grafana/grafana 18,538 44,786 2,259 55 93 21 Visualization Platform TypeScript
wikia/app 18,293 191 217 64 105 34 Wiki Engine PHP
helm/charts 18,196 15,305 4,958 16 69 34 Kubernetes Apps Go
grpc/grpc 17,939 32,361 1,221 49 81 25 RPC Framework C++
solana-labs/solana 17,805 5,351 275 30 44 25 Decentralized Blockchain Rust
home-assistant/home-assistant.io 17,780 2,253 4,410 28 81 46 Home Automation HTML
conda-forge/staged-recipes 16,119 487 2,443 32 72 19 Package Manager Python
apache/beam 15,924 5,068 961 33 68 38 Data Pipelines Java
frappe/erpnext 15,840 9,970 580 42 122 39 ERP System Python
riot-os/riot 14,335 3,985 447 33 104 26 Operating System C

us to ensure that we have a sufficient number of observations for our analyses and to take into account the

expected seasonal variations in the projects [27]. Therefore, we focus on the projects that have at least 12

months of pull-based development history before the adoption and that have also used Stale bot for at least 12

consecutive months in their pull-based development workflow after the adoption. Among these projects, we

finally select the top 20 with the most PRs to focus on the largest and most popular projects.

Table 4.1 provides an overview of the projects that we selected for our study. In summary, the selected

projects have thousands of PRs (median of 18,975), thousands of stars (median of 6,888), hundreds of

contributors (median of 1,137), tens of maintainers (median of 41), years of pull-based development history

(median of 81 months), and years of using Stale bot (median of 28 months). Additionally, these projects span

multiple application domains and programming languages, providing a more diverse selection of projects for

our study.

4.3 RQ1: How much do the studied projects use Stale bot to deal with their

PR backlog?

Open-source projects on GitHub are adopting Stale bot to automatically follow up on the status of their

inactive PRs, warn the contributors and maintainers about the lack of activity, and eventually close such PRs

if there is no further progress on them [11, 13, 12]. As our first research question, we aim to understand the

56

extent to which large open-source projects rely on Stale bot to automatically deal with their unresolved PRs.

In the following, we first explain our approach and then discuss our findings to answer this research question.

4.3.1 Approach

To investigate the usage of Stale bot, we analyze both its configuration and activity during its first year of

adoption (i.e., our observation period) in the studied projects. For each project, we extract the configured

number of days of inactivity before a PR is marked as stale (i.e., daysUntilStale) and the configured

number of days of inactivity before a PR already marked as stale gets closed (i.e., daysUntilClose) from its

configuration file of Stale bot (i.e., .github/stale.yml). We also measure the monthly activity of Stale bot

in the PRs of each project as a proxy for the extent to which the project actually relies on Stale bot to deal

with its unresolved PRs. Since Stale bot can either warn about the lack of activity in a PR or close a PR due to

inactivity, we further distinguish between these two types of activities. For this purpose, we use the following

definitions to classify Stale bot activities in a PR:

• Intervention: Any commenting, labeling, unlabeling, or closing event performed by Stale bot.

• Warning: Any commenting or labeling event performed by Stale bot that is not immediately followed

by a closing event from Stale bot within a minute (to account for the processing delay between the

closing comment and the actual closure of a PR on GitHub).

• Closure: A closing event performed by Stale bot.

4.3.2 Findings

Table 4.2 provides an overview of the usage of Stale bot during its first year of adoption across the

studied projects, indicating (1) the number of open PRs immediately upon the adoption (Backlog), (2) the

average number of open PRs at the beginning of each month (# Open PRs), (3) the average ratio of open

PRs intervened by Stale bot in each month (% Intervened PRs), (4) the average ratio of open PRs warned by

Stale bot in each month (% Warned PRs), (5) the average ratio of open PRs closed by Stale bot in each month

(% Closed PRs), (6) the average configured number of days to stale a PR in each month (Days to Stale), and

(7) the average configured number of days to close a stale PR in each month (Days to Close). Note that the

ratio of intervened PRs might not equal the sum of the ratios of warned PRs and closed PRs in a project. This

57

Table 4.2: Usage of Stale bot during its first year of adoption across the studied projects.

Monthly Average
Usage Level Project Backlog # Open PRs % Intervened PRs % Warned PRs % Closed PRs Days to Stale Days to Close

High

solana-labs/solana 27 28 70.8% 65.5% 30.5% 15 7
grafana/grafana 139 109 61.3% 48.4% 11.0% 14 30
istio/istio 151 160 60.7% 47.3% 12.1% 14 27
homebrew/linuxbrew-core 174 58 58.4% 51.8% 37.3% 21 7
helm/charts 423 366 54.8% 43.8% 23.0% 30 14
frappe/erpnext 14 44 51.0% 46.9% 13.7% 22 7

Moderate

qgis/qgis 40 31 48.0% 41.9% 18.4% 14 7
wikia/app 23 24 46.1% 41.6% 19.8% 30 7
homebrew/homebrew-core 72 82 32.5% 28.7% 9.0% 21 7
conda-forge/staged-recipes 543 226 29.7% 16.7% 13.0% 150 30
home-assistant/core 228 270 29.0% 26.8% 7.9% 65 7

Low

grpc/grpc 332 207 22.2% 17.3% 11.5% 150 6
ceph/ceph 742 637 20.2% 15.0% 3.7% 60 90
apache/beam 127 95 15.4% 13.2% 7.7% 60 7
cleverraven/cataclysm-dda 65 95 13.2% 10.3% 1.6% 30 30
riot-os/riot 555 454 11.0% 7.0% 3.7% 185 31
devexpress/devextreme 31 31 10.6% 9.5% 3.9% 30 5
home-assistant/home-assistant.io 53 65 7.6% 6.5% 3.7% 60 7
nixos/nixpkgs 2,054 2,324 6.9% 5.3% 0.0% 180 –
automattic/wp-calypso 293 349 2.9% 2.5% 1.8% 270 7

Dark gray highlights activities in more than 50% of monthly open PRs and light gray highlights activities in between 25% and 50% of monthly open PRs.

discrepancy arises because intervention includes other activities (i.e., unlabeling events) aside from warnings

and closures, and also because PRs might get intervened multiple times within a month (e.g., closure after a

warning).

For easier comparison, we group the projects based on the average monthly ratio of open PRs intervened

by Stale bot (i.e., % Intervened PRs) into three levels of usage: (1) six projects have a high usage level where

Stale bot intervened in more than 50% of monthly open PRs; (2) five projects have a moderate usage level

where Stale bot intervened in between 25% and 50% of monthly open PRs; and (3) nine projects have a low

usage level where Stale bot intervened in less than 25% of monthly open PRs. In the following, we discuss

our findings in more detail.

The usage level of Stale bot widely varies among the projects. On average, Stale bot intervened

between 2.9% and 70.8% of open PRs, warned between 2.5% and 65.5% of open PRs, and closed between

0% and 37.3% of open PRs each month in the projects. For example, in the nixos/nixpkgs project, which has

both the largest PR backlog upon the adoption and the highest average monthly number of open PRs after the

adoption among the studied projects, Stale bot only intervened in 6.9% of open PRs on average each month,

and was not even configured to close any of them. In contrast, the solana-labs/solana project has the second

lowest average monthly number of open PRs after the adoption among the studied projects, yet Stale bot

warned 65.5% of open PRs and closed 30.5% of them on average each month. This wide range of activities

indicates that while some projects rely conservatively on Stale bot, others rely on it aggressively to deal with

58

their unresolved PRs.

The projects with a larger backlog of unresolved PRs have typically not relied more aggressively

on Stale bot. The average monthly ratio of open PRs intervened by Stale bot is not significantly associated

with the size of the PR backlog upon the adoption (Spearman’s 𝜌 = −0.31). Similarly, it is not significantly

associated with the average monthly number of open PRs after the adoption (Spearman’s 𝜌 = −0.38). These

results suggest that the higher activity of Stale bot in a project is not usually due to more accumulated

unresolved PRs. Indeed, there is a significant negative correlation between the average monthly ratio of open

PRs intervened by Stale bot and the average configured number of days to mark a PR as stale (Spearman’s

𝜌 = −0.79), suggesting that the higher activity of Stale bot in a project is usually due to a more aggressive

configuration (i.e., fewer days of inactivity before a PR is marked as stale). In other words, the differences in

the activity of Stale bot in different projects tend to be due to its configuration rather than the PR backlog size

in a project.

Answer to RQ1. We find that the usage level of Stale bot widely varies among the studied projects. On

average each month, Stale bot intervened in less than 25% of open PRs in nine projects, between 25%

and 50% of open PRs in five projects, and more than 50% of open PRs in six projects. Unexpectedly,

the projects with a larger backlog of unresolved PRs have typically not relied more aggressively on

Stale bot to deal with their unresolved PRs.

4.4 RQ2: What is the impact of Stale bot on pull-based development in the

studied projects?

In the previous research question, we found that the studied projects rely on Stale bot to deal with their

accumulated backlog of unresolved PRs. As our second research question, we aim to understand if and how

adopting Stale bot improves the efficiency and effectiveness of the pull-based development workflow in large

open-source projects. In the following, we first explain our approach and then discuss our findings to answer

this research question.

59

4.4.1 Approach

To investigate the impact of adopting Stale bot, we first need to quantify the performance of the pull-based

development workflow in the studied projects. For this purpose, we consult similar studies that investigated

the effect of an intervention on the pull-based development of open-source projects [34, 35]. As shown in

Table 4.3, we measure 13 performance indicators covering six dimensions: (1) resolved PRs, (2) review

latency, (3) resolution time, (4) review discussion, (5) PR updates, and (6) contributor retention. Similar

to previous studies [34, 35], we differentiate between the indicators of merged PRs (ending with m) and

closed PRs (ending with c) to take into account the inherent differences in the characteristics of accepted and

rejected PRs. To identify merged PRs, we resort to heuristics [68] similar to [60] because accepted PRs are

not always merged using the standard methods provided through the GitHub interface. Accordingly, besides

PRs with an explicit merged status (i.e., merged using the GitHub interface), we consider closed PRs with a

commit inside the project that references them (e.g., “Close #123”) as merged. For each month before and

after the adoption, we then measure the indicators of each project by aggregating the data about PRs that have

been merged or closed in that month’s timeframe.

To estimate the potential impact of Stale bot on the indicators of the projects, we rely on interrupted

time-series analysis (ITS) [27]. This method is a well-established quasi-experiment previously used in the

software engineering literature to study the impact of an intervention (e.g., [32, 34, 35]). To estimate the

longitudinal impact of an intervention (i.e., the adoption of Stale bot in our case), ITS compares a period

before and after the intervention assuming the trend would be retained if the intervention had not occurred.

To perform ITS in our study, we use the following linear regression model:

𝑌𝑡 = 𝛽0 + 𝛽1 × time 𝑡 + 𝛽2 × adoption 𝑡 + 𝛽3 × time since adoption 𝑡 + 𝛽4 × controls (4.1)

where 𝑌𝑡 represents the value of indicator 𝑌 at time 𝑡; time represents the number of months passed since the

start of the observation period at time 𝑡 (encoded from 1 to 24 covering one year before and one year after

the adoption); adoption represents whether Stale bot has been adopted at time 𝑡 (encoded as 0 before the

adoption and as 1 after the adoption); time since adoption represents the number of months passed since the

adoption of Stale bot at time 𝑡 (encoded as 1 to 12 covering one year after the adoption and as 0 before the

adoption); and controls includes a set of variables to control for the inherent differences among the studied

projects. These control variables include: (1) the age of the project at the adoption time in months (denoted

60

as age at adoption) as a proxy for the level of maturity in the project, (2) the number of PRs at the adoption

time in the project (denoted as pulls at adoption) as a proxy for the level of activity in the project, (3) the

number of contributors at the adoption time in the project (denoted as contributors at adoption) as a proxy

for the size of the project community, and (4) the number of maintainers at the adoption time in the project

(denoted as maintainers at adoption) as a proxy for the size of the project core team.

To implement the ITS regression in Equation (4.1), we build linear mixed-effects models [114, 115] using

the lmerTest package [116]. To do so, we consider age at adoption, pulls at adoption, contributors at -

adoption, and maintainers at adoption as fixed effects and the name of the project (denoted as project name)

as the random intercept. While both these fixed-effect and random-effect variables aim to capture project-to-

project variability, the random intercept allows for capturing unmeasured variability between the projects by

assigning a different intercept to each project. We also log-transform all the variables with a skewed distribution

to better satisfy the assumptions of linear mixed-effects models, such as linearity and homoscedasticity

[114]. To evaluate the goodness of fit of our models, we measure the marginal and conditional coefficients

of determination (𝑅2) [117] using the performance package [118]. While the marginal 𝑅2 describes the

proportion of the total variance explained only by the fixed effects, the conditional 𝑅2 describes the proportion

of the total variance explained by both the fixed and the random effects. To estimate the statistical significance

of the coefficients in our models, we rely on the Satterthwaite’s method [119] calculated using the lmerTest

package [116]. We consider the traditional confidence level of 95% (i.e., 𝛼 = 0.05) [120] to identify significant

variables. Additionally, to estimate the effect size of each variable, we measure its sum of squares based on

type III analysis of variance (a.k.a. ANOVA) [121] using the lmerTest package [116]. The results describe

the fraction of the total variance explained by the model that can be attributed to each variable. To determine

if the adoption of Stale bot has a potential impact on an indicator, we check the statistical significance of time,

adoption, and time since adoption in the corresponding model. Specifically, a significant time shows the

existing trend before the adoption, a significant adoption shows the change in level at the adoption time, and a

significant time since adoption shows the change in the trend after the adoption. Accordingly, the sum of

time and time since adoption represents the new trend after the adoption. To also estimate the effect size

of the adoption when a significant change is observed, we rely on counterfactuals [27]: what would have

happened if the adoption had never occurred and thus the trend before the adoption had continued unchanged.

For this purpose, we assume that there has been neither a change in the level (i.e., adoption = 0) nor the trend

(i.e., time since adoption = 0) and measure the change percentage compared to the actual predicted values.

61

Table 4.3: Overview of the indicators measured to quantify the performance of the pull-based development workflow in the studied projects.

Dimension Rationale Indicator Description

Resolved PRs Stale bot closes inactive PRs and frees maintainers
from manually tracking inactive PRs.

merged pulls Number of merged PRs within a month
closed pulls Number of closed PRs within a month

Review Latency
Stale bot frees maintainers from triaging inactive
PRs by automatically tracking, warning, and
closing such PRs.

first latency m Average first response latency (excluding Stale bot) of merged PRs within a month in hours
first latency c Average first response latency (excluding Stale bot) of closed PRs within a month in hours

mean latency m Average of the mean response latency (excluding Stale bot) of merged PRs within a month in hours
mean latency c Average of the mean response latency (excluding Stale bot) of closed PRs within a month in hours

Resolution Time Stale bot prevents PRs from staying indefinitely
open without any progress by closing inactive PRs.

resolution time m Average resolution time of merged PRs within a month in hours
resolution time c Average resolution time of closed PRs within a month in hours

Review Discussion Stale bot attracts the attention of participants by
warning about the lack of activity.

comments m Average number of comments (excluding Stale bot) in merged PRs within a month
comments c Average number of comments (excluding Stale bot) in closed PRs within a month

PR Updates Stale bot prevents PRs from getting too outdated
by warning about the lack of activity.

commits m Average number of commits in merged PRs within a month
commits c Average number of commits in closed PRs within a month

Contributor Retention Stale bot is frequently reported to frustrate the
community by attempting to close PRs. contributors Number of active contributors within a month

62

4.4.2 Findings

The results of the models to estimate the impact of Stale bot on different performance indicators are

presented in Section 6.2.5. For easier comparison, Figure 4.2 visualizes how the values of the impacted

indicators vary each month during our observation period, along with the average of the model predictions

(the solid red lines) and the average of the counterfactual predictions for all the studied projects (the dashed

red lines). The variation plots for the remaining indicators can also be found in Section 6.2.5. We observe

that the projects closed more PRs within the first few months of adopting Stale bot, but overall closed and

merged fewer PRs afterward. The adoption of Stale bot is also associated with faster first reviews in merged

PRs, faster resolutions in closed PRs, slightly fewer updates in merged PRs, and considerably fewer active

contributors in the projects. In the following, we discuss our findings in more detail.

While more PRs are closed within the first few months of adopting Stale bot, overall fewer PRs are

closed and merged afterward. As shown in Figure 4.2b, the number of closed PRs experienced an increase

in the level but a decrease in the slope that reversed the increasing trend before the adoption. Specifically, our

predictions indicate that 15% more PRs were closed in the first month of adoption but overall 10% fewer

PRs were closed by the end of the first year of adoption. The short-term increase in the number of monthly

closed PRs is expected as Stale bot closes accumulated inactive PRs immediately upon its adoption. From

Figure 4.2a, we also observe a decrease in both the level and the slope of the number of merged PRs that

decelerated the increasing trend before the adoption. While more PRs are still merged each month, our

predictions indicate that overall 24% fewer PRs were merged by the end of the first year of adoption.

Merged PRs tend to have faster first reviews after the adoption of Stale bot. As shown in Figure 4.2c,

the first review latency of merged PRs experienced a decrease in the slope that reversed the increasing trend

before the adoption. Specifically, our predictions indicate that merged PRs had an overall 21% lower first

review latency during the first year of adoption. However, the first review latency of closed PRs and the mean

review latency of both closed PRs and merged PRs have not significantly changed after the adoption. Still,

closed PRs tend to take longer to receive a first review over time, and this trend has not significantly changed

after the adoption. The results suggest that the maintainers are focusing on PRs that are more likely to get

merged, but at the cost of leaving the remaining PRs to linger until Stale bot closes them after a period of

inactivity.

Closed PRs tend to have faster resolutions after the adoption of Stale bot. As shown in Figure 4.2d,

63

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Variation in (a) the number of merged PRs, (b) the number of closed PRs, (c) the first response
latency of merged PRs, (d) the resolution time of closed PRs, (e) the number of commits in merged PRs, and
(f) the number of active contributors each month during our observation period. The blue lines show the
adoption time, the solid red lines show the average predictions, and the dashed red lines show the average
counterfactual predictions of the model for all the studied projects. Note that we dropped the outliers in the
plots and used the exponential function to convert the log-transformed output of the models back to real
values.

64

the resolution time experienced a decrease in the slope across closed PRs that reversed the increasing trend

before the adoption, but has not significantly changed across merged PRs. For example, our predictions

indicate that closed PRs had 22% lower resolution time in the last month of the first year of adoption. The

decrease in the resolution time of closed PRs is expected as the auto-close function of Stale bot does not allow

PRs to stay open indefinitely without any activity.

The amount of discussions in PRs is not affected by the adoption of Stale bot. We find that the number

of discussion comments has not significantly changed after the adoption of Stale bot across both merged

PRs and closed PRs. This observation comes as a surprise since we expected Stale bot to encourage more

communication during the review process of PRs by notifying the participants about the lack of activity and

by reducing the workload of the maintainers.

Merged PRs tend to have slightly fewer updates after the adoption of Stale bot. As shown in

Figure 4.2e, the total number of commits across merged PRs experienced a decrease in the slope but has

not significantly changed across closed PRs. Specifically, our predictions indicate that merged PRs overall

contained 11% fewer commits during the first year of adoption. Still, closed PRs tend to have more commits

over time, and this trend has not significantly changed after the adoption.

The adoption of Stale bot is associated with a considerable decrease in the number of active

contributors. As shown in Figure 4.2f, the number of monthly active contributors experienced a decrease in

the slope that significantly decelerated the increasing trend before the adoption. Specifically, our predictions

indicate that overall 14% fewer contributors were active each month during the first year of adoption. The

decreased number of active contributors may reflect the frustration of the community regarding the usage of

Stale bot in open-source projects.

Answer to RQ2. We find that the studied projects closed more PRs within the first few months of

adopting Stale bot, but overall closed and merged fewer PRs afterward. The adoption of Stale bot is

also associated with faster first reviews in merged PRs, faster resolutions in closed PRs, slightly fewer

updates in merged PRs, and considerably fewer active contributors in the projects.

65

Table 4.4: Overview of the factors measured to characterize PRs, their contributors, and their review processes.

Dimension Factor Description

Pull Request

description Number of words in the title and description of the PR
initial commits Number of commits at the submission time of the PR
followup commits Number of commits after the submission time of the PR
initial changed lines Number of changed lines at the submission time of the PR
followup changed lines Number of changed lines after the submission time of the PR
initial changed files Number of changed files at the submission time of the PR
followup changed files Number of changed files after the submission time of the PR

Contributor
submitted pulls Number of previously submitted PRs by the contributor of the PR in the project
acceptance rate Ratio of the previously merged PRs of the contributor of the PR in the project
contribution period Number of months since the first submitted PR of the contributor of the PR in the project

Review Process

participants Number of participants (excluding Stale bot) during the lifecycle of the PR
participant comments Number of comments from the participants (excluding Stale bot) during the lifecycle of the PR
contributor comments Number of comments from the contributor during the lifecycle of the PR
first latency Number of hours till the first response of the participants (excluding Stale bot) in the PR
mean latency Mean number of hours between the responses of the participants (excluding Stale bot) in the PR
resolution time Number of hours between the submission and resolution times of the PR

4.5 RQ3: What kind of PRs are usually intervened by Stale bot in the studied

projects?

In the previous research question, we found that the adoption of Stale bot is associated with both positive

and negative changes in the pull-based development workflow of the studied projects. As our last research

question, we aim to understand what characteristics of PRs, their contributors, and their review processes are

associated with a higher probability of getting intervened by Stale bot in large open-source projects. In the

following, we first explain our approach and then discuss our findings to answer this research question.

4.5.1 Approach

To investigate the kinds of PRs intervened by Stale bot, we first need to characterize the PRs, their

contributors, and their review processes. For this purpose, we consult the pull-based development literature

[23, 22, 72, 71]. As shown in Table 4.4, we measure 16 factors covering three dimensions: (1) PR

characteristics, (2) contributor characteristics, and (3) review process characteristics. After measuring these

factors, we perform statistical analyses to determine how each factor differs in PRs that are intervened by Stale

bot. To have a fair comparison between intervened and not intervened PRs, we filter our dataset to include

only PRs that are closed or merged within the first year of adoption (i.e., our observation period). After this

step, our dataset includes a total of 126,378 PRs, of which 6,833 PRs (∼5.4%) have been intervened by Stale

bot.

66

Then, we compare the distribution of the measured factors between intervened and not intervened PRs

by generating violin plots [73] for each project using the ggstatsplot package [74]. The generated plots

for each factor showing their median values (denoted by 𝑀), interquartile ranges (the box inside the violin),

and probability densities (the width of the violin at each value) are presented in Section 6.2.5. To test the

statistical difference between the factors of intervened and not intervened PRs, we apply the MannWhitney 𝑈

test [75] as a nonparametric test that does not require the distribution of the factors to be normal. To perform

this test, we use the stats package [76] and add the results to the generated plots. We consider the traditional

confidence level of 95% (i.e., 𝛼 = 0.05) [120] to identify statistically significant factors.

While statistical significance verifies whether a difference exists between the factors of intervened and not

intervened PRs, we also need to test their practical difference [77]. For this purpose, we use Cliff’s delta [78]

to estimate their magnitude of difference (i.e., effect size). The value of Cliff’s delta (denoted by 𝑑) ranges

from −1 to +1, where a positive 𝑑 implies that the values of the factor in intervened PRs are usually greater

than those of not intervened PRs, while a negative 𝑑 implies the opposite. To calculate this statistic, we use

the effectsize package [79] and add the results to the generated plots. Finally, for easier comparison, we

convert the 𝑑 values to qualitative magnitudes according to the following thresholds as suggested by Hess and

Kromrey [80]:

Effect size =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Negligible, if |𝑑 | ≤ 0.147

Small, if 0.147 < |𝑑 | ≤ 0.33

Medium, if 0.33 < |𝑑 | ≤ 0.474

Large, if 0.474 < |𝑑 | ≤ 1

4.5.2 Findings

Table 4.5 summarizes the significant differences in the characteristics of PRs with and without intervention

from Stale bot across the studied projects. For each factor, the table shows the number of projects in which

intervened PRs tend to have significantly higher values compared to not intervened PRs, the number of

projects in which intervened PRs and not intervened PRs are not significantly different, and the number of

projects in which intervened PRs tend to have significantly lower values compared to not intervened PRs. We

consider a factor significant if its difference between intervened and not intervened PRs is both statistically

67

Table 4.5: Differences in the characteristics of PRs with and without intervention from Stale bot across the
studied projects.

Dimension Factor Higher in Intervened PRs No Difference Lower in Intervened PRs
Small Medium Large Small Medium Large

Pull Request

description 4 1 1 10 3 – 1
initial commits – – – 12 7 – 1
followup commits 8 4 2 6 – – –
initial changed lines 1 – – 16 2 – 1
followup changed lines 8 4 2 6 – – –
initial changed files – – – 13 6 – 1
followup changed files 9 2 – 9 – – –

Contributor
submitted pulls – – – – 3 14 3
acceptance rate – – – 1 6 11 2
contribution period – – – 2 12 5 1

Review Process

participants 5 – 8 4 2 1 –
participant comments 4 6 4 3 – 2 1
contributor comments 5 6 3 6 – – –
first latency 2 5 6 4 2 – 1
mean latency – 2 17 1 – – –
resolution time – – 20 – – – –

significant (i.e., 𝑝 < 0.05) and practically significant (i.e., the effect size is small, medium, or large). We

observe the most common differences in the characteristics of contributors and the review processes of PRs.

Specifically, the largest differences are in the resolution time of PRs (higher in all the projects), the number of

prior PRs by contributors (lower in all the projects), the mean response latency of PRs (higher in 19 projects),

the acceptance rate of contributors (lower in 19 projects), and the contribution period of contributors (lower

in 18 projects). In the following, we discuss our findings in more detail.

PRs intervened by Stale bot tend to be more complex. As shown in the PR dimension of Table 4.5,

intervened PRs tend to significantly include fewer commits (8 projects), contain smaller changes (3 projects),

and touch fewer files (7 projects) upon submission compared to not intervened PRs. However, after the

submission, intervened PRs tend to significantly include more commits (14 projects), contain larger changes

(14 projects), and touch more files (11 projects). For example, the intervened PRs in the cleverraven/cataclysm-

dda project on median have 4 more commits, 62 more changed lines, and 1 more changed file after their

submission (see Figure 4.3). Regarding the description length, we also observe that 6 projects tend to have

lengthier descriptions and 4 projects tend to have shorter descriptions in intervened PRs. While the description

length of PRs rarely changes during the review process of a PR, the size of changes (i.e., the number of

commits, changed lines, or changed files) is likely to increase as the PR gets iteratively reviewed and updated.

68

(a) (b) (c)

Figure 4.3: Differences between PRs with and without intervention from Stale bot in the cleverraven/cataclysm-
dda project regarding (a) the number of follow-up commits, (b) the number of follow-up changed lines, and
(c) the number of follow-up changed files after the submission.

The results indicate that PRs mostly intervened by Stale bot have received considerable effort from their

contributors to make it ready to get merged into the project.

The contributors of PRs intervened by Stale bot tend to be less experienced. As shown in the

contributor dimension of Table 4.5, the contributors of intervened PRs tend to significantly have previously

submitted fewer PRs (all the projects), have a lower acceptance rate (19 projects), and have a lower contribution

period (18 projects) compared to the contributors of not intervened PRs. For example, the contributors of

intervened PRs in the homebrew/homebrew-core project on median have previously submitted 4,343 fewer

PRs, have a 0.95 lower rate of acceptance, and have contributed to the project for 15 fewer months (see

Figure 4.4). However, novice contributors are the ones who face the most barriers and thus need the most

guidance from the maintainers [109, 105, 104]. The lack of responsiveness from the reviewers is also cited as

a major reason why contributors (especially novice or casual contributors) leave the review processes of PRs

unfinished and even stop further contributing to the project [24, 8, 107, 104]. Therefore, the results indicate

that while Stale bot can help projects automatically deal with their inactive PRs, it may also lead to lower

69

(a) (b) (c)

Figure 4.4: Differences between the contributors of PRs with and without intervention from Stale bot in the
homebrew/homebrew-core project regarding (a) the number of prior PRs, (b) the acceptance rate, and (c) the
contribution period.

engagement of the community and eventually contributor abandonment, especially if the reviewers’ input is

required to continue the review process.

The review processes of PRs intervened by Stale bot tend to be lengthier. As shown in the review

process dimension of Table 4.5, the review processes of intervened PRs tend to significantly involve more

participants (13 projects), receive more comments from the participants (14 projects), receive more comments

from the contributors (14 projects), take longer to receive their first review (13 projects), take longer to

receive a follow-up review (19 projects), and take longer to get resolved (all the projects) compared to

the review processes of not intervened PRs. For example, the review processes of intervened PRs in the

homebrew/homebrew-core project on median involve 2 more participants, receive 5 more comments from

the participants, receive 2 more comments from the contributors, takes 14 more hours to receive their first

review, takes 146 more hours to receive a follow-up review, and takes 1,168 more hours to get resolved (see

Figure 4.5). While a longer resolution time in intervened PRs is expected as Stale bot intervenes in PRs that

have been idle for a while, a longer time to receive reviews (both first and follow-up) from the participants is

70

rather interesting.

Answer to RQ3. We find that Stale bot tends to intervene more in complex PRs, PRs from novice

contributors, and PRs with lengthy review processes. Specifically, besides the resolution time of PRs,

the largest differences are observed in the number of prior PRs by contributors, the mean response

latency of PRs, the acceptance rate of contributors, and the contribution period of contributors.

4.6 Implications

In the following, we combine our findings to further discuss the implications of our study.

4.6.1 Stale bot can help projects deal with a backlog of unresolved PRs

Almost all the studied projects relied on Stale bot to automatically close their accumulated PRs after a

period of inactivity. In fact, the projects closed more PRs within the first few months of adopting Stale bot,

yet closed and even merged considerably fewer PRs afterward. These findings suggest that adopting Stale

bot could be an effective strategy for quickly dealing with a backlog of unresolved PRs in the short term.

However, projects should be aware that the rule-based nature of Stale bot could wrongly close PRs that may

still be under progress despite being inactive for some time [18]. Moreover, the automatic closure of PRs by

Stale bot is known to raise the most negative reactions from the contributors and participants, especially when

they perceive the closure as erroneous or unjustified [19].

4.6.2 Stale bot can help projects improve the review process of PRs

After the adoption of Stale bot, PRs that ended up being merged received faster reviews after their

submission, and PRs that ended up being closed were also resolved much faster in the studied projects.

However, PRs that end up being closed are increasingly taking longer to receive a review from the reviewers.

The adoption of Stale bot did not improve this trend or encourage more communication during the review

process of PRs. These findings suggest that maintainers are focusing on PRs that are more likely to get merged,

but at the cost of leaving the remaining PRs to linger until Stale bot closes them after a period of inactivity.

However, projects should be mindful that such a strategy will likely result in fewer merged PRs over time.

71

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Differences between the review processes of PRs with and without intervention from Stale bot in
the homebrew/homebrew-core project regarding (a) the number of participants, (b) the number of comments
from the participants, (c) the number of comments from the contributors, (d) the first review latency, (e) the
mean review latency, and (f) the resolution time.

72

4.6.3 Stale bot can negatively affect the contributors of projects

The studied projects experienced a considerable decrease in their number of active contributors after the

adoption of Stale bot. While Stale bot can help projects automatically deal with their inactive PRs, it is also

more likely to intervene in PRs submitted by less experienced contributors. Projects should ensure that PRs

receive timely reviews and responses from their reviewers, particularly if their input is needed to continue the

review process. This is particularly important as the lack of responsiveness from reviewers is cited as a major

reason why contributors (especially novice or casual contributors) leave the review process of PRs unfinished

and even stop further contributing to a project [24, 8, 107, 104]. Therefore, implicitly ignoring unresolved

PRs till Stale bot eventually closes them may lead to decreased community engagement and an increased

probability of contributor abandonment.

4.7 Limitations

In the following, we discuss threats to the internal, construct, and external validity [108] of our study and

explain the measures taken to mitigate them.

4.7.1 Construct Validity

Construct validity is concerned with how accurately we quantified the helpfulness of Stale bot for

pull-based development. We measured 13 different performance indicators covering various dimensions,

including resolved PRs, review latency, resolution time, review discussion, PR updates, and contributor

retention. To identify these indicators, we consulted similar studies that investigated the effects of interventions

on the pull-based development of projects [34, 35] and also drew from our previous experience studying

abandoned PRs [24]. Nevertheless, projects may experience changes in aspects that we did not consider or

that are difficult to quantify, such as code quality. Forsgren et al. [122] describes various facets of productivity

for individual developers and software teams, which future studies can consult for a more comprehensive

investigation of the helpfulness of Stale bot.

4.7.2 Internal Validity

Internal validity is concerned with whether the adoption of Stale bot has actually caused the observed

effects. Although we applied interrupted time-series analysis as a well-established quasi-experiment to

73

understand the impact of adopting Stale bot, we cannot conclusively claim that Stale bot caused the observed

changes. It is possible that the adoption of Stale bot in a project occurred simultaneously with other events

that could explain the observed changes, such as the introduction of new tools or practices. For example,

less than a month before adopting Stale bot, the devexpress/devextreme project modified its continuous

integration (CI) workflow to also run on submitted PRs in addition to pushed commits [123]. To mitigate

this threat, we utilized mixed-effects models for implementing the interrupted time-series analysis. This

approach allows us to identify changes that are commonly observed across the majority of projects rather than

changes that are specific to only a few projects. In other words, it is unlikely that the majority of the studied

projects experienced significant changes to their pull-based development workflow during the same month

they adopted Stale bot.

4.7.3 External Validity

External validity is concerned with how well our findings may be generalized to other open-source

projects. In this study, we aimed to evaluate the helpfulness of Stale bot in open-source projects, specifically

concerning their pull-based development. To conduct our study, we selected 20 large and popular open-source

projects with a rich history of using Stale bot in their pull-based development workflow. While we believe

these projects are more likely to benefit from adopting Stale bot, we recognize that they cannot represent

the entire open-source ecosystem. In other words, the selected projects may not be representative of other

open-source projects with different characteristics, such as their size, maturity, popularity, workload, culture,

and development practices. Therefore, the findings of this study may not apply to all open-source projects.

To acquire more broadly applicable insights, future research can replicate this study using a more diverse

selection of projects.

4.8 Chapter Summary

PRs that are neither progressed nor resolved accumulate over time, clutter the list of PRs, and eventually

make it difficult for the maintainers to manage and prioritize unresolved PRs. To automatically track such

inactive PRs, follow up on their progress, and close them if needed, Stale bot was introduced by GitHub.

Despite its increasing adoption, there are ongoing debates on whether using Stale bot alleviates or exacerbates

the problem of inactive PRs. To better understand if and how Stale bot helps open-source projects in their

74

pull-based development workflow, we conducted an empirical study of 20 large and popular open-source

projects. First, we analyzed the configuration and activity of Stale bot to understand the extent to which the

projects relied on Stale bot to automatically deal with their unresolved PRs. Then, we applied interrupted

time-series analysis as a well-established quasi-experiment to understand if and how adopting Stale bot

improved the efficiency and effectiveness of the pull-based development workflow in the projects. Next, we

analyzed the characteristics of PRs, their contributors, and their review processes to understand the factors

that were associated with a higher probability of getting intervened by Stale bot in the projects. Finally, we

combined our observations to discuss the potential benefits and drawbacks of employing Stale bot within a

pull-based development workflow. In summary, we found that Stale bot can help projects deal with a backlog

of unresolved PRs and also improve the review process of PRs. However, the adoption of Stale bot can

negatively affect the contributors (especially novice or casual contributors) in a project.

To help better mitigate PR abandonment, in the next chapter, we propose a machine learning approach

that predicts the first response latency of maintainers and contributors of PRs. This awareness can lead to

managed expectations for both the maintainers and the contributor and also enables them to take proactive

actions to mitigate potential challenges during the review process of a PR before it gets abandoned.

75

Chapter 5

Predicting the First Response Latency of

Maintainers and Contributors in Pull

Requests

5.1 Introduction

Pull-based development has become a common paradigm for contributing to and reviewing code changes

in numerous open-source projects [1, 2]. PRs are the driving force behind the maintenance and evolution of

these projects, encompassing everything from bug fixes to new features. Contributors initiate this collaborative

process by submitting a PR that proposes changes for integration into the project. The PR then undergoes

a review process, during which the contributor revises the changes based on feedback from the project

maintainers. This cycle repeats until the PR satisfies the maintainers’ requirements for getting merged [4, 5].

The success of the PR depends on the responsiveness of both the maintainers and the contributor during

the review process [24, 8, 26, 9]. Timely responses from the maintainers set a positive tone for the entire

review process, increasing the likelihood of the contributor continuing the review process towards completion

[24, 5]. Conversely, delayed responses are often perceived as negligence, increasing the risk of the contributor

abandoning the PR [24, 8, 107]. Once the maintainers have responded, the contributor’s promptness in

addressing the feedback is equally crucial. Timely responses help maintain the momentum of the review

process, whereas delayed responses can cause it to stale [24, 5, 28].

76

Knowing the expected waiting times can lead to better interactions and managed expectations for both

sides. Contributors, when aware of anticipated waiting times, can adjust their schedules accordingly, reducing

uncertainty and preserving their motivation throughout the review process [24, 26]. Maintainers, aware of

possible delays in contributor responses, can proactively offer additional support or take action to mitigate

potential blockers [24]. This awareness also allows maintainers to better allocate their time and resources and

prioritize PR reviews [9]. Furthermore, analyzing response time trends can help projects pinpoint and rectify

bottlenecks, thereby enhancing the efficiency and effectiveness of their PR review workflows.

The first responses are of particular importance as they not only directly influence the duration [21, 22] and

the outcome [23, 24, 8] of the review process, but also the likelihood of future contributions by the contributor

[25, 21]. Despite the critical role of first responses, existing approaches only aim to predict the completion

time of PRs [124, 125] or nudge overdue PRs [126]. Our study bridges this gap by proposing a machine

learning approach to predict: (1) the first response latency of the maintainers following the submission of a

PR, and (2) the first response latency of the contributor after receiving the first response from the maintainers.

For this purpose, we start by curating a dataset of 20 popular and large open-source projects on GitHub.

Next, we extract 21 features to characterize projects, contributors, PRs, and review processes. Using these

features, we then evaluate seven types of classifiers to identify the best-performing models. Finally, we

perform permutation feature importance [94] and SHAP [127] analyses to understand the importance and

impact of different features on the predicted response latencies. In summary, we aim to answer the following

four research questions:

RQ1: (Maintainers) How well can we predict the first response latency of maintainers? We find that

the CatBoost models outperform other models in predicting the first response latency of maintainers,

achieving an average improvement of 29% in AUC-ROC and 51% in AUC-PR compared to a no-skilled

classifier across the studied projects.

RQ2: (Maintainers) What are the major predictors of the first response latency of maintainers? We

find that PRs submitted earlier in the week, containing an average or slightly above-average number

of commits at submission, and with more concise descriptions are more likely to get faster responses.

Similarly, contributors with a higher acceptance rate and a history of timely responses in the project

tend to obtain quicker responses.

RQ3: (Contributors) How well can we predict the first response latency of contributors? Similar to

77

the first response latency of maintainers, we find that the CatBoost models outperform other models

in predicting the first response latency of contributors, achieving an average improvement of 39% in

AUC-ROC and 89% in AUC-PR compared to a no-skilled classifier across the studied projects.

RQ4: (Contributors) What are the major predictors of the first response latency of contributors? We

find that contributors of PRs that experienced a lower first response latency from maintainers, PRs that

received the first response of maintainers earlier in the week, and PRs containing an average or slightly

above-average number of commits till the first response of maintainers are more likely to provide faster

responses. Similarly, contributors with a history of timely responses in the project and with a higher

acceptance rate tend to give quicker responses.

Finally, we evaluate our approach in a cross-project setting. This is especially useful for new projects

with limited historical data to build accurate models. Compared to a no-skilled classifier, the models achieve

an average improvement of 33% in AUC-ROC and 58% in AUC-PR for maintainers, as well as an average

improvement of 42% in AUC-ROC and 95% in AUC-PR for contributors. Furthermore, we find that the key

predictors in the cross-project setting are: submission day, number of commits, contributor acceptance rate,

historical maintainers responsiveness, and historical contributor responsiveness for maintainers’ first response

latency; and first review latency, review day, historical contributor responsiveness, number of commits, and

contributor activity within the PR for contributors’ first response latency. We believe that by predicting the

first response latencies, our approach helps open-source projects facilitate collaboration between maintainers

and contributors during the review process of PRs.

5.1.1 Our Contributions

In summary, we make the following contributions in this chapter:

• To the best of our knowledge, we are the first to propose machine learning models for classifying the

first response latency of maintainers and contributors.

• We investigate the major predictors of the first response latency of maintainers and contributors and

discuss the impact of the features on the anticipated waiting periods.

• To promote the reproducibility of our study and facilitate future research on this topic, we publicly

share our scripts and dataset online at https://doi.org/10.5281/zenodo.10119284.

78

https://doi.org/10.5281/zenodo.10119284

5.1.2 Chapter Organization

The rest of this chapter is organized as follows. Section 5.2 overviews the design of our study. Sections 5.3

and 5.4 report the results for predicting the first response latency of maintainers and contributors, respectively.

Section 5.5 evaluates our approach in a cross-project setting and Section 5.6 discusses the threats to the

validity. Finally, Section 5.7 concludes this chapter.

5.2 Study Design

The main objective of this study is to develop machine learning models for predicting the first response

latency of the maintainers following the submission of a PR; as well as the first response latency of the

contributor after receiving the first response from the maintainers. Additionally, we aim to identify and discuss

the impact of the key features that significantly influence the predicted first response latency of maintainers

and contributors. In the following, we explain the methodology and design of our study in detail.

5.2.1 Studied Projects

To ensure that we have enough historical data for our study, we seek large and popular open-source

projects with a rich history of pull-based development. For this purpose, we rely on GitHub as a pioneer

in supporting pull-based development and the largest open-source ecosystem [59], which has also been the

subject of numerous code review studies [128, 129]. To identify such projects, we use the number of stars

as a proxy for the popularity of the projects [61] and retrieve the list of the top 1,000 most-starred projects.

Among these projects, we select the top 20 with the highest number of PRs to focus on the largest and

most popular software projects. Table 5.1 provides an overview of the projects that we selected for our case

study. In summary, the selected projects have thousands of PRs (median of 42,630), thousands of stars

(median of 52,226), hundreds of contributors (median of 3,240), tens of maintainers (median of 201), and

years of pull-based development history (median of 106 months). Additionally, these projects span multiple

application domains and programming languages, providing a more diverse selection of projects for our case

study. We collected the timeline of activities for the selected projects on December 1st, 2022. The timeline of

activities of PRs is provided by the GitHub API [65] and includes the details (e.g., type, actor, and time) of all

the events (e.g., commits, comments, and resolutions) that occurred during the lifecycle of a PR [113, 64, 63].

79

Table 5.1: Overview of the projects selected for our study.

Project PRs Stars Contributors Maintainers Age Domain Language

Odoo 89,513 27,267 2,678 237 102 Business Management System JavaScript
Kubernetes 72,001 94,103 5,613 361 101 Container Orchestration System Go
Elasticsearch 60,582 61,986 3,016 299 153 Data Analytics Engine Java
PyTorch 60,072 60,605 3,610 350 75 Machine Learning Framework C++
Rust 58,563 74,949 4,566 135 149 Programming Language Rust
DefinitelyTyped 53,843 41,717 18,980 548 121 TypeScript Type Definitions TypeScript
HomeAssistant 48,478 56,269 4,646 913 110 Home Automation System Python
Ansible 48,262 55,575 7,835 93 128 IT Automation Platform Python
CockroachDB 45,884 26,127 725 203 105 Database Management System Go
Swift 45,560 61,197 1,333 230 85 Programming Language C++
Flutter 39,700 146,697 2,287 236 92 Software Development Kit Dart
Spark 38,809 34,459 3,463 80 105 Data Analytics Engine Scala
Python 37,792 49,172 3,779 104 69 Programming Language Python
Sentry 35,489 32,665 834 170 146 Application Performance Monitoring Python
PaddlePaddle 32,738 19,230 831 500 75 Machine Learning Framework C++
Godot 30,886 55,580 2,688 63 106 Game Engine C++
Rails 30,386 51,852 6,435 114 175 Web Application Framework Ruby
Grafana 30,373 52,599 2,657 199 107 Data Visualization Platform TypeScript
ClickHouse 29,820 26,262 1,377 54 77 Database Management System C++
Symfony 29,009 27,679 4,240 51 154 Web Application Framework PHP

5.2.2 Identification of First Responses

In this study, we focus on responses from project maintainers, as their deeper understanding of the

project enables them to evaluate PRs more effectively. To identify maintainers, we follow an approach

similar to [130]. We consider a maintainer as a developer with write permissions. This status not only

enables them to perform critical maintenance tasks but also gives them the authority to make decisions on

accepting or rejecting PRs. To identify maintainers, we analyze each developer’s activity within the project,

looking for any of the following events that require privileged access: added to project, deployed,

deployment environment changed, locked, merged, moved columns in project, removed from -

project, review dismissed, unlocked, and user blocked. Additionally, we consider actions such as

merging a PR using other nonstandard methods (e.g., through commit messages that include keywords to

resolve a PR, like “resolves #123”) or closing someone else’s PR as privileged events (since users can close

their own PRs without requiring any special access). Developers observed engaging in any of these privileged

events are classified as maintainers henceforth.

Similar to [21], we define the first response of maintainers as the first feedback (i.e., commented, reviewed,

line-commented, and commit-commented) or resolution (i.e., merged, closed, and reopened) by a

maintainer (excluding bots) other than the contributor. We also define the first response of contributors

80

as the first update (i.e., committed and head ref force pushed), feedback (i.e., commented, reviewed,

line-commented, and commit-commented, or resolution (i.e., closed and reopened by the contributor

after receiving the first response by a maintainer. We identified bots by marking actors listed in any of the three

ground-truth datasets [131, 132, 133], as well as those with names ending in bot or [bot]. Additionally, we

manually inspected actors with high activity levels or fast response times to detect any potential bots that may

have been overlooked.

5.2.3 Feature Extraction

To train machine learning models for predicting the first response latency of either maintainers or

contributors, we need to extract a set of relevant features that can potentially be predictive of their first response

latencies. As outlined in Table 5.2, we extract a total of 21 features covering four different dimensions:

(i) project characteristics, (ii) contributor characteristics, (iii) PR characteristics, and (iv) review process

characteristics. Features in the table are denoted by ‘M’, ‘C’, or ‘MC’, indicating their use in the models for

predicting the response latency of maintainers, contributors, or both, respectively. The features are measured

using the data available at different time points: features for predicting the maintainer response latency are

measured at the submission time of PR, while features for predicting the contributor response latency are

measured at the time when the PR receives its first response from a maintainer. In the following, we explain

the relevance and measurement of each feature in detail.

Submission Volume. Increased PR submissions can overwhelm maintainers, resulting in delayed response

times [9]. However, a high volume of submissions indicates an active project, which can attract contributors

and positively influence their responsiveness. To quantify this feature, we count the number of PRs submitted

to the project over the last three months.

Project Backlog. A sizeable backlog of unresolved PRs could overwhelm maintainers, potentially

resulting in extended response times [21, 22]. Furthermore, contributors may perceive a substantial backlog

as a sign of inattentiveness, which may discourage them and adversely affect their willingness to respond

promptly. To quantify this feature, we count the number of unresolved PRs in the project.

Maintainers Availability. More available maintainers facilitate efficient workload distribution, potentially

leading to quicker response times [22, 9]. Higher availability of maintainers indicates an actively maintained

and supportive project, boosting contributors’ confidence and responsiveness. To quantify this feature, we

count the number of active maintainers in the project over the last three months.

81

Table 5.2: Features extracted to predict the first response latency of maintainers (M) and contributors (C).

Dimension Feature Description Model

Project

Submission Volume Number of submitted PRs to the project over the last 3 months MC
Project Backlog Number of unresolved PRs in the project MC
Maintainers Availability Number of active maintainers in the project over the last 3 months MC
Maintainers Responsiveness Median first response latency of the maintainers over the last 3 months MC
Community Size Number of active community members in the project over the last 3 months MC

Contributor

Contributor Experience Number of prior PRs by the contributor MC
Contributor Performance Ratio of the merged PRs of the contributor MC
Contributor Backlog Number of unresolved PRs by the contributor MC
Contributor Responsiveness Median first response latency of the contributor in prior PRs MC

Pull Request

Description Length Number of words in the title and description of the PR MC
Commits Number of commits in the PR MC
Changed Lines Number of changed lines in the PR MC
Changed Files Number of changed files in the PR MC
Submission Day Weekday of the submission time of the PR M
Submission Hour Hour of the submission time of the PR M

Review Process

Review Day Weekday of the first response of the maintainer C
Review Hour Hour of the first response of the maintainer C
Review Latency First response latency of the maintainer in the PR C
Contributor Activity Number of events by the contributor in the PR C
Participants Activity Number of events by the participants in the PR C
Bots Activity Number of events by the bots in the PR C

Maintainers Responsiveness. The past responsiveness of maintainers can serve as an indicator of their

future response times. Specifically, a history of delayed responses may be interpreted as inattentiveness or

lack of engagement, which can demotivate contributors, subsequently dampening their responsiveness [24, 8].

To quantify this feature, we calculate the median first response latency of maintainers for PRs they responded

to over the last three months.

Community Size. High levels of community engagement can introduce diverse inputs and increased

demands on maintainers, potentially leading to delayed responses [22, 9]. Nevertheless, active community

participation reflects a thriving project, which can encourage prompt responses by contributors. To quantify

this feature, we count the number of active practitioners (excluding maintainers and bots) in the project over

the last three months.

Contributor Experience. Experienced contributors tend to submit higher-quality PRs and communicate

more effectively, potentially expediting responses from maintainers [21, 22]. Their familiarity with the

project’s dynamics and expectations often leads to quicker responses to feedback and revision requests [26].

To quantify this feature, we calculate the number of PRs a contributor has previously submitted to the project.

Contributor Performance. Contributors who consistently have a high success rate with their submissions

often produce PRs that align closely with the project’s standards, likely receiving quicker responses from

82

maintainers [21, 22]. On the other hand, contributors who are familiar with the project’s expectations typically

respond more promptly to feedback [26]. To quantify this feature, we calculate the ratio of a contributor’s

successfully merged PRs to their total submissions in the project.

Contributor Backlog. A backlog of PRs from a contributor may suggest they are overextended or tend to

submit PRs that require extensive review, potentially leading to delayed responses from maintainers [24].

Additionally, having multiple pending submissions may divide the contributor’s attention, slowing their

response times. To quantify this feature, we count the number of a contributor’s unresolved PRs in the project.

Contributor Responsiveness. The past responsiveness of a contributor can serve as an indicator of their

future response times. Previous timely responses not only exhibit commitment but also foster a cycle of

timely feedback from maintainers [24, 8]. To quantify this feature, we calculate the median latency of the

contributor’s first responses in prior PRs within the project.

Description Length. A description that is both detailed and concise can significantly aid maintainers in

evaluating the proposed changes, potentially resulting in faster response times [21, 22]. A clear description

may also minimize the need for further clarification or modifications, allowing contributors to promptly and

efficiently address feedback from maintainers [26]. To quantify this feature, we count the number of words in

both the title and description of the PR.

Commits. PRs with fewer commits often facilitate a smoother review process, leading to quicker responses

from maintainers [21, 22]. On the other hand, contributors who craft meaningful commits are also likely

more motivated and attentive to feedback, resulting in prompt responses [26]. To quantify this feature, we

count the number of commits submitted to the PR.

Changed Lines. PRs with extensive changes are often more difficult and time-consuming for maintainers

to review, leading to delayed responses [21, 22]. Contributors of such PRs also typically need more time to

address the changes requested by the maintainers [26]. To quantify this feature, we count the number of lines

that have been changed in the commits included in the PR.

Changed Files. PRs that touch multiple files require the reviewer to go through changes across different

files, which could extend the time it takes for maintainers to respond [21, 22]. Similar to PRs with many

changed lines, those that change many files often reflect a significant effort by contributors, making them

more eager to respond to feedback. However, addressing feedback on multiple files may take contributors

more time [26]. To quantify this feature, we count the number of files changed in the PR’s commits.

Submission Day. PRs submitted closer to weekends tend to receive slower responses due to reduced

83

activity from maintainers compared to normal working days [134, 9]. To quantify this feature, we record the

day of the week on which the PR is submitted, with all times standardized to the UTC timezone.

Submission Hour. Similar to submission day, PRs submitted during the usual working or active hours of

maintainers tend to receive quicker responses. In contrast, those submitted outside of these hours might face

delays, as maintainers may not be readily available or active [9]. To quantify this feature, we record the hour

on which the PR is submitted, with all times standardized to the UTC timezone.

Review Day. Similar to PR submission day, reviews conducted on weekdays might align more closely

with the schedules of contributors who approach their work on the project professionally, encouraging timely

responses [9]. To quantify this feature, we record the day of the week when the maintainer’s first response is

submitted, with all times standardized to the UTC timezone.

Review Hour. If the review hour aligns with contributors’ usual active hours, it improves the chances that

the contributor respond more promptly [9]. To quantify this feature, we record the hour of the maintainer’s

first response to the PR, with all times standardized to the UTC timezone.

Review Latency. Prior studies show that the first response latency of maintainers is directly correlated

with the total duration of the PR review process [21, 22]. Timely responses from maintainers enhance

contributors’ engagement with the project [26]. However, delays in reviews can lead to frustration and

potential PR abandonment [24, 8, 107]. To quantify this feature, we measure the time it takes for maintainers

to issue their first response to a PR in hours.

Contributor Activity. The level of activity exhibited by a contributor during the review process can be a

sign of their engagement and dedication to the PR, which often correlates with quicker responsiveness to

feedback [8]. To quantify this feature, we count the number of events initiated by the contributor following

the PR’s submission.

Participants Activity. The level of activity from participants, excluding maintainers and bots, during the

review process indicates the community’s interest and engagement with a specific PR. When a PR attracts

attention and constructive comments from the community, it tends to encourage and motivate contributors

to respond more quickly [8]. To quantify this feature, we count the number of events initiated by these

participants following the PR’s submission.

Bots Activity. Bots play an essential role in facilitating the review process by automating repetitive

tasks. However, excessive or inappropriate bot activity disrupts contributors, potentially impeding their

responsiveness and engagement [29, 34, 28]. To quantify this feature, we count the number of events triggered

84

by bots after the submission of the PR.

5.2.4 Data Preprocessing

In the following, we explain how we preprocess the dataset before constructing our models.

Data Filtering. We exclude PRs submitted by bots to avoid skewing response latency data. Bots typically

receive different treatment from maintainers, leading to atypical response patterns. This can misrepresent the

typical response dynamics between human maintainers and contributors as bot interactions do not mirror

human behavior.

Feature Correlation Analysis. The presence of multicollinearity [82] can adversely affect both the

performance and interpretability of machine learning models [135]. To mitigate this issue, we identify highly

correlated features using the Spearman rank correlation test [83] as a nonparametric test that does not require

normally distributed data. Then, we conduct the analysis on the entire dataset to ensure that the identified

correlations are consistent across all the studied projects. For strongly correlated features with |𝜌 | ≥ 0.6 (as

suggested by [85]), we keep the most interpretable feature in the context of our study and discard the rest.

Accordingly, we dropped Changed Lines, Changed Files, Contributor Experience, and Submission Volume for

both the maintainers and contributors models.

Feature Transformation. Skewed data can negatively impact machine learning models that expect

normally distributed data. To address this issue, we apply log transformation to the features using log(𝑥 + 1).

For models other than tree-based ones, where having a comparable scale for features is crucial for optimal

performance, we further standardize the features using the Z-score normalization technique to achieve a

distribution with a mean of zero and a standard deviation of one.

5.2.5 Model Construction and Evaluation

We build and validate various machine learning models that use the extracted features for predicting the

first response latency of maintainers and contributors. The models classify the response times into one of the

following three classes: 1) within 1 day, 2) 1 day to 1 week, 3) more than 1 week. This classification scheme

is adapted from the study conducted by Hasan et al. [21], which categorized the response times into four

groups: 1) within 1 day, 2) 1 day to 1 week, 3) 1 week to 1 month, and 4) more than 1 month. However, we

combined the last two categories since PRs with first responses more than one month are rare.

85

We experiment with various classifier models to identify which ones most accurately predict the first

response latency of maintainers and contributors across the studied projects. The selected models include

CatBoost (CB) [136], K-Nearest Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB), Neural

Network (NN), Random Forest (RF), and Support Vector Machine (SVM). CatBoost is recommended for

multiclass imbalanced datasets [137]. Other models are also popular in the software engineering literature

[138, 139]. For each project, we train two distinct models using the corresponding selected features: one

focusing on the first response latency of maintainers and another on the first response latency of contributors.

To evaluate the performance of our models, we use Time Series cross-validation. This technique is a variation

of K-Fold cross-validation that takes into account the temporal nature of our data, thus preventing future

information from leaking to training sets. In each split, the first 𝑘 folds serve as the training set and the

(𝑘 + 1)-th fold serves as the test set. To measure the performance of the models, we rely on the following two

threshold-independent metrics that are commonly used to evaluate model performance in the presence of an

imbalanced dataset [90]:

• AUC-ROC: This metric measures the area under the Receiver Operating Characteristic (ROC) curve

[91], which plots the true positive rate against the false positive rate at different thresholds. AUC-ROC

values range from 0 to 1, with a value greater than 0.5 indicating that the model performs better than a

no-skill classifier.

• AUC-PR: This metric measures the area under the Precision-Recall (PR) curve [92], which plots the

precision against the recall across different thresholds. AUC-PR also ranges from 0 to 1. However, the

performance of a no-skill classifier is determined by the class distribution.

These metrics provide a comprehensive assessment of model discriminative capability across various

probability thresholds, allowing for a robust and generalized evaluation of performance. To measure these

metrics, we adopt the One-vs-Rest (OvR) approach [140] commonly used for evaluating multiclass classifiers

[141]. This approach decomposes the multiclass classification problem into multiple binary classification

problems, each focusing on a single class against all others. The metrics are then computed for each binary

problem and averaged to provide an aggregated overview of the model’s capability across different classes.

Using this approach, we can perform a detailed evaluation of the model’s capability to distinguish each class,

ensuring that the model is not biased towards any particular class and can perform well across all classes.

Finally, we calculate the relative improvement compared to a no-skill classifier as our baseline. To identify

86

the best-performing models, we rely on the nonparametric Scott-Knott ESD test [142]. This is a multiple

comparison approach that leverages hierarchical clustering to partition the set of median values of techniques

into statistically distinct groups with non-negligible differences.

5.2.6 Model Analysis

To compare the relative importance of different features, we perform permutation feature importance

analysis [94, 143] for each project. This approach permutes a feature to break the association between the

feature and the outcome (i.e., the response latency). The importance of the feature is then measured by how

much error the permutated data introduces compared to the original error (i.e., loss in AUC in our case).

Therefore, the most important features have the largest impact on the performance of our models and thus are

more useful for making accurate predictions. After calculating the importance of each feature in each project,

we apply the nonparametric Scott-Knott ESD test [142] to obtain the ranking of each feature. To understand

the impact of each feature on the model’s predictions, we employ SHapley Additive exPlanation analysis

(SHAP) [127, 143]. We calculate the SHAP values for each project and then aggregate the results to gain a

holistic understanding of the impact of a feature across all the studied projects.

5.3 Maintainer Response Latency

In this section, we aim to understand if we can accurately predict the first response latency of maintainers

following the submission of a PR. Then, we want to identify and discuss the impact of the most important

features in accurately predicting the first response latency of maintainers across the studied projects.

5.3.1 RQ1: How well can we predict the first response latency of maintainers?

Table 5.3 and Table 5.4 compare the performance of various models for predicting the first response

latency of maintainers in terms of the AUC-ROC and AUC-PR metrics, respectively. The best-performing

models according to the Scott-Knott ESD test are highlighted in bold. It is worth noting that multiple models

may be identified as best-performing when the difference in their performance is not statistically significant.

From the tables, we find that the CB model consistently outperforms all other models in every project in

both AUC-ROC and AUC-PR. Compared to the baseline (i.e., a no-skill classifier), the CB model achieves

considerable improvements, with increases ranging from 16% to 45% in AUC-ROC and from 20% to 118%

87

Table 5.3: AUC-ROC of different models for predicting the first response latency of maintainers across the
studied projects.

Project CB KNN LR NB NN RF SVM

Odoo 0.65 (31%) 0.59 (18%) 0.63 (26%) 0.62 (24%) 0.64 (28%) 0.60 (20%) 0.63 (26%)
Kubernetes 0.63 (25%) 0.56 (12%) 0.62 (24%) 0.60 (19%) 0.61 (22%) 0.56 (12%) 0.58 (16%)
Elasticsearch 0.67 (33%) 0.58 (15%) 0.63 (25%) 0.61 (22%) 0.64 (29%) 0.56 (12%) 0.57 (15%)
PyTorch 0.64 (29%) 0.57 (14%) 0.61 (23%) 0.62 (24%) 0.62 (25%) 0.57 (14%) 0.59 (18%)
Rust 0.59 (19%) 0.53 (6%) 0.59 (18%) 0.58 (15%) 0.57 (15%) 0.52 (4%) 0.53 (7%)
DefinitelyTyped 0.58 (16%) 0.54 (9%) 0.58 (16%) 0.55 (10%) 0.56 (11%) 0.55 (10%) 0.57 (13%)
HomeAssistant 0.69 (38%) 0.59 (19%) 0.63 (26%) 0.61 (22%) 0.67 (34%) 0.57 (15%) 0.59 (18%)
Ansible 0.61 (23%) 0.56 (12%) 0.60 (20%) 0.57 (15%) 0.60 (20%) 0.57 (14%) 0.60 (20%)
CockroachDB 0.67 (35%) 0.58 (15%) 0.66 (32%) 0.63 (25%) 0.64 (27%) 0.58 (15%) 0.57 (14%)
Swift 0.63 (27%) 0.55 (10%) 0.61 (21%) 0.59 (19%) 0.62 (23%) 0.54 (7%) 0.55 (9%)
Flutter 0.71 (42%) 0.61 (23%) 0.67 (35%) 0.64 (29%) 0.67 (35%) 0.61 (22%) 0.64 (28%)
Spark 0.65 (30%) 0.57 (13%) 0.61 (22%) 0.59 (18%) 0.62 (24%) 0.56 (12%) 0.57 (14%)
Python 0.62 (24%) 0.55 (10%) 0.60 (20%) 0.57 (15%) 0.60 (19%) 0.56 (12%) 0.59 (18%)
Sentry 0.72 (45%) 0.60 (19%) 0.66 (31%) 0.68 (36%) 0.69 (38%) 0.57 (14%) 0.61 (21%)
PaddlePaddle 0.62 (24%) 0.56 (11%) 0.59 (18%) 0.60 (19%) 0.60 (21%) 0.55 (11%) 0.58 (15%)
Godot 0.62 (24%) 0.55 (11%) 0.62 (24%) 0.60 (20%) 0.60 (21%) 0.54 (9%) 0.57 (13%)
Rails 0.64 (28%) 0.57 (13%) 0.64 (27%) 0.60 (20%) 0.63 (25%) 0.53 (6%) 0.57 (15%)
Grafana 0.69 (38%) 0.59 (19%) 0.65 (31%) 0.65 (31%) 0.67 (35%) 0.58 (15%) 0.60 (20%)
ClickHouse 0.63 (25%) 0.55 (10%) 0.57 (14%) 0.58 (15%) 0.60 (20%) 0.56 (11%) 0.57 (14%)
Symfony 0.62 (24%) 0.54 (8%) 0.62 (24%) 0.60 (20%) 0.60 (19%) 0.52 (3%) 0.54 (9%)

Average 0.64 (29%) 0.57 (13%) 0.62 (24%) 0.60 (21%) 0.62 (25%) 0.56 (12%) 0.58 (16%)

Values in parentheses show the percentage improvement compared to the baseline.

in AUC-PR across different projects.

To understand the factors contributing to the misclassification of the first response latency of maintainers,

we manually examined the misclassified PRs by the CB model. The most important reason is that the

predictions are based on the data available up until the time of PR submission. However, there are various

post-submission factors that affect how long it takes for maintainers to respond. For example, if a PR fails

Continuous Integration (CI) tests, maintainers usually wait for the errors to be fixed before starting the review

[24, 8]. Furthermore, the presence of bot-generated responses is known to prolong the first response latency

of maintainers [21].

The CB model can predict the first response latency of maintainers with an average improvement of

29% in AUC-ROC and 51% in AUC-PR compared to a no-skilled classifier.

88

Table 5.4: AUC-PR of different models for predicting the first response latency of maintainers across the
studied projects.

Project CB KNN LR NB NN RF SVM

Odoo 0.48 (45%) 0.40 (21%) 0.44 (34%) 0.43 (30%) 0.46 (39%) 0.40 (19%) 0.45 (34%)
Kubernetes 0.42 (34%) 0.37 (11%) 0.42 (35%) 0.40 (25%) 0.41 (28%) 0.36 (10%) 0.39 (21%)
Elasticsearch 0.44 (58%) 0.37 (17%) 0.41 (44%) 0.39 (37%) 0.42 (49%) 0.37 (15%) 0.38 (25%)
PyTorch 0.44 (43%) 0.37 (15%) 0.41 (32%) 0.41 (32%) 0.42 (36%) 0.37 (13%) 0.40 (28%)
Rust 0.38 (30%) 0.35 (6%) 0.37 (25%) 0.37 (21%) 0.37 (21%) 0.34 (4%) 0.35 (12%)
DefinitelyTyped 0.41 (20%) 0.36 (9%) 0.40 (21%) 0.37 (10%) 0.39 (15%) 0.36 (8%) 0.39 (16%)
HomeAssistant 0.42 (79%) 0.37 (25%) 0.38 (45%) 0.38 (35%) 0.41 (67%) 0.36 (22%) 0.37 (39%)
Ansible 0.43 (33%) 0.38 (13%) 0.41 (26%) 0.39 (17%) 0.42 (27%) 0.37 (12%) 0.42 (27%)
CockroachDB 0.42 (67%) 0.37 (19%) 0.42 (59%) 0.39 (44%) 0.41 (48%) 0.37 (19%) 0.38 (35%)
Swift 0.40 (50%) 0.35 (13%) 0.38 (36%) 0.37 (24%) 0.38 (41%) 0.35 (9%) 0.35 (20%)
Flutter 0.47 (76%) 0.40 (32%) 0.44 (60%) 0.41 (47%) 0.45 (63%) 0.39 (29%) 0.43 (52%)
Spark 0.42 (52%) 0.36 (17%) 0.39 (31%) 0.38 (23%) 0.40 (39%) 0.36 (13%) 0.37 (24%)
Python 0.41 (30%) 0.36 (10%) 0.40 (26%) 0.38 (19%) 0.40 (24%) 0.37 (12%) 0.40 (23%)
Sentry 0.45 (118%) 0.37 (31%) 0.41 (82%) 0.40 (71%) 0.42 (105%) 0.37 (26%) 0.38 (57%)
PaddlePaddle 0.42 (37%) 0.37 (15%) 0.39 (29%) 0.39 (28%) 0.40 (31%) 0.36 (10%) 0.39 (25%)
Godot 0.41 (35%) 0.36 (12%) 0.40 (31%) 0.39 (24%) 0.40 (29%) 0.35 (8%) 0.37 (18%)
Rails 0.40 (43%) 0.36 (13%) 0.40 (42%) 0.38 (25%) 0.39 (34%) 0.34 (8%) 0.36 (21%)
Grafana 0.45 (82%) 0.38 (26%) 0.42 (67%) 0.41 (57%) 0.43 (72%) 0.37 (20%) 0.39 (44%)
ClickHouse 0.41 (43%) 0.36 (12%) 0.38 (23%) 0.38 (26%) 0.40 (35%) 0.36 (11%) 0.38 (27%)
Symfony 0.39 (39%) 0.35 (10%) 0.38 (38%) 0.38 (27%) 0.37 (28%) 0.34 (5%) 0.35 (19%)

Average 0.42 (51%) 0.37 (16%) 0.40 (39%) 0.39 (31%) 0.41 (41%) 0.36 (14%) 0.38 (28%)

Values in parentheses show the percentage improvement compared to the baseline.

89

Submission
Day

Commits Contributor
Performance

Description
Length

Contributor
Responsiveness

Submission
Hour

Contributor
Backlog

Project
Backlog

Maintainers
Responsiveness

Maintainers
Availability

Community
Size

0

5

10
Ra

nk

Figure 5.1: Ranking of the importance of different features for predicting the first response latency of
maintainers across the studied projects. Darker colors indicate higher importance.

5.3.2 RQ2: What are the major predictors of the first response latency of maintainers?

To conduct this analysis, we use the CB models due to their superior performance. Figure 5.1 overviews

the rankings of different features based on their importance in accurately predicting the first response latency

of maintainers across the studied projects. From the figure, we observe that Submission Day, Commits,

Contributor Performance, Description Length, and Contributor Responsiveness are the top five most important

features. This observation implies that the characteristics of PRs and contributors have a greater influence on

how quickly maintainers provide their first response compared to project characteristics. We were surprised

by this observation, as we expected that at least historical maintainer responsiveness to be a key predictor of

future response times.

Figure 5.2 illustrates the impact of the top five most important features on the probability of receiving

the first maintainer response on the same day of submitting a PR. We observe that PRs submitted earlier in

the week, containing an average or slightly above-average number of commits at submission, and with more

concise descriptions are more likely to get faster responses. Similarly, contributors with a higher acceptance

rate and a history of timely responses in the project tend to obtain quicker responses. However, it is concerning

that inexperienced contributors are prone to encounter delays in receiving feedback. This lack of timely

responsiveness from maintainers is frequently cited as a key reason why contributors, especially novice or

casual contributors, may abandon their PRs [24, 8, 107] and even cease further contributing to the project

[25, 104].

The Submission Day, Commits, Contributor Performance, Description Length, and Contributor

Responsiveness have the most influence on the first response latency of maintainers.

90

 More than 1 Day Within 1 Day

Contributor Responsiveness
Description Length

Contributor Performance
Commits

Submission Day

Low

High

Va
lu

e

Figure 5.2: Impact of the top 5 most important features on the prediction of the first response latency of
maintainers across the studied projects. Wider violins indicate higher density and more frequent values.

5.4 Contributor Response Latency

In this section, we aim to understand if we can accurately predict the first response latency of the contributor

of a PR after receiving the first response from the maintainers. Then, we want to identify and discuss the

impact of the most important features in accurately predicting the first response latency of contributors across

the studied projects.

5.4.1 RQ3: How well can we predict the first response latency of contributors?

Table 5.5 and Table 5.6 compare the performance of various models for predicting the first response

latency of contributors in terms of the AUC-ROC and AUC-PR metrics, respectively. The best-performing

models according to the Scott-Knott ESD test are highlighted in bold. It is worth noting that multiple models

may be identified as best-performing when the difference in their performance is not statistically significant.

From the tables, we find that similar to the first response latency of maintainers (see Section 5.3), the CB

model continues to demonstrate superior performance in both AUC-ROC and AUC-PR across all projects.

Compared to the baseline (i.e., a no-skill classifier), the CB model achieves significant improvements, with

increases ranging from 24% to 50% in AUC-ROC and from 39% to 142% in AUC-PR across different

projects.

To understand the factors contributing to the misclassification of the first response latency of contributors,

we manually examined the misclassified PRs by the CB model. We find that the quality of feedback and the

extent of requested changes also influence how long it takes for contributors to respond after the feedback.

This observation aligns with prior findings in the literature that emphasize the importance of quality review

comments from the maintainers [5, 144].

91

Table 5.5: AUC-ROC of different models for predicting the first response latency of contributors across the
studied projects.

Project CB KNN LR NB NN RF SVM

Odoo 0.66 (32%) 0.55 (11%) 0.64 (28%) 0.62 (24%) 0.62 (24%) 0.57 (13%) 0.59 (19%)
Kubernetes 0.68 (37%) 0.58 (16%) 0.68 (35%) 0.64 (27%) 0.65 (30%) 0.59 (17%) 0.61 (21%)
Elasticsearch 0.74 (48%) 0.59 (18%) 0.71 (41%) 0.67 (35%) 0.69 (38%) 0.58 (16%) 0.60 (21%)
PyTorch 0.68 (35%) 0.58 (15%) 0.67 (33%) 0.64 (29%) 0.64 (28%) 0.58 (16%) 0.60 (20%)
Rust 0.64 (28%) 0.56 (12%) 0.64 (28%) 0.62 (23%) 0.61 (21%) 0.56 (12%) 0.55 (11%)
DefinitelyTyped 0.62 (24%) 0.55 (10%) 0.61 (21%) 0.59 (18%) 0.60 (21%) 0.54 (8%) 0.56 (11%)
HomeAssistant 0.75 (49%) 0.62 (23%) 0.72 (44%) 0.68 (36%) 0.71 (43%) 0.58 (15%) 0.58 (17%)
Ansible 0.66 (32%) 0.58 (17%) 0.66 (33%) 0.61 (22%) 0.64 (27%) 0.57 (15%) 0.61 (22%)
CockroachDB 0.72 (44%) 0.58 (15%) 0.71 (41%) 0.66 (32%) 0.66 (31%) 0.57 (14%) 0.58 (16%)
Swift 0.72 (44%) 0.58 (16%) 0.69 (38%) 0.68 (35%) 0.67 (34%) 0.56 (12%) 0.59 (19%)
Flutter 0.72 (44%) 0.59 (17%) 0.69 (37%) 0.62 (23%) 0.65 (30%) 0.56 (13%) 0.60 (20%)
Spark 0.73 (45%) 0.59 (18%) 0.70 (40%) 0.69 (38%) 0.68 (36%) 0.57 (14%) 0.61 (21%)
Python 0.68 (35%) 0.58 (15%) 0.67 (34%) 0.66 (31%) 0.65 (31%) 0.54 (9%) 0.58 (16%)
Sentry 0.74 (49%) 0.58 (17%) 0.69 (38%) 0.66 (33%) 0.69 (38%) 0.58 (16%) 0.60 (20%)
PaddlePaddle 0.67 (35%) 0.55 (10%) 0.64 (28%) 0.62 (24%) 0.61 (22%) 0.55 (10%) 0.56 (12%)
Godot 0.67 (35%) 0.59 (18%) 0.68 (35%) 0.66 (32%) 0.66 (31%) 0.56 (12%) 0.61 (23%)
Rails 0.68 (36%) 0.57 (13%) 0.66 (33%) 0.62 (25%) 0.62 (24%) 0.55 (10%) 0.58 (15%)
Grafana 0.75 (50%) 0.60 (21%) 0.71 (42%) 0.70 (40%) 0.71 (41%) 0.59 (17%) 0.60 (20%)
ClickHouse 0.70 (41%) 0.57 (14%) 0.69 (38%) 0.64 (28%) 0.67 (34%) 0.57 (13%) 0.59 (19%)
Symfony 0.68 (36%) 0.57 (15%) 0.68 (35%) 0.66 (31%) 0.64 (29%) 0.55 (11%) 0.59 (18%)

Average 0.69 (39%) 0.58 (16%) 0.68 (35%) 0.65 (29%) 0.65 (31%) 0.57 (13%) 0.59 (18%)

Values in parentheses show the percentage improvement compared to the baseline.

92

Table 5.6: AUC-PR of different models for predicting the first response latency of contributors across the
studied projects.

Project CB KNN LR NB NN RF SVM

Odoo 0.44 (58%) 0.36 (12%) 0.42 (49%) 0.40 (35%) 0.41 (39%) 0.37 (15%) 0.39 (34%)
Kubernetes 0.45 (62%) 0.37 (19%) 0.44 (60%) 0.41 (40%) 0.43 (48%) 0.38 (20%) 0.40 (37%)
Elasticsearch 0.46 (142%) 0.37 (28%) 0.43 (112%) 0.40 (72%) 0.42 (97%) 0.37 (32%) 0.38 (58%)
PyTorch 0.45 (70%) 0.37 (19%) 0.43 (60%) 0.41 (45%) 0.42 (55%) 0.37 (20%) 0.40 (39%)
Rust 0.41 (46%) 0.36 (14%) 0.41 (51%) 0.39 (35%) 0.39 (36%) 0.36 (13%) 0.36 (22%)
DefinitelyTyped 0.40 (39%) 0.36 (13%) 0.39 (30%) 0.38 (23%) 0.39 (34%) 0.35 (9%) 0.37 (20%)
HomeAssistant 0.44 (112%) 0.37 (36%) 0.43 (103%) 0.41 (73%) 0.42 (93%) 0.37 (29%) 0.38 (48%)
Ansible 0.45 (51%) 0.38 (21%) 0.45 (50%) 0.41 (32%) 0.42 (40%) 0.37 (16%) 0.41 (34%)
CockroachDB 0.43 (95%) 0.36 (21%) 0.42 (95%) 0.39 (52%) 0.39 (61%) 0.36 (25%) 0.37 (38%)
Swift 0.43 (108%) 0.36 (24%) 0.41 (99%) 0.39 (69%) 0.40 (72%) 0.36 (31%) 0.37 (54%)
Flutter 0.44 (141%) 0.37 (30%) 0.42 (125%) 0.38 (50%) 0.40 (68%) 0.36 (42%) 0.38 (50%)
Spark 0.45 (106%) 0.37 (27%) 0.44 (104%) 0.42 (75%) 0.42 (77%) 0.37 (24%) 0.39 (59%)
Python 0.42 (63%) 0.36 (20%) 0.42 (65%) 0.40 (51%) 0.41 (56%) 0.35 (12%) 0.38 (37%)
Sentry 0.46 (153%) 0.36 (21%) 0.42 (121%) 0.38 (64%) 0.41 (87%) 0.38 (45%) 0.37 (48%)
PaddlePaddle 0.41 (76%) 0.35 (14%) 0.39 (65%) 0.38 (47%) 0.38 (50%) 0.35 (19%) 0.36 (30%)
Godot 0.42 (63%) 0.37 (26%) 0.42 (66%) 0.40 (52%) 0.41 (62%) 0.36 (20%) 0.39 (46%)
Rails 0.41 (76%) 0.36 (20%) 0.41 (73%) 0.38 (47%) 0.38 (50%) 0.36 (22%) 0.37 (40%)
Grafana 0.44 (120%) 0.37 (30%) 0.43 (114%) 0.40 (79%) 0.41 (91%) 0.37 (29%) 0.37 (51%)
ClickHouse 0.46 (114%) 0.37 (34%) 0.45 (115%) 0.40 (52%) 0.43 (93%) 0.37 (34%) 0.39 (66%)
Symfony 0.42 (78%) 0.36 (24%) 0.41 (77%) 0.39 (50%) 0.40 (57%) 0.36 (25%) 0.38 (46%)

Average 0.43 (89%) 0.36 (23%) 0.42 (82%) 0.40 (52%) 0.41 (63%) 0.36 (24%) 0.38 (43%)

Values in parentheses show the percentage improvement compared to the baseline.

93

Review
Latency

Review
Day

Contributor
Responsiveness

Commits Contributor
Performance

Contributor
Activity

Contributor
Backlog

Review
Hour

Description
Length

Participants
Activity

Bots
Activity

Maintainers
Responsiveness

Project
Backlog

Community
Size

Maintainers
Availability

0

5

10

15
Ra

nk

Figure 5.3: Ranking of the importance of different features for predicting the first response latency of
contributors across the studied projects. Darker colors indicate higher importance.

The CB model can predict the first response latency of contributors with an average improvement of

39% in AUC-ROC and 89% in AUC-PR compared to a no-skilled classifier.

5.4.2 RQ4: What are the major predictors of the first response latency of contributors?

To conduct this analysis, we use the CB models due to their superior performance. Figure 5.3 overviews

the rankings of different features based on their importance in accurately predicting the first response latency

of contributors across the studied projects. From the figure, we observe that Review Latency, Review Day,

Contributor Responsiveness, Commits, and Contributor Performance are the top five most important features.

This observation highlights the great influence of the characteristics of the review process and contributors on

how quickly the contributors first respond.

Figure 5.4 illustrates the the impact of the top five most important features on the probability of contributors

replying on the same day they receive the first maintainers response. We observe that lower latency in

the first maintainer response correlates with a quicker subsequent response from the contributor. In other

words, contributors tend to reply late if they have experienced delayed responses, leading to a cascade effect

in the review process. Notably, the first response latency of maintainers not only affects the contributor

responsiveness but is also known to directly impact the duration [21, 22] and the outcome [23, 24, 8] of the

PR, as well as the likelihood of future contributions by the contributor to the project [25, 21]. Furthermore, we

find contributors of PRs that received the first response of maintainers earlier in the week, and contributors of

PRs containing an average or slightly above-average number of commits till the first response of maintainers

are more likely to provide faster responses. Similarly, contributors with a history of timely responses in the

project and with a higher acceptance rate tend to give quicker responses.

94

 More than 1 Day Within 1 Day

Contributor Performance
Commits

Contributor Responsiveness
Review Day

Review Latency

Low

High

Va
lu

e

Figure 5.4: Impact of the top 5 most important features on the prediction of the first response latency of
contributors across the studied projects. Wider violins indicate higher density and more frequent values.

The Review Latency, Review Day, Contributor Responsiveness, Commits, and Contributor Performance

have the most influence on the first response latency of contributors.

5.5 Cross-Project Setting

Building accurate predictive models for new projects is often challenging due to the limited historical data

available. However, one way to overcome this challenge is through cross-project prediction, which enables

such projects to leverage the insights and patterns observed in older, well-established projects. To evaluate

the effectiveness of this approach, for each studied project, we train a CB model (as it has shown superior

performance in our previous analyses) on all other projects and then test on that project.

Table 5.7 compares the performance of various models in predicting the first response latency of

maintainers and contributors in a cross-project setting in terms of the AUC-ROC and AUC-PR metrics,

respectively. We observe that the models for predicting the maintainers response latency achieve improvements

ranging from 22% to 58% in AUC-ROC and from 28% to 122% in AUC-PR. The models for predicting

the contributors response latency also demonstrate improvements ranging from 26% to 56% in AUC-ROC

and from 35% to 149% in AUC-PR. Furthermore, we find that Submission Day, Commits, Contributor

Performance, Maintainers Responsiveness, and Contributor Responsiveness are the most important for

the first response latency of maintainers; and Review Latency, Review Day, Contributor Responsiveness,

Commits, and Contributor Activity are the major predictors of the first response latency of contributors (see

Appendix 6.2.5). The results indicate that our approach can be effective for predicting both the first response

latency of maintainers and the first response latency of contributors in a cross-project setting.

95

Table 5.7: Performance of the models for predicting the first response latency of maintainers and contributors
in a cross-project setting.

Maintainers Contributors
Project AUC-ROC AUC-PR AUC-ROC AUC-PR

Odoo 0.64 (28%) 0.46 (37%) 0.66 (32%) 0.44 (57%)
Kubernetes 0.68 (36%) 0.45 (50%) 0.70 (40%) 0.46 (73%)
Elasticsearch 0.67 (35%) 0.44 (61%) 0.74 (49%) 0.46 (133%)
PyTorch 0.66 (33%) 0.45 (50%) 0.70 (40%) 0.46 (71%)
Rust 0.64 (29%) 0.40 (48%) 0.67 (35%) 0.43 (65%)
DefinitelyTyped 0.61 (22%) 0.43 (28%) 0.63 (26%) 0.41 (35%)
HomeAssistant 0.65 (30%) 0.39 (55%) 0.74 (48%) 0.44 (106%)
Ansible 0.64 (28%) 0.45 (38%) 0.69 (39%) 0.47 (69%)
CockroachDB 0.74 (49%) 0.45 (100%) 0.74 (48%) 0.44 (121%)
Swift 0.68 (35%) 0.41 (63%) 0.73 (46%) 0.43 (111%)
Flutter 0.79 (58%) 0.50 (122%) 0.78 (56%) 0.46 (149%)
Spark 0.67 (34%) 0.44 (61%) 0.73 (46%) 0.46 (111%)
Python 0.61 (22%) 0.41 (29%) 0.69 (39%) 0.43 (66%)
Sentry 0.71 (42%) 0.44 (107%) 0.74 (47%) 0.44 (140%)
PaddlePaddle 0.65 (31%) 0.43 (43%) 0.67 (33%) 0.40 (72%)
Godot 0.63 (27%) 0.41 (35%) 0.68 (37%) 0.42 (69%)
Rails 0.66 (33%) 0.43 (64%) 0.71 (43%) 0.44 (101%)
Grafana 0.70 (40%) 0.45 (77%) 0.76 (52%) 0.45 (136%)
ClickHouse 0.62 (24%) 0.40 (35%) 0.72 (44%) 0.48 (122%)
Symfony 0.64 (28%) 0.41 (53%) 0.70 (40%) 0.42 (85%)

Average 0.67 (33%) 0.43 (58%) 0.71 (42%) 0.44 (95%)

Values in parentheses show the percentage improvement compared to the
baseline.

96

5.6 Limitations

In this section, we discuss the threats to the validity of our study.

5.6.1 Internal Validity

The first threat relates to the completeness of our bot detection approach. To mitigate this threat, we

manually examined actors with high activity levels or fast response times and added them to our bot list

accordingly. The second threat relates to the suitability of our features. To mitigate this threat, we consulted

the literature on pull-based development [22, 23] and also drew from our previous experience studying PR

abandonment [24, 28]. Still, there could be additional features that we did not consider or that are difficult to

quantify, such as code quality, feedback quality, and PR urgency. The third threat relates to the choice of

classifiers. To mitigate this threat, we employed seven different classifiers commonly used in the software

engineering literature. CatBoost is also acclaimed for its effectiveness with multi-class imbalanced datasets,

making it particularly suitable for our study.

5.6.2 External Validity

Our study is based on 20 large and popular open-source projects on GitHub. Although we believe these

projects are more likely to benefit from our approach due to their higher activity levels, we recognize that they

cannot represent the entire open-source ecosystem. In other words, the studied projects may not represent

other open-source projects with different sizes, maturity, popularity, workload, dynamics, social structures,

and development practices. Still, we evaluated our approach in a cross-project setting to demonstrate its

effectiveness across different projects. Future research can replicate our approach using a more diverse

selection of projects.

5.7 Chapter Summary

The objective of this chapter was to develop the first machine learning approach for predicting the latency

of both maintainers’ first response following a PR submission and the contributor’s first response after

receiving the first maintainer feedback. We curated a dataset of 20 large and popular open-source projects

on GitHub and extracted 21 features characterizing projects, contributors, PRs, and review processes. The

97

analyses demonstrated the effectiveness of our approach in predicting the first response latency of maintainers

and contributors both in project-specific and cross-project settings. Furthermore, the findings highlighted the

significant influence of the timing of submissions and feedback, the complexity of changes, and the track

record of contributors on the response latencies. By providing estimates of waiting times, our approach can

help open-source projects facilitate collaboration between their maintainers and contributors by enabling

them to anticipate and address potential delays proactively during the review process of PRs.

98

Chapter 6

Conclusion and Future Work

In this chapter, we conclude the thesis by summarizing the main work and contributions in each chapter

of the thesis. At the end of the chapter, we also discuss some directions for future research.

6.1 Conclusion

In this thesis, we investigated the underlying dynamics of abandoned PRs, evaluated the helpfulness of

Stale bot as a common solution for dealing with abandoned PRs, and proposed an approach to predict the first

response latency of maintainers and contributors in PRs towards helping to better mitigate PR abandonment

in large open-source projects. In this section, we summarize the work done in the thesis.

Chapter 3: Understanding the Dynamics of Contributor-Abandoned Pull Requests

To better understand the underlying dynamics of contributor-abandoned PRs, we conducted a mixed-

methods study of 10 large open-source projects on GitHub. Using statistical and machine learning techniques,

we found that complex PRs, novice contributors, and lengthy reviews have a higher probability of abandonment

and the rate of PR abandonment fluctuates alongside the projects’ maturity or workload. To identify why

contributors abandon their PRs, we also manually examined a random sample of abandoned PRs. We observed

that the most frequent abandonment reasons are related to the obstacles faced by contributors, followed by the

hurdles imposed by maintainers during the review process. Finally, we surveyed the top core maintainers of

the studied projects to understand their perspectives on dealing with PR abandonment and on our findings.

99

Chapter 4: Understanding the Helpfulness of Stale Bot for Pull-based Development

To better understand if and how Stale bot helps projects in their pull-based development workflow, we

conducted a quantitative empirical study of 20 large open-source projects on GitHub. We found that Stale bot

can help deal with a backlog of unresolved PRs as the projects closed more PRs within the first few months

of adoption. Moreover, Stale bot can help improve the efficiency of the PR review process as the projects

reviewed PRs that ended up merged and resolved PRs that ended up closed faster after the adoption. However,

Stale bot can also negatively affect the contributors as the projects experienced a considerable decrease in their

number of active contributors after the adoption. Therefore, relying solely on Stale bot to deal with inactive

PRs may lead to decreased community engagement and an increased probability of contributor abandonment.

Chapter 5: Predicting the First Response Latency of Maintainers and Contributors in Pull

Requests

We propose a machine learning approach to predict the first response latency of the maintainers following

the submission of a PR, and the first response latency of the contributor after receiving the first response from

the maintainers. We evaluated the effectiveness of our approach on 20 large open-source projects on GitHub.

We also conducted permutation feature importance and SHAP analyses to understand the importance and

impact of different features on the predicted response latencies. We found that our approach is effective in

predicting the first response latency of maintainers and contributors both in project-specific and cross-project

settings. Our findings also indicated the significant influence of the timing of submissions and feedback,

the complexity of changes, and the track record of contributors on the response latencies. By providing

estimates of waiting times, our approach can help open-source projects facilitate collaboration between their

maintainers and contributors by enabling them to anticipate and address potential delays proactively during

the review process of PRs.

6.2 Future Work

In this section, we present an overview of the key directions for future work.

100

6.2.1 Extension of Our Proposed Approach in Practice

In Chapter 5, we developed machine learning models to predict the first response latency of maintainers

and contributors during the review process of PRs. A promising direction for future work is the development

of a comprehensive tool based on our proposed approach. This tool would not only predict anticipated

waiting times but also explain the specific reasons for these delays, utilizing techniques such as LIME

(Local Interpretable Model-agnostic Explanations) [145]. The tool’s functionality could also extend beyond

diagnostics to intervention, by proactively providing customized recommendations to minimize potential

waiting times. This feature would enhance the tool’s practicality and relevance in real-world scenarios. A

crucial aspect of this future work is the empirical evaluation of the tool. This evaluation should assess the

tool’s impact on enhancing collaboration and productivity among maintainers and contributors. Key metrics

for this assessment can include the decrease in response times, the increase in PR success rates, and the

overall satisfaction of all parties involved.

6.2.2 Assistance in Addressing Change Requests in PRs

In Chapter 3, we observed that the majority of contributors in abandoned PRs lacked the necessary

knowledge and experience to effectively address the requested changes by maintainers. Recognizing this

challenge, an important direction for future work is to investigate the potential of Large Language Models

(LLMs) such as GPT-4 to provide specific instructions or generate required changes to address the maintainers’

requests. Such an approach could empower contributors to more effectively respond to change requests,

potentially reducing both the rate of PR abandonment and the review duration.

6.2.3 Assistance in Resolution of CI Failures in PRs

Our investigation in Chapter 3 uncovered the prevalence of Continuous Integration (CI) failures among

abandoned PRs. We observed that contributors frequently struggle with resolving CI failures that arise during

the review process and seek assistance from project maintainers. The project maintainers also emphasized the

critical role of clear and actionable error messages in mitigating the abandonment of PRs. Building upon

these findings, future work should investigate the characteristics and challenges encountered in PRs blocked

by CI failures. The goal is to develop supportive solutions that can diagnose the root causes of the failures

and provide context-aware recommendations for resolving them. Such solutions could reduce the cognitive

101

load on both contributors and maintainers, potentially enhancing the success rate and efficiency of the review

process of PRs.

6.2.4 Automatic Resolution of Merge Conflicts in PRs

In Chapter 3, another common challenge observed among abandoned PRs is the occurrence of merge

conflicts. These conflicts typically arise when the project’s codebase has been updated, requiring contributors

to rebase their local branches, address any conflicts, and then push their updated changes. Merge conflicts

can significantly hinder the review process, leading to delays and extra work for contributors. A critical area

for future work is the development of tools and algorithms to facilitate the automatic resolution of merge

conflicts in PRs. The focus of this work should be on continuously predicting and resolving potential conflicts

before they arise. Such automation could minimize delays and frustrations associated with manual conflict

resolution, potentially leading to a more productive review process.

6.2.5 Smooth Handover Mechanism in PRs

Finally, there are instances where contributors are unable to continue the review process as discussed in

Chapter 3. Such situations may arise due to a lack of time, loss of interest, or other personal and professional

circumstances. Therefore, a key area for future work is the development of a mechanism that enables the

smooth handover of an existing PR to another contributor without requiring the submission of a new PR.

The goal is to ensure that the authorship credits and the existing review discussions in the PR are preserved

and continued seamlessly. This approach could also involve recommending a successor based on relevant

experience, current interest in the project, or the potential benefit associated with continuing the PR.

102

Bibliography

[1] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of the pull-based

software development model. In Proceedings of the 36th International Conference on Software

Engineering (ICSE 2014), pages 345–355, 2014. doi:10.1145/2568225.2568260.

[2] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. Effectiveness of code contribution: from patch-based to

pull-request-based tools. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering (FSE 2016), pages 871–882, 2016. doi:10.1145/2950290.2950364.

[3] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in GitHub: transparency and

collaboration in an open software repository. pages 1277–1286, 2012. doi:10.1145/2145204.2145396.

[4] Jing Jiang, Jiangfeng Lv, Jiateng Zheng, and Li Zhang. How developers modify pull requests in code

review. IEEE Transactions on Reliability, 71(3):1325–1339, 2022. doi:10.1109/TR.2021.3093159.

[5] Zhixing Li, Yue Yu, Tao Wang, ShanShan Li, and Huaiming Wang. Opportunities and challenges in

repeated revisions to pull-requests: an empirical study. Proceedings of the ACM on Human-Computer

Interaction, 6(CSCW2):1–35, 2022. doi:10.1145/3555208.

[6] Gustavo Pinto, Igor Steinmacher, and Marco Aurlio Gerosa. More common than you think: an

in-depth study of casual contributors. In Proceedings of the IEEE 23rd International Confer-

ence on Software Analysis, Evolution, and Reengineering (SANER 2016), pages 112–123, 2016.

doi:10.1109/SANER.2016.68.

[7] Noah Davis. 8% of pull requests are doomed, 2018. URL https://codeclimate.com/blog/

abandoned-pull-requests.

103

https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2950290.2950364
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1109/TR.2021.3093159
https://doi.org/10.1145/3555208
https://doi.org/10.1109/SANER.2016.68
https://codeclimate.com/blog/abandoned-pull-requests
https://codeclimate.com/blog/abandoned-pull-requests

[8] Zhixing Li, Yue Yu, Tao Wang, Gang Yin, ShanShan Li, and Huaimin Wang. Are you still working on

this? An empirical study on pull request abandonment. IEEE Transactions on Software Engineering,

48(6):2173–2188, 2022. doi:10.1109/TSE.2021.3053403.

[9] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen. Work practices

and challenges in pull-based development: the integrator’s perspective. In Proceedings of the

IEEE/ACM 37th International Conference on Software Engineering (ICSE 2015), pages 358–368,

2015. doi:10.1109/ICSE.2015.55.

[10] Poul Kjeldager Srensen. Pull Request #2143 - DefinitelyTyped/DefinitelyTyped, 2014. URL https:

//github.com/DefinitelyTyped/DefinitelyTyped/pull/2143.

[11] GitHub. Stale - GitHub Marketplace, 2023. URL https://github.com/marketplace/stale.

[12] Mairieli Wessel, Igor Steinmacher, Igor Wiese, and Marco Aurlio Gerosa. Should I stale or should

I close? An analysis of a bot that closes abandoned issues and pull requests. In Proceedings of the

IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE 2019), pages 38–42,

2019. doi:10.1109/BotSE.2019.00018.

[13] Brandon Keepers. Stale - GitHub Repository, 2023. URL https://github.com/probot/stale.

[14] Drew DeVault. GitHub Stale bot considered harmful, 2021. URL https://drewdevault.com/2021/10/26/

stalebot.html.

[15] Ben Winding. GitHub Stale bots: a false economy, 2021. URL https://blog.benwinding.com/

github-stale-bots/index.html.

[16] Mairieli Wessel, Igor Wiese, Igor Steinmacher, and Marco Aurlio Gerosa. Don’t disturb me: challenges

of interacting with software bots on open source software projects. Proceedings of the ACM on

Human-Computer Interaction, 5(CSCW2):1–21, 2021. doi:10.1145/3476042.

[17] Dongyu Liu, Micah J. Smith, and Kalyan Veeramachaneni. Understanding user-bot interactions for

small-scale automation in open-source development. In Extended Abstracts of the CHI Conference on

Human Factors in Computing Systems (CHI EA 2020), pages 1–8, 2020. doi:10.1145/3334480.3382998.

104

https://doi.org/10.1109/TSE.2021.3053403
https://doi.org/10.1109/ICSE.2015.55
https://github.com/DefinitelyTyped/DefinitelyTyped/pull/2143
https://github.com/DefinitelyTyped/DefinitelyTyped/pull/2143
https://github.com/marketplace/stale
https://doi.org/10.1109/BotSE.2019.00018
https://github.com/probot/stale
https://drewdevault.com/2021/10/26/stalebot.html
https://drewdevault.com/2021/10/26/stalebot.html
https://blog.benwinding.com/github-stale-bots/index.html
https://blog.benwinding.com/github-stale-bots/index.html
https://doi.org/10.1145/3476042
https://doi.org/10.1145/3334480.3382998

[18] Mairieli Wessel and Igor Steinmacher. The inconvenient side of software bots on pull requests. In

Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops

(ICSEW 2020), pages 51–55, 2020. doi:10.1145/3387940.3391504.

[19] Juan Carlos Farah, Basile Spaenlehauer, Xinyang Lu, Sandy Ingram, and Denis Gillet. An exploratory

study of reactions to bot comments on GitHub. In Proceedings of the 4th International Workshop on

Bots in Software Engineering (BotSE 2022), pages 18–22, 2022. doi:10.1145/3528228.3528409.

[20] Akond Rahman, Farzana Ahamed Bhuiyan, Mohammad Mehedi Hassan, Hossain Shahriar, and Fan

Wu. Towards automation for MLOps: an exploratory study of bot usage in deep learning libraries. In

Proceedings of the IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC

2022), pages 1093–1097, 2022. doi:10.1109/COMPSAC54236.2022.00171.

[21] Kazi Amit Hasan, Marcos Macedo, Yuan Tian, Bram Adams, and Steven Ding. Understanding the time

to first response in GitHub pull requests. In Proceedings of the IEEE/ACM 20th International Conference

on Mining Software Repositories (MSR 2023), pages 1–11, 2023. doi:10.1109/MSR59073.2023.00015.

[22] Xunhui Zhang, Yue Yu, Tao Wang, Ayushi Rastogi, and Huaimin Wang. Pull request latency explained:

an empirical overview. Empirical Software Engineering, 27(6):1–38, 2022. doi:10.1007/s10664-022-

10143-4.

[23] Xunhui Zhang, Yue Yu, Georgios Gousios, and Ayushi Rastogi. Pull request decisions ex-

plained: an empirical overview. IEEE Transactions on Software Engineering, 49(2):849–871,

2023. doi:10.1109/TSE.2022.3165056.

[24] SayedHassan Khatoonabadi, Diego Elias Costa, Rabe Abdalkareem, and Emad Shihab. On wasted

contributions: understanding the dynamics of contributor-abandoned pull requests–A mixed-methods

study of 10 large open-source projects. ACM Transactions on Software Engineering and Methodology,

32(1):1–39, 2023. doi:10.1145/3530785.

[25] Noppadol Assavakamhaenghan, Supatsara Wattanakriengkrai, Naomichi Shimada, Raula Gaikovina

Kula, Takashi Ishio, and Kenichi Matsumoto. Does the first response matter for future contributions?

A study of first contributions. Empirical Software Engineering, 28(3):1–22, 2023. doi:10.1007/s10664-

023-10299-7.

105

https://doi.org/10.1145/3387940.3391504
https://doi.org/10.1145/3528228.3528409
https://doi.org/10.1109/COMPSAC54236.2022.00171
https://doi.org/10.1109/MSR59073.2023.00015
https://doi.org/10.1007/s10664-022-10143-4
https://doi.org/10.1007/s10664-022-10143-4
https://doi.org/10.1109/TSE.2022.3165056
https://doi.org/10.1145/3530785
https://doi.org/10.1007/s10664-023-10299-7
https://doi.org/10.1007/s10664-023-10299-7

[26] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work practices and challenges

in pull-based development: the contributor’s perspective. In Proceedings of the IEEE/ACM

38th International Conference on Software Engineering (ICSE 2016), pages 285–296, 2016.

doi:10.1145/2884781.2884826.

[27] Anita K. Wagner, Stephen B. Soumerai, Fang Zhang, and Dennis Ross-Degnan. Segmented regression

analysis of interrupted time series studies in medication use research. Journal of Clinical Pharmacy

and Therapeutics, 27(4):299–309, 2002. doi:10.1046/j.1365-2710.2002.00430.x.

[28] SayedHassan Khatoonabadi, Diego Elias Costa, Suhaib Mujahid, and Emad Shihab. Understanding

the helpfulness of Stale bot for pull-based development: an empirical study of 20 large open-source

projects. ACM Transactions on Software Engineering and Methodology, 2023. doi:10.1145/3624739.

[29] Mairieli Wessel, Ahmad Abdellatif, Igor Wiese, Tayana Conte, Emad Shihab, Marco Aurlio Gerosa,

and Igor Steinmacher. Bots for pull requests: the good, the bad, and the promising. In Proceedings

of the 44th International Conference on Software Engineering (ICSE 2022), pages 274–286, 2022.

doi:10.1145/3510003.3512765.

[30] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanilton Polato, Ana Paula

Chaves, and Marco Aurlio Gerosa. The power of bots: characterizing and understanding bots in

OSS projects. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW):1–19, 2018.

doi:10.1145/3274451.

[31] Margaret-Anne Storey and Alexey Zagalsky. Disrupting developer productivity one bot at a time.

In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE 2016), pages 928–931, 2016. doi:10.1145/2950290.2983989.

[32] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan Vasilescu. The

impact of continuous integration on other software development practices: a large-scale empirical study.

In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering

(ASE 2017), pages 60–71, 2017. doi:10.1109/ASE.2017.8115619.

[33] Nathan Cassee, Bogdan Vasilescu, and Alexander Serebrenik. The silent helper: the impact

of continuous integration on code reviews. In Proceedings of the 27th International Confer-

106

https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1046/j.1365-2710.2002.00430.x
https://doi.org/10.1145/3624739
https://doi.org/10.1145/3510003.3512765
https://doi.org/10.1145/3274451
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1109/ASE.2017.8115619

ence on Software Analysis, Evolution, and Reengineering (SANER 2020), pages 423–434, 2020.

doi:10.1109/SANER48275.2020.9054818.

[34] Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and Marco Aurlio Gerosa.

Quality gatekeepers: investigating the effects of code review bots on pull request activities. Empirical

Software Engineering, 27(5):1–36, 2022. doi:10.1007/s10664-022-10130-9.

[35] Mairieli Wessel, Joseph Vargovich, Marco Aurlio Gerosa, and Christoph Treude. GitHub Ac-

tions: the impact on the pull request process. Empirical Software Engineering, 28(6):1–35, 2023.

doi:10.1007/s10664-023-10369-w.

[36] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and technical factors for evaluating

contribution in GitHub. In Proceedings of the 36th International Conference on Software Engineering

(ICSE 2014), pages 356–366, 2014. doi:10.1145/2568225.2568315.

[37] Dariclio Moreira Soares, Manoel Limeira de Lima Jnior, Leonardo Murta, and Alexandre Plastino.

Acceptance factors of pull requests in open-source projects. In Proceedings of the 30th Annual ACM

Symposium on Applied Computing (SAC 2015), pages 1541–1546, 2015. doi:10.1145/2695664.2695856.

[38] Yue Yu, Gang Yin, Tao Wang, Cheng Yang, and Huaimin Wang. Determinants of pull-based

development in the context of continuous integration. Science China Information Sciences, 59(8):1–14,

2016. doi:10.1007/s11432-016-5595-8.

[39] Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey, Dennis Theisen, and Bart de Water.

Studying pull request merges: a case study of Shopify’s Active Merchant. In Proceedings of the 40th

International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP

2018), pages 124–133, 2018. doi:10.1145/3183519.3183542.

[40] Gustavo Pinto, Luiz Felipe Dias, and Igor Steinmacher. Who gets a patch accepted first? Comparing

the contributions of employees and volunteers. In Proceedings of the 11th International Workshop

on Cooperative and Human Aspects of Software Engineering (CHASE 2018), pages 110–113, 2018.

doi:10.1145/3195836.3195858.

[41] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and Baowen Xu. How does code style

107

https://doi.org/10.1109/SANER48275.2020.9054818
https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-023-10369-w
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2695664.2695856
https://doi.org/10.1007/s11432-016-5595-8
https://doi.org/10.1145/3183519.3183542
https://doi.org/10.1145/3195836.3195858

inconsistency affect pull request integration? An exploratory study on 117 GitHub projects. Empirical

Software Engineering, 24(6):3871–3903, 2019. doi:10.1007/s10664-019-09720-x.

[42] Valentina Lenarduzzi, Vili Nikkola, Nyyti Saarimki, and Davide Taibi. Does code quality affect

pull request acceptance? An empirical study. Journal of Systems and Software, 171:1–14, 2021.

doi:10.1016/j.jss.2020.110806.

[43] Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-Hill, Chris Parnin,

and Jon Stallings. Gender differences and bias in open source: pull request acceptance of women

versus men. PeerJ Computer Science, 2017(3):1–30, 2017. doi:10.7717/peerj-cs.111.

[44] Ayushi Rastogi. Do biases related to geographical location influence work-related decisions in GitHub?

In Proceedings of the 38th International Conference on Software Engineering Companion (ICSE-C

2016), pages 665–667, 2016. doi:10.1145/2889160.2891035.

[45] Ayushi Rastogi, Nachiappan Nagappan, Georgios Gousios, and Andr van der Hoek. Relationship

between geographical location and evaluation of developer contributions in GitHub. In Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

(ESEM 2018), pages 1–8, 2018. doi:10.1145/3239235.3240504.

[46] Reza Nadri, Gema Rodrguez-Prez, and Meiyappan Nagappan. Insights into nonmerged pull requests

in GitHub: is there evidence of bias based on perceptible race? IEEE Software, 38(2):51–57, 2021.

doi:10.1109/MS.2020.3036758.

[47] Reza Nadri, Gema Rodrguez-Prez, and Meiyappan Nagappan. On the relationship between the

developer’s perceptible race and ethnicity and the evaluation of contributions in OSS. IEEE Transactions

on Software Engineering, 48(8):2955–2968, 2022. doi:10.1109/TSE.2021.3073773.

[48] Leonardo B. Furtado, Bruno Cartaxo, Christoph Treude, and Gustavo Pinto. How successful are open

source contributions from countries with different levels of human development? IEEE Software, 38

(2):58–63, 2021. doi:10.1109/MS.2020.3044020.

[49] Rahul N. Iyer, S. Alex Yun, Meiyappan Nagappan, and Jesse Hoey. Effects of personality traits

on pull request acceptance. IEEE Transactions on Software Engineering, 47(11):2632–2643, 2021.

doi:10.1109/TSE.2019.2960357.

108

https://doi.org/10.1007/s10664-019-09720-x
https://doi.org/10.1016/j.jss.2020.110806
https://doi.org/10.7717/peerj-cs.111
https://doi.org/10.1145/2889160.2891035
https://doi.org/10.1145/3239235.3240504
https://doi.org/10.1109/MS.2020.3036758
https://doi.org/10.1109/TSE.2021.3073773
https://doi.org/10.1109/MS.2020.3044020
https://doi.org/10.1109/TSE.2019.2960357

[50] Colin G. DeYoung, Lena C. Quilty, and Jordan B. Peterson. Between facets and domains: 10 aspects of

the Big Five. Journal of Personality and Social Psychology, 93(5):880–896, 2007. doi:10.1037/0022-

3514.93.5.880.

[51] Gunnar Kudrjavets, Aditya Kumar, Nachiappan Nagappan, and Ayushi Rastogi. Mining code review data

to understand waiting times between acceptance and merging: an empirical analysis. In Proceedings

of the 19th International Conference on Mining Software Repositories (MSR 2022), pages 579–590,

2022. doi:10.1145/3524842.3528432.

[52] Zhixing Li, Yue Yu, Minghui Zhou, Tao Wang, Gang Yin, Long Lan, and Huaimin Wang. Redundancy,

context, and preference: an empirical study of duplicate pull requests in OSS projects. IEEE

Transactions on Software Engineering, 48(4):1309–1335, 2022. doi:10.1109/TSE.2020.3018726.

[53] Yue Yu, Zhixing Li, Gang Yin, Tao Wang, and Huaimin Wang. A dataset of duplicate pull-requests in

GitHub. In International Conference on Mining Software Repositories (MSR), pages 22–25, 2018.

doi:10.1145/3196398.3196455.

[54] Zhixing Li, Gang Yin, Yue Yu, Tao Wang, and Huaimin Wang. Detecting duplicate pull-

requests in GitHub. In Asia-Pacific Symposium on Internetware (Internetware), pages 1–6, 2017.

doi:10.1145/3131704.3131725.

[55] Zhi-Xing Li, Yue Yu, Tao Wang, Gang Yin, Xin-Jun Mao, and Huai-Min Wang. Detecting duplicate

contributions in pull-based model combining textual and change similarities. Journal of Computer

Science and Technology, 36(1):191–206, 2021. doi:10.1007/s11390-020-9935-1.

[56] Luyao Ren, Shurui Zhou, Christian Kstner, and Andrzej Wsowski. Identifying redundancies in fork-

based development. In International Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 230–241, 2019. doi:10.1109/SANER.2019.8668023.

[57] Qingye Wang, Bowen Xu, Xin Xia, Ting Wang, and Shanping Li. Duplicate pull request detection:

when time matters. In Asia-Pacific Symposium on Internetware (Internetware), pages 1–10, 2019.

doi:10.1145/3361242.3361254.

[58] John W. Creswell and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed

109

https://doi.org/10.1037/0022-3514.93.5.880
https://doi.org/10.1037/0022-3514.93.5.880
https://doi.org/10.1145/3524842.3528432
https://doi.org/10.1109/TSE.2020.3018726
https://doi.org/10.1145/3196398.3196455
https://doi.org/10.1145/3131704.3131725
https://doi.org/10.1007/s11390-020-9935-1
https://doi.org/10.1109/SANER.2019.8668023
https://doi.org/10.1145/3361242.3361254

Methods Approaches. SAGE Publications, Inc, 5th edition, 2017. URL https://us.sagepub.com/en-us/

nam/research-design/book255675.

[59] GitHub. The state of the Octoverse, 2022. URL https://octoverse.github.com.

[60] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela

Damian. An in-depth study of the promises and perils of mining GitHub. Empirical Software

Engineering, 21(5):2035–2071, 2016. doi:10.1007/s10664-015-9393-5.

[61] Hudson Borges and Marco Tulio Valente. What’s in a GitHub star? Understanding repository

starring practices in a social coding platform. Journal of Systems and Software, 146:112–129, 2018.

doi:10.1016/j.jss.2018.09.016.

[62] Vincent Jacques. PyGithub: typed interactions with the GitHub API v3, 2023. URL https://github.

com/PyGithub/PyGithub.

[63] GitHub. Issues - GitHub Docs, 2023. URL https://docs.github.com/en/rest/reference/issues.

[64] GitHub. Pulls - GitHub Docs, 2023. URL https://docs.github.com/en/rest/reference/pulls.

[65] GitHub. REST API - GitHub Docs, 2023. URL https://docs.github.com/en/rest.

[66] Georgios Gousios. The GHTorent dataset and tool suite. In Working Conference on Mining Software

Repositories (MSR), pages 233–236, 2013. doi:10.1109/MSR.2013.6624034.

[67] Ilya Grigorik. GH Archive: A project to record the public GitHub timeline, archive it, and make it

easily accessible for further analysis, 2023. URL https://www.gharchive.org.

[68] SayedHassan Khatoonabadi, Shahriar Lotfi, and Ayaz Isazadeh. GAP2WSS: a genetic algorithm based

on the Pareto principle for web service selection, 2021.

[69] GitHub. Enums - GitHub Docs, 2022. URL https://docs.github.com/en/graphql/reference/enums.

[70] Callum Macrae. Pull Request #4781 - Homebrew/homebrew-cask, 2014. URL https://github.com/

Homebrew/homebrew-cask/pull/4781.

110

https://us.sagepub.com/en-us/nam/research-design/book255675
https://us.sagepub.com/en-us/nam/research-design/book255675
https://octoverse.github.com
https://doi.org/10.1007/s10664-015-9393-5
https://doi.org/10.1016/j.jss.2018.09.016
https://github.com/PyGithub/PyGithub
https://github.com/PyGithub/PyGithub
https://docs.github.com/en/rest/reference/issues
https://docs.github.com/en/rest/reference/pulls
https://docs.github.com/en/rest
https://doi.org/10.1109/MSR.2013.6624034
https://www.gharchive.org
https://docs.github.com/en/graphql/reference/enums
https://github.com/Homebrew/homebrew-cask/pull/4781
https://github.com/Homebrew/homebrew-cask/pull/4781

[71] Georgios Gousios and Andy Zaidman. A dataset for pull-based development research. In Proceedings

of the 11th Working Conference on Mining Software Repositories (MSR 2014), pages 368–371, 2014.

doi:10.1145/2597073.2597122.

[72] Xunhui Zhang, Ayushi Rastogi, and Yue Yu. On the shoulders of giants: a new dataset for pull-based

development research. In Proceedings of the 17th International Conference on Mining Software

Repositories (MSR 2020), pages 543–547, 2020. doi:10.1145/3379597.3387489.

[73] Jerry L. Hintze and Ray D. Nelson. Violin plots: a box plot-density trace synergism. The American

Statistician, 52(2):181–184, 1998. doi:10.1080/00031305.1998.10480559.

[74] Indrajeet Patil. Visualizations with statistical details: the ’ggstatsplot’ approach. Journal of Open

Source Software, 6(61):1–5, 2021. doi:10.21105/joss.03167.

[75] Henry B. Mann and Donald R. Whitney. On a test of whether one of two random variables

is stochastically larger than the other. Annals of Mathematical Statistics, 18(1):50–60, 1947.

doi:10.1214/aoms/1177730491.

[76] R Core Team. R: a language and environment for statistical computing, 2023. URL https://www.

R-project.org.

[77] Roger E. Kirk. Practical significance: a concept whose time has come. Educational and Psychological

Measurement, 56(5):746–759, 1996. doi:10.1177/0013164496056005002.

[78] Norman Cliff. Dominance statistics: ordinal analyses to answer ordinal questions. Psychological

Bulletin, 114(3):494–509, 1993. doi:10.1037/0033-2909.114.3.494.

[79] Mattan S. Ben-Shachar, Daniel Ldecke, and Dominique Makowski. effectsize: estimation of effect

size indices and standardized parameters. Journal of Open Source Software, 5(56):1–7, 2020.

doi:10.21105/joss.02815.

[80] Melinda R. Hess and Jeffrey D. Kromrey. Robust confidence intervals for effect sizes: a comparative

study of Cohen’s d and Cliff’s delta under non-normality and heterogeneous variances. In Presented at

the Annual Meeting of the American Educational Research Association (AERA 2004), pages 1–30,

2004. URL https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.487.8299.

111

https://doi.org/10.1145/2597073.2597122
https://doi.org/10.1145/3379597.3387489
https://doi.org/10.1080/00031305.1998.10480559
https://doi.org/10.21105/joss.03167
https://doi.org/10.1214/aoms/1177730491
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.1177/0013164496056005002
https://doi.org/10.1037/0033-2909.114.3.494
https://doi.org/10.21105/joss.02815
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.487.8299

[81] Orta Therox. Changes to how we manage DefinitelyTyped, 2020. URL https://devblogs.microsoft.

com/typescript/changes-to-how-we-manage-definitelytyped.

[82] Carsten F. Dormann, Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel Carr, Jaime R.

Garca Marquz, Bernd Gruber, Bruno Lafourcade, Pedro J. Leito, Tamara Mnkemller, Colin McClean,

Patrick E. Osborne, Bjrn Reineking, Boris Schrder, Andrew K. Skidmore, Damaris Zurell, and Sven

Lautenbach. Collinearity: a review of methods to deal with it and a simulation study evaluating their

performance. Ecography, 36(1):27–46, 2013. doi:10.1111/j.1600-0587.2012.07348.x.

[83] Charles Spearman. The proof and measurement of association between two things. International

Journal of Epidemiology, 39(5):1137–1150, 2010. doi:10.1093/ije/dyq191.

[84] Frank E. Harrell. Hmisc: Harrell Miscellaneous, 2021. URL https://CRAN.R-project.org/package=

Hmisc.

[85] James D. Evans. Straightforward Statistics for the Behavioral Sciences. Thomson Brooks/Cole

Publishing Co., 1996. URL https://psycnet.apa.org/record/1995-98499-000.

[86] Marvin N. Wright and Andreas Ziegler. ranger: a fast implementation of random forests for high dimen-

sional data in C++ and R. Journal of Statistical Software, 77(1):1–17, 2017. doi:10.18637/jss.v077.i01.

[87] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi:10.1023/A:1010933404324.

[88] Philipp Probst, Marvin N. Wright, and AnneLaure Boulesteix. Hyperparameters and tuning

strategies for random forest. WIREs Data Mining and Knowledge Discovery, 9(3):e1301, 2019.

doi:10.1002/widm.1301.

[89] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization

of expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

doi:10.1023/A:1008306431147.

[90] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge

and Data Engineering, 21(9):1263–1284, 2009. doi:10.1109/TKDE.2008.239.

[91] Andrew P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning

algorithms. Pattern Recognition, 30(7):1145–1159, 1997. doi:10.1016/S0031-3203(96)00142-2.

112

https://devblogs.microsoft.com/typescript/changes-to-how-we-manage-definitelytyped
https://devblogs.microsoft.com/typescript/changes-to-how-we-manage-definitelytyped
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1093/ije/dyq191
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=Hmisc
https://psycnet.apa.org/record/1995-98499-000
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/widm.1301
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1016/S0031-3203(96)00142-2

[92] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874, 2006.

doi:10.1016/j.patrec.2005.10.010.

[93] Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus, Giuseppe

Casalicchio, and Zachary M. Jones. mlr: machine learning in R. Journal of Machine Learning

Research, 17(170):1–5, 2016. URL https://jmlr.org/papers/v17/15-066.html.

[94] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful:

learning a variable’s importance by studying an entire class of prediction models simultaneously. Journal

of Machine Learning Research, 20(177):1–81, 2019. URL https://jmlr.org/papers/v20/18-760.html.

[95] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. iml: an R package for interpretable

machine learning. Journal of Open Source Software, 3(27):786, 2018. doi:10.21105/joss.00786.

[96] Daniel W. Apley and Jingyu Zhu. Visualizing the effects of predictor variables in black box supervised

learning models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(4):

1059–1086, 2020. doi:10.1111/rssb.12377.

[97] Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.

2nd edition, 2022. URL https://christophm.github.io/interpretable-ml-book.

[98] Carolyn B. Seaman. Qualitative methods in empirical studies of software engineering. IEEE

Transactions on Software Engineering, 25(4):557–572, 1999. doi:10.1109/32.799955.

[99] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20(1):37–46, 1960. doi:10.1177/001316446002000104.

[100] Fabian Pedregosa, Gal Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier

Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre

Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and douard Duchesnay. Scikit-learn:

machine learning in Python. Journal of Machine Learning Research, 12(85):2825–2830, 2011. URL

https://jmlr.org/papers/v12/pedregosa11a.html.

[101] J. Richard Landis and Gary G. Koch. The measurement of observer agreement for categorical data.

Biometrics, 33(1):159–174, 1977. doi:10.2307/2529310.

113

https://doi.org/10.1016/j.patrec.2005.10.010
https://jmlr.org/papers/v17/15-066.html
https://jmlr.org/papers/v20/18-760.html
https://doi.org/10.21105/joss.00786
https://doi.org/10.1111/rssb.12377
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1109/32.799955
https://doi.org/10.1177/001316446002000104
https://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.2307/2529310

[102] Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Studying software engineers: data

collection techniques for software field studies. Empirical Software Engineering, 10(3):311–341, 2005.

doi:10.1007/s10664-005-1290-x.

[103] Kubernetes. fejta-bot GitHub user, 2021. URL https://github.com/fejta-bot.

[104] Igor Steinmacher, Igor Wiese, Ana Paula Chaves, and Marco Aurlio Gerosa. Why do newcomers

abandon open source software projects? In Proceedings of the 6th International Workshop on

Cooperative and Human Aspects of Software Engineering (CHASE 2013), pages 25–32, 2013.

doi:10.1109/CHASE.2013.6614728.

[105] Igor Steinmacher, Ana Paula Chaves, Tayana Uchoa Conte, and Marco Aurlio Gerosa. Preliminary

empirical identification of barriers faced by newcomers to open source software projects. In Pro-

ceedings of the Brazilian Symposium on Software Engineering (SBES 2014), pages 51–60, 2014.

doi:10.1109/SBES.2014.9.

[106] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco Aurlio Gerosa. Almost there: a

study on quasi-contributors in open source software projects. In International Conference on Software

Engineering (ICSE), pages 256–266, 2018. doi:10.1145/3180155.3180208.

[107] Qingye Wang, Xin Xia, David Lo, and Shanping Li. Why is my code change abandoned? Information

and Software Technology, 110:108–120, 2019. doi:10.1016/j.infsof.2019.02.007.

[108] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. Evidence-Based Software Engineering

and Systematic Reviews. Chapman & Hall/CRC, 2015. doi:10.1201/b19467.

[109] Igor Steinmacher, Tayana Conte, Marco Aurlio Gerosa, and David Redmiles. Social barriers faced by

newcomers placing their first contribution in open source software projects. In Proceedings of the 18th

ACM Conference on Computer Supported Cooperative Work & Social Computing (CSCW 2015), pages

1379–1392, 2015. doi:10.1145/2675133.2675215.

[110] Minghui Zhou and Audris Mockus. What make long term contributors: willingness and opportunity in

OSS community. In Proceedings of the 34th International Conference on Software Engineering (ICSE

2012), pages 518–528, 2012. doi:10.1109/ICSE.2012.6227164.

114

https://doi.org/10.1007/s10664-005-1290-x
https://github.com/fejta-bot
https://doi.org/10.1109/CHASE.2013.6614728
https://doi.org/10.1109/SBES.2014.9
https://doi.org/10.1145/3180155.3180208
https://doi.org/10.1016/j.infsof.2019.02.007
https://doi.org/10.1201/b19467
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1109/ICSE.2012.6227164

[111] GitHub. Events - GitHub Docs, 2023. URL https://docs.github.com/en/rest/activity/events.

[112] Google. BigQuery: cloud data warehouse, 2023. URL https://cloud.google.com/bigquery.

[113] GitHub. Timeline - GitHub Docs, 2023. URL https://docs.github.com/en/rest/issues/timeline.

[114] Brady T. West, Kathleen B. Welch, and Andrzej T. Gaecki. Linear Mixed Models: A Practical Guide

Using Statistical Software. Chapman & Hall/CRC, 2nd edition, 2014. doi:10.1201/b17198.

[115] Andrzej Gaecki and Tomasz Burzykowski. Linear Mixed-Effects Models Using R: A Step-by-Step

Approach. Springer Texts in Statistics. Springer, 2013. doi:10.1007/978-1-4614-3900-4.

[116] Alexandra Kuznetsova, Per B. Brockhoff, and Rune H. B. Christensen. lmerTest package: tests in linear

mixed effects models. Journal of Statistical Software, 82(13):1–26, 2017. doi:10.18637/jss.v082.i13.

[117] Shinichi Nakagawa, Paul C. D. Johnson, and Holger Schielzeth. The coefficient of determination

R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and

expanded. Journal of The Royal Society Interface, 14(134):1–11, 2017. doi:10.1098/rsif.2017.0213.

[118] Daniel Ldecke, Mattan S. Ben-Shachar, Indrajeet Patil, Philip Waggoner, and Dominique Makowski.

performance: an R package for assessment, comparison and testing of statistical models. Journal of

Open Source Software, 6(60):1–8, 2021. doi:10.21105/joss.03139.

[119] Alex Hrong-Tai Fai and Paul L. Cornelius. Approximate F-tests of multiple degree of freedom

hypotheses in generalized least squares analyses of unbalanced split-plot experiments. Journal of

Statistical Computation and Simulation, 54(4):363–378, 1996. doi:10.1080/00949659608811740.

[120] David Chavalarias, Joshua David Wallach, Alvin Ho Ting Li, and John P. A. Ioannidis. Evolution

of reporting P values in the biomedical literature, 1990-2015. JAMA, 315(11):1141–1148, 2016.

doi:10.1001/jama.2016.1952.

[121] James Howard Goodnight. Tests of hypotheses in fixed effects linear models. Communications in

Statistics - Theory and Methods, 9(2):167–180, 1980. doi:10.1080/03610928008827869.

[122] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann, Brian Houck, and

Jenna Butler. The SPACE of developer productivity: there’s more to it than you think. Queue, 19(1):

20–48, 2021. doi:10.1145/3454122.3454124.

115

https://docs.github.com/en/rest/activity/events
https://cloud.google.com/bigquery
https://docs.github.com/en/rest/issues/timeline
https://doi.org/10.1201/b17198
https://doi.org/10.1007/978-1-4614-3900-4
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1098/rsif.2017.0213
https://doi.org/10.21105/joss.03139
https://doi.org/10.1080/00949659608811740
https://doi.org/10.1001/jama.2016.1952
https://doi.org/10.1080/03610928008827869
https://doi.org/10.1145/3454122.3454124

[123] Alexander Ziborov. Commit #439b8735fa93709ec32602bb32944bf9214ce785 - Dev-

Express/DevExtreme, 2020. URL https://github.com/DevExpress/DevExtreme/commit/

439b8735fa93709ec32602bb32944bf9214ce785.

[124] Manoel Limeira de Lima Jnior, Dariclio Soares, Alexandre Plastino, and Leonardo Murta. Predicting

the lifetime of pull requests in open-source projects. Journal of Software: Evolution and Process, 33

(6):1–23, 2021. doi:10.1002/smr.2337.

[125] Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan. Predicting pull request completion

time: a case study on large scale cloud services. In Proceedings of the 27th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE 2019), pages 874–882, 2019. doi:10.1145/3338906.3340457.

[126] Chandra Maddila, Sai Surya Upadrasta, Chetan Bansal, Nachiappan Nagappan, Georgios Gousios, and

Arie van Deursen. Nudge: accelerating overdue pull requests towards completion. ACM Transactions

on Software Engineering and Methodology, 32(2):1–30, 2023. doi:10.1145/3544791.

[127] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances

in Neural Information Processing Systems (NIPS 2017), volume 30, pages 1–10, 2017.

[128] Deepika Badampudi, Michael Unterkalmsteiner, and Ricardo Britto. Modern code reviewssurvey of

literature and practice. ACM Transactions on Software Engineering and Methodology, 32(4):1–61,

2023. doi:10.1145/3585004.

[129] Nicole Davila and Ingrid Nunes. A systematic literature review and taxonomy of modern code review.

Journal of Systems and Software, 177:1–30, 2021. doi:10.1016/j.jss.2021.110951.

[130] Thomas Bock, Nils Alznauer, Mitchell Joblin, and Sven Apel. Automatic core-developer identification

on GitHub: a validation study. ACM Transactions on Software Engineering and Methodology, 32(6):

1–29, 2023. doi:10.1145/3593803.

[131] Ahmad Abdellatif, Mairieli Wessel, Igor Steinmacher, Marco A. Gerosa, and Emad Shihab.

BotHunter: an approach to detect software bots in GitHub. In Proceedings of the IEEE/ACM

19th International Conference on Mining Software Repositories (MSR 2022), pages 6–17, 2022.

doi:10.1145/3524842.3527959.

116

https://github.com/DevExpress/DevExtreme/commit/439b8735fa93709ec32602bb32944bf9214ce785
https://github.com/DevExpress/DevExtreme/commit/439b8735fa93709ec32602bb32944bf9214ce785
https://doi.org/10.1002/smr.2337
https://doi.org/10.1145/3338906.3340457
https://doi.org/10.1145/3544791
https://doi.org/10.1145/3585004
https://doi.org/10.1016/j.jss.2021.110951
https://doi.org/10.1145/3593803
https://doi.org/10.1145/3524842.3527959

[132] Zhendong Wang, Yi Wang, and David Redmiles. From specialized mechanics to project but-

lers: the usage of bots in open source software development. IEEE Software, 39(5):38–43, 2022.

doi:10.1109/MS.2022.3180297.

[133] Mehdi Golzadeh, Alexandre Decan, Damien Legay, and Tom Mens. A ground-truth dataset and

classification model for detecting bots in GitHub issue and PR comments. Journal of Systems and

Software, 175:1–14, 2021. doi:10.1016/j.jss.2021.110911.

[134] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida. Review participation

in modern code review: an empirical study of the Android, Qt, and OpenStack projects. Empirical

Software Engineering, 22(2):768–817, 2017. doi:10.1007/s10664-016-9452-6.

[135] Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, and Ahmed E. Hassan. The impact of correlated

metrics on the interpretation of defect models. IEEE Transactions on Software Engineering, 47(2):

320–331, 2021. doi:10.1109/TSE.2019.2891758.

[136] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey

Gulin. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information

Processing Systems (NeurIPS 2018), volume 31, pages 1–11, 2018.

[137] Jafar Tanha, Yousef Abdi, Negin Samadi, Nazila Razzaghi, and Mohammad Asadpour. Boosting

methods for multi-class imbalanced data classification: an experimental review. Journal of Big Data, 7

(1):1–47, 2020. doi:10.1186/s40537-020-00349-y.

[138] Simin Wang, Liguo Huang, Amiao Gao, Jidong Ge, Tengfei Zhang, Haitao Feng, Ishna Satyarth,

Ming Li, He Zhang, and Vincent Ng. Machine/deep learning for software engineering: a sys-

tematic literature review. IEEE Transactions on Software Engineering, 49(3):1188–1231, 2023.

doi:10.1109/TSE.2022.3173346.

[139] Yanming Yang, Xin Xia, David Lo, Tingting Bi, John Grundy, and Xiaohu Yang. Predictive models in

software engineering: challenges and opportunities. ACM Transactions on Software Engineering and

Methodology, 31(3):1–72, 2022. doi:10.1145/3503509.

[140] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal of Machine

Learning Research, 5:101–141, 2004. URL https://www.jmlr.org/papers/v5/rifkin04a.html.

117

https://doi.org/10.1109/MS.2022.3180297
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1007/s10664-016-9452-6
https://doi.org/10.1109/TSE.2019.2891758
https://doi.org/10.1186/s40537-020-00349-y
https://doi.org/10.1109/TSE.2022.3173346
https://doi.org/10.1145/3503509
https://www.jmlr.org/papers/v5/rifkin04a.html

[141] Davide DellAnna, Fatma Baak Aydemir, and Fabiano Dalpiaz. Evaluating classifiers in SE research:

the ECSER pipeline and two replication studies. Empirical Software Engineering, 28(1):1–40, 2023.

doi:10.1007/s10664-022-10243-1.

[142] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto. The impact

of automated parameter optimization on defect prediction models. IEEE Transactions on Software

Engineering, 45(7):683–711, 2019. doi:10.1109/TSE.2018.2794977.

[143] Gopi Krishnan Rajbahadur, Shaowei Wang, Gustavo A. Oliva, Yasutaka Kamei, and Ahmed E. Hassan.

The impact of feature importance methods on the interpretation of defect classifiers. IEEE Transactions

on Software Engineering, 48(7):2245–2261, 2022. doi:10.1109/TSE.2021.3056941.

[144] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W. Godfrey. Investigating

code review quality: do people and participation matter? In Proceedings of the IEEE 31st Inter-

national Conference on Software Maintenance and Evolution (ICSME 2015), pages 111–120, 2015.

doi:10.1109/ICSM.2015.7332457.

[145] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why should I trust you?”: explaining the pre-

dictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining (KDD 2016), pages 1135–1144, 2016. doi:10.1145/2939672.2939778.

118

https://doi.org/10.1007/s10664-022-10243-1
https://doi.org/10.1109/TSE.2018.2794977
https://doi.org/10.1109/TSE.2021.3056941
https://doi.org/10.1109/ICSM.2015.7332457
https://doi.org/10.1145/2939672.2939778

Appendices

Comparison of Abandoned and Nonabandoned PRs

Comparison of abandoned and nonabandoned PRs wrt pr description across the studied projects.

Comparison of abandoned and nonabandoned PRs wrt pr commits across the studied projects.

119

Comparison of abandoned and nonabandoned PRs wrt pr changed lines across the studied projects.

Comparison of abandoned and nonabandoned PRs wrt pr changed files across the studied projects.

Comparison of abandoned and nonabandoned PRs wrt contributor contribution period across the studied
projects.

120

Comparison of abandoned and nonabandoned PRs wrt contributor pulls across the studied projects.

Comparison of abandoned and nonabandoned PRs wrt contributor acceptance rate across the studied projects.

Comparison of abandoned and nonabandoned PRs wrt contributor abandonment rate across the studied
projects.

121

Comparison of abandoned and nonabandoned PRs wrt review response latency across the studied projects.

Comparison of abandoned and nonabandoned PRs wrt review participants across the studied projects.

Comparison of abandoned and nonabandoned PRs wrt review participants responses across the studied
projects.

122

Comparison of abandoned and nonabandoned PRs wrt review contributor responses across the studied
projects.

Comparison of abandoned and nonabandoned PRs wrt project age across the studied projects.

Comparison of abandoned and nonabandoned PRs wrt project pulls across the studied projects.

123

Comparison of abandoned and nonabandoned PRs wrt project contributors across the studied projects.

Comparison of abandoned and nonabandoned PRs wrt project open pulls across the studied projects.

124

ALE Plots for Different Features

ALE plots showing how pr changed lines varies the abandonment probability of PRs across the studied
projects.

ALE plots showing how project open pulls varies the abandonment probability of PRs across the studied
projects.

ALE plots showing how pr description varies the abandonment probability of PRs across the studied projects.

125

ALE plots showing how review response latency varies the abandonment probability of PRs across the
studied projects.

ALE plots showing how contributor abandonment rate varies the abandonment probability of PRs across the
studied projects.

ALE plots showing how pr commits varies the abandonment probability of PRs across the studied projects.

126

Models for Estimating the Impact of Stale Bot

Models for estimating the impact of adopting Stale bot on the number of merged PRs (merged pulls) and
closed PRs (closed pulls) in the studied projects.

log(merged pulls) log(closed pulls)

Coefficient Sum Sq. Coefficient Sum Sq.

time 0.041*** 4.852*** 0.038*** 4.159***

adoption -0.129* 0.496* 0.187* 1.040*

time since adoption -0.021* 0.653* -0.044** 2.721**

log(age at adoption) -0.627** 1.397** -0.678** 2.483**

log(pulls at adoption) 0.883*** 1.792*** 0.279 0.271

log(contributors at adoption) 0.152 0.334 0.379** 3.158**

log(maintainers at adoption) -0.210 0.124 0.226 0.216

intercept -0.688 0.299

Marginal 𝑅2 0.57 0.44

Conditional 𝑅2 0.82 0.70

*** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

Models for estimating the impact of adopting Stale bot on the first response latency of merged PRs (first -
latency m) and closed PRs (first latency c) in the studied projects.

log(first latency m) log(first latency c)

Coefficient Sum Sq. Coefficient Sum Sq.

time 0.029* 2.398* 0.085*** 20.577***

adoption 0.064 0.123 0.071 0.151

time since adoption -0.045* 2.920* -0.051 3.708

log(age at adoption) 0.983 0.786 1.162 2.381

log(pulls at adoption) 0.662 0.230 1.342 2.050

log(contributors at adoption) -0.228 0.173 -0.748 4.027

log(maintainers at adoption) -0.950 0.577 -1.257 2.186

intercept -2.599 -4.939

Marginal 𝑅2 0.08 0.14

Conditional 𝑅2 0.87 0.77

*** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

127

Models for estimating the impact of adopting Stale bot on the mean response latency of merged PRs
(mean latency m) and closed PRs (mean latency c) in the studied projects.

log(mean latency m) log(mean latency c)

Coefficient Sum Sq. Coefficient Sum Sq.

time 0.011 0.318 0.031 2.728

adoption -0.023 0.015 0.128 0.486

time since adoption -0.006 0.052 -0.025 0.901

log(age at adoption) 0.677* 1.240* 0.770 2.698

log(pulls at adoption) 0.133 0.031 0.467 0.640

log(contributors at adoption) 0.093 0.095 -0.131 0.319

log(maintainers at adoption) -0.274 0.160 -0.504 0.907

intercept -0.158 -0.142

Marginal 𝑅2 0.22 0.15

Conditional 𝑅2 0.72 0.58

*** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

Models for estimating the impact of adopting Stale bot on the resolution time of merged PRs (resolution -
time m) and closed PRs (resolution time c) in the studied projects.

log(resolution time m) log(resolution time c)

Coefficient Sum Sq. Coefficient Sum Sq.

time -0.001 0.004 0.029* 2.366*

adoption 0.052 0.080 0.267 2.124

time since adoption -0.001 0.001 -0.043* 2.602*

log(age at adoption) 0.509 0.460 0.547 1.007

log(pulls at adoption) -0.345 0.136 -0.029 0.002

log(contributors at adoption) 0.228 0.376 0.156 0.336

log(maintainers at adoption) 0.333 0.154 0.102 0.027

intercept 3.482 3.021

Marginal 𝑅2 0.25 0.18

Conditional 𝑅2 0.80 0.66

*** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

128

Models for estimating the impact of adopting Stale bot on the number of comments in merged PRs (comments -
m) and closed PRs (comments c) in the studied projects.

log(comments m) log(comments c)

Coefficient Sum Sq. Coefficient Sum Sq.

time -0.009 0.216 -0.008 0.195

adoption 0.023 0.016 -0.001 0.000

time since adoption 0.001 0.002 -0.003 0.015

log(age at adoption) -0.165 0.020 -0.075 0.009

log(pulls at adoption) -0.603 0.171 -0.438 0.209

log(contributors at adoption) 0.221 0.145 0.300* 0.617*

log(maintainers at adoption) 0.826* 0.390* 0.375 0.186

intercept 3.252 2.589

Marginal 𝑅2 0.26 0.19

Conditional 𝑅2 0.90 0.79

*** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

Models for estimating the impact of adopting Stale bot on the number of commits in merged PRs (commits m)
and closed PRs (commits c) in the studied projects.

log(commits m) log(commits c)

Coefficient Sum Sq. Coefficient Sum Sq.

time 0.010 0.271 0.030* 2.501*

adoption -0.021 0.013 -0.215 1.369

time since adoption -0.015* 0.335* -0.026 0.942

log(age at adoption) 0.189 0.094 0.545** 7.487**

log(pulls at adoption) -0.252 0.108 -0.120 0.234

log(contributors at adoption) -0.019 0.004 0.085 0.741

log(maintainers at adoption) 0.064 0.009 -0.188 0.700

intercept 2.580 0.783

Marginal 𝑅2 0.09 0.16

Conditional 𝑅2 0.67 0.27

*** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

129

Models for estimating the impact of adopting Stale bot on the number of active contributors (contributors) in
the studied projects.

log(contributors)

Coefficient Sum Sq.

time 0.026*** 1.867***

adoption 0.003 0.000

time since adoption -0.022*** 0.708***

log(age at adoption) -0.535** 0.493**

log(pulls at adoption) 0.250 0.070

log(contributors at adoption) 0.697*** 3.411***

log(maintainers at adoption) 0.114 0.018

intercept -1.033

Marginal 𝑅2 0.84

Conditional 𝑅2 0.96

*** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

130

Variation of the Performance Indicators

Variation in (a) the first response latency of closed PRs, (b) the mean response latency of merged PRs, (c) the
mean response latency of closed PRs, (d) the resolution time of merged PRs, (e) the number of comments in
merged PRs, (f) the number of comments in closed PRs, and (g) the number of commits in closed PRs each
month during our observation period. The blue lines show the adoption time.

131

Characteristics of PRs Intervened by Stale Bot

Comparison of intervened and not intervened PRs regarding their description length across the studied
projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05 132

Comparison of intervened and not intervened PRs regarding their number of initial commits across the studied
projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

133

Comparison of intervened and not intervened PRs regarding their number of follow-up commits across the
studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

134

Comparison of intervened and not intervened PRs regarding their number of initial changed lines across the
studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

135

Comparison of intervened and not intervened PRs regarding their number of follow-up changed lines across
the studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

136

Comparison of intervened and not intervened PRs regarding their number of initial changed files across the
studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

137

Comparison of intervened and not intervened PRs regarding their number of follow-up changed files across
the studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

138

Comparison of intervened and not intervened PRs regarding the number of prior PRs by their contributors
across the studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

139

Comparison of intervened and not intervened PRs regarding the acceptance rate of their contributors across
the studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

140

Comparison of intervened and not intervened PRs regarding the contribution period of their contributors
across the studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

141

Comparison of intervened and not intervened PRs regarding the number of participants in their review process
across the studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

142

Comparison of intervened and not intervened PRs regarding the number of participant comments in their
review process across the studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

143

Comparison of intervened and not intervened PRs regarding the number of contributor comments in their
review process across the studied projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

144

Comparison of intervened and not intervened PRs regarding their first response latency across the studied
projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

145

Comparison of intervened and not intervened PRs regarding their mean response latency across the studied
projects. *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

146

Comparison of intervened and not intervened PRs regarding their resolution time across the studied projects.
*** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05

147

Cross-Project Feature Importance

Submission
Day

Commits Contributor
Performance

Maintainers
Responsiveness

Contributor
Responsiveness

Description
Length

Project
Backlog

Maintainers
Availability

Contributor
Backlog

Submission
Hour

Community
Size

0

5

10

Ra
nk

Ranking of the importance of different features for predicting the first response latency of maintainers in a
cross-project scenario.

Review
Latency

Review
Day

Contributor
Responsiveness

Commits Contributor
Activity

Contributor
Performance

Review
Hour

Maintainers
Availability

Contributor
Backlog

Description
Length

Project
Backlog

Community
Size

Bots
Activity

Maintainers
Responsiveness

Participants
Activity

0

5

10

15

Ra
nk

Ranking of the importance of different features for predicting the first response latency of contributors in a
cross-project scenario.

148

	List of Figures
	List of Tables
	Introduction and Research Statement
	Introduction
	Research Statement
	Thesis Overview
	Thesis Contributions
	Related Publications
	Thesis Organization

	Background and Related Work
	Reasons and Consequences of PR Abandonment
	Usage and Challenges of Stale bot
	Impact of Tools on Pull-based Development
	Review Latency and Decision of PRs
	Duplicated PRs and Redundant Changes
	Chapter Summary

	Understanding the Dynamics of Contributor-Abandoned Pull Requests
	Introduction
	Methodology
	RQ1: What are the significant features of contributor-abandoned PRs in the studied projects?
	RQ2: How do different features impact the probability of PR abandonment in the studied projects?
	RQ3: What are the probable reasons why contributors abandon their PRs in the studied projects?
	Perspectives of the Project Maintainers
	Discussion
	Limitations
	Chapter Summary

	Understanding the Helpfulness of Stale Bot for Pull-based Development
	Introduction
	Dataset
	RQ1: How much do the studied projects use Stale bot to deal with their PR backlog?
	RQ2: What is the impact of Stale bot on pull-based development in the studied projects?
	RQ3: What kind of PRs are usually intervened by Stale bot in the studied projects?
	Implications
	Limitations
	Chapter Summary

	Predicting the First Response Latency of Maintainers and Contributors in Pull Requests
	Introduction
	Study Design
	Maintainer Response Latency
	Contributor Response Latency
	Cross-Project Setting
	Limitations
	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices

