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Abstract

Multi-level Energy Management Framework with Flexibility Provision in Distribution
Networks

Sadam Hussain, Ph.D.

Concordia University, 2024

Renewable energy sources are variable and pose new challenges for power systems. A flexi-

ble energy management framework is needed for distributed energy resources (DERs) to improve

power system performance. Although home energy management systems (HEMSs) can control

household appliances, they can not address the issues that may arise due to high DER penetration

levels on a distribution network. A multi-level energy management system (ML-EMS) is necessary

to improve the techno-economic performance of the distribution system and satisfy the objectives

of end-users, aggregators, electricity retailers, and the distribution system operator (DSO). With

the rise of DERs, consumers are progressively shifting towards the role of “prosumers,” serving as

flexible energy resources for DSOs. This work proposes a novel ML-EMS coordination framework

in which prosumers provide upward and downward flexibility to the DSO. The DSO optimizes the

whole system with the optimal flexibility request sent to the aggregator. The suggested methodol-

ogy considers the conflicting techno-economic objectives of the DSO and prosumers. To evaluate

the proposed method, we compare two scenarios: without flexibility and with flexibility provision.

The results show that our proposed strategy improves the voltage profiles and reduces power losses,

power generation costs, and peak demands from the DSO’s perspective.

To motivate consumers to participate in the proposed coordination framework, an adaptive in-

centive program is proposed based on the flexibility of the end-user. The prosumer will receive

incentives to provide more flexibility to the DSO. To evaluate the proposed methodology, a com-

parative analysis is conducted involving five scenarios: ML-Framework (a) without HEMS (base

case), (b) without flexibility and an incentive program, (c) with flexibility and no incentive, (d)
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with flexibility and a fixed incentive, and (e) with flexibility and an adaptive incentive program.

The results show that our proposed strategy has increased the monetary benefits for prosumers for

their flexibility services provided to the DSO compared to other scenarios. Moreover, the proposed

method improves the voltage profiles and reduces the peak load and power losses of a 33-bus radial

distribution system.

Taking flexibility to the next level, we propose peer-to-peer (P2P) energy trading to buy and

sell energy from neighbors using a smart transformer as an aggregator in our ML-EMS. This part

of the work presents a new coordination framework for HEMS-integrated P2P trading, focusing

on the impact of such trading on a distribution transformer. The proposed framework provides a

comprehensive solution to manage power distribution within a smart grid environment by enabling

HEMS to engage in P2P trading. This work also examines optimal energy management in a smart

neighborhood to minimize the total cost of energy usage. In addition, to prevent power peaks – that

could create overloading and damage the top pole transformer, an adaptive cap within the flexibility

bound of the household is placed on the total power households that can draw/penetrate from/to the

power grid. To validate the proposed method, we consider three scenarios: a) HEMS directly with

transformer. b) HEMS with integration of rule-based P2P with transformer, c). HEMS With fixed

power limit on transformer. The result shows that the proposed method reduces the electricity cost

of the prosumers and extends the life expectancy of the transformer.

To include the three-phase unbalanced distribution system in the proposed framework, we de-

velop another strategy, which includes four-stage optimization for a three-level coordination frame-

work. A mixed integer linear programming (MILP)-based HEMS is formulated in the first stage

to perform home energy management effectively. At the aggregator level, in the second stage, a

MILP-enabled P2P trading mechanism is designed. At the same level, a third-stage loss of life op-

timization is performed pertaining to the optimal power status of the HEMS and P2P trading. In the

last stage, a three-phase optimal power flow-based optimization is proposed to maintain the opera-

tional constraints of the unbalanced distribution network. This work compares the proposed P2P-

based method with a local energy market community with a HEMS-based smart home neighborhood

with a distribution transformer. Optimizing HEMS and P2P trading while addressing transformer
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limitations, our proposed method reduces peak power and life loss of distribution transformers. Ad-

ditionally, our method substantially lowers electricity costs for P2P prosumers. Thus, our proposed

method outperforms other existing mechanisms from both financial and physical network operation

suitability perspectives.
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Chapter 1

Introduction

1.1 Background and Motivation

With the continuously increasing demand for energy globally, which is expected to grow by

12% from 2019 to 2030 [10], there have been serious concerns about the long-term adequacy, avail-

ability, and supply of energy. Traditional fossil fuel-based energy sources are detrimental to the

environment and are not the preferred option by governments for new capacity. Thus, it is nec-

essary to investigate other eco-friendly energy resources and solutions to meet the demand in the

long run. Recent research also shows substantial power losses in the current power grid are due to

distribution and long-distance transmission systems [11]. Failures on the power grid transmission

and distribution lines cause about 90 percent of power outages. The conventional power grid has

been redesigned into a smart, highly efficient, and fully integrated system in the last few years,

the so-called smart grid. Traditional electricity consumers have become prosumers who can pro-

duce and consume electricity with the development of distributed energy resources (DERs) such as

photovoltaic (PV), ESS, and EV [12]. At the house level, the use of DER increase for an instant

global market of rooftop solar PV panels is expected to grow by 11% over the next six years, with

an additional increase in residential storage systems from 95 MW in 2016 to 3700 MW by 2025

[13]. The prosumer seeks cost-effective and reliable renewable energy technologies, requiring a

robust control system. An energy management system (EMS) is needed to keep the balance be-

tween generation and consumption. EMS can also mitigate the increasing penetration of DERs on
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the distribution network. With advanced DERs, a bidirectional power flow and communication are

required between the prosumers and the DSO.

Furthermore, electric power systems have traditionally operated on a demand-following basis.

The generation side of a power network is responsible for electric energy supply-demand match-

ing. In contrast, the demand side is considered uncontrollable and must be met regardless of cost.

Demand following can be quite costly, particularly during peak demand periods when the least ef-

ficient generators must be engaged to meet the increased demand [14]. As a result, DSO began

to see the potential benefits of demand response (DR), which differs from typical generation-side

decisions. DR is a subset of demand side management (DSM) that aims to modify demand by of-

fering customers various financial incentives. Many factors attracted researchers’ attention to the

topic of EMS, including cost minimization of consumers and DSO by exploiting the flexibility of

controllable loads and energy resources using demand response. The development of a demand

response program (DRP) and the smart use of consumers’ flexibility can help the DSO to enhance

grid reliability and operational efficiency. The display of electricity tariffs in real-time, such as time

of use (ToU) rates, can boost load shifting on average days from 3.7 % to 5.5 %, while on hot days,

up to 8.5 percent, and result in a 13 % decrease in energy consumption, according to a study by

Hydro One [15].

Similarly, as Quebec strives to electrify the majority of the transport sector, the existing re-

newable hydro-electricity pool of Hydro Quebec will reach capacity limits by 2026, requiring in-

vestment from multiple stakeholders in new wind or solar resources [16]. As the number of EVs

increases, the electricity demand required to charge their batteries increases. When the EV load

is plugged in, the required demand almost doubles on a typical residential circuit [17]. The high

penetration of EVs and large-scale DERs’ deployment can cause problems in the distribution sys-

tem, such as, but not limited to, increased load demand, system losses, additional voltage drops,

and power quality. Such a problem could create a blackout, which may cost billions of dollars

[18]. A proper coordination framework is necessary for a demand-side EMS. In the present distri-

bution networks, prosumers are crucial. Prosumers can interact with one another in local markets

directly through peer-to-peer (P2P) marketplaces or indirectly through community-based market-

places. Local energy market (LEM) provide prosumers with a competitive environment where they
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may exchange power services, including energy and network flexibility [19]. To do this, novel

methods must be developed to coordinate prosumer energy and flexibility trading in LEMs, con-

sidering the limitations of the distribution network and the autonomous choices prosumers make

for local energy trading. However, the decisions of participating prosumers on their actions in the

market may not be technically feasible for the physical distribution system to support. Thus, DSOs

need flexibility services to resolve these issues and keep the network within safe operational lim-

its. Therefore, we need a coordination framework that helps the smart homes have home energy

management system (HEMS) and P2P energy trading capability with distribution networks.

1.2 Problem Statement and Research Questions

End-users always want to have lower electricity costs. Therefore, the HEMS tries to minimize

the cost of end-users (prosumers hereafter), while the DSO is concerned about the minimization of

operation costs, power losses, peak shaving, and voltage regulation. Due to the inherent conflict

between the primary goals of HEMS, which prioritize the economic interests of prosumers, and

distribution energy management systems, which are primarily focused on the technical concerns of

distribution system operators, it is challenging to satisfy both sets of objectives simultaneously. In

addition to the economic objectives, there is an essential need for technical objectives. Ignoring the

technical aspect of the system may result in optimizing economic outcomes while exposing the sys-

tem to potential power failures, leading to blackouts and damage to distribution system equipment.

Hence, a robust coordination framework is indispensable to harmonize the objectives of prosumers

and the DSO effectively.

Moreover, the DRP alone cannot provide the combined objectives of the prosumers and DSO.

For example, a price-based program is not an ideal option for high penetration levels of EVs, which

shifts the high peak load to off-peak hours. The simultaneous charging of multiple EV loads under

low pricing will cause an even higher increase in off-peak demand. Additional voltage drops could

result during off-peak hours [20]. Hence, a multi-level energy management system (ML-EMS)

seems necessary to improve the techno-economic performance of the distribution network while

satisfying prosumers, aggregators, electricity retailers, and the DSO. Due to the high penetration of
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DERs, the power system, especially the distribution system, must be flexible to take any uncertainty

and condition from DERs.

Flexibility provision is essential nowadays because of the DER penetration in the power sys-

tem. These flexible resources provide ancillary services that must be appropriately managed to

achieve prosumer and distribution-level benefits. The uncoordinated DRP might affect the distribu-

tion network operation negatively, whereas a proper coordination framework with DRP can reduce

the adverse impact of demand-side behavior [21]. DRP can assist prosumers in rescheduling their

loads based on the DSO’s electricity pricing. However, even if DRPs are built, the high penetration

level of EVs or DERs in the network may cause serious challenges. It is necessary to find a coor-

dination framework based on prosumers’ flexibility to limit the impact of high energy-demanding

elements such as EVs and other controllable DERs by prosumers’ participation. Only price-based

DRP is neither an effective nor a motivational way for prosumers to shift their load to off-peak time.

A fixed incentive program for all prosumers does not encourage enough prosumers to take part in

flexibility service. There is a need for adaptive incentive programs for the prosumers based on the

flexibility provided to the grid. The aggregator emerges as a critical player, allowing small cus-

tomers to participate in DRP and take advantage of their flexibility. The smart transformer could be

a natural aggregator to which the consumer is connected. In conventional grids, distribution trans-

formers were considered passive elements in the power system. The smart transformer can facilitate

P2P energy exchanges while also resolving the physical constraints of the transformer and DSO.

In general, P2P energy trading research focuses on either the virtual (pricing mechanism and

market operation) or physical (grid integration, smart meter, and distribution transformer) layer of

the P2P operation [22]. Indeed, previous studies and trials have opened the road for P2P trading to

be recognized as an appealing mechanism and a viable alternative to the feed-in tariff (FiT) system.

However, when the physical layer feasibility study is performed in reality, the scalability assumption

of the low-voltage (LV) distribution networks - to accommodate the prosumer may affect the virtual

layer decisions of the P2P prosumers. In contrast, some studies [23], [24] are very limited compared

to the virtual layer, focusing primarily on the physical layer complexity of P2P trade. As a result,

there is potential to expand these investigations of a unified model of virtual layer and physical layer

P2P trading operations.
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The aforementioned challenges pose the following underlying research questions:

• How to satisfy the techno-economical objectives of prosumers and distribution network?

• How to mitigate the impact of high penetration of DERs in the distribution networks even if

DRP is implemented?

• How to incentivize the prosumers to participate in the flexibility provision?

• How a P2P energy trading can be modeled considering the LV distribution network con-

straints?

• How a P2P trading can be modeled considering the distribution transformer with adaptive

power limit?

• How a P2P trading can be modeled considering the distribution transformer and LV three-

phase unbalanced distribution network constraints?

1.3 Research Objectives

The primary objective of the research is developing a robust and smart coordination framework

for the flexibility provision using ML-EMS that could benefit different stakeholders simultaneously,

like prosumers, aggregators, and DSOs.

The main objective of this thesis is divided into sub-objectives as below:

• Modeling of ML-EMS: Augment the mathematical model of the residential customer’s con-

straints to represent it as a HEMS considering detailed characteristics of ESS, EV, EWH, and

PV units. The developed model will consider the detailed interactions, data, and information

exchanges between different entities within the HEMS and between the aggregator and the

DSO.

• Flexibility-based coordination framework using the ML-EMS: This work proposes a novel

concept of the HEMS aggregator to quantify the upward and downward flexibility of the flex-

ible energy resources (FERs) available from a household. Thereafter, develop a coordination
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scheme that can consider distinctly individual objectives of each HEMS and that of the DSO,

seeking to enhance grid operational efficiency and hence create an aggregated DR service for

the distribution networks. This will involve a DSO operations model, determining the optimal

peak reduction requests based on flexibility from the individual HEMS through an aggregator.

• Incentive program based on the flexibility of the prosumer with DSO using ML-EMS: This

part of the work develops a novel adaptive incentive program for the prosumer based on their

flexibility. The prosumers get incentives for how much flexibility they provide to the DSO.

Such a system will motivate prosumers to participate in the flexibility provision.

• A unified model of P2P energy trading through the smart transformer as an aggregator:

This work proposes a unified model with the virtual layer that includes a pricing scheme,

market strategies, and an energy management system. Also, this model will have the physical

layer, which consists of physical and operational constraints of the top pole transformer. The

transformer also acts as an aggregator for the flexibility provision.

• Multi-stage optimization for Smart Home P2P trading considering DSO constraints: In this

part, a four-stage optimization methodology is introduced and implemented within a three-

level framework. This framework addresses transformer lifespan optimization, P2P energy

trading facilitated by LEM, and optimal power flow for a three-phase unbalanced distribution

network. The objective is to compare the implications of HEMS with mixed integer linear

programming (MILP)-based P2P energy trading on the distribution transformer and the three-

phase unbalanced distribution network.

1.4 Thesis Structure

This thesis is organized into seven chapters, each contributing to exploring and enhancing a

coordination framework for energy management and flexibility provision in smart grids.

• Chapter 2: Literature Review:

This chapter presents a comprehensive review of prior studies in control architecture, flexibil-

ity management, demand response, and peer-to-peer energy systems in the context of smart
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grids. It establishes the foundational knowledge upon which the subsequent chapters build.

• Chapter 3: Multi-level Energy Management System and Flexibility Provision:

This chapter outlines the methodology of ML-EMS, covering home, aggregator, and distri-

bution levels. The coordination framework for flexibility provision is discussed, serving as a

crucial basis for the subsequent chapters.

• Chapter 4: Incentive program based on the flexibility Using ML-EMS:

In Chapter 4, we explore the novel incentive program based on the flexibility of ML-EMS.

The design and implementation of this program are detailed, highlighting its potential benefits

and impact on the distribution network.

• Chapter 5: Smart Home P2P Energy Trading with Dynamic Flexibility Limit Consider-

ing Distribution Transformer:

Chapter 5 introduces a new coordination framework for rule-based P2P trading in smart

homes with smart transformers. The primary focus of this framework is to evaluate the dis-

tribution transformer loads resulting from HEMS and P2P energy trading under different

flexibility provisions. This chapter extensively investigates the effectiveness and adaptability

of the proposed approach in comparison to other scenarios.

• Chapter 6: Smart Home P2P Energy Trading Considering Three-Phase Unbalanced

Distribution Network Optimization:

Chapter 6 provides a comprehensive four-stage optimization framework for ML-EMS. This

framework combines HEMS, MILP-based P2P energy trading, a transformer model, and

three-phase unbalanced distribution network optimization. The integration of these compo-

nents facilitates a holistic approach to energy system enhancements.

• Chapter 7: Conclusion and Future Directions:

The final chapter, Chapter 7, summarizes the key findings and contributions of this thesis. It

also offers valuable insights into potential areas for future research and development, provid-

ing a road map for further advancing the smart grid energy management field.
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This structured arrangement ensures a logical progression through the research, building a coherent

narrative that addresses the complex challenges associated with energy management and flexibility

provision in smart grids.

Publications included in this thesis

Peer-reviewed Journals:

• Hussain, S., Lai, C., & Eicker, U. (2023). Flexibility: Literature review on concepts, model-

ing, and provision method in smart grid. Sustainable Energy, Grids and Networks, 101113.

(incorporated significantly in chapter 2).

• Hussain, S., El-Bayeh, C. Z., Lai, C., & Eicker, U. (2021). Multi-level energy management

systems toward a smarter grid: A review. IEEE Access, 9, 71994-72016. (incorporated sig-

nificantly in chapter 2).

• Hussain, S., Alrumayh, O., Menon, R. P., Lai, C., & Eicker, U. (2023). Novel Incentive-

based Multi-level Framework for Flexibility Provision in Smart Grids. IEEE Transactions on

Smart Grid. (incorporated significantly in chapter 3 and 4).

• Hussain, S, Azim, M. I., Lai, C., & Eicker, U. (2023). New coordination framework for smart

home peer-to-peer trading to reduce impact on distribution transformer. Energy, 284, 129297.

(incorporated significantly in chapter 5).

• Hussain, S., Azim, M. I., Lai, C., & Eicker, U. (2023). Multi-stage optimization for energy

management and trading for smart homes considering operational constraints of a distribution

network. Energy and Buildings, 113722.(incorporated significantly in chapter 6)

Peer-review conference

• Hussain, S., El-Bayeh, C. Z., Menon, R. P., Lai, C., & Eicker, U. (2022, August). Flexibility

based Coordination Framework For Three-Level Energy Management System. In 2022 19th
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International Bhurban Conference on Applied Sciences and Technology (IBCAST) (pp. 568-

572). IEEE. (incorporated significantly in chapter 3).

• Hussain, S., Menon, R. P., Fatima,A., Lai, C., & Eicker, U. (submitted). Optimization of

Energy Systems using MILP and RC Modeling: A Real Case Study in Canada. In the 18th

Annual IEEE International Systems Conference SYSCON 2024 (incorporated significantly in

chapter 3).
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Chapter 2

Literature Review

This chapter demonstrates an up-to-date literature review regarding different energy manage-

ment architecture, a detailed literature review on flexibility and P2P energy trading 1. Governments

introduce new policies, dynamic pricing tools, and new strategies to reduce the peak load to address

the increasing energy demand globally. For instance, flex rate-D in Quebec [25] and global adjust-

ment program in Ontario, Canada [26] aims to reduce the peak demand. The development of the

demand response program will help the power system reliability and operation efficiency. Such fea-

tures allow end-users to participate in the solution of distribution network problems through the use

of home-appliance flexibility [27]. According to the US Federal Energy Regulatory Commission, a

DRP is defined as [28] “Changes in electric usage by end-use customers from their normal consump-

tion patterns in response to changes in the price of electricity over time, or to incentive payments

designed to induce lower electricity use at times of high wholesale market prices or when system re-

liability is jeopardized.” The capacity to adjust, shift, reduce, or curtail the load over time, known as

energy flexibility, constitutes a fundamental component of the evolving energy market model [29].

To delve deeper into the concepts of flexibility and flexibility provisioning, these elements require an

architectural framework to facilitate their provision. An effective energy management framework

is essential for harnessing consumer flexibility, and the subsequent section explores three control

1This chapter has significant materials from the following papers published by the PhD candidate:
Hussain, S., El-Bayeh, C. Z., Lai, C., & Eicker, U. (2021). Multi-level energy management systems toward a smarter
grid: A review. IEEE Access, 9, 71994-72016.
Hussain, S., Lai, C., & Eicker, U. (2023). Flexibility: Literature review on concepts, modeling, and provision method
in smart grid. Sustainable Energy, Grids and Networks, 101113.
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architectures for energy management systems.

2.1 Control Architecture for Energy Management System

Many control strategies were used to optimize and schedule the controllable loads and the power

flow of DERs to overcome the negative impact of the high penetration of DERs on the distribution

network [30, 31, 32]. The efficiency of EMS depends on the control architecture; commonly used

architectures are centralized, decentralized (distributed), and hierarchical control architectures [33].

A centralized control architecture comprises a single controller with high computation perfor-

mance capability and will need a secure communication infrastructure to collect information and

manage different system entities. This strategy is usually used in the charging station and parking

lot. This control system can provide optimal performance, reduce the overall operation cost, and

is easy to implement, but it has some disadvantages. Since this system relies on one controller,

the computational burden on the system increases by one controller. It can also cause single-point

failure, making this architecture less effective for a real-time system. Furthermore, expanding or

integrating new components in such a system is very hard.

Unlike the centralized architecture, in the decentralized EMS strategy, each entity has its local

controller and communicates with other nodes. They share information with neighbors to send and

receive the data from different local controllers [34]. Hence, the decentralized control architec-

ture overcomes the shortcomings of the centralized system by developing expandability flexibility

and preventing single-point failure. It distributes the computational burden on different controllers,

making this architecture more reliable than the centralized control architecture. However, suppose

the decentralized control architecture is implemented in the home. In that case, it might only con-

sider the home’s objectives and not care about the effect on the distribution system and vice versa,

as shown in table 2.1. For example, in [31], the authors implement a decentralized EMS architec-

ture to minimize energy consumption and operation costs. This system does not fulfill the technical

objectives of the distribution system. Such a control strategy has only one objective and will also

cause a rebound and second peak effect during low tariffs on the distribution system, as presented

in reference [35].
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Based on these discussions, it can be concluded that both available distributed and centralized

EMS methods may fail to simultaneously cover the main requirements of the distribution system

operators (DSO) and the prosumer [1]. It is crucial to create an effective strategy for involving

customers in DR programs to enhance the operation of the distribution system. The expanded

geographic areas of these systems and extensive communication and computational burden make

it impossible to incorporate centralized approaches completely. Because of the high coupling of

various local controllers, they require a maximum coordination level that cannot be achieved by

decentralized EMS architecture. Multi-level EMS (ML-EMS) architecture is a compromise between

centralized and decentralized control architectures [32].

Table 2.1: Comparison of Different Control Architectures [1]

Control
Architecture

Advantages Disadvantages

Centralized

Provides optimal performance.
Reduces overall operation cost.
Simple architecture, easy to implement.
Suitable for small scale with internal control system.
Offers optimal global solutions for all entities.
Secure communication infrastructure.

Computation burden increases on one controller.
Single-point failure is less effective for real-time systems.
Hard to expand and integrate new components for plug-and-play.
Requires a high level of connectivity and processing.
Less reliable for real-time applications.

Decentralized

Enhances expandability with plug-and-play functionality.
Flexible architecture due to peer-to-peer communication.
Prevents single-point failure.
Distributes computation burden on different controllers.
More reliable due to redundancy in communication.

Single objective control architecture.
Provides only optimal local solution, not optimal global solution.
Higher implementation complexity compared to centralized control.
Local controllers require robust synchronization.

Hierarchical

Each level sends optimal solutions to a higher-level controller.
Level-wise control increases the accuracy and reliability.
Scalability.
Flexible architecture due to peer-to-peer communication.
Prevents single-point failure.
Distributes computation burden on different controllers.
Less processing time due to distributed operation constraints.
Achieves optimal global solution.

Coordination of different levels is required.
Adjacent layers coordination required;
Communication fault at the upper level disrupts information.
Privacy and data security concerns across different levels.
Complex architecture due to coordination platform for different levels.

2.2 Multi-Level Energy Management System

In the ML-EM framework, the system can be divided into different levels with objectives and

constraints. Each local controller manages its appliances at different levels and sends the optimal

solution to the higher-level controller [36]. The higher-level controller acts as the central controller

to collect and analyze all data of the local controllers. Based on the global solution, it orders all the

local controllers to modify their optimal targets. The conceptual architecture overview of ML-EMS

is presented in Fig. 2.1 [1]. Such a system can be used to benefit both prosumers and DSO. Such

level-wise control can increase accuracy and reliability and might be the best for future smart grids.
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Different optimization algorithms have been used for ML-EMS, which are categorized in table 2.2.

The deployment of ML-EMS strategies requires different objective functions; details of the

technical and economic objectives used in different levels of EMSs are shown in Fig. 2.1. The main

economic objective functions are to minimize electricity usage costs, operation, maintenance, oper-

ation, investment, project planning, technical, and component, and maximize aggregator and DSO

profit. Many researchers used different methods for cost minimization in ML-EMS. For instance,

the authors in [37] used flexible loads such as electric water heater (EWH), heating, ventilation, and

air conditioning (HVAC), refrigerators, and EVs to minimize costs. Similarly, authors in [38] used

controllable appliances like air conditioners, washing machines for flexibility within user comfort

level, and energy storage systems (ESSs) for energy trading to reduce costs. The PV and ESS were

used with the controllable appliance to reduce the electricity usage cost [39]. Also, in [40], the au-

thors used controllable loads, PV, and ESS with DRP to minimize the electricity cost. The technical

objective is more related to the DSO, such as but not limited to minimization of power losses, total

harmonic distortion, power stability, power (active and reactive) deviation, voltage, and frequency

deviation in the distribution system, as depicted in Fig. 2.1. For example, in reference [40], the

authors used volt-VAR optimization (VVO) to minimize the power losses on the distribution line.

Similarly, Omar et al. [39] used system-level optimization to reduce the losses and increase the

system’s efficiency at DSO. The details of the objective functions used in each level of EMSs are

illustrated in Fig. 2.1.

The details of the objective function used in the different levels and some of the constraints

used in each level are presented in appendix A.1 and A.2 [1]. The constraints used in HEMSs are

appliance operation constraints such as indoor temperature constraints, ESS operation constraints,

EV operational constraints, and PV operational constraints. Constraints used at the aggregator level

are total electricity cost, active and reactive power balance, and power limit on the distribution

transformer. Voltage drop limit constraints, OLTC, capacitor bank, smart inverter operation con-

straints, and active and reactive power consumption limits are constraints used on the distribution

level. The ML-EMS can be two, three, or four levels depending on the objective and architecture of

the proposed system.
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Figure 2.1: Architecture overview of Multi-level EMS [1].

2.2.1 Two-Level Energy Management System

Two different EMS levels are needed to optimize prosumers’ usage and satisfaction levels and

minimize the expense without raising the detrimental effects on the grid. In ML-EMS, having two

EMS levels can be HEMS at the home level and another EMS on the aggregator level to which mul-

tiple homes are connected. Keeping in mind the consumer and DSO’ combined objectives, there

are various studies done on the two-level framework for ML-EMS [37, 38, 41]. Sarker et al. [8]

presented an EMS for EV at the aggregator level. In their model, the consumer gives the aggrega-

tor permission to control the charging and discharging of their EV to co-optimize the transformer’s

damage cost. The aggregator obtains profits from the transformer owner for maintaining a lifetime,

and some portion of these profits must be given to prosumers for their services. The DSO also bene-

fits from the transformer’s maintenance cost, so it is a win-win situation for the end-user to minimize

their cost in response to DRP. Additional incentives should be offered to reduce the overload of the

distribution network. They concluded that a high penetration of EVs can be handled without violat-

ing the capability of the distribution network. The two-level EMS may not be limited to the HEMS

and aggregate EMS. It can be a coordination framework between home and grid EMS. For instance,

Kikusato et al. [42] proposed a two-level EMS that is home and Grid EMS (GEMS) to utilize PV

and EV effectively. Based on voltage information from the GEMS, it reduces operation costs and
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PV curtailment without disturbing EV usage for driving. Hamid et al.[43] proposed two-level EMS

to implement the bidding strategy based on the weighted distribution of excess power among end-

users. The lower level in an energy hub reduces its energy cost. At the same time, the upper-level

EMS focuses on building coordination between home energy hubs and making attractive deals for

all stakeholders. Rastegar et al. [37] developed a two-level framework for residential EMS. In the

first level, they took the economic objectives in their objective functions, such as payment cost,

system operator cost, and operational constraints of the home appliances. In the second level, a

technical objective, such as load demand deviation, given the least desired payment cost of each

customer, is considered in the multi-objective optimization function to modify the house’s desired

demand profiles. They compare the centralized, distributed, and ML-EMS framework. In [41], a

framework was proposed in which the aggregator seeks to maximize the income through a bidding

strategy to maximize monetary benefit. The study concluded that consumers could buy energy at

a very low price from their neighborhood and reduce their dependency on the grid. Similarly, Joo

et al. [38] divided the optimization into local HEMS and GEMS. The local HEMS controls the

home appliances such as washing machines and air conditioners with consumers’ comfort level

preference, and the GEMS performs the energy trading and scheduling between houses and ESS.

Suppose we have a two-level system on the home level (HEMS) and the grid level (GEMS).

In that case, the system operator may face a considerable optimization problem in the second level

because of thousands of prosumers, which existing solvers might not solve. Also, if the generation

side directly communicates with customers, numerous information exchanges will delay the sys-

tem response time. Meanwhile, the generation side is designed for a large spatial scale and cannot

negotiate directly with each customer. The DSO uses distribution system management to control

the medium and low-voltage (LV) distribution systems operations. The DSO allows the consumer

to participate in the various DRPs using a residential load aggregator (called an aggregator) con-

nected to the multiple HEMSs. HEMSs can be essential for aggregator EMS to manage multiple

households in LV distribution networks efficiently. The flexibility of prosumers measured from the

HEMS can be correctly estimated and aggregated by the aggregator and communicated to the DSO,

which increases the efficiency of the management system handled by the DSO.
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2.2.2 Three-Level Energy Management System

A three-level framework consists of HEMS for a prosumer at the first level, an aggregator at the

second level, and GEMS at the third level, as shown in Fig. 2.1 [1]. In such a system, the HEMS

schedules the home appliances according to the consumer’s comfort level. The aggregator recalcu-

lates the optimized schedules of multiple HEMSs and sends them to the higher level, i.e., GEMS,

for global optimization. In the first level, the HEMS calculates each house’s prosumer energy usage

and electricity cost and sends them to the HEMS aggregator. In the second level, the HEMS aggre-

gator performs mainly two tasks, namely, but not limited to, gathering the data of electricity costs

and the energy consumption schedules of multiple households delivered from the lower level and

sending them to the upper level, and rescheduling the aggregated energy consumption for the mul-

tiple households based on the optimal solutions from the HEMS and GEMS. The GEMS conducts

an efficient and cost-effective operation at the upper level using optimal power flow.

Li et al. [44] integrated renewable energy source (RES) with a day-ahead three-level DSM

model. The three levels were upper, middle, and lower levels for the utility, the demand response

aggregator (DRA), and prosumers management, respectively. The operator wants to minimize the

operation cost and gives part of the profit to the DRA as a bonus. The DRA gets a bonus from

the utility and provides some rewards to end-users for modifying their energy usage pattern. They

concluded that using the proposed model reduces the generation cost, the DRA can make revenue

by supplying DRP service, and prosumers can reduce their electricity cost. Different optimization

techniques are used for each level, as shown in table 2.2 [1]. Recently, Davye et al. [40] developed

a coordination framework for a three-level ML-EMS with a HEMS (first level), a HEMS aggrega-

tor on the LV distribution network (second level), and volt-var optimization at the medium voltage

distribution network (third level). They concluded that such coordination further reduces the con-

sumer’s electricity price within their comfort zone and reduces the network losses on medium and

LV distribution networks. As per the authors’ best knowledge, the EMS of the three-level framework

is new and needs further analysis for the combined objectives of all stakeholders.

The architectures/frameworks mentioned above provide a foundation for the prosumer and grid

to participate in the demand and grid side flexibility (change in demand and generation profile),

16



respectively. More details of the flexibility will be discussed in the next section.

Table 2.2: Some notable algorithmic approaches used for different levels of the EMS [1]

Algorithmic approach HEMS Aggregator Distribution system
Mixed integer linear programming ✓ ✓ ✓

Mixed integer non-linear programming ✓ ✓ ✓
Mixed integer quadratic programming ✓ ✓

Particle swarm optimization ✓ ✓ ✓
Volt-var optimization ✓

Genetic algorithm ✓ ✓
Model prediction control ✓

2.3 Flexibility

It has been acknowledged that traditional operation methods are insufficient to handle the fluctu-

ations in net load due to the substantial penetration of RESs [45]. Therefore, flexibility has emerged

as a critical aspect in the design of future power systems dominated by RESs. The key sources

of flexibility in such systems include flexible power plants, distributed generation, consumer-side

resources, virtual flexibility solutions, and ESS. [46].

Flexibility in buildings is an essential resource for managing energy demand to maintain a

balance with the instantaneous and increasingly unpredictable energy generation from renewable

sources. The International Energy Agency defines energy flexibility as the ability of a building to

manage its demand and generation in response to local climatic conditions, user needs, and grid

requirements [47]. This is exemplified by changing the amount and timing of building energy use

in response to system costs, emissions, and operational requirements, as shown in Fig. 2.2. Flex-

ibility can also be defined as a power system that can manage variability and uncertainty in both

generation and demand while maintaining reliability at a reasonable cost over different time hori-

zons [48]. It might be considered that this definition is the more comprehensive of the two since it

emphasizes satisfying needs (variability and uncertainty) while specifically mentioning reliability

and applicability across time horizons.

The timeline in Fig. 2.3 shows the required activation time for the different types of flexibility,
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Figure 2.3: Flexibility requirements in terms of space (local/regional to system level) and time [2]

which include flexibility for power, flexibility for energy, flexibility for transfer capacity, and flex-

ibility for voltage. These categories have approximate ranges that depend on the system’s physical

behavior, requirements, and regulations. Local or regional demands for flexibility for transfer ca-

pacity and flexibility for voltage are distinguished from system-wide needs for flexibility for power

and flexibility for energy. Flexibility for power refers to the short-term equilibrium between power

supply and demand and is a system-wide requirement for maintaining frequency stability. Flexi-

bility for energy is the medium to long-term balance between energy supply and demand and is a

system-wide requirement for demand scenarios over time. Flexibility for transfer capacity refers

to the short to medium-term ability to transfer power between supply and demand, where local or

regional limitations may cause bottlenecks resulting in congestion costs. It increases utilization lev-

els with increased peak demands and increased peak supply. Flexibility for voltage refers to the
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short-term ability to keep the bus voltages within predefined limits.

Quantifying energy flexibility has been a challenge in prior research due to a lack of standard-

ization. Various parameters from time, cost, electrical, and comfort domains have been utilized to

measure flexibility, as outlined in table 2.3 [49]. Flexibility can be measured using three primary

dimensions: power, energy, and time. The power dimension quantifies the capacity of flexible loads,

incorporating metrics such as instantaneous power flexibility and maximum power capacity. The

energy dimension is the primary parameter for shiftable and storage devices with parameters such as

shiftable energy and storage capacity. The time dimension is crucial for schedulable flexible loads,

with duration and regeneration time. In addition to these dimensions, other methods of quantifying

flexibility include combined (shiftable power and cost curve) [50, 51], relative (self-consumption

and storage efficiency) [52, 52, 53, 50, 54, 55, 55], and other parameters, such as ramping rate,

consistency of operation, potential score [55, 56, 57, 57, 57, 57] etc., as mentioned in table 2.3.

Overall, flexibility refers to the capacity of a power system network to sustain supply reliably

during transient and significant imbalances. The work in IEA-EBC Annex 67 and 82 [47] has shown

that to offer an aggregate quantity sufficient for the operation of electricity grids, energy flexibility

of buildings must be harnessed across a cluster of buildings or at a district scale. Flexibility can

be characterized by five distinct attributes: (a) the orientation, either upward or downward; (b)

the velocity of change or magnitude of power capability; (c) the initiation moment and triggering

event; (d) the duration, and (e) the geographical position or point of the distribution network. Other

qualities like controllability, predictability, time availability, and delivery time are also listed in [59].

Several pilot projects have been conducted to manage the functioning of electric power sys-

tems. Table 2.4 summarizes a few exemplary initiatives. For instance, to reduce the congestion in

the local distribution system, iPower project [60] established a “clearinghouse” for local flexibility

trading at the DSO level. PeerEnergyCloud project [61] focuses on building a microgrid’s virtual

market platform for trading electricity. Similarly, the purpose of the ECO-Grid project [62] was to

utilize market forces and smart power consumption management to engage individual consumers

in balancing an energy system with abundant renewable. Piclo project’s [63] object was to provide

data visualization for consumers. EMPOWER project [64] develops a local market paradigm that

includes three financial market platforms for trading in local electricity, local flexibility, and other
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Table 2.3: Quantifying Flexibility Parameters

Type Parameter Descriptions as given in literature Ref

Power
[kW]

Maximum power
Mean power
Instantaneous power
Curtailed power
Power capacity
Charging power

Thermal energy storage and power-to-heat flexibility in various modes.
Peak response to a trigger signal.
Mean power during activation.
Maximum EV charging power.
Average power reduction for lighting during the curtailable period.
Flexible power delivery capability.

[53]
[58]
[58]
[54]
[55]
[56]

Energy
[kWh]

Storage capacity
Shiftable energy
Energy capacity

Energy shifted during optimal control
Energy added to storage system without affecting comfort
Energy content below the curve, consumable by the pool during activation
Energy reduction during a day
Energy delivered during flexibility action
Energy added to building thermal mass during demand response (DR) action.

[53]
[50]
[58]
[55]
[56]
[52]

Time
[h]

Duration
Interval
Regeneration time
Available period
Curtailment duration
Comfort capacity/recovery

Time until electricity consumption drops below normal
Time until power consumption returns to normal
Time EV can be used flexibly
Total time of curtailment possible per day
Duration of sustainable response before comfort limits reached
Time required to restore nominal comfort in the building

[58]
[58]
[54]
[55]
[56]
[56]

Combine
Shiftable power

Cost curve

The relationship between heating power changes and the
duration that changes can be sustained under boundary conditions
The level of flexibility (shiftable energy) and its corresponding cost

[50]

[51]

Relative
Self consumption (%)
Storage efficiency (%)

Percentage of increased energy demand met by generation during DR action
Energy cost related to DR action
Ratio of energy discharged to energy charged during 24-hour control period
Fraction of stored heat used to reduce heating power during DR
EV battery charge level
Comparison of lighting power with base case
Comparison of power deviation from base case

[52]
[52]
[53]
[50]
[54]
[55]
[55]

Other

Coefficient of power
Ramping rate (kW/min)
Frequency of operation
Consistency of operation
Peak time operation
Potential score

Stability of power curtailment capacity (stable/fluctuating)
Building’s reaction speed
Ratio of days appliance is active to total historical days
Predictability of user behavior over time
Energy consumption during DR period
Flexibility score based on three parameters.

[55]
[56]
[57]
[57]
[57]
[57]

services. The emerging field of research known as energy flexibility focuses on examining the ca-

pabilities of various grid services concerning real-world fidelity factors such as building thermal

dynamics, service systems and appliances, occupant influences, and weather impacts, taking into

account different temporal considerations.

From the above literature, we can deduce that the definition of flexibility is very subjective.

It depends on the context of the project or research. However, incorporating flexibility, whether

system-side flexibility or demand-side flexibility, can significantly improve the system’s resilience,

efficiency, and sustainability while providing benefits to end-users and reducing the need for a costly

upgrade. In this work, we only focus on the demand side flexibility, which will be discussed in the
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Table 2.4: Industrial projects on flexibility

Project name iPower project [65] PeerEnergyCloud [66] ECO-Grid project [62] Piclo [63] Horizon 2020-project EMPOWER [64]
Start year 2011 2012 2013 2014 2015
Country Denmark Germany Denmark United Kingdom Europe

System size Regional Microgrid Regional National Regional

below sections.

2.3.1 Demand Side Flexibility

Flexibility on the demand side is being recognized as a key facilitator for the quick transition

to a low-carbon energy system that replaces traditional fossil fuels with RESs while maintaining, if

not improving, the system’s functionality.

Flexibility, which is sometimes referred to as demand flexibility in publications, is frequently

taken into account within a broader ML-EMS framework, where DSM techniques can be generally

divided into energy efficiency, DR, and energy flexibility approaches [67]. Energy usage reduc-

tion describes energy efficiency methods compared to a baseline or reference system. These can

be accomplished by enhancing building envelope or energy conversion systems, control algorithm

improvements, or building system optimization techniques [68]. A technique for exploiting energy

flexibility in buildings (or other end-users) without requiring a significant capital investment may

be seen as DR that reduces building electrical demand during grid stress [69].

2.3.2 DSM for Flexibility Service

An essential aspect of demand-side flexibility is DSM. DSM, as the name suggests, includes

changing demand side behavior. It is the concept for the voluntary changes in grid electricity de-

mand triggered by some incentives or administrative actions [70]. Only voluntary consumer-side

flexibility, in which customers actively contribute to supplying demand-side flexibility, is considered

in this definition. Due to demand-side flexibility, customers adjust their consumption in response

to changing pricing signals. DSM can reduce energy costs, optimize energy use, and contribute to

keeping the power system more reliable. DSM also delays the investment in upgrading the electrical

grid by altering or lowering demand. Based on the timing and the influence on the customer process

quality, DSM can be classified into four categories, as illustrated in Fig. 2.4 [71]: Energy efficiency,
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ToU, DR (market and physical), and spinning reserve.
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Figure 2.4: Classification of DSM.

• Energy efficiency can be improved through permanent and temporary measures that fall under

the umbrella of the DSMs. The frequency at which changes are made to energy systems

can impact the processes of customers, such as manufacturing output or building comfort.

The most desirable method for reducing energy consumption is through energy efficiency

measures, such as upgrading equipment or improving the physical properties of a system.

• Time of Use tariffs can also encourage customers to shift their energy usage to less peak

periods. However, it can lead to the “rebound effect”, where energy consumption may not be

reduced or even increase.

• Spinning reserve represents the upper end of the DSM spectrum, providing quick support

to traditional providers of ancillary services. Loads can act as virtual spinning reserves by

adjusting their power consumption in response to changes in grid frequency [72].

• Demand response can be a market or physical demand response program. The detailed de-

mand response is discussed in subsection 2.4.
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Figure 2.5: Demand side action.

As demonstrated by [73], combining other DSM techniques with time of Use (ToU) tariffs can

significantly increase security and decrease costs and emissions in energy systems with high shares

of wind and solar power. Achieving these DSMs requires some action known as a demand-side

action, as shown in Fig. 2.5 [74]. Energy efficiency can be achieved using demand side action “load

conservation”. Similarly, the DR program includes actions such as but not limited to peak clipping,

valley filling, load shifting, and flexible load shaping, as shown in Fig. 2.5.

2.4 Demand Response Program

The DR is an effective DSM solution that can be implemented at a particular time [75]. De-

pending on the consumer process’s impact, DR programs are divided into price-based and incentive-

based, as shown in Fig. 2.6 [1].
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2.4.1 Price or Time Based

Dynamic pricing-based programs form the basis of price-based programs, where the power tar-

iff is not constant and fluctuates in response to prevailing energy costs. This approach aims to even

out energy consumption by offering higher tariffs during periods of high demand and lower tariffs

during periods of low demand. These programs can be implemented in industrial sectors, where

energy expenses are a crucial component of production costs. With the widespread deployment

of information and communication technology in residential sectors, price or time-based DR pro-

grams are becoming increasingly accessible for smart homes and communities [76]. End users can

adjust their energy consumption in response to external signals, such as price signals, which may

encourage them to participate in system improvements. Four types of price-based demand response

programs are ToU rates, critical peak pricing (CPP), inclining block rate, and Real-Time Pricing

schemes, as presented in Fig. 2.6 [1].

The advantages and disadvantages of price-based DR schemes have been discussed in reference

[76]. There are two main benefits to the ToU programs. First, because ToU pricing maintains the

same price structure, participants can quickly comprehend its portfolios and create plans for their

daily energy usage. Second, the program’s participation percentages are consistently compared to

the other two DR programs. The drawback is that a new peak may be generated when ToU pricing

DR techniques lower the peak load.

Three benefits can be found with the CPP programs. First, the CPP portfolio is simple to com-

prehend and follow. Second, CPP programs can assist the operator in shifting the peak load demand.

Third, it is possible to estimate the incentive payment for the participant. Nevertheless, there are

drawbacks to this technique. Since the system only deals with extreme situations sometimes, CPP

applications cannot be used regularly. Therefore, the CPP schemes will not successfully lower the

costs of energy bills. Similarly, the real time price (RTP) is suitable for real-time power balance.

Still, it is challenging to implement and hard for the end-user to plan their schedule their activities

regarding the RTP tariff.

24



2.4.2 Incentive Based

In incentive-based DR schemes, end users could be eligible for financial incentives, rewards,

payments in cash, or discounted prices if they can adjust or decrease their energy usage to the

system’s needs. Market-based and classical programs are the two additional categories for incentive-

based programs. According to [77, 78], two main types of incentive programs for managing energy

demand are available. The first type, known as traditional programs, includes methods such as

direct load control (DLC) and interruptible/curtailable programs. On the other hand, market-based

programs involve emergency DR, capacity market, demand bidding/buyback, and supplementary

market services programs, as shown in Fig. 2.6 [1]. Using DLC, grid operators, and utilities can

immediately and directly access electrical equipment from a distance. Residential or small-scale

commercial consumers have also used this type of DR program [79]. Interruptible/curtailable rate

programs are those in which the end-users consent to receive incentives, bill discounts, or cash

payments to reduce power consumption or shift their load to another time interval. All these DR

and DSM require some asset on the demand side that is flexible and controllable. Such systems are

called flexible energy resources.

Market based

Power based
Energy based
Transformer based

Time of use
Real time pricing
Inclining block rate
Critical peak pricing

Demand 
Response 
Program

Price based Other program

Incentive based

Capacity market
Emergency demand reduction
Demand bidding and buyback

Interruptible load
Direct load control Classical

Figure 2.6: Classification of demand response program [1].
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2.4.3 Flexible Energy Resource

Flexible energy resources (FERs) are typically located on the distribution system, where most

customers are often found in residential and communities at energy hubs. These flexible resources

can also be found at the generation, aggregator, or demand side of the distribution network, as shown

in Fig. 2.7. Different optimization techniques are used for flexibility forecasting using FERs, as

shown in table 2.5 [2]. Generation side FERs include different power plants such as solar, wind,

and hydropower plants. The aggregator side can consist of large battery capacity, EV parking lots,

etc. The demand side energy resources can include smart households, HVAC systems, rooftop PV

systems, EVs, home batteries, and other smart devices.

Diesel Generator

CHP

Battery

EV parking lotHeat pump

Fuel Cell

Smart Home with 
Electric vehicle

Wind Turbin

PV

Generation

Demand 
Side

Conventional Generator

Aggregated 
Storage

=Solar power plant 

Wind Turbines

=Mechanical Storage
Grid-based Batteries

=
EV parking lot

=
Home batteries

=Smart buildings

HVAC

=EV 

=EWH

Conventional Generator

Figure 2.7: Different sources of flexibility in the LV distribution network.

Demand-side FERs are broadly categorized into storage and load-based resources that can adjust

their power output to support various local and system-wide flexibility services, as shown in Fig. 2.8.

Many appliances at the house or in a community can participate in DR or energy management pro-

grams by reducing or adjusting their usage over time [99]. However, the FERs that can offer power-

based flexibility services to the distribution systems or local communities are the main focus of this
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Table 2.5: Optimization for Flexibility forecasting and FERs used in the literature [2]

Model type Specific models Ref.
Price signal

response
Base on

historical data
Shiftable

loads
TCL ESS EV

Machine
learning
models

Neural networks
[80]
[81]

✓
✓

✓
✓
✓

Support vector
machine

[82] ✓ ✓ ✓ ✓

Support vector data
description

[83] ✓ ✓

Logistic regression [84] ✓ ✓ ✓
Piece-wise

linear regression
[85] ✓ ✓

Probabilistic
models

Chance constrained
[86]
[40]

✓
✓

✓
✓

✓ ✓ ✓ ✓

Auto-regressive
integrated

moving average

[87]
[88]
[89]

✓
✓
✓
✓

✓

✓
✓

Data analysis base [90] ✓ ✓

Deterministic
models

Mixed integer
linear programming

[91]
[92]
[86]
[93]
[94]
[95]
[96]
[1]

✓
✓
✓
✓
✓
✓
✓
✓

✓

✓
✓

✓

✓
✓
✓

✓
✓

✓

✓
✓
✓

✓

✓
✓

✓

✓
✓
✓
✓

Mixed integer non-
linear programming

[97] ✓ ✓ ✓ ✓ ✓ ✓

Algorithmic method [98] ✓ ✓
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section. These resources may be managed for output power and often respond quickly to neces-

sary adjustments. Load-based resources are further divided into interruptible and non-interruptible

flexible loads. Interruptible loads such as EWH, refrigerators, electric pool pumps, and HVAC sys-

tems can be turned off or adjusted their power rating during operation. Non-interruptible loads,

such as washing machines, dishwashers, electric stoves, dryers, and microwave ovens, cannot be

interrupted during operation. These non-interruptible loads only provide upward flexibility but can

not offer downward flexibility [100]. The storage base resources are further divided into movable

and immovable storage, shown in Fig. 2.8. The flexible portable storage resources for flexible are

electric transportation such as EVs, electric buses, electric bikes, etc. The immovable storage-based

resource can be electric, mechanical, or electro-chemical energy storage, as shown in Fig. 2.8.

Other appliances such as the refrigerator, lighting system, dishwasher, washer, and dryer can

be used as FER but do not provide complete upward/positive and downward/negative flexibility to

the distribution grid [100]. The EV, ESS , and EWH are considered the three target appliances for

FERs in this study for modeling to utilize the storage capability of these DERs in the DR program

for flexibility provision because they can provide upward and downward flexibility [101]. However,

it can be extended to integrate other appliances.

2.5 Type of Electricity Markets for Flexibility

To account for fluctuations and uncertainties in energy markets, describing the required ramping

capabilities and implementing a fair payment system that incentivizes consumers to participate is

crucial. There may be difficulties in determining the appropriate payment for demand-side flexi-

bility, but it is essential to ensure consumers’ participation and avoid price spikes. A fair payment

system that incentivizes consumers to engage in the market is the best incentive for providers of

demand-side flexibility. Despite the benefits of intra-hour and real-time markets in reducing ramp

shortages, the lack of a sufficient day-ahead market can still impact real-time markets by increasing

the likelihood of contingencies [102]. There may be some difficulties in integrating the flexibility

market with related markets. Effective markets must have specific essential characteristics, includ-

ing the ability for new suppliers to enter the market, the provision of incentives and assurances, and

28



Electrical Energy 
Storage

Electric Water Heater

HVAC

Immovable

Movable

Interruptible 
Load

Non-Interruptible 
Load

Refrigerator
Electric Pool Pump

Washing machine
Dish washer

Electric Dryer

Electric Buses

Electric Stove

Microwave oven 

Battery Electric Vehicle
Plug-In Hybrid Electric Vehicle 
Hybrid Electric Vehicle 

Electrochemical Energy 
Storage

Mechanical Energy 
Storage

Battery Energy Storage
Fuel Cell Energy Storage

Supercapacitor Energy Storage

Superconductor Energy Storage

Flywheel Energy Storage
Pump hydro Energy Storage
Compressed air Energy Storage
Liquid air Energy Storage

Storage Base 
Resources

Load Base 
ResourcesFl

ex
ib

le
 E

ne
rg

y 
R

es
ou

rc
es

Figure 2.8: Demand side flexible energy resources.

the potential for them to overtake incumbents in terms of market share [102]. All time frames, from

very short-term to long-term, can be impacted by demand-side flexibility [103]. Fig. 2.9 provides

an overview of the electricity market with the time of delivery that is typically present. Different

types of flexibility markets are as follows:

Futures Markets

Day-ahead

Balancing Markets

Spot Markets

Intra-day

Years/Month 

ahead
Previous Day Present Day Real Time

Figure 2.9: Different electricity market with respective time [2].
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2.5.1 Day-ahead Market

There are two types of demand-side flexibility in the day-ahead market: proactive and reactive.

According to Alvehag et al., [104], reactive demand-side flexibility occurs once the day-ahead mar-

ket prices have been disclosed. In contrast, proactive demand-side flexibility has an instant effect on

price determination. For proactive demand-side flexibility to participate in the day-ahead market, it

is essential to furnish the customer with hourly price signals, as this type of flexibility significantly

impacts price formation [105].

2.5.2 Intra-day Market

The day-ahead market’s correction for flexibility trading is employed mainly by aggregators.

Stakeholders in this market, such as electricity users, DSOs, and aggregators, can demonstrate their

adaptability and change any prior trading if the earlier projections are inaccurate.

2.5.3 Balancing power market

The balancing power market is critical in ensuring the grid’s stability and reliability in the flex-

ibility electricity market. The market mechanism allows the system operator to procure enough

flexibility to respond rapidly to short-term electricity supply or demand fluctuations, ensuring that

the grid frequency remains within acceptable limits. The market’s design and operation can signifi-

cantly impact the overall performance and efficiency of the electricity system.

The cost savings drive the increased adoption of self-consumption installations compared to

energy purchased from the grid, as fees, margins, and taxes are eliminated [106]. The regulation

of self-consumption in many territories further supports this trend, leading to a paradigm shift in

the electricity system and markets where consumers become active participants, referred to as pro-

sumers [107]. These prosumers can form energy communities, which are set to play an increasingly

important role in the energy system. Within these communities, prosumers can engage in P2P en-

ergy exchanges, maximizing their resources through the recently developed P2P trading technology

in smart grids [108].
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2.6 Peer-to-Peer Energy Trading

Transactive energy is a framework for managing power generation and consumption within an

electric network by taking reliability constraints into account [109]. This framework uses two-way

information exchange and price signals to connect buyers and sellers into the transactive energy

market protocol. It allows them to participate in various financial transactions with each other or

energy retailers [110]. The subset of transactive energy that focuses on prosumers is called P2P

energy trading [111, 112, 113].

The implementation of P2P energy trading has been shown to have numerous positive impacts

on the community, including lifestyle and cultural changes related to electricity supply and demand,

job creation and local training, increased social trust, transparency in transactions, reduced fraud,

and a greater sense of community attachment [114, 115].

2.6.1 Market Structure of P2P Energy

The P2P energy trading framework uses a bottom-up approach to include prosumers in the mar-

ket, in contrast to the top-down approach used in the current electricity market. The P2P market

can be divided into three structures, as outlined in the Fully Decentralized P2P market, Community-

based P2P market, and Hybrid P2P market. These structures differ in how prosumers are coordi-

nated for the energy exchange. The advantages and challenges of these different P2P markets are

shown in table 2.6.

Table 2.6: P2P energy market Structure

Ref P2P Market Benefits Challenges
[116, 117, 118, 119]
[120, 121, 122, 123, 124]

Fully Decentralized Autonomous No central control

Prosumer-centric Reliability issue
Slow convergence to the final value
High maintenance and investment costs.

[125, 126, 127, 128, 129]
[130, 131, 132, 133, 134]

Community based Common interest Proper coordination

Collaborative and competitive Unbiased and fair energy trading
[135, 136, 113, 137, 138] Hybrid Suitable design Inclusion of stakeholder

Predictive to the grid Coordination of communities
Scalable Capable for future gird
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2.6.2 Operation layers of P2P Energy

The operation of P2P trading is divided into two layers, the virtual layer and the physical layer

[139]. The physical layer includes the grid connection, smart metering, and distribution asset, for

instance, the distribution transformer, as shown in figure 2.10. The virtual layer has an information

system, market operation, pricing mechanism, and energy management system, as mentioned in

figure 2.10.

Virtual Layers of P2P Energy

Prosumers can access the energy-related information of other prosumers through the virtual

layer’s protected information platform, which is part of a P2P network [133]. A prosumer’s transactive

meter (TAM), a separate smart meter from the traditional energy meter to track P2P trading, trans-

mits price information, energy surplus, and deficit data through a secure communication channel

[140]. Orders for selling and purchasing energy are made based on this data. Then, depending on

the selling and purchasing orders, a robust P2P market mechanism is developed to carry out en-

ergy exchange between prosumers [108]. The three main components of virtual P2P trading are the

information-sharing platform, local market setup, and decision-making technique.

Physical Layers of P2P Energy

On a real distribution network, energy transmission and adjustment are the responsibility of the

physical layer [133]. When the virtual layer’s financial settlement is complete, sellers may reduce

the contractual energy demand or export the agreed-upon energy to the distribution network. The

TAMs monitor both actions. On the other hand, buyers use the exact amounts of energy from the

physical network, similarly noted in TAMs as energy quantities traded through the P2P framework

[139]. The energy used by a specific customer does not always correspond to the energy added to

or decreased by the seller with whom it has a contract. This is so because physics governs how

electricity moves across a physical network. As a result, neighboring purchasers closer to the seller

than the target buyer might use the energy exported or lowered by this seller to make up for their

energy shortage [141].
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Figure 2.10: Virtual and physical layer of P2P energy trading.

2.6.3 Optimization Approach for P2P Energy Trading

P2P energy trading systems have been developed using various methodologies, broadly cat-

egorized into four main categories: game theory, auction theory, constrained optimization, and

blockchain. Table 2.7 summarizes the different technical approaches used in current investigations.

Game theory is a mathematical methodology developed to investigate the decision-making

strategies of rational agents operating in competitive environments. In such situations, the actions

of one participant influence and are influenced by the actions of other participants, and game the-

ory provides a means of analyzing these interactions [172]. In recent years, game theory has been

widely employed in P2P energy trading due to its ability to model the diverse interests of multiple

agents in a decentralized and computationally efficient manner [151]. Two distinct categories of

game theory are typically considered: non-cooperative and cooperative games [173].

Auction theory deals with multiple buyers and sellers trying to exchange goods or services

[174]. Buyers present their offers to an auctioneer, soliciting prices from potential sellers. The

four steps involved in the process are: (a) the sellers submit their reservation prices in ascending
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Table 2.7: Summary of optimization approaches for P2P energy trading

Technical ap-
proach

Game theory Auction theory Constrained opti-
mization

Block chain

Virtual P2P
Layer

[142, 120, 143, 144,
145, 146, 147, 148,
149, 150, 151, 152,
153]

[116, 152, 154,
155]

[156, 157, 118, 158,
159, 160]

[161, 162, 163, 164,
165, 166]

Physical P2P
Layer

[167] [168] [169, 170, 171] Not found

Popular method Non-cooperative and
cooperative game,
Stackelberg game,
Canonical coalition
game, Coalition forma-
tion game

Double auction, It-
erative auction

LP, MILP, ADMM,
NLP

Elecbay, Smart
Contract,
Ethereum, Hyper-
ledger, Consortium
blockchain

order, (b) the buyers are arranged in descending order based on their reservation bid values, (c) the

demand and supply curves are constructed and intersect at a specific point, and (d) the intersection

determines the auction price and the number of buyers and sellers who ultimately participate in the

market transaction. In P2P energy markets, the application of auction theory enables the capture of

interactions between multiple vendors and buyers, facilitating a step-by-step power exchange. All

these methodologies need a specific place to trade their power or energy, known as the flexibility

market. The detail of the flexibility market is in the next section.

Constrained optimization involves optimizing the objective function of P2P markets under op-

erational constraints. Various constrained optimization techniques have been used to design P2P en-

ergy trading schemes, such as linear programming (LP), mixed-integer linear programming (MILP),

alternating direction method of multipliers (ADMM), and nonlinear programming (NLP) as men-

tioned in table 2.7.

Blockchain technology was first introduced by [175] as a fast, accurate, and reliable decentral-

ized data structure for P2P energy transfers. Blockchain is a distributed data structure replicated

and distributed among network participants. With blockchain, programs that previously could only

run through a trusted intermediary can now operate in a decentralized way, without a central author-

ity, and accomplish the same functionality with the same level of assurance [176]. P2P trading’s

characteristics make blockchain technology a valuable tool for future energy networks.
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Chapter 3

Multi-level Energy Management System

and Flexibility Provision

NOMENCLATURE

Indices, Sets and Functions

hj Index of houses h at j bus

j, k Index of buses in distribution system; (j, k) ∈ N

t Index of time; t ∈ T

tEV
hj

Index of time EV connected to house; tEV
hj

∈ T

tAR
hj

Index of time EV arrived to house; tAR
hj

∈ T

tDEP
hj

Index of time EV depart from house; tDEP
hj

∈ T

J1,hj Cost minimization objective function

J2,hj
Energy minimization objective function

J4 Loss minimization with optimal flexibility request objective function

Parameters
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Cf Weight function assigned by the DSO

Chj
Thermal capacitance; kWh/◦C

EESS,min
h ,EEV,min

hj
Minimum energy level of an ESS , EV; kWh

EESS,max
h ,EEV,max

hj
Maximum energy level of ESS , EV; kWh

EEV,AR
hj

, EEV,DEP
hj

Arrival and departure energy of EV; kWh

EEV,AR
hj

, EEV,DEP
hj

Arrival and departure energy of EV; kWh

Einitial
ESS , Efinal

ESS Initial and final energy of ESS ; kWh

Gj,k Conductance between buses; p.u

M Very large number

Mhj Water tank capacity; L

mhj ,t Hot Water usage; L

PESS,max
Chj

,PEV,max
Chj

Maximum charging power of ESS , EV; kW

PESS,max
Dhj

,PEV,max
Dhj

Maximum discharging power of ESS , EV; kW

P flex+

hj ,t
, P flex-

hj ,t
Upward, downward flexibility of house; kW

P
flex+

agg
j,t , P

flex-
agg

j,t Upward, downward aggregated flexibility; kW

PBL
hj ,t

Base load; kW

(P con
hj ,t

)J1 Power demand using J1,hj ; kW

(P con
hj ,t

)J2 Power demand using J2,hj ; kW

P
flexagg
j,t Total flexibility at bus j; kW

P flex
hj ,t

The flexibility of each household; kW

Pmax
hj ,t

The maximum power demand of household; kW

P
dagg
j,t , P sellagg

j,t Aggregated power buy, sell from, to DSO; p.u

Pmin
gj , Pmax

gj Lower, upper limit active power generation; p.u

Qmin
gj , Qmax

gj Lower, upper limit reactive power generation; p.u

PF Power factor
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Q
dagg
j,t Aggregated reactive power demand; p.u

Qhj
Thermal capacity; kW

Rhj
Thermal resistance; ◦C/kW

T a
hj ,t

Ambient temperature; ◦C

TEWH,min
hj

Minimum limit of water temperature; ◦C

TEWH,max
hj

Maximum limit of water temperature; ◦C

V min
j , V max

j Minimum, maximum voltage at bus j; p.u

Yj,k Admittance of line of the electrical network; p.u

ξ+, ξ- Percentage peak reduction, increase

ηESS
Chj

, ηESS
Dhj

Charging, discharging efficiency of ESS

ηEV
Chj

, ηEV
Dhj

Charging, discharging efficiency of EV

γflex
hj ,t

Flexibility index of each household

θj,k Angle of complex Y-Bus matrix; rad

τ Time step; 15min

πBuy
t , πSell

t Buying, selling price; $/kWh

Variables

EEV
hj ,t

, EESS
hj ,t

Energy level of EV, ESS , kWh

PBuy,DSO
hj ,t

Buying power of household from DSO; kW

P Sell,DSO
hj ,t

Selling power of household to DSO; kW

PEV
Chj,t

, PESS
Chj,t

Charging power of EV, ESS ; kW

PEV,H
Dhj,t

,PEV,DSO
Dhj,t

Discharging power of EV to home, DSO; kW

PESS,H
Dhj,t

,PESS,DSO
hj ,t

Discharging power of ESS to home, DSO; kW

PEV
Dhj,t

,PESS
Dhj,t

Total discharging power of EV, ESS ; kW

P PV
hj ,t

Total power of PV; kW
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P PV,ESS
Dhj,t

Power of PV supply to ESS ; kW

P PV,H
Dhj,t

,P PV,DSO
Dhj,t

Power of PV supply to home, DSO; kW

PEWH
hj ,t

Power demand of EWH; kW

P g
j,t, Q

g
j,t Active, reactive power generation; p.u

P fDSO
j,t , QfDSO

j,t Active, reactive flexibility signal; p.u

TEWH
hj ,t

Water temperature; ◦C

Vj,t, Vk,t The voltage level at bus j and k; p.u

δj,t, δk,t Voltage angle at bus j, k; rad

Binary Variables

XESS
hj ,t

,XEV
hj ,t

Charging and discharging status of ESS , EV; ON/OFF

XEWH
hj ,t

Status of EWH; ON/OFF

Xhj ,t Status of buying and selling power; ON/OFF

3.1 Background

This chapter focuses on the multi-level energy management modeling and flexibility provision.

1 The contribution of residential flexibility demand for power system flexibility providers has been

studied in the literature [177, 178, 179]. With the increasing penetration level of DERs in the system,

flexibility provisions have become a crucial topic in power systems. These flexible resources provide

DRP services that must be appropriately managed to achieve prosumer and system-level benefits.

The energy sector’s evolution is pushing for more sustainable electricity infrastructure. In this

perspective, energy flexibility becomes critical to achieving sustainable energy goals, as it provides
1This chapter has significant materials from the following papers published by the PhD candidate:
Hussain, S., El-Bayeh, C. Z., Menon, R. P., Lai, C., & Eicker, U. (2022, August). Flexibility based Coordination
Framework For Three-Level Energy Management System. In 2022 19th International Bhurban Conference on Applied
Sciences and Technology (IBCAST) (pp. 568-572). IEEE.
Hussain, S., Menon, R. P., Fatima,A., Lai, C., & Eicker, U. (submitted). Optimization of Energy Systems using MILP
and RC Modeling: A Real Case Study in Canada. In the 18th Annual IEEE International Systems Conference SYSCON
2024
Hussain, S., Alrumayh, O., Menon, R. P., Lai, C., & Eicker, U. (2023). Novel Incentive-based Multi-level Framework
for Flexibility Provision in Smart Grids. IEEE Transactions on Smart Grid.
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an efficient means of balancing supply and demand under more varied energy usage patterns (such as

renewable and electric vehicles). Prosumers have been suggested as a potential source of power grid

flexibility. However, the individual flexibility that small prosumers can provide may not be enough

to solve power grid issues. As a result, the function of the ”aggregator” emerges to collect total

flexibility quantities from small prosumers, allowing them to access larger markets. We assume

the required infrastructure for achieving management and control (e.g., smart metering systems,

communication lines, HEMS) is available [180]. A few researchers investigated the integration of

EVs and RESs and noticed substantial changes in residential load profiles and consumers’ monthly

costs. Very little research has examined how distribution operations are affected by the flexibility of

residential loads and DR provisions [181, 39, 21]. Hence, the inherent benefits of managing flexible

resources to facilitate the integration of RES and EV calls for in-depth research on this subject. The

authors of [39, 40] used prosumers’ flexibility to improve the system’s operational efficiency, reduce

network losses, peak power, and the prosumers’ energy expenses. However, these studies did not

study downward flexibility, making the coordination framework infeasible and less attractive for the

prosumer. For this reason, this chapter developed a novel flexibility (downward and upward) based

coordination framework for ML-EMS.

3.2 Mathematical Modeling of Multi-level EMS

This section introduces the assumptions and mathematical modeling of the multi-level EMS.

We assume that the required infrastructure is available, such as smart metering systems, commu-

nication networks, and HEMS. The mathematical formulation is a three-stage EMS: first, second,

and third stages, as shown in figure 3.1. In this study, each household has an EV, PV, ESS, and

EWH controlled by a HEMS, accommodating each customer’s preferences and objectives. Other

appliances such as the refrigerator, water heater, lighting system, dishwasher, washer, and dryer do

not provide full flexibility (upward and downward) to the distribution grid [100] and are referred

to as base loads or uncontrolled loads. The HEMS manages the EV and ESS charging and dis-

charging. The EV and ESS are charged from the distribution grid or PV and may be used to earn

profits by discharging power to the grid during high peak demand. The objectives of HEMS are the
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minimization of electricity costs and energy consumption. The aggregator calculates the flexibil-

ity and aggregated power bought/sold from/to the DSO in the second stage. The third stage is the

DSO model, which minimizes the power losses of the system using optimal power flow (OPF) and

calculates the signals, providing information on the optimal flexibility required.

The proposed method is rooted in the idea that the DSO can request flexibility from the ag-

gregator. The aggregator, in turn, can provide flexibility provisioning based on special contracts

between prosumers and aggregators. These contracts allow the prosumers’ system flexibility to pro-

vide benefits to the grid and the end-users simultaneously. This concept has been examined in other

works, such as the universal smart energy framework [182], which studies a contractual connection

between the aggregator and the DSO to exchange flexibility. The following sections discuss the

detailed modeling of each level and the flexibility provisions.

HEMS

House appliances

Two way Communication Flow

Power flow

Phj,t
max

PJ,t
fDSO

          PJ,t
dagg ,PJ,t

sellagg,PJ,t
flex, agg

Phj,t
buy,Phj,t

sell

1

3
2

StagesX

Figure 3.1: Conceptual diagram of three-level EMS.
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3.2.1 Home (lower level)

The goal of the HEMS in each household is assumed to optimize the operation schedule of

home appliances and DERs by minimizing the electricity cost, minimizing the energy consumption,

maximizing the conforming level, etc., as mentioned in table A.1 [1]. With these objectives, HEMS

will satisfy the operational constraints of appliances, DERs, and the prosumer’s preferences.

Objective Function

The main objectives of the HEMS are cost, as follows:

J1,hj
=
∑
t∈T

(P Buy,DSO
hj ,t

· πBuy
t − P Sell,DSO

hj ,t
· πSell

t )τ (3.1)

Equation (3.1) is the objective function to minimize the energy cost of a household. In equation

(3.1), the first term P Buy,DSO
hj ,t

is power buying/demand from the grid by the prosumers with buying

price πBuy
t of electricity from the DSO. The second term of right-hand side in equation (3.1) is

power selling to the grid from the home’s DERs corresponding to the selling price.

The objective function to minimize the energy is used to make a baseline for the prosumer to

minimize the energy as low as possible. The optimal power of the home using objective function

used in (3.2) to make a reference/baseline for calculating flexibility in section 3.2.2. To minimize

the energy consumption or maximizing local energy consumption as follows:

J2,hj
=
∑
t∈T

(P BL
hj ,t

+ P EWH
hj ,t

+ (P EV
Chj,t

− P EV,H
Dhj,t

) + (P ESS
Chj,t

− P ESS,H
Dhj,t

)− P PV,H
Dhj,t

)τ (3.2)

Equation (3.2) minimizes the energy consumption of household appliances such as base load, EWH,

EV, and ESS . The right-hand side of equation (3.2) is the power demand of the base load, the power

demand of EWH, charging of EV and ESS at home, and the power supply to the house from the

EV, ESS , and PV, respectively
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HEMS Constraints

Power Balance Constraints

Equation (3.3) ensures that the net power consumption of the appliances is equal to the power

bought from the DSO as below:

P Buy,DSO
hj ,t

= P BL
hj ,t

+ P EWH
hj ,t

+ (P EV
Chj,t

− P EV,H
Dhj,t

) + (P ESS
Chj,t

− P ESS,H
Dhj,t

)− P PV,H
Dhj,t

, ∀t ∈ T ; ∀hj ∈ H

(3.3)

In equation (3.3), the different terms represent the power demand of the base load, the power demand

of EWH, the charging of EV and ESS at home, and the power supply to the house from the EV, ESS

, and PV, respectively. According to the FiT, the HEMS can also sell power to the DSO and reduce

the electricity cost.

P Sell,DSO
hj ,t

= P EV,DSO
Dhj,t

+ P ESS,DSO
Dhj,t

+ P PV,DSO
Dhj,t

, ∀t ∈ T ; ∀hj ∈ H (3.4)

In (3.4), the first term of the right-hand side is EV supply power to DSO, the second term is ESS

supply excess power to DSO, and the last term is PV supply surplus power to the DSO. Equation

(3.5) and (3.6) ensure that the process of selling and buying power does not occur simultaneously.

In these equations, M is a very large number, and Xhj ,t is a binary variable.

0 ⩽ P Buy,DSO
hj ,t

⩽ M ·Xhj ,t, ∀t ∈ T ; ∀hj ∈ H (3.5)

0 ⩽ P Sell,DSO
hj ,t

⩽ M · (1−Xhj ,t), ∀t ∈ T ; ∀hj ∈ H (3.6)
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EWH Operational Constraints

Equation (3.7) shows the thermal energy charging/discharging of EWH, which considers the

heat exchange of cold water inflows with environment [3].

T EWH
hj ,t

= T a
hj ,t

+Rhj
·Qhj

·XEWH
hj ,t

− (
Mhj

−mhj ,t

Mhj

)

(T a
hj ,t

− T EWH
hj ,t−1)e

τ
Rhj

Chj , ∀t ∈ T ; ∀hj ∈ H (3.7)

In equation (3.7), EWH’s heat transfer rates are determined as a function of hot water usage, ambient

temperature, thermal parameters, and the EWH’s ON/OFF status. Equation (3.7) models the water

temperature inside the tank while adjusting for the heat exchanged with the outside environment

and the heat produced by the EWH resistance. It should be noted that the EWH tank is assumed to

be placed in a space that is directly affected by the changes in the ambient temperature of air [183].

T EWH,min
hj

≤ T EWH
hj ,t

≤ T EWH,max
hj

, ∀t ∈ T ; ∀hj ∈ H (3.8)

Equation (3.8) ensures that the hot water temperatures of EWH are within the limit set by the

household.

PV Operational Constraint

The HEMS distributed power generated by the PV to the DSO, battery, and house is described

below in the form of the following equation:

P PV
hj ,t

= P PV,DSO
Dhj,t

+ P PV,ESS
Dhj,t

+ P PV,H
Dhj,t

, ∀t ∈ T ; ∀hj ∈ H (3.9)

EV Operational Constraints

When EV is at home at time tEV
hj

, the energy level of the EV will be affected by the charging and

discharging as follows:

EEV
hj ,t

= EEV
hj ,t−1 + τ

(
P EV
Chj,t

· ηEV
Chj

− P EV
Dhj,t

)
, ∀t ∈ tEV

hj
; ∀hj ∈ H (3.10)
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In equation, (3.10), the first term is the energy level for the previous time step, and the second term

represents the charging and discharging of the EV. When the EV is plugged in at home (and not

charging), it will either discharge to the house or can sell electricity to the DSO as follows:

P EV
Dhj,t

=
P EV,DSO
Dhj,t

+ P EV,H
Dhj,t

ηEV
Dhj

, ∀t ∈ tEV
hj
; ∀hj ∈ H (3.11)

Equations (3.12) and (3.13) limit EVs’ charging and discharging power, ensuring that charging and

discharging does not occur at some time.

0 ≤ P EV
Chj,t

≤ P EV,max
Chj

·XEV
hj ,t

, ∀t ∈ tEV
hj
; ∀hj ∈ H (3.12)

0 ≤ P EV
Dhj,t

≤ P EV,max
Dhj

· (1−XEV
hj ,t

), ∀t ∈ tEV
hj
; ∀hj ∈ H (3.13)

Equation (3.14) ensures that energy level of EV’s battery is within the defined lower and upper

bounds.

EEV,min
h ≤ EEV

hj ,t
≤ EEV,max

hj
, ∀t ∈ tEV

hj
; ∀hj ∈ H (3.14)

The equation (3.15) defines the energy level within the device at the time of arrival:

EEV
hj ,t

= EEV,AR
hj

, ∀t ∈ tAR
hj
; ∀hj ∈ H (3.15)

At the time of departure, the energy of the EV should equal the desired energy level as follows:

EEV
hj ,t

= EEV,DEP
hj

, ∀t ∈ tDEP
hj

; ∀hj ∈ H (3.16)

ESS Operational Constraints

Equation (3.17) presents the energy level of ESS during charging and discharging time.

EESS
hj ,t

= EESS
hj ,t−1 + τ(P ESS

Chj,t
· ηESS

Chj
− P ESS

Dhj,t
), ∀t ∈ T ; ∀hj ∈ H (3.17)
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In E-q. (3.17), the first term is the energy level of ESS for the previous time step, and the second

represents the charging and discharging of the ESS . ESS charges from PV or DSO are as follows:

P ESS
Chj,t

= P ESS,DSO
Dhj,t

+ P PV,ESS
Dhj,t

, ∀t ∈ T ; ∀hj ∈ H (3.18)

In (3.18), the first term represents the charging of ESS from the DSO, and the second term represents

the charging of ESS from PV. The equation (3.19) ensures the discharging of ESS to the house or

the DSO.

P ESS
Dhj,t

=
P ESS,DSO
Dhj,t

+ P ESS,H
Dhj,t

ηESS
Dhj

, ∀t ∈ T ; ∀hj ∈ H (3.19)

Equation (3.20) sets the initial energy of ESS at the start of the time horizon, and (3.21) ensures that

the energy stored within the ESS stays at the desired level at the end of the day.

EESS
hj ,t

= Einitial
ESS ∀t = 0, ∀hj ∈ H (3.20)

EESS
hj ,t

= Efinal
ESS ∀t = 95, ∀hj ∈ H (3.21)

Equations (3.22) and (3.23) limit the charging and discharging power of ESS between the minimum

and maximum allowable limits, respectively. Also, equations (3.22) and (3.23) limit the charging

and discharging and ensure that charging and discharging should not occur simultaneously.

0 ≤ P ESS
Chj,t

≤ P ESS,max
Chj,t

·XESS
hj ,t

, ∀t ∈ T ; ∀hj ∈ H (3.22)

0 ≤ P ESS
Dhj,t

≤ P ESS,max
Dhj,t

· (1−XESS
hj ,t

), ∀t ∈ T ; ∀hj ∈ H (3.23)

The energy stored within ESS also remains within their upper and lower bounds due to the following

constraint:

EESS,min
h ≤ EESS

hj ,t
≤ EESS,max

hj
, ∀t ∈ tESS

hj
; ∀hj ∈ H (3.24)
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3.2.2 Aggregator Model for Flexibility Management (Middle level)

Currently, the DSO that owns and manages the distribution network carries out functions analo-

gous to an aggregator. The aggregator sums the buying and selling power of the houses as follows:

P
dagg
j,t =

H∑
h

P Buy,DSO
hj ,t

, ∀t ∈ T ; ∀j ∈ N (3.25)

P
sellagg
j,t =

H∑
h

P Sell,DSO
hj ,t

, ∀t ∈ T ; ∀j ∈ N (3.26)

Equation (3.25) calculates the aggregated power demand of the houses connected to that bus. The

aggregated power includes base load, the power demand of EWH, charging and discharging of EV,

and ESS . However, this information is hidden from the aggregator to protect the privacy of the

end-user. Only the aggregated power demand from the house is sent to the aggregator. Similarly,

the aggregated selling power constitutes excess PV power generated and power discharged from

EV and ESS to the DSO. However, only the aggregated power for each time step that may be

sent/received by the DSO is sent to the aggregator, as shown in (3.25) and (3.26) .

The aggregator in the proposed method provides a flexibility management service. The aggre-

gator calculates the flexibility available to the DSO from each household at a given time interval as

follows:

P flex+

hj ,t
= (P con

hj ,t
)J1 − (P con

hj ,t
)J2 if (P con

hj ,t
)J1 > (P con

hj ,t
)J2 , ∀t ∈ T ; ∀hj ∈ H (3.27)

P flex-

hj ,t
= (P con

hj ,t
)J1 − (P con

hj ,t
)J2 if (P con

hj ,t
)J1 < (P con

hj ,t
)J1 , ∀t ∈ T ; ∀hj ∈ H (3.28)

Equations (3.27) and (3.28) calculate the upward and downward flexibility, respectively. The flexi-

bility of each prosumer is defined as the difference between power demand by each house using the

objective function J1,h and objective function J2,h. If the power demand of the house using J1,h is

greater than the power demand using J2,h, then the house can provide upward flexibility to the grid.

It means that the house can reduce power demand. Similarly, if the power demand using J1,h is less

than the power demand of J2,h, then houses provide downward flexibility to the grid, thus requiring

more power from the grid. The total upward and downward flexibility at bus j is the sum of upward
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and downward flexibilities from all houses on the same bus, as in (3.29) and (3.30), respectively.

P
flex+

agg
j,t =

H∑
h

P flex+

hj ,t
, ∀t ∈ T ; ∀j ∈ N (3.29)

P
flex-

agg
j,t =

H∑
h

P flex-

hj ,t
, ∀t ∈ T ; ∀j ∈ N (3.30)

To calculate the flexibility index, each household’s downward and upward flexibilities and the ag-

gregated upward and downward flexibility are summed together for each time step, as described

below.

P flex
hj ,t

= P flex+

hj ,t
+ P flex-

hj ,t
, ∀t ∈ T ; ∀hj ∈ H (3.31)

P
flexagg
j,t =

H∑
h

(P
flex+

agg
hj ,t

+ P
flex-

agg
j,t ), ∀t ∈ T ; ∀j ∈ N (3.32)

In equation (3.31), the net flexibility at the home level is calculated by taking the sum of downward

and upward flexibility. Equation (3.32) sums the upward and downward flexibilities at bus j. The

flexibility index is the ratio of the flexibility of each house to the aggregated flexibility, as follows:

γflex
hj ,t

=
P flex
hj ,t

P
flexagg
j,t

, ∀t ∈ T ; ∀hj ∈ H; ∀j ∈ N (3.33)

The aggregator also calculates the maximum power limit of each house based on their flexibility as

follows:

Pmax
hj ,t

= (P con
hj ,t

)J2 − γhj ,t · P
fDSO
j,t , ∀t ∈ T ; ∀hj ∈ H; ∀j ∈ N (3.34)

In equation (3.34), the first term (P con
hj ,t

)J2 is the power demand of the house, and the second term

of the right-hand side is the flexibility index of that house and flexibility request from the DSO. The

maximum power limit calculated in (3.34) will be an additional constraint at the home level to limit

the power demand of the house as follows.

P Buy,DSO
hj ,t

≤ Pmax
hj ,t

, ∀t ∈ T ; ∀hj ∈ H (3.35)

The left side of (3.35) is the net power demand of the house. The right-hand side of the equation
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(3.35) is the resulting power limit of equation (3.34). The HEMS will reschedule the appliance of

the house according to the maximum power limit based on the upward and downward flexibility of

that house, which will be discussed in detail in section 3.3.

3.2.3 Distribution System Operator (Upper level)

The DSO performs a system-level OPF analysis. The objective of the DSO has been defined as

the minimization of total system losses and the calculation of the optimal flexibility request. The

flexibility request is further scaled down at the aggregator level to limit each end-user based on the

flexibility as in (3.34) . The objective of the DSO optimization is shown in the equation below:

J3 =
∑
t∈T

(
1

2

N∑
j=1

N∑
k=1

Gj,k

(
V 2
j,t + V 2

k,t − 2Vj,t · Vk,t cos(δj,t − δk,t)
)
+

N∑
j=1

CfP fDSO
j,t

)
(3.36)

In (3.36), The first part of the equation calculates power losses, and the second part calculates the

optimal flexibility request by using a weighted component of the total flexibility used.

DSO Constraints

The OPF is subjected to the active and reactive power balance equations as below:

P g
j,t + P

sellagg
j,t + P

fDSO
j,t − P

dagg
j,t =

N∑
k=1

Vj,t · Vk,t · Yj,k cos (θj,k + δk,t− δj,t) , ∀t ∈ T ; ∀(j, k) ∈ N

(3.37)

Qg
j,t +Q

fDSO
j,t −Q

dagg
j,t = −

N∑
k=1

Vj,t · Vk,t · Yj,k sin (θj,k + δk,t − δj,t) , ∀t ∈ T ; ∀(j, k) ∈ N (3.38)

In equation (3.37) and (3.38), the first term of left-hand side is active and reactive power generation

of the substation, respectively. The second term in (3.37) is aggregated selling power to the DSO.

The third term P
fDSO
j,t in (3.37), and the second term Q

fDSO
j,t in (3.38) are optimal flexibility request,

the fourth term P
dagg
j,t in (3.37), and the third term Q

dagg
j,t in (3.38) represent aggregated active and

reactive power demand of the household connected to bus j. The right-hand side of the equations in

(3.37) and (3.38) are the active and reactive power losses at that bus, respectively. The aggregated

reactive power and reactive flexibility are calculated with a constant load power factor of 0.85 as
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follows:

Q
dagg
j,t =

√
1− PF2

PF2 P
dagg
j,t , ∀t ∈ T ; ∀j ∈ N (3.39)

Q
fDSO
j,t =

√
1− PF2

PF2 P
fDSO
j,t , ∀t ∈ T ; ∀j ∈ N (3.40)

In addition to the above constraints, the bus voltage and active/reactive power drawn from the grid

are limited by upper and lower bounds as follows:

V min
j ≤ Vj,t ≤ V max

j , ∀t ∈ T ; ∀j ∈ N (3.41)

Pmin
gj ≤ P g

j,t ≤ Pmax
gj , ∀t ∈ T ; ∀j = s (3.42)

Qmin
gj ≤ Qg

j,t ≤ Qmax
gj , ∀t ∈ T ; ∀j = s (3.43)

Equation (3.41) ensures the bus voltage is within the limit. Similarly, the active and reactive power

drawn from the substation is limited in equation (3.42) and (3.43), respectively. The optimal flex-

ibility request from the grid should be limited to the flexibility of the aggregator at that bus as

follows:

ξ+ · P dagg
j,t ≤ P

fDSO
j,t ≤ P

flex+
agg

j,t , ∀t ∈ T ; ∀j ∈ N (3.44)

ξ- · (P sellagg
j,t + P g

j,t) ≥ P
fDSO
j,t ≥ P

flex-
agg

j,t , ∀t ∈ T ; ∀j ∈ N (3.45)

In (3.44), if aggregated flexibility is positive, it means that prosumers are willing to reduce their

power demand. The DSO sends an optimal flexibility request to the aggregator within the upper and

lower bounds of aggregated upward flexibility from the aggregator level. Where ξ+ and ξ- are the

percentage values the DSO selects according to their requirements, respectively. Similarly, equation

(3.45) calculates flexibility when P
flexagg
j,t is negative, meaning the prosumer wants to increase their

power demand at a specific time within the downward flexibility bound provided by the aggregator.
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Figure 3.2: Proposed coordination framework of ML-EMS

3.3 Coordination Framework of ML-EMS for Flexibility Provision

We consider modern HEMS installed at the end-user side for managing appliances with shifting

capabilities in response to a flexibility request from an aggregator. The HEMS can optimize the

shifting time of various appliances and reschedule them for flexibility provision. A novel ML-EMS

consists of a three-level coordination framework: home level, which performs HEMS for a prosumer

at the first level, an aggregator at the second level, and OPF at the third level, as shown in figure 3.1.

The proposed coordination framework comprises the following steps.

• Each house has a HEMS that receives input updates such as customer preferences, such as the

desired upper and lower limit of the hot water temperature, arrival and departure time of the

EV, and initial and final energy level of ESS at the beginning and end of the day, parameters

of the appliances used in the house, for instance, type and built-in characteristic of the EV,

ESS , EWH as in table 3.1 and 3.2, and demand response information (ToU, FiT), as shown

in figure 3.2.

• The HEMS schedules the house appliances based on the prosumer’s electricity costs and

energy-saving objectives. Houses become flexible resources when a HEMS is incorporated
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into them. The optimal load demand is determined at the house level and sent to the aggrega-

tor. To protect the privacy of the end-user, they only provide the aggregated power profile, as

shown in equations (3.25)-(3.35).

• As mentioned in the literature, the individual flexibility of each prosumer will not be useful for

DSO. To exploit the prosumers’ flexibility, an aggregator is required to provide the bulk of the

flexibility to the DSO. The aggregator acts as an intermediary between multiple houses and

DSO, which exchanges information that is the decision variables from one level to another.

The information flow from the end-users to the aggregator is P Buy,DSO
hj ,t

, P Sell,DSO
hj ,t

, (P con
hj ,t

)J1 ,

and (P con
hj ,t

)J2 . The information that goes from the aggregator to the end-users is Pmax
hj ,t

, and

γhj ,t. The aggregator exchange information with DSO are P
demagg
j,t , P sellagg

j,t , P
flex+

agg
j,t , P

flex-
agg

j,t ,

and P
fDSO
j,t .

• The aggregator performs five tasks: (a) Sums up the bus-wise optimal power demand of

households while minimizing electricity costs and energy, as (3.25) and (3.26). (b) Calculates

the flexibility of each prosumer as in (3.27)-(3.31). (c) Aggregates the bus-wise flexibility of

all the houses, as in (3.32). (d) Calculates the flexibility index of each house, as in (3.33). The

aggregator sends the aggregated upward and downward flexibility of all the prosumers to the

DSO.

• The DSO minimizes overall system losses, as in (3.36)-(3.45). The DSO calculates the op-

timal flexibility required, P fDSO
j,t , from the aggregator within the upward and downward flex-

ibility limit using (3.44) and (3.45). The DSO sends the flexibility-required signal to the

aggregator.

• The aggregator receives the flexibility request from the DSO. After that, the aggregator per-

forms two more tasks: (e) Limits each house to the maximum power they can buy from DSO

based on the flexibility request and flexibility of that house, as in (3.34).

• The prosumer reruns the optimization using equation (3.1) and reschedules the appliances

with new constraints of limiting the power demand to a limit as in equation (3.35).
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Figure 3.3: Five bus transmission network.

Table 3.1: Modeling parameters of EVs [3, 4] and ESS [3]

Type Capacity (kWh) Charging rate (kW/h) Discharging rate (kW/h) Charging efficiency Discharging efficiency

EV 1 Chevy Spark EV 19 3.3 2.80 0.89 0.91
EV 2 Ford Focus Electric 23 6.6 4.81 0.94 0.92
EV 3 Tesla model S 85 10 10 0.91 0.95
ESS - 46 4.5 3.8 0.86 0.85

3.4 Result

Case Study

The proposed three-level EMS model is implemented on the Python platform using a Python-

based open-source optimization modeling library known as python optimization modeling library

(PYOMO) [184]. The lower level is a MILP problem solved using a CPELX solver [185]. The

upper level is an non-linear programming (NLP) problem, solved using an IPOPT solver [186]. In

this work, the operator is responsible for managing a 5-bus system [187] and meeting the demand

of its 10000 prosumers at its various buses, as illustrated in figure 3.3. It can be implemented on

large distribution networks like the 33-bus or the 123-bus distribution system.

We compare the three-level-EMS model with and without flexibility. Hereafter, we call with-

out/before flexibility provision as ”before” and with/after flexibility as ”after,” which is the proposed
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Table 3.2: Modeling parameters of EWH [3]

Power
(kW)

Water tank
capacity (L)

Thermal
resistance (◦C /kW)

Thermal
capacitance (kWh/◦C)

EWH 4.5 400 1.52 863.4

model. In the proposed model, we limit the buying power of each prosumer to an adaptive maxi-

mum limit Pmax
h,t . The green curve in figure 3.4 displays the maximum power limit Pmax

h,t for the

prosumer from the grid based on their flexibility. The power demand of each prosumer in figure

3.4 shows that the proposed method (’ after’ flexibility) has less peak than the power demand of

the previous method (’ before’ flexibility). The proposed methodology effectively reduces power

consumption while simultaneously shifting buying power. We present an illustrative example of this

approach in Fig 3.4, which showcases house number 12. From the load profile of each appliance in

the household, we can see that the proposed method shifts the load and reduces it, as shown in Fig

3.5.

Figure 3.4: Power demand (before and after) and max power limit of home 12.

Figure 3.5 illustrates the power demand for bus 4. We can see that the proposed strategy reduces

the peaks and shifts them to another period compared to without flexibility provision. Figure 3.5

shows the voltage, power demand, and power generation profiles at bus 4. The voltage profile in

figure 3.5 shows that the proposed model improves the voltage. Similarly, the power demand peaks

are reduced and shifted to another period, flattening the power demand as in figure 3.5b. Also, the

power generation is reduced at bus 2, as shown in figure 3.5c, reducing the cost of power generation.
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Figure 3.5: Simulation result on DSO, (a) Voltage profile, (b) power demand, and (c) power gener-
ation profile

Table 3.3: Comparison of three scenarios

Previous Method Proposed method
Electricity Cost of house 12, $/day 8.4 9.0

Energy demand of house 12, kWh/day 146.3 128.8
Total System losses, MWh/day 11.01 7.31

Total minimum generation Cost, $/day 24509.2 24046.8

Using the proposed method, the aggregator provides flexibility to all the prosumers connected

to a specific bus. Then, the grid requests flexibility from the aggregator to minimize the losses and

power generation cost, as in figure 3.5c

In our investigation, we perform a comparative analysis of electricity costs and energy con-

sumption for prosumers. The integration of solar panel-generated power within the household

significantly curtails energy consumption by offsetting grid dependency. The comprehensive as-

sessment, including losses and generation costs of the entire system, is summarized in table 3.3.

Notably, our proposed method demonstrates substantial reductions in energy demand, active power

losses, and power generation costs across the entire system.
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The electricity cost of house 12 is increased because the prosumer is forced to consume power

at a high price. In the next chapter, we propose a novel incentive program to reduce the electricity

in each house.

In conclusion, a novel three-level coordination framework is presented in this chapter, which

considers the technical objectives of the system operator as well as the economic objective of pro-

sumers. The aggregator calculates the power buy/sell from/to the grid and flexibility of the pro-

sumers. The results demonstrate the effectiveness of the proposed method by reducing peak de-

mand, power losses, and power generation costs and improving the voltage profiles at the system

level. As the electricity cost of the prosumer is higher in the proposed method, there is a need for an

adaptive incentive program that will provide monetary benefit for the prosumer who will take part

in the flexibility. Optimizing the DERs (PV, heat pumps in this case) operation of big buildings to

provide flexibility to the grid or neighborhood.

3.5 Optimization with RC Modeling For Varennes Library

In this subsection, we are calculating the flexibility of the institutional building. For this, we use

the same two objectives (cost and energy minimization) with reference to the real consumption of

the building.

When developing control-oriented models, finding the right balance between detailed process

requirements, precise modeling, and high time resolution is crucial. At the same time, it’s important

to keep inputs to a minimum and ensure the model is easy to use, reliable, and computationally

efficient. Many experts rely on thermal resistance-capacitance (RC) network models, which employ

the heat balance equation to achieve these objectives. However, given their high computational de-

mands, low-order models are often recommended, with their parameters identified through various

system identification techniques.

This study explores effective strategies for achieving energy flexibility in a solar-powered, net-

zero energy building in Quebec. It examines the correlation between a BIPV system, geothermal

heat pump (HP), and radiant floor to optimize energy efficiency.
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3.5.1 RC Modeling of building

The resistance-capacitance (RC) or gray-box model is a well-established method for controlling

indoor temperatures in buildings. It focuses on modeling walls as a resistance between thermal

zones, improving heat retention efficiency. The zone mass is represented as capacitors, which store

thermal energy. This work presents a simplified version of the 10th-order RC model mentioned in

[188]. Figure 3.6 showcases an 11R5C (5th order) model with eleven resistances and five capacitors.

The equations (3.46) to (3.53) represent the thermal model of the building. The equation (3.46),

shows the zone temperature TZ
t as below:
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Figure 3.6: RC model of Varennes library.

TZ
t = TZ

t−1 + (
UWZ(T

W
t − TZ

t )

kef ∗ CZ
+

UZ2(T
Z
t − T 2

t )

kef ∗ CZ
+

UZ5(T
Z
t − T 5

t )

kef ∗ CZ
+

U0Z(T
0
t − TZ

t )

kef ∗ CZ
) ·∆t

(3.46)

Equation (3.47) formulates the temperature of the wall TW
t in the building. T 1

t , T 2
t , T 3

t , T 4
t , T 5

t ,

and T 6
t represent nodes 1-6, respectively, as shown in figure 3.6.

TW
t = TW

t−1 + (
U0W (T 0

t − TW
t )

kef ∗ CW
+

UW6(T
W
t − T 6

t )

kef ∗ CW
+

UWZ(T
W
t − TZ

t )

kef ∗ CW
) ·∆t (3.47)

T 1
t = T 1

t−1 + (UZ1(T
Z
t − T 1

t ) + U12(T
1
t − T 2

t ) + UW1(T
W
t − T 1

t )) ·∆t (3.48)
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T 2
t = T 2

t−1 + (
U12(T

1
t − T 2

t ) + U23(T
2
t − T 3

t )

kef ∗ C2
) ·∆t (3.49)

T 3
t = T 3

t−1 + (U23(T
2
t − T 3

t ) + U34(T
3
t − T 4

t )) ·∆t (3.50)

T 4
t = T 4

t−1 + (
U34(T

3
t − T 4

t )

kef ∗ C4
) ·∆t (3.51)

T 5
t = T 5

t−1 + (UW5(T
W
t − T 5

t ) + UZ5(T
Z
t − T 5

t ) + U56(T
5
t − T 6

t )) ·∆t (3.52)

T 6
t = T 6

t−1 + (
U56(T

5
t − T 6

t )

kef ∗ C6
) ·∆t (3.53)

3.5.2 Building Energy Management System

For modeling the building EMS (BEMS), we used the same formulation we did in section 3.2.1.

Here, we have only PV, Base load (uncontrollable load), and heat pump (HP). The only control

variable is HP.

Power balance equation

The power balance equation (3.3) can be reduced as below:

PDem,G
t = P BL

t + PHP
t − P PV,B

t , ∀t ∈ T (3.54)

In (3.54), the different terms represent the power demand of the base load, the power demand of the

HP, and the power supply to the building from the PV.

Similarly, equation 3.4 where BEMS can sell power to the grid and reduce the electricity cost

according to the Feed-in Tariff (FiT), as below:

P Expt,G
t = P PV,G

t ∀t ∈ T (3.55)
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In (3.55), the right-hand side is PV supply surplus power to the grid.

Heat Pump Operational Constraint

PHP
t =

QHP,G
t

COPHP ∀t ∈ T (3.56)

Equation (3.56) represents the operational constraint of an HP system at time t. It calculates the

electrical power consumption PHP
t of the HP as the ratio of the thermal energy output QHP,G

t and the

coefficient of performance (COP) (COPHP) is 4.

QHP
min,t ≤ QHP

t ≤ QHP
max,t, ∀t ∈ T (3.57)

PHP
min,t ≤ PHP

t ≤ PHP
max,t, ∀t ∈ T (3.58)

Equation (3.57) and (3.58) set bounds on the thermal and electrical power of HP QHP
t PHP

t , re-

spectively. It ensures that the HP output remains within the specified minimum (QHP
min,t, P

HP
min,t) and

maximum (QHP
max,t, P

HP
max,t) limits.

PV Operational Constraint

The BEMS distributed power generated by the PV system to both the grid and the building, as

represented in (3.9).

Temperature Constraint

T air
min,t ≤ T air

t ≤ T air
max,t, ∀t ∈ T (3.59)

The equation (3.59) enforces constraints on the air temperature T air
t at time t. It ensures that the

air temperature remains within the specified minimum (T air
min,t) and maximum (T air

max,t) limits for all

time periods t in the set T . These constraints are vital for maintaining comfortable and safe indoor

environmental conditions.

T slab
min,t ≤ T slab

t ≤ T slab
max,t, ∀t ∈ T (3.60)
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The equation (3.60) sets bounds on the temperature T slab
t of a slab or surface at time t. Similar

to the air temperature constraint, it ensures that the slab temperature remains within the specified

minimum (T slab
min,t) and maximum (T slab

max,t) limits for all time periods t in the set T . These constraints

are relevant, for instance, in applications where maintaining surface temperatures within specific

ranges is essential for operational effectiveness and safety.

Figure 3.7: Front and plan view of Varennes library.
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Figure 3.9: Measurement data of typical cloudy and sunny days at Varennes library.

Objective function

We use two different objectives to calculate the flexibility of the Varennes library. The two

objectives are cost and energy minimization, as in equation (3.1) and (3.2). These objectives can be

mathematically modeled through the application of optimization equations as follows:

Cost minimization

J11 =
∑
t∈T

(P Buy,HQ
t · πBuy

t − P Sell,HQ
t · πSell

t )τ (3.61)

Equation (3.61) is the objective function to minimize the energy cost of a building. In equation

(3.61), the first term P Buy,HQ
t is power buying/demand from the hydro Quebec (HQ) by the pro-

sumers with buying price (Flex rate) πBuy
t of electricity from the HQ. The second term of right-hand

side in equation (3.61) is power selling to the HQ from the building’s DERs corresponding to the

selling price.
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Maximizing self-consumption of the building

Equation (3.62) minimizes the energy consumption of building using controllable appliances

that are HP and PV. The right-hand side of equation (3.62) is the power demand of the base load,

the power demand of HP, and the power supply to the building from the PV.

J22 =
∑
t∈T

(P BL
t + PHP

t − P PV,B
t )τ (3.62)

3.6 Proposed Framework

In this work, we want to combine the RC model with BEMS, as shown in figure 3.8. This

work is the middle block of the whole transaction framework, which means that we get the input

from the library and from the occupancy behavior model, and then, after optimization, we provide

the optimal output power (import/export) to the spot market. The two objectives here aim to get

different optimal power and cost profiles from the library and provide these optimal profiles to the

bidding market or bidding and also calculate the flexibility of the building.

3.7 Result and Discussion

Integrating thermal and electrical energy systems in building design can provide valuable flex-

ibility services to the grid. Constructing high-performing buildings with integrated generation and

storage systems, energy-efficient HVAC systems, and building automation systems can significantly

reduce energy consumption and make buildings a significant source of energy flexibility. The

Varennes Library is a great example of such a building and serves as a model for non-residential

buildings with similar performance. The building was opened to the public in 2015 and inaugurated

in May 2016 as a high-profile demonstration project that received several awards. The library has

two floors with a total floor area of 2100 m2. The first and second radiant floors serve five and six

zones, with a total heated slab area of 675 m2. Four electric ground-source HPs provide the library

heating and cooling with a capacity of 105 kW (see Figure. 3.7). In addition to the air system, heat-

ing and cooling are also provided by a radiant hydronic slab system installed on the concrete floor
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of the building. The slab surface temperature is typically between 18 - 29°C. The data available are

PV power, radiance, HP load, and indoor and slab temperature, as shown in figure 3.9.

It is assumed that the actual measurements of total overall heating are the sum of heat into

the concrete slab Qslab
t , the heat to the air handling unit QAHU

t , and fan coil thermal unit QFCU
t

amounts. To estimate T slab
t , it is assumed that a maximum of 50% of QTotal

t is supplied to the

concrete slab, i.e., Qslab
t . Therefore, the remaining 50 % of the total heat is provided to the air

handling unit and the fan coil thermal units, i.e., Qhp
t , as shown in figure 3.7.

Figure 3.10: Indoor and Slab temperature using RC model.

3.7.1 RC Model

Using the proposed RC model presented in this work, the forecast indoor and slab temperatures

are compared with the reference measured indoor and slab temperature as shown in figure B.3.

From the second plot of figure B.3, it can be seen that the proposed RC model closely follows the

actual temperature of the indoor and slab temperatures. The absolute error between them is lower

than 5%.
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Figure 3.11: Peak reduction of imported power from the grid using Obj 1.

Figure 3.12: Peak reduction of imported power from the grid using Obj 2.
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3.7.2 BEMS Model

The detailed analysis of the power profiles of the imported power, PV power supply to the home,

HP load, electricity consumption, and indoor temperature using three objectives are in the appendix

B objective. Figures 3.11 and 3.12 illustrate the net imported power under the reference with two

Figure 3.13: Flexibility of the Varennes Library.

objective functions: cost minimization, energy minimization, and exported power maximization,

respectively. As shown in these figures, objective 2 (minimizing power demand) has remarkably

decreased the net imported peak power from 29 to 17 kW, 37 to 29 kW, 35 to 22 kW, 32 to 26 kW,

37 to 25 kW, and 39 to 25 kW in the morning and evening, on sunny, partly sunny days and cloudy

days of February 5th to 7th, respectively. The detailed power profile and temperature profile of the

two objective functions are in Appendix B.

As in this case study, the HP is a flexible load. The HP behavior reduced morning and evening

peak power using cost and energy minimization. However, the exported power maximization in-

creases the peak power as shown in table 3.4. In table 3.4, we present a comprehensive overview of
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the flexibility of imported power under varying weather conditions.

”Cost Min” shows cost minimization strategies for different weather scenarios. ”Energy Min”

presents findings for minimizing energy consumption. ”Export Max” provides insights on maxi-

mizing power export under these weather conditions. Corresponding percentages of peak power

reduction are presented for each case in the table 3.4. Exported power maximization increases the

power consumption instead of reduction by -11.7%, -28.5%, -12.5%, -17%, and -20.9%, as shown

in table 3.4.

This table shows how different optimization goals (cost minimization, energy minimization, and

export maximization) reduce peak power consumption in varying weather conditions.

Table 3.4: Flexibility of imported power for three days (sunny, partly sunny, and cloudy day)

Objective Function Days Morning peak
reduction (%)

Evening peak
reduction (%)

Cost Min
Sunny Day (5th) 43 19
Partly Sunny day (6th) 37 14
Cloudy day (7th) 26 29

Energy Min
Sunny Day (5th) 41 21
Partly Sunny day (6th) 37 18.5
Cloudy day (7th) 26.4 36

Using the data extracted from figure 3.12, we have computed the flexibility, as shown in figure

3.13. Notably, the flexibility is entirely positive, indicating a decrease in power. This outcome is

attributable to the exclusive presence of PV and HP as flexible loads in our case study. The absence

of ESS, EWH, or EV, which could have resulted in negative flexibility, should be considered.

3.8 Summary

This chapter presents a detailed model of the multi-level energy management system. This

chapter also presents a novel three-level coordination framework that considers the operational as-

pects and technical objectives of the system operator in conjunction with the economic objective of

prosumers. The aggregator collects the flexibility of each household, and the cohort flexibility is

provided to the DSO. The DSO performs optimal power flow to minimize system losses and sends

the optimal flexibility reduction request to the aggregator. The aggregator then disaggregates the
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flexibility requests to each participant as a peak limit on each house’s consumption. The results

demonstrate the effectiveness of the proposed method by reducing peak demand, power losses,

power generation cost, and improving the voltage profiles at the system level.

In this chapter, we also develop a methodology that combines the RC model with the MILP-

based optimization model for the Varennes library. We propose two objectives to obtain the optimal

profile for bidding on the spot market and calculate the flexibility of the institutional building.

With the flexibility provision and power limit on the prosumer, the prosumers are forced to

consume power at high price hour. That is why the price of the prosumer is high. Therefore, there

is a need for an adaptive incentive program that will provide monetary benefit for the prosumer who

will take part in the flexibility, which will be discussed in detail in the next chapter 4
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Chapter 4

Incentive program based on the

flexibility Using ML-EMS

NOMENCLATURE

Indices, Sets and Functions

hj Index of houses h at j bus

j, k Index of buses in distribution system; (j, k) ∈ N

t Index of time; t ∈ T

tEV
hj

Index of time EV connected to house; tEV
hj

∈ T

J3,hj Cost minimization with optimal incentive objective function

Parameters

PBL
hj ,t

Base load; kW

(P con
hj ,t

)J1
Power demand using J1,hj

; kW

(P con
hj ,t

)J2 Power demand using J2,hj ; kW

P
flexagg
j,t Total flexibility at bus j; kW
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α, β Maximum incentive, penalty

τ Time step; 15min

πBuy
t , πSell

t Buying, selling price; $/kWh

Variables

PBuy,DSO
hj ,t

Buying power of household from DSO; kW

P Sell,DSO
hj ,t

Selling power of household to DSO; kW

πInc/Pen
hj ,t

Incentive and penalty; $/kWh

4.1 Background

This chapter focuses on a novel incentive program based on the flexibility provision using ML-

EMS. 1 From a residential perspective, end-users can provide flexibility to the grid through the

better scheduling and use of home appliances with capabilities to adjust their profiles by lowering

or shifting their loads to other periods of the day. The role of prosumers as flexibility providers in the

power system has been studied in the literature [179, 189, 190, 191, 192]. Researchers have focused

on demand flexibility for energy management [179], frequency regulation [189], reverse power flow

that causes voltage rise problems [190], network congestion management [191] and promoting the

penetration of renewable resources [192]. More recently, a two-level coordination framework for the

prosumers and system was developed in [193, 96, 41] for residential buildings. The authors in [96,

41] proposed a coordination framework that aimed to enhance the system’s operational efficiency,

lower energy costs for prosumers, and minimize network losses and peak power demand by utilizing

the flexibility of prosumers. However, the framework presented in previous work is economically

not viable due to the omission of an incentive program.

Therefore, it is necessary to find new services, incentive programs, and/or energy markets that

allow for increased prosumer participation and promotion of HEMS, EVs, DERs, and other new

1This chapter has significant materials from the following paper published by the Ph.D. candidate:
Hussain, S., Alrumayh, O., Menon, R. P., Lai, C., & Eicker, U. (2023). Novel Incentive-based Multi-level Framework
for Flexibility Provision in Smart Grids. IEEE Transactions on Smart Grid.
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technology installations. This would also provide opportunities to improve understanding of the

harmful effects and allow for tweaks that would curtail them. The involvement of the prosumers

will greatly depend on the incentives offered. The higher the incentives, the higher the economic re-

turn is to the prosumers. In contrast, giving high incentives may increase the financial burden on the

market remuneration mechanisms and skew the market towards one or more stakeholders. There-

fore, considering the economic benefits for all market entities, including the utilities, DSOs, and

end-users, is important. Hence, there is a need to determine the appropriate incentives to encourage

prosumers to participate in such programs. In [193], the authors proposed a price-based DR program

with fixed incentives to encourage prosumers to participate in peak reduction. However, the study

did not consider the network constraints at the second level, and its reward function inadequately

modeled the behavior and preferences of prosumers. In [194], researchers proposed a system for

aggregating residential requests with incentive-based demand response, in which customers receive

incentives depending on their participation. The authors primarily use thermal loads while ignoring

the potential of non-thermal loads, such as ESS and EV. Also, the proper coordination framework

between the end user, aggregator, and DSO was not considered.

Based on the above discussion, it can be seen that much more work is required to study how

these incentive programs and flexibilities can be equitably distributed between the various stake-

holders involved.

4.2 Novel Incentive/Penalty Program

The aggregator calculates the adaptable incentive for each house based on the flexibility it pro-

vides to the aggregator. Each prosumer will receive different incentive/penalty prices based on their

power demand. The incentive/penalty is a function of the optimal power demand of the household

using the objective functions Eq. (3.1) and (3.2), as follows:

πInc/Pen
hj ,t

= (α− β)(
exp((P con

hj ,t
)J2 − (P con

hj ,t
)J1)

exp((P con
hj ,t

)J2 − (P con
hj ,t

)J1) + 1
) + β, ∀t ∈ T ; ∀hj ∈ H (4.1)

In Eq. (4.1), α is the maximum incentive (0.08 $/kWh), and β is the maximum penalty (0.06

$/kWh) for each house. The second term in (4.1) calculates incentives and penalties based on the
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Figure 4.1: (a) Novel Incentive/penalty function. (b) Incentive/penalty value at different instances.

flexibility of the house. From Fig. 4.1a, it can be seen that if the actual power demand of the house is

greater than the desired power demand of the house, the house will be penalized. Similarly, suppose

the real power demand of the house is less than the desired power. In that case, the house will

receive an incentive, as shown in Fig. 4.1a. The amount of the incentive and penalty depends on

how much the house follows the flexibility (profile promised by the end-user) they claim to provide

to the aggregator. The incentive and/or penalty are bound on α and β.

The incentive equation is decomposed using piece-wise linearization to convert the non-linear

equation to linear so that it can be used to solve as part of the mixed-integer linear program-

ming (MILP) problem at the home level in equation (4.3). Fig. 4.1b illustrates the different in-

centives/penalties imposed on the end-users by highlighting five instances where the incentive and

penalty are given to house 86 at bus 9. The deviation between the expected optimal power con-

sumption calculated for the house from the desired/recommended power demand (as preferred by

the DSO) at time intervals 1 (9:00 AM), 4 (9:45 AM), and 42 (7:15 PM) of 4.95 kW, 1.95 kW, and

0.95 kW, leads to an incentive calculated by (4.1) of 0.08 $/kWh, 0.06 $/kWh, and 0.04 $/kWh,

respectively. Similarly, at time intervals 38 (6:15 PM) and 45 (8:00 PM), the expected power con-

sumption is higher than the desired power demand (by the DSO) by 4.5 kW and 7.5 kW, and the

user is assigned a penalty of 0.04 $/kWh and 0.055 $/kWh, respectively.

The proposed method ensures that the end-user is not over-penalized. To achieve this, we have

added a constraint that guarantees the electricity cost for the end-user who participates in the pro-

posed method does not surpass that of the conventional Time of Use pricing scheme. The constraint

is as follows:
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J3,hj
≤ J1,hj

, ∀hj ∈ H (4.2)

4.2.1 Reschedule Home Appliances

J4,hj
=
∑
t∈T

(P Buy,DSO
hj ,t

· πBuy
t − P Sell,DSO

hj ,t
· πSell

t − πInc/Pen
hj ,t

· P Buy,DSO
hj ,t

)τ (4.3)

Equation (4.3) minimizes the electricity cost with a novel incentive program based on flexibility

provision. The first and the second term is the same as in Eq. (3.1) in addition to the adaptive

incentive program, πInc/Pen
hj ,t

is multiplied with power imported from the DSO.
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Figure 4.2: Proposed coordination framework of the three-level EMS.
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4.3 Proposed Coordination Framework for Incentive program using

ML-EMS

For the novel incentive program, we used the ML-EMS framework proposed in chapter 3, which

consists of multiple households with HEMSs, aggregator, and DSO, as shown in Fig. 3.1. In addi-

tion to the previous coordination framework discussed in section 3.3, the proposed coordination

framework comprises the following steps:

• The aggregator receives the flexibility request from the DSO. After that, the aggregator calcu-

lates the incentive/penalty price signal based on the flexibility of each prosumer, as in (4.1).

The maximum power limit, Pmax
hj ,t

and incentive/penalty, πInc/Pen
hj ,t

information is sent to the

houses.

• The end-users re-run the HEMS optimization model with a new objective function, as in

(4.3), and reschedule appliances considering two additional constraints requested from the

aggregator (4.1) and (5.3).

4.4 RESULTS AND DISCUSSIONS

4.4.1 Case study

The proposed coordination framework of the three-level EMS optimization model is imple-

mented on the Python platform using the PYOMO package [184]. The model is executed on a

computer with Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz 2.71 GHz processor with 32.0 GB

RAM running on Windows 11 Pro 64-bit operating system. The lower level is a MILP problem

that is solved using CPLEX solver [185]. The upper level is a non-linear programming problem,

solved using IPOPT solver [186].

In this work, DSO is responsible for managing a 33-bus distribution system and meeting the

demand of 437 prosumers on various buses, as shown in Fig. 4.3. The houses are equipped with a 5

kW PV system, ESS, EWH, and EV models for different houses. The modeling parameters of EV,

ESS, and EWH are shown in table 3.1 and 3.2, respectively.
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Figure 4.3: IEEE-33 bus radial distribution system.

Figure 4.4: Power demand of a house.

The time step selected for the optimization is 15 min. The time horizon for the optimization is

one day. Hence, the number of intervals within the optimization is 96. In this work, the interval

“0” stands for 9:00 AM of day 1, and “95” stands for 8:45 AM of day 2. For simplicity, all EV’s

arrival and departure times are assumed to be the same for all houses: arrival time is 40 (7:00 PM),

and departure time is 92 (8:00 AM). The pricing scheme used in this work is the time of use (ToU)

price, and selling is a feed-in-tariff (FiT) price scheme, as used in [96]. The ToU pricing scheme

consists of prices in three categories: off-peak (0.04 $/kWh), mid-peak (0.06 $/kWh), and on-peak

(0.09 $/kWh), and feed-in tariff is 0.055 $/kWh, as shown in Fig. 4.5. The fixed incentives provided

to the end-users is 0.08 $/kWh, as shown in Fig. 4.5. In Figs. 4.4, 4.5, 4.7, 4.9 and 4.11, the colored

background is used to easily distinguish between off-peak (green shade), mid-peak (yellow shade),

and on-peak (red shade) rates. Five scenarios have been considered to examine the effectiveness of

the proposed method, where Scenario 1 is taken as the base case. In Scenario-1, PV generation is
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Figure 4.5: TOU, FiT, Fixed and Novel Incentive for a house.

Figure 4.6: Total electricity cost of houses.

used in houses, and the surplus is sold to the grid. The EWH load is scheduled in the first stage

with the key constraint of not exceeding the maximum water temperature. The EV that arrives first

is charged first, keeping its energy level up to the desired level by departure time.

• Scenario-1: Rule-based EMS without flexibility and without incentive [3].

• Scenario-2: HEMS without flexibility and incentive [3].

• Scenario-3: HEMS with flexibility and no incentive [96].

• Scenario-4: HEMS with flexibility and fixed incentive [195].

• Proposed: HEMS with flexibility and adaptive incentive.
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4.4.2 Home level

Household No. 85, located at bus 9, has been selected at the home level to depict the results.

Fig. 4.4 presents the optimal load profile of house 85. This household has HEMS, which can sched-

ule ESS, EV, and EWH appliances. When the grid operator provides a ToU signal, the prosumer

schedules the controllable appliances to charge at a time interval where the price is low and dis-

charge at a high pricing time to reduce the electricity cost. Consequently, there is often a rebound

peak at low price hours, as shown in Fig. 4.4. The proposed strategy provides a peak limit and a

novel incentive program based on flexibility to avoid a rebound peak. Thus, the end-user resched-

ules their appliance with additional constraints of peak limit and incentive program. The proposed

technique shifted power demand from the high peak hours at time slots 41-88 (7:15 PM - 7:00 AM)

to the low peak hours at time slots 0–40 (9:00 AM - 7:00 PM), reducing the peak and flatting the

power demand curve. The proposed strategy also provides the incentive/penalty signal to the house

based on its flexibility. It penalizes the customer at peak demand and gives incentives for low peak

demand, as shown in Fig. 4.5. The proposed incentive program is hoped to encourage consumers

to shift their load to off-peak hours. Fig. 4.6 shows the optimal electricity cost of the households

per day. The result shows that the proposed method has a minimum electricity cost for all the

households compared to the other four scenarios.

Figure 4.7: Flexibility of a house.

To fully leverage the flexibility of buildings, we need to take into account the thermal model of

the buildings.
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Figure 4.8: Flexibility index of a house.

Figure 4.9: Aggregated flexibility and flexibility request from DSO at bus-23.

4.4.3 Aggregator level

The aggregator calculates the upward and downward flexibility of a household, as in Fig. 4.7.

Negative flexibility represents the prosumer has the capability and willingness to increase their

power demand; positive flexibility represents that prosumers are willing to decrease their power

demand. These upward and downward flexibilities will help the DSO upon their flexibility request to

decrease or increase the power demand for a specific time interval. Fig. 4.8 represents the flexibility

index of households which is calculated at the aggregator level. The aggregator calculates the

aggregated flexibility of end-users located at a bus j, as shown in Fig. 4.9.

4.4.4 DSO level

The DSO sends flexibility requests to the aggregator as shown in Fig. 4.9, which is within the

bound of the aggregated flexibility of houses at a randomly selected bus-23. Fig. 4.11 depicts the
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system load demand at the DSO level. The figure shows that the ToU price causes a rebound effect

during low prices. However, utilizing the flexibility of the prosumers, the peak load of the overall

system has been reduced and shifted to off-peak demand (high price). The result shows that the

proposed approach reduces the peak load more than other scenarios. The peak reduction will avoid

the thermal overload of system components, thus providing congestion management and deferring

the necessity of grid reinforcement. The proposed technique also improves the voltage at each bus,

as shown in Fig. 4.12. Table 4.1 presents the overview of models and solvers’ statistics of home and

DSO levels for all five scenarios. From Table 4.1, it can be seen that the proposed method converges

almost at the same time as other scenarios. As the stopping condition for the optimization, a MIPgap

of 0.04 is used at the house level, and tolerance is set at 10−8 for the grid level.

Table 4.1: models statistics and time of convergence

Scenarios Level No of Constraint No of Variables Tolerance/MIP Gap Time Taken (Sec)

Scenario-1
Home - - - 0.026
Aggregator - - - 0.143
Grid 6336 6336 10−8 0.173

Scenario-2
Home 2690 2304 0.04 0.259
Aggregator - - - 0.534
Grid 9504 9432 10−8 0.816

Scenario-3
Home 2978 2496 0.04 0.277
Aggregator - - - 0.634
Grid 9504 9532 10−8 0.854

Scenario-4
Home 2882 2400 0.04 0.314
Aggregator - - - 0.663
Grid 9504 9533 10−8 0.733

Proposed
Home 2978 2496 0.04 0.338
Aggregator - - - 0.673
Grid 9504 9509 10−8 0.965

The proposed methodology was evaluated by considering four different penetration levels (10%,

50%, 80%, and 100%) of ESSs, EVs, and PVs at the home level. The results, as illustrated in

Fig. 4.10, demonstrate that the proposed model leads to reduced power losses, peak load, and av-

erage load and improves the minimum load, which are key indicators for flattening the load profile

of the entire system. From Fig. 4.10, it can be seen that with increasing the penetration level, the

proposed methodology performs better, i.e., reduces the peak load and power losses of the overall

system. For the worst-case scenario of 100% penetration of EVs, ESSs, and PVs, the proposed

method reduces the power losses of the overall system by 24.6%. Similarly, the peak load has been

77



Figure 4.10: Load profile characteristics for different penetration levels of EVs, ESS s, and PVs at
different scenarios.

Figure 4.11: Total demand of the overall system

reduced by 20.8% compared to the base case. At the same time, the min load is increased by 42%,

and the average load is reduced by 3.7% compared to scenario-1. These load profile characteristics

indicate a relative flattening of the load profile compared to the base scenario. Flattening the load

demand and minimizing the power losses will reduce the grid capacity investment (avoid and/or

delay the grid reinforcement) and maximize the use of the network’s current capacity.

4.5 Summary

This chapter illustrates a novel three-level coordination framework enabling flexibility provi-

sioning between multiple households, aggregators, and DSOs. It proposes an adaptive incentive

program based on the flexibility of the household and the interaction with DSO. This framework

is a win-win situation for both households and DSO. At the home level, each house optimizes its
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Figure 4.12: Voltage of each bus at one time instant.

appliance operation to minimize the electricity cost. The aggregator collects the flexibility of each

household, and the cohort flexibility is conveyed to the DSO. The DSO performs optimal power

flow to minimize system losses and sends the optimal flexibility reduction request to the aggrega-

tor. The aggregator then disaggregates the flexibility requests to each participant as a peak limit

on each house’s consumption and gives them incentives based on their flexibility provision. The

proposed architecture significantly improves the distribution system’s total load profile and reduces

the electricity cost of the customers.

Upon considering a use-case of 100% penetration of EVs, ESSs, and PVs at the home level, the

proposed approach was able to reduces the power losses, peak load, and average load of the overall

system by 24.6%, 20.8%, and 3.7%, respectively. Furthermore, it increases the minimum load by

42%, thus flattening the load profile of the distribution network.
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Chapter 5

Smart Home P2P Energy Trading with

Dynamic Flexibility Limit Considering

Distribution Transformer

NOMENCLATURE

Indices, Sets and Functions

hk Index of houses h at j bus

k Buses where transformer located in distribution system; (k) ∈ N

t Index of time; t ∈ T

C3k Loss of life transformer minimization objective function

Parameters

λP2P
t Mid market price; $/kWh

λTOU
t Grid time of use price for Buying; $/kWh

λFiT
t Feed-in tariff for selling; $/kWh

jt Power ratio
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R Ratio of losses at rated load to losses at no load

TX load
HEMSt

Load using HEMS; kW

TXrating Transformer rating; kW

m,n transformer’s cooling parameters

∆θHST,R,∆θTO,R Hottest-spot and top-oil at rated

∆θHST,∆θTO Change in Hottest-spot and top-oil

∆θHST,U
t ,∆θTO,U Ultimate hottest-spot and top-oil rise over ambient temperature

τw Constant time for winding

θHST
t,ref Reference hot spot temperature

P flex+

hj ,t
, P flex-

hj ,t
Upward, downward flexibility of house; kW

P
flex+

agg
j,t , P

flex-
agg

j,t Upward, downward aggregated flexibility; kW

θa
hj ,t

Ambient temperature; ◦C

β Normal insulating life (180,000 hours (20.5 years))

Pmax
hj ,t

The maximum power demand of household; kW

ξ+, ξ- Percentage peak reduction, increase

αflex
hj ,t

Flexibility index of each household

P
flexagg
j,t Total flexibility at bus j; kW

P flex
hj ,t

The flexibility of each household; kW

P
dagg
j,t , P sellagg

j,t Aggregated power buy, sell from, to DSO; p.u

PBL
hj ,t

Base load; kW

τ Time step; 15min

πBuy
t , πSell

t Buying, selling price; $/kWh

(P dem
hk,t

)C1
Power consumption using obj 1; kW

(P dem
hk,t

)C2
Power consumption using obj 2; kW

PDem,G
hk,t

Optimal power imported from grid; kW
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PExpt,G
hk,t

Optimal power exported to grid; kW

Variables

FAA
t Accelerated aging factor of transformer

FEQA Equivalent accelerated aging factor of transformer

LoLt Loss of life of transformer

θHST
t Transformer winding hot spot temperature; ◦C

5.1 Background

This chapter focuses on a new coordination framework for smart homes with P2P energy trading

with flexibility provision and analyzing the impact of top pole transformer. 1 What if demand flex-

ibility was taken to an entirely new level, combined with an electricity price signal and real-time,

two-way communications? That’s the vision for transactive energy. Transactive energy (TE) is a

framework in which economic transactions are executed to manage electricity generation and con-

sumption within an electric network, considering the reliability constraints [34]. Selling prosumers

labeled as sellers and buying prosumers designated as buyers can be integrated into the TE market

protocol using a two-way interchange of information and price signals. Several financial transac-

tions can be carried out between themselves or the electricity retailers [110]. The prosumers-focused

branch of the TE framework is termed P2P energy trading in [109, 113]. Under the P2P energy trad-

ing, electricity suppliers, energy markets, the power grid, homes, commercial buildings, and DERs,

such as EV and ESS, would “talk” directly or indirectly to negotiate energy needs and costs. The

electronic process would rapidly and automatically harmonize energy availability, consumer needs,

cost preferences, and other factors, enhancing overall energy system efficiency. P2P energy sharing

provides options for prosumers to trade energy within the neighborhood through local buying and

selling, allowing local funds to remain within the local economy.

Numerous studies have been conducted on P2P energy trading to reduce the electricity cost of

the end-users prioritizing their preferences. For instance, the P2P trading constraints for a group of
1This chapter has significant materials from the following paper published by the PhD candidate:
Hussain, S., Azim, M. I., Lai, C., & Eicker, U. (2023). New coordination framework for smart home peer-to-peer
trading to reduce the impact on distribution transformer. Energy, 129297.
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households are modeled using the MILP in [196] to reduce operational expenses. An assessment is

carried out in [197] to demonstrate the suitability of P2P trading in residential sectors under various

tariff structures. A bi-level control is proposed for the batteries that have been controlled for P2P

trading [158]. In [198], different types of prosumers in the distribution system are permitted to

trade energy via P2P to minimize energy costs. For the same purpose, the authors designed a P2P

EMS for a group of prosumers in [199]. Further, a token-based automated P2P trading scheme on

the blockchain platform is formulated in [200]. A shared storage-dominated P2P trading strategy is

reported in [201]. A privacy-preserving P2P trading mechanism is also modeled in [202] by taking

the uncertainties of DERs into consideration.

Moreover, Paterakis et al. [203] propose a coordination strategy for the smart neighborhoods

with transformer limit. However, this does not consider the thermal model of the transformer and

pricing mechanism of P2P energy trading. Existing studies also analyze the impacts of solar PV

systems with batteries [204] and EVs [8] on transformer lifespan to better understand the effects of

these technologies. In [205], the authors present an incentive-ensured P2P transaction method that

promotes active/reactive regulation through EVs, reducing voltage drop and network congestion.

Similarly, in [206], the author proposes a P2P algorithm with a shared ESS to benefit the community.

However, both studies only consider the EVs and ESS, respectively, and do not consider other

DERs, for instance, but are not limited to EWH, ESS, PV, etc. From the above discussion, it can

be concluded that these studies do not consider the impact on the distribution transformer while

arranging P2P trading.

Distribution transformers have a crucial role in P2P energy trading systems, as they facilitate

the delivery of electricity from its source to its destination. A valid P2P transaction should consider

its implication for the distribution transformer and distribution network. For this reason, some

literature has also focused on analyzing the impacts of P2P transactions on the distribution system.

In particular, in [207], the authors studied power losses in distribution networks caused by P2P

trading. Park et al. [208] have proposed P2P energy trading based on the flexibility to maintain the

stability of the distribution network. The authors in [209] have formulated a local market for P2P

energy trading in the presence of solar PV with batteries to reduce voltage fluctuation and power

losses. From the above literature, we can conclude that, to the best of our knowledge, none of
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the work has investigated the impact of HEMS-integrated P2P trading, with flexibility limit, on the

distribution/pole-top transformer.

5.2 Motivation

The P2P energy trading approach provides a coordination and control methodology that effec-

tively balances energy supply and demand across the grid, enabling increased integration of clean

energy sources. Additionally, P2P energy trading is designed to enhance energy system efficiency

so the power grid becomes more resilient and can meet more needs with its existing infrastructure.

P2P trading is a next-generation energy management technique that economically benefits proactive

consumers (prosumers) who are transacting their energy as goods and services. At the same time,

P2P energy trading is also expected to help the grid by reducing peak demand, lowering reserve

requirements, and curtailing network loss.

5.3 Objective

The successful implementation of the P2P energy trading mechanism still meets many risks and

challenges. P2P energy trading consists of both financial and physical activities.

• Financial activities should properly coordinate the conflicting interests of various participants

while providing secure and reliable transaction information. The energy traded in economic

activities should be transmitted via the physical network.

• Consequently, the physical factors, including the distribution network constraints, opera-

tional constraints of the transformer, power transmission loss, unchecked power injection,

etc., should be considered.

At present, researchers are directed either to the virtual layer or to the physical layer. However,

for a successful deployment of P2P trading within the network, the requirements of both layers must

be addressed. Hence, there is a need for a unified model that could capture both the virtual layer

(pricing mechanism, market mechanism, and energy management system) and the physical layer

(transformer limit and other physical constraints of the power system). Consumer-centricity of P2P
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trading has been well-established in recent literature. However, the benefit of P2P energy trading to

the distribution grid must also be demonstrated.

5.4 Methodology

The work presents a detailed analysis of a pole-top distribution transformer serving a smart

community comprising multiple households as depicted in figure 5.1. The point of common con-

nection (PCC) is where the transformer unit and all smart homes are located. The schematic diagram

depicts a two-way power flow between the PCC and households and between the PCC and the grid

via the transformer unit.

Power can be obtained from the grid or produced locally. Also, it can be sold to other end-

users or the grid. EVs, batteries, PVs, and EWH are only a few examples of the various assets

and technological capabilities that the system can accept. Depending on their needs, prosumers can

make use of the vehicle-to-grid (EV,G), vehicle-to-home (EV,H), battery-to-grid (bat,G), battery-to-

home (bat, H), PV-to-grid (PV,G), and PV-to-home (PV,H) features.

A dynamic demand response strategy determines the energy price that each house injects into

the PCC. Under this strategy, buying energy costs ToU, and selling energy is FiT. By encouraging

prosumers to produce excess energy and sell it back to the grid, the FiT strategy promotes the

adoption of RESs and lowers total energy prices. Moreover, transformer load monitoring equipment

is installed on the distribution transformer that serves the neighborhood. This device enables the

management of excessive loading, which has the potential to accelerate the process of aging the

transformer unit. The transformer load monitoring device allows the system to run effectively and

sustainably.

5.4.1 HEMS Model

For the HEMS, we use the same model as discussed in chapter 3 section 3.2.1. The equations

used for HEMS are from (3.1) to (3.24).
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Figure 5.1: Conceptual diagram of HEMS- integrated P2P trading in the presence of a pole-top
distribution transformer.

5.4.2 Smart Transformer

We assume that the smart transformer works as an aggregator. Its primary function is to op-

timize the lifespan of the transformer by reducing loss. It performs flexibility management as an

aggregator, as discussed in Chapter 3, Section 3.2.2, by calculating the adaptive power limit for each

prosumer. Additionally, it monitors and facilitates P2P energy trading.

Exceeding the designated capacity of transformers can lead to a rise in temperature, causing the

insulation to deteriorate prematurely and reducing the transformer’s lifespan. The thermal impact

is primarily determined by the amount of load and the ambient temperature [210]. The IEEE stan-

dard C57.91 [211] provides a model for estimating the hottest-spot temperature and the decrease in

lifespan of the transformer.
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5.4.3 Transformer as Aggregator

The aggregated power demand of houses connected to a specific transformer is calculated as

in equation (3.25). The aggregated power includes the base load, the power demand of EWH, the

charging and discharging of EVs, and the battery. Similarly, equation (3.26) calculates the aggre-

gated selling power, which includes excess generated power from PV to the DSO and discharging

of EV and battery to the grid through a transformer.

TX load
HEMSt

= P
dagg
k,t + P

sellagg
k,t (5.1)

Flexibility limit through Transformer

The total bi-directional power flowing through the transformer is P dagg
k,t and P

sellagg
k,t as in equation

(5.1). The transformer in the proposed method provides a flexibility management service as in

section 3.2.2. The transformer calculates the flexibility available to the grid from each household

using equation (3.27) to (3.33).

The Transformer also calculates the maximum power limit of each house based on their flexi-

bility as follows:

Pmax
hk,t

= (P dem
hk,t

)C1 − αhk,t · TX
rating, ∀t ∈ T ; ∀hk ∈ H; ∀j ∈ N (5.2)

The house rescheduled their appliance based on the limit provided by the transformer, which is

within the flexibility bound of the household as below:

PDem,G
hk,t

≤ Pmax
hk,t

, ∀t ∈ T ; ∀hk ∈ H (5.3)

5.4.4 Thermal model of Transformer

The following equation calculates the transformer windings’ hot spot temperature (HST).

θHST
t = θAt +∆θTO

t +∆θHST
t ∀t ∈ T (5.4)
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In equation (5.4), the temperature at the hottest spot of the winding denoted by θHST
t , is determined

for each time instance t within the time horizon T . Additionally, the ambient temperature, θAt , and

the top-oil temperature increase over ambient temperature, denoted by θTO
t , as well as the winding

HST rise over top oil temperature, represented by θHST
t , are also calculated for each time instance.

The value for ∆θTO
t can be calculated using equation (5.5).

∆θTO
t =

(
∆θTO,U

t −∆θTO
t−1

)(
1− e

−∆t

τTO

)
+∆θTO

t−1 ∀t ∈ T (5.5)

In the equation (5.5), the term ∆θTO,U
t represents ultimate top-oil rise over the ambient temperature,

with t being the time interval and τTO is the top-oil time constant. As expressed in equation (5.5),

∆θTO
t depends on the state in the previous time step.

∆θHST
t =

(
∆θHST,U

t −∆θHST
t−1

)(
1− e

−∆t

τW

)
+∆θHST

t−1 ∀t ∈ T (5.6)

The calculation of ∆θHST
t in equation (5.4) is done using equation (5.6), where ∆θHST,U

t is the

ultimate rise of the top-oil temperature above the ambient temperature and τw is the constant time

for windings. It is important to note that, similar to equation (5.5), ∆θHST
t is also dependent on its

previous state. The ∆θTO,U
t and ∆θHST,U

t are calculated as below:

∆θTO,U
t = ∆θTO,R ·

(
k2t · TR + 1

TR + 1

)n

∀t ∈ T (5.7)

∆θHST,U
t = ∆θHST,R · k2·mt ∀t ∈ T (5.8)

Where kt is the ratio of the transformer’s load to nameplate rating, TR is the ratio of losses at rated

load to losses at no load, m and n are the transformer’s cooling parameters, and ∆θHST,R and

∆θTO,R are top-oil rise over ambient and hottest-spot rise over top-oil at rated load, respectively.

The definition of the ratio kt is:

kt =
TX load

HEMSt

TX rating ∀t ∈ T (5.9)

Where TX
rating
t is the nameplate rating and T load

HEMSt
is the load on the transformer after home

88



energy management performed by the houses connected to that transformer. This kt can be changed

according to different scenarios. For instance, the unmet load and extra export power from P2P will

be fed into the transformer. These different scenarios will be discussed in detail in 5.7. Equations

(5.4) to (5.8) show that the transformer temperatures change as the load ratio kt rises (5.9).

5.4.5 Transformer Aging

Equation (5.10) correlates the winding hottest-spot temperature θHST
t to the accelerated ageing

factor FAA
t .

FAA
t = exp

(
15000

θHST
t,ref + 273

− 15000

θHST
t + 273

)
∀t ∈ T (5.10)

The accelerated ageing factor at a specific temperature θHST
t is referred to as FAA

t [211]. As stated

in reference [211], the standard temperature at which normal aging occurs is 110°C, considered the

hottest spot. Transformer aging is accelerating if FAA
t is greater than 1.

FEQA =

∑T
t FAA,t∆t∑T

t ∆t
. (5.11)

Equation (5.12) below illustrates how to use this factor to calculate the transformer’s loss of life

(LoL):

LoLt =
FEQA ·∆t

β
∀t ∈ T (5.12)

where β represents the transformer’s typical insulating life. An average transformer must meet the

IEEE standard’s requirement for a normal insulating life β of at least 180,000 hours (20.5 years)

[211]. Equations (5.4) to (5.12) can be used to calculate the transformer’s aging while considering

temperature, loads, and characteristic factors of the transformer.

The objective function (5.13) minimizes the loss of life of the transformer subjective to the

equations (5.4) to (5.10).

J5k = min
p

∑
t∈T

LoLt (5.13)
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5.5 Peer-to-Peer Energy Trading

5.5.1 Mid-Market Rate

According to the concept of the mid-market rate, the price per unit of energy for energy trading

is determined based on three different scenarios: 1) when generation is equal to demand, 2) when

generation is greater than demand, and 3) when generation is lower than demand [47]. However,

in all cases, energy trading between participants occurs at a P2P price λP2P
t equal to the mid-value

between the buying and selling prices set by the grid for its trading with end-users.

λP2P
t =

λTOU
t + λFiT

t

2
(5.14)

Case 1 (Power Export is Equal to Power Demand):

When the energy production of all prosumers in the network equals their energy demand, the

net energy demand and production is zero. In this case, the surplus energy the sellers produce in

the set Hs is sold to the buyers in the set Hb. The selling price λFiT
t and buying price λTOU

t of each

participant, hs ∈Hs and hb ∈Hb respectively, are set equal and determined by the expression given

in (5.14).

λP2P
t,b = λP2P

t,s = λP2P
t =

λTOU
t + λFiT

t

2
(5.15)

Case 2 (Power Export is Greater Then Power Demand):

In this case, the net energy production is non-zero, and therefore, the sellers can sell the to-

tal surplus energy to the grid at a price λFiT
t after meeting the demand of prosumers with energy

deficiency in the network. Clearly, the buying price λP2P
t,b of each buyer is given below:

λP2P
t,b = λP2P

t =
λTOU
t + λFiT

t

2
(5.16)

In this case, the price at which energy is sold by prosumers to the grid, λP2P
t,s , is determined

based on the total energy generated, total demand of prosumers, and the buying and selling prices

set by the grid. Specifically, λP2P
t,s can be calculated as a function of the total energy generated
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by prosumers, the total demand of prosumers, the mid-market rate, and the price at which surplus

energy is sold to the grid, λFiT
t,s .

λP2P
t,s =

∑Hb
hb

PDem,G
hb,t

· λP2P
t + (

∑Hs
hs

P Expt,G
hs,t

−
∑Hb

hb
PDem,G
hb,t

) · λFiT
t∑Hs

hs
P Expt,G
hs,t

(5.17)

The expression in Equation (5.17) calculates the overall revenue that the sellers can obtain in

the network by selling their excess energy. The first term of the numerator, which is represented by

the summation over all the buyers in Hb, denotes the revenue generated by selling energy to them

at a price of λP2P
t , where PDem,G

hb,t
represents the total energy demand of the respective buyer. The

second term represents the extra energy sold to the grid by price λFiT
t .

Case 3 (Power Export is Less Then Power Demand):

In this scenario, the energy demand in the network is greater than the energy export, leading to a

net energy demand. Consequently, the buyers in Hb need to fulfill their excess energy requirements,

(
∑Hb

hb
PDem,G
hb,t

−
∑Hs

hs
P Expt,G
hs,t

), by purchasing energy from the grid. The buying price λP2P
t,b will be

influenced by several factors, including the total available surplus energy
∑Hs

hs
P Expt,G
hs,t

, total energy

demand
∑Hb

hb
PDem,G
hb,t

, and the prices λP2P
t,b and λTOU

t . Mathematically, this can be expressed as:

λP2P
t,b =

∑Hs
hs

P Expt,G
hs,t

· λP2P
t + (

∑Hb
hb

PDem,G
hb,t

−
∑Hs

hs
P Expt,G
hs,t

) · λTOU
t∑Hb

hb
PDem,G
hb,t

(5.18)

As in Case 1, the selling price λP2P
t,s charged by each seller hs ∈ Hs to the buyers for selling

their surplus energy is determined as:

λP2P
t,s = λP2P

t =
λTOU
t + λFiT

t

2
(5.19)

It should be noted that in the proposed P2P energy trading scheme, the values of λP2P
t,s and λP2P

t,b

are determined based on the values of
∑Hb

hb
PDem,G
hb,t

,
∑Hs

hs
P Expt,G
hs,t

, λTOU
t , and λFiT

t . These values are

fixed for each time slot t, regardless of whether the prosumers involved in the energy trading decide

to collaborate in a large group (grand coalition) or remain separated into smaller groups (disjoint

coalition). This means that once a prosumer decides to participate in P2P energy trading, they need
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to buy and sell using λP2P
t,b and λP2P

t,s , which are set for that specific time slot t. The regulatory charges

are not considered in the pricing scheme in this work, but the P2P platform provider may charge

the prosumers a fee included in the trading price [212] and pay a subscription fee to the distribution

system operator for using its infrastructure for P2P trading [139]. The proof that mid-market price

is beneficial for both seller and buyer is provided in appendix C.
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Figure 5.2: Proposed integrated framework.

5.6 Proposed Coordination Framework

The proposed strategy of HEMS-integrated P2P trading with flexibility provisioning consists of

multiple prosumers, as shown in figure 5.1. In the proposed coordination framework, each prosumer

has HEMS that receives input updates regarding customer preferences, as shown in 5.2. The desired

upper/lower limit of the hot water temperature, arrival/departure time of the EV, and initial/final

energy level of the battery at the beginning and end of the day. The information regarding parameters

of the appliances used in the house is also provided to HEMS, such as type and built-in characteristic

of the EV, battery, and EWH in table 3.1 and 3.2, respectively. Some information comes from the

grid operator, for instance, demand response information (ToU, FiT), as shown in table 5.1.
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Figure 5.3: A flowchart demonstrating P2P energy trading process.

The HEMS schedules the house appliances based on the prosumer’s energy-saving and subse-

quent cost-saving objectives as in (3.1) and (3.2), respectively. Prosumers become flexible energy

resources with the presence of DERs when a HEMS is incorporated into them. The optimal load

demand is determined at the house level and collectively sent to the transformer operator. To pro-

tect the privacy of prosumers, they only provide aggregated power profiles as shown in equations

(3.25)-(5.3). The households also export to the grid.

The smart transformer acts as an aggregator, an intermediary between multiple houses, and a

power grid. The aggregator exchanges information, the decision variables, from one level (home

level) to another (grid). The information flow from the end-users to the aggregator is P Buy,G
hk,t

, P Sell,G
hk,t

,
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Table 5.1: ToU Tariff of PG&E [5, 6] and FiT [7]

Tariff Time of Day Price ($/kWh)
Off-Peak 11:00 PM-8:00 AM 0.15
Shoulder 8:00 AM-2:00 PM and 9:00 PM-11:00 PM 0.22

Peak 2:00 PM-9:00 PM 0.42
FiT All day 0.08

Table 5.2: Transformer Thermal data [8]

∆θTO,R
t (◦C) ∆θHST,R

t (◦C) m n τTO(min) τW(min) θHST
t,ref (

◦C) TR Type Voltage

56 80 0.8 0.9 90 7 110 6 ONAF 2.4kV/120V

(P con
hk,t

)C1 , and (P con
hk,t

)C2 . The information goes from the aggregator to the end-users are Pmax
hk,t

, and

αhk,t. The transformer exchange information with grid are P
demagg
k,t , P sellagg

k,t , P flexup
agg

k,t , P
flexdwon

agg
k,t , and

TX rating. The transformer operator performs several tasks as follows:

• Adds up the power demand (optimal) of prosumers while reducing electricity costs and en-

ergy, as (3.25) and (3.26).

• Calculates the flexibility of each prosumer as in (3.27)-(3.33) and (5.3).

• Aggregates the flexibility of all the prosumers as in (3.32).

• Calculates the flexibility index of the prosumer as in (3.35).

• On the other hand, the transformer operator also performs optimization using the thermal

constraints of the transformer.

• The optimization model of the transformer operator minimizes the LoL of the transformer.

In this study, the transformer operator monitors the P2P energy trading, which is done before

the transformer at PCC. After the P2P energy trading, the transformer operator checks whether it is

technically feasible or not. In the P2P energy trading first, the power balance of buyers and sellers

is done as shown in the first part (red highlighted) of the figure 5.3. Afterward, financial trading

starts. The financial trading, as mentioned in the second part ( green highlighted) in figure 5.3, is

done using the mid-market rate as discussed in subsection 5.5.1. The relationship between HEMS,
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Table 5.3: Controllable appliances used in houses

Appliance Pra-1 Pr-2 Pr-3 Pr-4 Pr-5,10 Pr-6 Pr-7 Pr-8 Pr-9
EV ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Battery ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓
PV ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
EWH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Arrival time of EV 37 (6:00pm) 41 (7:00pm) 37 (6:00 PM) 33 (5:00 PM) - 29 (4:00 PM) 39 (6:30 PM) 35 (5:30 PM) -
Departure time of EV 92 (7:45AM) 95 (8:30 AM) 92 (7:45 AM) 88 (6:45 AM) - 84 (5:45 AM) 94 (8:15 AM) 90 (7:15 AM) -
Arrival SOC of EV 40 % 20 % 40 % 50 % - 45 % 40 % 35 % -
Departure SOC of EV 80 % 80 % 80 % 80 % - 80 % 80 % 80 % -

P2P, and transformer operator is presented in detail in figure 5.2. In this figure, we consider four

different scenarios to examine the effectiveness of the proposed method.

• Scenario-1: HEMS connected directly with transformer [213, 8].

• Scenario-2: HEMS with integration of P2P with consideration of transformer [214, 215].

• Scenario-3: HEMS with fixed power limit by the transformer [203].

• Proposed Scenario: HEMS with dynamic power limit based on flexibility by transformer and

integration of P2P.

5.7 Result and Discussion

5.7.1 Case Study

The proposed technique is tested on a 75 kVA pole-mount transformer, which provides power

to 10 residential customers. The thermal model parameters are presented in Table 5.2 shows the

thermal model parameters. The consumption patterns of customers are taken from a real-world

(from California region) PECAN Street data set, as outlined in [216]. We consider different types of

appliances for different prosumers, as shown in Table 5.3. Also, arrival times of EVs are different

for each prosumer, as depicted in Table 5.3. Multiple varieties of EVs and solar PV batteries are

presently available in the market. A suitable EV [4] and battery [3] are selected to satisfy the needs

of the studied houses, as shown in Table 3.1. Similarly, the specification of EWH used in the houses

is shown in Table 3.2. The pricing tariff is the ToU pricing scheme of Pacific gas and electricity

[5, 6], and the FiT rate is set as 0.08 $/kWh [7] as shown in Table 5.1.
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Figure 5.4: Power demand of ten studied houses.

The mathematical model presented earlier was implemented on the Python platform using the

PYOMO package [184]. The model was run on a computer with an Intel(R) Core(TM) i7-10850H

CPU @ 2.70GHz processor, 32.0 GB RAM, and Windows 11 Pro 64-bit operating system. The

HEMS optimization is a MILP-based problem that was solved using the CPLEX solver [185], while

the transformer model is a non-linear programming problem that was solved using the IPOPT solver

[186].

5.7.2 HEMS Results

At the residential level, we consider each house equipped with HEMS. In this study, we consider

different types of prosumers. Each prosumer has various controllable appliances in their houses. For
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Figure 5.5: Power Export to the power Grid by ten houses.

instance, prosumer-1 has an EV, battery, and EWH but not PV. Similarly, house-5 and house-10 do

not have EVs, batteries, and PVs. The details for all the prosumers are presented in table 5.3. The

arrival and departure times of EVs are also different, as shown in table 5.3. Similarly, the state-

of-charge (SoC) of each EV upon arrival is different, as illustrated in table 5.3. In this work, we

consider only one type of battery, EWH, and EV for all the houses as displayed in table 3.1 and 3.2.

The HEMS optimizes the flexible home appliance as shown in figure 5.4, and 5.5 serve by

one transformer at location k. Figure 5.4 presents the optimal load profiles of all the appliances

for the studied ten prosumers. These households have HEMSs, which can schedule their home

appliances such as batteries, EVs, and EWHs. When the grid operator provides a ToU signal, the

prosumer schedules the controllable appliances to charge at a time interval when the price is low

and discharge at a high pricing time to reduce the electricity cost. Consequently, another peak often
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Figure 5.6: Dynamic power limit based on the flexibility of the prosumers.

appears at low price hours, known as a “rebound peak”. The prosumer exports excess power to the

grid at the FiT price as shown in 5.5. From figure 5.5, we can see that prosumer-1 does not have PV

generation and export less power to the grid. Similarly, prosumer-5 and prosumer-10 do not have

EV, ESS, or PV and can not export power to the grid.

Using the proposed method, we limit the prosumer based on the flexibility and power rating of

the transformer, as discussed in section 5.4.3. The proposed method provides a dynamic power limit

for each prosumer, as shown in figure 5.6.

5.7.3 P2P Results

As mentioned earlier, house-5 and house-10 are consumers. They do not have PV, battery,

and EV. Consequently, they cannot sell power to their peers and can only buy power from their
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Figure 5.7: Buyer data for P2P trading in Scenario-2.

Figure 5.8: Buyer data for P2P trading in the Proposed Scenario.

neighbors. Figure 5.7 shows buyer expense from the grid through TOU and buyer expense if energy

amounts are purchased through the P2P trading. From figure 5.7, it can be noticed that the buyer’s

cost is higher if buying from the grid than buying via P2P trading. The prosumers save money if they

trade in P2P, as shown in figure 5.7. If we use our proposed method, which considers the flexibility

limit on each house, then the P2P energy trading saves even more compared to scenario-2 as depicted

in figure 5.8. The flexibility limit of the transformer forces the prosumer to self-consumption and

shift their power to other time intervals, which in turn helps the prosumer to do P2P energy trading.

From 5.8, it can be observed that overall, the prosumers save two times more than in scenario-2.

Figure 5.9 indicates seller earnings who export power to the grid at the FiT price and prosumer
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Figure 5.9: Seller data for P2P trading in Scenario-2.

Figure 5.10: Seller data for P2P trading in the Proposed Scenario.
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Figure 5.11: Average P2P prices of prosumers compared to TOU and FiT prices.

earnings when trading extra energy in a P2P market. The bottom figure in 5.9 presents the profit

of prosumers when trading in the P2P market compared to the FiT. Similarly, figure 5.10 depicted

the prosumers selling energy using the proposed method, But here, the overall profile of prosumers

using proposed method is more than scenario-2 as shown in figure 5.10. From figures 5.8 and 5.10,

it can be concluded using the proposed method, the buyers can save more, and sellers can profit

more than the grid’s TOU and scenario-2.

The average P2P prices of prosumers are illustrated in figure 5.11. It can be shown that, during

trading times, the P2P prices (average) are higher than the flat FiT rate. As a result, sellers will

experience a monetary benefit. In contrast, purchasers’ average P2P prices are lower than the ToU

grid costs, suggesting that buyers can also save some money.

5.7.4 Transformer Results

The HEMS of each household is optimized to have the lowest cost possible if the transformer

power limit is not enforced. However, every home tries to allocate as much of the load associated

with EV charging operations and controllable appliances during comparatively low price periods.

The distribution transformer, therefore, can be overburdened during these periods at scenario-1 and

scenario-2, as shown in figure 5.12. The red dashed line represents the maximum capacity of the

transformed. When the flexibility limit is applied from the transformer on each house. The overall
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Figure 5.12: Load on the transformer.

load on the transformer is within the capacity limit of the transformer, as demonstrated in scenario-3

and the proposed method (see figure 5.12). The proposed method, thus, flattens the load profile of

the transformer.

The temperature (hot spot) of the transformer winding is analyzed in figure 5.13. Figure 5.13

shows that the proposed method temperature is lower than the other scenarios. Such behavior can

help to maintain/increase the lifetime of the transformer.
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Figure 5.13: Hot Spot Temperature of transformer winding.

Figure 5.14 presents the impact of different scenarios on the accelerating aging factor of the

transformer. The transformer does not experience accelerating aging using the proposed method,

unlike the other scenarios. In Scenario-1 and Scenario-2, the accelerating aging is higher than the
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reference (ref=1), which indicates that these scenarios can cause degradation before the recom-

mended date of the manufacturer. The proposed method does not affect the accelerating aging of

the studied transformer.
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Figure 5.14: Accelerating Aging Effect.

Moreover, the costs of prosumers per day for four scenarios are shown in figure 5.15. From

figure 5.15, it can be noticed that the proposed method offers low electricity costs per day compared

to the other three scenarios. Thus, it is beneficial for the prosumers. Table 5.4 presents the life

expectancy of the transformer. Using the proposed method, the transformer’s lifetime also improves

compared to other scenarios.
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Figure 5.15: Cost Comparison.

103



Table 5.4: Transformer life expectancy

Scenario-1 Scenario-2 Scenario-3 Proposed Method
Transformer life expectancy (year) 0.17 0.29 0.40 21.3

5.8 Summary

The coordination framework proposed in this chapter offers a comprehensive solution for op-

timizing HEMS-integrated P2P trading while considering its impact on a distribution transformer.

With the increasing adoption of distributed energy resources, this framework provides a promising

approach to managing energy flows locally, promoting a more sustainable, reliable, and efficient

energy system. The proposed HEMS has been designed to minimize individual electricity costs un-

der a dynamic pricing scheme. A detailed study of the proposed framework has been demonstrated

in this work, including simulation results and comparison with existing methods, to articulate its

effectiveness and potential for practical implementation. The electricity costs of the participating

prosumers in the proposed method have been confirmed to be lower than those of other cases, ensur-

ing the financial viability of the developed model. The proposed method prevents the distribution

transformer from overloading, as seen in different scenarios. Besides, the accelerating aging of the

distribution transformer is lower than that of the other three scenarios. As such, the temperature

(hottest spot) of the distribution transformer in the proposed method has been below the recom-

mended temperature of the transformer. The proposed method ensures that the transformer’s life

expectancy remains unaffected (21.3 years), with the loss of operational life found to be negligible

compared to other techniques.

However, this work does not consider the operational constraints of the distribution network,

e.g., loss minimization using optimal power flow, which will be incorporated in the future to extend

the proposed framework. Furthermore, an advanced optimization process can be adopted to model

P2P energy trading in a large-scale distribution system. These improvements are made in the chapter

6

104



Chapter 6

Smart Home P2P Energy Trading

Considering Three-Phase Unbalanced

Distribution Network Optimization

NOMENCLATURE

Indices, Sets and Functions

PExpt
k,p,t Aggregated active power export; kW

P Impt
k,p,t Aggregated active power imported; kW

QExpt
k,p,t Aggregated reactive power export; kW

QImpt
k,p,t Aggregated reactive power imported; kW

Gsp
kj Conductance between bus k and k ; p.u

M Very large number

PBL
hk,t

Base load; kW

P Impt
k,p,t , PExpt

k,p,t Aggregated imported/exported active power from/to DSO; p.u

QImpt
k,p,t , QExpt

k,p,t Aggregated imported/exported reactive power from/to DSO; p.u
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τ Time step; 15min

βBuy
t , βSell

t Buying, selling price; $/kWh

βP2P
t Mid market price; $/kWh

βP2P
t P2P price; $/kWh

βLEM
t,b Buyer LEM price; $/kWh

βLEM
t,s Seller LEM price; $/kWh

Vmink
, Vmaxk

Maximum and minimum voltage at bus k

Pmax
gk,p,t

, Pmin
gk,p,t

Maximum and minimum active power generation at bus k of phase p

Qmax
gk,p,t

, Qmin
gk,p,t

Maximum and minimum reactive power generation at bus k of phase p

Ilmax
Maximum current injection; A

PDem,DSO
hk,t

Buying power of household from DSO; kW

PExpt,DSO
hk,t

Selling power of household to DSO; kW

PEV
Chk,t

, PESD
Chk,t

Charging power of EV, ESD; kW

PEV,H
Dhk,t

,PEV,DSO
Dhk,t

Discharging power of EV to home, G; kW

PESD,H
Dhk,t

,PESD,DSO
hk,t

Discharging power of ESD to home, grid; kW

PEV
Dhk,t

,PESD
Dhk,t

Total discharging power of EV, ESD; kW

P PV,ESD
Dhk,t

Power of PV supply to ESD; kW

P PV,H
Dhk,t

,P PV,DSO
Dhk,t

Power of PV supply to home, DSO; kW

PEWH
hk,t

Power demand of electric water heater; kW

U b,DSO
hk,t

Status of buying power; ON/OFF

U s,DSO
hk,t

Status of selling power; ON/OFF

V rel
k,p,t Real part of voltage at bus k of phase p

V rel
k,p,t Imaginary part of voltage at bus k of phase p

Irelspk,p,t
Real part of specific current injection at bus k of phase p

IImg
spk,p,t

Imaginary part of specific current injection at bus k of phase p
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6.1 Background

This chapter focuses on designing four-stage (HEMS, P2P, transformer, and OPF) optimiza-

tion for ML-EMS (home, transformer/aggregator, and distribution level). 1 Despite the advantages

that DERs can offer to the energy system [217], utilities are confronted with several technological

problems due to their widespread integration. The primary focus of these challenges is to avoid

the potential violations of operational constraints of distribution networks, which include breach

of voltage limits and network congestion caused by overloading distribution assets. Voltage limit

violations occur in distribution networks that accommodate DERs because reverse power injections

of the DERs increase nodal voltage magnitudes [218]. A paper by Nizami et al. [219] presents a

system for managing energy in a group of buildings. The system is broken down into two consecu-

tive stages. The former stage involves creating a scheduling model by adopting MILP to minimize

energy costs while user comfort is maintained in each building. The later stage involves all build-

ings participating in a transactive market for profit maximization. It is important to note that all

buildings have solar PV and batteries, and during the former stage, no energy has been sold to the

distribution network operator or transacted with other homes.

Researchers have explored various methods to enhance smart house coordination in neighbor-

hoods. One such method is utilizing a decentralized online algorithm called the Lyapunov-based

cost reduction technique to achieve coordination [220]. Similarly, to meet the same objective, [221]

suggested a bi-level decentralized local energy management strategy. Researchers have also inves-

tigated and examined real-time pricing schemes and incentive-based peak load reduction strategies

to minimize stress on the distribution transformer during peak hours [222, 223]. However, the

methodologies used in [222, 223] significantly rely on end-user choices and do not ensure that the

constraints imposed by distribution networks and their assets are considered.

Nevertheless, prosumers have an opportunity to maximize power exchange to their advantage

in the context of an LEM, outperforming the advantages provided by the FiT program [224]. These

prosumers consequently can establish energy communities that are anticipated to be valuable in

1This chapter has significant materials from the following paper Submitted by the Ph.D. candidate:
Hussain, S., Azim, M. I., Lai, C., & Eicker, U. (2023). Multi-stage Optimization for Energy Management and Trading
for Smart Homes Considering Operational Constraints of a Distribution Network. Energy and Buildings (Submitted first
revision).
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determining the future of the energy landscape [107]. Community members can trade substantial

amounts of locally generated energy among themselves using P2P exchanges. In contrast, all the

energy that is not traded is sent through the traditional power grid [107]. Constraint optimiza-

tion algorithms [156], game theory [225], auction theory [226], blockchain solutions [227], and

other optimization models have all been utilized to analyze P2P trading among prosumers. Further-

more, designing energy market structures for prosumers under the control of regulated utilities has

received a lot of attention [228]. In decentralized energy markets, prosumers who satisfy in-the-

moment demand from customers or other prosumers are immediately compensated [229].

P2P trading has been the subject of numerous studies as an approach to reducing end-user elec-

tricity bills. For instance, to save operational costs, Elkazaz et al. [196] have used MILP to model

P2P trading constraints for a group of homes. The paired houses exchange energy, but the im-

port/export tariff is not considered. This is not lucrative to prosumers, implying that they are selling

power without receiving any financial return. For batteries used in the P2P trade, Long et al. [158]

have presented a bi-level control strategy. Javadi et al. [198] have allowed prosumers in the residen-

tial, industrial, and commercial sectors to exchange energy over P2P and reduce costs. Garcia et al.

[199] have addressed P2P energy management for prosumers and proposed a P2P EMS to reduce

electricity expenses.

Some other studies, like the one in [203], have focused on smart communities with transformer

constraints. However, they have neglected to consider the transformer’s thermal model, distribution

network operational constraints, and the pricing scheme for P2P energy trading. Although existing

research has examined the effect of EVs and solar PV systems with batteries on transformer lifespan,

they have not considered the consequences of P2P trading on distribution networks and transformers

[8, 204]. In [230], the authors have developed a model for distributing energy that can be used in a

community environment. In this situation, a DER, such as a Renewable Energy Source or an ESD,

has been installed in each building. To reduce energy expenditures independently of energy sharing,

the first phase has optimized the DERs and controlled loads within each building. The energy-

sharing profile for each building was then determined, along with appropriate payment mechanisms,

using a non-cooperative sharing game.

Considering the insights presented above, it becomes apparent that a comprehensive approach
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involving integrating a four-stage energy management system (home, aggregator encompassing P2P

and transformer stages, and DSO) is imperative. The complexity of the energy landscape necessi-

tates a holistic understanding and coordination across these stages to ensure optimal outcomes for

all stakeholders. More research is needed to explore the complex interactions between these stages

properly to create a win-win situation for the stakeholders involved.

6.2 Contribution

In this study, a four-stage optimization methodology is introduced and implemented within a

three-level framework. A novel coordination structure encompassing households and an aggregator

is established. This framework addresses transformer loss of life optimization using thermal con-

straints of the transformer, P2P energy trading facilitated by LEM, and optimal power flow for a

three-phase unbalanced distribution network. In this chapter, our objective is to compare the im-

plications of HEMS with MILP-based P2P energy trading on the distribution transformer and the

three-phase unbalanced distribution network. The effects are assessed comprehensively, including

a comparison with OpenDSS (a distribution system simulator) as a reference, where power flow

analysis is executed. This analysis aims to provide valuable insights into the benefits and drawbacks

of both HEMS and MILP-based P2P energy trading in terms of their impacts on the transformer’s

performance and the overall stability of the distribution network. Our study seeks to clarify the

best strategy for optimizing energy usage and trade while guaranteeing the secure and dependable

functioning of the distribution network.

6.3 Methodology

6.3.1 Energy Management Structure

The primary goal of the EMS is to decrease the overall energy traded between the local commu-

nity and the DSO. This can boost local energy usage and reduce the operational expenses of each

home. The proposed approach contains three levels illustrated in figure 6.1.

• Stage-1: Each house has a HEMS installed, allowing users to track their energy usage and
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Figure 6.1: Conceptual diagram of multi-stage Optimization framework.

production. During this first stage, energy exchanges with the DSO are reduced for each

home without sharing extra energy within the local community. HEMS results are uploaded

to the central controller, as shown in Figure 6.1.

• Stage-2: In this chapter, the transformer is considered the residential energy coordinator

(REC). At this stage, P2P energy trading, based on MILP, is utilized to streamline the sequen-

tial operation of every house by using information that the central controller has access to.

In this second (proposed scenario) scenario, prosumers can reduce their electricity costs by

buying and selling energy from the local community and the grid.

• Stage-3: The thermal model of the transformer is optimized to reduce loss of life (increase
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duration a transformer is expected to operate efficiently) in accordance with the thermal con-

straint of the transformer. At this stage, the transformer is taking the power demand coming

from Stage 1 and Stage 2.

• Stage-4: In this stage, the whole low-voltage distribution network optimization is performed

using optimal power flow, as shown in figure 6.1. In this work, the studied distribution net-

work has three phases and is unbalanced to make it as close to the real system as possible.

6.3.2 HEMS Model

For the HEMS, we use the same model as discussed in chapter 3 section 3.2.1. The equations

used for HEMS are from (3.1) to (3.24).

6.3.3 Local Energy Market (LEM) Mechanism

Neighborhood Power Exchange Constraints:

To begin, each home’s power usage from the PCC has two parts: P Buy,L
hj ,t

and P Buy,DSO
hj ,t

. The first

represents power from other homes, while the second is from the DSO via transformer. Similarly,

when a home sells power back to the PCC, it has two components: P Sell,L
hj ,t

and P Sell,DSO
hj ,t

. The first

is used by other homes without going through the transformer, while the second flows to the DSO

through the transformer. Additionally, the power exported into the neighborhood should match the

power aggregated from local DERs at every instant, as stated in (6.3).

P Buy,DSO
hj ,t

+ P Buy,L
hj ,t

= P BL
hj ,t

+ P EWH
hj ,t

+ (P EV
Chj,t

− P EV,H
Dhj,t

) + (P ESS
Chj,t

− P ESS,H
Dhj,t

)− P PV,H
Dhj,t

, ∀t ∈ T ; ∀hj ∈ H (6.1)

P Sell,DSO
hj ,t

+ P Sell,L
hj ,t

= P EV,DSO
Dhj,t

+ P ESS,DSO
Dhj,t

+ P PV,DSO
Dhj,t

, ∀t ∈ T ; ∀hj ∈ H (6.2)
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∑
h

P buy,L
h,t =

∑
h

P sell,L
h,t , ∀t ∈ T ; ∀hj ∈ H (6.3)

0 ⩽ P buy,DSO
hk,t

⩽ M · U b,DSO
hk,t

, ∀t ∈ T ; ∀hk ∈ H (6.4)

0 ⩽ P sell,DSO
hk,t

⩽ M · U s,DSO
hk,t

, ∀t ∈ T ; ∀hk ∈ H (6.5)

0 ⩽ P buy,L
hk,t

⩽ M · U b,L
hk,t

, ∀t ∈ T ; ∀hk ∈ H (6.6)

0 ⩽ P sell,L
hk,t

⩽ M · U s,L
hk,t

, ∀t ∈ T ; ∀hk ∈ H (6.7)

βSell
t ⩽ βLEM

t,b , βLEM
t,s ⩽ βBuy

t ∀t ∈ T (6.8)

EWH and PV Operational Constraints (3.7) − (3.9) (6.9)

EV Operational Constraints (3.10) − (3.14) (6.10)

ESD Operational Constraints (3.17) − (3.24) (6.11)

Where P Buy,DSO
hj ,t

is the power buy from the grid with βBuy
t price, P Buy,L

hj ,t
is the power buy from

the neighborhood prosumer with price of βP2P
t,b . Similarly, the prosumer sells energy to the neigh-

borhood and the grid at P Sell,L
hj ,t

and P Sell,DSO
hj ,t

by price βSell
t .

Trading Price Constraints

In this section, a new way for homes in a community to trade energy locally is presented. This

trading function is run after the HEMS is run, and each home already knows the buying or selling

action at each time slot of the day. As illustrated in figure 6.1, the residents of the homes first trade

energy with others in the community using the local buying and selling prices instead of trading
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directly with the DSO. After trading together within the community, if the community requires

more energy or has surplus energy to sell, it trades directly with the DSO. To encourage energy

trading among the homes of the community, the local buying/selling prices that are proposed by the

local trading manager of the central operation unit should be smaller/larger than the buying/ selling

prices that the DSO proposes.

Case 1 (Power Export is Equal to Power Import):

When the energy production of prosumers in the network equals their energy demand, the net

network demand is zero. In this case, prosumers in set h with a surplus of energy sell to those in

set H . The selling and buying prices (βFiT
t and βTOU

t respectively) for each participant (h ∈ h and

H ∈ H) are determined by (6.12).

βLEM
t,b = βLEM

t,s = βP2P
t (6.12)

Case 2 (Power Export is Greater than Power Import):

Since there is a net energy output in this situation that is not zero, the sellers can satisfy pro-

sumers’ demand with an energy shortage in the network before selling the entire surplus of energy

to the grid at a βFiT
t . The following clearly indicates each buyer’s purchase price βP2P

t,b :

βLEM
t,b = βP2P

t (6.13)

In this case, the cost at which energy is sold by prosumers to the grid, βLEM
t,s , is determined based

on the total energy generated, the net power demand of prosumers, and the buying/selling expenses

imposed by the grid. Specifically, βLEM
t,s can be calculated as a function of the total energy generated

by prosumers, the total power demand of prosumers, the mid-market rate, and the price at which

surplus energy is sold to the grid, βFiT
t,s .

βLEM
t,s =

∑H
h P L

h,t · βP2P
t +

∑H
h (P gen

h,t − P L
h,t) · βFiT

t∑H
h P gen

h,t

(6.14)

The expression in Equation (6.14) calculates the overall revenue that the sellers can obtain in
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the network. The first term of the numerator, which is represented by the summation over all the

buyers in H , denotes the revenue generated by selling energy to them at a price of βP2P
t , where P L

h,t

represents the total energy demand of the respective buyer. The second term represents the extra

energy that is sold to the grid at a price βFiT
t .

Case 3 (Power Export is Less than Power Import):

In this scenario, the energy export by the prosumers is less than the power demand, leading to

net energy demand. Consequently, the buyers in H need to fulfill their excess energy requirements,

(
∑H

H P L
h,t−

∑h
h P

gen
h,t ), by buying energy from the grid. The buying price βLEM

t,b will be influenced by

several factors, including the total available surplus energy
∑H

h P gen
h,t , total energy demand

∑H
h P L

h,t,

and the prices βP2P
t,b and βTOU

t . Mathematically, this can be expressed as:

βLEM
t,b =

∑H
h P gen

h,t · βP2P
t +

∑H
h (P L

h,t − P gen
h,t ) · β

TOU
t∑H

h P L
h,t

(6.15)

Similar to Case 1, the selling price βP2P
t,s each seller h ∈ h will charge the buyer for purchasing

their extra energy will be calculated as follows:

βLEM
t,s = βP2P

t (6.16)

It should be mentioned that in the proposed P2P energy trading scheme, the values of βP2P
t,s and

βP2P
t,b are determined based on the values of

∑H
H P L

h,t,
∑h

h P
gen
h,t , βTOU

t , and βFiT
t . These values are

fixed for each time slot t, regardless of whether the prosumers involved in the energy trading decide

to collaborate in a large group (grand coalition) or remain separated into smaller groups (disjoint

coalition). This means that once a prosumer decides to take part in P2P energy trading, they need

to buy and sell using βP2P
t,b and βP2P

t,s , which are set for that specific time slot t. Regulatory charges

are not considered when pricing is optimized in this work, which will be done in future work.

P2P platform providers may charge prosumers a fee included in the trading cost [231] and pay a

subscription expenditure to the distribution network operator for operating their infrastructure for

trading [232].
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The objective function is the same as that of HEMS to minimize the household’s electricity

consumption and reduce the electricity cost.

J6,hj
=
∑
t∈T

(P Buy,DSO
hj ,t

· βBuy
t + P Buy,L

hj ,t
· βLEM

t,b − P Sell,DSO
hj ,t

· βSell
t

− P Sell,L
hj ,t

· βLEM
t,s )τ (6.17)

6.3.4 Transformer Model

Thermal model of Transformer

The mathematical modeling of the thermal model of the transformer is the same as discussed in

the chapter 5 section 5.4.4 from equations (5.4) to (5.13).

6.3.5 Three Phase Unbalance Distribution Network

The model formulation for a three-phase distribution network, with the unbalanced structure,

is significant in achieving optimal power/voltage control [233]. The formulation adopts the current

mismatch method, as presented in [234]. Unlike transmission systems, which often assume bal-

anced conditions, distribution networks exhibit unbalanced characteristics. The primary objective

is to minimize distribution network losses, although the model can be tailored to explore various

objective functions, accommodate DERs, and facilitate decentralized solutions.

The power balance equation of the distribution system is one of the operational constraints for

the distribution system operation.

Pgk,p,t +PExpt
k,p,t −P Impt

k,p,t = (V rel
k,p,t)(I

rel
spk,p,t

)+(V img
k,p,t)(I

img
spk,p,t

), ∀t ∈ T ; ∀k ∈ B; ∀p ∈ P (6.18)

Qgk,p,t+QExpt
k,p,t −QImpt

k,p,t = (V img
k,p,t)(I

rel
spk,p,t

)−(V rel
k,p,t)(I

img
spk,p,t

), ∀t ∈ T ; ∀k ∈ B; ∀p ∈ P (6.19)
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Power balance equations (6.18) and (6.19) have three parts on the left-hand side. The first part

represents the active and reactive power generated by the distribution substation, respectively. The

second part in both equations indicates the total exported power to the DSO. The third part, P Impt
k,p,t

and QImpt
k,p,t in (6.18) and (6.19), represent the combined active power and reactive power demand

of homes located at bus k. The right-hand side represents active and reactive power losses through

the lines involving that bus, respectively. The reactive power is determined using a constant power

factor of the load, e.g., 0.85 [101].

The current mismatch equations define the relationship between nodal voltages and power ex-

port from each supply in the distribution network. These equations are mathematically expressed

in operational constraints (6.20)-(6.22). Incorporating unbalanced three-phase operational consid-

erations in the model enables a more accurate representation of real-world distribution networks. It

supports the development of efficient and effective optimization strategies for improved grid perfor-

mance.

Irelcalk,p,t =
∑
j∈Ω

∑
p∈σp

(Gsp
kj(V

rel
j,p,t)−Bsp

kj(V
img
j,p,t )), ∀t ∈ T ; ∀k, j ∈ B; ∀s, p ∈ P (6.20)

Iimg
calk,p,t

=
∑
j∈Ω

∑
p∈σp

(Gsp
kj(V

img
j,p,t ) +Bsp

kj(V
rel
j,p,t)), ∀t ∈ T ; ∀k, j ∈ B; ∀s, p ∈ P (6.21)

∆Ik,p,t = Icalck,p,t − Ispk,p,t , ∀t ∈ T ; ∀k ∈ B; ∀p ∈ P (6.22)

Where in (6.20), (6.21) the real/imaginary calculated current injection Irelcalk,p,t , I
img
calk,p,t

. The

magnitude of the steady-state voltage at each node must comply with the voltage limits defined in

(6.23), where the upper and lower voltage limits for nodes are those of the corresponding distribution

code. In addition to the above constraints, the active/reactive power drawn from the grid is limited

by upper and lower bounds, as in equation (6.24) and (6.25).
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Vmink ≤ V p
k ≤ Vmaxk , ∀t ∈ T ; ∀k ∈ B; ∀p ∈ P (6.23)

Pmin
gk,p,t

≤ Pgk,p,t ≤ Pmax
gk,p,t

, ∀t ∈ T ; ∀k = s; ∀p ∈ P (6.24)

Qmin
gk,p,t

≤ Qgk,p,t ≤ Qmax
gk,p,t

, ∀t ∈ T ; ∀k = s; ∀p ∈ P (6.25)

Objective Function

The DSO performs a system-level optimal power flow analysis. The objective of the DSO has

been defined as the minimization of total system losses. The objective of the DSO optimization is

shown in the equation below:

J7 =
∑
t∈T

(
N∑

j=1

N∑
k=1

Gj,k

(
(V rel

j,t − V rel
k,t )

2 + (V img
j,t − V img

k,t )2
))

(6.26)

6.4 Four-Stage Coordination Framework

The proposed strategy of four-stage optimization consists of multiple houses having HEMS that

can sell and buy energy to/from the DSO.

In the proposed coordination framework, each prosumer has a HEMS that receives input updates

regarding customer preferences, as shown in figure 6.2. The desired upper and lower limits of the

hot water temperature for EWH, arrival and departure times of the EVs, and initial and final energy

levels of the ESD at the beginning and end of the day. The PV power for each house is also fed into

the HEMS. The information regarding parameters of the DERs used in the house is also provided to

HEMS, such as the type and built-in characteristics of the EV, ESD, and EWH in table 3.1 and 3.2,

respectively. Some information comes from the DSOs, for instance, demand response information

(ToU, FiT) and market strategies, as shown in table 5.1. Figure 6.2 illustrates the detailed flow of the

first scenario and the proposed method. The arrows depict the connection between different stages

and demonstrate the flow of the algorithm.
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Figure 6.2: Block diagram of the four-stage Optimization.

In the first stage, the HEMS schedules the house appliances based on the minimization of the

electricity cost objective, as in (3.1). Prosumers become flexible energy resources with the presence

of DERs when a HEMS is incorporated into them. The optimal load demand is determined at

the house level and collectively sent to the transformer operator. The aggregated optimal power

imported and exported is provided to the distribution transformer.

The second level acts as residential energy coordinator (REC), which includes the transformer

thermal model and MILP-based P2P optimization model. P2P energy trading is done at the second

stage of the coordination framework. At this stage, the neighborhood can buy and sell energy in the

locality using the LEM. The household can trade with each other in the local energy market. The

prosumer can sell and buy energy from the local community using the local energy market price

for selling and buying using (6.1)-(6.9). If prosumers still have surplus energy, they can trade with

DSO through the grid price mechanism. Similarly, they can buy unmet energy from the grid using

the FiT as equation (6.12)-(6.16). The optimal power demand of P2P energy trading is provided to

the transformer.

The smart distribution transformer serves as an intermediary between multiple homes and a

distribution network. In the third stage, the transformer thermal model is optimized based on the

optimal power demand from HEMS and P2P energy trading, leading to an extended lifespan. The
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flow of information from end-users to the aggregator is represented by P Buy,DSO
hk,t

and P Sell,DSO
hk,t

. Dur-

ing this stage, the impact of HEMS and P2P energy trading on the transformer is analyzed using the

thermal constraint, as outlined in equations (5.4) through (5.13).

During the fourth stage, the optimization of unbalanced three-phase power is conducted through

optimal power flow after optimizing the transformer’s lifespan. The necessary data for optimal

power flow is obtained from the distribution network simulation in OpenDSS. The power flow is

executed in OpenDSS, while the PYOMO abstract model is utilized to calculate optimal power, as

demonstrated in equations (6.18)-(6.26). In this work, the effects of HEMS and P2P energy trading

on the three-phase unbalanced distribution network are assessed by integrating an OPF formulation.

6.5 Result and Discussion

6.5.1 Case Study

The implementation of the proposed four-stage EMS optimization model’s coordination frame-

work was carried out using the Python platform and the PYOMO software package [184]. The com-

putational setup utilized for this implementation featured an Intel(R) Core(TM) i7-10850H CPU @

2.70GHz 2.71 GHz processor, accompanied by 62.0 GB RAM.

To address the MILP problems in the first and second stages, the CPLEX solver was employed

[185]. Subsequently, for the non-linear programming problems in the third and fourth stages, the

IPOPT solver [186] was utilized. MILP is chosen because it offers global optimal solutions for

complex problems, especially in large-scale energy systems. MILP effectively manages real-world

trade-offs and objectives. Additionally, it benefits from efficient mathematical solvers like CPLEX,

enhancing computational performance and relaxing the constraints to solve the problem within a

reasonable amount of time. However, this work does not consider a comprehensive evaluation of

open and commercial solvers such as CPLEX, BARON, and GUROBI as a prospect for future

investigations.

The time step selected for the optimization is 15 min. The time horizon for the optimization

is one day. Hence, the number of intervals within the optimization is 96. The thermal model

parameters are presented in Table 6.2. The consumption patterns of customers are taken from a
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real-world (from the California region) PECAN Street data set, as outlined in [216]. Table 6.1

shows the action times, i.e., arrival and departure, of EVs, which are different for each prosumer.

Similarly, the state of charge (SOC) of each prosumer is different, as shown in table 6.1. Multiple

varieties of EVs and solar PV batteries are presently available on the market. A suitable EV [4] and

battery [3] are selected to satisfy the needs of the studied houses, as shown in Table 3.1. Similarly,

the specification of EWH used in the houses is shown in Table 3.2. The pricing tariff is the ToU

pricing scheme of Pacific gas and electricity [5, 6], and the FiT rate is set at 0.08 $/kWh [7] as

shown in Table 5.1. This study undertakes a comparison of two distinct scenarios. The first scenario

entails households equipped solely with HEMS. The analysis of their influence on transformers and

distribution systems aligns with prior research [203, 235, 215]. Subsequently, the study presents

a second (proposed) scenario: residences equipped with HEMS in conjunction with P2P energy

trading facilitated through LEMs. The following analysis examines the impact of this configuration

on transformers and one of the three feeders (feeder-1) of the radial distribution network [233].

Table 6.1: EV’s SOC and time of arrival/departure.

Appliance House-1 House-2 House-3 House-4 House-5 House-7 ...... House-100
EV’s arrival 37 (6:00pm) 41 (7:00pm) 37 (6:00 PM) 33 (5:00 PM) 29 (4:00 PM) 39 (6:30 PM) ...... 35 (5:30 PM)
EV’s departure 92 (7:45AM) 95 (8:30 AM) 92 (7:45 AM) 88 (6:45 AM) 84 (5:45 AM) 94 (8:15 AM) ...... 90 (7:15 AM)
EV’s arrival SOC 40 % 20 % 40 % 50 % 45 % 40 % ...... 35 %
EV’s departure SOC 80 % 80 % 80 % 80 % 80 % 80 % ...... 80 %

Table 6.2: Distribution transformer Thermal data [9]

∆θTO,R
t (◦C) ∆θHST,R

t (◦C) m n τTO(min) τW(min) θHST
t,ref (

◦C) TR Type

55 80 0.8 0.8 155 5 110 8 ONAN

6.5.2 HEMS (First Stage)

At the residential level, each house is assumed to be equipped with HEMS. The action times of

various EVs are considered distinct, as illustrated in table 5.3. Similarly, the state-of-charge (SOC)

of each EV upon arrival is different, as illustrated in table 5.3. In this work, three types of EV, one

type of ESD and EWH, are used for all the prosumers, as shown in Tables 3.1 and 3.2, respectively.

120



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

20

40

Co
st

 (¢
/d

ay
) HEMS_cost

P2P_cost

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0

20

40

Co
st

 (¢
/d

ay
)

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
0

20

40

Co
st

 (¢
/d

ay
)

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99100
Prosumer

0

20

40

Co
st

 (¢
/d

ay
)

Figure 6.3: Cost of electricity consumption of Prosumers.

The sum of optimal power demand from HEMS and P2P energy for all the prosumers is dis-

played in figure 6.4. According to Figure 6.4, while using HEMS, there is a peak (1579 kW) at low

price time from time steps 72 to 92. It shows that using the P2P energy trading mechanism, the

power profile reduces the peak to 956 kW because the prosumers buy/sell energy in the neighbor-

hood.

Moreover, the costs of prosumers per day for four scenarios are shown in figure 6.3. From figure

6.3, it can be noticed that the proposed P2P method offers low electricity costs per day compared to

the HEMS.
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Figure 6.4: Sum of the optimal power demand of HEMS (green) and P2P (red).

6.5.3 P2P energy trading (Second Stage)

The MILP-based P2P energy trading outcome is an optimal LEM buy and sell price. The LEM

sells and buys in between the ToU and FiT tariffs, as shown in figure 6.5. This means that buyers can

buy energy at a lower price than ToU, and sellers can sell their energy at a higher rate than FiT. This

makes the buyer more profitable, and the seller earns more money. Therefore, the consumer prefers

to fulfill their energy required using LEM compared to the DSO electricity market. Similarly, the

seller will prefer to sell their energy in the neighborhood. Such preference will have a positive

impact on the transformer, such as less overloading during peak hours and improving the lifetime

of the transformer. Also, there will be less power losses and lower congestion in the distribution

network.

6.5.4 Distribution Transformer (third Stage)

In this work, the assumption is made that the transformer is connected to a household equipped

with HEMS. The household schedules its appliances in accordance with the DSO tariff (TOU and

FiT). In another case, the home can trade its energy in the local community and optimize its appear-

ance according to the LEM price.
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Figure 6.5: LEM, TOU, and FiT price for buyer and seller.

Home (has HEMS) connected to Transformer

The HEMS of each house is optimized to have the lowest electricity expense. However, every

home tries to allocate as much of the load associated with EV charging operations and controllable

appliances during comparatively low price periods (for ToU). The distribution transformer can be

overloaded during these periods when the price of the electricity is low when using HEMS, as

shown in figure 6.6a. Because each house tends to reduce electricity cost and does not care about

the transformer or distribution network operation. So, there is a peak at the time of low price,

as shown in the top subplot of figure 6.6a. The red dashed line represents the maximum power

limit of the distribution transformer. Using equation 6.27, the transformer having HEMS in the

neighborhood is overloaded by approximately 145.31%.

Percentage Overload =

(
Peak Power-Transformer Capacity

Transformer Capacity

)
× 100% (6.27)

The HST of the distribution transformer winding is analyzed in the second subplot of figure 6.6a.

This figure shows that with overloading the transformer, the HST of the transformer increases from

the recommended HST temperature, which is 110 ◦C. Because of a rise in the HST temperature

compared to the preferred temperature, the accelerating aging effect increases, as shown in the

bottom figure in 6.6a. The accelerating aging effect is higher than the reference (ref=1). Such
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behavior decreases the lifetime of the transformer. The loss of life of the transformer is 0.62% per

day when having HEMS in the neighborhood. Please note that in this case study, we only consider

one feeder of the three feeders as a case study. If we include the other two feeders with the same

transformer, it will affect the LoL of the transformer.
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(a) Effect on the transformer with HEMS neighbor-
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(b) Effect on the transformer with P2P energy trading
neighborhood.

Figure 6.6: Comparison of Transformer having HEMS and P2P in neighborhood.

Home (can take part in LEM) connected to Transformer

As mentioned earlier, in this study, homes can trade with each other through LEM mechanisms.

Every home tries to sell its energy to the neighborhood and buy from the local community. Thus,

less power is required from the grid via the distribution transformer. Thus, reduce the load on

the transformer as shown at the top figure in 6.6b. The prosumers take part in LEM, causing less

overload on the transformer as in the HEMS scenario. Thus, the HST of the transformer winding

is analyzed in figure 6.6b, and does not increase from the reference (preferred) temperature (110

C◦). Due to the preferred temperature, the accelerating aging effect did not increase the reference

(ref=1), as shown in the bottom figure in 6.6b. Such behavior does not decrease the lifetime of the

transformer. In such a system, the loss of life of the transformer having HEMS and P2P energy

trading in the neighborhood is 0.6% and 0.00059% per day, respectively.
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6.5.5 Distribution Network Operator (Fourth Stage)

Results from the modeled OPF simulation are exhibited in figure 6.7 to figure 6.12. The solid

lines in the figures 6.9 - 6.12 show the result using OPF, while the dashed line represents the power

flow results in OpenDSS.

In Figure 6.7, the temporal progression of current magnitudes across all nodes, corresponding

to the 3 phases of a bus over the time horizon T , is illustrated. Notably, the currents are monitored

under different operational setups: HEMS alone and HEMS constraint combined with P2P energy

sharing.

Figure 6.7a showcases the current profile when utilizing HEMS within a household. In this

study, it is observed that the current occasionally surpasses prescribed voltage (PU) thresholds.

This occurrence can be attributed to each household’s strategy of optimizing appliance scheduling

to curtail electricity costs.

In comparison, Figure 6.7b illustrates the current profile when P2P energy sharing is integrated.

Remarkably, the current magnitude remains within acceptable limits, as opposed to the scenario

depicted in Figure 6.7a. This outcome affirms the efficacy of P2P energy sharing in maintaining

a more regulated and efficient energy consumption pattern, thus alleviating concerns about current

spikes beyond PU thresholds.

0 8 16 24 32 40 48 56 64 72 80 88 96
Time…(15…min…interval)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ll…

lin
es

…
cu

rr
en

t…
flo

w
s…

[p
u]

(a) All line Current using HEMS.
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(b) All line Current using P2P.

Figure 6.7: Comparison of All line Current using HEMS and P2P.

In Figure 6.8, an investigation into voltage dynamics within a European low-voltage distribution
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network is presented. The analysis delves into the influence of HEMS deployment and integration of

P2P energy trading. Figure 6.8a illustrates the impact of HEMS on voltage profiles. The application

0 8 16 24 32 40 48 56 64 72 80 88 96
Time…(15…min…interval)

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

A
ll…

no
da

l…
vo

lta
ge

s…
[p

u]

(a) All nodal voltage after HEMS.
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(b) All nodal voltage after P2P.

Figure 6.8: Comparison of All voltage using HEMS and P2P.

of HEMS, driven by localized optimization strategies to curtail individual electricity expenses, inad-

vertently results in a degradation of voltage profiles across nodes, potentially jeopardizing network

stability.
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(a) Active power flow using HEMS.
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(b) Active power flow using P2P.

Figure 6.9: Comparison of active power using HEMS and P2P.

In contrast, Figure 6.8b portrays voltage profiles under the framework of P2P energy trading.
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Notably, the voltage levels observed across nodes are consistently maintained within the prescribed

operational bounds. This observation underscores the efficacy of P2P energy exchange in upholding

stable voltage profiles, ensuring the network operates reliably and adheres to stipulated voltage

limits. This stands as a compelling solution, mitigating concerns regarding voltage degradation

commonly associated with HEMS-centric approaches.

The result from 6.9 to 6.12 represents the line current, power, and voltage profiles of a specific

line and feeder. In this work, “line1” of “feeder-2” of the European low-voltage distribution network

is used as an example for showing the result. The active power and reactive power of the line “line1

feeder2” is shown in figures 6.9 and 6.10. Notably, these figures underscore a noteworthy disparity

in power requirements between HEMS users and prosumers engaging in P2P energy trading. HEMS

users exhibit substantially higher active and reactive power demands than their counterparts utilizing

P2P mechanisms.

Furthermore, the line current of the prosumer using P2P is lower than that of the prosumer

having HEMS, as shown in figure 6.11. This behavior causes degradation in the voltage profile

having HEMS. In contrast, prosumers accessing LEM have improved voltage profiles, as shown in

figures 6.12a and 6.12b, respectively.
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(a) Reactive power flow using HEMS.
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(b) Reactive power flow using P2P.

Figure 6.10: Comparison of reactive power using HEMS and P2P.
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6.5.6 Compare results with OpenDSS

In this work, a comparison was conducted between the results obtained from OPF using Python

and power flow computations driven by OpenDSS. Figure 6.9 to 6.12 visually depicts this com-

parison, where dashed lines represent OpenDSS results and solid lines signify OPF results using

PYOMO.

The results indicate that employing OPF yields a marked improvement in voltage profiles, con-

tributing to a more stable network. Additionally, OPF leads to notable reductions in line currents,

enhancing system efficiency. Moreover, applying OPF effectively minimizes peak power demands,

a critical factor in efficient load management, which positively impacts grid resilience and reliabil-

ity. Overall, this comparison highlights the advantages of utilizing OPF, facilitated by PYOMO, in

power system analysis, emphasizing improved voltage profiles, reduced line currents, and efficient

peak power demand management.
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(a) Line current flow using HEMS.
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(b) Line current flow using P2P.

Figure 6.11: Comparison of line current using HEMS and P2P.

After analyzing the result, it is clear that households utilizing only HEMS have a notable influ-

ence on the transformer. This influence leads to transformer overload, increased HST temperatures,
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and decreased lifetime. Furthermore, such neighborhoods negatively impact the distribution net-

work, resulting in voltage reduction. However, by implementing the proposed approach, the trans-

former’s lifespan can be extended by reducing the load and hence reducing the HST temperatures.

Additionally, this strategy has the potential to enhance the voltage profile and reduce the electricity

cost of the end-user.
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(a) Feeder voltage using HEMS.
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(b) Feeder voltage using P2P.

Figure 6.12: Comparison of feeder voltage using HEMS and P2P.

The results indicate that employing OPF yields a marked improvement in voltage profiles, con-

tributing to a more stable network. Additionally, OPF leads to notable reductions in line currents,

enhancing system efficiency. Moreover, applying OPF effectively minimizes peak power demands,

a critical factor in efficient load management, positively impacting grid resilience and reliability.

Overall, this comparison highlights the advantages of utilizing OPF, facilitated by PYOMO, in

power system analysis, emphasizing improved voltage profiles, reduced line currents, and efficient

peak power demand management.

After analyzing the result, it is clear that households utilizing HEMS have a notable influence

on the transformer. This influence leads to transformer overload, increased HST temperatures, and

decreased lifetime. Furthermore, such neighborhoods negatively impact the distribution network,

reducing voltage. However, by implementing the proposed approach, the transformer’s lifespan

can be extended by reducing the load and hence reducing the HST temperatures. Additionally,
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this strategy has the potential to enhance the voltage profile and reduce the electricity cost of the

end-user.

6.6 Summary

This chapter illustrates a four-stage coordination model, facilitating P2P energy trading among

numerous homes, aggregator, and the DSO. The coordination framework proposed in this work

offers a comprehensive solution for optimizing HEMS and MILP-based P2P trading while consid-

ering its impact on a distribution network. With the increasing adoption of DERs, this framework

has provided a promising approach to managing energy flows in the local energy community using

LEM and, hence, promoting a sustainable, reliable, and efficient energy management system. The

proposed HEMS and MILP-based P2P trading framework has been designed to minimize individual

electricity costs under a DSO’s tariff structure. This work has also demonstrated a detailed study

of the proposed framework, including simulation results, comparison with HEMS, and implications

on the distribution network to articulate its effectiveness and potential for practical implementa-

tion. The electricity costs of the 100 prosumers participating in P2P energy trading in the proposed

method have been confirmed to be lower than the HEMS scenario, ensuring the financial viability

of the proposed model. By comparing the optimal power demand of all prosumers, the proposed

method effectively reduces peak power by 38.85%.

Using the proposed method, the hot spot temperature of the distribution transformer is lower

than the other scenarios and the recommended temperature ( 110 ◦C). Similarly, the accelerated

aging of the distribution transformer in a P2P neighborhood has been lower than in a neighborhood

with HEMS and the reference (ref=1). The loss of life of the transformer per day is negligible using

the proposed method (0.00059 %) compared to another scenario (0.69 %).

Furthermore, the effects of HEMS and P2P on the three-phase unbalanced distribution network

have been analyzed. The energy community with P2P energy trading and LEM has been found

to abide by the voltage and current limits, while the community with HEMS may violate these

constraints.

130



Chapter 7

Conclusion

The final chapter presents concluding remarks and future research directions for extending the

conducted research.

7.1 Summary

This thesis primarily focuses on developing a robust coordination framework that helps all stake-

holders, such as consumers, prosumers, aggregators, distribution system operators, and the grid. In

this thesis, we develop two main coordination frameworks one is grid-centric, and the other is

prosumer-centric. In grid-centric, the DSO requests peak reduction using prosumers’ flexibility.

In prosumer-centric, the prosumers use P2P energy trading to utilize the local energy market and

reduce the power imported from the grid during peak hours. This work is divided into different

portions.

In Chapter 1, the motivation and problem statement were presented, along with the main re-

search objectives and the overall layout of the thesis.

Chapter 2 provides a literature review relevant to the work presented in subsequent chapters. In

this chapter, we discuss the control architecture used in the multi-level framework, focusing on the

flexibility and demand-side flexibility, along with the associated flexibility services and resources.

We also explore the demand response program and the electricity market that is utilized to ensure

flexibility. The chapter concludes by summarizing recent research on P2P trading, including its
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types, benefits, market structures, and operational layers.

In Chapter-3, a brief overview of the background topic related to the research objective of the

chapter was presented. The concept of HEMS and the mathematical model of multi-level EMS, in

which various ESS, EVs, and EWH technologies were discussed, along with their applications in

smart grids. To satisfy the techno-economic objective of the complete network, energy management

becomes a multi-level optimization problem with many objectives and constraints on each level sep-

arately or many combined levels. The proposed novel three-level framework is used to tackle the

contradictory nature of the objectives of end-users and DSOs by upward and downward flexibility

provision. At the first stage (HEMS), each house optimizes its appliance operation to minimize the

electricity cost. The aggregator collects the flexibility of each household, and the cohort flexibility

is conveyed to the DSO. The DSO performs optimal power flow to minimize system losses and

sends the optimal flexibility reduction request to the aggregator. The aggregator then disaggregates

the flexibility requests to each participant as a peak limit on each house’s consumption. The pro-

posed architecture reduces peak demand, distribution system losses, and generation cost by 11.96%,

33.6%, and 1.8%, respectively. However, the electricity cost of the end-users is high after the flex-

ibility provision due to the adaptive power limit on the prosumer. We develop a novel incentive

program to motivate the prosumer to participate in this coordination framework.

In Chapter 4, a novel incentive program is developed based on the flexibility provided to the

DSO or aggregator. This chapter used the ML-EMS flexibility coordination framework for an adap-

tive incentive program. The results show that our proposed strategy has increased the monetary

benefits for prosumers for their flexibility services provided to the DSO compared to other scenar-

ios. Upon considering a use-case of 100% penetration of EVs, ESSs, and PVs at the first stage, the

proposed approach was able to reduce the power losses, peak load, and average load of the overall

system by 24.6%, 20.8%, and 3.7%, respectively compared to the base case (scenario-1). Further-

more, it increases the minimum load by 42%, thus flattening the load profile of the distribution

network.

In chapter-5, a rule-based P2P energy trading is designed where the prosumer can trade with

each other through P2P energy trading. The monetary benefits of the proposed P2P kW trading
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strategy have been determined and compared with the FiT scheme to demonstrate its superior per-

formance. The designed P2P trading model has also been implemented on a transformer model to

determine the physical network issues associated with the mechanism. In this chapter, a smart trans-

former model is developed for the ML-EMSs. Previously, it was considered a passive element that

only delivered electricity to the end-user by changing the voltage level. The smart transformer pro-

vides the trading hub for the transaction energy between different connected homes. Also, it gives

additional EMS to reduce the maintenance cost of these expensive assets. The electricity costs of

the participating prosumers in the proposed method have been confirmed to be lower than those of

other cases, ensuring the financial viability of the developed model. As seen in different scenarios,

the proposed method prevents the distribution transformer from overloading. Besides, the acceler-

ating aging of the distribution transformer is lower than that of the other three scenarios. As such,

the distribution transformer’s temperature (hottest spot) in the proposed method has been below the

recommended temperature of the transformer. If this behavior occurs throughout the years, the life

expectancy of transformers using the proposed method compared to other scenarios is 21.3, 0.17,

0.29, and 0.40, respectively. The proposed method ensures that the transformer’s life expectancy

remains unaffected (21.3 years), with the loss of operational life found to be negligible compared to

other techniques.

In Chapter 6, a MILP-based framework is developed for decentralized P2P energy trading,

allowing prosumers to trade at their preferred rates in the local energy market. A four-stage co-

ordination framework enabling P2P energy trading between multiple households, aggregators, and

DSOs. The coordination framework proposed in this chapter offers a comprehensive solution for

optimizing HEMS- and MILP-based P2P trading while considering its impact on a distribution net-

work. The electricity costs of the 100 prosumers participating in P2P energy trading in the proposed

method have been confirmed to be lower than the HEMS scenario, ensuring the financial viability

of the proposed model. By comparing the optimal power demand of all prosumers, the proposed

method effectively reduces peak power by 38.85%. Using the proposed method, the hot spot tem-

perature of the distribution transformer is lower than the other scenarios and the recommended

temperature (110 ◦C). Similarly, the accelerated aging of the distribution transformer in a P2P

neighborhood has been lower than in a neighborhood with HEMS and the reference (ref=1). Using
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the proposed method, the loss of life of the transformer having HEMS and P2P energy trading in

the neighborhood is 0.6 % and 0.00059 % per day, respectively. Furthermore, the effects of HEMS

and P2P on the three-phase unbalanced distribution network (OPF using PYOMO and power flow

using OpenDSS) have been analyzed. The energy community with P2P energy trading and LEM

has been found to abide by the voltage and current limits, while the community with HEMS may

violate these constraints.

7.2 Limitations and Recommendation for Future Research

This thesis is the starting point for thoroughly examining the EMS and P2P energy trading

coordination framework. We must continue our research efforts and strive toward a more sustain-

able and efficient energy environment. The following sections will illuminate potential avenues of

exploration and progress, laying the foundation for a more cohesive and efficient energy future.

Chapter 3 presents the ML-EMS modeling for flexibility provision. However, the HEMS model

can be enhanced to incorporate comprehensive models for uninterruptible loads like dishwashers,

dryers, washing machines, and other smart appliances. We use an RC model for one of the real

buildings for HEMS. However, it should be appropriately incorporated in ML-EMS. Thermal Mod-

eling of the building can be added to the ML-EMS with a thermal energy storage system like heat

pumps and thermal storage tanks. This work can be further extended by flexibility assessment based

on the appliances. In the cost objective function, it’s more practical to consider the degradation cost

of the battery and EV from the charging and discharging to the home or DSO. To gain a compre-

hensive understanding of the proposed method’s effectiveness, it is imperative that we evaluate it

under varying weather conditions, including hot, cold, sunny, partly sunny, and cloudy days, instead

of solely relying on results from a single day.

In Chapter 4, a novel incentive program was developed, but this work can be extended by

assessing the economic model for revenue generation of aggregators and the fairness and financial

sustainability of the incentive programs between end-users and different stakeholders. Also, create

a framework to incentivize prosumers based on their appliance flexibility, contributing to a more

responsive energy system.
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In Chapter 5, advanced P2P trading strategies beyond the rule and a MILP-based approach

can be investigated. Explore machine learning and AI-driven strategies to optimize P2P energy

trading and improve cost-effectiveness in ML-EMS. Similarly, AI-based prediction for transformer

performance will help the different types of electricity market for flexibility (day-ahead, intra-day, or

balancing power market). As power electronics are evolving, using a digital transformer as a smart

hub could be the next step to implementing these algorithms on the smart transformer. Develop the

solid-state transformer model as a smart hub for energy transactions. Integrate features to enhance

trading efficiency and reduce maintenance costs of these critical assets. The digital transformer

is based on power electronics circuits and converters, in which the power utility can regulate the

active and reactive power flow by controlling the phase angles of the converters. This technology

will improve the stability of the network and increase its efficiency. Therefore, it is suggested to be

the case study of future works.

In Chapter 6, future work could explore the electrical and thermal limits of the transformer

by leveraging the flexibility of the prosumer. This can further improve the performance of the

transformer in three-phase unbalanced distribution networks.

The proposed ML-EMS can be tested on a real-test system, and the proposed method can be

validated. However, such a system must first be coupled with a simulation environment. Interaction

between the optimization and the simulation environment is necessary to validate the proposed ML-

EMS using day-ahead optimization. A framework needs to be designed in which the day-ahead

optimization gives the optimal set points to the simulation, and the simulation gives its set point

back to the intra-day optimization to reduce the mismatch and give the result back to the simulation.

Such a platform will make the model more realistic for the real-time implementation.
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Appendix A

Objectives and Constraints in

Multi-level
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Table A.1: Multi-Level EMS and Objectives

Reference EMS Type Objectives
[37] HEMS Minimize electricity costs.

Aggregator Minimize total load deviation and rescheduling
costs of customers.

[38] Local HEMS Minimize electricity costs and consumer dis-
comfort.

Global HEMS Optimize electricity costs for each household
after ESS operation and power trading.

[41] HEMS Minimize total energy costs.
Aggregator Reschedule user power profiles and provide in-

centives in return.
[8] HEMS Minimize electricity costs.

Aggregator/Transformer Minimize temperature damage costs and elec-
tricity costs.

[39] HEMS Three objective functions are used:
1). Minimize energy consumption.
2). Minimize electricity costs.
3). Maximize comfort level.

GEMS Minimize total system losses and utilize total
flexibility in local distribution networks.

[40] Home Minimize electricity costs.
Aggregator Minimize total active power loss and reschedul-

ing deviation in low voltage distribution.
GEMS Minimize total active power loss and reschedul-

ing deviation of HEMS aggregators in medium
voltage distribution.

[18] Transformer Minimize electricity costs at home with energy
and power soft constraints on transformers.

[9] Transformer Reduce transformer hottest-spot temperature
with minimal load shifting.
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Table A.2: Constraints at Different Levels

Constraints

H
E

M
S

Power/Energy at Home
Ensure balanced net energy/power consumption in households. [236]
Prevent violation of power limits in the household. [41]
Limit buying and selling power from/to the grid. [40]

Electric Vehicle (EV)
Determine State of Charge (SoC) of EV.

[8]
Maintain total energy of EV battery at the start and end of the day.
Enforce SoC within specified range.
Limit charging/discharging power based on EV availability.

Electric Water Heater (EWH)
Monitor water temperature and EWH state.

[41]
Control temperature in the EWH tank.
Ensure water temperature remains within set limits.
Update room temperature and maintain within bounds.

Non-interruptible Loads:
Define non-interruptible appliance operation time range. [41]
Prevent interruption once appliance operation has begun.
Align controllable appliance cycle time.

Ensure Power delivered to home and grid by PV [40]
Reactive power constraints for PV and ESS [236]

A
gg

re
ga

to
r

Ensure energy from only controllable appliances can be sold to grid and neighbors [41]
Manage absorption and injection of reactive power [41]
Assign a single demand profile for each consumer by the aggregator [40]
Enforce current and voltage limits [41]
Balance active and reactive power [40]
Ensure HEMS aggregator power aligns with schedules by VVO [40]
Prevent overlapping buying and selling power processes with the grid [40]
Restrict Household Switching Temperature (HST) below transformer limit [40]
Power and energy-based soft constraint: Aggregated home power ¡ transformer critical
power

[8]

Enforce constraints for prosumer selling power and predicted PV generation [18]

D
is

tr
ib

ut
io

n
Sy

st
em Manage active and reactive power of each feeder line phase [40]

Enforce three-phase line voltage limits [40]
Constrain node square voltage magnitude within allowed range [40]
Regulate reactive power supported by Circuit breaker at node [40]
Control voltage and OLTC tap changes [40]
Limit sold electricity to avoid excessive grid injection [9]
Active and reactive power generation limit [2]
Flexibility limit [2]
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Appendix B

Results of three objectives use in

Varennes Library

Figure B.1 power profiles of the imported power from the grid using three objectives compared

with measure value. From these profiles, it can be seen that power consumption is reduced when the

peak price occurs using objectives 1 and 2, while the power imported from the grid is higher using

the objective of maximizing power export.

Objective 1 is to minimize the energy cost, and Objective 2 is to minimize the energy consump-

tion of the building or maximize the local consumption. Figure B.2 shows that the heat pump, which

is a shiftable load, reduces power consumption during high price intervals using the cost minimiza-

tion objective. Figure B.2 also shows that using maximizing local energy consumption, the PV

supply to the building is high, and heat pump power is high when there is local production. When

there is no solar, the heat pump is kept as much as possible to reduce power consumption.

Figure B.3 shows the optimal indoor temperature of the building with measure indoor temper-

ature. It can be seen that objective 1 is cost minimization, which reduces the heat consumption of

the building, resulting in the reduction in indoor temperature at time interval peak hours. Similarly,

using the objective of minimizing energy, the indoor temperature increases when solar power is

there, and another interval is kept at a lower bound.
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Figure B.1: Power imported from the grid using objectives 1 and 2..

Figure B.2: Controllable load profile using objectives 1 and 2.
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Figure B.3: Indoor temperature profile using objectives 1 and 2.
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Appendix C

Proof that MMR Pricing Mechanism is

Beneficial

Theorem-1:

For considering mid-market rate pricing schemes in Case-1, Case-2, and Case-3, a pricing mech-

anism of the proposed P2P trading to confirm the stability of the coalition as well as to guarantee

the benefit to the prosumers for forming the social coalition.

Proof:

Case-1: In this scheme, the trading price (i.e., both the selling and buying prices, denoted as

λP2P
t,b and λP2P

t,s ) must satisfy the condition λFiT
t ≤ λP2P

t,b , λP2P
t,s ≤ λTOU

t . We then consider the three

cases outlined above and note that the trading prices in Case 1, the buying price in Case 2, and the

selling price in Case 3 all satisfy this condition.

Case-2: Let’s start by assuming that the sum of the power demand of the buyers and the sum of

all exported power is equal to a constant y as below :

y =

∑Hb
hb

PDem,G
hb,t∑Hs

hs
P Expt,G
hs,t

(C.1)

We note that for Case 2, y is less than one since the total surplus of the suppliers exceeds the
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total power demand. Based on this assumption, we can rewrite equation (5.17) as:

λP2P
t,s = y · λP2P

t + (1− y)λFiT
t

= (y · λP2P
t + λFiT

t )− y · λFiT
t

(C.2)

We then use equation (5.14) to establish that λP2P
t > λFiT

t since λTOU
t > λFiT

t . This enables us to

confirm that λP2P
t,s ≥ λFiT

t using equation (C.2).

Now to prove that λP2P
t,s ≤ λTOU

t , we start by assuming the opposite, i.e., λP2P
t,s > λTOU

t . We then

use equation (C.2) to obtain:

y · λP2P
t + λFiT

t − y · λFiT
t > λP2P

t,b (C.3)

We can then substitute λP2P
t with λFiT

t +λTOU
t

2 from equation (5.14) and rearrange the terms to

obtain:

λFiT
t − y

2
λFiT
t > λTOU

t − y

2
λTOU
t . (C.4)

However, since y < 1 and λTOU
t > λFiT

t , this inequality cannot hold, which contradicts our initial

assumption. Therefore, we can conclude that λP2P
t,s ≤ λP2P

t,b , and hence λP2P
t,s satisfies the condition

λFiT
t ≤ λP2P

t,s ≤ λTOU
t .

Case-3: Now to prove that λP2P
t,b in equation (5.18) satisfies the condition λFiT

t ≤ λP2P
t,b ≤ λTOU

t .

We assume that the sum of the exported power of the seller and the power demand of all buyers is

equal to a constant y∗ in equation (5.18) as below :

y∗ =

∑Hs
hs

P Expt,G
hs,t∑Hb

hb
PDem,G
hb,t

(C.5)

We note that for Case 3, y∗ is less than one since the total power demand of the buyer is greater

than the total power exported. Based on this assumption, we can rewrite equation (5.18) as:

λP2P
t,b = y∗ · λP2P

t + (1− y∗)λTOU
t

= (y∗ · λP2P
t + λTOU

t )− y∗ · λTOU
t

(C.6)
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From (5.14) we can say that λP2P
t < λTOU

t since λTOU
t > λFiT

t . This enables us to confirm that

λP2P
t,b ≤ λTOU

t using equation (C.5).

Now to prove that λP2P
t,b ≥ λFiT

t , we assume that λP2P
t,b < λFiT

t . We then use equation (C.5) to

obtain:

(y∗ · λP2P
t + λTOU

t )− y∗ · λTOU
t < λFiT

t (C.7)

We can then substitute λP2P
t with λFiT

t +λTOU
t

2 from equation (5.14) and rearrange the terms to

obtain:

λTOU
t − y∗

2
λTOU
t < λFiT

t − y∗

2
λFiT
t . (C.8)

However, since y∗ < 1 and λTOU
t > λFiT

t , this inequality cannot hold, which contradicts our

initial assumption. Therefore, we can conclude that λP2P
t,b ≥ λFiT

t , and hence λP2P
t,b satisfies the

condition λFiT
t ≤ λP2P

t,s ≤ λTOU
t .

Therefore, by showing that both λP2P
t,s and λP2P

t,b satisfy the required conditions. Therefore, to

complete the proof of Theorem 1, we need to demonstrate that both equations (5.17) and (5.18) also

satisfy the conditions λFiT
t ≤ λP2P

t,s ≤ λTOU
t and λFiT

t ≤ λP2P
t,b ≤ λTOU

t , respectively. Once we establish

these conditions, we can conclude that the grand coalition is stable.
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[92] V. Rasouli, Á. Gomes, and C. H. Antunes, “Characterization of aggregated demand-side

flexibility of small consumers,” in 2020 International Conference on Smart Energy Systems

and Technologies (SEST), pp. 1–6, IEEE, 2020.
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