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ABSTRACT

Gradient-Free Aeroacoustic Shape Optimization Using High-Order Implicit Large Eddy

Simulation

Mohsen Hamedi, Ph.D.

Concordia University, 2024

Aviation noise poses significant challenges to both the quality of life for those living near

airports and the sustainable growth of the aviation industry. Accurate aeroacoustic shape optimiza-

tion methods are required to reduce this noise. To address this, we propose an innovative approach

for aeroacoustic shape optimization using Large Eddy Simulation (LES). The gradient-free Mesh

Adaptive Direct Search (MADS) algorithm minimizes sound pressure levels for observers at vary-

ing distances. Near-field predictions rely on a high-order unstructured flow solver, while far-field

predictions employ an acoustic solver based on the Ffowcs Williams and Hawkings (FW-H) time-

domain formulation. The acoustic solver is verified and validated using analytical test cases and

comparison with results obtained directly from the flow solver. The optimization framework is

implemented in parallel, enabling concurrent objective function evaluations at each iteration. This

removes the dependency of the computational runtime of the MADS algorithm on the total number

of design variables, given the availability of sufficient resources. Different problems are considered

to evaluate the performance of the proposed optimization framework, including flow over a deep

open cavity, tandem cylinders configuration, and a NACA 4-digit airfoil. Initially, noise reduction

for a near-field observer is addressed for these geometries under low Reynolds numbers and in

two-dimensional settings. Subsequently, the approach is extended to three dimensions, and finally,

shape optimization is conducted to minimize noise for a far-field observer. The results affirm the

efficacy of the proposed optimization framework by significant noise reduction across all cases.
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Chapter 1

Introduction

1.1 Motivation

Robert Koch, the Nobel Prize winner in physiology and medicine in 1905, anticipated in 1910

that “One day, man will have to fight noise as fiercely as cholera and pest.” The World Health Or-

ganization (WHO) estimates that there is a loss of more than a million healthy life years in Western

Europe annually due to noise-induced diseases [7]. The negative impacts of noise on the environ-

ment and human health have been studied thoroughly in the past decades [8, 9]. Environmental

impacts include disruptions to wildlife behaviour and habitat [10], while human health impacts can

range from hearing loss and sleep disturbance to increased stress levels and cardiovascular disease

[9]. In the last two decades, global air passenger traffic demand has increased. In 2019, the annual

number of air passengers was 4.5 billion [11]. The International Air Transport Association (IATA)

predicts that total air transport could double, following the pre-pandemic trends, in the next two

decades [12]. Hence, there is considerable debate about the environmental impacts of air travel,

and the noise impacts of aviation must be considered and reduced accordingly.
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1.2 Thesis Objectives and Contributions

This thesis is driven by the overarching goal of advancing the field of aeroacoustic design

and optimization for aerospace vehicles through the development and application of innovative

frameworks. The research is structured into four distinct parts to comprehensively address various

aspects of aeroacoustic optimization and prediction.

In the first part, the focus is on near-field aeroacoustic shape optimization for two-dimensional

flows. Leveraging the High-ORder Unstructured Solver (HORUS), this section showcases the

efficacy of the developed framework in reducing near-field noise, particularly at low Reynolds

numbers. The utilization of the Mesh Adaptive Direct Search (MADS) optimization algorithm

facilitates efficient exploration of design spaces without the need for gradients, demonstrating its

adaptability and robustness.

Building upon the success of the two-dimensional optimization, the second part extends the

framework to three-dimensional turbulent flows using high-order Implicit Large Eddy Simulation

(ILES). This advancement signifies a crucial step forward in accurately addressing the complexities

of turbulent flows. By incorporating high-fidelity simulations, this allows for a more comprehen-

sive exploration of aeroacoustic phenomena, contributing to the reduction of noise in turbulent

flows.

The third part introduces an aeroacoustic solver based on the Ffowcs Williams and Hawk-

ings (FWH) formulation, coupled with HORUS, enabling the prediction of noise at any far-field

observer, contributing a crucial tool for assessing the acoustic impact of aerospace vehicles over

varying distances.

The final part extends the optimization framework to address far-field noise concerns in three-

dimensional turbulent flows. This stage, empowered by the HORUS solver, FWH solver, and

MADS optimization algorithm, emphasizes the importance of holistic aeroacoustic shape opti-

mization to meet the evolving demands of aerospace design.

These research endeavors collectively contribute to the imperative need for advanced aeroa-

coustic frameworks in the design and optimization of contemporary aerospace vehicles. The uti-
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lization of a high-order flow solver like HORUS is instrumental in capturing intricate flow physics

accurately, ensuring a more reliable representation of real-world scenarios. The FWH acoustic

solver adds a vital predictive dimension, enabling a comprehensive assessment of noise impact

over various distances. The adoption of the gradient-free MADS optimization algorithm aligns

with the challenges posed by complex, multi-dimensional design spaces, offering a versatile and

efficient optimization tool. The significance of reducing noise in aerospace vehicles, including

air taxis, drones, and unmanned aerial vehicles, is underscored by its potential to meet stringent

noise regulations, facilitate quiet take-off and landing, and enhance overall urban air mobility.

These contributions collectively address critical challenges in the aerospace industry, advancing

noise reduction strategies and paving the way for more sustainable and community-friendly aerial

transportation solutions.

1.3 Thesis Outline

This thesis presents the governing equations and available numerical methods in Chapter 1.

Chapter 2 presents methodology used in this study, providing a comprehensive overview of the ap-

proach employed. Then, near-field aeroacoustic shape optimization is investigated in two and three

dimensions in Chapters 3 and 4, respectively. The implementation, verification, and validation of

the far-field noise prediction framework are explained in Chapter 5, showcasing the robustness and

accuracy of the developed framework. Furthermore, coupling of the optimization framework with

the far-field noise prediction framework is investigated, exploring its potential for aeroacoustic

shape optimization in the far-field. Finally, Chapter 6 concludes the thesis with a summary of the

findings, recommendations for future work, and potential research applications.

1.4 Aviation History

Pioneering advancements in human flight began with the Montgolfier brothers in France, who

introduced balloons in 1783 [1], shown in Figure 1.1. Subsequently, in the 1890s, Otto Lilienthal
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Figure 1.1. First public demonstration of Montgolfier brothers’ balloon in Annonay, France [1].

made significant progress in glider technology, becoming the first person to construct and fly glid-

ers successfully as shown in Figure 1.2. Building upon Lilienthal’s achievements, the American

brothers Wilbur and Orville Wright developed a fully functional biplane glider by 1902, capable

of controlled flight. Expanding upon their innovations, the Wrights added a small engine and two

propellers to another biplane, leading to the historical event of the world’s first successful human-

carrying engine-powered flight on December 17, 1903, at Kitty Hawk, North Carolina. Their

aircraft, the Wright Flyer, is shown in Figure 1.3.

The aviation field has undergone significant transformations since the pioneering efforts of the

Wright brothers in the early 20th century. The early aircraft designed by the Wright brothers were

biplane gliders with wooden frames covered in fabric. The pilot’s body movements controlled

these aircraft, and their flights were relatively short in duration. Over the years, aircraft design has
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Figure 1.2. Lilienthal glider [2].

Figure 1.3. Wrights’ first powered airplane [3].
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Figure 1.4. Messerschmitt Me 262 aircraft [4].

evolved significantly in terms of size, materials, aerodynamics, propulsion, and related technolo-

gies. A significant milestone in aviation history was the introduction of all-metal aircraft in the

1930s, which replaced the fabric-covered wooden frames of earlier designs. This shift to all-metal

fuselage and wings improved aircraft’s durability, strength, and performance.

The advent of World War II brought about further advancements in aviation technology. Jet

engines were introduced, allowing for higher speeds and greater efficiency than piston-engined

propeller aircraft. The first operational jet-powered aircraft, the Messerschmitt Me 262, shown in

Figure 1.4, was developed by Germany during the war, followed by other countries such as the

United Kingdom, the United States, and the Soviet Union. After World War II, the commercial

aviation industry experienced rapid growth with the introduction of jet airliners. In the 1950s,

aircraft manufacturers such as Boeing and Airbus emerged as significant players in the aviation

industry, developing innovative and advanced aircraft designs. Boeing introduced the Boeing 707

capable of carrying passengers at higher speeds and over longer distances. Airbus, a European

consortium of aircraft manufacturers, was formed in the 1970s and introduced the Airbus A300,

shown in Figure 1.5, which featured advanced aerodynamics, materials, and avionics.

Since then, aircraft designs have continued to evolve with advancements in technology and en-
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Figure 1.5. Airbus A300 aircraft [5].

gineering. Modern commercial aircraft feature advanced composite materials, sophisticated aero-

dynamic designs, fly-by-wire systems, and cutting-edge avionics. As a result, these aircraft can fly

at higher speeds, longer distances, and with improved fuel efficiency, comfort, and safety features.

Recently, there has been a growing emphasis on environmental sustainability in aircraft design

[13, 14, 15, 16]. For example, manufacturers are exploring alternative propulsion systems, such as

electric and hybrid-electric engines, to reduce greenhouse gas emissions and noise pollution. Ad-

ditionally, there is ongoing research in areas such as supersonic and hypersonic flight, autonomous

aircraft, and electric and hybrid aircraft, which may shape the future of aviation.

As we delve into the rich history of aviation, it becomes evident that aircraft design has always

been in a constant state of evolution. Traditionally, aircraft optimization relied on analytical analy-

sis and physical model testing, which is expensive and not economically viable. However, with the

advent of computer technology, computational methods have become indispensable for optimizing

aircraft design. While such technologies have led to significant advancements in the aerodynamic

design of aircraft, there is still ongoing work to be done in the realm of aeroacoustic design.
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1.5 Aeroacoustics

Aviation noise has become a significant concern for both operators and regulators due to the

increasing evidence of adverse health impacts, continuous community complaints, and the avail-

ability of cost-effective programs to reduce exposure to aircraft noise. More stringent international

policies have also added to this pressure [17].

The concerns related to aircraft noise encompass community annoyance, sleep disturbance,

health impacts, and potential effects on children’s learning, with studies indicating associations

between aircraft noise and elevated blood pressure and stress hormone levels in children, though

conclusive evidence is lacking and other factors may contribute [9].

The imperative of addressing aviation noise concerns has given rise to aeroacoustic shape op-

timization. By developing robust and reliable optimization frameworks, it becomes feasible to

minimize the aviation noise. These optimization frameworks play a pivotal role in not only meet-

ing regulatory requirements but also in proactively reducing community annoyance and potential

health impacts associated with aviation noise. As the industry increasingly emphasizes sustain-

able practices, the integration of aeroacoustic shape optimization emerges as a crucial strategy for

achieving quieter and more community-friendly aviation operations. The acoustic terminology

used in this study is briefly explained in the following section.

1.5.1 Acoustic Terminology

In this section, we explore some essential acoustic terminology, namely, acoustic waves, acous-

tic intensity, and sound pressure level. Understanding these concepts is of utmost importance for

comprehending aeroacoustics and, in particular, the contents of this thesis.

1.5.1.1 AcousticWaves

Acoustic waves are mechanical waves that propagate through a medium, such as air, resulting

from the periodic compression and rarefaction of the medium [18]. They can be generated by a

vibrating source, such as a musical instrument or vocal cords, and are perceived as sound by the
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human ear. Acoustic waves have various applications in fields like communication, music, and

medical imaging. Furthermore, aeroacoustic waves are typically generated by the interaction of a

fluid flow with solid objects, typically in the context of aerodynamics. When a fluid, such as air,

flows over or around solid objects, such as an aircraft wing or a car body, it can create complex

flow patterns that generate sound waves. These aeroacoustic waves are often characterized by their

frequency, amplitude, and directionality and can have significant implications for noise control, en-

vironmental impact, and vehicle design. When a fluid flow becomes turbulent, it undergoes rapid

changes in velocity and pressure, which can generate aeroacoustic waves as the flow interacts with

solid objects or turbulent structures decay. Turbulent flows can be a significant source of aeroa-

coustic waves, especially in high-speed flows or flow around complex geometries. Understanding

and predicting the generation of aeroacoustic waves from turbulent flows is an important area of

research in computational aeroacoustics.

1.5.1.2 AcousticMeasurements

Measuring noise is critical in understanding its characteristics and evaluating its impact. Noise

is typically measured using specialized instruments called sound level meters or noise dosime-

ters. These instruments measure the sound pressure level, which is the magnitude of the pressure

fluctuations caused by the sound waves, and are expressed in units of decibels (dB). Sound level

measurements can quantify the intensity or loudness of noise and determine its frequency, content,

and duration.

Frequency, amplitude, pitch, and decibel are essential parameters that describe noise charac-

teristics. Frequency refers to the number of cycles or oscillations of a sound wave per unit of time

and is measured in Hertz (Hz). It determines the perceived pitch of the sound, with higher frequen-

cies corresponding to higher pitches and lower frequencies corresponding to lower pitches. On the

other hand, the amplitude is the magnitude or strength of the sound wave and is typically measured

as the maximum pressure fluctuation or displacement of the medium caused by the sound wave. It

determines the perceived volume or loudness of the sound, with larger amplitudes corresponding
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SPL (dB) Source (distance from source) Human Perception
180+ Rocket launch (50m)

160 − 168 Shotgun blast (< 1m) Hearing loss
146 − 162 Firecracker (3m)
135 − 140 Air raid siren (30m)
115 − 130 Live rock concert (5m) Threshold of pain
112 − 125 Snowmobile (< 1m)
109 − 120 Jack hammer (< 1m)
≈ 110 Boeing 707 before landing (1800m) Very loud

93 − 114 Subway train (5m)
98 − 112 Hand-hell drill (< 1m)
≈ 90 Boeing 787 before landing Loud

82 − 100 Heavy traffic (5m)
72 − 93 Restaurant (< 1m)
71 − 91 Electric mixer (< 1m) Quiet
45 − 70 Joby eVTOL (< 500m)

0 Human threshold of hearing

Table 1.1. Sound pressure level scale of human hearing, adopted from [6]

to louder sounds. Finally, the pitch is a subjective perception of the frequency of a sound and can

vary depending on the individual’s hearing sensitivity and perception. Decibel is a logarithmic

unit that expresses the ratio of one sound intensity or pressure level to another. It is commonly

used to represent the noise magnitude, with higher decibel values corresponding to louder sounds.

Decibels provide a convenient way to compare and quantify different noise levels and assess their

potential impact on human health and the environment. Table 1.1 illustrates the typical range of the

decibel scale and presents many acoustic sources along with their corresponding perceived levels

to the human ear.

Acoustic intensity is a fundamental physical quantity used to quantify the power carried by

sound waves per unit area in a direction perpendicular to that area. The sound intensity unit is

measured in watts per square meter, W/m2. It is important to note that sound intensity and pressure

are not the same physical quantities, although they are related. A Sound Intensity Level (SIL)

is a unit of measurement that quantifies sound intensity in decibels, dB, relative to a reference

intensity level. Although SIL is related to sound intensity, it is not directly proportional. The SIL

is measured on a logarithmic scale, while sound intensity is measured on a linear scale. However,
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the relationship between the two can be described mathematically using the following equation

SIL = 10 log10

(

I

I0

)

, (1.1)

where I is the sound intensity, and I0 is the reference intensity, usually 10−12W/m2. Therefore, the

SIL increases as the sound intensity increases, but not at a constant rate. While sound intensity

measures the amount of power carried by sound waves, human hearing is sensitive to sound pres-

sure, the physical quantity used to measure the loudness of sound humans can hear. The Sound

Pressure Level (SPL) can be obtained using the following equation

SPL = 20 log10

(

p′rms

pre f

)

, (1.2)

where pre f = 20µPa is the reference pressure, and p′rms is the root-mean-squared of the pressure

perturbation, p′, which is calculated by subtracting the time-averaged pressure, p, from the instan-

taneous pressure, p, i.e. p′ = p − p.

In general, there are various noise measurements commonly used in sound analysis. Apart

from IPL and SPL, one can consider the steady equivalent continuous sound level over a specified

period, typically measured in decibels dB and known as equivalent continuous sound level (Leq).

It provides a single value that summarizes the overall sound level over a duration, often used to

assess average noise exposure. Furthermore, the overall sound pressure level (OASPL) calculates

the total sound pressure level over a designated time period; perceived noise level (PENL) accounts

for human perception of noise by weighting sound levels based on psychoacoustic factors to better

represent the perceived loudness of different frequencies; and A-weighted equivalent sound level

(LAeq) calculates the equivalent continuous sound level with A-weighting applied attenuating low

and high frequencies to better match human hearing sensitivity.
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1.6 Governing Equations

The governing equations of fluid flow are a set of Partial Differential Equations (PDEs) for con-

servation of mass, momentum, and energy. Solving these equations is essential to understanding

and predicting fluid flow in various applications, from aircraft design to weather forecasting. De-

spite their fundamental importance, these equations are notoriously difficult to solve analytically,

and require advanced analytical and computational techniques to obtain accurate approximations.

The conservation of mass, momentum, and energy equations are explained in this chapter, along

with the ideal gas law as the closure equation of state. Then, the unsteady compressible Navier-

Stokes equations are given in their compact form.

1.6.1 Reynolds Transport Theorem

There are two different approaches in analysing fluid flows, the Lagrangian approach and the

Eulerian approach. In the Lagrangian approach, individual fluid particles are tracked as they move

through space and time. Each fluid particle is labelled and its position, velocity, and other proper-

ties are described as functions of time. The Lagrangian approach focuses on following the motion

of individual particles. Physical laws, such as Newton’s laws and conservation principles, are

directly applied to each particle. The Lagrangian approach is well-suited for analyzing a small

number of particles, but it becomes impractical for complex flow fields with a large number of

particles. In the Eulerian approach, a control volume is defined in the flow field, and fluid flow

properties of interest are expressed as fields within this control volume. Individual fluid particles

are not identified or tracked; instead, the focus is on specific locations in space as time passes.

Properties like pressure, velocity, acceleration, and other flow variables are described as functions

of space and time within the control volume. Eulerian methods are better suited for studying

complex fluid dynamics with a high particle count. Physical laws, including Newton’s laws and

conservation principles, need to be translated or reformulated for use with the Eulerian description.

The Reynolds transport theorem [19] provides a mathematical framework for the transforma-

tion from the Lagrangian to the Eulerian description. It allows us to relate the time rate of change of
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an extensive property within a system to the rate of change of that property within a control volume,

as well as the net flow of the property across the control surface. By applying the Reynolds trans-

port theorem, we can establish a relationship between the Lagrangian and Eulerian approaches,

enabling us to use the conservation laws in the Eulerian framework of Computational Fluid Dy-

namics (CFD).

1.6.2 Conservation ofMass

Conservation of mass states that the total mass of a fluid in a closed system remains constant

over time. This principle is essential in CFD as it provides a fundamental equation that must be

satisfied for any simulation to be physically meaningful. The PDE form of conservation of mass

equation is

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (1.3)

where ρ is the density, t is time, ui are the components of the velocity vector, and xi are the

components of the coordinate system. This equation ensures that the mass of the fluid remains

constant within the system being simulated and provides a mathematical constraint that must be

satisfied by any numerical simulation of fluid flow.

1.6.3 Conservation ofMomentum

Momentum is a physical quantity defined as the product of an object’s mass and velocity.

Conservation of momentum is a fundamental principle in physics that states that the total amount

of momentum within a closed system remains constant. This principle implies that momentum

cannot be created or destroyed but can only be transferred or transformed from one object to

another within the system. Additionally, conservation of momentum applies independently in all

Cartesian directions, which can present challenges in predicting the behaviour of complex fluid

systems, particularly in the presence of forces acting in multiple directions. The conservation of
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momentum equation is expressed as

∂

∂t
(ρui) +

∂

∂x j
(ρuiu j) = −

∂p

∂xi
+

∂

∂x j
(τi j), (1.4)

where p is the pressure, and τi j is the shear stress tensor. The first term on the left-hand side of

the equation represents the rate of change of momentum with respect to time, while the second

term represents the convective acceleration of momentum. The right-hand side of the equation

represents the forces acting on the fluid, including pressure and viscous forces. The shear stress

tensor, τi j, represents the viscous forces acting on the fluid and is a function of the fluid’s velocity

gradients. The shear stress tensor has nine components representing the stresses in the three-

dimensional space. In general, the shear stress tensor is a function of the viscosity of the fluid and

the velocity gradients. It plays a critical role in predicting fluid flow behaviour, particularly in the

boundary layer regions of the fluid where the velocity gradients are high. The shear stress tensor

is defined as

τi j = µ

(

∂ui

∂x j
+
∂u j

∂xi
−

2

3

∂uk

∂xk
δi j

)

, (1.5)

where δi j is the Kronecker delta, and µ is the dynamic viscosity.

1.6.4 Conservation of Energy

Conservation of energy states that energy in an isolated system cannot be created or destroyed

but can be converted from one form to another. This equation represents the rate of change of the

total energy of a fluid system with respect to time and space and is written in differential form as

∂

∂t
(ρe) +

∂

∂x j
(ρu je) = −

∂

∂x j
(pu j) +

∂

∂x j
(τi jui) −

∂q j

∂x j
, (1.6)

where e is the total energy, and q j is the heat flux. On the left-hand side, the first term represents

the time rate of change of the total energy of the fluid system, and the second term represents the

convective transport of energy by the fluid. The terms on the right-hand side represent the work
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done on the fluid by pressure and viscous forces, respectively, and the heat transfer rate due to

thermal conduction and radiation. The heat flux is defined as

q j = −
µ

Pr

∂

∂x j

(

e +
p

ρ
−

1

2
ukuk

)

, (1.7)

where Pr is the Prandtl number.

1.6.5 Ideal Gas Law

The ideal gas law is a fundamental equation of state for an ideal gas. In CFD simulations,

the ideal gas law can be used to close the governing equations of motion, which describe the

behaviour of the fluid. To close the equations, we need to relate the pressure and energy of the

fluid by assuming that the fluid is an ideal gas. The pressure and density of the fluid are related to

the total energy through the following equation

p = (γ − 1)ρ

(

e −
1

2
ukuk

)

. (1.8)

Closure using the ideal gas law allows us to write the equations of motion in terms of the fluid’s

density, velocity, and energy and to solve them numerically using computational methods.

1.6.6 Navier-Stokes Equations

The Navier-Stokes equations describe the motion of viscous fluid in a given domain and pro-

vide a fundamental basis for understanding fluid mechanics. The equations are a set of PDEs con-

sisting of a time-dependent conservation of mass equation, three time-dependent conservation of

momentum equations, and a time-dependent conservation of energy equation. The primitive vari-

ables in the problem are pressure, density, velocity, and temperature. The independent variables

are the spatial coordinates of the domain and the time. The compressible unsteady Navier-Stokes
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equations can be cast in the following general form

∂uuu

∂t
+∇∇∇ · FFF = 0, (1.9)

where uuu is the vector of conserved variables
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and the inviscid and viscous Navier-Stokes fluxes are
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and

fff vis, j(uuu,∇uuu) =









































0

τi j

−q j − uiτi j









































, (1.12)

respectively.

The Navier-Stokes equations are difficult to solve analytically, leading to the use of numerical

methods. The challenges in solving these equations arise from their partial differential form and

non-linearity of the modelled flow phenomena. Therefore, numerical methods are necessary to

obtain approximated solutions to these equations, which are critical for predicting and optimizing

the behaviour of fluids in various applications.
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1.7 NumericalMethods

The development of numerical techniques and algorithms for solving PDEs using CFD has

revolutionized the field of fluid dynamics. CFD has enabled many essential applications in the

aerospace industry, including the prediction of noise and acoustics. Computational AeroAcoustic

(CAA) is a relatively new field that combines numerical methods, fluid mechanics, and acoustics

to model and predict noise sources and propagation in complex flows. CFD plays a crucial role in

CAA by providing accurate and efficient solutions to the governing equations of fluid dynamics and

acoustics. The ability to predict and control aviation noise is critical for reducing the environmental

impacts of aviation and improving the safety and comfort of air travel [7]. Therefore, developing

advanced CFD techniques for noise prediction is paramount to the aerospace industry [20].

To mitigate the impact of aviation noise, it is necessary to employ optimization techniques

that can be integrated with CFD and CAA frameworks. Different optimization approaches, such

as gradient-based and gradient-free methods, can be considered. In addition, these techniques can

help in identifying optimal designs and operational conditions. Integrating optimization techniques

with CFD and CAA provides a comprehensive framework for predicting and mitigating noise,

contributing to advancements in noise reduction technology and improving the overall acoustic

performance of aircraft.

This section is structured into three parts. First, we discuss turbulent flow and predictive meth-

ods. Next, we briefly touch upon CFD and CAA techniques. Lastly, we explore various optimiza-

tion techniques and explain the gradient-free MADS optimization algorithm.

1.7.1 Turbulence

Turbulence is complex flow behaviour that arises in various practical applications. Chaotic

fluctuations in velocity, pressure, and other flow properties characterize turbulence. Due to their

prevalence in real-world scenarios, precisely predicting turbulent flows is very important. Mathe-

matical models can be used to predict the evolution of turbulent flows thanks to the development

of digital computers.
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An important parameter in predicting the onset of turbulence is the Reynolds number, Re, which

is the ratio of inertial forces to viscous forces in a fluid. It is a dimensionless number comprised

of the physical characteristics of the flow. An increasing Reynolds number indicates an increasing

turbulence of flow. In the context of turbulent flows, the Reynolds number is used to predict the

critical velocity at which the flow transitions from laminar to turbulent.

One of the fundamental concepts in turbulence is the energy cascade, which describes energy

transfer between different scales of motion. In a turbulent flow, large-scale eddies break down

into smaller eddies. This process continues, with energy being transferred from larger to smaller

scales until it reaches the smallest scales of turbulence known as the Kolmogorov length scale, η,

where kinetic energy is dissipated into heat through viscous dissipation [21]. Turbulent flows are

characterized by a wide range of scales that can vary over several orders of magnitude, and each

scale contributes to the overall behaviour of the turbulent flow. The larger scales of turbulence

are typically associated with the energy-containing or energy-producing range, while the smaller

scales are associated with the energy-dissipating or energy-consuming range.

To simulate and predict turbulent flows, various approaches are developed. The most accurate

one is the Direct Numerical Simulation (DNS), where all turbulence scales are resolved. However,

DNS is computationally expensive for most practical engineering problems. Alternatively, turbu-

lence modelling approaches can be used to predict turbulent flows. These models aim to capture

turbulence’s complex and multiscale nature by providing approximations or closures for the unre-

solved turbulent scales. Commonly used turbulence models are Large Eddy Simulation (LES) and

Reynolds-Averaged Navier-Stokes (RANS) approach. Each model offers different accuracy and

computational efficiency levels based on the turbulence scales that they model or resolve. Figure

1.6 shows the energy cascade of turbulence and the scales that are either resolved or modelled

within each approach. In the following sections, each of these approaches is briefly discussed.

18



Energy cascade

Small scales
dissipation

log(κ)

lo
g
(E

k
)

l

η

Modelled in RANS

Resolved in DNS

Resolved in LES Modelled in LES
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1.7.1.1 Direct Numerical Simulation

In DNS, the Navier-Stokes equations are solved numerically without any turbulence model, re-

sulting in the direct computation of all scales of motion in the flow, from the largest to the smallest.

This means that DNS provides a highly accurate and detailed prediction of the entire flow field,

including the complex interactions between the large and small eddies that characterize turbulent

flows. The resolution of the numerical grid used in DNS must be fine enough to accurately resolve

the smallest turbulent structures in the flow, spanning a wide range of scales. In order to solve all

of the scales from the largest integral length scale, l, to the smallest Kolmogorov length scale, η,

the grid spacing size, ∆x, must be proportional to η. So, the minimum grid-spacing size required

for DNS scales like [21]

∆x ∼ η ∼ l Re−
3
4 . (1.13)

For any three-dimensional domain, Ld being the linear dimension of the computational domain,

the minimum number of sampling points required for DNS will scale like [21]

N ∼
( Ld

∆x

)3

∼

(Ld

l

)3

Re
9
4 . (1.14)

This shows that a vast number of grid points is required for DNS to simulate high Reynolds number

regimes, making it prohibitively expensive to most flows of interest for engineers, like the flow over

an aircraft where the Reynolds number is typically in the order of millions.

One of the main advantages of DNS is its ability to provide highly accurate predictions of

turbulent flows, as it directly resolves all the scales of motion without any turbulence modelling

assumptions. DNS is beneficial for studying fundamental turbulence phenomena, such as the en-

ergy cascade and the dynamics of vortical structures, and validating and calibrating turbulence

models used in other approaches, such as LES and RANS. However, the computational cost of

DNS makes simulating industrial scale problems unattainable with today’s computational power.

As a result, DNS is typically limited to relatively low Reynolds numbers, where the smallest scales

of motion are still computationally manageable.
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1.7.1.2 Large Eddy Simulation

In LES, the large eddies responsible for most of the energy transfer and transport in turbulent

flows are directly resolved, while the small-scale structures are modelled typically using Sub-Grid

Scale (SGS) models. In LES, the numerical grid used is coarser than that used in DNS, as the small-

scale structures are modelled rather than resolved. The filtered or resolved equations, obtained by

applying a spatial filter to the governing equations, are then solved iteratively in time to obtain

the time evolution of the large-scale flow field. Finally, the unresolved, small-scale structures

are modelled using SGS models, typically based on the local flow properties and the resolved

large-scale structures. These models aim to capture the effects of small-scale structures on large

scales, such as energy transfer and SGS turbulence production. Various SGS models, such as the

Smagorinsky model [22], the dynamic Smagorinsky model [23], and the scale similarity models

[24], can be used in LES, depending on the flow characteristics and the desired level of accuracy.

One of the main advantages of LES over DNS is its lower computational cost, as it uses a

coarser grid. Therefore, for equivalent cost, LES is capable of predicting turbulent flows at higher

Reynolds numbers, making it more suitable for practical engineering applications. LES can also

provide insights into the dynamics and physics of turbulent flows, such as the behaviour of large-

scale structures and their interactions, which are essential for understanding and predicting com-

plex flows in real-world scenarios. LES is a widely used approach for predicting the evolution

of turbulent flows, striking a balance between accuracy and computational cost. However, the ac-

curacy of LES predictions depends on the quality of the SGS models used [25], which are still

an active area of research and may only sometimes accurately capture the small-scale turbulence

dynamics [26]. LES is also limited by the spatial and temporal resolutions of the numerical grid,

which can affect the accuracy of the predicted flow field.

1.7.1.3 Implicit Large Eddy Simulation

Implicit large eddy simulation is a recent approach that facilitates LES without an explicit SGS

model [27]. The key idea in ILES is to use an inherently dissipative numerical discretization, such
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as a high-order upwinded approach. These schemes introduce numerical dissipation at the small

scales of the flow, effectively dampening the small-scale turbulence without the need for explicit

SGS models. As a result, the small-scale structures are implicitly modelled by the numerical

dissipation of the discretization, while the large-scale structures are directly resolved.

One of the main advantages of ILES over LES is its ability to accurately capture small-scale

turbulence without explicit SGS models, which can be challenging to model accurately in LES.

ILES also avoids some of the limitations of DNS, such as the high computational cost associated

with resolving all scales of turbulence. Additionally, ILES can handle complex geometries and un-

structured grids, making it applicable to a wide range of practical engineering problems. However,

ILES also has some limitations. For example, the accuracy of ILES predictions depends on the ac-

curacy of the numerical discretization scheme used, and not all numerical schemes are suitable for

ILES [27]. Furthermore, the dissipation level introduced by the numerical scheme must be care-

fully controlled to ensure accurate modelling of small-scale structures [28]. Additionally, ILES

may still require some form of modelling or treatment for near-wall turbulence, as the small-scale

structures in the near-wall region are particularly challenging to capture accurately [29].

1.7.1.4 Reynolds-Averaged Navier-Stokes Approach

RANS is a widely used technique that employs statistical averaging to predict the behaviour

of turbulent flows. In RANS, the governing equations are averaged over time to obtain time-

averaged quantities. This averaging process allows for the simulation of turbulent flows at reduced

computational cost compared to approaches like DNS, LES, and ILES. Furthermore, it eliminates

the need to resolve all the turbulent scales in time and space. One of the key requirements of

RANS is the use of turbulence models to account for the unresolved time-dependent terms on the

time-averaged flow variables. These models are based on statistical assumptions and empirical

correlations and provide additional closure equations that are solved along with the Navier-Stokes

equations to account for the unresolved turbulent scales.

One of the main advantages of RANS is computational efficiency. It does not require the
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explicit resolution of turbulent scales, making it suitable for various engineering applications with

complex geometries. RANS also provides insights into the statistical behaviour of turbulence, as it

predicts time-averaged quantities that are often of interest in engineering analysis and design. One

of the main limitations of RANS is its reliance on turbulence models, which introduce additional

assumptions and uncertainties into the simulations. The accuracy of RANS predictions depends

on the accuracy of the turbulence model used, and different models may perform differently for

different flow configurations [30]. RANS also struggles to accurately capture highly transient and

unsteady flows, as the time-averaging process may smooth out important transient features [30].

Additionally, RANS may not accurately capture some complex physics associated with turbulence,

such as turbulent mixing and coherent structures [31]. These effects are inherently transient and

difficult to capture using time-averaging.

1.7.1.5 Comparison

DNS, LES, and ILES are known as scale-resolving techniques. Despite providing fairly accu-

rate results, the computational cost of these techniques is more expensive than RANS. DNS is the

most accurate method; however, it needs a large number of degrees of freedom to resolve all of the

eddy sizes. In DNS, the most expensive part of the computation is the intermediate to small-scale

eddies. Since energy cascades from the larger eddies down to the smaller ones, the large-scale

eddies might not be heavily influenced by the small-scale eddies [21]. So, one can think of LES

instead of DNS, where those small-scale eddies can remain unresolved and modelled, whereas

the largest scales to the intermediate ones are solved accurately. In LES, the effect of unresolved

small-scale eddies on the turbulent flow is modelled using SGS models. However, ILES relies on

truncation error to act as the SGS model.

As stated by the National Aeronautics and Space Administration (NASA), scale-resolving tech-

niques are expected to enable unprecedented insight into the aerodynamic design process, enabling

superior designs at reduced cost and risk [20]. The ability of current RANS-based CFD methods

is limited to problems that require an extensive experience base and are unreliable for turbulent-
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separated flows. RANS approaches poorly model turbulent-separated flows, so scale-resolving

techniques are of industrial interest due to their capability in these regimes.

In aeroacoustics, the sound is generated from unsteady flow features. Thus, steady RANS tech-

niques are not suitable, and unsteady RANS techniques are usually insufficient to model unsteady

turbulent behaviour of the flow due to the inherent unsteadiness of noise-generating sources [32].

Scale-resolving techniques are considered attractive alternatives; however, the affordability of such

techniques is an open question. LES is a promising approach for noise prediction at Reynolds num-

ber of practical engineering interest [33]. The accuracy of LES is affected by the dissipation of the

discretization techniques. The turbulent eddies and their associated sound spectra can be damped

artificially due to numerical dissipation, especially in the high-frequency ranges [32]. LES using

different SGS models is compared to unsteady RANS results, showing its appropriateness [34].

The ILES technique, which has no explicit SGS model, saves significant computational cost [35].

ILES has been used for sound computation by other researchers demonstrating promising results

[36, 37, 38].

1.7.2 Computational Fluid Dynamics

The modern history of fluid dynamics dates back to the seventeenth century when pure experi-

mental approaches were established. In the eighteenth and nineteenth centuries, improvements in

theoretical fluid dynamics led researchers to combine experimental and theoretical approaches in

the twentieth century. The advent of powerful computers and numerical algorithms revolutional-

ized this area of science. Hence, a third approach, CFD, appeared [39].

CFD is a branch of fluid dynamics that utilizes digital computers and applied mathematics to

produce cost-effective quantitative predictions of real fluid flow phenomena based on approximate

numerical solutions of fluid motion conservation laws. CFD has developed quickly during the

past several decades, which has led to improved simulations of aerodynamic flows. Implementing

advanced CFD techniques to design aircraft reduces ground-based and in-flight tests, wind tun-

nel time for an aircraft development program, and the cost and risk of optimizing designs. As a
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physics-based simulation technology, CFD improves our understanding and insight into critical

physical phenomena. Designing and analyzing engineering systems often requires experimental

tests that are impractical due to model complexity or wind tunnel limitations, giving rise to the

inevitable need for CFD. Thus, developing CFD techniques is necessary to make such studies

feasible and reduce the cost and risk of designing such systems.

The utility of CFD also arises due to the lack of a general analytical solution to the governing

equations. The first step in solving PDEs using CFD is discretization, which is transferring the

continuous PDE system into a discrete approximation of that PDE to solve it numerically. The

approximate numerical solution of any PDE gives answers only at a set of discrete points in the

domain, known as grid points. In contrast, the analytical solution gives a continuous solution that

varies continuously throughout the domain. Different methods are available to discretize a PDE

temporally and spatially, and a few of them are explained here.

1.7.2.1 High-OrderMethods

High-order CFD techniques have garnered significant interest due to their potential to achieve

a higher levels of accuracy and efficiency in simulating fluid flows. One of the key advantages of

high-order CFD techniques is their ability to capture complex flow features and resolve fine details

in the solution.

The adoption of high-order methods in industrial applications poses notable challenges. For

instance, the formulation and implementation of high-order methods require careful consideration

and robust algorithms. These techniques are inherently more complex than traditional lower-order

methods, and the design of stable and accurate numerical schemes can be challenging. Ensuring

that high-order methods maintain stability and do not introduce spurious oscillations is a crucial

concern in practice. Various techniques are available to ensure the stability of high-order simula-

tions, such as modal filtering [40, 41] and anti-aliasing [42, 43, 44], amongst others. Additionally,

transitioning from conventional lower-order CFD methods to high-order methods often requires

re-engineering existing simulation workflows and software infrastructure. This adaptation process
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can be resource-intensive and may deter some industrial applications from making the switch.

High-order methods, while more complex, can achieve comparable accuracy to low-order

methods on a coarser mesh, potentially making them more computationally cost-effective [45].

Furthermore, various techniques have been introduced to lower the computational cost of high-

order methods, including polynomial adaptation [46, 47, 48], mesh adaptation [49, 50, 51], and

hybridized and embedded FR approaches [52]. Moreover, adaptive time-stepping [53] can be com-

bined with novel temporal schemes to accelerate simulations, such as Paired Explicit Runge-Kutta

(P-ERK) [54], Embedded P-ERK [55], and optimal explicit RK schemes [56].

In the realm of acoustic studies, the choice to transition to higher-order CFD methods becomes

particularly compelling. This is due to the fact that the accuracy of noise prediction is intimately

linked to the accuracy of the underlying flow solver. High-order CFD methods, with their capacity

to capture intricate flow features and resolve fine details, offer a significant advantage in improv-

ing the precision of the flow solver. This enhanced accuracy not only contributes to more reliable

predictions of the flow field but also has a direct impact on the quality of noise predictions. The

benefits of high-order CFD techniques in acoustic studies extends beyond merely improving accu-

racy. They can lead to more insightful analyses of noise sources and propagation, which is crucial

for understanding and mitigating noise-related issues.

1.7.2.2 Spatial DiscretizationMethods

Common techniques for spatial discretization include Finite-Difference Method (FDM), Finite-

Volume Method (FVM), and Finite-Element Method (FEM). Each method has strengths and limi-

tations and may be better suited to specific problems or applications.

The simplest and historically oldest method for spatial discretization of PDEs is the FDM.

In FDM, the solution is approximated at regularly arranged discrete points, illustrated in Fig-

ure 1.7. Operator discretization via the FD approach is often straightforward, leading to efficient

schemes. Additionally, the explicit semi-discrete form allows for flexibility in selecting appropriate

time stepping methods. Moreover, these methods can be extended to higher-order approximations
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with relative ease. However, a limitation of the method is its reliance on a local one-dimensional

polynomial approximation via a Taylor series expansion, which enforces a simple dimension-by-

dimension structure in higher dimensions [40], making the native FDM ill-suited for complex ge-

ometries. One way to address this limitation is by using curvilinear grids in combination with the

FD approach. By transforming the grid from Cartesian to curvilinear coordinates, the FD method

can be applied on these grids, providing a more suitable framework for solving problems with

somewhat complex geometries [57, 58, 59]. Nevertheless, it remains challenging to apply the FD

method to high-geometric complexity.

To achieve greater geometric flexibility, an element-based discretization is introduced, i.e.

the FV method. Hence, the computational domain, Ω, is represented by a collection of non-

overlapping elements, Ωk, and a volume average approximates the solution on each volume, in

its simplest form, as depicted in Figure 1.8. Typically, these elements are arranged in an unstruc-

tured manner to fully cover the physical domain. To increase the order of accuracy of the method,
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information from the neighbouring elements is required. This is achievable for the simple one-

dimensional case, similar to the FDM. However, in the case of higher dimensions, a particular

grid structure is required. However, other FV techniques have been developed to eliminate partic-

ular grid structure requirement, namely, Essentially Non-Oscillatory (ENO) [60], Weighted ENO

(WENO) [61], Monotonic Upstream-Centered Schemes for Conservation Laws (MUSCL) [62],

amongst others. FV methods are widely used in industry; however, it is challenging to extend

them to high-order and these methods are generally limited by memory bandwidth making them

ill-suited for modern hardware architectures [63].

To simplify extension to higher orders, more degrees of freedom can be introduced within

each volume by adding a set of solution points to the volumes and edges between them. This

method is known as the FEM, which splits the computational domain into a number of discrete

elements. FEM typically uses continuous basis functions within each element, and the elements

are connected in a globally continuous manner. Thus, the solution is approximated as a continu-
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ous function over the entire domain, and continuity is maintained across element boundaries. The

solution is approximated locally within each element using a set of basis functions. An intelligent

combination of FVM and FEM leads to the Discontinuous Galerkin FEM (DG-FEM), which is

well-suited for high-order accuracy in the vicinity of complex geometries [40]. In the DG-FEM

method, the solution is approximated using piecewise polynomials of a desired degree within each

element, allowing for discontinuities at the element interfaces. These discontinuities are handled

through the use of numerical fluxes that explicitly account for the jumps in the solution at element

interfaces. The solution and flux are approximated numerically within each element by a polyno-

mial of degree P = Np − 1, where Np is the total number of solution points within each element as

depicted in Figure 1.9. A space of test functions is defined, Vδ, and the residual is required to be

orthogonal to all test functions in this space. In the DG-FEM, the test functions are the nodal basis

functions [40].

Finally, Huynh [64] introduced a new high-order accurate approach capable of recovering some
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existing schemes, such as DG, and formulating new ones. This approach is known as Flux Recon-

struction (FR). The accuracy, generality, and robustness of the FR method, along with its suitability

for modern hardware, have made it appealing to solve problems that benefit from complex geome-

tries and high-order accuracy [65]. Moreover, FR can provide more accurate solutions in less

computational time than other standard low-order numerical methods [45]. Mills [6] investigated

the applicability of the FR approach for direct CAA revealing significant promise in its potential

utilization.

1.7.3 Computational Aeroacoustics

CAA is a specialized field of CFD that focuses on the simulation and prediction of sound

generated by aerodynamic flows. It involves the numerical modelling and simulation of fluid flow

and its interaction with solid structures, considering the generation, propagation, and radiation of

sound waves. The methodologies used in CAA range from semi-empirical schemes [66, 67, 68]

to high-fidelity unsteady flow simulations [69, 70]. Semi-empirical schemes estimate the noise

sources using mean-flow and turbulence statistics, while high-fidelity simulations resolve the sound

generation process by directly applying the fundamental conservation principles. The sound can

be computed in a limited region close to the sources, known as the near-field sound. However, the

study of sound far from these sources, known as the far-field sound, is of primary interest to the

aviation industry.

In recent years, advancements in computational power and numerical methods have greatly

enhanced the capabilities of CAA. For example, high-fidelity simulations, such as LES and DNS,

have allowed for more accurate and detailed predictions of aerodynamic noise [71, 72, 73]. These

simulations resolve the turbulent structures and flow fluctuations contributing to noise generation,

providing valuable insights into the underlying physics of sound propagation. On the other hand,

simplified models like RANS are commonly used for quick and practical noise predictions [74, 75].

However, they may have limitations in capturing the full acoustic spectrum of noise generation

[76].
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1.7.3.1 Direct Approach in CAA

In general, there are two approaches to noise prediction. The first, being the most accurate and

computationally expensive, is the direct approach. In this approach, the sound field is computed

together with the unsteady turbulent flow field using CFD techniques, which means that the sound

is predicted at any point by computing the acoustic pressure directly from the CFD results at that

point. Thus, the observer must be inside the computational domain, and the accuracy of the sound

prediction relies on the accuracy of CFD results. This approach is the most accurate numerical

noise prediction technique but is challenging. One of the main challenges of the direct approach is

the scale separation between the flow field and the sound-field. In an unconfined region, the time-

scale of a sound wave matches that of its fluid dynamic source [32]. However, the length-scale of

a sound wave is related to its fluid dynamic source by the fluctuating Mach number as λ = `/M,

λ being the wavelength and ` the eddy size [32]. Thus, a large length-scale separation exists

in low-fluctuating-Mach-number flows, requiring extremely small time steps on numerics due to

the acoustic Courant-Friedrichs-Lewey (CFL) number. The primary shortcoming of the direct

approach is that by increasing the distance of the observer position, the computational domain

has to be larger, which increases the computational cost of the simulation. Therefore, even if the

current growth level in supercomputers’ speed remains the same in the forthcoming years, this

method remains prohibitively expensive for general CAA problems in the aviation industry.

1.7.3.2 Hybrid Approaches in CAA

The second approach, being more computationally efficient for far-field CAA, is the hybrid ap-

proach. Different methods or models are combined to efficiently and accurately predict sound gen-

eration, propagation, and radiation from aerodynamic flows. In hybrid approaches, high-frequency

sound waves, known as near-field noise, are typically generated by turbulent flow structures and

require high-resolution numerical methods to capture their details accurately. On the other hand,

low-frequency sound waves, known as far-field noise or sound radiation, are generated by large-

scale flow features. Notably, in the far-field, the flow is quasi-linear with minimal turbulence and
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small pressure perturbation. Acoustic waves can be propagated using a linear acoustic analogy,

allowing for the use of simpler and computationally inexpensive models like Kirchhoff’s or the

Ffowcs Williams and Hawkings (FW-H) equation [77] to predict far-field noise. The hybrid ap-

proach may involve using a high-fidelity numerical method, such as LES or DNS, to capture the

near-field noise while using a more straightforward and computationally inexpensive model to

predict the far-field noise.

The second approach, being more computationally efficient for far-field CAA, is the hybrid ap-

proach. Different methods or models are combined to efficiently and accurately predict sound gen-

eration, propagation, and radiation from aerodynamic flows. In hybrid approaches, high-frequency

sound waves, known as near-field noise, are typically generated by turbulent flow structures and

require high-resolution numerical methods to capture their details accurately. On the other hand,

low-frequency sound waves, known as far-field noise or sound radiation, are generated by large-

scale flow features and can be predicted using simpler models or methods. The hybrid approach

may involve using a high-fidelity numerical method, such as LES or DNS, to capture the near-field

noise while using a more straightforward and computationally inexpensive model, such as Kirch-

hoff’s or Ffowcs Williams and Hawkings (FW-H) equation [77], to predict the far-field noise.

Furthermore, in hybrid approaches, it is assumed that the non-linear near-field affects the propaga-

tion of the generated sound waves; however, the sound waves have no significant effect on the fluid

flow field. Since this assumption is only valid for low fluctuating Mach number flows, applying

hybrid approaches is restricted to such flows [32], as this approach assumes a one-way coupling of

the flow field and sound field.

The hybrid approach in CAA allows for a trade-off between accuracy and computational cost.

It is a practical approach for predicting aerodynamic sound in real-world engineering applications

where accuracy and efficiency are important considerations. Lighthill’s analogy [78], also known

as Lighthill’s theory, is a pioneering concept in CAA that relates the generation of sound by aero-

dynamic flows to the motion of fluid particles. It was first introduced by Sir James Lighthill in

the 1950s [78] and has since served as a fundamental framework for understanding and predicting
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aerodynamic sound.

1.7.3.3 Lighthill’s Acoustic Analogy

Lighthill’s theory [78] estimates the sound radiated from a fluctuating fluid flow into free space

and is based on the equations of motion. In Lighthill’s theory, conservation of mass is maintained

as in Equation 1.3; however, conservation of momentum is re-written as

∂

∂t
(ρui) + c2

0

∂ρ

∂xi
= −

∂Ti j

∂x j
, (1.15)

where c0 is the speed of sound, and Ti j is the Lighthill’s stress tensor defined as

Ti j = ρuiu j +
[

(p − p0) − c2
0 (ρ − ρ0)

]

δi j − σi j, (1.16)

where δi j is the Kronecker’s delta and σi j is viscous stress tensor. Finally, the wave equation is

defined as

∂2ρ

∂t2
− c2

0∇
2ρ =

∂2Ti, j

∂xi∂x j
, (1.17)

that describes the propagation of acoustic waves in the fluid, which are responsible for generating

sound. It relates the pressure fluctuations in the fluid to the rate of change of velocity fluctuations

and governs the behaviour of sound waves in the fluid medium. Equations 1.3, 1.15, and 1.17 are

the basic equations of the theory of aerodynamic sound production that provides a framework for

understanding and predicting the generation of sound by aerodynamic flows [78].

Lighthill estimates the acoustic power output of a fluid’s motion [79], based on the exact equa-

tions of motion of a gas, for a subsonic flow condition. Curle [80] extended the Lighthill analogy to

include the influence of the presence of solid and stationary surfaces on the sound generated aero-

dynamically. Ffowcs Williams and Hawkings have extended the Lighthill-Curle theory to include

the surfaces in arbitrary convective motion [77]. The FW-H equation is considered analytically

superior for aeroacoustics as it is founded on the principles of conservation in fluid mechanics,

as opposed to being based on the wave equation. This formulation is used in conjunction with
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unsteady RANS [34, 81], LES [34, 82, 83, 84, 85, 86], ILES [38, 87, 88], and DNS [89, 90]. The

FW-H formulation is thoroughly explained in Chapter 5.

The numerical methods to solve the flow field and predict the noise emitted by an object. The

goal of this study is to minimize the noise via shape optimization. Thus, in the next section, we

explore some available optimization techniques.

1.7.4 Optimization

In optimization problems, engineers are interested in minimizing/maximizing a function via

modifying a set of parameters, referred to as an objective function and design parameters, respec-

tively. An optimization problem aims to find the design variables that minimize or maximize the

objective function, F . The objective function represents a performance metric of interest, such

as aerodynamic efficiency or sound pressure level. The design variables, XXX, are the unknown pa-

rameters of the system being optimized, such as the points parametrizing the shape of an airfoil.

An optimization problem can have constraints, defining bounds on the feasible design space and

limiting the range of acceptable values for the design variables. These bounds can be used to

model physical, geometrical, or other limitations when finding the optimal solution. Constraints

are typically defined as equalities or inequalities that must be satisfied by the design variables. The

initial guess,X0X0X0, provides a starting point for the optimization algorithm to search for the optimal

solution. The quality of the initial guess can significantly impact the convergence and efficiency of

the optimization process. The optimization problem is terminated when specified criteria are met.

This can include conditions such as a maximum number of iterations, a minimum change in the

objective function, or the satisfaction of certain constraints.

Leveraging the use of optimization techniques to design quieter aircraft is an open question.

There is limited research on aeroacoustics optimization to reduce the far-field noise. For instance,

the aerodynamically generated noise, emitted by a two-dimensional NACA 0012 airfoil, has been

optimized using a discrete-adjoint Newton-Krylov algorithm and FW-H formulation [91]. An

optimization method based on artificial neural networks has also been introduced to minimize
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noise by Tao and Sun [92]. The far-field noise emitted by a rod-airfoil is minimized using an

algorithmic-differentiation-based discrete adjoint solver for optimization and unsteady RANS and

FW-H formulation via a hybrid approach [93]. In general, there are two optimizer categories,

gradient-based and gradient-free techniques, explained in the following sections.

1.7.4.1 Gradient-Based Optimization

Gradient-based optimization methods are a class of optimization algorithms that use gradient

information to improve the design towards an optimum design point iteratively. The gradient of

the objective function is used to determine the direction of the steepest descent or ascent, and

the algorithm adjusts the variables accordingly [94]. These gradients can be computed using the

finite-difference method in the simplest form or complex-step methods if round-off error is a con-

cern [95]. Either approach’s computational cost is expensive and proportional to the square of

the number of design variables [96]. The adjoint approach, on the other hand, provides a more

computationally efficient alternative with a computational cost being almost independent of the

number of design variables [97]. The adjoint approach to optimization in fluid dynamics was first

introduced by Pironneau [98], and it gained popularity in aerodynamic optimization with the work

of Jameson [97]. There are currently two adjoint formulations in use: the continuous approach

[99], where the adjoint equations are derived from the governing PDEs and then discretized, and

the discrete approach [100, 101, 102], where the discretized governing equations are differentiated

to obtain the adjoint equations.

The main benefit of a gradient-based approach is its rapid convergence, which can significantly

accelerate the optimization process compared to methods that do not utilize gradients. Further-

more, gradient-based methods offer a clear convergence criterion, as a reduction in the magnitude

of the gradient by multiple orders of magnitude indicates attainment of a local optimum.

A drawback of gradient-based methods utilizing adjoints is the development cost, as lineariza-

tion can be time-consuming whether done manually or using automatic differentiation [103]. Ad-

ditionally, gradient-based methods may struggle with challenges such as noisy objective function
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spaces, inaccurate gradients, categorical variables, and topology optimization [96]. Furthermore,

these methods are often limited to finding local optima rather than global optima.

Furthermore, gradient-based optimization via the adjoint method in aerodynamics is usually

performed using RANS [104, 105, 106], which has notable limitations, specifically when turbu-

lent transition and flow separation are present. Moreover, conventional adjoint-based optimization

techniques diverge for scale-resolving simulations in high Reynolds numbers due to the chaotic na-

ture of the Navier-Stokes equations [107]. Hence, the use of gradient-based optimization methods

may not be appropriate for aeroacoustic problems due to the unsteady nature of sound generation

and propagation, which necessitates scale-resolving techniques for precise noise prediction.

1.7.4.2 Gradient-Free Optimization

Gradient-free optimization techniques, such as Genetic Algorithms (GA) [108, 109], Particle

Swarm Optimization (PSO) [110, 111, 112], and MADS [113, 114], are valuable tools in CFD for

solving complex optimization problems where gradient information may not be available or costly

to compute. These methods do not rely on gradients but explore the search space through objective

function evaluations. Gradient-free optimization techniques benefit CFD applications with noisy,

non-convex, or discrete-variable objective functions. They can be effective in aeroacoustic prob-

lems where sound generation and propagation are complex. These techniques offer flexibility and

robustness in handling diverse optimization challenges, contributing to advancements in CFD and

enabling efficient optimization in engineering applications.

1.7.4.3 Mesh Adaptive Direct Search

In this study, the MADS optimization technique is used, which falls between the Generalized

Pattern Search (GPS) [115] and the Coope and Price frame-based methods [116]. Unlike GPS,

MADS allows for a more flexible design space exploration during the optimization process, mak-

ing it a more effective solution for unconstrained and linearly constrained optimization [113]. A

significant advantage of MADS over GPS is the flexible local exploration, known as poll direc-

tions, rather than a fixed set of directions. Two parameters are defined in the context of the MADS
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optimization: the mesh size parameter, ∆m, and the poll size parameter, ∆p. The mesh size pa-

rameter determines the granularity and resolution of the mesh of the design space on which the

optimization algorithm operates. A higher resolution leads to a more precise search, while a lower

resolution allows for a broader search and a higher chance of finding the global optimal solution.

The poll size determines the size of the neighbourhood around the incumbent point where new

trial points are chosen. The number of trial points in each design cycle can be n + 1, the minimal

positive basis, or 2n, the maximal positive basis [113], where n is the number of design variables.

In the gradient-free MADS optimization procedure, there are two sequential steps in each de-

sign iteration: the search and poll steps. The optimization procedure begins with the search step

and the initial design point, XXX0 = [X1
0,X2

0, ...,Xn
0]. A finite number of pseudo-random trial points

are defined, and infeasible ones are discarded. Infeasible trial points are points within the design

space that do not satisfy the constraints of the optimization problem. The trial points are generated

based on the current mesh and the direction vectors, d j ∈ D (for j = 1, 2, ..., n), where D is the

design space. D must be a positive spanning set [117], and each direction, d j, must be the product

of some fixed non-singular generating matrix by an integer vector [113]. The mesh at iteration k is

defined as [113]

Mk =
⋃

X∈Sk

{

X + ∆m
kDz : z ∈ NnD

}

, (1.18)

where Sk is the set of trial points at which the objective function is evaluated in iteration k. The

meshMk is constructed from a finite set of nD directions,D ⊂ Rn, scaled by a mesh size parameter

∆m
k ∈ R+. The objective function is evaluated at these trial points. The current iteration stops after

the objective function at all trial points is computed or when a lower objective function is found.

Then, the next iteration starts with a new incumbent solutionXXXk+1 ∈ Ω with the objective function

of F (XXXk+1) < F (XXXk), and a mesh size parameter ∆m
k+1 ≥ ∆

m
k . At any iteration, the maximum value

of the mesh size parameter is set to one, ∆m
max = 1. Note that the design space of each design

variable is scaled to one, and a mesh size parameter of one can cover the entire design space.

On the other hand, if the search step fails to find a new optimum, the poll step is invoked before

terminating the current optimization iteration. In the poll step, the mesh size parameter is reduced
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to define a new set of trial points closer to the incumbent design variables. The key difference

between GPS and MADS is the new poll size parameter, ∆p
k ∈ R+, that controls the magnitude of

distance between the trial points generated by the poll step to the incumbent point. This new set of

trial points defined in the poll step is called a frame. The MADS frame at iteration k is defined to

be [113]

Pk =
{

Xk + ∆
m
k d : d ∈ Dk

}

⊂ Mk, (1.19)

where Dk is a positive spanning set. In each MADS iteration, the mesh and poll size parameters

are defined. The mesh size parameter of the new iteration is defined as [113]

∆m
k+1 =



















































1
4∆

m
k if the poll step fails to find an improved design point,

4∆m
k if an improved design point is found, and if ∆m

k ≤
1
4 ,

∆m
k otherwise.

(1.20)

These rules ensure ∆m
k is always a power of 4 and never exceeds 1. The poll size parameter is also

defined as [113]

∆
p
k+1 =































n
√

∆m
k if the minimal positive basis construction is used,

√

∆m
k if the maximal positive basis construction is used.

(1.21)

Figure 1.10 depicts the search and poll steps for a scaled design space with two design variables.

In this example, the minimal positive basis construction results in three trial points per MADS

iteration. The incumbent design point is XXXk, and the trial points, p1
k , p2

k and p3
k are chosen in the

specified frame defined via the poll size parameter. The objective function is computed at these

trial points, and we assume the p3
k trial point is the new incumbent design point. Then, the search

is successful, and the mesh size parameter reduces by a factor of 4. If a new incumbent design

point is not found, the search step is unsuccessful, and the poll step is invoked, as depicted in

Figure 1.10b. In the poll step, the mesh size parameter is quadrupled, and the objective function is
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evaluated at a new set of trial points. Finally, when a new incumbent objective function is found in

a design iteration, the optimization may converge or continue depending on the stopping criterion.

The optimization problem is terminated when the stopping criteria are met.

Abramson et al. [114] introduced a new way of choosing directions for the MADS class of

algorithms, in which the polling directions are orthogonal to each other. In this method, known

as OrthoMADS [114], the trial points are not defined pseudo-random, ensuring that the results

of a given optimization problem is repeatable. To elucidate the distinctions between the MADS

and OrthoMADS algorithms, Figure 1.11 depicts the search and poll steps of the OrthoMADS

optimization technique for iteration k, employing a maximal positive basis construction. In Figure

1.11a, we assumed that p3
k is the new incumbent design.

To the author’s knowledge, there is minimal literature on optimization in conjunction with

high-fidelity flow simulations. The trailing-edge shape is optimized to reduce the noise of a hy-

drofoil using large eddy simulation [118]. Moreover, LES is used to train the artificial neural

network for optimizing gas cyclones [119, 120]. Furthermore, Karbasian [121] explored the utility

of MADS algorithm for high-fidelity aerodynamics optimization for low Reynolds number flow

over an SD7003 airfoil.
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Figure 1.10. Search and poll steps of the MADS optimization techniques for iteration k, using
maximal positive basis construction.
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Figure 1.11. Search and poll steps of the OrthoMADS optimization techniques for iteration k,
using maximal positive basis construction.
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Chapter 2

Methodology

2.1 Introduction

This chapter discusses temporal and spatial discretization techniques in CFD, different CAA

approaches for predicting noise, and different optimization techniques. The advantages and disad-

vantages of each method is discussed to provide a comprehensive understanding of the numerical

methods used in this study.

2.2 Temporal DiscretizationMethods

Temporal discretization involves numerically integrating the governing equations forward in

time, which is necessary for modelling time-varying flows. Temporal discretization techniques

can be classified into explicit and implicit methods. Explicit methods use a forward time differ-

encing formula, and the numerical solution at the current time step is calculated using information

only from previous time steps. Implicit methods, on the other hand, use a backward time difference

formula, and the numerical solution at the current time step is calculated by solving a system of al-

gebraic equations that includes information from both the future and previous time steps. Implicit

methods can permit a larger stable time step size than explicit methods, making them more suit-

able for solving stiff problems [54]. However, implicit methods require the solution of an extensive
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system of non-linear equations at each time step, which can be computationally expensive. The

choice of temporal discretization depends on several factors, including the desired accuracy, stabil-

ity, and computational cost. Despite the success of implicit schemes in CAA applications, explicit

schemes are also commonly used [33, 122]. In CAA simulations, a wide range of length scales

must be resolved, requiring high grid resolutions, which can result in increased computational

costs and memory consumption for implicit methods [33]. Moreover, high-frequency damping in

implicit methods sacrifices accuracy for stability [123]. These can cancel out the benefits of larger

time step sizes.

The Runge-Kutta (RK) family of schemes is widely used due to their simplicity of implemen-

tation. They also extend to higher orders of temporal accuracy without significantly increasing

computational cost [56]. However, the disadvantage of explicit time stepping methods is that the

maximum allowable time step size is strictly limited by the CFL number defined as

CFL =
α∆t

∆x
, (2.1)

where α is a characteristics wave speed, ∆t is the time step size, and ∆x is the grid spacing.

The general form of a conservation law after spatial discretization can be re-written as a system

of differential equations

duuu

dt
= R(uuu), (2.2)

where R(uuu) is the semi-discrete space operator. Thus, the left-hand-side temporal term must be

discretized. A general Runge-Kutta method RKs,e,p having s-stages, of order p, and requiring e

derivative evaluations, are typically described using a Butcher tableau [124] which has a general

compact form of

ccc AAA

bbb
(2.3)
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that can be expanded as

c1 a1,1 a1,2 · · · a1,s

c2 a2,1 a2,2 · · · a2,s

...
...

...
. . .

...

cs as,1 as,2 · · · as,s

b1 b2 · · · bs

(2.4)

where AAA is the RK matrix, bi is a weight coefficient with

s
∑

i=1

bi = 1, (2.5)

and ci contains the intermediate node locations of the intermediate stages, represented as a fraction

of the total time step and

ci =

s
∑

j=1

ai, j. (2.6)

Then, the solution is approximated at s intermediate stages

uuut+1 = uuut + ∆t
s

∑

i=0

ai, jR
i, (2.7)

where uuut+1 is the unknown solution at the next time step, uuut is the known solution at the current

time step, and Ri is the residual at each intermediate stage. If the matrix A is strictly lower-triangle,

it is an explicit scheme; otherwise, it is implicit. The RK schemes used in this study are briefly

explained in the following sections.
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2.2.1 Fourth-Order Runge-Kutta

The general form of the Butcher tableau for classical fourth-order four-stage RK (RK44)

schemes is [125]

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

(2.8)

The RK44 temporal scheme is extensively used in the literature, and can be optimized as explained

in the following sections.

2.2.2 Nasab-Pereira-Vermeire

Runge-Kutta stability polynomials can be optimized to generate new RK schemes that allow

larger time step sizes, resulting in speedup factors of up to 1.97 relative to classical RK meth-

ods [56]. The general form of the Butcher tableau for the second-order Nasab-Pereira-Vermeire

temporal scheme is

0 0

c2 a2,1 0

c3 a3,1 a3,2 0

c4 a4,1 0 a4,3 0

...
...

...
...

. . . . . .

cs as,1 0 0 · · · as,s−1 0

0 0 0 · · · 0 1

(2.9)

The details for determining such optimum schemes are given by Hedayati et al. [56], who also

provides optimal tableau’s for FR schemes.
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2.2.3 Paired Explicit Runge-Kutta

The P-ERK method allows RK schemes with a large number of derivative evaluations and large

stability regions to be applied in stiff parts of the domain, while RK schemes with relatively few

derivative evaluations can be applied in less stiff regions [54]. This feature globally increases the

maximum permissible time step without requiring a large increase in cost per time step, yielding

speedup factors of approximately five [54]. A general Butcher tableau for the P-ERK method is

0 0

c2 a2,1 0

c3 c3 − a3,2 a3,2 0

c4 c4 − a4,3 0 a4,3 0

...
...

...
...

. . . . . .

cs cs − as,s−1 0 0 · · · as,s−1 0

0 0 0 · · · 0 bs

(2.10)

Thus, at each stage, a single unknown coefficient exists that can be determined via the general

form of the scheme’s stability polynomial. This polynomial is typically defined as a function of

a complex variable and represents the accumulated error or amplification factor at each time step

of the RK method. The stability polynomial of an explicit RK method can be determined directly

from the Butcher tableau [126, 127]

Pe,p(z) = 1 + zbbbT (III − zAAA)−1eee, (2.11)

or via Cramer’s rule [126, 127]

Pe,p(z) =
det

(

III − zAAA + zeeebbbT
)

det (III − zAAA)
, (2.12)
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where III is the identity matrix, z is a point in the complex plane, and eee is a vector of ones [54]. The

details of determining P-ERK schemes are given by Vermeire [54, 55, 128].

2.2.4 Explicit Singly Diagonally Implicit Runge-Kutta

Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) methods are attractive because

they can provide high-order accurate solutions and can be used to obtain results with a lower

level of numerical error, making them suitable for stiff differential equations [129]. The ESDIRK

method is a special case of implicit RK methods in which the first stage is explicitly defined, and

the remaining stages are implicitly defined. The advantage of this approach is that it allows for

higher-order accuracy while maintaining stability and efficiency [130]. The general form of the

Butcher tableau for ESDIRK schemes is

0 0

c2 a2,1 a2,2 0

c3 a3,1 a3,2 a3,3 0

c4 a4,1 a4,2 a4,3 a4,4 0

...
...

...
...

...
. . .

cs as,1 as,2 as,3 as,4 · · · as,s

b1 b2 b3 b4 · · · bs

(2.13)

2.3 Flux Reconstruction

In this section, the FR formulation is explained for both one and multi-dimensional flows.
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2.3.1 One Dimensional Formulation

The FR framework is explained here, following Huynh’s formulation [64]. For simplicity

consider the one-dimensional conservation law

∂u

∂t
+
∂ f

∂x
= 0, x ∈ Ω, (2.14)

In the FR approach, the computational domain,Ω, is partitioned into a mesh of Ne non-overlapping

elements such that

Ω =

Ne
⋃

k=1

Ωk,
Ne
⋂

k=1

Ωk = ∅. (2.15)

Each element, Ωk, contains a number of solution points based on the desired solution polynomial

degree, P. For the sake of simplicity, these elements are transformed from the physical space x to a

standard reference space ξ. The transformation of these elements is done via an invertible mapping

function, M, such that

x = M (ξ) ⇐⇒ ξ = M−1 (x) . (2.16)

The Jacobian of this mapping can be found at any point from

J =
∂x

∂ξ
, (2.17)

which enables all element operations to be performed on the same reference element and, upon

completion, mapped back to the physical system.

The exact solution, u, is approximated numerically, and within each element, via a solution

polynomial of degree P = Np − 1, that is interpolated using these Np discrete values of the approx-

imate solution. Similarly, the exact flux, f , within each element, Ωk, is approximated by a flux

polynomial of degree P+ 1, which is usually discontinuous across cell interfaces. Hence, the total

numerical solution, uδ, and flux, f δ, can be represented as the direct sum of their element-wise
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approximations uδk and f δk ,

uδ =
Ne

⊕

k=1

uδk ≈ u, f δ =
Ne

⊕

k=1

f δk ≈ f . (2.18)

The solution polynomials collectively form a global solution approximation, which is discontinu-

ous across each cell interface. The solution polynomial within each element can be interpolated

using the solution values at each solution point, in the reference space, using the nodal basis func-

tion at each solution point via

uδk(ξ, t) =

Np
∑

i=1

uδk,i(t)ψi(ξ), (2.19)

where uδk(ξ, t) is the interpolated solution polynomial within a reference element, uδk,i(t) is the ap-

proximated value of the solution at the ith solution point, ξi, and ψi(ξ) is the corresponding nodal

basis function of the ith solution point, ξi, in the reference space. The nodal basis functions in the

one-dimensional spatial coordinates are the well-known Lagrange polynomials,

ψi(ξ) =

Np
∏

j=1, j,i

ξ − ξ j

ξi − ξ j
. (2.20)

The general conservation law in the reference space can then be written approximately as

∂uδk
∂t
+
∂ f δk
∂ξ
= 0, (2.21)

where f δk is an interpolated continuous flux function in the reference space. The flux values at each

solution point are computed using the solution values, then the flux function is interpolated to the

cell boundaries and is usually discontinuous across cell interfaces. The discontinuous flux function

is constructed similar to the solution polynomial,

f δD
k (ξ, t) =

Np
∑

i=1

f δk,i(t)ψi(ξ), (2.22)

where f δD
k (ξ, t) is the discontinuous flux function within a reference element, f δk,i(t) is the approxi-
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mated value of the flux at the ith solution point, ξi. The superscript D denotes the discontinuity of

the current flux approximation.

Since the spatial derivative of the flux function must be computed using a general conservation

law, this function must be continuous to take the neighbouring elements data into account, and

approximate the derivative of true flux function properly. In other words, to maintain global con-

servation, the flux between two elements must be continuous [131]. To address this discontinuity

issue of the flux function, Huynh [64] proposed that a flux correction polynomial of degree P + 1

must be added to the discontinuous flux function,

f δk = f δD
k + f δCk . (2.23)

The computation of these corrections are given by Huynh [64] as follows, which approximates the

zero function within the interior of the reference space

f δCk =
(

f CL
k − f δD

k,L

)

gL +
(

f CR
k − f δD

k,R

)

gR, (2.24)

where f δD
k,L = f δD

k (−1, t), and f δD
k,R = f δD

k (1, t). Also, f CL
k = f CL

k (u−k,L, u+k,L) and f CR
k = f CR

k (u−k,R, u+k,R)

are common interface fluxes, a function of extrapolated values of the solution at each edge of

neighbouring elements. f CL
k and f CR

k are computed by a Riemann solver at the flux points between

elements. The correction functions, gL = gL(ξ) and gR = gR(ξ), of degree P + 1 have the following

constraints

gL(−1) = 1, gL(1) = 0, (2.25)

gR(−1) = 0, gR(1) = 1. (2.26)

The spatial derivative of the approximated continuous flux function of the general conservation

law in reference space is now

∂ f δk
∂ξ
=
∂ f δD

k

∂ξ
+
∂ f δCk

∂ξ
=

Np
∑

i=0

f δk,i

∂ψi

∂ξ
+

(

f CL
k − f δD

k,L

) ∂gL

∂ξ
+

(

f CR
k − f δD

k,R

) ∂gR

∂ξ
, (2.27)
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which is in the same polynomial space as ∂uδk/∂t, and so both terms of the general conservation

law are of a degree P. The FR approach can be extended to higher-dimensions as explained in the

next section.

2.3.2 Multi-Dimensional Formulation

The FR approach discretizes the divergence operator for general advection-diffusion equations

of the form shown in Equation 1.9, and is extended to multi-dimensions for mixed element types by

Wang and Gao [132]. FR is appealing due to its accuracy, generality, robustness, and suitability for

modern hardware architectures [65]. Compared to commonly-used low-order numerical methods,

FR provides more accurate solutions using fewer degrees of freedom and at reduced computational

cost [45]. The FR framework is outlined in multiple dimensions, following Wang’s formulation

[132].

In this study, the solution points are located at the tensor product of Gauss-Legendre points

for quadrilateral and hexagonal elements, Williams-Shunn points [133] for triangular elements,

and Shunn-Ham points [134] for tetrahedral elements. The solution, flux, and mapping points for

quadrilateral and triangular element types are depicted in Figure 2.1. The solution is approximated

at each solution point, and then, the solution polynomial within each element is interpolated using

nodal basis functions, ensuring element-wise continuity of the solution,

uδk(ξξξ, t) =

Np
∑

i=1

uδk,iψk,i(ξξξ), (2.28)

where uδk,i is the numerical solution at point i within element k. Furthermore, the flux polynomial

is interpolated using nodal basis functions

fff δD
k (ξξξ, t) =

Np
∑

i=1

f δk,iψk,i(ξξξ), (2.29)

where f δk,i = f
(

uδk,i

)

is the numerical flux value at point i within element k. The constructed
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(a) Quadrilateral element types. (b) Triangular element types.

Figure 2.1. The computational element Ωk with solution points in black, flux points in red, and
mapping points in blue, for a P2 discretization.

numerical flux function, fff δD
k (ξξξ, t), is allowed to be discontinuous across cell interfaces, and the

superscript D denotes this discontinuity. Thus, a common Riemann flux must be defined to replace

the normal flux. In this study, a Rusanov/Lax-Friedrichs flux is used at the interface between

elements. To account for the jumps across cells, we follow Wang’s formulation [132] for simplex

elements. By defining a correction field, ϑk ∈ P
P, Equation 1.9 is re-written within each element

and must be satisfied at each solution point, i.e.,

duδk,i

dt
+

(

∇∇∇ · fff δk
)

ξξξk,i

+ ϑk,i = 0. (2.30)

The correction field ensures a globally continuous flux polynomial and can be determined for each

solution point, i, within element k, by

ϑk,i =
1

|Ωk|

∑

fk∈∂Ωk

∑

j

αi, fk , j

[

f̃ff
]

fk , j
S fk , (2.31)

where fk denotes the faces of the elementΩk, j is the index for flux points, αi, fk , j are constant lifting

coefficients,
[

f̃ff
]

fk , j
is the difference between a common Riemann flux at point j and the value of
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the internal flux, and S fk is the area of the face fk. The lifting coefficients are computed using

a weighting function, W, and are independent of both geometry and the solution [132]. In this

study, the DG method is recovered via the FR formulation by choosing nodal basis functions as

the weighting function [132], and the Rusanov and second method of Bassi and Rebay (BR2) are

used for the common inviscid and viscous flux.
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Chapter 3

Near-Field Optimization at Low Reynolds

Numbers

3.1 Introduction

Aerodynamic shape optimization has been extensively researched, employing both gradient-

free and gradient-based optimization techniques [121, 135, 136, 137]. Unsteady problems, typ-

ically associated with aeroacoustic and noise phenomena, pose challenges for adjoint methods

due to their inherent instability. Consequently, for aeroacoustic shape optimization in this study,

we adopt the gradient-free MADS optimization method [113], which has demonstrated favorable

outcomes for aerodynamic shape optimization [121, 138].

In this chapter, our attention is directed toward near-field aeroacoustic shape optimization in

two-dimensional flows. The term “near-field” pertains to the close vicinity of a sound source,

usually within one wavelength of the emitted sound waves. Within this region, the sound field

is complex, with varying pressure and velocity patterns. Given the observer’s proximity to the

source, sound pressure level computations exclusively rely on CFD data. Consequently, this chap-

ter employs the direct CAA approach. The problems under investigation in this chapter are in two

dimensions, which has limitations for acoustic prediction as it exaggerates the vortical structures
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and turbulence is not present in two dimensions. While 2D models can provide useful insights and

serve as preliminary tools for understanding aeroacoustic phenomena, they are inherently limited

and may not accurately represent the full complexity of 3D flow-induced sound. The interaction

between flow and acoustics is critical in generating noise, and these interactions may not be fully

represented in 2D models. Therefore, for highly accurate predictions, 3D models are typically re-

quired, though practical constraints might necessitate the use of 2D models under certain circum-

stances. The efficiency of the proposed aeroacoustic shape optimization framework is evaluated

for two-dimensional flows at low Reynolds numbers in this chapter.

The aeroacoustic shape optimization framework, illustrated in Figure 3.1, starts with the eval-

uation of the objective function for the baseline design. Subsequently, the MADS algorithm takes

input comprising the baseline design, its objective function, constraints, and the initial mesh size

parameter to identify candidate designs. Following candidate identification, the computational grid

is generated for each design, and flow simulation is performed using HORUS, followed by post-

processing scripts to evaluate the objective function. The minimum objective function value among

the design candidates is compared to the incumbent design and the mesh size parameter is up-

dated. The proposed aeroacoustic shape optimization framework employs a two-layer parallelism

approach: HORUS operates in parallel using multiple CPUs, while objective function evaluations

for candidate designs occur simultaneously. This iterative process continues until the problem con-

verges. Gradient-free optimization techniques have previously used to reduce trailing-edge noise

[118, 139, 140] and propeller noise [141, 142, 143]. However, to the author’s knowledge, there is

no previous work on coupling the high-order FR approach to the MADS optimization technique

for aeroacoustic problems. Thus, the objective of this study is to investigate the feasibility of

high-order numerical techniques coupled with gradient-free optimizers for aeroacoustic problems.

3.2 Flow Over an Open Deep Cavity

Flow over a two-dimensional deep cavity is a classical problem in fluid mechanics and aeroa-

coustics, and has been the subject of extensive research due to its relevance for a range of engi-
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Figure 3.1. The aeroacoustic shape optimization framework for near-field.

neering applications. The flow over a cavity is characterized by a complex interplay between the

boundary layer, the recirculation zone inside the cavity, and the external flow. The presence of the

cavity can lead to a variety of aerodynamic and aeroacoustic phenomena, such as flow separation,

unsteady vortex shedding, and acoustic resonance. Understanding the aerodynamic and aeroa-

coustic characteristics of flow over a cavity is crucial for optimizing the design and performance

of many engineering systems. This topic has been studied using various techniques, including

experiments [144], CFD simulations [145, 146], and aeroacoustic analysis [147, 148, 149]. The

geometry of a cavity is typically given in terms of the length-to-depth ratio, L/D, depicted in Figure

3.2. The Reynolds number is usually based on the depth of the cavity, ReD = U∞D/ν, where U∞ is

the free-stream velocity and ν is the kinematic viscosity. The numerical simulation is first validated

using the numerical reference study [147], and then the optimization procedure is explained.
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3.2.1 Validation

In this section, the flow simulation over an open deep cavity is validated by comparing the

time history of drag coefficient, pressure perturbation coefficient, and the sound pressure level at

observer locations with the reference data [147].

3.2.1.1 Computational Details

To be consistent with the Larsson et al. [147], the entrance length of the domain is set to

5D, which affects the oscillation regime significantly and results in a shear layer mode with the

boundary layer thickness of δ ≈ 0.2D at the cavity entrance. The outflow boundary is 80D away

from the downstream cavity wall, where the last 50D of the downstream domain acts as a buffer

region to eliminate the reflections of the acoustic waves from the computational boundaries. The

resolved domain in the y-direction extends between 0 < y/D < 20, and the buffer region extends

between 20 < y/D < 40. Stretching ratios of 1.05 and 1.075 are used in the resolved and buffer

regions, respectively, with the smallest element size of 0.05D inside the cavity. A total of 13, 076

quadrangular elements are used to validate the open cavity with P2, resulting in 117, 684 solution

points. The boundary conditions of the domain, along with the cavity’s geometry and mesh, are

shown in Figure 3.2. The length-to-depth ratio of the cavity is L/D = 4, the Reynolds number

based on the cavity depth is ReD = 1500, and the inflow Mach number is M∞ = 0.15.

3.2.1.2 Results and Discussion

The simulation is run for 100tc, where tc = D/U∞ and U∞ is the free-stream velocity, to allow

initial transients to disappear and the simulation to reach a fully developed behavior. The drag

coefficient of the open cavity is defined as

CD =
Fx

1
2ρ∞U2

∞D
, (3.1)

where ρ∞ is the free-stream density, and Fx is force per unit width in the x-direction and is com-

puted on the three cavity walls. The drag coefficient of the open cavity is plotted against the
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Figure 3.2. The computational domain of the open cavity.
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Figure 3.3. The time history of drag coefficient of the open cavity.

convective time in Figure 3.3. The pressure perturbation coefficient is defined as

C′p = Cp −Cp, (3.2)

where Cp is the time-averaged pressure coefficient, and Cp is the instantaneous pressure coefficient

defined as

Cp =
p − p∞
1
2ρ∞U2

∞

, (3.3)

where p is the static pressure, and p∞ is the free-stream pressure. The C′p is plotted against tc for

one convective time at an observer point located at [x/D = 2, y/D = 7.16] in Figure 3.4. And,

finally, the sound pressure level at a set of observer points is computed and shown in Figure 3.5.

The y-location of all of the observer points is 7.16.

The drag coefficient, shown in Figure 3.3, is in good agreement with the reference [147]. How-

ever, there is a small deviation in both the perturbation pressure coefficient and sound pressure

levels, shown in Figures 3.4 and 3.5, respectively, with reference [147]. The periodicity of the flow

can be described by the fundamental or Strouhal frequency, where S t = 2.444 based on the length
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Figure 3.5. The SPL of the open cavity.
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of the cavity, is in excellent agreement with the reported value of 2.45 [148].

Vortex structures and flow patterns are shown in Figure 3.6 at different times. The first and

dominant vortex is shed from the upstream cavity inlet and evolves from the recirculation bubble at

the cavity inlet, shown in Figure 3.6a. This vortex grows rapidly within the cavity while connected

to the cavity’s leading edge. Growth ceases when the vortex leaves the leading edge, and the

free stream is injected into the cavity and upstream of the vortex (Figure 3.6b). As the primary

clockwise-rotating vortex hits the trailing edge, a new counter-clockwise-rotating vortex is shed

into the cavity at the trailing edge (Figure 3.6c), producing a high amplitude acoustic wave. The

new counter-clockwise-rotating vortex then moves downstream (Figure 3.6d), cutting the primary

vortex (Figure 3.6e). The primary vortex dictates the cavity flow’s fundamental frequency and

plays a crucial role in the sound generation of such flows [147].

In the next section, the height of the cavity trailing edge wall, shown in Figure 3.7, is optimized

to reduce the sound perceived by an observer located at [x/D, y/D] = [2, 7.16].

3.2.2 Optimization

In this section, the noise at the observer point located at xxxobs/D = [2, 7.16] is minimized

by changing the height of the cavity trailing edge wall, hT E, using the MADS technique. Thus,

XXX = [hT E] is the design variable and X0 = 0, while the objective function is the root-mean-squared

of the pressure perturbation, F = p′rms.

3.2.2.1 Results and Discussion

Upper and lower bounds of 0 and 4, respectively, are chosen for the design variable, hT E, with

the objective function being the root-mean-squared of the pressure perturbation at xxxobs. The design

variable converged to hT E = 1.0156 after 12 MADS iterations with a total of 23 objective function

evaluations. The baseline and optimum designs are shown in Figure 3.8. The design space and

the objective function convergence are shown in Figure 3.9. It can be seen from Figure 3.9a that a

wide design space is investigated by the MADS optimization technique, and only two incumbent
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(a) tc = 100.

(b) tc = 106.2.

(c) tc = 109.7.

(d) tc = 111.4.

(e) tc = 113.2.

Figure 3.6. Z-component of the vorticity and pressure perturbation snapshots of the open cavity.
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Figure 3.7. The height of the two-dimensional cavity’s trailing edge used as a design variable.
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Figure 3.8. The baseline, in black, and optimum, in red, designs of the open cavity.

values are found, as shown in Figure 3.9b. The sound pressure level is decreased to 111.4 dB for

the optimum design, down from 119.3 dB of the baseline design. Thus, a 7.9 dB decrease in the

SPL at the observer is achieved. It can be seen from Figure 3.10 that the sound at all other observer

points is also reduced, as expected. The z-component of the vorticity and pressure perturbation are

plotted in Figure 3.11 at different times. For the optimized shape of the open cavity, the primary

clockwise vortex trapped inside the cavity reduces the emitted noise. However, there are vortices

shedding off the trailing edge of the cavity; but their acoustic waves are much smaller in amplitude

compared to those of the baseline design.

3.3 Tandem Cylinders

The flow around two tandem cylinders consists of multiple flow features including flow separa-

tion, reattachment, recirculation, and quasi-periodic vortex shedding, amongst others. The physics
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Figure 3.9. The design space and objective function convergence for the open deep cavity.
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Figure 3.10. The SPL at different observer points for the optimum design of the open deep cavity.

of such flows is highly dependent on the diameter ratio of the cylinders, the spacing between them,

and the Reynolds number. The diameter ratio of the cylinders is defined as r = Dd/Du, where Dd

and Du are the downstream and upstream diameter of the cylinders, respectively. The spacing of

the cylinders, s, is defined as the distance between the rear of the upstream cylinder to the front of

the downstream cylinder. These definitions are depicted in Figure 3.12.

There is growing literature on flow over tandem cylinders [150, 151, 152] and the resulting

acoustic field [153, 154, 155]. In the next section, the flow features of two cylinders in a tandem

configuration are investigated, along with the sound radiated by them, and compared with reference

data [151]. Finally, the diameter ratio between the cylinders and their distance are optimized to

reduce the noise at the observer located 2D above the upstream cylinder.

3.3.1 Validation

In this section, the simulation of flow over tandem cylinders is validated by comparing the time

history of lift and drag coefficients with the reference data [151]. The relationship between the

mean time-averaged drag coefficient of the cylinders with the space between them is investigated
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(a) tc = 101.3.

(b) tc = 102.6.

(c) tc = 105.1.

(d) tc = 108.8.

(e) tc = 110.3.

Figure 3.11. Z-component of the vorticity and pressure perturbation snapshots of the optimized
open cavity.
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Figure 3.13. The computational grid for tandem cylinders.

and compared to the available literature [156].

3.3.1.1 Computational Details

The tandem cylinders configuration is first run for r = 1 and s = 4.5. A total of 8, 718 triangular

and quadrilateral elements are used, and the computational grid is shown in Figure 3.13. The

simulation is started with a P1 simulation, switched to P2 after 1500tc, and then, is run for 500tc

to compute the statistical characteristics of the flow. tc = D/U∞ is the time needed for flow to pass

the upstream cylinder or the convective time, and U∞ is the free-stream velocity. The Reynolds

number for this study is Re = 200, and the inflow Mach number is M∞ = 0.2. The 6-stage 5th-order

accurate ESDIRK temporal scheme [157] is used to advance the simulation in time.
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3.3.1.2 Results and Discussion

The lift and drag coefficients for both the upstream and downstream cylinders are obtained

for s = 4.5 and are shown in Figure 3.14, where good agreement is observed comparing with

reference data [151]. The drag coefficients of the two cylinders are obtained by integrating the

pressure and shear stress distributions on the surface and then are averaged for 500 convective

times. The time-averaged drag coefficient, CD, is plotted for different values of s in Figure 3.15,

and shows a similar trend to Igarashi [156]. The time-averaged drag coefficient of the upstream

cylinder, CD1, decreases gradually by increasing the cylinder spacing, s, and increases stepwise for

s/D > 3. On the other hand, the time-averaged drag coefficient of the downstream cylinder, CD2,

is negative for s/D < 3 acting as a thrust force. CD2 increases as the downstream cylinder is placed

further away from the upstream cylinder, and a sudden increase occurs for s/D > 3.

3.3.2 Optimization

In this study, the distance between the two cylinders, s, and the ratio between the diameters

of the cylinders, r, are the design variables, XXX = [s, r]. The objective function is F = p′rms at

2D above the upstream cylinder, depicted in Figure 3.13b. Considering that the main objective of

this study is to demonstrate the optimization capabilities of MADS, a loud initial design has been

selected to evaluate the feasibility of optimizing towards a quieter configuration.

3.3.2.1 Results and Discussion

The optimization problem converges after 27 MADS iterations, including 70 objective function

evaluations. The design space and objective function convergence are shown in Figure 3.17, where

the optimum design is found as (s, r) = (1.6301D, 1.1594D). The baseline and optimum design

are demonstrated in Figure 3.16. The optimization procedure has covered a wide range of design

variables, as shown in Figure 3.17a. Instantaneous vorticity contours and acoustic fields are shown

for the initial design and the optimum design, in Figure 3.18, at tc = 2000. Comparing these two

figures, the vortical structures have been significantly reduced, especially in the wake region of the
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Figure 3.14. The lift and drag coefficients of flow past a pair of tandem cylinders (s = 4.5) at
Re = 200.
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Figure 3.16. The baseline, in black, and optimum, in red, designs of the tandem cylinders.

upstream cylinder which drastically reduces noise. The sound pressure level of the initial design

at the observer, 2D above the upstream cylinder, is 136.3 dB, which reduces to 119.8 dB for the

optimized configuration. Thus, a 16.5 dB decrease in overall SPL is achieved.

3.4 NACA 4-Digit Airfoil

The aerodynamic characteristics of the NACA0012 airfoil have been extensively studied through

experiments [158, 159, 160, 161] and CFD simulations [162, 163]. This airfoil has a relatively high
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Figure 3.17. The design space and objective function convergence for the tandem cylinders.
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(a) The initial tandem cylinder design.

(b) The optimum tandem cylinder design.

Figure 3.18. The z-component of the vorticity and pressure perturbation snapshots at tc = 2000.

maximum lift coefficient, which makes it suitable for use in low-speed applications such as gen-

eral aviation, Unmanned Aerial Vehicles (UAVs), and Micro Aerial Vehicles (MAVs). At low

Reynolds numbers, less than Re = 105, the boundary layer is laminar. In general, two different

types of acoustic spectra are observed in flow past a laminar airfoil, depending on the Reynolds

number and angle of attack. First, a typical tone noise phenomenon, i.e., a broadband contribution

with a dominant frequency along with equidistant frequency tones, and second, a simple broad-

band spectrum [164]. In the first type, the sequence of regularly-spaced discrete frequency tones

is due to the emergence of a separation bubble on the pressure surface close to the trailing edge

[164]. On the pressure side, the hydrodynamics fluctuations are coherent in the spanwise direc-

tion [158]. Thus, it can be assumed that the governing mechanism of tonal noise is essentially

two-dimensional [164].

The study of airfoil noise dates back to the 1970s when several experimental studies showed

that discrete tones are emitted from isolated airfoils [165, 166], and other studies focused on un-
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derstanding this phenomenon [158, 160, 167]. The shape of the airfoil is optimized for noise

reduction of the high-lift devices [168], laminar flow trailing edge [169, 170], and turbulent flow

trailing edge [118, 171]. This study examines the laminar flow trailing edge and the aeroacoustic

shape optimization of the NACA0012 airfoil at a low Reynolds number, Re = 10, 000, which is the

operating regime for MAVs.

3.4.1 Validation

In this section, flow over a two-dimensional NACA0012 airfoil is validated. A grid-resolution-

independence study is performed for the time-averaged lift and drag coefficients, and the sound

pressure level at an observer located a unit chord length above the trailing edge. The time-averaged

lift coefficient is compared with reference DNS data [172] to validate the simulation.

3.4.1.1 Computational Details

The computational grid consists of 19, 596 quadrangular elements, depicted in Figure 3.19.

The domain is extended to 5c in the y-direction and to 10c in the x-direction, where c = 1 is the

chord length of the airfoil. The stretching ratio is kept below 5% everywhere in the domain. The

elements in the wake region are inclined at the angle of attack to capture the vortices behind the

trailing edge. The computational domain is shown in Figure 3.19. The Reynolds number for this

study is Re = 10, 000, the inflow Mach number is M∞ = 0.2, the angle of attack is 3 degrees, and

the Prandtl number is Pr = 0.71. The simulation is run for 60 convective times, and flow statistics

are averaged for the last 20 convective times. The second-order Paired Explicit Runge-Kutta (P-

ERK) temporal scheme [54, 55] is used to advance the solution in time.

Vortices leaving the computational domain can generate non-physical acoustic wave reflec-

tions off the boundaries, contaminating the solution. Thus, the strength of such vortices must be

decreased to eliminate the acoustic wave reflections off the boundaries. The addition of artificial

diffusion and variable solution polynomial degrees are used in this study, shown in Figure 3.20.

Artificial diffusion is applied beyond a circle with a radius of 2c centered at the trailing edge. Its
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(b) The vicinity of the airfoil.

Figure 3.19. The computational grid for NACA0012 airfoil at α = 3◦.

(a) The artificial diffusion. (b) The polynomial distribution.

Figure 3.20. The boundary treatments.

magnitude increases to a maximum of 0.01 and a radius of 8c using a sinusoidal function. The so-

lution polynomial distribution is shown in Figure 3.20b, where in the vicinity of the airfoil P = 3

and it decreases to zero close to the boundaries.

3.4.1.2 Results and Discussion

A different set of variable polynomial degrees are used to study the independence of the results

to the grid resolution. Three different mesh resolutions are used with a maximum polynomial

degree of P2, P3, and P4, shown in Figure 3.21.

The time-averaged lift and drag coefficients are computed along with the sound pressure level at

the observer located a unit chord length above the trailing edge and compared using three different

grid resolutions, shown in Table 3.1. The time-averaged lift coefficient differs by less than 0.4%

when the highest polynomial degree in the domain is P4 compared to that of P3, while the time-

averaged drag coefficient remains the same by three significant digits. The time-averaged lift
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(a) Low resolution, P0 − P2. (b) Medium resolution, P0 − P3.

(c) High resolution, P1 − P4.

Figure 3.21. The three different resolutions to study the grid resolution independency of the results.

Table 3.1. Averaged lift and drag coefficients and the sound pressure level measured at a unit chord
distance above the trailing edge of the baseline NACA0012.

P0 − P2 P0 − P3 P1 − P4

CL 0.0877 0.0886 0.0889
CD 0.0448 0.0447 0.0447

S PL 109.6 dB 110.0 dB 110.5 dB

coefficient obtained via the P0−P3 simulation agrees well with the DNS data [172]. Furthermore,

the sound pressure level difference between P0 − P3 and P1 − 4 simulations is 0.5 dB or 0.48%.

Thus, it is concluded that the grid resolution for P0 − P3 simulation is sufficient for this problem.

The sensitivity of the time-averaged quantities to the averaging window is investigated by

choosing two different averaging windows. The lift and drag coefficients are averaged over 20

and 40 convective time windows, shown in Table 3.2. The difference between the time-averaged

lift and drag coefficients for both averaging window lengths is negligible. Thus, the quantities are

averaged over a 20 convective time window.

The time history of lift and drag coefficients are shown in Figure 3.22 for the last two convective
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Table 3.2. Averaging window sensitivity of the time-averaged quantities.

20 tc 40 tc

CL 0.08857 0.08863
CD 0.04472 0.04473

58.0 58.5 59.0 59.5 60.0

tc

0.0800

0.0825

0.0850

0.0875

0.0900

0.0925

0.0950

0.0975

C
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0.0442
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0.0446

0.0448

0.0450

0.0452

C
D
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Figure 3.22. Time-histories of lift and drag coefficients.

times. The periodic behaviour of CL and CD is associated to the periodic vortex shedding at the

trailing edge.

The pressure perturbation at tc = 60 is shown in Figure 3.26a. Acoustic waves are generated close

to the trailing edge and propagate everywhere in the domain. There are no visible acoustic wave

reflections off the boundaries, showing the effectiveness of boundary treatments used in this study.

The amplitude of the pressure perturbations is higher in the wake region and behind the trailing

edge where the vortices are shed and travel downstream. The addition of artificial viscosity, as

shown in Figure 3.20a, dampens these vortices and consequently reduces the amplitude of acoustic

waves far from the trailing edge.
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Figure 3.23. The design variables and the observer point located at a unit chord length below the
trailing edge for the two-dimensional NACA 4-digit airfoil.

3.4.2 Optimization

In this section, the noise at an observer located at a unit chord length below the trailing edge

is reduced. A total of four design parameters are chosen based on the NACA 4-digit airfoil series.

The maximum camber, ca
max, the distance of maximum camber from the airfoil leading edge, xca

max
,

maximum thickness of the airfoil ta
max, and the angle of attack, α, are the four design parameters,

i.e. XXX = [ca
max, xca

max
, ta

max,α], depicted in Figure 3.23. The simulation is first run for 60 convective

times for each objective function evaluation. Then the time-averaged pressure is computed from

20tc to 40tc, p20−40, and then from 40tc to 60tc, p40−60. If the difference between p20−40 and p40−60 is

above one percent, the simulation is run for 20 more convective times. The simulation is run long

enough so that the difference between two consecutive time-averaged pressure signal, over 20tc, is

below one percent.

3.4.2.1 Results and Discussion

The optimization procedure is run using a maximum polynomial degree ofP3, shown in Figure

3.21b. The maximum camber range is set to ca
max ∈ [−10, 10] as a percentage of the chord, with

the distance from the airfoil leading edge in the range of xca
max
∈ [2, 9] as a tenth of the chord. The
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maximum thickness of the airfoil is within the range of ta
max ∈ [8, 16] as a percentage of the chord.

Finally, the angle of attack varies from −5◦ to 5◦. The objective function is defined as the sound

pressure level at the observer with constraints on both the mean lift and mean drag coefficients. A

quadratic penalty term is added to the objective function when the lift coefficient deviates from the

baseline design, and an additional quadratic penalty term is added when the mean drag coefficient

is above the baseline design. The objective function is defined as

F =































S PL + ε
(

CL −CL,baseline

)2
+ ε

(

CD −CD,baseline

)2
CD > CD,baseline

S PL + ε
(

CL −CL,baseline

)2
CD ≤ CD,baseline

, (3.4)

where the constant ε is set to 400, 000 to compensate for the order of magnitude difference in S PL

and CL and CD. The defined objective function minimizes the sound pressure level while keeping

the mean lift coefficient intact, and ensures the optimized airfoil has a similar or lower mean drag

coefficient.

This optimization procedure converges after 39 MADS iterations, consisting of 149 objective

function evaluations. The design space and the convergence of the objective function are shown

in Figure 3.25. The optimal airfoil design has a maximum camber of ca
max = −0.8944 percent

of the chord, at a 2.1428 tenth of the chord distance from the leading edge, with a thickness of

ta
max = 9.1309 percent of the chord, at an angle of attack of α = 1.9350 degrees. The baseline and

optimum design are demonstrated in Figure 3.24. The optimized airfoil is silent with S PL = 0 dB,

maintains and unchanged mean lift coefficient of CL = 0.0886, and achieves a reduced mean drag

coefficient by 24.95% to CD = 0.0348. And, finally, the pressure perturbation and z-component of

vorticity are shown in Figure 3.26 for the baseline and optimum designs. In the baseline design,

the flow is attached to the airfoil on the pressure side, and flow instability occurs on the suction

side. A periodic vortex shedding takes place as the flow passes over the trailing edge, resulting

in acoustic wave generation. However, in the optimum design, the flow instability is eliminated

resulting in a silent airfoil.
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Figure 3.24. The baseline, in black, and optimum, in red, designs of the NACA 4-digit airfoil.
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Figure 3.25. The design space and objective function convergence for P3 optimization of the
NACA 4-digit airfoil.
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(a) The baseline design.

(b) The optimum design.

Figure 3.26. The pressure perturbation and vorticity in the z-direction for the baseline and P3
optimization designs of NACA 4-digit airfoil at tc = 60.
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Chapter 4

Near-Field Optimization Using Large Eddy

Simulation

4.1 Introduction

This chapter expands upon the research conducted in Chapter 3 by addressing three-dimensional

problems. The benchmark problems from Chapter 3 are extruded in the z-direction. Then, the

shape optimization technique is performed to minimize the emitted noise perceived by a near-field

observer. The MADS algorithm employs minimal positive bases construction for the cavity and

tandem cylinder flow and maximal positive bases construction for airfoil flow. The optimization

problem converges when the mesh size parameter is less than 10−6, and the change in design vari-

ables between consecutive iterations is under one percent.

4.2 Flow Over an Open Deep Cavity

Airframe noise can originate from various sources, including panel gaps located on the air-

craft’s body, which may exist between doors or windows and the fuselage, as well as between

control surfaces on a wing. This section focuses on examining the flow over an open deep cavity,

providing a simplified model for studying these panel gaps. Extensive research has been con-
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ducted on two-dimensional cavity flows, leading to favorable agreement between experimental

data and numerical two-dimensional simulations. While three-dimensionality is observed in cav-

ity flow experiments, it underscores the significance of conducting three-dimensional cavity flow

simulations [173, 174]. Lawson [175] reviewed the experimental and numerical studies of open

cavities. Furthermore, the radiated noise from cavity is studied via LES by several researchers

[90, 176, 177, 178]. The geometry of a three-dimensional cavity is usually given in terms of

length-to-depth, L/D, and width-to-depth, W/D, ratios, as depicted in Figure 4.1. In this section,

flow over an open cavity is validated and then the noise at a near-field observer is minimized via

gradient-free shape optimization.

4.2.1 Validation

In this section, we extend our previous computational domain in Section 3.2 by extruding it in

the z-direction. The grid convergence study is performed using the time-averaged drag coefficient,

and sound pressure level measured at an observer located 7.16D above the cavity center.

4.2.1.1 Computational Details

To be consistent with Section 3.2, the open cavity with a length-to-depth ratio of L/D = 4

is extruded in the z-direction with a width-to-depth ratio of W/D = 3. The Reynolds number,

based on the depth of the cavity, is ReD = 1500, and the Mach number is 0.15. To ensure wake

mode oscillations, the inlet boundary is placed 5D upstream of the cavity inlet, resulting in a

boundary layer thickness of δ/D ≈ 0.2 at the entrance of the cavity. The outflow boundary is

placed 60D downstream of the cavity’s trailing edge wall, with the last 50D acting as a buffer

region to eliminate acoustic wave reflections. The computational domain extends to 15D in the

y-direction with the last 5D as a buffer region. The grid stretching ratio is 1.05 and 1.075 for the

resolved and buffer regions, respectively, with a minimum element size of 0.2D inside the cavity.

A total of 14, 652 hexagonal elements are used. The geometry and mesh of the three-dimensional

cavity are shown in Figures 4.1 and 4.2, respectively. A periodic boundary condition is used in the
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Figure 4.1. The geometry of the three-dimensional open deep cavity.

Figure 4.2. The mesh of the three-dimensional open deep cavity.

spanwise direction, no-slip boundary conditions are applied at the walls, and Riemann invariant

boundary conditions are applied at the inlet and outlet of the computational domain. The second-

order Nasab-Pereira-Vermeire [56] temporal scheme is used to advance the solution in time. The

simulation is run for 100tc, where tc = D/U∞, to allow initial transients to disappear and then run

for another 400tc to average statistical quantities. To ensure uncorrelated turbulent fluctuations at

a separation of half the domain size, the correlation coefficient of the x-component of the velocity

perturbation along with that of the pressure perturbation are computed along the spanwise direction

and depicted in Figure 4.3. The results of the grid independency study are given in the next section.

4.2.1.2 Results and Discussion

The grid independence study is performed by increasing the solution polynomial degree, which

increases the resolution of the simulation. The time-averaged drag coefficient and the sound pres-

sure level at an observer located 7.16D above the center of the cavity are computed using solution

polynomial degrees of P2, P3, and P4 to assess the grid independency.

The drag coefficient is defined as

CD =
Fx

1
2ρ∞U2

∞DW
, (4.1)
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Figure 4.3. The correlation coefficient in the spanwise direction for the three-dimensional open
deep cavity.

Table 4.1. A summary of grid independence study of the open deep cavity.

Simulation CD SPL
P2 0.1314 112.12
P3 0.1098 113.13
P4 0.1115 113.34

where Fx is the force in the x-direction computed on the three cavity walls, ρ∞ is the free-stream

density, and U∞ is the free-stream velocity. The time-averaged drag coefficient along with the SPL

at the observer, for different simulations, are given in Table 4.1, where 31 observer points along

the span of the cavity are used. The time-averaged pressure and root-mean-squared of the pressure

perturbation are computed for each observer point and then spatially averaged to find the SPL at

the observer location. These results show that the P3 simulation provides sufficient resolution for

this study.
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Figure 4.4. The design variable, hT E, for the open deep cavity.
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Figure 4.5. The baseline, in black, and optimum, in red, designs of the open cavity.

4.2.2 Optimization

In this section, the noise at the observer point located at xxxobs/D = [2, 7.16] is minimized by

changing the height of the cavity trailing edge wall, hT E, depicted in Figure 4.4. Thus,XXX = hT E is

the design variable andXXX0 = 0, while the objective function is F = p′rms. Upper and lower bounds

of −1 and 4, respectively, are chosen for the design variable, hT E.

4.2.2.1 Results and Discussion

The optimization procedure converged after 19 MADS iterations with a total of 36 objective

function evaluations. The optimal design parameter is identified as hT E = −0.875, resulting in an

SPL of 100.3 dB, a 12.9 dB reduction in noise. The baseline and optimum designs are depicted in

Figure 4.5. Moreover, Figure 4.6 illustrates the explored design parameter space and convergence

of the objective function.

The Q-criterion contours coloured by velocity magnitude and the pressure perturbation of both

the baseline and optimum designs are shown in Figures 4.7 and 4.8, respectively. Comparing these

figures, turbulent structures over the cavity are reduced significantly in the optimum design, and
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Figure 4.6. The design space and objective function convergence for the three-dimensional open
deep cavity.
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the shear layer expands over the cavity, resulting in much lower noise emission. Furthermore, the

Power Spectral Density (PSD) of the sound pressure level is plotted against the Strouhal number

for both the baseline and optimum designs in Figure 4.9, which follows the Welch’s method of

periodiograms [179] and involves dividing the time period into 6 windows with a 50% overlap.

This figure illustrates the SPL reduction across all frequency ranges.

4.3 Tandem Cylinders

In this section, a tandem arrangement of two cylinders is considered, as shown in Figure 4.10,

which is a simplified model of flow over landing gears. The three-dimensional wake development

of a single cylinder was studied by Williamson [180]. Additionally, Papaioannou et al. [181] in-

vestigated the three-dimensionality effects of flow over two tandem cylinders, varying Reynolds

number and the spacing distance between the cylinders. They found that as Reynolds number in-

creased, two-dimensional results diverged from three-dimensional ones, especially beyond a crit-

ical Reynolds number where wake three-dimensionality initiated. The Reynolds number of our

study, based on the upstream cylinder’s diameter, is ReD = 1000 since the wake will develop

considerable three-dimensionality and this Reynolds number is associated with the early turbulent

regime [181].

4.3.1 Validation

In this section, the simulation of flow over two tandem cylinders is validated using reference

DNS data [181], along with a grid independence study of the time-averaged lift and drag coeffi-

cients and SPL at a near-field observer located 2D above the upstream cylinder. Then, the opti-

mization is performed similar to Section 3.3, where sound at the near-field observer is minimized.

The design variables are the ratio of the cylinders’ diameters, r, and the distance between the two,

s.
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(a) Q-criterion contours coloured by velocity magnitude.

(b) Pressure perturbation.

Figure 4.7. The Q-criterion contours and pressure perturbation for the baseline design of the open
deep cavity.
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(a) Q-criterion contours coloured by velocity magnitude.

(b) Pressure perturbation.

Figure 4.8. The Q-criterion contours and pressure perturbation for the optimum design of the open
deep cavity.
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Figure 4.9. The sound spectra for the open deep cavity.
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Figure 4.10. The geometry of two cylinders in a tandem configuration.

91



Figure 4.11. The mesh of the two cylinders in a tandem configuration.

4.3.1.1 Computational Details

The cylinders are located at a distance of s/D = 1 with a ratio of r = 1 and have a spanwise

length of L/D = 10, following previous studies [181]. The Reynolds number, based on the up-

stream cylinder’s diameter, is ReD = 1000, corresponding to the early turbulent regimes [181],

and the Mach number is 0.2. The boundary layer region extends to 0.5D around the cylinders,

with the inlet boundary placed 5D away from the upstream cylinder and the outlet boundary 55D

away from the downstream cylinder. The computational domain is extended to 10D in the y direc-

tion. The stretching ratio for the first 5D and 1D elements in the x and y-directions, respectively,

is 1.05, and that of the remaining elements is 1.075. The smallest element size in the domain is

0.1D, which is in the boundary layer region. A total number of 31, 780 hexagonal elements are

used. The mesh of the tandem cylinders is shown in Figure 4.11. Periodic boundary conditions

are applied in the spanwise direction, while a no-slip boundary condition is imposed on the sur-

face of the cylinders, along with Riemann invariant boundary conditions at the inlet and outlet of

the computational domain. The Nasab-Pereira-Vermeire temporal scheme of second-order [56] is

employed to advance the simulation in time. The simulation is run for 100tc, where tc = D/U∞, to

allow initial transients to disappear, followed by a subsequent period of 500 tc to obtain an average

of the statistical quantities.

4.3.1.2 Results and Discussion

The sufficiency of the spanwise length is investigated by computing the correlation coefficient

of the velocity fluctuation and the pressure perturbation along the z-direction. The correlation plot,
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Figure 4.12. The correlation coefficient in the spanwise direction for the tandem cylinders.

Table 4.2. The CD1 and S PL at the observer, for the tandem cylinders configuration using different
lengths of the averaging window.

Averaging Window Size CD1 S PL
P2 P3 P2 P3

200tc 0.962374 0.994465 126.49 125.14
300tc 0.963871 0.994915 126.87 125.23
400tc 0.965569 0.996092 127.34 125.25
500tc 0.966651 0.996752 127.56 125.25
600tc 0.967519 0.997042 127.73 125.31
700tc 0.968142 0.996965 127.84 125.31

demonstrated in Figure 4.12, ensures the uncorrelated fluctuations in the z-direction at a separation

of half of the domain size. Furthermore, the time-averaged drag coefficient and the sound pressure

level at the observer are computed using different averaging window lengths, summarized in Table

4.2. The time-averaged drag coefficient of the upstream cylinder is computed using P2 and P3

simulations. The CD1 obtained using the P3 simulation is 0.997, which is in good agreement

with the reference value of 0.988 [181]. Table 4.2 shows that the difference in the statistical time-

averaged quantities is negligible beyond 500tc. Thus, in this study, the statistical quantities are

averaged for 500tc.
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4.3.2 Optimization

The distance between the two cylinders, s, and the ratio between the diameters of the cylinders,

r, are the design variables,XXX = [s, r]. The objective function is F = p′rms at 2D above the upstream

cylinder.

4.3.2.1 Results and Discussion

The optimization problems converges after 18 MADS iterations, including 48 objective func-

tion evaluations. The baseline and optimum designs are shown in Figure 4.13. The design space

and objective function convergence are shown in Figure 4.14, where the optimum design is found

as (s, r) = (2.0291D, 1.7563D). The optimization procedure has covered a wide range of design

variables, as shown in Figure 4.14a. Q-criterion contours coloured by velocity magnitude and

acoustic field at the mid-plane are shown for the baseline design and the optimum design, in Fig-

ures 4.15 and 4.16, respectively. The optimized design exhibits a smoother flow field qualitatively,

with the elimination of the wake region behind the upstream cylinder. The distance between the

cylinders and their diameter ratios facilitate a smooth transition of flow from the upstream to the

downstream cylinder. This reduction in turbulent structures between the cylinders and the smooth

flow transition yields a noise reduction exceeding 11 dB. The sound pressure level of the initial

design at the observer, 2D above the upstream cylinder, is 125.3 dB, which reduces to 114.1 dB for

the optimized configuration. Lastly, Figure 4.17 presents the PSD of SPL versus Strouhal number,

computed using Welch’s method of periodograms [179] with 3 windows and a 50% overlap. It

is evident that the optimum design displays higher intensity PSD of SPL over a broad frequency

range, while achieving a lower SPL value. This behavior can be attributed to the baseline design

producing high-intensity sound at specific frequencies (S t = 0.63, 0.77, and 0.90), contributing to

its elevated peak SPL, whereas the optimum design distributes its energy across a wider frequency

spectrum.
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Figure 4.13. The baseline, in black, and optimum, in red, designs of the tandem cylinders.

4.4 NACA 4-Digit Airfoil

The flow over NACA 4-digit airfoils is investigated in this section. The procedure is similar to

that of Section 3.4, with the computational domain extruded in the z-direction. The validation of

the flow simulation is conducted using an ILES reference [182] and a grid independence study for a

NACA0012 airfoil. Subsequently, four design parameters, akin to those in Section 3.4, are selected,

and the gradient-free MADS optimization technique is employed. We implemented a parallel

optimization framework, where all objective function evaluations at each iteration is performed

concurrently. Consequently, within this parallel optimization framework, the computational cost

of each optimization iteration remains unaffected by the number of design variables, provided

adequate resources are available. Therefore, the maximal positive basis construction is employed

for the MADS algorithm in this context, as the number of objective function evaluations needed at

each MADS iteration is immaterial due to the ample availability of resources.

4.4.1 Validation

In this section, we conduct validation for the flow over a NACA0012 airfoil at an angle of

attack of 6◦. The validation process involves comparing the time-averaged lift and drag coefficients

obtained from two distinct grid resolutions with those from an ILES reference [182]. Moreover, the
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Figure 4.14. The design space and objective function convergence for the tandem cylinders.
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(a) Q-criterion coloured by velocity magnitude.

(b) Acoustic pressure field at mid-plane.

Figure 4.15. The baseline tandem cylinder design at tc = 600.
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(a) Q-criterion coloured by velocity magnitude.

(b) Acoustic pressure field at mid-plane.

Figure 4.16. The optimum tandem cylinder design at tc = 600.
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Figure 4.17. The sound spectra for the tandem cylinders.

SPL at a near-field observer is computed using both grid resolutions and various time averaging

window lengths. This analysis ensures the independence of the results to both grid resolution

and time averaging window length. Detailed computational procedures and validation results are

presented in the subsequent sections.

4.4.1.1 Computational Details

The computational grid consists of 121, 520 hexagonal elements, illustrated in Figure 4.18. The

domain extends to 20c in the x-direction, 10c in the y-direction, and 0.2c in the z-direction, with

c = 1 representing the airfoil chord. Notably, elements in the wake region are inclined at the angle

of attack to accurately capture trailing-edge vortices. The flow conditions are characterized by a

Reynolds number of 23, 000, a free-stream Mach number of M = 0.2, and a Prandtl number of

Pr = 0.71. The simulation is run for 10 convective times to allow the initial transition disappears

and then run for another 90 convective times for flow statistics averaging. The second-order Nasab-

Pereira-Vermeire [56] temporal scheme is used to advance the solution in time. Additionally, a

variable solution polynomial degree is implemented to eliminate acoustic wave reflections from
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Figure 4.18. The computational grid for NACA0012 airfoil at α = 6◦.

(a) Low resolution, P0 − P3. (b) High resolution, P0 − P4.

Figure 4.19. Different solution polynomial distributions for grid independence study of
NACA0012 airfoil at α = 6◦.

boundaries, as demonstrated in Figure 4.19.

4.4.1.2 Results and Discussions

Two grid resolutions are employed with maximum solution polynomial degrees of P3 and

P4. The time-averaged lift and drag coefficients are compared to the ILES reference data [182],

presented in Table 4.3. The difference between the time-averaged lift coefficient obtained from

the P4 simulation and the reference data is negligible, affirming adequacy of the P4 simulation’s

grid resolution. Furthermore, the time-averaged drag coefficient differs by less than 1.3% from the

reference data. The SPL at an observer located two unit chord lengths below the trailing edge is

computed for both P3 and P4 simulations. Various averaging window lengths are applied, and

the results are summarized in Table 4.4. Considering the findings presented in Tables 4.3 and 4.4,
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Table 4.3. The time-averaged lift and drag coefficients of the NACA0012 airfoil at α = 6◦.

P0 − P3 P0 − P4 reference [182]

CL 0.6534 0.6399 0.6402
CD 0.0553 0.0548 0.0541

Table 4.4. The grid independence study of SPL using different averaging window lengths for
NACA0012 airfoil at α = 6◦.

Averaging Window Length
SPL in dB

P0 − P3 P0 − P4
20tc 114.9 116.3
40tc 115.7 116.3
60tc 115.7 116.2
80tc 115.7 116.2

we opt to conduct P4 simulations for a total duration of 70 convective times for the optimization

study.

4.4.2 Optimization

There are four design parameters similar to Section 3.4.2, i.e. XXX = [ca
max, xca

max
, ta

max,α]. The

maximum camber range is set to ca
max ∈ [−10, 10] as a percentage of the chord, with the distance

from the airfoil leading edge in the range of xca
max
∈ [4, 9] as a tenth of the chord. The maximum

thickness of the airfoil is within the range of ta
max ∈ [6, 18] as a percentage of the chord. Finally,

the angle of attack varies from 0◦ to 12◦. The objective function is defined as the sound pressure

level at the observer with constraints on both the mean lift and mean drag coefficients. A quadratic

penalty term is added to the objective function when the lift coefficient deviates from the baseline

design, and an additional quadratic penalty term is added when the mean drag coefficient is above

the baseline design. The objective function is defined as

F =































S PL + ε1

(

CL −CL,baseline

)2
+ ε2

(

CD −CD,baseline

)2
CD > CD,baseline

S PL + ε1

(

CL −CL,baseline

)2
CD ≤ CD,baseline

, (4.2)
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Figure 4.20. The baseline, in black, and optimum, in red, designs of the NACA 4-digits airfoil.

where the constants ε1 and ε2 are set to 8, 000 and 400, 000, respectively, to compensate for the

order of magnitude difference in S PL and CL and CD. The defined objective function minimizes

the sound pressure level while maintaining the mean lift coefficient, and ensures the optimized

airfoil has a similar or lower mean drag coefficient.

4.4.2.1 Results and Discussion

This optimization procedure converges after 22 MADS iterations, consisting of 172 objective

function evaluations. The baseline and optimum designs are shown in Figure 4.20. The design

space and the convergence of the objective function are shown in Figure 4.21. The optimal airfoil

design has a maximum camber of ca
max = 0.1406 at 6.5 tenths of the chord distance from the leading

edge, with a thickness of ta
max = 8.86 percent of the chord, at an angle of attack of α = 6.28 degrees.

The SPL of the optimized airfoil is decreased to 110.6 dB, the mean lift coefficient is CL = 0.6556,

and finally, the mean drag coefficient is decreased by 7.4% to CD = 0.0509.

The Q-criterion coloured by velocity magnitude and the pressure perturbation at mid-planes are

shown in Figures 4.22 and 4.23 for the baseline and optimum designs, respectively. The optimum

design shifts the separation point closer to the leading edge, indicating reduced flow energy upon

separation from the airfoil. This, in turn, yields smaller turbulence structures and reduced acoustic

energy. Consequently, there is a notable decrease in the pressure perturbation field, translating to

a noise reduction of approximately 5.7 dB. Figure 4.24 presents the PSD of SPL as a function of

the Strouhal number, computed using Welch’s method of periodograms [179] with 3 windows and

a 50% overlap. It is evident that the optimum design displays lower-intensity SPL energy across

various frequency ranges.
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Figure 4.21. The design space and objective function convergence of the NACA 4-digit airfoil
optimization.
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(a) Q-criterion coloured by velocity magnitude.

(b) Acoustic pressure field at mid-plane.

Figure 4.22. The baseline airfoil at tc = 70.
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(a) Q-criterion coloured by velocity magnitude.

(b) Acoustic pressure field at mid-plane.

Figure 4.23. The optimum airfoil at tc = 70.
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Figure 4.24. The sound spectra for the NACA 4-digit airfoils.
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Chapter 5

Far-Field Aeroacoustics via

Ffowcs-Williams and Hawkings

Formulation

5.1 Formulation

The FW-H equation is an exact rearrangement of the continuity and Navier-Stokes equations,

resulting in an inhomogeneous wave equation with source terms. These source terms consist of

two surface source terms, monopole and dipole, and a volume source term, quadrupole. The

computational resources required for the volume integration of the quadrupole source term are

significantly higher than those for surface integration. However, the contribution of the quadrupole

source term is negligible for many subsonic applications [183]. Three different categories exist of

aeroacoustics problems:

1. Fixed Observer. A fixed observer in a stationary ambient medium and the source can be

either in motion or rest,

2. Moving Observer. A moving observer in a stationary ambient medium and the source is in

motion,
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3. Moving Medium. A fixed observer in a moving medium, the source can be either in motion

or rest.

There are several solutions to the FW-H equations. The well-known formulations 1 and 1A of

Farassat [184, 185] assume the propagation of sound waves in a medium at rest. Najafi-Yazdi et

al. [186] and Ghorbaniasl et al. [187] introduced a new formulation based on the convective wave

equation. These formulations are well-suited for CFD simulations, accounting for the presence of

a moving medium. In this thesis, the time-domain moving medium formulation is implemented,

following the Ghorbaniasl formulation [187].

First, a data surface is defined in space to contain all the noise sources around the body by a

function f (xxx, t), as

f (xxx, t)



















































< 0 inside the boundary,

= 0 on the boundary,

> 0 outside the boundary,

(5.1)

and it is assumed that

|∇∇∇ f |= 1, (5.2)

and f is smooth, without discontinuities, so that

∂ f

∂xi
= n̂i (5.3)

is the local outer normal of the data surface.

The initial step in the derivation of the FW-H equation involves multiplying the Heaviside func-

tion by the conservation of mass and momentum equations. This operation confines the application

of these equations exclusively to regions outside the data surface. Subsequently, employing the

principles of generalized function theory, these equations are transformed into non-homogeneous
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wave equations, as detailed in [188]. Thus, the conservation of mass will be

D

Dt

[

(ρ − ρ0) H( f )
]

+
∂

∂xi

[

ρuiH( f )
]

= Qδ( f ), (5.4)

Q = ρ (un + U∞n − vn) + ρ0 (vn − U∞n) , (5.5)

where ρ is the density of the fluid, ρ0 denotes the fluid density at rest, H( f ) is the Heaviside

function, ui are the velocity components, Q is the source term for the continuity equation known as

the thickness term and accounts for the flux of mass across the surface, and δ( f ) is the Dirac’s delta

function of f (xxx, t). Finally, the subscript n denotes the local normal term of the data surface. Thus,

un = uin̂i, U∞n = U∞in̂i, and vn = vin̂i. U∞i being the ith component of the mean flow velocity and

vi being the ith component of the data surface velocity. Note that Equation 5.4 returns zero inside

the data surface and the value of density fluctuation outside the data surface.

Applying the same methodology, the non-linear momentum equation yields the following

D

Dt

[

ρuiH( f )
]

+
∂

∂x j

[

ρuiu jH( f )
]

+
∂

∂x j

[(

pδi j − σi j

)

H( f )
]

= Liδ( f ), (5.6)

Li = Pi jn̂ j + ρui (un + U∞n − vn) , (5.7)

Pi j = (p − p0) δi j − σi j, (5.8)

where p is the static pressure, σi j is the viscous stress tensor, Li is the source term for the non-linear

momentum equation known as the loading term and accounts for the flux of momentum across the

surface, and Pi j is the compressive stress tensor.

The equation for propagation of noise is obtained via taking the time derivative of Equation 5.4

and subtracting the divergence of Equation 5.6, and is

(

1

c2
0

D2

Dt2
− ∇2

)

(

p′ (xxx, t) H( f )
)

=
D

Dt
(Qδ( f )) −

∂

∂xi
(Liδ( f )) +

∂2

∂xi∂x j

(

Ti jH( f )
)

, (5.9)
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where

Q = ρ [un − (vn − U∞n)] + ρ0 (vn − U∞n) . (5.10)

Li = ρui [un − (vn − U∞n)] + Pi jn̂ j, (5.11)

Ti j = ρuiu j +
[

(p − p0) − c2
0 (ρ − ρ0)

]

δi j − σi j. (5.12)

On the right-hand side of Equation 5.9, the first two terms are the monopole (thickness) and dipole

(loading) sources, respectively, acting on the surface f = 0, as the Dirac delta function, δ( f ), is

presented in these terms. The third term is the quadrupole source acting on the volume exterior to

the FW-H surface as indicated by the Heaviside function, H( f ). This convective wave equation,

Equation 5.9, can be solved on a solid data surface [189, 190, 191] having the disadvantage of

performing expensive volume integrals. To alleviate the computational cost, a porous data sur-

face is used for the solution of FW-H equations [192, 193]. The solution to this equation can be

performed either in the time-domain [191, 194] or frequency-domain [195, 196, 197]. Farassat’s

Formulations 1 and 1A [185, 194, 198] are commonly used due to their robustness and low com-

putational cost; however, these solutions do not take into account the presence of the mean flow

[186]. Najafi-Yazdi introduced an alternative approach, capable of solving wind tunnel problems,

by solving a convective wave equation, firstly derived by Wells and Han [199], to take the presence

of the mean flow into account [186]. In this work, we consider a time-domain formulation with a

moving medium and a stationary data surface approach where vi = 0, as introduced by Ghorbaniasl

[187].

The acoustic pressure consists of three different sources, namely, thickness, loading, and quadrupole

sources [187],

p′(xxx, t, MMM∞) = p′T (xxx, t, MMM∞) + p′L(xxx, t, MMM∞) + p′Q(xxx, t, MMM∞), (5.13)

where MMM∞ is the medium flow Mach number, p′T is the thickness pressure, p′L is the loading pres-

sure, and p′Q is the quadrupole pressure. The first two, thickness and loading pressures, are com-

puted using a surface integration with a low computational cost. However, the evaluation of the
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quadrupole source term necessitates a more computationally expensive volume integration. Un-

der certain conditions where the data surface is sufficiently large to encompass all noise sources,

the volume integration can be disregarded. Therefore, in many derivations, it is assumed that all

noise sources are confined within the data surface, leading to the omission of the volume integra-

tion, specifically the quadrupole noise source [186]. The expressions for thickness and loading

pressures are as follows [187],

4πp′T (xxx, t, MMM∞) =

∫

S

[

(1 − M∞R) Q̇

R?

]

e

dS −

∫

S

[

Q
c0M∞R?

R?2

]

e
dS , (5.14)

and

4πp′L(xxx, t, MMM∞) =
1

c0

∫

S

[

L̇R

R?

]

e

dS +

∫

S

[LR?

R?2

]

e
dS , (5.15)

where the dot over quantities denotes the temporal derivative with respect to the source time τ, and

c0 is the speed of sound. The integrands in Equations 5.14 and 5.15 are defined as

M∞R = M∞iR̃i, (5.16)

M∞R? = M∞iR̃
?
i , (5.17)

L̇R = L̇iR̃i, (5.18)

LR? = LiR̃
?
i , (5.19)

R? =
1

γ

√

|xxx − yyy|2+γ2 (MMM∞ · (xxx − yyy))2
=

1

γ

√

r2 + γ2 (MMM∞ · rrr)2, (5.20)

R = γ2 (

R? −MMM∞ · rrr
)

, (5.21)

γ2 =
1

1 − |MMM∞|2
, (5.22)

R̃?
i =

∂R?

∂xi
=

ri + γ
2
(

M∞ jr j

)

M∞i

γ2R?
, (5.23)
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R̃i =
∂R

∂xi
= γ2

(

R̃?
i − M∞i

)

, (5.24)

where R? and R are called the amplitude and phase radii, respectively, rrr = xxx − yyy is the distance

between the observer position, xxx, and the source position, yyy, and, finally, τ = t − R
c0

is the source

time with t being the observer time. Note that in Equations 5.14 and 5.15, the subscripts e in the

integration means that all the integrand quantities are computed in the source time, τ. Thus, the

right-hand side is in the source time frame, and the left-hand side is in the observer time frame.

There are two main numerical approaches to solving Equations 5.14 and 5.15, namely, the retarded-

time approach and the advanced-time approach [190]. This study uses the advanced-time approach

known as the source-time-dominant approach. In the retarded-time approach, the observer time is

selected in advance, and the source time is calculated as

τ = t −
R

c0
, (5.25)

then, all the source data are interpolated to the calculated source time. However, in the advanced-

time approach, the source time is used to determine when the signal will reach the observer, via

t = τ +
R

c0
. (5.26)

A sequence of equally-spaced source times will lead to a sequence of unequally-spaced observer

times. Then, the contribution of each point on the data surface to the observer noise will reach

the observer at an observer time. The obtained observer time history is then interpolated to get the

contribution of each source panel at the desired observer time, i.e.

4πp′(xxx, t?, MMM∞) ≈

np
∑

i=1

I
(

Ii(t), t?
)

, (5.27)

where p′ is either p′T or p′L, t? is the desired observer time, np is number of points on the data

surface, I is an interpolation operator, and Ii(t) is the right-hand side of either Equation 5.14 or

5.15. Brentner et al. [200] showed that the advanced-time approach requires significantly less
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operation than the retarded-time approach and, thus, is more computationally efficient.

5.2 Implementation

The time-domain formulation of FW-H for moving medium problems and permeable data sur-

faces is implemented in Python. Initially, the flow field is numerically computed using an in-house

high-order flow solver, HORUS. Once the density, pressure, and velocity fields data is obtained on

a pre-defined data surface, it is fed into the FW-H framework. Then, the pressure perturbation can

be propagated to any observer location to compute resulting acoustic pressure and sound pressure

level. The verification and validation processes for the acoustic solver are detailed in the following

sections.

5.3 Verification

The verification of the acoustic solver is assessed through the examination of two analytical

test cases. These involve wind tunnel cases of stationary sources, including a monopole source and

a dipole source. The formulation of these analytical tests aligns with the methodology presented

by Ghorbaniasl [187].

5.3.1 StationaryMonopole

A stationary single-frequency monopole source is located at the origin of a medium moving

at a constant velocity. The complex velocity potential, ϕm, for the monopole in a uniform flow in

x1-direction [201] is extended to arbitrary orientation as follows [187],

ϕm (xxx, t) = A
1

4πR?
exp

[

iω

(

t −
R

c0

)]

, (5.28)
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where R? and R are computed via Equations 5.20 and 5.21, respectively. Then, the acoustic particle

velocity and the acoustic pressure are obtained via

u′i (xxx, t) =
∂ϕm (xxx, t)

∂xi
, (5.29)

and

p′ (xxx, t) = −ρ0

(

∂ϕm (xxx, t)

∂t
+ c0M∞i

∂ϕm (xxx, t)

∂xi

)

= −ρ0

(

iω + c0M∞i
∂

∂xi

)

ϕm (xxx, t) , (5.30)

respectively. And finally, the induced density is

ρ′ (xxx, t) =
p′ (xxx, t)

c2
0

. (5.31)

Here, the velocity potential amplitude is A = 1m2/s, the angular frequency of the source is ω =

10π rad/s, the ambient speed of sound is c0 = 340.75m/s, the free-stream flow density is ρ0 =

1.234kg/m3, and the specific heat ratio of air is γ = 1.4. Thus, the free-stream pressure is obtained

via the ideal gas law as

p0 = ρ0RgT0

c0=

√

γRgT0
−−−−−−−−−→ p0 =

ρ0c2
0

γ
, (5.32)

where Rg is a gas constant. A sphere of radius r = 1 is used as the permeable data surface. The

sphere is discretized into 30 sections in the polar direction, ensuring that the spacing between

data points along each polar section remains constant at 2π/45. This uniform distribution of data

points guarantees that each data panel possesses an identical area. To ensure an adequate temporal

resolution, a value of ∆t/T = 0.02 is selected, with T representing the period of the source signal.

At a distance of 20 m from the source, the radiated sound pressure is recorded for various mean

flow orientations. The root-mean-squared value of the monopole acoustic pressure is computed

over a duration spanning 10 periods. Figure 5.1 presents these values for different mean flow

orientations. Additionally, Figure 5.2 illustrates a comparison between the calculated monopole

acoustic pressure time history and the exact solution. Both figures depict an exact match between
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the predicted pressure perturbation, determined using the FW-H method, and the corresponding

analytical values, showing the accuracy of the acoustic solver for monopole-like sources.
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Figure 5.1. Comparison of the root-mean-squared of the predicted acoustic pressure with the exact
solution for different Mach number flows.

5.3.2 Stationary Dipole

The second verification test case for the acoustic solver involves a stationary dipole positioned

at the origin of a medium moving at a constant velocity with an arbitrary orientation. We assume

that the dipole’s axis is on the x2-axis aligning with the methodology presented by Ghorbaniasl

[187]. In this scenario, the complex velocity potential for the dipole can be expressed as the
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Figure 5.2. Comparison of the predicted and exact acoustic pressure time histories for inflow Mach
number of MMM∞ = [0.7, 0.1, 0.5].
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derivative of the monopole’s complex velocity potential with respect to x2,

ϕd (xxx, t) =
∂

∂x2
ϕm (xxx, t) . (5.33)

The calculation of acoustic particle velocity, pressure, and induced density is performed similarly

to the monopole case. In this scenario, a spherical data surface with a radius of r = 1 is utilized,

mirroring the approach in the monopole case. This spherical surface is discretized into 30 sections

in the polar direction, and the azimuthal direction employs a grid size of 2π/45. Temporal calcula-

tions maintain a resolution of ∆t/T = 0.02. The radiated sound pressure is recorded at a distance of

100 m from the dipole source. Subsequently, the root-mean-squared value of the acoustic pressure

is computed over a span of 10 periods. These computations are conducted for various mean flow

orientations, and the results are illustrated in Figure 5.3. Additionally, Figure 5.4 displays the time

history of the acoustic pressure. Both figures exhibit an exact match between the FW-H prediction

and the analytical data, affirming the accuracy of the FW-H solver for dipole-like sources.

5.4 Validation

The FW-H framework is validated using monopoles in an inviscid and quiescent flow. Thus,

the Euler equations are solved at an inflow Mach number of zero, where a source term is added to

the energy equation to act as a monopole.

5.4.1 Monopole in Quiescent Flow Using Euler Equations

The source term for the single monopole is defined as

s(xxx, t) = Ae−k[(x−xs)
2+(y−ys)

2+(z−zs)
2] sin(2πωt), (5.34)

where A = 0.05 is the amplitude, k = 100 1/m2 is the range factor, [xs, ys, zs] = [0, 0, 0] is the

location of the source or monopole, and ω = 0.5 1/s is the frequency.
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Figure 5.3. Comparison of the root-mean-squared of the predicted acoustic pressure with the exact
solution for different Mach number flows.
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Figure 5.4. Comparison of the predicted and exact acoustic pressure time histories for inflow Mach
number of MMM∞ = [0.8, 0.0, 0.4].
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Figure 5.5. The computational domain with the monopole in red and the observer in blue.

In this problem, the source term exhibits characteristics similar to a Gaussian bump, and it

undergoes oscillations in the domain. This oscillation introduces a fluctuating pressure field around

the source point. The absence of vortices, due to a zero inflow Mach number and inviscid flow

conditions, eliminates challenges related to boundary treatments. Consequently, this setup serves

as a robust validation for the FW-H framework.

5.4.1.1 Computational Details

A cube of size [10 × 10 × 10] is discretized into a total of 125, 000 structured hexahedral

elements, and Riemann invariant boundary conditions are applied. An observer is located at

[xobs, yobs, zobs] = [0, 3, 0], positioned above the source. The Euler equations are solved using P3

simulation, and the flow data is collected on a spherical data surface with a radius of r = 1.5. Fig-

ure 5.5 visualizes the computational domain, source location, and observer position. The acoustic

pressure at the observer location is determined through two distinct approaches. First, it is directly

computed from the flow solver at the observer’s position, using a P3 simulation. Second, the flow

data are collected at the data surface using P1, P2, and P3 simulations, and are fed into the acous-

tic solver. Then, the pressure perturbation is computed at the observer’s location via the acoustic

solver, using three distinct data sets. The resulting acoustic pressure field obtained via these two

methods are then compared with each other.
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(a) CFD. (b) FW-H.

(c) The slice through the do-
main.

Figure 5.6. The acoustic pressure field obtained via both CFD P3 simulation and FW-H P3.

5.4.1.2 Results and Discussion

Figure 5.6 displays the acoustic pressure field, obtained via the P3 CFD simulation, alongside

the acoustic solver fed by P3 CFD inputs. This depiction is presented on a slice through the

domain. The time history of the acoustic pressure at the observer location is depicted in Figure

5.7, employing both approaches. Notably, when employing the results of P1 CFD simulation

for the acoustic solver, there is an over-prediction of the acoustic pressure. However, a favorable

agreement with the direct CFD results is observed when P2 and P3 CFD simulations are used

as inputs to the acoustic solver, i.e. more accurate inputs are provided for the acoustic solver.

This outcome underscores the significant influence of flow solver accuracy on acoustic prediction

accuracy, reaffirming the importance of providing precise data to the acoustic solver.
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Figure 5.7. Time history of the acoustic pressure.

5.4.2 MultipleMonopoles in the Domain

To introduce complexity to the acoustic field, the previous problem is repeated by employing

four monopoles, each characterized by distinct amplitudes and frequencies, and they are located in

close proximity to the origin. The source term added to the energy equation is defined as follows,

utilizing the same parameters and definitions as Equation 5.34,

s(xxx, t) = Ae
−k

[

(x−xs1)
2
+(y−ys1)

2
+(z−zs1)

2
]

sin(2πωt) + Ae
−k

[

(x−xs2)
2
+(y−ys2)

2
+(z−zs2)

2
]

sin(8πωt)

+ 2Ae
−k

[

(x−xs3)
2
+(y−ys3)

2
+(z−zs3)

2
]

sin(4πωt) + 4Ae
−k

[

(x−xs1)
2
+(y−ys1)

2
+(z−zs1)

2
]

sin(2πωt),
(5.35)

where the monopoles are located at [xs1 , ys1 , zs1] = [0, 0, 0], [xs2 , ys2 , zs2] = [0.1, 0.3, 0.2], [xs3 , ys3 , zs3] =

[−0.2, 0.4,−0.3], and [xs4 , ys4 , zs4] = [−0.4,−0.2, 0.1]. The snapshots of the acoustic pressure field

are illustrated in Figure 5.8, demonstrating a qualitative agreement between flow solver and acous-

tic solver results. Furthermore, Figure 5.9 shows the temporal evolution of the acoustic pressure,

exhibiting behavior similar to that of a single monopole source. Notably, as the polynomial degree

in the CFD simulation is increased, the accuracy of the acoustic solver outcomes improves.
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(a) CFD. (b) FW-H.

(c) The slice through the do-
main.

Figure 5.8. The acoustic pressure field obtained via both CFD P3 simulation and FW-H P3.
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Figure 5.9. Time history of the acoustic pressure.
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5.4.3 Flow over a NACA0012 Airfoil

In this section, we undertake the validation of the acoustic solver through the solution of the

Navier-Stokes equations in the context of viscous flow over a three-dimensional airfoil. NACA0012

airfoil at 6◦ angle of attack is studied as previously used in Section 4.4. The acoustic solver valida-

tion consists of two steps. First, the flow data is computed on a data surface using P4 simulation,

along with the acoustic pressure at a near-field observer located at two chord lengths below the

trailing edge. Then, the obtained density, velocity, and pressure fields on the data surface are uti-

lized as inputs for the acoustic solver. The pressure perturbation and the Power Spectral Density

(PSD) of SPL obtained from the acoustic solver are compared with those of the flow solver.

5.4.3.1 Computational Details

The computational details are the same as Section 4.4. In this section, a data surface is added

to the computational domain to collect required inputs for the acoustic solver. The data surface

extends to two chord lengths in the y-direction, spans up to four chord lengths into the wake

region, and covers the entire span of the airfoil. This porous data surface, as depicted in Figure

5.10, encloses pertinent turbulent structures in the near-field region. The data surface remains

open-ended to mitigate erroneous acoustic wave generation associated with vortices crossing the

data surface. Moreover, the spacing between the sample points on the data surface is set at 0.01c,

ensuring a uniform distribution. Notably, these sample points do not align with the periodic planes

to prevent the introduction of spurious noise due to duplicated values on these planes. Thus, the

first and last points in the spanwise direction are positioned 0.005c away from the periodic planes.

To validate the acoustic solver, the NACA0012 airfoil at a 6◦ angle of attack is studied. The

second-order Nasab-Pereira-Vermeire scheme [56] is used with adaptive time-stepping. The av-

eraged time-step size is approximately ∆tavg = 0.001561. Data collection is conducted every 50

time-steps, resulting in a sampler rate of ∆t = 0.018467tc, providing 2166 flow snapshots. This

data collection spans an averaging time period of 40tc. The computation of PSD for SPL follows

the Welch’s method of periodiograms [179] and involves dividing the time period into 3 windows
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0.2c

Figure 5.10. Schematic diagram of the data surface with Lz = 0.2c.

with a 50% overlap. The PSD of SPL at a near-field observer is computed along with the acoustic

pressure time history, to validate the acoustic solver.

5.4.3.2 Results and Discussions

The acoustic pressure time history along with the PSD of SPL for the near-field observer us-

ing different spanwise data surface extensions are illustrated in Figure 5.12. It is apparent that

the acoustic solver fails to accurately predict pressure perturbations when the data surface is not

duplicated in the spanwise direction. This observation underscores that relying solely on the com-

putational domain is insufficient for capturing far-field noise. The primary issue stems from the

periodicity in the spanwise direction, which neglects acoustic wave propagation in this dimension

within the hybrid approach. To rectify this, an iterative integration of the data surface is necessary

on domains shifted either sides of the airfoil over a sufficient distance. The data surface is subse-

quently duplicated in the spanwise direction, extending to various sets of Lz values. It is evident

that extending the data surface up to Lz = 15c proves sufficient for accurate noise prediction. Table

5.1 summarizes the SPL for the near-field observer when using different data surface duplications.
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Figure 5.11. Schematic diagram of the repeated CFD data surface in the periodic spanwise direc-
tion with Lz = 0.6c fed into the acoustic solver.

A comparison to the direct result, where S PL = 115.8 dB, confirms the effectiveness of data sur-

face duplication up to Lz = 15c. Note that according to the inverse square law of acoustic wave

dissipation, as the observer is placed further away from the data surface, more duplication of the

data surface in the periodic spanwise direction is required.

5.5 Shape Optimization of a 4-Digit NACA Airfoil

The shape of a NACA0012 airfoil is optimized to reduce the SPL at a far-field observer located

10 chord lengths below the trailing edge. The design parameters, constraints, and objective func-

tion are similar to those of Section 4.4. However, in this section, the acoustic solver is employed

rather than computing the sound directly from the flow solver. The density, pressure, and velocity

fields data are collected on the data surface and used as inputs to the acoustic solver. To ensure

the accuracy of our acoustic analysis, we take into consideration the potential influence of vortices

crossing the data surface, which can introduce undesired noise artifacts. To mitigate this, the data
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(a) The pressure perturbation time history.

(b) The PSD of SPL.

Figure 5.12. The pressure perturbation time history and PSD of SPL at the near-field observer.
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Table 5.1. The SPL of the near-field observer using different sets of data surface duplications.

Duplication Length (Lz) S PL in dB
0.2c 96.6
1.0c 110.2
3.0c 116.6
5.0c 116.2
7.0c 115.3
9.0c 115.8

11.0c 115.9
13.0c 115.8
15.0c 115.8

Table 5.2. The SPL of the far-field observer using different sets of data surface duplications.

Duplication Length (Lz) S PL in dB
0.2c 80.64
1.0c 94.6
5.0c 108.1
9.0c 110.8

13.0c 108.9
17.0c 109.5
21.0c 109.4
25.0c 109.5

surface is tilted to match the angle of attack, mirroring the orientation of the computational domain

itself. This precautionary measure effectively prevents vortices from crossing the data surface.

Given that our observer is located in the far-field, we employ multiple sets of data surface

duplications to compute the time history of pressure perturbations. The results of this analysis

are presented in Figure 5.13. Furthermore, the SPL values using different sets of data surface

duplications are summarized in Table 5.2. These results affirm that duplicating the data surface up

to Lz = 25c is sufficient for capturing far-field noise.

The aeroacoustic shape optimization framework is illustrated in Figure 5.14 which is similar

to the near-field aeroacoustic shape optimization framework, explained in Chapter 3. Initially, the

flow field is resolved, and data from the data surface is collected using HORUS. Subsequently,

the data from the data surface is duplicated in the spanwise direction to extend over a distance of

Lz = 25c and utilized as inputs for the acoustic solver to calculate pressure perturbations at the
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(a) The pressure perturbation time history.

(b) The PSD of SPL.

Figure 5.13. The convergence of the pressure perturbation time history and PSD of SPL at the
far-field observer using multiple sets of data surface duplications.
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Figure 5.14. The aeroacoustic shape optimization framework.

far-field observer point. The objective function is then evaluated using the SPL obtained from the

acoustic solver and the lift and drag coefficients obtained from HORUS, as defined by Equation 4.2.

In this proposed framework, design candidates are analyzed simultaneously, and HORUS performs

in parallel, employing a two-layered parallelism strategy to eliminate the runtime dependency of

the MADS algorithm on the number of design parameters. The results of this optimization process

are given in the following section.

5.5.1 Results and Discussions

The optimization procedure converges after 25 MADS iterations, consisting of a total of 192

objective function evaluations. The design space and the objective function convergence are de-

picted in Figure 5.16. The optimal airfoil design has a maximum camber of ca
max = 0.236206

percent of the chord, at a 7.8086 tenth of the chord distance from the leading edge, with a thick-

ness of ta
max = 8.783206 percent of the chord, at an angle of attack of α = 6.054932 degrees. The

baseline and optimum airfoils are demonstrated in Figure 5.15. The SPL of the optimized airfoil is
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Figure 5.15. The baseline, in black, and optimum, in red, designs of the NACA 4-digits airfoil.

decreased to 95.0 dB, the mean lift coefficient is CL = 0.6489, and finally, the mean drag coefficient

is decreased by 14.07% to CD = 0.0475.

The Q-criterion coloured by velocity magnitude along with the pressure perturbation are shown

in Figures 5.17 and 5.18 for the baseline and optimum designs, respectively. Similar to Section

4.4, the separation point is closer to the leading edge in the optimum design and the turbulence

structures are qualitatively smaller than the baseline design. This results in a substantial decrease

of 14.4 dB in SPL at the far-field observer.
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Figure 5.16. The design space and objective function convergence of the NACA 4-digit airfoil
optimization.
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(a) Q-criterion coloured by velocity magnitude.

(b) Acoustic pressure field at mid-plane.

Figure 5.17. The baseline airfoil at tc = 70.
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(a) Q-criterion coloured by velocity magnitude.

(b) Acoustic pressure field at mid-plane.

Figure 5.18. The optimum airfoil at tc = 70.
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Chapter 6

Conclusions and Future Works

An optimization framework has been developed using the gradient-free MADS algorithm, coupled

with a high-order unstructured flow solver and an acoustic solver based on the FW-H formulation.

This framework performs objective function evaluations in parallel during each optimization it-

eration, significantly reducing computational runtime. Notably, in this approach, the runtime of

gradient-free MADS optimization no longer depends on the number of design variables, provided

ample resources are available.

Near-field aeroacoustic shape optimization has been performed for an open deep cavity, tandem

cylinders, and NACA 4-digit airfoils. This led to noise reductions of 7.9 dB and 16.5 dB for the

cavity and cylinder cases, respectively. The noise is completely eliminated for the NACA 4-digit

airfoil, while decreasing the mean drag coefficient by 24.95% and maintaining the mean lift coef-

ficient. This approach extends to three-dimensional turbulent flows, resulting in noise reductions

of 12.9 dB and 18.9 dB for the cavity and tandem cylinder problems, respectively. 5.7 dB noise re-

duction is achieved for the airfoil problem, while decreasing the mean drag coefficient by 7.4% and

maintaining the mean lift coefficient. These outcomes demonstrate the suitability of the MADS al-

gorithm when coupled with the flow solver for low Reynolds number problems. Furthermore, the

acoustic solver has been validated through analytical test cases involving a stationary monopole

and a stationary dipole, affirming its accuracy. It is also verified by solving Euler equations using
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the flow solver, emphasizing the strong dependence of the acoustic solver’s accuracy on that of the

flow solver. The integration of the MADS optimization algorithm with the acoustic solver has been

employed to minimize noise for NACA 4-digit airfoils, resulting in a 14.4 dB reduction in noise

while reducing the mean drag coefficient by 14.07% and maintaining the mean lift coefficient.

Consequently, this aeroacoustic shape optimization framework effectively reduces noise and

enhances aerodynamic performance, demonstrated here in low Reynolds number flows and turbu-

lent conditions, both in the near and far field.

In this investigation, the optimizer has yet to be fully maximized in its capabilities. Our ex-

amination of its efficacy and efficiency on simplified industrial problems has showcased promising

prospects. By integrating additional engineering constraints to address structural failure and sta-

bility within the optimization framework, we can aim to enhance its applicability and robustness.

In addition, the effects of observer point locations on optimized shapes and their impact on the

optimization process is another intriguing avenue for future work. Furthermore, investigating the

influence of turbulent inflow conditions, considering factors like angle of incidence, uniformity,

and turbulence, on the optimal shape is vital for comprehensive understanding and improved op-

timization outcomes. Other future directions for this work may involve parallelizing the acoustic

solver to further reduce computational costs. Additionally, the study can be extended to address

noise reduction in moving and deforming domains, such as propellers or wind turbines, as well as

investigating problems at higher Reynolds numbers. Higher-order surface integration techniques

can also be employed within the acoustic solver to reduce the number of samples on the data

surface, ultimately lowering the computational cost of each objective function evaluation.
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