
Malware Detection and Next-Action Prediction using

Learning-Based Methods

Zahra Jamadi

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

MontrÂeal, QuÂebec, Canada

January 2024

© Zahra Jamadi, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Zahra Jamadi

Entitled: Malware Detection and Next-Action Prediction using Learning-Based

Methods

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Paula Lago

External Examiner
Dr. Ramin Sedaghati

Supervisor
Dr. Amir G. Aghdam

Approved by
Dr. Yousef R. Shayan, Chair

Department of Electrical and Computer Engineering

2024
Dr. Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Malware Detection and Next-Action Prediction using Learning-Based Methods

Zahra Jamadi

In this thesis, we introduce a comprehensive framework that combines natural language pro-

cessing (NLP) techniques and machine learning (ML) algorithms for the early detection and pre-

diction of malware activities. The core contribution of our research is the innovative application of

text classification methods, particularly Bi-LSTM neural networks and Bayesian neural networks

(BNN), to interpret application programming interface (API) call sequences as natural language

inputs. This novel approach enables us to predict upcoming malware actions, facilitating proac-

tive threat identification and mitigation. Our first framework employs a Bi-LSTM model to predict

the next API call, treating consecutive API calls as 2-gram and 3-gram strings. These are then

processed using a Bagging-XGBoost algorithm, enhancing the model’s ability to detect malware

presence in its early stages. The second framework advances this concept by utilizing a Bayesian

Bi-LSTM neural network. This model not only forecasts the future actions of running malware

but also quantifies the uncertainty associated with each prediction, providing a probabilistic insight

into potential malware actions. By providing the second and third most probable predictions, we

significantly improve the reliability and performance of the decision-making process. Both frame-

works are rigorously evaluated through simulations, demonstrating their effectiveness in malware

detection and action prediction. Integrating these two approaches within a single thesis represents

a significant step in applying NLP principles to cybersecurity, particularly in understanding and

countering malware threats more effectively and efficiently.

iii

Acknowledgments

I extend my heartfelt gratitude to Dr. Amir Aghdam, my thesis supervisor, whose guidance

and unwavering support were instrumental in this research. I am profoundly thankful to my family,

especially my mother, for their endless love and encouragement. Their belief in me made this

achievement possible.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Literature Review . 1

1.2 Thesis Contributions and Organization . 3

2 Early Malware Detection and Next-Action Prediction 6

2.1 Abstract . 6

2.2 Introduction . 7

2.3 Proposed Methodology . 9

2.3.1 Datasets . 9

2.3.2 Early Malware Detection . 10

2.3.3 Next Action Prediction . 11

2.4 Experimental Results . 12

2.5 Conclusions and Future Work . 16

3 Enhanced Malware Prediction and Containment using Bayesian Neural Networks 18

3.1 Abstract . 18

3.2 Introduction . 19

3.3 Bayesian Neural Network . 22

3.4 Proposed Methodology . 25

v

3.4.1 Datasets . 25

3.4.2 Malware Detection . 26

3.4.3 Next Action Prediction . 27

3.5 Experimental Results . 29

3.6 Conclusion and Future Work . 34

4 Conclusion and Future Work 35

4.1 Conclusion . 35

4.2 Future Work . 36

vi

List of Figures

Figure 2.1 Malware and PUA samples from 2008 to 2023 [25] 7

Figure 2.2 Proposed framework for a) malware detection and b) next-action prediction 9

Figure 2.3 Next 10 API calls predicted by the Bi-LSTM model, along with the ground

truth. 13

Figure 2.4 Next 10 API calls predicted by the Bi-LSTM model, along with the ground

truth. 13

Figure 3.1 Bayesian dense layer algorithm flowchart 24

Figure 3.2 Overview of the implemented pipeline in this study for malware detection

and predicting its upcoming action . 25

Figure 3.3 The next 10 API calls predicted by the proposed Bayesian Bi-LSTM model

compared to the ground truth. The solid green and dashed red circles indicate the

correct and wrong predictions, respectively. 32

vii

List of Tables

Table 2.1 N-grams for a subsequence of 7 numerical API calls. 12

Table 2.2 Accuracy, precision, recall and F1-score of the Bi-LSTM model predicting

the next API call using first and second dataset [32], [33] 14

Table 2.3 List of Rare API Calls . 14

Table 2.4 Top 10 Important sequences of API call sequences and corresponding class

frequencies . 15

Table 2.5 Top 5 important malicious API call sequences indicating the existence of

malware . 15

Table 2.6 Accuracy metrics of XGBoost bagging model 16

Table 2.7 Comparison of Model Accuracies . 16

Table 3.1 N-grams for a subsequence of 7 numerical API calls 28

Table 3.2 Next API call predictions along with the corresponding uncertainties and

probabilities . 30

Table 3.3 Comparison between first, second and third predictions sorted based on their

probabilities and their associated uncertainties . 31

Table 3.4 Performance Metrics of the Bayesian Bi-LSTM vs. Bi-LSTM Models for

Predicting the Next API Call using the second dataset [58] 32

Table 3.5 Rare API call performance metrics . 32

Table 3.6 Performance metrics of Bayesian Bi-LSTM neural network 33

Table 3.7 Comparison of Model Accuracies . 33

Table 3.8 Predicted Labels with Probability and Uncertainty 34

viii

Chapter 1

Introduction

1.1 Literature Review

In today’s fast-paced digital world, the threat of cyber attacks, especially from malware, is a

growing concern [1]. Malware, which includes various types of harmful software, is created to

disrupt or damage computers, networks, and data [2]. With the widespread use of the internet

and the increasing reliance on digital technology, these threats have become more common and

sophisticated [3]. This has made strong cybersecurity measures more important than ever [1].

Traditional methods for fighting malware, such as signature-based detection, struggle to keep

up with these advanced threats [4]. On the other hand, some existing results in the control literature

use the notion of structural controllability to address failure and robustness in networked systems

(a conceptually similar problem) using a different approach [5], [6], [7]. These older techniques

may still be useful to some extent, but as new types of sophisticated malware emerge, they fail to

detect them as effectively. This challenge calls for new and innovative approaches, e.g., machine

learning-based methods [2], [4]. In this work, application programming interface (API) calls made

by malware are monitored and analyzed dynamically. Additionally, sequences of API calls have

similarities to language structure, e.g., following certain patterns, and contextual relationships be-

tween tokens [8]. Therefore, the existing methods in natural language processing (NLP) to correlate

the API call sequences.

Bidirectional long short-term memory (Bi-LSTM) neural networks have marked a significant

1

advancement in various scenarios, such as text classification [11], sentiment analysis [12], and even

specialized applications like malware classification [13]. These networks are designed to process

sequences in both forward and backward directions, effectively increasing the amount of informa-

tion available to the network and enhancing the context understood by the algorithm [9]. This

dual-direction processing allows Bi-LSTMs to capture long-term dependencies and local features

of text, leading to state-of-the-art results on several benchmark datasets [10].

Detecting the malware at its early stages is of great importance and the capability of any malware

detection method can be significantly enhanced by the analysis of feature importance. Through the

analysis of 2-gram and 3-gram strings of API call sequences, critical insights into the behavior

and interactions of malware with systems are obtained. These N-gram sequences, representing

pairs and triplets of API calls, provide a detailed view of potential malicious activities, making

them essential features in the detection model. The analysis of these features aids in understanding

the sequence and context of API calls, which are often key indicators of malware presence. The

Bagging XGBoost classifier has been selected for early-stage malware detection due to its great

classification performance and its ability to conduct feature importance analysis [14]. Consequently,

it is an effective tool for the early detection of cybersecurity threats.

Deterministic neural networks, while effective in many applications, exhibit certain limitations

that can be particularly challenging in complex and dynamic fields like cybersecurity. One sig-

nificant limitation is their inability to quantify uncertainty in their predictions [15]. Deterministic

models provide specific outputs for given inputs without an inherent measure of confidence or prob-

ability, which can be a drawback in scenarios where understanding the reliability of predictions is

crucial. Furthermore, deterministic models are prone to overfitting, especially when dealing with

limited or highly complex datasets [16]. This problem can lead to poor generalization of unseen

data, reducing the model’s effectiveness in real-world applications [16]. They also often require

extensive data for training, which might not always be feasible, especially in domains like malware

analysis where data collection is challenging or expensive e.g. malware analysis domain.

Bayesian neural networks (BNNs) address these limitations by offering a probabilistic approach

to learning and prediction, to quantify the uncertainty in their outputs [17]. This feature is particu-

larly valuable in applications demanding high confidence in decision-making, such as cybersecurity,

2

where the cost of incorrect predictions can be very high. The Bayesian approach integrates priors

and regularization through a probabilistic framework, which not only helps in mitigating overfitting

and reducing model complexity but also improves the model’s data efficiency and robustness [18].

This makes BNNs particularly suitable for scenarios involving small or noisy datasets and those

susceptible to adversarial attacks [18].

In cybersecurity, where adversaries continuously evolve their tactics and malware becomes more

sophisticated, the ability to make more confident decisions about malware detection and mitigation

is crucial [19]. Bayesian Bi-LSTM networks, by capturing uncertainty in the features and behaviors

associated with malware, enable the development of more robust and adaptive detection systems

[20]. Modeling uncertainty helps cybersecurity specialists establish a measure of confidence in

their decisions, thereby improving the overall efficacy of malware detection and action prediction.

Despite their computational intensity and the need for specialized training techniques, the benefits

of Bayesian neural networks, especially in uncertain and dynamic environments like cyber-physical

systems, make them an invaluable tool in this type of applications[21].

1.2 Thesis Contributions and Organization

The contributions of this thesis is summarized in the sequel. Due to the Bi-LSTM neural net-

work’s capability of handling sequences of tokens mentioned in the previous subsection, in this

work, the Bi-LSTM neural network is used for predicting the upcoming actions of ongoing mal-

ware, thereby enabling the early mitigation of the malicious software. The first framework devel-

oped for malware detection and next-action prediction exploits a Bi-LSTM neural network tailored

for predicting the future actions of malware. This network treats sequences of API calls as natural

language inputs by transforming them into a new dataset using N-gram features. The model receives

the sequences of API calls made by the malware up to that time and predicts the upcoming actions

by anticipating the next API calls that are going to be made by the malware. The capability of the

model to predict the next API call enhances the potential for early mitigation of malware threats,

showcasing a novel way of addressing cybersecurity challenges. The study further progresses by

adopting a method where consecutive API calls are modeled as 2-gram and 3-gram strings, allowing

3

for the extraction of new features. These features are then processed using a Bagging-XGBoost al-

gorithm to detect the malware at its early stage and identify the most important malicious activities

of the malware. Such a method is instrumental in suggesting the existence of malware, enhancing

the framework’s ability to detect and respond to cybersecurity threats. The integration of these ad-

vanced methodologies demonstrates a comprehensive approach to malware detection, combining

the strengths of neural networks and machine learning algorithms. This phase of the research sig-

nificantly contributes to the field by providing an effective tool for detecting and analyzing malware

activities.

Building on the advantages of BNN outlined in the previous subsection, this work further de-

velops two distinct architectures of Bayesian Bi-LSTM neural networks for malware detection and

next-action prediction. These specialized architectures are designed to exploit the full potential of

Bayesian neural networks in handling the uncertainties inherent in predictions. For malware detec-

tion, the Bayesian Bi-LSTM architecture is optimized to identify and analyze complex patterns in

data, enabling it to detect a wide range of malware behaviors, including sophisticated and previously

unseen variants. This capability is crucial in an ever-evolving threat landscape where traditional de-

terministic models might fall short. For next-action prediction, the Bayesian Bi-LSTM model is

engineered to predict potential future actions of a detected threat. This predictive ability is vital

for proactive cybersecurity measures, allowing for timely and effective responses to mitigate cyber

threats.

The second framework proposed for enhanced malware detection and next-action prediction

outperforms the first one in both detection and next-action prediction. The novelty of this method

lies in incorporating probabilities, enhancing the robustness and reliability of the framework. For

malware detection, a Bayesian Bi-LSTM neural network is developed which not only improves the

accuracy of the framework but also offers a deeper interpretation of each result, providing valu-

able insights into the detection process. For next-action prediction, a more complicated Bayesian

Bi-LSTM neural network is designed and implemented. This new framework outperforms its deter-

ministic neural network counterpart and provides a more reliable method for predicting the upcom-

ing actions of the malware by considering the probability values and associated uncertainty with

the most probable prediction along with the second and third most probable predictions made by

4

the BNN. Probabilistic insights into the model’s decisions provide cybersecurity experts with the

necessary information to make more confident decisions.

The rest of this thesis is organized as follows. Chapter 2 presents the proposed early malware

detection and next-action prediction model which has been published at the 13th IEEE Interna-

tional Conference on RFID Technology and Applications [22]. Chapter 3 introduces the enhanced

malware prediction and containment using a BNN which outperforms the previous framework by

incorporating a probabilistic nature to the detection and next-action prediction pipeline. The combi-

nation of the first and second methods will be submitted as one paper to the IEEE Journal of Radio

Frequency Identification. Finally, Chapter 4 presents conclusions and possible future research di-

rections.

5

Chapter 2

Early Malware Detection and

Next-Action Prediction

2.1 Abstract

In this paper, we propose a framework for early-stage malware detection and mitigation by

leveraging natural language processing (NLP) techniques and machine learning algorithms. Our

primary contribution is presenting an approach for predicting the upcoming actions of malware

by treating application programming interface (API) call sequences as natural language inputs and

employing text classification methods, specifically a Bi-LSTM neural network, to predict the next

API call. This enables proactive threat identification and mitigation, demonstrating the effectiveness

of applying NLP principles to API call sequences. The Bi-LSTM model is evaluated using two

datasets. Additionally, by modeling consecutive API calls as 2-gram and 3-gram strings, we extract

new features to be further processed using a Bagging-XGBoost algorithm, effectively predicting

malware presence at its early stages. The accuracy of the proposed framework is evaluated by

simulations.

6

2.2 Introduction

Malware is a term describing a malicious program that is installed on a platform such as a

personal computer, harming the user by damaging the system, stealing information, or hosting the

system for blackmail purposes [23]. The number of reported cyberattacks continues to increase, and

new malware is produced by attackers. According to 2021 SonicWall Cyber Threat Report, internet

of things (IoT) malware attack volume in the first six months of 2021 increased by 59% compared

to the previous year [24]. Additionally, the AV-TEST Institute indicates that every day, 450,000 new

malicious programs (malware) and potentially unwanted applications (PUA) are registered [25].

Figure 1 shows the distribution of the malware and PAUs from 2008 to 2023.

Figure 2.1: Malware and PUA samples from 2008 to 2023 [25]

Radio frequency identification (RFID) technology plays a crucial role in various industries, en-

abling automatic identification and tracking of objects using radio waves [41]. RFID systems typi-

cally consist of RFID tags attached to objects and RFID readers that communicate with the tags to

exchange data [41]. To facilitate this communication, RFID middleware is used as an intermediary

layer between RFID readers and the backend systems[42]. When malware infects the RFID mid-

dleware, it can modify the API calls made during the communication process, e.g., by manipulating

the flow of data between the middleware and the backend systems [42].

7

As new families of malicious threats emerge and variants of malware continue to develop, con-

ventional signature-based methods for detecting malware often fall short in identifying a large num-

ber of threats due to their reliance on known patterns [26]. Fortunately, learning-based methods are

able to detect malware more efficiently since they can recognize and learn the patterns of previously

unseen cyber-attacks [26].

Early malware detection and mitigation is an important task, especially for the types of malware

that are costly to recover from [27]. It can save resources, minimize damage and protect sensitive

information. One way to detect the malware at its early stage is to continuously monitor the applica-

tion programming interface (API) calls made by the malware during its run-time and analyze them

dynamically [28]. After early detection, it is desired to block the attack using a proper prediction

strategy before it affects the other parts of the system.

A sequence of API calls can be modeled as a natural language processing (NLP) task because

of their similarities, e.g., following a specific syntax and grammar, and the importance of context

in understanding the meaning of a request [8]. Several studies have been conducted to detect mal-

ware by leveraging NLP techniques. Sundarkumar et al. [29] used text-mining and topic-mining

techniques to use API call sequences for malware detection. Li et al. [29] built a joint represen-

tation of API calls to depict software behaviors and then implemented a Bi-LSTM model to learn

the relationship between API calls in a sequence and performed malware detection. Liu et al. [30]

employed several deep learning-based methods for malware detection based on API calls extracted

from Cuckoo sandbox.

In this study, API call sequences are modeled as a natural language construct, and principles of

NLP are utilized for early malware detection and next-step prediction. We first propose a framework

for detecting malware at its early stage. For this purpose, sequences of API calls are modeled as

2-gram and 3-gram strings and used as new features. Bagging-XGBoost algorithm [31] is then

used for malware detection and feature importance identification. In the second part of the work,

we predict the malware’s upcoming action(s). A bidirectional long-short term memory (Bi-LSTM)

neural network which is a common method in text classification tasks is used to predict the next API

call(s). The proposed method will help proactively detect and block the attack before it can cause

any significant damage.

8

The rest of the paper is organized as follows. In Section II, we describe the datasets and the

learning-based approaches used for malware detection and API call prediction. Section III presents

the results and effectiveness of the proposed framework in detecting malware and predicting API

calls. Finally, in Section IV, the contributions are summarized and potential directions for future

research in this area are suggested.

2.3 Proposed Methodology

In this section, we first introduce the two datasets used in this study and will then describe

the method used to detect the malware at its early stage and predict its upcoming action(s). The

proposed framework in this study is represented in Figure 3.1.

Figure 2.2: Proposed framework for a) malware detection and b) next-action prediction

2.3.1 Datasets

The first dataset used in this study contains 42,797 malware and 1,079 goodware API call se-

quences [32]. Each sequence contains the first 100 non-repeated consecutive API calls associated

with the parent process, with each API call assigned a numerical integer value ranging from 0 to

9

306. The dataset’s large number of malware samples provides a diverse range of malicious behav-

iors for the models to learn from, while the inclusion of goodware sequences allows the models to

differentiate between benign and malicious behavior. This dataset is used for malware detection.

The second dataset comprises 7,107 malware samples from various families, with each malware

API call sequence assigned a numerical integer value ranging from 0 to 341 [33]. This dataset’s

diversity of malware families enables a comprehensive analysis of the proposed method’s effective-

ness across different types of malware, while a large number of malware samples ensures that the

models are trained on a broad range of malicious behaviors, enabling them to detect and predict

various threats.

2.3.2 Early Malware Detection

We use the first dataset [32] for detecting the malware at its early stage. Due to the importance

of early malware detection, API calls for this dataset are only extracted from the parent process,

which is primarily responsible for initiating other processes. Furthermore, since the aforementioned

dataset is not quantitatively balanced in terms of goodware and malware samples, the random over-

sampling method is used to increase the number of goodware and balance the dataset for both train

and test sets. To ensure there is no data leakage, oversampling is performed after the dataset has

been split into 75% for training, 10% for testing, and 15% for evaluation. This approach maintains

the integrity of the testing and evaluation processes, as it prevents the model from being exposed

to test or evaluation data during training. Our objective is to also identify malicious activities as

the best indicators of the existence of malware. To this end, sequences of API calls, modeled as

2-gram and 3-gram strings of consecutive API calls, are tokenized and used as new features. The

most important features are then identified.

Let extreme gradient boosting (XGBoost) algorithm [34] be used for the binary classification,

and subsequently, early detection of the malware. XGBoost is a popular and powerful machine

learning algorithm for classification, regression, and ranking tasks. It is an ensemble method that

combines the predictions of multiple decision trees (DT) to make final predictions [14]. We then

build XGBoost bagging to improve the accuracy and robustness of malware detection tasks. The

bagging method in XGBoost, an important feature, involves the aggregation of multiple decision

10

trees, with each tree addressing the shortcomings of its predecessors. This iterative refinement is key

to enhancing the model’s predictive accuracy, especially in complex tasks like malware detection

[34].

The XGBoost classifier is also used to rank the importance of 2-grams and 3-grams of API calls

in terms of their prediction capabilities. In this context, the algorithm’s ability to efficiently manage

large feature sets, such as these n-grams, stands out. It assigns incremental weight to misclassified

instances, focusing more on challenging segments of the data in subsequent trees [35]. This strategy

is instrumental in improving the detection of sophisticated, previously undetected malware types.

Three XGBoost classifiers with learning rates of 0.01, 0.05, 0.1, maximum depth of 4, 3, 5, and

number of estimators equal to 100, 200, 300, respectively, are used to perform the feature extraction

and detection tasks. Hyperparameters for each classifier were selected using grid search.

2.3.3 Next Action Prediction

This subsection presents the main contribution of this work. To the best of the authors’ knowl-

edge, no prior research has been reported on predicting upcoming malware actions by predicting the

next APIs. We address this problem by modeling the sequence of API calls as a natural language

input. We then feed this sequence to Bi-LSTM model to predict the next APIs one by one, which are

indicative of the malware’s next actions. By predicting the next steps of the attack, proper mitigation

techniques can be used to prevent the malware from affecting the other parts of the system.

Bi-LSTM is a type of recurrent neural network capable of capturing the dependencies between

the elements of sequential data. Since it processes the input sequence in both forward and backward

directions, it can efficiently identify the words before or after another word [28]. To ensure that

the developed model is able to predict the next API calls of a given sequence efficiently, Bi-LSTM

model is tested on both datasets. The N-gram method is applied to both datasets to convert the API

calls sequence into a feature structure which helps the Bi-LSTM model learn the relationship of

the API calls with each other [36]. N-gram generation is carried out after splitting the dataset into

training, evaluation, and testing sets to ensure no data leakage.

To build N-gram features for a sequence of API calls, we consider a set of n consecutive API

calls, where n ranges from 2 to the length of the sequence minus 1. For each subsequence, we use

11

the last API call as the label. For example, to generate the first data point, we take the first two API

calls in the sequence and use the third API call as the label.

An example of N-gram features for a subsequence of one of the malware samples containing 7

API calls is given in Table 2.1.

Table 2.1: N-grams for a subsequence of 7 numerical API calls.

Data point Corresponding label

[220, 233] [237]

[220, 233, 237] [220]

[220, 233, 237, 220] [233]

[220, 233, 237, 220, 233] [290]

[220, 233, 237, 220, 233, 290] [260]

N-grams can capture the patterns in the sequence of API calls, indicating certain behaviors or

outcomes. We can then use these N-gram features to train the Bi-LSTM model for predicting the

next API call in a given sequence. The predicted API call is then added to the input sequence and

fed to Bi-LSTM network. In this way, we are able to predict multiple API calls which indicates the

future action of a malware.

The proposed Bi-LSTM neural network has four layers. The first one is an embedding layer for

converting the input sequence into a dense vector capturing its semantic and contextual information.

The second one is a Dropout layer with a 30% rate to prevent the model from overfitting. The

third one is a Bi-LSTM layer with a size of 150 neurons. Finally, the last one is a dense layer

which completes the classification task. Adam optimization algorithm with a learning rate of 0.01

is employed. The cost function used in this network is categorical cross-entropy, which is widely

used in text classification problems. The aforementioned configuration and hyperparameter values

are obtained after several experiments to achieve the highest level of performance.

2.4 Experimental Results

The proposed approach can anticipate the malware actions by predicting the next API calls that

the malware makes one at a time. Figures 3.3 and 2.4 represent the performance of the Bi-LSTM

model in predicting 10 subsequent API calls for two input sequences chosen randomly from the test

12

sets of the first and second dataset [32], [33]. In both figures, the sequence presented on the top is

the predicted sequence, while the one below is the ground truth. The green solid and red dashed

circles indicate the correct and wrong predictions, respectively. The results show that all but one

API call are predicted correctly in both cases.

Figure 2.3: Next 10 API calls predicted by the Bi-LSTM model, along with the ground truth.

Figure 2.4: Next 10 API calls predicted by the Bi-LSTM model, along with the ground truth.

The performance of the Bi-LSTM model for each dataset is evaluated by measuring the accu-

racy, precision, recall and F1-score which are reported in Table 3.4. In this problem, label imbalance

is a concern due to the unequal occurrence of different API calls when a process is running. Some

API calls may be more common in both benign and malicious programs, while others might be rare.

To overcome this challenge, the weighted average of all labels is reported, which takes the number

of true instances for each label into account. Reported results show that the model is performing

more accurately in predicting the next API call for the first dataset compared to the second one.

This might be due to two factors. First, the first dataset [32] contains a more diverse repository of

malware API call sequences (42797 samples) compared to the second dataset [33] (7107 samples).

This diversity can help the model to generalize more efficiently to unseen patterns of API call se-

quences. The second reason could be related to the length of API sequence. The first dataset [32]

contains the first 100 non-repeated consecutive API calls and the second dataset [33] contains all

13

the API calls made during the run-time. The Bi-LSTM model is performing better when trained on

shorter sequences of API calls.

Table 2.2: Accuracy, precision, recall and F1-score of the Bi-LSTM model predicting the next API

call using first and second dataset [32], [33]

Dataset 1 Dataset 2

Accuracy 93.62% 88.80%

Precision 93.58% 88.50%

Recall 93.62% 88.80%

F1-score 93.52% 88.48%

To evaluate the prediction ability of the Bi-LSTM network, we obtained the ROC score for each

API call label. This is a commonly used evaluation metric for classifiers, measuring the area under

the ROC curve, which plots the true positive rate (TPR) against the false positive rate (FPR). We

identified API calls for which the Bi-LSTM network was struggling to make correct predictions.

We observe that for both datasets, these APIs are the ones that are not commonly called during the

run-time of the samples, and the model struggles to predict them accurately when presented with

new, unseen data samples. Table 2.3 displays a list of rarely used APIs that are present in both

datasets.

Table 2.3: List of Rare API Calls

No. API Call

1 CopyFileW

2 GetUserNameExA

3 GetDiskFreeSpaceExW

4 SHGetSpecialFolderLocation

5 HttpSendRequestA

6 InternetGetConnectedState

7 sendto

8 RtlDecompressBuffer

For early detection of malware, we generate new features containing two and three consecutive

API calls extracted from the parents’ process. We then extract 10 most important features identified

by the XGBoost classifier and compared their occurrence in malware samples and benign samples.

Table 2.4 indicates the most important features and their occurrence in goodware and malware

14

samples. Class 0 and class 1 correspond to bengin and malware samples respectively. The features

that are more often in malware samples are then investigated to identify any potential malicious

activities that occur during the run-time of malware. Table 2.5 presents these features ordered by

their importance.

Table 2.4: Top 10 Important sequences of API call sequences and corresponding class frequencies

API Calls Class 0 Count Class 1 Count

[240, 117, 82] 1779 12287

[117, 297, 199] 0 6345

[35, 208, 240] 625 14365

[199, 264] 17349 16475

[215, 37] 549 5129

[114, 215] 14582 3064

[117, 215, 260] 12165 934

[215, 37, 158] 397 4993

[202, 260] 13248 8108

[117, 215, 89] 44 2276

Table 2.5: Top 5 important malicious API call sequences indicating the existence of malware

API Call Sequence

1 LdrLoadDll, LdrGetProcedureAddress, CertOpenSystemStoreA

2 LdrGetProcedureAddress, NtCreateFile, SetFilePointer

3 GetSystemMetrics, NtAllocateVirtualMemory, LdrLoadDll

4 NtClose, NtOpenKeyEx, NtQueryValueKey

5 LdrGetProcedureAddress, NtClose, NtDuplicateObject

The malware corresponding to the first API call sequence specified in Table 2.5 is to load a

malicious Dynamic Link Library (DLL) into memory, retrieve the address of a specific function

within the DLL, and obtain a certificate from the system certificate store. The second suspicious

API call sequence is when the malware locates a specific function within a loaded module, creates a

new file on the system, and manipulates the file pointer to write data to a specific location within the

file. The third sequence is extracting system information, allocating memory in the virtual address

space, and loading a DLL into memory. The fourth is manipulating the Windows Registry, which

is a hierarchical database storing configuration settings and other system information. The last one

is locating and duplicating a handle to an object, such as a file, registry key, or process, in order to

gain access to it and perform some malicious actions.

15

Bagging-XGboost is then used to classify an ongoing process as malware or goodware. The

results show that the proposed malware detector framework is able to detect the malware at its early

stage with high accuracy. The precision score of 92.70% shows that the model has a false alarm

rate of 7.3% which is indicative of the well performance of our early malware detector. The full

performance metrics of the proposed XGBoost bagging are presented in Table 2.6. To evaluate the

performance of our early-stage malware detection technique, it is compared with other methods

in the literature which use sequences of API calls. Table 2.7 reports the comparison between the

accuracy of our model with other methodologies.

Table 2.6: Accuracy metrics of XGBoost bagging model

Accuracy 95.85%

Precision 92.70%

Recall 99.56%

F1-score 96.00%

Work Algorithm Accuracy

Sai et al. [37] DT 89.89%

Xue et al. [38] MLP 91.57%

Avci et al. [39] Bi-LSTM 93.16%

Catak et al. [40] Two layer LSTM 95.00%

Present work XG-Boost Bagging 95.85%

Table 2.7: Comparison of Model Accuracies

2.5 Conclusions and Future Work

This paper presents a framework for early-stage malware detection and mitigation by treating

API call sequences as natural language inputs and employing text classification methods, specif-

ically a Bi-LSTM neural network, to predict the next API call. This study demonstrates that Bi-

LSTM, a neural network architecture commonly used in NLP tasks, is an effective method for

predicting API calls due to the similarities between the sequence of API calls and natural language

structure [8]. The model is able to predict the next action of the malware by predicting the next

API calls that are most likely to occur, one at a time, and allow early mitigation. Additionally, by

modeling consecutive API calls as 2-gram and 3-gram strings, we extract new features to be further

16

processed using a Bagging-XGBoost algorithm. This enables us to identify the sequence of API

calls and their corresponding activities that may suggest a malware exists.

For future work, one can investigate alternative NLP techniques, such as transformers and atten-

tion mechanisms, to enhance the malware detection and prediction capabilities of the framework.

Moreover, evaluating the real-time performance of the proposed framework for online malware de-

tection and mitigation could provide insights into its potential for practical deployment in real-world

cybersecurity scenarios. Finally, this study only explored the prediction of API calls one step at a

time. One direction could involve extending the framework to multistep-ahead prediction of API

calls.

17

Chapter 3

Enhanced Malware Prediction and

Containment using Bayesian Neural

Networks

3.1 Abstract

In this paper, we present an innovative framework to enhance the accuracy and reliability of

malware detection and the action prediction of the malicious software. Our approach leverages the

power of natural language processing (NLP) techniques, coupled with the advantages of Bayesian

neural networks (BNN). The main objective of this work is to forecast the future actions of running

malware by predicting the next application programming interface (API) call given a sequence of

API calls within the run time of malware. To this end, the sequence of API calls is processed as nat-

ural language inputs, transforming them into N-grams, and passing them to a Bayesian bidirectional

long short-term memory (Bi-LSTM) neural network. This framework provides us with probabilis-

tic insights into the actions an ongoing malware could take. The result is also extended to malware

detection by employing a different Bayesian Bi-LSTM neural network architecture. The proposed

Bayesian Bi-LSTM neural proves effective in making reasoned decisions by taking the probability

18

values and the uncertainty associated with each prediction. For both detection and next-action pre-

diction, the second and third most probable predictions are also taken into account to improve the

reliability and performance of the decision-making process. The accuracy of the proposed frame-

work is evaluated by several simulations.

3.2 Introduction

In today’s digital world, with the wide use of computers and the internet, cybersecurity is becom-

ing increasingly critical in various sectors [1]. Malware is a term for ºmalicious software,º which

comes in many forms and is designed to disrupt, corrupt, or exploit computer systems, networks,

and data [1]. As the digital world keeps changing, new variants of malware tend to rise [2]. The

consequences of malware running on the user’s system without being notified could be devastating.

Such consequences include financial losses, data breaches, system disruptions, and even threats to

national security [43]. Therefore, developing methodologies for early detection and mitigation of

malware is absolutely crucial.

The ability to predict the malware’s next actions is pivotal in effective mitigation. It can min-

imize potential damage and reduce the malware’s impact on the system, resulting in a resilient

defense against malware threats. This goal could be achieved by dynamically analyzing applica-

tion programming interface (API) calls being made by the malware. Sequences of API calls share

similarities with natural language input, as they can both be represented as sequences of tokens.

Additionally, these sequences exhibit contextual and semantic relationships between their tokens,

akin to the relationships found in words within language [8]. Therefore, natural language process-

ing (NLP) methods can be applied for processing the sequences of API calls, and language models

(LM) can be used for analysis and interpretation. LMs are exploited to find the next most probable

word given a sequence of words by calculating the probability of a sequence of words [44]. Thus,

the task of malware detection is similar to sentiment classification, where we classify the behavior

of a program as either benign or malicious based on its API call sequence. We can also predict the

upcoming action by predicting the next API call, which is similar to a multi-label text classification

problem.

19

In the context of malware detection and its next action prediction, conventional methods such as

signature-based detection and static file analysis have been used for many years [4]. However, these

methods often fall short when it comes to detecting new and unknown malware [45]. Learning-

based methods such as deep learning have emerged as a promising approach for malware detection

and prediction [2]. Recent research has shown that deep learning methods can achieve better ac-

curacy than traditional machine learning techniques and can learn to efficiently detect and classify

new malware samples [2]. However, there are some limitations associated with deterministic neural

networks, which could be addressed using Bayesian neural networks (BNN). Unlike deterministic

networks, BNNs offer probabilistic predictions that quantify uncertainty, making them valuable in

applications demanding confidence estimates [46]. They mitigate overfitting and model complex-

ity by incorporating priors and regularization through a probabilistic framework. BNNs are data-

efficient and robust, making them more suitable for small or noisy datasets and adversarial attack

scenarios [18]. They also streamline hyperparameter tuning and offer richer model interpretability

[18]. However, they do require specialized training techniques and can be computationally intensive

[47]. Despite these challenges, BNNs are vital in fields where uncertainty modeling is critical [46].

In the field of cybersecurity, adversaries are continually evolving their tactics, and malware is

becoming increasingly sophisticated [19]. According to an article published by the Information

Systems Audit and Control Association (ISACA) [19], in 2022, 76% of organizations were targeted

by a ransomware attack, of which 64% were infected. As a result, the ability to make more reliable

malware detection and mitigation is advantageous. BNNs are capable of capturing uncertainty in

the features and behaviors associated with malware, enabling more robust and adaptive detection

systems. By modeling uncertainty, BNNs can help cybersecurity specialists establish a measure of

confidence in the decisions they make.

To the best of the authors’ knowledge, there are no results reported in the literature which treat

the API calls made by malware at runtime as tokens and natural language inputs and analyze these

inputs using BNNs for detecting malware and predicting its future actions. However, in prior re-

search, there are a few works conducted using Bayesian neural networks for malware analysis. The

authors in [48] present proposed an Android malware detection system using Bayesian classifica-

tion based on permission features extracted via static analysis. The authors in [49] developed a

20

non-parametric Bayesian model for malware detection and classification allowing probabilistic data

representation where a feature selection technique is given to improve the model’s efficiency. This

approach is not only used in the realm of cybersecurity but also exploited in other applications such

as text classification. The authors in [50] categorize ransomware into nine distinct classes using

artificial neural networks and Bayesian networks. They collect ransomware samples and create

a learning database by extracting common strings from system calls. The work [51] presents a

Bayesian network for malware detection, where optimized features are determined using a feature

selection model. The features are then exploited to develop the predictive analytics model. The

resultant Bayesian network outperforms traditional machine learning models, e.g. support vector

machine (SVM) and K-nearest neighbors (KNN).

The contributions of this paper can be summarized as follows. In the first part of the study, a

Bayesian Bi-LSTM neural network is designed and implemented for malware detection. Sequences

of API calls are treated as a natural language input. Depending on the length of the input sequence

used for the detection and uncertainty measurements, different results (including false alarm rates)

can be achieved. Each different result can be interpreted according to the probabilistic nature of

the model and uncertainty measurements. In the second part of the work, sequences of the API

calls are transformed into a new dataset using N-gram features. Another architecture for a Bayesian

Bi-LSTM neural network is developed to predict the upcoming action of a running malware by

predicting the next API calls. For this part, the less probable predictions made by the network are

also taken into account to improve the performance and the reliability of the framework.

The rest of the paper is organized as follows. Section II presents the details about the theory and

the implementation of the developed Bayesian Bi-LSTM neural network. Simulations are given in

Section III to validate the findings. Finally, in Section IV, the contributions are summarized, and

directions for future research are suggested.

21

3.3 Bayesian Neural Network

Machine learning (ML) methods have been widely used in applications such as NLP, time-series

analysis, and finance due to their ability to make accurate predictions and classifications [52]. How-

ever, they are highly prone to overfitting, making them poor in generalization and handling unseen

data, especially when trained on the limited size of training data [52]. BNNs involve probability

and uncertainty within the Bayesian framework [52]. In Bayesian statistics, probability is used to

express beliefs about the likelihood of events or parameters, and these beliefs are updated as new

evidence (data) becomes available [53]. Therefore, a BNN uses a prior distribution to formulate a

posterior distribution over the network’s parameters [52]. To this end, one can write:

p(θ|D) =
p(D|θ) · p(θ)

p(D)
(1)

where p(θ|D) is the posterior probability, representing the probability of the parameter θ given the

observed data D. The likelihood p(D|θ), on the other hand, describes the probability of observing

the data D given a specific parameter value θ. Furthermore, p(θ) denotes the prior probability,

which is the initial belief or probability distribution for the parameter θ before observing the data.

Finally, p(D) is the marginal likelihood or evidence, which is the overall probability of observing

the data D, regardless of the specific parameter value.

There are several Bayesian inference algorithms to approximate the posterior distribution over

the parameters of the Bayesian model, including Markov chain Monte Carlo (MCMC), variational

inference, and Bayes by backpropagation [54]. For higher computational efficiency and scalability,

variational inference is used in this research to estimate the posterior distribution of the network’s

parameters [54]. It is a powerful technique that treats the weights and biases of the network as

random variables to capture the uncertainty associated with each prediction [54].

A BNN aims to model not just point estimates of parameters, but full probability distributions

over them, allowing one to capture uncertainty. The posterior distribution over the network’s pa-

rameters is inferred from the data. Variational inference approximates the true but often intractable

posterior distribution with a simpler parameterized distribution, e.g. Gaussian, Cauchy and expo-

nential distributions, to make this inference tractable [52]. In our study, the Gaussian distribution is

22

used for modeling the posterior distribution over the parameters of our network.

Training a BNN includes the following steps:

• Define a BNN architecture, specifying the prior distributions for the parameters.

• Specify the type of posterior distribution according to the nature of the problem and data

characteristics.

• Use variational inference to approximate the posterior distribution of the parameters by opti-

mizing the variational parameters to minimize the KL divergence. During this step, sampling

from the approximate posterior allows for capturing the model’s uncertainty in predictions.

• Use a loss function, including a likelihood term, to train the model on your data.

According to a study conducted by Google Brain [55], the integration of Bayesian layers within

a neural network architecture enables the estimation of distributions over the layer’s weights and bi-

ases. A Bayesian layer can easily be integrated with the deterministic layers inside a neural network

architecture, enabling both deterministic and stochastic components [55]. Exploiting Bayesian lay-

ers incorporates uncertainty within the established semantics of deep learning [55]. In this research,

we use a Bayesian layer as the output layer of a Bi-LSTM neural network. We develop the Bayesian

layer using TensorFlow probability library. The optimization process in such a network is more

complicated than in traditional neural networks, as it involves not only the usual back-propagation

and weight adjustments seen in traditional neural networks but also the optimization of probabilistic

parameters in the Bayesian layer.

Firstly, our Bi-LSTM processes the input data through both forward and backward layers during

the forward pass, capturing complex dependencies in the sequence data. The output of this Bi-

LSTM is then fed into the Bayesian layer. Instead of having fixed weights, however, the Bayesian

layer possesses distributions of weights. This means that during training, we are not just learning

specific weight values but rather the parameters (mean and variance) of the distributions from which

these weights are drawn. The optimization process involves Bayesian inference, where we update

our beliefs about the model parameters given the data. Typically, this consists of calculating the

posterior distribution of the weights. However, exact Bayesian inference is often computationally

23

intractable for complex models like neural networks. Therefore, variational inference is used for

posterior approximation.

In variational inference, we define a distribution with its own set of parameters. Then, we adjust

these parameters to make the variational distribution as close as possible to the true posterior. The

closeness is measured using the Kullback-Leibler (KL) divergence, for which the formulation is

given as follows:

min KL(P ||Q) =

∫

P (x) log

(

P (x)

Q(x)

)

dx (2)

where P (x) is the true probability distribution, and Q(x) is the estimated distribution. The training

involves minimizing a loss function comprising not only the prediction error, which is binary and

categorical cross entropy for malware detection and next-action prediction, but also this KL diver-

gence term. This additional term acts as a regularizer, encouraging the model to maintain a balance

between fitting the data and not being overly confident in its predictions.

The backpropagation process in this setup involves gradients not only with respect to the weights

of the Bi-LSTM layers but also concerning the parameters of the variational distribution in the

Bayesian layer. The optimization is carried out using the Adam optimizer, which is more challeng-

ing than traditional neural networks due to the involvement of probabilistic parameters. Ultimately,

this advanced optimization process allows our Bayesian Bi-LSTM model to make reliable predic-

tions while also providing a measure of uncertainty. This is crucial in many real-world applications

where decisions are subject to uncertainty. The steps taken by the Bayesian layer in our implemen-

tation are demonstrated in Figure 3.1.

Figure 3.1: Bayesian dense layer algorithm flowchart

24

3.4 Proposed Methodology

In this section, we begin by introducing the datasets used for detection and next-action pre-

diction, detailing the preprocessing steps applied to these datasets. Subsequently, we describe the

Bayesian Bi-LSTM network architectures used for both detection and next-action prediction. The

comprehensive flowchart of the proposed framework can be found in Figure 3.2.

Figure 3.2: Overview of the implemented pipeline in this study for malware detection and predicting

its upcoming action

3.4.1 Datasets

Two different datasets are used for detection and next-action prediction. The first one [56] was

extracted from a larger dataset documented in [57]. It comprises 1,314 goodware and 2,626 malware

API call sequences, with each API call assigned a numerical integer value ranging from 0 to 306.

Due to the copyright restrictions related to API calls in goodware application runtime, publicly

available datasets for malware behavioral analysis are scarce. However, the number of malware

and goodware samples in this dataset is reasonable, eliminating the need for data augmentation or

over-sampling to achieve dataset balance.

The second dataset, exclusively composed of API call sequences associated with malware, is

employed in the latter part of our research, specifically for next-action prediction [58]. This dataset

comprises 7,107 malware samples, with each API call mapped to a numerical integer ranging from

0 to 341, covering a diverse range of malware samples and providing the model with varied data for

enhanced predictive capabilities.

25

3.4.2 Malware Detection

We use the first dataset [56] for probabilistic malware detection. Due to the importance of

making probabilistic detection and uncertainty estimation when it comes to malware detection, we

developed a Bayesian Bi-LSTM for this purpose by integrating a Bayesian dense layer as the output

layer of a Bi-lSTM neural network. A Bi-LSTM neural network is exploited for processing se-

quential token data due to its ability to capture long-range dependencies and contextual information

from both past and future, making it suitable for various natural language processing tasks [59]. De-

pending on the malware detection’s time sensitivity, we can make decisions at various stages during

the malware’s runtime. Therefore, we can adjust the length of data collected during the malware’s

execution accordingly. Early-stage detection, for example, can be based on the initial API calls

observed in the malware’s runtime. Since we can measure probability values and uncertainty, we

can interpret the results obtained for each decision. Cybersecurity specialists can decide about the

timing thresholds and the amount of data collected during the runtime for malware detection based

on different factors, including the potential number of infected systems, potential consequences of

delayed mitigation, or the type of infrastructure being targeted.

The proposed Bayesian Bi-LSTM network for malware detection has four layers. The first is an

embedding layer that captures the similarities among the API calls in the input sequence. The second

layer is a Bi-LSTM layer with 200 LSTM units. The third layer is a global average pooling layer

used for dimensionality reduction, and the fourth one is a Bayesian dense layer with one neuron and

the sigmoid activation function to handle binary classification. The posterior distribution family

considered for weights and bias is Gaussian. The choice of prior values for the parameters of the

Bayesian layer is of great significance. A poor choice of initial values for the mean and standard

deviation in the Gaussian distribution could lead to the divergence of the model due to high KL

divergence; hence, the posterior distribution must closely match the prior values. In other cases,

poor initial values could lead to slow convergence or a result not sufficiently close to the local

minimum [18]. According to [18], the prior values for the weights and biases of the Bayesian layer

in the case of language modeling and speech recognition can be chosen by using the average and

standard deviation of the weights and biases of the last layer of a comparable neural network that

26

has fully or half converged. Thus, by considering the average and standard deviation of the weights

and biases of the dense layer belonging to the last layer of a fully converged Bi-LSTM neural

network trained on the same dataset, the initial values for the weights mean, bias mean, weights

standard deviation and bias standard deviation are chosen as -0.004, 0.004, 0.08 and 0, respectively.

Notably, we only have one bias value for the Bayesian layer since it only has one neuron for binary

classification tasks.

The model’s development involves systematically exploring architecture and hyperparameters

to achieve optimal performance through multiple experiments. We employ the binary cross-entropy

cost function throughout this iterative process, as commonly used in binary classification tasks.

The optimization of our model leverages the Adam optimizer with an initial learning rate of 0.001.

Additionally, we integrate a learning rate scheduler and an early stopping mechanism to ensure high

accuracy. Additionally, we configure a batch size of 64 (an essential aspect of our optimization

strategy) for a suitable balance between computational efficiency and model effectiveness.

3.4.3 Next Action Prediction

To the best of the authors’ knowledge, aside from prior work of the same authors [22], there

is no reported result on malware action prediction by analyzing the sequence of API calls. For

a probabilistic prediction approach, which accounts for uncertainties, we design and implement a

Bayesian Bi-LSTM network to tackle the underlying problem. The proposed architecture has five

layers. Similar to the malware detection phase, the first layer of the proposed architecture is an

embedding one. However, two Bi-LSTM layers are utilized instead of one, each with 150 LSTM

units. The reason for considering two layers is the complexity of the task, similar to a multi-

class classification. Given an input of API call sequences, predicting the following API call is like

finding the next API call label among 342 different classes. It is more difficult for the Bayesian

Bi-LSTM neural network to handle this task. Therefore, using two Bi-LSTM layers could improve

performance and accuracy for the given task. The third layer is a global average pooling layer for

dimensionality reduction. The last is a Bayesian layer with 342 neurons and a Gaussian distribution

for each weight and bias in this layer. Similar to the approach used for the BNN for malware

detection, the initial values of the Gaussian distribution parameters are set according to the values

27

of the weights and bias belonging to the last layer of a converged comparable Bi-LSTM neural

network. Therefore, the initial values for weights mean, biases mean, weights standard deviation,

and biases standard deviation are chosen as −0.1, −1.8, 0.4, and 0.8, respectively. The model

is constructed through a series of experiments to optimize its architecture and hyperparameters,

ensuring the most suitable results. In this process, we employ a categorical cross-entropy cost

function, a common choice for text classification. We utilize the Adam optimizer with an initial

learning rate of 0.001 for optimization. Furthermore, we implement a learning rate scheduler and

early stopping technique to guarantee the highest accuracy. The batch size (a crucial part of this

optimization process) is set to 128 to balance computational efficiency and model performance.

The dataset used in [57] is first split into training, evaluation, and testing and then converted to

a new dataset by generating N-gram features built for a sequence of API calls by examining a series

of consecutive API calls where the value of N varies from 2 to one less than the total length of the

sequence. In this approach, considering each subsequence, the last API call within that subsequence

is used as the label. For instance, when generating the initial data point, we take the first two API

calls from the sequence and designate the third API call as the corresponding label. To understand

N- gram feature extraction comprehensively, Table 3.1 provides an example of 7 API calls.

Table 3.1: N-grams for a subsequence of 7 numerical API calls

Data point Corresponding label

[50, 25] [274]
[50, 25, 274] [178]
[50, 25, 274, 178] [117]
[50, 25, 274, 178, 117] [16]
[50, 25, 274, 178, 117, 16] [283]

Generating N-gram features can help the Bayesian Bi-LSTM neural network effectively learn

the dependencies and patterns between API calls. This technique aids in language modeling and text

generation tasks for predicting the next token given a sequence of words [36]. Being able to predict

the next API call to be made by the malware, given an observed sequence of API calls, allows us to

predict the upcoming action of the malware. This is performed by adding the predicted API call to

the input sequence and feeding it as new input to the model to predict the following API call further.

28

As a result, with an input sequence, we can predict the subsequent API calls one at a time until we

obtain the necessary information regarding the future actions of the ongoing malware.

3.5 Experimental Results

In our research, the implemented Bayesian Bi-LSTM model can make stochastic predictions.

Unlike conventional neural networks, we do not have a fixed set of parameters for different layers.

Therefore, for a fixed input, the BNN samples the probability distributions of the parameters in the

Bayesian layer for each prediction. This approach enables us to capture uncertainty in the output

generated by the model when making predictions multiple times for the same input. Recognizing

that there is no single set of parameters, our model provides a range of possible predictions for a

given input, reflecting the inherent uncertainty in the model’s learned parameters as well as in the

processed data. Uncertainty is quantified as the standard deviation of the predicted probabilities

for a given class, obtained through multiple evaluations of the model for the same input. This

metric reflects the degree of variation or inconsistency in the model’s predictions across different

runs. A lower value of uncertainty (standard deviation) indicates that the model’s predictions are

more consistent and reliable for the given input, signifying higher confidence in the predicted class.

Conversely, a higher uncertainty value suggests greater variability in the predictions, denoting lower

confidence in the model’s output. Accordingly, we run the models 20 times for a given input and

average the predicted probabilities for each class. Considering the most certain class as the one with

the highest average probability, we measure the uncertainty associated with this class represented

by the standard deviation. Lower uncertainty values indicate higher confidence, implying that the

model’s predictions are consistently aligned across the runs. A high predicted probability and low

uncertainty (standard deviation) for a particular class ensures high trust in the prediction. Table 3.2

showcases these results with specific examples of input API call sequences, the most certain class,

and the actual label with the probability and uncertainty associated with the most certain class. As

can be interpreted from this table, by observing the predicted probability and uncertainty values

associated with the most certain class for the next API call, we can realize how much we can rely

on the predictions made by the model.

29

Table 3.2: Next API call predictions along with the corresponding uncertainties and probabilities

Input Sequence Most Probable Next API True label Probability Uncertainty

[291, 291, 177, 291, 291] 294 294 1.0 0

[294, 289, 44, 289, 289] 44 44 0.99 0.01

[263, 34, 39, 39, 262] 199 34 0.13 0.03

[220, 220, 233, 233, 233] 237 220 0.38 0.11

When there is not a high probability value and small uncertainty associated with a made predic-

tion, we need to doubt the outcome of the model. Therefore, we can look at the second and third

most probable predictions made by the model and take those predictions into account as well. For

this purpose, when the predicted probability value for the most probable prediction was less than

50%, we also considered the second most probable label. Additionally, when the predicted proba-

bility for the most probable label is less than 33%, we look at the second and third most probable

labels. Cybersecurity specialists can rely on the less probable predictions based on their probability

values and uncertainty measurements. Table 3.3 presents a few examples where the model is not

confident about its predictions, and hence, less probable labels should also be provided.

Expanding on this, it is crucial to understand the value of these additional predictions in the

context of cybersecurity, especially in the fight against malware. Malware attacks can be incredi-

bly costly and complex, making it essential to consider every possible angle. In situations where

the most probable prediction is not made with high confidence, second and third options can offer

valuable insights. This methodology is crucial for a cybersecurity framework that aims to be both

comprehensive and reliable. By including these lower probability predictions, the framework alerts

human experts, who can then make confident decisions based on the ongoing context and their ex-

pertise. Such a system ensures a more contextual response to threats, particularly in environments

where malware’s behavior can be unpredictable. It enhances the reliability of the framework, en-

suring that decisions are not solely based on automated predictions but are augmented by expert

human judgment. This is a step towards creating a cybersecurity system that is robust, adaptable,

and capable of responding to the evolving landscape of cyber threats.

As demonstrated in Table 3.3, when the primary prediction lacks an acceptable level of confi-

dence, one can make more appropriate decisions by monitoring the corresponding probability and

uncertainty. Cybersecurity experts occasionally choose less probable predictions out of experience.

30

Table 3.3: Comparison between first, second and third predictions sorted based on their probabilities

and their associated uncertainties
Input Sequence Prediction rank Probability Uncertainty Prediction

[44, 252, 44, 107, 232] Most certain 0.49 0.24 Wrong

[44, 252, 44, 107, 232] Second most probable 0.44 0.26 Correct

[303, 316, 303, 316, 302] Most certain 0.36 0.17 Wrong

[303, 316, 303, 316, 302] Second most probable 0.23 0.14 Correct

[0, 0, 0, 0, 69] Most certain 0.19 0.04 Wrong

[0, 0, 0, 0, 69] Second most probable 0.11 0.05 Wrong

[0, 0, 0, 0, 69] Third most probable 0.10 0.05 Correct

This method offers a valuable criterion for determining when professionals’ expertise outweighs the

analyzed pipeline’s questionable reliability.

Figure 3.3 illustrates the performance of the Bayesian Bi-LSTM model for two randomly se-

lected samples from the test set belonging to the second dataset [58] predicting the subsequent ten

most probable API calls. The upper sequence is the most probable API call, and the sequence on

the bottom is the ground truth. Table 3.4, on the other hand, presents the performance metrics of

the Bayesian Bi-LSTM model, such as accuracy, precision, recall, and F1 score. This table com-

pares the results with the deterministic Bi-LSTM neural network framework in [22] using the same

dataset [22]. It also shows that the BNN can outperform its deterministic counterpart in terms of

the above metrics. Note also that in this problem, the frequency of API calls among each label is

different. It is also important to note that the problem involves API calls with various frequencies

across different labels, as some API calls occur more frequently. Some API calls are significantly

more common, while others are rare in malware and goodware samples. Consequently, the classifi-

cation metrics for the Bayesian Bi-LSTM model are reported using weighted averages that consider

the number of API call instances associated with each class, effectively treating them as support for

each measurement.

By examining the classification report for each API call class, we can also estimate the reliabil-

ity of the model predicting each API call. We gain valuable insights into the model’s performance

across various categories by analyzing precision, recall, and F1 scores for each class. We can de-

cide if the model’s prediction is trustworthy by combining the knowledge we gain with the predicted

31

Figure 3.3: The next 10 API calls predicted by the proposed Bayesian Bi-LSTM model compared to

the ground truth. The solid green and dashed red circles indicate the correct and wrong predictions,

respectively.

Table 3.4: Performance Metrics of the Bayesian Bi-LSTM vs. Bi-LSTM Models for Predicting the

Next API Call using the second dataset [58]

Metric Bayesian Bi-LSTM Bi-LSTM

Accuracy 89.53% 88.80%

Precision 89.25% 88.50%

Recall 89.52% 88.80%

F1 Score 89.22% 88.48%

probability and uncertainty when predicting the next API call. The model usually has a shortcom-

ing when making predictions for API calls with low occurrence rates in the dataset. Table 3.5

presents some rarely occurred API calls with their associated metrics exhibiting the model’s poor

performance trying to predict them correctly.

Table 3.5: Rare API call performance metrics

API call Occurrences Precision Recall F1 Score

GetUserNameExW 19 0.36 0.42 0.39

CreateDirectoryExW 5 0.29 0.40 0.33

DrawTextExW 29 0.30 0.28 0.29

ReadCabinetState 9 0.20 0.11 0.14

The Bayesian Bi-LSTM model is used for malware detection to make probabilistic decisions.

The first 50 API calls suffice for training the model and ensuring that the implemented model can

detect the malware at its early stage. The performance metrics of the detection model are reported

by making predictions ten times for each sample in the test set and averaging the probability values

32

and uncertainty measurements. Table 3.6 presents the performance metrics of the Bayesian Bi-

LSTM model developed for early malware detection. The table reports a precision score of 97.26%,

indicative of the false alarm rate of 2.74%, which shows the excellent performance of the proposed

detector. The accuracy of our detection framework is compared to the existing malware detection

results, including our previous work using XGBoost bagging in Table 3.7.

Table 3.6: Performance metrics of Bayesian Bi-LSTM neural network

Accuracy 96.44%

Precision 97.26%

Recall 99.12%

F1 score 98.18%

Reference Algorithm Accuracy

Sai et al. [37] DT 89.89%

Xue et al. [38] MLP 91.57%

Avci et al. [39] Bi-LSTM 93.16%

Catak et al. [40] Two layer LSTM 95.00%

Our previous work [22] XG-Boost Bagging 95.85%

Present work Bayesian Bi-LSTM 96.44%

Table 3.7: Comparison of Model Accuracies

Similar to the next-action prediction, by analyzing the probability values and uncertainty esti-

mation associated with each prediction made by the model, one can evaluate the reliability of the

corresponding output. This is where the advantage of employing a probabilistic (BNN) approach

becomes evident. In contrast to a deterministic approach, which would require trusting every pre-

diction made by the model, a probabilistic approach enables one to interpret the model’s output.

Consequently, we can identify and manage potentially erroneous predictions and avoid making as-

sumptions of correctness for predictions with higher uncertainty. Table 3.8 showcases some wrong

predictions made by the BNN and their associated probability values and uncertainties. As evident

from the table, the wrong detection result is usually associated with a probability value less than the

overall accuracy of the detection framework and high uncertainty.

33

Table 3.8: Predicted Labels with Probability and Uncertainty

Test data index Predicted label Probability Uncertainty

39 malware 0.73 0.31

194 malware 0.89 0.13

386 Goodware 0.43 0.32

3.6 Conclusion and Future Work

This research presents an enhanced framework for malware detection and next-action prediction,

combining NLP and BNN by incorporating probability and uncertainty into the model’s outcomes.

We treat sequences of API calls as natural language inputs, transform them into N-grams, and use

a Bayesian Bi-LSTM network for probabilistic predictions and uncertainty estimations. We use

BNN to overcome the limitations associated with deterministic neural networks, including lack of

uncertainty quantification, being prone to overfitting, and suboptimal performance when dealing

with limited datasets. A Bayesian layer is implemented as the output layer of a Bi-LSTM neural

network, and variational inference is used to estimate the posterior probability distribution of the

parameters of this layer. We show that using the Bayesian layer as a part of the neural network

provides an enhanced probabilistic approach to predictions and presents valuable insights for each

prediction. Measuring uncertainty and probability values associated with each outcome in detection

and next-action prediction, on the other hand, equips cybersecurity experts with crucial information

concerning the reliability of the outcomes. The proposed framework not only offers extensive in-

sights into the reliability and trustworthiness of predictions but also outperforms the results of [22]

in both detection and next-action prediction. For future work, one can improve the performance of

malware analysis by using different architectures for the BNN and more effective algorithms for

variational inference. In addition, one can investigate the application of the proposed framework for

predicting specific threat scenarios or attack patterns to enhance its practical utility in cybersecurity.

Finally, the real-time implementation of BNNs for immediate attack detection and early mitigation

is another important direction for future research.

34

Chapter 4

Conclusion and Future Work

4.1 Conclusion

This thesis presents a novel framework that can be exploited for malware detection and mitiga-

tion strategies, focusing on the early stages of threat identification. The core methodology revolves

around treating API call sequences similar to natural language inputs, leveraging the capabilities

of neural network models, particularly Bi-LSTM and Bayesian Bi-LSTM. The first part of this re-

search illustrates the effectiveness of a Bi-LSTM neural network in predicting API calls. Using the

similarities between the sequence of API calls and the structure of natural language, we utilize text

classification methods to anticipate malware activities.

The subsequent study builds upon this foundation by integrating a Bayesian approach into the

Bi-LSTM framework. This enhanced method introduces probability and uncertainty assessments

into the model’s predictions, addressing key limitations of deterministic neural networks. By trans-

forming API call sequences into N-grams and applying a Bayesian Bi-LSTM network, the research

provides more meaningful probabilistic predictions along with uncertainty estimations. This ad-

vancement is particularly crucial in cybersecurity, where understanding the reliability and precision

of predictions can significantly impact mitigation strategies.

Together, these studies offer a comprehensive framework for early-stage malware detection,

combining the strengths of NLP methodologies and advanced neural network architectures. The in-

corporation of Bayesian principles into this framework not only enriches the predictive accuracy but

35

also equips cybersecurity experts with critical insights regarding the reliability of these predictions.

The outcomes of this thesis open new avenues for future research in the domain of cybersecurity,

emphasizing the importance of probabilistic approaches in the ever-evolving landscape of cyber

threats.

4.2 Future Work

As a possible direction for future research, one can incorporate advanced natural language pro-

cessing techniques, specifically transformer-based models like BERT or GPT, into the proposed

framework. These models perform well in understanding complex contexts, which could enhance

the way API call sequences are interpreted, leading to more precise malware predictions. This en-

hancement can also enable the framework to adapt to the evolving nature of malware threats more

effectively.

As another related line of research in this field, broadening the scope and diversity of the utilized

datasets is essential. Including a more comprehensive range of data, e.g., a more diverse family

of malware samples, will enhance the model’s capacity to detect a wider array of cyber threats.

Collaborating with cybersecurity experts for access to real-world datasets associated with a large

variety of malware would be beneficial in this effort.

Finally, the real-time implementation of these models is essential. In scenarios where API call

sequences need to be monitored and processed with great speed, the ability to apply these advanced

detection methods in real time becomes critical. This aspect of research would test the feasibil-

ity of the proposed models in environments where quick response times are essential for effective

malware mitigation. Implementing these models in real-time scenarios will not only validate their

efficacy under dynamic conditions but also provide insights into potential areas for further improve-

ment. This would mark a significant step toward creating more responsive and robust cybersecurity

systems.

36

Bibliography

[1] Frank Cremer, Pieter J. M. Jong, RenÂe M. Stulz, Jayanth R. Varma, and GÈulnur ÈUlkÈu, ªCyber

risk and cybersecurity: A systematic review of data availability,º The Geneva Papers on Risk

and Insurance - Issues and Practice, vol. 47, no. 3, pp. 698-736, July 2022.

[2] Roshan Ali, Aqeel Ali, Farrukh Iqbal, Malik Hussain, and Fazal Ullah, ªDeep learning meth-

ods for malware and intrusion detection: A systematic literature review,º Security and Com-

munication Networks, pp. 2959222, 2022.

[3] Yuchong Li and Qinghui Liu, ªA comprehensive review study of cyber-attacks and cyber se-

curity; Emerging trends and recent developments,º Energy Reports, vol. 7, 2021.

[4] Amit Kumar Chakravarty, Aadesh Raj, Sagnik Paul, and Anirban Sarkar, ªA study of

signature-based and behaviour-based malware detection approaches,º International Journal

of Advanced Research Ideas and Innovations in Technology, vol. 5, no. 3, pp. 1509-1511,

2019.

[5] Mohammad Amin Rahimian and Amir G. Aghdam, ªStructural controllability of multi-agent

networks: Robustness against simultaneous failures,º Automatica, vol. 49, no. 11, pp. 3149-

3157, 2013.

[6] Saeid Jafari, Amir Ajorlou, and Amir G. Aghdam, ªLeader localization in multi-agent systems

subject to failure: A graph-theoretic approach,º Automatica, vol. 47, no. 8, pp. 1744-1750,

2011.

37

[7] Saeid Jafari, Amir Ajorlou, Amir G. Aghdam, and S. Tafazoli, ªOn the structural controllabil-

ity of multi-agent systems subject to failure: A graph-theoretic approach,º in Conference on

Decision and Control (CDC), Atlanta, GA, USA, pp. 4565-4570, 2010.

[8] Nordic APIs, ªShould You Design Natural Language First APIs?,º Nordic APIs, October 18,

2018. [Online]. Available: https://nordicapis.com/should-you-design-natural-language-first-

apis/. [Accessed: April 5, 2023].

[9] Kedir Zeberga, Muhammad Attique, Bushra Shah, Fazal Ali, Yacob Z. Jembre, and Tai-hoon

Kim, ªA Novel Text Mining Approach for Mental Health Prediction Using Bi-LSTM and Bert

Model,º Computational Intelligence and Neuroscience, pp. 1-18, 2022.

[10] Gang Liu and Jiabao Guo, ªBidirectional LSTM with attention mechanism and convolutional

layer for text classification,º Neurocomputing, vol. 337, pp. 325-338, 2019.

[11] Chengwei Li, Guan Zhan, and Zhen Li, ªNews Text Classification Based on Improved Bi-

LSTM-CNN,º in International Conference on Information Technology in Medicine and Edu-

cation, Hangzhou, China, 2018.

[12] Kaiyao Ke, ªA Comparative Study of CNN and Bi-LSTM in Text-Based Sentiment Analysis,º

in International Conference on Networks, Communication and Computing, Association for

Computing Machinery, New York, NY, USA, 2022.

[13] Shamal Kashid, Divyansh Dixit, Nidhi Mishra, and Rohit Saluja, ªBi-RNN and Bi-LSTM

Based Text Classification for Amazon Reviews,º in International Conference on Deep Learn-

ing, Artificial Intelligence and Robotics, Cham: Springer International Publishing, 2022.

[14] ClÂement BentÂejac, Anna CsÈorgő, and Gonzalo MartÂınez-Muñoz, ªA comparative analysis of

gradient boosting algorithms,º Artificial Intelligence Review, vol. 54, pp. 1937-1967, 2021.

[15] Yarin Gal and Zoubin Ghahramani, ªDropout as a Bayesian approximation: Representing

model uncertainty in deep learning,º in International Conference on Machine Learning,

PMLR, 2016.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT press, 2016.

38

[17] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra, ªWeight Uncer-

tainty in Neural Networks,º in International Conference on Machine Learning, 2015.

[18] Boyang Xue, Shoukang Hu, Junhao Xu, Mengzhe Geng, Xunying Liu, and Helen Meng,

ªBayesian Neural Network Language Modeling for Speech Recognition,º IEEE/ACM Trans-

actions on Audio, Speech, and Language Processing, vol. 30, pp. 1-16, 2022.

[19] ISACA, ªAn Executive View of Key Cybersecurity Trends and Challenges in 2023,º August

22, 2023. [Online]. Available: https://www.isaca.org/resources/news-and-trends/industry-

news/2023/an-executive-view-of-key-cybersecurity-trends-and-challenges-in-2023. [Ac-

cessed: October 31, 2023].

[20] Meire Fortunato, Charles Blundell, and Oriol Vinyals, ªBayesian recurrent neural networks,º

arXiv preprint arXiv:1704.02798, 2017.

[21] Jianpeng Zhang, Yijing Zhou, Chen Wang, Jialiang Lu, and Xudong Zhu, ªAdvances in

Bayesian deep learning: theory and applications,º IEEE Access, vol. 7, pp. 85730-85748,

2019.

[22] Zahra Jamadi and Amir G. Aghdam, ªEarly Malware Detection and Next-Action Prediction,º

in International Conference on RFID Technology and Applications (RFID-TA), Aveiro, Portu-

gal, 2023.

[23] Tea GržiniÂc and Esteban Borges GonzÂalez, ªMethods for automatic malware analysis and

classification: a survey,º International Journal of Information and Computer Security, vol. 17,

no. 1-2, pp. 179-203, 2022.

[24] SonicWall, ªSonicWall 2021 Cyber Threat Report,º 2021. [Online]. Available:

https://www.sonicwall.com/resources/2021-sonicwall-cyber-threat-report/. [Accessed:

April 5, 2023].

[25] AV-TEST GmbH, ªAV-TEST Statistics,º 2023. [Online]. Available: https://www.av-

test.org/en/statistics/malware/. [Accessed: April 5, 2023].

39

[26] Patrice Maniriho, Amin Mahmood, and M. Jashim Chowdhury, ªEvaluation and survey of state

of the art malware detection and classification techniques: Analysis and recommendation,º

SSRN Electronic Journal, 2022.

[27] Mathew Rhode, Pete Burnap, and Kevin Jones, ªEarly-stage malware prediction using recur-

rent neural networks,º Computers and Security, vol. 77, pp. 578-594, 2018.

[28] Kai Chang, Nianyin Zhao, and Lin Kou, ªA Survey on Malware Detection based on API

Calls,º in International Conference on Dependable Systems and Their Applications (DSA),

August 2022.

[29] Gopinath Ganapathy Sundarkumar, Hariharan Sundararajan, Srivatsan Ramanujam, Suresh

Jagannathan, and Ananth Grama, ªMalware detection via API calls, topic models and machine

learning,º in 2015 IEEE International Conference on Automation Science and Engineering

(CASE), August 2015.

[30] Chengwei Li, Guan Zhan, Zhen Li, Shenghong Li, and Jianlong Tan, ªA novel deep frame-

work for dynamic malware detection based on API sequence intrinsic features,º Computers

Security, vol. 116, 2021.

[31] Xiaolin Deng, Weiwei Lin, Sheng Chen, and Junjie Tong, ªBagging-XGBoost algorithm based

extreme weather identification and short-term load forecasting model,º Energy Reports, vol.

8, pp. 8661-8674, 2022.

[32] Angelo Oliveira and Rodrigo Sassi, ªBehavioral Malware Detection Using Deep

Graph Convolutional Neural Networks,º TechRxiv, preprint, 2019. [Online]. Available:

https://doi.org/10.36227/techrxiv.12020416.v1. [Accessed: April 5, 2023].

[33] Furkan Oğuzhan CË atak and Adnan Fatih Yazı, ªA Benchmark API Call Dataset for Windows

PE Malware Classification,º arXiv preprint arXiv:1905.01999, 2019.

[34] Tianqi Chen and Carlos Guestrin, ªXgboost: A scalable tree boosting system,º in International

Conference on Knowledge Discovery and Data Mining, 2016.

40

[35] Charles Elkan, ªThe Foundations of Cost-Sensitive Learning,º in International Joint Confer-

ence on Artificial Intelligence, 2001.

[36] Yinzhi Zhang and Zhaohui Rao, ªn-BiLSTM: BiLSTM with n-gram Features for Text Clas-

sification,º in Information Technology and Mechatronics Engineering Conference (ITOEC),

Chongqing, China, 2020.

[37] Krishna Nand Sai, Biju Thanudas, Sreejith Sreelal, Anirban Chakraborty, and Biju Somanath

Manoj, ºMACA-I: A Malware Detection Technique Using Memory Management API Call

Mining,º in 2019 IEEE Region 10 Conference (TENCON), 2019, pp. 527-532.

[38] Jing Xue, Zhiyong Wang, and Rong Feng, ºMalicious Network Software Detection Based on

API Call,º in International Conference on Network and Information Systems for Computers

(ICNISC), Hangzhou, China, 2022, pp. 105-110, doi: 10.1109/ICNISC57059.2022.00032.

[39] Cihan Avci, Bedir Tekinerdogan, and Cagatay Catal, ºAnalyzing the Performance of Long

Short-Term Memory Architectures for Malware Detection Models,º in Concurrency and Com-

putation: Practice and Experience, vol. 35, no. 6, 2023, pp. 1-1.

[40] Ferhat Ozgur Catak, Ali Fahri Yazı, Ornela Elezaj, and Javed Ahmed, ºDeep Learning Based

Sequential Model for Malware Analysis Using Windows EXE API Calls,º in PeerJ Computer

Science, vol. 6, 2020, e285.

[41] Syed Md. Nazmus Hasnaeen and Alexander Chrysler, ºDetection of Malware in UHF RFID

User Memory Bank using Random Forest Classifier on Signal Strength Data in the Frequency

Domain,º in 2022 IEEE International Conference on RFID (RFID), Las Vegas, NV, USA,

2022, pp. 47-52.

[42] Melanie R. Rieback, Bruno Crispo, and Andrew S. Tanenbaum, ºRFID Malware: Design

Principles and Examples,º in Pervasive and Mobile Computing, vol. 2, no. 4, pp. 405-426,

2006.

41

[43] Syed Saeed, Syed Abdulrahman Altamimi, Nourah Alkayyal, Ebtesam Alshehri, and Doaa Al-

abbad, ªDigital transformation and cybersecurity challenges for businesses resilience: Issues

and recommendations,º Sensors, vol. 23, no. 15, pp. 6666, 2023.

[44] Boyang Xue, Shoukang Hu, Junhao Xu, Mengzhe Geng, Xunying Liu, and Helen Meng,

ªBayesian Neural Network Language Modeling for Speech Recognition,º IEEE/ACM Trans-

actions on Audio, Speech, and Language Processing, vol. 30, pp. 1-16, 2022.

[45] Nazri Zainal Gorment, Ali Selamat, and Oldřich Krejcar, ªA Recent Research on Malware

Detection Using Machine Learning Algorithm: Current Challenges and Future Works,º in

Advances in Visual Informatics, Springer International Publishing, 2021.

[46] Christian Leibig, Veronika Allken, Mehmet SÈukrÈu Ayhan, Philipp Berens, and Siegfried Wahl,

ªLeveraging uncertainty information from deep neural networks for disease detection,º Scien-

tific Reports, vol. 7, no. 1, pp. 1-13, 2017.

[47] Mattia Magris and Alexandros Iosifidis, ªBayesian learning for neural networks: an algorith-

mic survey,º Artificial Intelligence Review, vol. 56, pp. 11773-11823, 2023.

[48] Syahril Rizal Tuan Mat, Muhammad Faiz Abdul Razak, Mohd Nazri Mohd Kahar, Jazmi

Mohd Arif, and Ahmad Firdaus, ªA Bayesian probability model for Android malware detec-

tion,º ICT Express, vol. 8, pp. 424-431, August 2022.

[49] JosÂe Antonio PerusquÂıa Cortes, ªBayesian Nonparametric Methods for Cyber Security with

Applications to Malware Detection and Classification,º Doctor of Philosophy (PhD) thesis,

University of Kent, 2022.

[50] Abdullah Mohammed AlZain, ªA Bayesian Approach to Malware Classification,º Journal of

Computer Virology and Hacking Techniques, vol. 14, pp. 1-10, March 2018.

[51] Mohammed Abdullah AlZain, ªA Bayesian Approach to Malware Classification,º Journal of

Computer Virology and Hacking Techniques, vol. 14, pp. 1-10, March 2018.

[52] Mattia Magris and Alexandros Iosifidis, ªBayesian learning for neural networks: an algorith-

mic survey,º Artificial Intelligence Review, vol. 56, pp. 11773-11823, 2023.

42

[53] Peisong Zhao, Malay Ghosh, J. N. K. Rao, and Changbao Wu, ªBayesian Empirical Likelihood

Inference with Complex Survey Data,º in Journal of the Royal Statistical Society Series B:

Statistical Methodology, vol. 82, no. 1, pp. 155-174, February 2020.

[54] Laurent Valentin Jospin, Hamid Laga, Ferdaous Boussaid, Wray Buntine, and Mohammed

Bennamoun, ªHands-On Bayesian Neural NetworksÐA Tutorial for Deep Learning Users,º

in IEEE Computational Intelligence Magazine, vol. 17, no. 2, pp. 29-48, May 2022.

[55] Dustin Tran, Michael W. Dusenberry, Mark van der Wilk, and Dustin Hafner, ªBayesian Lay-

ers: A Module for Neural Network Uncertainty,º in Advances in Neural Information Process-

ing Systems 32, 2019.

[56] Gautam Karat, ªAPI Call Sequences,º Kaggle, October 2021. [Online]. Available:

https://www.kaggle.com/datasets/gautamkarat/api-call-sequences

[57] Angelo Oliveira, ªMalware Analysis Datasets: API Call Sequences,º IEEE Dataport, October

23, 2019.

[58] Furkan Oğuzhan CË atak and Adnan Fatih Yazı, ªA Benchmark API Call Dataset for Windows

PE Malware Classification,º arXiv preprint arXiv:1905.01999, 2019.

[59] Mostafa Nasraldeen, Ahmed Khleel, and KÂaroly NehÂez, ªSoftware defect prediction using a

bidirectional LSTM network combined with oversampling techniques,º Cluster Computing,

vol. 26, no. 6, pp. 1-14, October 2023.

43

	List of Figures
	List of Tables
	Introduction
	Literature Review
	Thesis Contributions and Organization

	Early Malware Detection and Next-Action Prediction
	Abstract
	Introduction
	Proposed Methodology
	Datasets
	Early Malware Detection
	Next Action Prediction

	Experimental Results
	Conclusions and Future Work

	Enhanced Malware Prediction and Containment using Bayesian Neural Networks
	Abstract
	Introduction
	Bayesian Neural Network
	Proposed Methodology
	Datasets
	Malware Detection
	Next Action Prediction

	Experimental Results
	Conclusion and Future Work

	Conclusion and Future Work
	Conclusion
	Future Work

