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Abstract 

Model-Based Predictive Control Strategies and Renewable Energy Integration for Energy 

Flexibility Enhancement in School Buildings 

Navid Morovat, Ph.D. 

Concordia University, 2024 

This thesis investigates methods to enhance the energy flexibility potential of school buildings 

through simulation and experimental studies. It contributes a general methodology for the 

development of data driven grey-box thermal models and the implementation of model-based 

predictive control (MPC). The methodology is applied to an archetype fully-electric school 

building near Montréal, Québec, Canada. This approach is scalable and transferable to other 

institutional or mid-size commercial buildings. 

To streamline the implementation of MPC, the proposed approach employs grey-box low-order 

resistance-capacitance (RC) thermal network models, a clustering of weather conditions to identify 

typical anticipated scenarios, and several near-optimal setpoint profiles corresponding to each 

cluster. Archetype control-oriented models for zones with convective systems and zones with 

radiant floor systems are developed and calibrated with measured data. The calibrated models are 

used to apply MPC to the school building using the established dynamic tariffs for morning and 

evening peaks. For the experimental study, the developed MPC framework is applied in six 

classrooms, and the results are compared with four classrooms with the reactive control system as 

reference cases. The energy flexibility is quantified based on a proposed building energy flexibility 

index (BEFI). Results indicated that the school building can provide 45% to 95% energy flexibility 

(load shifting relative to reference) during on-peak hours while satisfying thermal comfort 

constraints. 

Finally, this thesis presents an MPC methodology for the integration of air-based 

photovoltaic/thermal (PV/T) systems to further enhance the energy flexibility in school buildings 

so that in addition to the production of solar electricity, they can be used to preheat fresh air for 

the classrooms during the heating season. A data-driven grey-box model for the classrooms is 

calibrated with measured data, and a PV/T model as a renewable energy retrofit measure for energy 
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efficiency and flexibility is developed. These models are integrated to apply MPC and reduce peak 

demand during morning and evening. Results show that using an MPC along with PV/T integration 

can significantly reduce peak demand during morning and evening high demand periods for the 

grid. The proposed methodology helps institutional buildings to facilitate their integration into 

future smart grids and smart cities. 
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 Chapter 1: Introduction 

Buildings are responsible for approximately 32% of the energy use worldwide, 17% of direct 

CO2 emissions, and 33% of indirect CO2 emissions (Policy 2013). Thus, building energy efficiency 

and ways to reduce CO2 emissions are of primary importance. Using on-site renewable energy 

systems such as photovoltaics (PV) and heat pumps (HPs) is an efficient way to decarbonize and 

increase building energy efficiency, particularly in green-powered grids (Liu et al. 2023, Pochwała 

et al. 2023). Additionally, heat pumps can be integrated with intelligent building management 

systems to optimize energy usage and further enhance overall sustainability in the built 

environment (Gibbons and Javed 2022, Mitterrutzner et al. 2023). However, incorporating 

renewable energy sources (such as PV systems) and HPs into an already strained electric grid 

presents a challenge, especially in locations where the peak demand is associated with extreme 

cold weather events. Therefore, utilizing the energy flexibility of the building load is critical for 

reducing peak grid demand.  

Demand-side management (DSM) is considered one of the most effective ways to reduce peak 

electricity demand (Tang et al. 2021). Demand-side management strategies can be classified into 

three categories: energy efficiency measures, demand response (DR), and energy flexibility 

(Farrokhifar et al. 2021, Fernández Bandera et al. 2023). Energy efficiency measures are 

characterized by reductions in energy consumption compared to a reference system or baseline. 

DR, an approach that curtails building electrical demand during grid on-peak hours, is a strategy 

for reducing electric loads in buildings without significant capital investment. Energy flexibility, 

in turn, is characterized by shifting energy demand profiles to satisfy grid and local objectives, 

including energy availability, cost management, and carbon emission reduction (Reynders et al. 

2018). It is typically executed in a planned and optimized manner (Reynders et al. 2018, Finck et 

al. 2019). Annex 67 of the International Energy Agency-Energy in Buildings and Communities 

Programme (IEA-EBC) defined energy-flexible buildings as those with “the ability to manage 

[their] demand and generation according to local climate conditions, user needs and grid 

requirements” (Jensen et al. 2017). 

In smart electricity grids, buildings are increasingly recognized as flexible loads that can act as 

energy generators (Li et al. 2019), energy storage devices (Le Dréau and Heiselberg 2016), and 
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demand controllers (Wang et al. 2023). Improving energy flexibility and reducing the peak demand 

will reduce the need to build new peaking fossil fuel power plants and their accompanying 

environmental concerns (Diakaki et al. 2008, Huang et al. 2021). Buildings can provide different 

flexibility services to reduce peak loads and shift demand in accordance with local renewable 

energy sources production, e.g., utilization of thermal mass (Foteinaki et al. 2018, Weiß et al. 

2019) storage in batteries, charging of electric vehicles (Zhou and Cao 2019) and adjustability of 

the heating, ventilation, and air conditioning (HVAC) system use (Jensen et al. 2017).   

According to the published literature and presented in IEA-EBC Annex 67 (Figure 1-1), 

increasing energy flexibility for the design of smart energy systems and buildings is influenced by 

four important factors (Reynders et al. 2014, Jensen et al. 2017):  

• Physical characteristics of the building, 

• HVAC systems and storage equipment, 

• Adequate control systems and strategies, 

• Comfort requirements. 

 

Figure 1-1: Sketch of the simulation test bed proposed for modelling work in Annex 67 (Jensen et al. 2017). 

In this context, the appropriate application of control strategies in HVAC systems is a key factor 

in improving the energy performance (Braun 2003, Tabares-Velasco et al. 2012, Afroz et al. 2018, 

Morovat et al. 2019) and energy flexibility of buildings (Le Dréau and Heiselberg 2016, Jensen et 
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al. 2017, Reynders et al. 2018) by reducing the time mismatch between supply and demand for 

heating or cooling (Klein et al. 2017). 

1.1 Grid Requirements 

Energy flexibility is critical to addressing the grid's challenges of balancing supply and demand 

and incorporating renewable energy capacity. Buildings can play an important role in DR. The 

magnitude and flexibility of buildings' energy demand can become a key asset for smart grids if 

well managed (Li et al. 2017). 

Québec generates most of its electricity (94%) from hydroelectric plants (Canada energy 

regulator 2021), and most commercial buildings rely on electricity as their primary or only energy 

source (Distribution.). In Québec, the morning and evening peaks in winter put a great deal of 

strain on the electrical grid to provide electric power during extremely cold weather (Hydro-

Québec 2020). Therefore, controlling energy use is essential to reduce the time mismatch between 

supply and demand (Klein et al. 2017, Afroz et al. 2018). Figure 1-2 shows the peak electricity 

demand from 2020 to 2022 in Québec, called “Beaver curve” by this thesis. It depicts that the 

highest peak demand occurred in the morning between 6:00 to 9:00 a.m. Also, it shows a power 

demand of 40,178 MW in 2022, which is the highest power demand in the history of Hydro-

Québec (Hydro-Québec 2023).  

 

Figure 1-2: Example of peak electricity demand in Québec (Hydro-Québec 2023), “Beaver curve”  

This shape of daily demand profile (shown in Figure 1-2), with a morning peak, an afternoon 

dip, and another evening peak, is very typical. When a large amount of generation from PV panels 
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adds to the grid on a sunny day, the system curve displays an even more apparent “belly” 

appearance in the midday and a steep rise after the sunset, portraying the silhouette of a duck. This 

phenomenon of grid demand profile is also known as the “duck curve” (Denholm et al. 2015). 

Figure 1-3 presents the California grid duck curve between 2015 and 2023.  

 

Figure 1-3: The California grid duck curve between 2015 to 2023 (US Energy Information Administration 2023) 

The duck curve has created opportunities for energy storage. For commercial and institutional 

(C&I) buildings installing electric battery storage would be costly. Thus, buildings with flexible 

electricity demand offer grid-responsive support, especially for large C&I buildings (Chen et al. 

2019, Fu et al. 2022). 

School buildings represent a sizeable portion of the C&I building stock. There are over 15,500 

schools in Canada, with over 5 million students and nearly 700,000 teachers and other employees 

(Statistic Canada 2017). Thus, quantification of energy flexibility in school buildings has a 

significant role in providing a safe and efficient operation of the future resilient grid. Furthermore, 

school buildings provide an interesting example of the potential of other C&I buildings. Improving 

learning and teaching performance in schools requires higher indoor environmental quality (IEQ), 

which can significantly impact students' and teachers' health and well-being. However, HVAC 

systems are often far from optimal energy performance in school buildings (Droutsa et al. 2021). 

Enabling communication and control technology in these buildings is the key to enhancing energy 

flexibility and actively involving commercial HVAC loads in future electricity grid scheduling. 

Figure 1-4 presents the electricity demand of a typical school on a cold day in Québec. This graph 

depicts that the school's peak load is in the early morning, which is simultaneous to the grid's peak 
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load. Thus, appropriate control strategies and renewable energy retrofits are needed to enhance 

energy flexibility in schools or other institutional buildings. 

  

Figure 1-4: Electricity demand of a typical school in a cold day. 

In summary, the new operating conditions (e.g., RES integration, oversupply risk) of the electric 

grid require novel concepts and methodologies to tackle the associated problems. With the 

advancement of internet and communication technologies, school buildings, with their embedded 

energy flexibility, can contribute significantly to the process of grid modernization, as well as 

being an indispensable part of the smart grid. 

1.2 Case study 

Building energy performance simulation (e.g., EnergyPlus and TRNSYS) is a popular approach 

to studying school buildings. However, studies based on control-oriented models and measured 

sensor data of schools are relatively rare (Ham et al. 2023). This research investigates measured 

field data in an archetype school building in Québec, Canada. The case study is an elementary 

school (Figure 1-5) located in Sainte-Marthe-sur-le-Lac, near Montreal, Québec, Canada. The 

school is under the jurisdiction of the CSSMI school board (Centre de services scolaires des Mille-

Îles). 

The location of the school makes it an ideal site for studying the impact of flexibility events on 

power demand in educational institutions in cold climate regions. This two-storey school is about 

80 m by 44 m and oriented 35° west of south. The first floor consists of 10 classrooms, offices, a 

kitchen, daycare, a music room, a kindergarten, and a gym, while the second floor has 13 
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classrooms and a library. It is an archetype of new school buildings in Québec, with a 60% 

window-to-wall ratio of double-glass windows with an air gap. 

The classrooms are heated with local water-to-air HPs in their ceilings, using a geothermal 

system as their heat source, and an individual thermostat controls each classroom. Each classroom 

has a smart controller panel to adjust the temperature and lighting level and monitor CO2 ppm, 

relative humidity, and energy consumption (Figure 1-6). The offices and the gym also have radiant 

floor systems connected to a geothermal water-to-water heat pump. The school’s design 

incorporates energy-efficient LED lighting and motion sensors to reduce energy consumption 

further when classrooms are unoccupied. The whole system is closely monitored with sensors. 

Thermostat and power meter data were collected at 15-minute intervals in CopperCube, an on-site 

trend log archiver, through the BACnet network. These datasets include setpoint temperature, 

indoor temperature, CO2 level, air and water flow rate, and electricity power of HVAC systems. 

  
Figure 1-5: Horizon-du-Lac school building (left) and a classroom with the control panel (right) 

 

Figure 1-6: Control panel for adjusting setpoint temperature and monitoring measured data in classrooms 

One classroom 
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The summary of building information, including general information, mechanical system, 

school’s schedule, and utility tariffs is listed in Table 2. 

Table 2. Key features of the school building and utility tariff 

General 

Information 

Site Sainte-Marthe-sur-le-Lac, Québec, Canada 

In operation  since 2017 

Net floor area 2596 m2/floor 

Number of floors 2 

Number of classrooms 23 

Number of students 576 

Window type Double-glazed argon Low-e  

Mechanical 

Space heating/cooling 
Hydronic radiant floor heating system, Convective 

system 

Heating/cooling equipment 
Ground source water-water HP and local water-air 

HPs 

Ventilation system 
Centralized dual-core heat recovery system 

modulated based on schedule and CO2 threshold  

Domestic Hot water source Two electricity boilers with a capacity of 15 kW each 

Thermal Energy Storage 
An electrical thermal storage unit with a maximum 

capacity of 80 kW on the source side. (ThermElect) 

Default 

Schedule 

Occupied hours From 06:00 to 18:00, 20-24 °C 

Unoccupied hours From 18:00 to 6:00, 18-20 °C 

Utility rate 

Flex M during 

winter 

Consumption during off-peak 

hours 
3.29¢/kWh 

Consumption during on-peak 

hours: 

• Morning: 06:00 to 9:00  

• Evening: 16:00 to 20:00 

51.97¢/kWh 
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The school BAS programs the default thermostat schedule, but an end-user (e.g., teachers) can 

override it by changing the setpoint. It should be noted that during the experiment, access to 

override the indoor temperature is restricted by obtaining permission from the school board. This 

restriction ensures that the experiments are conducted under controlled conditions and minimizes 

potential disruptions to the control strategies. 

1.3 System description 

Figure 1-7 presents the schematic of the building heating systems. The system consists of an 

integrated geothermal system, an electrically heated thermal energy storage device (ThermElect), 

a water-to-water HP, 36 terminal local water-to-air HPs in classrooms, and a floor heating system 

in offices and gym. All heating systems are electrical devices, providing a link to the electrical 

grid. A predictive controller can exploit this link to help balance electricity production and 

demand, among other potential uses. 

 

Figure 1-7: Schematic of the building heating systems. 

The main water-to-water HP for space heating has a nominal heating output of 33 kW in two 

stages (16.5 kW per stage) and a maximum water supply temperature of 48.8 °C. Low-temperature 

heat on the evaporator side of the HP is generated by a geothermal system with 28 loops. The 

ThermElect can preheat the water inlet to local water-to-air HPs and the water-to-water HP. The 

sensor data from the ground heat exchanger, the thermal storage device, and the water-to-water 

HP are collected (fifteen-minute time step) and then used as the inputs for the modelling. A 

thermostatic three-way valve regulates the temperature of the supply water of the HP to the zones, 

with a maximum setting of 60 °C. An integrated floor heating system supplies space heating and 
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a convective ceiling system throughout the offices and the gym. Thermostats regulate the indoor 

temperature in each zone separately. 

1.4 Objectives 

The overall goal of the dissertation is to investigate the energy flexibility potential in school 

buildings through simulation and experimental studies. It contributes a general methodology for 

the development of data-driven grey-box thermal models and the implementation of model-based 

predictive control (MPC). The methodology is applied to an archetype fully-electric school 

building near Montréal, Québec, Canada. This approach is scalable and transferable to other 

institutional or mid-size commercial buildings. 

More specifically, the objectives of the work can be summarized as follows:  

1. Develop data-driven grey-box thermal models: Create reliable and robust data-driven 

archetypical control-oriented models for (a) zones with convective systems and (b) zones 

with radiant floor systems. 

2. Develop model predictive control (MPC): Apply MPC techniques to develop advanced 

control strategies for HVAC systems in school buildings, under a regime of established 

dynamic tariffs for morning and evening peak periods. 

3. Introduce energy flexibility KPIs: Introduce key performance indicators (KPIs) as a 

function of key parameters to quantify energy flexibility at both the zone level and the 

whole building level, while also considering IEQ.  

4. Implement the developed MPC in an archetype school building: Test the effectiveness 

of the MPC strategy by conducting experiments in an archetype school building. 

5. Assess the potential of MPC for energy flexibility enhancement: Evaluate the potential 

of the proposed approach to activate and harness the energy flexibility inherent in fully 

electric, occupied school buildings. 

6. Evaluate the potential of PV/T and MPC as a renewable energy retrofit in existing 

school buildings: Design a model predictive control methodology for integrating 

retrofitted air-based PV/T systems in school buildings.  
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These objectives aim to contribute to the development of an innovative and scalable approach 

for optimizing energy flexibility in school buildings, with broader applicability to institutional 

buildings in general. 

1.5 Outline of the thesis 

In view of the aforementioned objectives, this thesis is structured as follows:  

Chapter 1 Introduction. Presents an overview of the thesis, which illustrates the background 

and objective of the study. 

Chapter 2 Literature Review. Methods for assessing building performance and simulation 

methods are presented. Emphasis is given to control-oriented models. Data-driven grey-box 

models are identified as a suitable approach for application in the context of demand-side 

management in smart grids. Model-based predictive control, energy flexibility, and recent works 

on school buildings are reviewed. The need to apply MPC strategies and energy retrofit with PV/T 

in school buildings is shown, and limitations in existing buildings are analyzed, followed by the 

current research needs. 

Chapter 3 Methodology. First, the grey box modelling approach is described. Then, the time 

series clustering and its application in preprocessing of data for the control-oriented models is 

explained. MPC as an advanced control strategy is presented, and the KPIs for quantification of 

energy flexibility at zone level and building level are proposed.  

Chapter 4 Archetype Control-Oriented Modelling. Modelling and calibration of the grey-

box models with measured data are presented. Then, it explores the testing of different control 

scenarios to assess the impact on electricity demand and energy performance. The results obtained 

using flexible scenarios are compared to the current operation of the building as a reference case.  

This chapter is based on the following peer-reviewed journal articles and published refereed 

conference papers:  

• Morovat, N., Athienitis, A. K., Candanedo, J. A., Delcroix, B. (2022). “Data-driven 

model-based control strategies to enhance energy flexibility in electrically heated school 

buildings”, Buildings, 12(5), 581. (Published) 
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• Candanedo, J. A., Vallianos, C., Delcroix, B., Date, J., Saberi, A., Morovat, N., John C., 

and Athienitis, A. K. (2022), “Control-oriented archetypes: a pathway for the systematic 

application of advanced controls in buildings”, Journal of Building Performance 

Simulation, 1-12. (Published) 

• Morovat, N., Athienitis, A. K., Candanedo, J. A. (2021). "Modeling energy performance 

and real-time energy flexibility of a floor heating system in a school building", Building 

Simulation 2021 Conference, Bruges, Belgium, September 1-3. (Presented) 

• Athienitis, AK., Dumont, E., Morovat, N., Lavigne, K., Date, J. (2020), “Development of 

a dynamic energy flexibility index for buildings and their interaction with smart grids”, 

ACEEE Summer Study on Energy Efficiency in Buildings, California, USA, August 17-2. 

(Presented) 

• Morovat, N., Candanedo, J. A., Athienitis, A. K. (2021). “Application of grey-box models 

for the quantification of the energy flexibility of a school building in Canada”, 2021 

ASHRAE Annual Conference, Phoenix, USA, June 28-30. (Presented) 

Chapter 5 Model Predictive Controls and Field test. This chapter illustrates the development 

and implementation of a model predictive control methodology to activate the energy flexibility 

of fully-electric school buildings to reduce electricity demand during peak demand periods of the 

electric grid. A data-driven grey-box approach is used to create archetype models for different 

thermal zones in a typical school building. The weather data are clustered into several categories, 

representing different weather conditions. For each MPC scenario, a simulation is run using 

forecast weather data to quantify and enhance energy flexibility in response to grid requirements. 

The developed MPC framework is then applied in six classrooms, and the results are compared 

with four classrooms with the reactive control system as reference cases.  

This chapter is based on the following journal article and published refereed conference papers:  

• Morovat, N., Athienitis, A. K., Candanedo, J. A. (2023). “Energy Flexibility Activation in 

School Buildings: Heuristic Model Predictive Control Method”, Energy Journal. (Under 

review) 

• Morovat, N., Athienitis, A. K., Candanedo, J. A. (2023). “Field test of model predictive 

control in occupied all-electric school buildings located in a cold climate region”, Building 

and Environment journal. (Submitted) 
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• Morovat, N., Athienitis, A. K., Candanedo, J. A. (2023), “Model predictive control for 

demand response in all-electric school buildings”, 13th Nordic Symposium on Building 

Physics (NSB 2023), Aalborg, Denmark, 12-14 June 2023. (Presented) 

• Morovat, N., Athienitis, A. K., Candanedo, J. A. (2022), “Enhancing energy flexibility of 

a school building using local setpoint adjustment in classrooms”, 5th International 

Conference on Building Energy and Environment, Concordia University, Montreal, 

Québec, Canada, July 25-29. (Presented) 

• Morovat, N., Athienitis, A. K., Candanedo, J. A. (2022), “A Model Predictive Control 

Method to Activate the Energy Flexibility of School Buildings”, 7th International High-

Performance Buildings Conference 2022, Purdue University, West Lafayette, IN, USA, 

July 10-14. (Presented) 

• Morovat, N., Candanedo, J. A., Athienitis, A. K. (2020), “Data analysis, modelling, and 

energy flexibility assessment of an educational building in Canada”, eSIM 2021 

Conference, Vancouver, BC, Canada, June 14 -16. (Presented) 

Chapter 6 Modelling PV/T with MPC. This chapter presents an MPC approach for integrating 

PV/T systems as a renewable energy retrofit for energy efficiency and flexibility in school 

buildings. In this chapter, three scenarios are investigated and compared: 1) Reference case without 

a PV or PV/T system, 2) Flexible case integrating a PV system and MPC strategies, and 3) Flexible 

case integrating of a PV/T system and MPC strategies.  

This chapter is based on the following journal article and published refereed conference papers:  

• Morovat, N., Athienitis, A. K., Candanedo, J. A. (2023), “Design of a model predictive 

control methodology for integration of retrofitted air-based PV/T system in school 

buildings”, Journal of building performance simulation (Under review)  

• Morovat, N., Athienitis, A. K., Candanedo, J. A. (2023), “Model Predictive Control for 

Integration of PV/T system in School Buildings”, The 18th Conference on Sustainable 

Development of Energy, Water and Environment Systems (SDEWES), Dubrovnik, 

Croatia, 24–29 September 2023. (Presented) 

Chapter 7 Conclusion and Directions for Future Work. This chapter concludes the thesis 

and provides recommendations for future work. References and appendices follow Chapter 8. 
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 Chapter 2: Literature review 

This chapter discusses existing literature on the topics of building thermal modelling, model 

parameter identification, model-based predictive control, building energy flexibility, previous 

works on the field test of MPC, and renewable energy retrofit in buildings. Section 2.1 presents an 

overview of building thermal modelling approaches. Section 2.2 discusses previous work on MPC 

for buildings. Section 2.3 outlines previous work on the implementation of MPC in real buildings. 

Section 2.4 discusses research on building-grid interaction and building energy flexibility. Section 

2.5 presents the literature on school buildings; Section 2.6 discusses renewable energy retrofits 

using PV systems in buildings. Finally, Section 2.7 discusses research needs and proposed work. 

2.1 Modelling methods 

In general, three main approaches are used to create building energy models (Coakley et al. 2014, 

Li and Wen 2014, Chen et al. 2022):  

• White-box models: In this approach, physical principles simulate the heating and cooling 

demand. Most building simulation programs utilizes this approach. However, the accuracy 

of control strategies relying on these physical models has not been satisfactory since some 

real building parameters in existing buildings are often unknown and tend to deviate 

significantly from the design values (Crawley et al. 2001, Hensen and Lamberts 2012).  

• Black-box (purely data-driven) models: In recent years, this approach with self-learning 

capabilities has become popular. Black-box models rely on statistics and machine learning 

methods. However, a substantial amount of data might be required to achieve the accuracy 

needed for a control-oriented model, and the resulting parameters may lack a clear physical 

interpretation (Chen et al. 2022). 

• Grey-box (partly data-driven) models: With this approach, both physical insight and the 

trustworthiness of real data are maintained. To implement MPC in building automation 

systems, it is essential to identify thermal models with sufficient resolution, robust 

performance, and low computation time (Candanedo et al. 2022). 

Proper identification of building thermal models with adequate resolution, robustness, and 

acceptable computation time is fundamental for the widespread implementation of MPC or other 
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advanced control strategies in building automation systems. In grey-box models, choosing an 

appropriate level of resolution is essential as it directly affects the parameter tuning and calculation 

time. A high-order model containing too many parameters requires information that is not often 

available with adequate accuracy. An oversimplified model may not be accurate enough to be 

helpful as a decision-making tool. Thus, considering the control objectives and constraints, such 

as thermal comfort criteria, model complexity should be carefully chosen.  

Smart grids integrate real-time communication between both demand and supply sides to enable 

demand-side management and leverage storage technologies (Battaglini et al. 2009). According to 

the published literature review, grey box models are suitable for application in the context of 

demand-side management in smart grids. The model structures are derived from low order 

Resistance-Capacitance (RC) thermal networks that use an electric circuit analogy to describe the 

thermal dynamics of building systems. Gouda et al. (2002) proposed a second-order model in 

which each construction element is modelled using three resistances and two capacitances. Braun 

and Chaturvedi (2002) presented a simplified reduced-order RC models that uses a transfer 

function for building energy modelling. They found that one to two weeks of data are sufficient to 

accurately predict cooling/heating demand. Candanedo et al. (2013) proposed a methodology to 

create simplified reduced-order RC models for control studies. Their methodology can be 

implemented in building simulation tools to generate simplified models automatically. 

The accuracy of the reduced-order models depends on their characteristic parameters 

(resistances and capacitances), so they must be appropriately adjusted. Bacher and Madsen (2011) 

proposed a statistical procedure for model identification suited to different applications in building 

thermal studies. Fraisse et al. (2002) proposed other methods to obtain the effective thermal 

parameters, but these methods require complex mathematical modelling. Reynders et al. (2014) 

analyzed two detached single-family houses in Belgium. These two buildings represent two 

extreme cases of detached single-family houses in Belgium regarding insulation level (high and 

low insulation level). They used data obtained from detailed building simulations with the IDEAS 

library in Modelica software. This study investigated five grey-box model types, ranging from first 

to fifth-order models (As shown in Figure 2-1). 
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Figure 2-1: RC-analogy of reduced order building models (Reynders et al. 2014) 

In the first-order model (Figure 2-1(a)), the entire thermal mass of the house is modelled with 

a single capacity. There is no distinction between fast-dynamic signals (i.e., indoor air temperature) 

and slow dynamic signals (i.e., structural mass). The 2nd order model (Figure 2-1(b)) considers this 

difference by including a second capacity. The 3rd order model (Figure 2-1(c)) has a thermal 

capacitance for the envelope, the internal walls and floors, and the indoor air. The 4th order model 

(Figure 2-1(d)) extends the 3rd order model by including a different capacity for the floor. In the 

5th order model (Figure 2-1(e)), additional capacitance is included for the roof. Since a lightweight 

structure is used for the pitched roof, the dynamics of the roof can be expected to differ 

significantly from the heavy-weight brick walls. Therefore, the potential model improvement by 

separating the dynamics of the roof and the exterior walls is investigated. 

Bacher and Madsen (2011) presented a method for determining effective heat dynamics models 

based on a single-story residential building as a case study. A hierarchical model complexity 

framework and forward selection strategy were applied for iterative model selection. Likelihood 

ratio tests compared model performance, and validation involved statistics and physical 

interpretation.  Leprince et al. (2022) introduced an automated stochastic model identification 

method for scalable deployment in residential buildings. They applied a forward model selection 
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process with a residual auto-correlation indicator. Testing on 247 residential buildings revealed 

distinct fit-quality groups, indicating the approach's potential for city-scale modeling, energy 

disaggregation, and demand-side management. Vallianos et al. (2022) presented a method for 

automatically generating thermal models in residential buildings using data from smart 

thermostats. The methodology incrementally increased model complexity by adding or removing 

parameters based on their impact on model quality, which was assessed using the Bayesian 

Information Criterion. This approach was applied to a residential building in Québec, Canada, 

demonstrating effective 24-hour predictions based on zone-specific thermal dynamics and solar 

gain factors. 

2.2 Model predictive control (MPC) 

Classical control techniques such as thermostat control (On/Off control with predefined 

setpoints and PID control) are popular in Building Energy Management Systems (BEMS). Large 

commercial buildings usually have significant thermal mass in the form of exposed concrete or 

tiled concrete floors. Typically, feedback methods, such as proportional-integral (PI) control, are 

used in the local control of these buildings. These approaches are suitable for fast responding local 

loops but fail to control slow responding dynamic processes efficiently (e.g., radiant floor systems 

which are used for energy storage) (Afram and Janabi-Sharifi 2014). The time lag of the 

temperature response and the associated occupant discomfort is a function of many parameters, 

including the amount of effective thermal mass and its thermal coupling with the occupied space 

(Chen 2013). The materials used as interior room layers, such as carpets, tiles, or wooden surfaces, 

also affect the thermal coupling between the surfaces and the indoor air and, therefore, the peak 

heating/cooling loads (Papachristou and Athienitis 2016). For this reason, anticipatory controls 

can be beneficial since they address the delay between the supplied heating/cooling and its effect 

on the room temperature. Li and Wen (2014) outlined three types of energy forecasting models 

(white-box, black-box, gray-box) and reviewed optimization methods for building energy systems.  

In this context, model-based predictive control (MPC) is a promising approach to alternative 

feedback-only control strategies. MPC uses weather forecast and occupancy patterns and a 

mathematical model of the thermal space to choose the best action for the near future (Athienitis 

and O'Brien 2015). Additionally, upgrading the control strategy can be implemented relatively 

quickly compared to retrofitting HVAC systems or building envelopes, making it a cost-effective 
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solution for improving building energy flexibility (Taheri et al. 2022). MPC is particularly suitable 

for slow-responding systems (e.g., thermally massive buildings (Henze 2003, Sakellariou 2011, 

Hu and Karava 2014). Energy storage capacity—such as that provided by a thermal energy storage 

(TES) device or a significant thermal mass— enhances the potential of MPC since it allows 

planning the capture and release of energy as a function of the expected power load and energy 

cost profiles (Candanedo et al. 2013).  

The proactive “look ahead” approach of MPC can provide significant improvements in energy 

efficiency, comfort conditions, load management, building-grid interaction, and energy flexibility 

of the building. Figure 2-2 provides a conceptual representation of MPC. 

 

Figure 2-2: Conceptual representation of Model-based Predictive Control (MPC) (David Blum 2023) 

Because of the number of variables and constraints that must be considered, optimization can 

become quite complex. Setting up a suitable building control model is crucial for MPC. An 

alternative way to tackle this problem is to employ approximations of the MPC solution. The gains 

from using only the most relevant features are threefold: first, improved performance, second, 

reduced complexity, and third, improved interpretability of the developed models. This is, 

however, typically where most of the effort in an MPC project goes. 

Joe and Karava (2019) proposed an MPC approach that uses dynamic estimates and predictions 

of zone loads and temperatures, outdoor weather conditions, and HVAC system models to 

minimize energy consumption and cost while meeting equipment and thermal comfort constraints. 

Their study focuses on the comparison between theoretical MPC, experimental MPC, and simple 

feedback control for the floor heating system and air-based system. The study was carried out in 

three offices located in Herrick Building at Purdue University campus for both cooling and heating 
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seasons. They proposed a data-driven grey-box building model (Figure 2-3) based on the state-

space formulation. 

 

Figure 2-3: Grey box model structure (Joe and Karava 2019) 

In general, previous research reports challenges associated with the control of radiant systems 

due to:  

1) Large thermal inertia: it is difficult to handle conventional control strategies to respond to 

changes in weather or room temperature. 

2) Low heating/cooling power: to overcome condensation and discomfort constraints. 

MPC provides a systematic operation approach using a system model and an optimization 

algorithm to adjust the control setpoints dynamically while automatically satisfying steady-state 

and dynamic components and operation constraints related to building dynamics, HVAC 

equipment, etc. Compared to machine learning approaches that rely on input-output relations, 

MPC takes advantage of prior knowledge: on the building system and shows better performance 

in terms of energy savings as well as computational time (Wang and Ma 2008). 

Li et al. (2022) studied the demand flexibility of a commercial HVAC system with an ice 

storage tank, and they found that MPC reduced the energy cost by up to 16% and the peak power 

demand by up to 25% compared with RBC in this case study. Liu et al. (2023) established a model 

predictive control method in residential buildings with a radiator heating system.  The result of 

their numerical study showed that a predictive controller performs better than a conventional 

control in maintaining indoor temperature and can reduce energy consumption by 5%. Wang et al. 

(2022) proposed a clustering-based optimization method for regulating air conditioning system 

operation in office buildings. Results showed about 18% and 35% energy savings in summer and 

winter, respectively. Chen et al. (2023) developed an artificial neural network method combined 
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with MPC to decrease energy cost and consumption in an office zone in Edinburgh, Scotland. 

Their results showed that energy consumption decreased by 26%, and the cost decreased by 28%. 

Wang et al. (2023) compared the performance of reinforcement learning (RL) and MPC in 

enhancing building energy efficiency and operational flexibility. They found that the MPC 

controller outperformed the baseline controller, reducing discomfort by 100% and energy 

consumption by 22%. (Hu et al. 2019) investigated the control of floor heating systems in the 

context of smart grids. Through a testbed simulation, their results demonstrated that the MPC 

controller effectively reduces peak energy demand and saves electricity costs for residential users. 

Wang et al. (2023) explored using MPC in residential buildings to optimize air conditioner 

performance. Their results demonstrated that the MPC controller reduced cooling costs by 22% in 

the bedroom and 27% in the living room, outperforming traditional rule-based control. Merema et 

al. (2022) implemented an MPC controller for all-air systems in two lecture rooms at a university 

located in Ghent, Belgium. Their results showed a 40% reduction in electric energy use and up to 

55% reduction in thermal energy. 

2.3 Field test of MPC  

Cotrufo et al. (2020) proposed an MPC framework based on machine-learning techniques for 

institutional buildings. Their results showed a 22% reduction in natural gas consumption and a 4% 

reduction in heating demand. Hu et al. (2019) simulated an MPC controller for the living room of 

a residential apartment in Denmark. Their results demonstrated that the MPC controller reduces 

electricity costs by 19% compared to conventional on-off controllers. Zhao et al. (2022) compared 

the operation of a radiation air conditioning system using MPC with conventional rule-based 

control and PID control. They showed that the overall energy consumption is reduced by 15% 

compared to conventional rule-based control and 9% compared to the PID.  

Although numerous studies of using MPC for building applications have been carried out and 

published over the last decades, most of them are still based on pure simulation studies, and only 

a limited number of papers have reported MPC demonstrations at actual buildings (Afroz et al. 

2018). This indicates the need for more studies that involve real-world measurements and 

demonstrations to validate the effectiveness of MPC in real building environments. A recent study 

by (Ham et al. 2023) presented a field demonstration of MPC at a K–12 school in California, 

US. Their results showed that using the MPC could achieve a 24% reduction in peak demand 
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during the cooling season and up to 16% during the heating season while allowing end users to 

override thermostat setpoints. Zhang et al. (2022) investigated an MPC controller in a convenience 

store equipped with photovoltaics and batteries in California, US. The results show that the MPC 

controller achieved 12% annual electricity cost savings and 34% peak demand reduction compared 

to a constant setpoint temperature. Bruno et al. (2019) implemented MPC in a public school 

equipped with Battery and PV systems in southern Italy. They found that 4%-7% electricity cost 

savings can be achieved compared to commercial rule-based control. (Wang et al. 2023) compared 

the performance of MPC and rule-based controllers for air conditioners in a residential building in 

Shenzhen, China. Their results showed that the MPC controller reduced cooling costs by 22% in 

the bedroom and 27% in the living room. Merema et al. (2022) implemented an MPC controller 

for all-air systems in a university located in Ghent, Belgium. Their results showed a 10%–40% 

reduction in electric energy use and 21%–55% in thermal energy use.  

Drgoňa et al. (2020) developed an MPC framework for an office in Belgium equipped with a 

ground-source heat pump and thermally activated building structures. Their study found that the 

MPC approach reduced the energy consumption of the building by 54% and improved thermal 

comfort by 37%. Aswani et al. (2011) investigated the implementation of an MPC controller for 

an air conditioner that cools a computer laboratory on the Berkeley campus in California, US. 

Results showed that the MPC controller results in a 30%-70% reduction in cooling energy 

consumption compared to the traditional controller. Bengea et al. (2014) developed an MPC 

controller for a multi-zone, variable-volume HVAC system in a mid-size commercial building, 

which resulted in 75% reductions in heating costs over the heating season. Kim and Braun (2022) 

presented an MPC framework to coordinate multiple rooftop units for medium-sized commercial 

buildings located in Los Angeles, U.S. They concluded that cooling energy savings of 15%–30% 

can be achieved through applying MPC. Vivian et al. (2022) reported the results of MPC 

performed in a lightweight building lab in Piacenza, Italy. They found that this strategy allows to 

obtain savings on electricity in a range of 10–17% compared to a conventional control. 

Table 1 summarizes some of the MPC field implementations in real buildings. 
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Table 1: Studies on the implementation of MPC in real buildings 

Year Ref Tout Building Type 
Test 

duration 

Systems 

controlled 
Summary of results 

2023 (Ham et al. 2023) 18 – 28 °C 
School 

classrooms 

One 

month 
RTUs 

24% reduction in total power 

and 30% in HVAC power 

2023 
(Wang et al. 

2023) 
26 – 34 °C Residential 30 Days Air conditioner 22-29 % cooling energy saving 

2023 
(Vivian et al. 

2022) 
0 – 5 °C laboratory Three days Fan coils 10–17% electricity cost saving 

2022 
(Kim and Braun 

2022) 
NA University lab 

Two 

months 
RTUs 

3.6%-8.7% energy cost 

savings; 36% demand savings 

2022 
(Zhang et al. 

2022) 
NA 

Small 

Commercial 

Several 

months 

RTUs, 

refrigeration, 

battery 

12% energy cost savings; 34% 

demand reductions 

2022 
(Blum et al. 

2022) 
8 – 22 °C Office 

Two 

months 

Rooftop units, 

underfloor air 

distribution 

system 

40% energy saving 

2021 
(Knudsen et al. 

2021) 
-2 – 12 °C Laboratory 32 days 

hydronic 

radiator 
22.5% energy cost saving 

2020 
(Bünning et al. 

2020) 
13 – 39 ◦C Residential Six days 

Cooling ceiling 

panels 
24.9% cooling energy saving 

2019 
(Joe and Karava 

2019) 
0 – 30 °C Office 20 days 

Hydronic 

radiant floor 

50% cooling, 29% Heating 

energy saving 

2018 
(Kim and Braun 

2018) 
15 – 30 °C 

Conference 

room 

Four 

months 

Packaged air 

conditioners 

12% HVAC energy savings 

and 18% HVAC peak demand 

2016 
(De Coninck and 

Helsen 2016) 
2-12 °C Office 

Winter 

season 

Heat pumps, 

gas boiler 

34-40% energy cost savings; 

20-30% primary energy 

reduction 

2014 
(Bengea et al. 

2014) 
16 – 38 °C Laboratory 

Several 

months 

Multi-zone 

HVAC unit 

20% energy savings during the 

transition season, 70% during 

heating season, and 10% peak 

power reduction 

2011 
(Široký et al. 

2011) 
3.4 °C Large building 

Winter 

season 

Ceiling radiant 

heating 

Energy saving between 15% 

and 28% 

2005 
(Henze et al. 

2005) 
12 – 28 °C Small room Five days 

Chillers and an 

ice-based TES 
17% to 27% Cost saving 
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Our review of the literature shows that field studies on energy flexibility, especially in school 

buildings, are rare. Energy efficiency still dominates field investigations as the main goal. With 

the trend toward building electrification and grid-interactive buildings, buildings' energy flexibility 

will become increasingly important and call for more field validation work. By leveraging MPC 

in school buildings, educational institutions can create a more sustainable, comfortable, and cost-

effective environment for students and staff. Moreover, the literature review shows that most of 

the field tests on MPC are conducted in hot regions during the cooling season, and there is no study 

about the implementation of MPC in schools in very cold climate regions (with an average outdoor 

temperature of -10 °C during winter), as to the authors' knowledge.  

2.4 Energy flexibility in buildings 

Energy flexibility in building net electricity demand is an essential part of the solution to 

address the electrical future grids requirements. Buildings are important components of smart 

electricity grids; they can provide energy flexibility services to reduce peak loads and shift demand 

in accordance with local RES production. These energy flexibility services include energy storage 

in thermal mass and batteries (Foteinaki et al. 2018, Weiß et al. 2019), charging of electric vehicles 

(Afram and Janabi-Sharifi 2014), and HVAC system adjustments (Jensen et al. 2017). 

Torres Ruilova (2017) defined Energy flexibility in buildings as “the possibility to deviate the 

electricity consumption of a building from the reference scenario at a specific point in time and 

during a certain period”. Annex 67 of the IEA Energy in Buildings and Communities 

Programme (IEA-EBC) defined energy flexible buildings as those with “the ability to manage 

[their] demand and generation according to local climate conditions, user needs, and grid 

requirements” (Jensen et al. 2017). Energy flexibility takes into consideration two-way 

communications between buildings and the power grid. In this way, buildings are regarded not as 

consumers but as “prosumers” (Ilic et al. 2012).  

Energy flexibility can be activated in two ways: by leveraging thermal energy storage and by 

shifting equipment operation. According to the first approach, energy storage can be used to shift 

the operation of electrically-driven devices. In the second approach, some electrical devices can 

be controlled to shift the electricity demand to periods with lower electricity prices or greater 

renewable energy generation (Lopes et al. 2016). In this context, an effective application of control 
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strategies within HVAC systems is essential for increasing the buildings' efficiency (Tabares-

Velasco et al. 2012, Afroz et al. 2018, Morovat et al. 2019) and energy flexibility (Klein et al. 

2017). 

Energy flexibility in buildings refers to the ability of a building to modify its energy 

consumption in response to external signals, such as grid electricity prices or renewable energy 

availability (Junker et al. 2018, Luo et al. 2022). This adaptability can be achieved through various 

means, including demand-side management and advanced control strategies (Farrokhifar et al. 

2021). Energy flexibility is also instrumental for providing contingency reserve for emergencies 

(e.g., cold load pickup after a power outage) and for enabling dynamic electricity trading. Energy 

flexibility is a time-varying quantity: in the context of this discussion, real-time energy flexibility 

must be calculated at short notice (e.g., kW available over the next few hours) and predicted ahead 

of time. Electric utilities consider Demand Side Management (DSM) a key solution to reduce peak 

power demand. In periods of peak power demand, using DSM is more cost-effective than operating 

peaking power plants or purchasing power from other jurisdictions (Davito et al. 2010). DSM can 

have an even more significant effect on the grid when integrated with renewable energy sources 

(RES).  

Finck et al. (2020) developed a method and tested it under real-life conditions, including the 

stochastic behaviour of occupants and the dynamic behaviour of the building and heating system. 

They used key performance indicators to quantify energy flexibility by considering: (1) energy 

and power, (2) energy efficiency, and (3) energy costs. They found that this categorization helps 

to make clear the benefits of using flexibility indicators in real-life applications. Junker et al. 

(2018) presented a methodology for evaluating energy flexibility based on the flexibility function, 

to describes how a particular smart building or cluster of smart buildings reacts to a penalty signal. 

De Coninck and Helsen (2016) developed a methodology to quantify flexibility in buildings based 

on the cost curve. The methodology returns the amount of energy that can be shifted and the costs 

of this load shifting. Tumminia et al. (2021) proposed a multidisciplinary approach to finding 

trade-offs between the need to limit environmental impacts and the trend toward higher building 

energy performance. They found that an oversized photovoltaic (PV) system is not the best 

solution for load matching, grid interactions, and environmental impacts in the absence of storage 

systems. They noted that installing a storage system in conjunction with the appropriate size of a 
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PV system would result in an improved load-matching of the building and reduce grid dependence 

at low generation times. 

How can real-life applications benefit from the quantification of flexibility indicators for control? 

In the past, investments have been made by utilities in the distribution system. The resulting 

cost has spread to consumers, slowing the rate of de-carbonization. New electric technologies 

allow facing those challenges in a more affordable way. It is possible today to consider the 

optimization of the entire electric system from the generation units to the final end-uses. Buildings 

are part of this system and can bring flexibility to it. Recent international efforts have recognized 

the need for a methodology to assess the flexibility for demand response in buildings, such as by 

(O’Connell et al. 2019), who developed a methodology consisting of four steps: 

1. System and load identification. 

2. Flexibility characterization. 

3. Scenario modelling to visualize the impact on demand profiles. 

4. Key performance indicators (KPIs) labeling to enable contract negotiation between 

building operators and aggregators or utilities. 

Other important considerations are the scalability of the assessment methodology and ease of 

implementation. In general, the energy flexibility KPIs are categorized into three domains (Finck 

et al. 2020): 

• Energy and power: When using the instantaneous power flexibility as a KPI, it is possible 

to identify the demand flexibility completely. The instantaneous power flexibility is 

defined as the evolution of electrical and heating power during a flexibility event.  

• Energy efficiency: Refer to the effective utilization of available sources such as the heat 

pumps and the storage heat tank.  

• Energy costs: Conventional KPIs for demand flexibility integrate operational costs of 

electricity consumption of the heat pump.  

This categorization helps to make clear the benefits of using flexibility indicators in real-life 

applications, including detailed information on demand flexibility concerning the power grid, 

demand flexibility for retrofitting and design of new energy systems, and optimal control of 

demand flexibility. 
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Can building energy systems provide short-term demand flexibility in balancing and spot markets? 

The contingency reserve is an amount of power the utility may call when needed to face the 

loss of a generation unit or other unexpected load unbalance. To address this need, real-time 

thermal load flexibility is predicted ahead of time or calculated continuously and should be 

available at short notice (e.g., 10 minutes) over a time duration of about an hour or a few hours. 

Around 40 % of the world's energy is consumed by buildings, so buildings must play an important 

role in providing a safe, reliable, and efficient operation of the future resilient energy systems. 

Energy flexibility takes into consideration two-way communications between buildings and the 

power grid. In this way, buildings are regarded not as consumers but as prosumers (Ilic et al., 

2012).  

2.5 School buildings 

School buildings account for a large portion of the building stock and a significant portion of 

the total energy use. Schools account for 30% of the public sector’s energy consumption (Natural 

resources Canada 2022) and have an average energy intensity of 200 kWh/m2/year in Canada (Ouf 

and Issa 2017). Also, HVAC energy accounts for 46% of school energy consumption (U.S. Energy 

Information Administration (EIA)). Additionally, implementing energy-efficient control strategies 

can improve indoor air quality and occupant comfort, creating a healthier learning environment 

for students and staffs (Cabovská et al. 2022, Sadrizadeh et al. 2022). Thus, transitioning to 

“energy flexible” buildings responding to grid requirements is an important and urgent research 

topic (Le Dréau and Heiselberg 2016, Torres Ruilova 2017, Li et al. 2022). 

Although school buildings constitute a large proportion of the nation's building stock and 

contribute considerably to the total energy needs, few studies have been focused on these buildings 

in Canada. According to the published literature, the Energy use intensity (EUI) of junior high 

schools and elementary schools ranges from 20 to 405 kWh/m2/year worldwide (Wang 2019). Ouf 

and Issa (2017) investigated the EUI of 129 junior high and elementary schools, using data 

collected over ten years from 30 schools’ buildings in Manitoba, Canada. Their results show that 

the average EUI in an elementary school is 270 kWh/m2/year; in a junior high school is 264 

kWh/m2/year, and in the K-12 schools is 127 kWh/m2/year. They mentioned that the difference 
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between K-12 and elementary and secondary schools in energy consumption might be attributed 

to their equipment and activities. 

Another study by (Ouf et al. 2016) examined both electricity and natural gas use in schools in 

Canada. They divided the schools into three groups based on the year they were built: before 2004, 

between 2004 and 2013, and after 2013. They found that the electricity EUI of the schools built 

before 2004 was 58 kWh/m2/year, between 2004 and 2013 was 116 kWh/m2/year, and after 2013 

was 125 kWh/m2/year. Although newly constructed schools are more energy efficient in heating 

and cooling, school electricity use has increased due to the electrification of heating systems and 

additional teaching equipment. Energy-retrofitted and green schools spent 37% more on electricity 

than conventional schools. Nevertheless, green schools spent 56% and 41% less on gas than 

conventional and energy-retrofitted schools, respectively. Their total energy costs were also 28% 

lower than conventional and energy-retrofitted schools. 

Golshan et al. (2018) evaluate the indoor environmental conditions of 10 energy-conscious 

schools in the Netherlands by focusing on the thermal comfort and indoor air quality (IAQ) 

conditions. The results from the study indicate that the situation is less than desirable in some 

cases, and the focus had been placed mostly on the energy aspect rather than the comfort or healthy 

indoor environment of the occupants. In more than 40% of the existing schools, the IAQ is 

insufficient while the energy consumption is high. It was concluded that inadequate ventilation is 

a common problem in primary school classrooms all over the world. In the Netherlands, the 

situation is that in around 70% of the existing classrooms, the requirements for healthy ventilation 

are not met. However, around 40% of the school’s classroom ventilation is seriously insufficient 

during the winter. 

A study by (Lourenço et al. 2014) analyses the energy consumption patterns of eight Portuguese 

case-study schools with a methodological approach that integrates quantitative and qualitative data 

analysis. The approach made it possible to link the energy consumption patterns of the schools 

with the user behavior and management strategies. As a result, six Key Performance Strategies 

(KPS) were identified to potentially enhance the energy performance of school buildings through 

use and management. Some of the identified KPSs can be implemented directly through school 

management policies to reduce energy use and enhance efficiency. Others can be incorporated in 
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future building design strategies. Some have the potential for being hereafter integrated into the 

simulation models of buildings’ energy performance. 

Droutsa et al. (2021) investigates available data from energy audits of about 350 Hellenic school 

buildings from the national electronic repository that have been performed for issuing energy 

performance certificates. They found that, on average, actual thermal energy use is about twenty 

percent higher than calculated, while the actual electricity consumption is about half of the 

calculated value. The majority of educational buildings do not meet the current energy 

performance requirements, requiring considerable energy retrofits.  

2.6 Renewable Energy Retrofits  

Retrofitting school buildings is expected to be a major undertaking in the next few years. School 

buildings are well placed to set the course for future energy use, since enhancing the energy 

performance of school buildings is essential for spreading a culture of energy efficiency throughout 

the community. The question on the school building sector is: should retrofit strategies be limited 

to improving energy performance, or should sustainability be the ultimate goal?  

In the building sector, sustainability refers to the impact of the building on the environment and 

energy generation and usage, as well as the well-being of its inhabitants and the economic factors. 

These issues become even more important when referring to school buildings, where occupants 

are students/children pursuing a learning activity. The sustainability protocols, aimed at making 

schools sustainable, evaluate the building in terms of energy efficiency, health and comfort, and 

how the structure can serve as a learning tool for sustainability strategies.  

There is an increased interest in decarbonizing buildings by replacing fossil fuels with 

renewable electricity. As a retrofit measure, on-site photovoltaic (PV) generation could contribute 

to this goal. Solar panels may be installed as part of a new construction project or a retrofit strategy 

to offset the energy demands of a school building. Using photovoltaic/thermal (PV/T) systems to 

provide electricity and thermal energy is one of the most important retrofit technologies for supply-

side management. The Varennes Library, the first institutional net-zero building in Canada, utilizes 

an on-site renewable system that includes a 110 kWp PV/T system where 15% of the heat is 

recovered and used to pre-heat the fresh air intake (Dermardiros and Scott Bucking PhD 2019). 

Figure 2-4 shows the HVAC system and the PV/T system installed in the Varennes Library. 
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Figure 2-4: Varennes library schematic, A) Front view, B) plan view (Amara et al. 2019) 

Due to the rapid reduction in the cost of PV modules and the increase in their efficiency, grid-

connected PV systems could be the key to a sustainable energy transition. However, the optimal 

design of these systems is a major challenge, especially for existing buildings that have not 

incorporated renewable supply systems from the start of the design process. If a time-of-use 

electricity price and demand charge are applied to utility rates, renewable energy technologies may 

benefit school buildings. In this context, obtaining a control-oriented model that provides reliable 

predictions and can be implemented in smart controllers is crucial for optimal building 

performance and renewable energy integration (De Coninck et al. 2016, Arroyo et al. 2020, 

Candanedo et al. 2022).  

2.7 Research needs and proposed work 

The transition to smart grids has raised the need to investigate and enhance building energy 

flexibility. Energy flexibility is critical to address the grid's challenges of balancing supply and 

demand and integrating renewable energy sources. To achieve these goals, developing 
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control-oriented models able to provide reliable predictions, to be implemented in smart 

controllers, and generalizable for widespread deployment in buildings is necessary. 

To achieve these goals, research needs to: 

• Develop control-oriented models based on measured data: that provide reliable 

predictions and can be generalized for widespread school deployment. Control systems 

used in traditional school buildings react to changes in weather and occupancy conditions 

as they occur without making any predictions. In contrast, MPC can enable programming 

the building operation based on future weather and occupant behaviour, resulting in 

significant improvements in energy flexibility, IEQ, and building-grid interaction.  

• Develop a general model predictive control framework in school buildings: The 

literature studying MPC applications needs a theoretical framework and detailed 

experimental investigation. Consequently, there is an essential need for a practical and 

comprehensive methodology that facilitates the modeling, design, and widespread 

implementation of MPC strategies in schools. This thesis presents an MPC framework and 

investigates the implementation of developed MPC in a real-used school building. Also, 

although several studies have investigated the application of MPC in buildings, most 

focused on energy consumption in cooling-dominated regions. However, in cold regions, 

the peak load in the morning and evening strains the electrical grid. It is thus essential to 

reduce peak demand for the grid by using the energy flexibility of building load. 

• Develop a general method to quantify the energy flexibility potential of 

buildings: Recent international efforts have recognized the need for a methodology to 

assess the flexibility for demand response in buildings. This methodology should consist 

of four steps: 1. System and load identification, 2. Flexibility characterization, 3. Scenario 

modelling to visualize the impact on demand profiles, and 4. Key performance indicators 

(KPI) labeling to enable contract negotiation between building operators and aggregators 

or utilities. Other important considerations are the scalability of the assessment 

methodology and ease of implementation. 

• Integrate PV/T systems with MPC: optimal control with MPC will help the large-scale 

integration of RES (e.g., PV/T) technologies and reduce the energy cost of school 

buildings. Many new schools need to be built soon, and old ones need renovation, but a 

few studies have been performed on integrating PV systems in school buildings. Therefore, 
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minimizing the research gap regarding the potential of integrating PV systems in schools 

to provide on-site electricity generation in educational buildings is essential.  

Therefore, this thesis investigates the energy flexibility potential in school buildings through 

simulation and experimental studies. It contributes a general methodology for the development of 

data-driven grey-box thermal models and the implementation of MPC. The methodology is applied 

to an archetype fully-electric school building near Montréal, Québec, Canada. The approach is 

scalable and transferable to other institutional or mid-size commercial buildings. The proposed 

methodology helps school buildings adapt smoothly to the necessities of the future smart grid and 

smart cities. 
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 Chapter 3: Methodology 

In this chapter, the thermal modelling approach employed in this thesis is presented as part of 

an overall modelling methodology that can be applied to buildings equipped with convective 

heating systems and radiant floor heating system. This modelling approach is used for model-

based predictive control and building energy flexibility quantification. These models use a 

grey-box modelling approach, in which physically meaningful parameters can be calibrated with 

measured data or identified using optimization techniques.  

The general methodology in this thesis is as follows: 

1. Experimental data in real school: Exploration of the experimental data measured by 

smart meters installed in the school.  

2. Data analysis: Investigate the effect of data quality and resolution on the calibration or 

training of the most promising models. 

3. Control-oriented model: Develop a methodology to create control-oriented building 

models in Python programming language, i.e., models that facilitate developing and 

assessing the impact of alternative control strategies in the schools.  

4. Simulation scenarios for assessment of control strategies: Evaluation of the different 

control strategies aimed to enhance energy flexibility potential of school buildings while 

considering indoor environmental quality. 

5. Model predictive control: Develop a MPC framework to investigate predictive control 

strategies in school building and integration of PV/T systems as a renewable energy retrofit 

measure. 

6. Energy flexibility quantification: Present a methodology for defining and calculating 

dynamic building energy flexibility for school buildings and their interaction with smart 

grids.  

7. Renewable Energy Retrofit: Integration and sizing of PV/T system to enhance energy 

efficiency and flexibility in school buildings.  
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3.1 Governing equations 

Grey-box models rely on physical knowledge about the system dynamics to define the model 

structure. Statistical methods are then used to estimate the unknown parameters. These parameters 

may be directly linked to the physical properties of the building, given that the model structure 

correctly represents the physical behavior of the system.  

The thermal modelling approach followed here is based on the lumped parameter finite 

difference method and implemented in Python. A fully explicit finite difference approach is used 

to solve the energy balance equations at each node in the models. The fully explicit approach 

assumes that the current temperature of a given node depends only on its temperature and the 

temperature of the surrounding nodes at a previous time step. By performing a heat balance on the 

control volume, the differential equation of a node can then be written as (Athienitis 2013): 

𝐶𝑖
𝑑𝑇𝑖
𝑑𝑡

= 𝑄𝑖 +∑
(𝑇𝑗 − 𝑇𝑖)

𝑅𝑖,𝑗

𝑛

𝑖𝑗
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Each node's energy balance is solved using an explicit finite difference method. The discretization 

of the time derivative term is as follows: 

𝐶𝑖
𝑑𝑇𝑖
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 3-2 

Temporal discretization of Equation 3-3 can be rearranged in the following explicit manner: 
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𝑗
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Where: 

• 𝑈𝑖𝑗: Conductance between nodes 𝑖 and 𝑗,W K⁄ ; 

• 𝑈𝑖𝑘: Conductance between nodes 𝑖 and 𝑘 where node 𝑘 has a defined or known 

temperature, W K⁄ ; 

• T: is the temperature at node i or adjacent nodes, °C; 

• Ci: Capacitance of the node (𝐶𝑖  = 𝜌𝐶𝑝𝐴𝑑𝑥𝐶𝑇) , J K⁄ ; 

• 𝑄̇: Heat flow into the node, W; 

• ∆𝑡: Time step, 𝑠. 
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The capacitance of the air node contains a factor CT (air thermal capacitance multiplier) that 

accounts for phenomena (furniture and objects, the time required for air mixing, delay due to 

ducting and other factors) that in a low-order model result in capacitance with an observed 

effective value significantly larger than the one calculated using only the physical properties of the 

air. The air thermal capacitance multiplier range between 6 to 10 (Hong and Lee 2019). The 

Equations 3-4 in matrix form is: 

{
𝑇1
⋮
𝑇𝑁

}

𝑡+1

=

{
 
 

 
 
∆𝑡

𝐶1
⋮
∆𝑡

𝐶𝑁}
 
 

 
 

⊙

(

 
 
 
 

[
 
 
 
 
 
 
−∑𝑈1𝑗 −∑𝑈1𝑘

𝑀

𝑘

+
𝐶1
∆𝑡

𝑁

𝑗

𝑈12 … 𝑈1𝑁

⋮ ⋮ ⋱ ⋮

𝑈𝑁1 𝑈𝑁2 … −∑𝑈𝑁𝑗 −∑𝑈𝑁𝑘

𝑀

𝑘

+
𝐶𝑁
∆𝑡

𝑁

𝑗 ]
 
 
 
 
 
 

{
𝑇1
⋮
𝑇𝑁

}

𝑡

+

{
  
 

  
 𝑄̇1 +∑(𝑈1𝑘𝑘𝑇𝑘𝑘)

𝑀

𝑘

⋮

𝑄̇𝑁 +∑(𝑈𝑁𝑘𝑘𝑇𝑘𝑘)

𝑀

𝑘 }
  
 

  
 

)

 
 
 
 

 3-4 

where, 

• ⊙: is an element-wise multiplication operator. 

• 𝑁: is the number of nodes. 

• 𝑀: is the number of nodes with known temperatures. 

To assure numerical stability in the solution, the time step must be chosen according to the 

stability criterion defined in Equation 3-5: 

∆𝑡 ≤ min (
𝐶𝑖
∑𝑈𝑖

) 
3-5 

Equation 3-6 calculates the heat provided by the heating system with proportional-integral 

control (PI controller) at each time step, which the integral part should be reset periodically. 

 𝑄̇
𝑡+1

= 𝑘𝑝(𝑇𝑠𝑝
𝑡 − 𝑇𝑎𝑖𝑟

𝑡 ) + 𝑘𝑖 ∫ (𝑇𝑠𝑝
𝑡 − 𝑇𝑎𝑖𝑟

𝑡 )𝑑𝑡
𝑡

0
 3-6 

where: 

• 𝑘p, proportional gain of the controller, W/K 

• 𝑘i, Integral gain of the controller, W/(K ∙ s) 

Model identification is the process of determining the physical properties of unknown systems 

according to some experimental data or training data. The objective of the optimization algorithm 

is to find the equivalent RC circuit parameters by minimizing CV (RMSE). Equation 3-7 and 

Equation 3-8 (ASHRAE Guideline 14 2002) are used to calculate this index where 𝑇𝑖 ,𝑇̂𝑖, n, and 𝑇̅ 
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represent the measurements data, simulation results, a total number of observations, and the 

average of all measurements, respectively. 

𝐶𝑉(𝑅𝑀𝑆𝐸)(%) =  

√∑ (𝑇𝑖 − 𝑇̂𝑖)
𝑛
𝑖=1 𝑛⁄

𝑇̅
× 100 3-7 

𝑁𝑀𝐵𝐸(%) =  
∑ (𝑇𝑖 − 𝑇̅)
𝑛
𝑖=1

(𝑛 − 1) × 𝑇̅
× 100 

3-8 

According to ASHRAE Guideline 14 (Measurement of Energy and Demand Savings), the 

model shall have a CV(RMSE) of not more than 30%, NMBE of 10%, and R2 higher than 0.75 

relative to hourly calibration (measured) data (ASHRAE Guideline 14 2002). Table 2 summarizes 

the criteria of the three main documents to validate a model as calibrated. 

Table 2: Calibration criteria based ASHRAE guideline 14 (ASHRAE Guideline 14 2002) 

Index Monthly Hourly 

NMBE ±5% ±10% 

CVRMSE 15% 30% 

R2 0.75 

3.1.1 State-space representations  

State-Space representations describe systems of linear differential equation in a compact 

manner, as shown in Equation 3-9, where (x) is the state matrix, (u) is input, (w) is disturbance, 

and (y) represent output vectors. 

𝑥̇(𝑡 + 1) = 𝐴𝐱(𝑡) + 𝐵𝐮(𝑡) + 𝐸𝐰(𝑡) 

𝑦(𝑡) = 𝐶𝐱(𝑡) + 𝐷𝐮(𝑡) 
3-9 

Where: 

• x(t) is system variables to track. 

• u(t) is controllable variable, e.g., heating/cooling, fan on/off, etc. 

• w(t) is uncontrollable inputs, e.g., weather. 

• y(t) is model output. 
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In this approach, the temperatures of nodes with thermal capacitances are usually considered as 

the states of the system since they have certain physical meaning and are relatively easy to measure 

(Candanedo et al. 2013). The aspect of control-oriented archetypes will be discussed in Chapter 4. 

3.1.2 Weather clustering 

In this research a centroid-based approach (time series K-means clustering) in Python is 

implemented. K-means clustering is a commonly used unsupervised machine learning algorithm 

for partitioning a given data set into a set of k clusters. It classifies objects in multiple clusters, 

such that objects within the same cluster are as similar as possible (high intra-class similarity), 

whereas objects from different clusters are as dissimilar as possible (low inter-class similarity) 

(Heidrich-Meisner and Wimmer-Schweingruber 2018). Each cluster is represented by its centroid, 

which corresponds to the mean of points assigned to the cluster. Then, system identification is 

carried out to identify appropriate reduced-order models. Time-series databases are extensive, and 

there are always difficulties in treating them separately. Clustering is a very useful tool to simplify 

the time-series data by grouping similar time-series into aggregated clusters. This approach can be 

a pre-processing step for other models. The k-means clustering algorithm is as follows: 

Algorithm 1: k-means clustering algorithm 

Data: number of clusters, data set X 

     Result: cluster centers C = (c1,…,ck)c 

     Begin 

 Randomly select k data points as initial cluster centers; 

Repeat 

  Reinitialize all partition subsets as empty: 

S1 = S2 = … = Sk = (); 

Assign each data point to the closest cluster center: 

for i ϵ (1,…,N) do 

   l = argmin jϵ(1,…,k) ║xi – cj║2; 

Sl = Sl  Ս xi; 

  end 

  Define new cluster centers based on current partition 

for j ϵ (1,…,k) do 

   cj  = ∑ i ϵ (1,…,N), xi ϵ Sj  xi/|Sj| 

  end 

 until the cluster assignment converges; 

     end 
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3.2 Model predictive control (MPC) 

MPC is a multi-variable control method that incorporates several additional aspects with the 

controller: a dynamic model of the system to be controlled, forecasts of future disturbances such 

as weather, a cost function that is minimized over a prediction horizon, and sometimes a history 

of past control sequences. The basis of MPC in buildings is that better control of the building 

energy systems and planning of resources is possible due to insights into forecast weather, 

expected occupancy, and the thermal response of the building. 

Typically, in MPC, the optimal control problem is solved at each defined control step by looking 

ahead at forecast weather and occupancy schedules over the prediction horizon (PH). The 

prediction horizon is a time period over which has reasonably reliable information about the future, 

ranging from a few hours to a couple of days. Using data available from the prediction horizon 

period, an optimization routine is solved, and an optimal sequence of control moves is identified 

through the implementation of MPC. The identified schedules and control moves are applied to 

the building over a “control horizon”, which can be the same length or be shorter than the 

prediction horizon. Once the current control horizon has ended, the optimization exercise is 

performed again for the following prediction horizon. This process is repeated until the end of the 

simulation time (e.g., one day or one year). The controller’s objective is to minimize a cost function 

that may incorporate energy and/or power while maintaining the zone within reasonable comfort 

limits. 

The overall MPC formulation is presented in Equation 3-10 (Drgoňa et al. 2020): an objective 

function is to be minimized over a prediction horizon, subjected to various constraints where some 

describe the dynamics of the system to control while others define limits and boundary conditions. 

min
𝑢0,…,𝑢𝑁−1

∑𝑙(

𝑁

𝑖=1

𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖)  

Subject to  𝑥𝑖+1 = 𝑓(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 + 𝐸𝑤𝑖     System dynamics  

                   ℎ(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) = 0 

                   𝑔((𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) ≥ 0 

                   𝑥1 = 𝑥,                                                                  Current state 

3-10 
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Where,  

• xt system variables track the system dynamics,  

• ut control variables which can be manipulated in order to improve the building 

performance, 

• wt exogenous inputs representing time series that can be observed but cannot be 

controlled, such as weather,  

• l(x, u, w) loss or cost function which could be to minimize the utility cost, or the grid 

interaction, or some other cost,  

• h(x, u, w) = 0 equality constraints; here, the system dynamics of the system (next-step 

interior temperature) is given by the trained model,  

• g(x, u, w) ≥ 0 inequality constraints, here, the inequality constraints are the boundaries 

of the problem: can include the capacity of the heating system, toggling limitations to 

reduce wear, the comfortable temperature range, an allowance for discomfort, etc.  

In this thesis, two cost functions incorporating the utility rate structures were implemented, and 

their results were compared to the typical manual control currently in operation. Equation 3-11 

shows the optimization problem, where the objective is to minimize energy when the electricity 

cost is constant. Equation 3-12 presents the objective function, where the objective is to minimize 

the peak load when the energy cost varies over the day, with higher prices during peak hours in 

the morning (from 6:00 to 9:00) and evening (from 16:00 to 20:00), as shown in Table 3. 

min 
𝑃
𝐽 

𝑤ℎ𝑒𝑟𝑒 𝐽 = (∑ 𝑃𝑖∆𝑡

𝑁−1

𝑖=1

) ∙ (𝐶𝑜𝑠𝑡Energy,𝑖) 

 Subject to     𝑇 ≤ 𝑇𝑖𝑛 ≤ 𝑇   

                        0 ≤ 𝑃 ≤ 𝑃𝑚𝑎𝑥 

3-11 

𝑤ℎ𝑒𝑟𝑒 𝐽 =  (∑ 𝑃𝑖∆𝑡

𝑁−1

𝑖=1

) ∙ (𝐶𝑜𝑠𝑡Energy,𝑖) + 𝑚𝑎𝑥(𝑃𝑖) ∙ (𝐶𝑜𝑠𝑡Demand,𝑖)  

 Subject to     𝑇 ≤ 𝑇𝑖𝑛 ≤ 𝑇   

                        0 ≤ 𝑃 ≤ 𝑃𝑚𝑎𝑥 

3-12 
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where Pi is the power demand at the time, N is the number of time steps across the prediction 

horizon PH, and ∆t is the time step. The space heating demand (P) is limited by the maximum 

capacity of the heating equipment (Pmax). In this study, MPC performs optimization starting 

midnight with a 24-hour prediction horizon, timestep 15 minutes, and control horizon of three 

hours. 

3.2.1 Québec Electricity Rates for medium‑power customers 

This study concentrates on the electricity rates called Rate M and Rate Flex M, applied in 

Québec to the medium-sized commercial building sector (Hydro Québec 2022). These rates are 

summarized in Table 3.  

Table 3: Utility rate for medium commercial buildings (Hydro Québec 2022) 

Rate M 

Demand charge $15.16/kW 

First 210,000 kWh  5.23¢/kWh 

Remaining energy used 3.88¢/kWh 

Rate flex M 

Winter: 1 Dec. – 31 Mar. 

Demand charge $15.16/kW 

Consumption outside peak hours 3.29¢/kWh 

Consumption during peak hours: 

Morning (6:00 to 9:00) and Evening (16:00 to 20:00) 
51.97¢/kWh 

Summer: 1 Apr. – 30 Nov. 

Demand charge $15.16/kW 

First 210,000 kWh  5.23¢/kWh 

Remaining Energy used 3.88¢/kWh 

When the maximum power demand during a consumption period included in the last 12 months 

exceeded 50 kW, then Rate M applies to the contract. The rate includes a demand charge and two 

energy prices: one for the first 210,000 kWh and another for any remaining energy use. Power 

prices are applied to the billing demand, which is determined by the maximum of two quantities: 

1) the maximum power measured during the month, or 2) 65% of the previous winter's peak 

(minimum billing demand). A minimum billing demand refers to the minimum amount a customer 

must pay for every consumption period, regardless of how much power is consumed. Due to the 

large space heating loads during the winter, operation strategies must be carefully considered. 
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Under Rate Flex M, the cost of electricity is cheaper than Rate M most of the time. However, 

during peak demand events, electricity is billed at a much higher price (51.97 ¢/kWh). Thus, it is 

necessary to shift electricity use or limit it to reduce costs. The day before a peak demand event, 

customers will receive a notification. Peak demand events can occur Monday to Friday from 

December 1 to March 31, from 6 to 9 a.m. and 4 to 8 p.m., as shown in Figure 3-1. The Rate M 

(base rate) price is applied for the rest of the year. 

 

Figure 3-1: Electricity price – Rate flex M (Hydro Québec 2022) 

3.3 Energy Flexibility 

Energy flexibility in building net electricity demand is an essential part of the solution to address 

the electrical future grids requirements. A Building Energy Flexibility Index (BEFI) would help 

to define the amount of power variation over a fixed duration that is available from a building. A 

well designed BEFI would help to quantify the flexibility from a building, to improve building 

design to increase the potential flexibility, to control the building to get maximum available 

flexibility when needed and to compare different systems, designs and operational strategies.  The 

prediction accuracy for BEFI within ±10% error is considered optimal for smart grid applications 

(MacDougall et al. 2017), but errors of up to 36% have been reported in flexibility available 

through operation of heat pumps. Energy flexibility in building net electricity demand and possible 

onsite energy production is an essential part of the solution to address the electrical grid’s 

challenges of grid balancing, renewable energy capacity, as well as increasingly important 

challenges such as providing a contingency reserve to be used for emergencies (e.g. cold load 
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pickup after power outage) and dynamic electricity trading facilitated with building-to-grid-related 

communication protocols such as OpenADR.  

This section presents the quantification of a dynamic building energy flexibility index (BEFI) 

for the school building and its interaction with smart grids. Equation 3-13 calculates the average 

BEFI under the implementation of the flexibility strategy and the reference as-usual profile, and 

equation 3-14 presents the BEFI as a percentage and equation 3-15 quantifies BEFI at the building 

level. 

𝐵𝐸𝐹𝐼̅̅ ̅̅ ̅̅ ̅(𝑡, 𝐷𝑡) =
∫ 𝑃𝑟𝑒𝑓𝑑𝑡 − ∫ 𝑃𝑓𝑙𝑒𝑥𝑑𝑡

𝑡+𝐷𝑡

𝑡

𝑡+𝐷𝑡

𝑡

𝐷𝑡
 3-13 

𝐵𝐸𝐹𝐼 =  
𝑃𝑟𝑒𝑓 − 𝑃𝑓𝑙𝑒𝑥

𝑃𝑟𝑒𝑓
 

3-14 

𝐵𝐸𝐹𝐼𝐵𝑢𝑖𝑑𝑙𝑖𝑛𝑔 =∑𝐵𝐸𝐹𝐼𝑧𝑜𝑛𝑒

𝑛

1

 
3-15 

where: 𝐵𝐸𝐹𝐼̅̅ ̅̅ ̅̅ ̅ is the average Building Energy Flexibility Index at time t for duration Dt. It should 

be noted that BEFI at time t may vary according to time of notice and notice before a signal may 

allow preconditioning the building to maximize available flexibility when needed. The flexibility 

available may be quantified by using a model to establish the power demand difference between 

the reference case (Pref) with a case where the temperature is allowed to drop for one hour or a few 

hours. This calculation gives the available flexibility at time t. The calculation is repeated every 

hour to give the available flexibility over the period (BEFI (t+Dt)). 

• Rebound power: The power surge before or after the flexibility event, either positively or 

negatively, is called rebound power. The rebound power Prb is defined below: 

𝑃rb = 𝑚𝑎𝑥|𝐵𝐸𝐹𝐼|  

𝐃𝐨𝐦𝐚𝐢𝐧: (0 , 𝑡) and (𝑡 + 𝐷𝑡 , 𝑃𝐻) 
3-16 

The time range (0, t) indicates the extra power used before the demand response (DR) event, the 

range (t+Dt, PH) denotes the additional power use after the event until prediction horizon (PH). 
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This information is important for the grid to ensure that the grid remains stable and balanced 

outside the DR period.  

Figure 3-2 shows the estimated power and BEFI due to a flexible setpoint temperature in a 

school building. 
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Figure 3-2: Concept of BEFI available to the grid 

This figure illustrates how by using flexible setpoint temperature, we can shift the power 

demand or reduce the power. Also, using Flexible power and reference power profile, we can 
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predict the available energy flexibility of the building to the grid. The following sections present 

the case study building and the results for different control strategies to enhance the energy 

flexibility of the building.  

3.4 Energy performance of the school building 

Figure 3-3 presents the measured total power electricity in the case study school. This figure 

shows that the peak power demand was 120.7 kW on 11 February 2020. According to measured 

data, the average total power during the heating season (November – April) is 52 kW, with an 

average monthly energy consumption of 37,440 kWh. 

 
Figure 3-3: Power demand of the school for cold winter days, February. 

Based on data collected from energy bills, the EUI in the school is 145 kWh/m2/year, which is 

about 27% lower than the national average, which is 200 kWh/m2/year for schools in Canada (Ouf 

and Issa 2017). This performance could be explained by using efficient new equipment (e.g., high-

efficiency heat pumps), efficient windows, proper control systems, and high insulation levels in 

the school. Energy use can be further reduced with additional (ongoing) commissioning effort. 

Figure 3-4 presents the electrical load duration curve of the school during the heating season. 

This graph shows the hourly power demand sorted descending. By intercepting the curve with the 

x-axis, the percentage of time where the school has a high peak load can be determined. 
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Figure 3-4: Electrical load duration curve - Heating season 

For the given period, 50% of the peak load occurred less than 10% of the time. Therefore, it is 

important to have promising predictive control strategies to reduce peak demand and quantify the 

energy flexibility potential of the school building studied. 

3.4.1 Energy signature 

Energy signature diagram estimates energy use as a function of outdoor temperature and may 

include other parameters. Daily energy signatures can generate more robust energy consumption 

benchmarks and provide additional insight into unusual energy demand patterns than monthly or 

weekly signatures, requiring slightly more data. In particular, they distinguish between weekday 

and weekend consumption. As shown in Figure 3-5, regression analysis is used to define the 

relationship between energy use and outdoor temperature.  

 

Figure 3-5: Energy signature of the school building 
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The energy signature diagram indicates a baseline demand of 25 kW, which occurs when the 

outdoor air temperature exceeds 15 °C. For an outdoor air temperature of 15 °C to -15 °C, the 

difference between the mean power demand on weekdays and weekends ranges from 20 kW to 45 

kW, respectively. There are variations of average daily power beyond those related to mean 

outdoor temperature or weekday/weekend differences. These variations can be caused by 

variations in solar heat gain, equipment and lighting usage, occupancy, and possibly other factors. 

3.4.2 Energy consumption and end-use breakdown 

Figure 3-6 presents the measured power consumption of major subsystems on a typical cold 

sunny day at the school. In winter, the peak electricity grid demand occurs in Québec during the 

morning (6:00 a.m. to 9:00 a.m.) and evenings (4:00 p.m. to 8:00 p.m.). This graph shows that the 

average electricity demand during morning on-peak hours is 65kW, and during the afternoon is 58 

kW. It should be noted that this graph does not include all electrical loads in the school. Therefore, 

there is a difference between electric billing and the measured electric load of the school. 

 

Figure 3-6: Measured power consumption distribution for different subsystems on a typical cold sunny day. 

Figure 3-6 shows that water to air HPs and water to water HP account for a significant portion 

of the peak load. Many strategies could be effective for peak heating demand reduction, including 

the effect of appropriate predictive control strategies by adjusting setpoint profiles to fully exploit 

the storage capacity of the concrete slab in zones equipped with radiant floor systems and 

convective systems. The detail of the energy end-use breakdown is shown in Table 4. 

Measurements show that the local water-to-air heat pumps use 38% of total energy, and water-to-
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water heat pumps consume around 15 % of total energy (in the heating mode of operation). Fan 

and pump power take up a significant portion due to the radiant slab systems requiring circulation 

pumps and the fan coil units having their own fans.  

Table 4: End-use breakdown in equipment level. 

End use breaker Energy used (%) 

Electric boiler for hot water 14 

Kitchen & lighting 12 

Pumps and fans 18 

Water to air HPs 38 

Water to water HP 15 

Measured data shows that around 45% of total energy is consumed by the zones equipped with 

the convective system (i.e., classrooms, library, kindergarten), and 25% by the zones equipped 

with radiant floor and convective system (i.e., offices and gym), which is 70% of the total energy 

used. 
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 Chapter 4: Archetype Control oriented modeling1  

4.1 Introduction 

Data-driven grey-box models ensure both physical insight and the reliability of measured data. 

Literature review indicates that grey-box models are also suitable for demand-side management in 

smart grids (Gouda et al. 2002, Bacher and Madsen 2011, Candanedo et al. 2013, Reynders et al. 

2014). In grey-box models, choosing an appropriate level of resolution is essential as it directly 

affects the parameter tuning and calculation time. A high-order model containing too many 

parameters requires information that is not often available with adequate accuracy. An 

oversimplified model may not be accurate enough to help make decisions. Therefore, obtaining a 

model that provides reliable predictions and can be implemented in smart controllers is crucial for 

optimal building performance.  

This chapter investigates the impact of model resolution and structure on the energy flexibility 

quantification. The methodology is based on the use of archetypes of resistance-capacitance 

thermal networks for representative thermal zones calibrated with measured data. Providing a 

closer link between smart grids and smart buildings requires appropriate control strategies. Thus, 

this study presents an application of the developed model for control purposes based on smart grid 

requirements. This methodology has been implemented in the fully-electric school building 

located in Québec, Canada. This school has several features (geothermal heat pumps, hydronic 

radiant floors, and energy storage) that make it ideal for the purpose of this study. The following 

steps are used to develop grey-box models and quantify energy flexibility: 

• Real building measurement data are collected from the smart meters installed in the 

archetype zones. Data included variables such as power demand (kW), zone air 

 

1 This work is based on peer-reviewed journal articles and published refereed conference thesis: (a) Morovat, N., Athienitis, A. 

K., Candanedo, J. A., Delcroix, B. (2022). “Data-driven model-based control strategies to enhance energy flexibility in electrically 

heated school buildings”, Buildings, 12(5), 581. (b) Candanedo, J. A., Vallianos, C., Delcroix, B., Date, J., Saberi, A., Morovat, 

N., John C., and Athienitis, A. K. (2022), “Control-oriented archetypes: a pathway for the systematic application of advanced 

controls in buildings”, Journal of Building Performance Simulation, 1-12. (c) Athienitis, AK., Dumont, E., Morovat, N., Lavigne, 

K., Date, J. (2020), “Development of a dynamic energy flexibility index for buildings and their interaction with smart grids”, 

ACEEE Summer Study on Energy Efficiency in Buildings, California, USA, August 17-2. (d) Morovat, N., Candanedo, J. A., 

Athienitis, A. K. (2021). “Application of grey-box models for the quantification of the energy flexibility of a school building in 

Canada”, 2021 ASHRAE Annual Conference, Phoenix, USA, June 28-30. 
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temperature (°C), weather data, and specific data related to each zone (e.g., floor heating 

temperature). All measurements were taken at intervals of 15 minutes.  

• Numerical models of thermal building control are developed. These models are based on 

RC thermal network models.  

• The developed models are calibrated using the collected data. The important parameters 

are identified using the Sequential Least Squares Programming (SLSQP) in Python.  

• Appropriate control strategies for zones with the convective system and zones with 

radiant floor system are presented to enhance the energy flexibility available from the 

building to the grid at specific times, depending on the grid requirement. 

• A Building energy flexibility index (BEFI) is applied to quantify dynamic building energy 

flexibility at the zone and building levels. 

4.2 Archetype zones with convective system: classrooms 

Figure 4-1 shows two of the classrooms in this school. Each classroom has a ceiling water-to-

air heat pump (1.5-2 tons each) and has Proportional-Integral control (PI) in the local-loop control 

of room air temperature. The local heat pumps are ground source water to air HPs; therefore, the 

COP of the HPs as the heating system are almost constant and is equal to 3.2 in this school. The 

typical classrooms are 9.1 m long by 7.2 m wide, and the ceiling-floor height is 3.0 m. 

 

 

Figure 4-1: Horizon-du-Lac School – Classrooms with convective from ceiling 

A schematic of the HVAC system in one of the school's classrooms is shown in Figure 4-2. The 

air handling unit used in this school is an energy recovery unit that provides preheated fresh air to 

all classrooms. Each classroom has a local water-to-air HP with local thermostat control. 

Convective from ceiling 
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Figure 4-2: Schematic of the heating system, AHU, and classrooms 

Figure 4-3 presents the thermal network RC model structures for zones with convective systems. 

Figures 6a to 6c show the first-order model (1R1C), second-order (3R2C), and the third-order 

model (4R3C), respectively. The inputs for the analyzed models include outdoor temperature (Tex), 

solar heat gain (qSG), internal heat gain (qIG), and heat delivered by water-air heat pumps (qaux). 

Montreal weather data is used to determine outdoor temperature and solar radiation. In the 

measured data, the heat supplied by water-air HP is calculated by multiplying measured electricity 

demand by COP of the HP and is used for comparison of models and measurements (Figure 4-4). 

The solar heat gains, internal gains, and heating for the third-order model are distributed over the 

thermal capacitances (Figure 4-3(c)). The performance of the simplified RC models from the first 

order to the third-order model is validated with measured data, as shown in Figure 4-4 (a-c). 

  

(a) (a) 
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(b) (b) 

 
 

(c) (c) 

Figure 4-3: RC thermal network model: (a) First 

order (b) Second order, and (c) Third order model 

Figure 4-4: Calibration of RC thermal network models with 

measured data: (a) First order (b) Second order, and (c) 

Third order model 

As shown in Figure 4-4a, the first-order model cannot capture the system's dynamics well. The 

second-order model has better calibration results than the first-order model, but it still cannot 

capture details of the thermal dynamics of the system (Figure 4-4b). The calibration of the third-

order model (Figure 4-4c) shows good accuracy and adequate statistical indices (CV-RMSE of 8 

% and a maximum difference of 0.4 °C). It should be noted that higher-order models require 

additional inputs, such as heat flux measurements, to guarantee observability. Since these 

measurements will not be available in most buildings, higher-order models' identity cannot be 

guaranteed (Reynders et al. 2014).   

4.3 Available energy flexibility in contingency event  

Contingency reserves are amounts of power that a utility can use in the event of the loss of a 

generation unit or unexpected load imbalance. To address this need, Real-time thermal load 

flexibility should be predicted ahead of time or calculated continuously and should be available at 

short notice (e.g., 10 minutes) over an hour or several hours. This section presents the contingency 

strategy to quantify the energy flexibility available from the zones with convective system to the 

grid at specific times. In this case, a tolerance band setpoint profile is proposed. A flexible 
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approach is proposed within the tolerance limits where the temperature is allowed to deviate from 

the reference setpoint. For example, during a flexibility event occurring at 2 pm for one hour, the 

temperature is allowed to drop by 2 degrees to provide a “temporary relief” to the heating system 

(Figure 4-5). At this point, the setpoint is lowered two degrees (from 24 to 22 °C).  

 

Figure 4-5: Daily setpoint profile with acceptable temperature band and a flexibility event with a duration of 1h. 

Figure 4-6 and Figure 4-7 present setpoint temperature and indoor temperature with 1-hour 

flexibility (from 14:00 to 15:00) and 3 hours flexibility (from 14:00 to 17:00) as an example. As 

shown in Figure 4-6, indoor temperature does not reach minimum acceptable setpoint temperature 

with 1-hour flexibility. It can be expected to discharge less thermal energy stored in the building 

and therefore less flexibility. However, in the case with 3 hours flexibility (Figure 4-7) it can reach 

the minimum acceptable setpoint temperature and therefore uses more of the energy stored in the 

thermal mass of the building. 

 
Figure 4-6: Setpoint and indoor air temperature with 1-hour flexibilty 
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Figure 4-7: Setpoint and indoor air temperature with 3-hour flexibilty 

Energy flexibility of a classroom within a short notification time, for a duration of one hour and 

three hours during day is quantified in Figure 4-8 and Figure 4-9 which present average BEFI (t, 

1 hr) and BEFI (t, 3 hr) for a classroom at the school. 

 
Figure 4-8: BEFI (t, 1 hr) in one classroom, updated every 1 hour 

 

Figure 4-9: BEFI(t, 3 hr) in one classroom, updated every 1 hour 

Figure 4-10 and Figure 4-11 show BEFI (t, 1 hr) and BEFI (t, 3 hr) respectively with updating 

every 15 minutes (as a continues BEFI) for the classroom considered at the school. 
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Figure 4-10: BEFI (t, 1 hr) in one classroom - updated 

every 15 minutes 

Figure 4-11. BEFI (t, 3 hr) in one classroom - updated 

every 15 minutes 

As shown in Figure 4-10, hourly BEFI for a classroom is around 1200 W for most of the time 

but at step changes in reference setpoint temperature, this amount decreased sharply. This result 

shows that when reference setpoint increases in the morning, flexibility is limited because the room 

temperature gets too close to the acceptable temperature. Also, in the evening, when reference 

setpoint temperature is lowered, the power demand of the building is negligible due to release of 

energy stored in the building envelope and floor slab. Therefore, reduction of setpoint temperature 

could not at this moment provide more flexibility for the grid and average BEFI will be negligible. 

Based on these observations, it would be possible to propose a new reference setpoint within 

acceptable limits that will allow a more stable flexibility availability during the whole day. In the 

case of BEFI (6 a.m., 1 hr), there is almost no flexibility at that time because it takes almost an 

hour to go from the night set back temperature to the new minimum acceptable temperature. In the 

case of BEFI (6 a.m., 3 hr) (Figure 4-11), it takes about the same time to reach the acceptable 

temperature, but then it has two hours more where it can benefit from the flexibility. 

If this flexibility strategy is applied to all classrooms, total hourly BEFI that can be provided to 

the grid is as shown in Figure 4-12 and Figure 4-13: 
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Figure 4-12: BEFI (t, 1 hr) in all classroom - update 

every 15 minutes 

Figure 4-13: BEFI (t, 3 hr) in all classroom - update 

every 15 minutes 

As shown in Figure 4-12 and Figure 4-13, an energy flexibility of around 25 kW can be 

provided to the grid when needed to face the loss of a generation unit or other unexpected load 

unbalance. Figure 15 shows that using flexible setpoint for a duration of three hours during the day 

can provide more stable flexibility (around 20 kW) for the grid. According to Figure 4-14, energy 

flexibility of around 20 W/m2 can be provided to the grid in the event of loss of a generation unit 

or other unexpected power outages. It should be considered that when we add all the classrooms, 

we have more flexibility in the individual setpoint profiles based on occupancy, therefore the 

available flexibility would be able to be flattened and more stable flexibility can be provided for 

the grid. 

 

Figure 4-14: Energy flexibility profile, 1-hour event 

It should be noted that BEFI at time t may vary according to time of notice and a notice prior 

to signal may allow to precondition the building to maximize available flexibility when needed. 

The BEFI can be implemented in the BAS with a predictive model controller, which can optimize 

power flexibility for a known period of high demand. This makes BEFI appropriate for various 

grid requirements, from contingency reserves to load shifting. 
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4.4 Archetype zones with hydronic radiant floor and convective heating systems 

Figure 4-15 presents a schematic of the office zones equipped with local water-air HP and a 

hydronic radiant floor system on the school's first floor. 

 

Figure 4-15: Schematic of the office zone equipped with hydronic radiant floor and convective systems 

The plan view of the offices and piping of the hydronic radiant floor system is shown in Figure 

4-16. These offices are heated with hydronic radiant and local convective systems. Proportional-

integral thermostats control heating systems. The thermocouples in the offices are T-types with a 

standard accuracy of 0.2 °C for the temperature range of 0 to 70 °C. In addition to air temperatures, 

floor temperatures are also measured at eight different locations, as shown in Figure Figure 4-16. 
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Figure 4-16: Plan view of the offices with hydronic radiant floor system. 

Table 5 presents the radiant hydronic floor area in each zone and the piping length. 

Table 5: Floor area and piping length of the offices with hydronic radiant system. 

Thermal zone Area (m2) Piping length (m) 

Office 1 64 244 

Office 2 12 69 

Office 3 21 91 

Office 4 27 176 

Office 5 19 87 

Total 143 667 

A front view of the slab with hydronic radiant piping can be seen in Figure 4-17. The floor is a 

concrete slab 15 cm thick insulated at the bottom with total thermal resistance of 5.64 m2K/W. The 

pipe is made of cross-linked polyethylene (PEX), has a diameter of 1.25 cm, and is in the depth of 

6 cm. The pipes were kept in place by a wire mesh before casting concrete, and the distance 

between the pipes was 30.4 cm. 
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Figure 4-17: Slab cut with hydronic radiant heating piping. 

Concrete's properties are affected by its age, temperature, humidity, and moisture content 

(Marshall 1972). Following ASHRAE (ASHRAE 2009), a normal-density concrete has a 

conductivity of 1.7 W/(mK), the specific heat of 800 J/(kgK), and a density of 2200 kg/m3
. A water-

water HP provides a controlled flow rate of 0.29 L/s with a maximum temperature of 48.8 °C. The 

HP has a nominal COP of 2.7 under full load conditions at 48.8 °C. Heating power to the hydronic 

radiant system is calculated by Equation 4-1: 

𝑄 = 𝑚̇ × 𝑐𝑝 × ∆𝑇 4-1 

According to the ASHRAE standard 55, the floor temperature must not exceed 29 °C (ASHRAE 

55 2017). Thus, a floor surface temperature of 26 °C is considered in this study. Several floor 

sensors and control valves protect the floor from overheating and enhance thermal comfort. The 

RC thermal network for the zones with hydronic radiant and convective heating/cooling systems 

is shown in Figure 4-18. The inputs are outdoor temperature (Text), solar gain (QSG), internal heat 

gain (QIG), the heat delivered by hydronic radiant system (QRF), and heat delivered by the 

convective system (Qaux). These inputs can be: 

• Controllable: such as the heat delivered by the heating systems and the ventilation airflow 

rate. 

• Uncontrollable: such as the outdoor temperature, solar gains, and internal gains. 

The performance of the simplified RC model is validated with measured data, as shown in Figure 

4-19. 
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Figure 4-18: RC thermal network model of the zones with hydronic radiant floor system and convective system 

 

Figure 4-19: Calibration of RC thermal network model with measured data, zones with hydronic radiant floor 

system and convective system 

Table 6 provides an overview of the thermal network model parameters: 

Table 6: Description of RC thermal network model parameters (7R4C).  

Parameter Description Parameter Description 

1 Node of Envelope  R1,ext Resistance of wall, (K/W) 

2 Node of indoor air  R1,2 Resistance between wall and air node, 

(K/W) 

3 Node of floor surface  R2,3 Resistance between floor and air node, 

(K/W) 

4 Node of Pipe  Rinf Resistance of Infiltration, (K/W) 

5 Node of concrete (top) R3,4 Resistance between pipe and floor 

surface, (K/W) 

Text Temperature of outdoor, (°C) R4,5 Resistance between concrete and pipe, 

(K/W) 

Tg Temperature of ground, (°C) R6,g Resistance between ground and 

concrete, (K/W) 

QSG Solar heat gain, (W) C1 Capacitance of envelope, (J/K) 

QIG Internal heat gain, (W) C2 Capacitance of effective Air, (J/K) 

Qaux Heating power, (W) C4 Capacitance of Floor (top), (J/K) 

QRF Heating of radiant floor, (W) C5 Capacitance of Floor (below), (J/K) 
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4.2.1. Control Scenarios for zones with hydronic radiant floor and convective systems 

This section investigates the heat supplied to the zones with hydronic radiant and convective 

systems. It will be possible to develop simple predictive control strategies that use thermal storage 

potential while also considering peak load and thermal comfort. In the reference case (a business-

as-usual case), the hydronic radiant floor temperature setpoint (21.8 °C) is always lower than the 

air temperature setpoint (23 °C) during the daytime (Figure 4-20a). As a result, the convective 

system is the primary heating system, and the floor acts as a heat sink. In this study, alternative 

control scenarios for a cold winter day are examined and compared to current building operations 

as a reference case. Assumptions considered in designing control strategies include: 

• To maintain the slab temperature within the comfort range, the slab surface is set to a 

maximum of 26°C. 

• The water-water HP can deliver up to 15 kW of heat to the radiant floor heating system, 

according to the observation from measured data. 

• The operating temperature is considered to be the effective indoor temperature. 

• During unoccupied hours (nighttime), the slab is charged and discharged during occupied 

hours (daytime). 

1. Control scenario 1 (Reference case) 

The reference case is presented in Figure 4-20a, which is the current operation of zones with 

hydronic radiant heating. In this scenario, the convective system is the primary heating system, 

and the hydronic radiant system is not commonly used. As seen in Figure 4-21, in this case, the 

peak load is 10 kW and occurs during the on-peak hours (6 a.m. to 9 a.m.). Thus, in order to 

improve the energy flexibility of the building, the following two control scenarios are presented. 

2. Control scenario 2 (constant air setpoint temperature) 

This control scenario involves preheating the slab from midnight to 8:00 a.m. with a setpoint 

temperature of 26°C (Figure 4-20b). During occupied hours (from 8:00 a.m. to 5:00 p.m.), the 

slab's set point temperature is 18 °C, and then it is raised to 22 °C. It is considered that the air 

setpoint temperature is always constant and equal to 20 °C during occupied and non-occupied 

hours.  

According to Figure 4-20(b), the operative temperature varies between 21 and 24 °C, which is 

within the thermal comfort range for the occupants. In Figure 4-21(b), the heat delivered to the 
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thermal zones is calculated using the control scenario 2. In this control scenario, the radiant floor 

system is the primary heating system, and the heating demand during occupied hours is reduced. 

It should be noted that in this control scenario, the ventilation system is off, resulting in poor air 

quality in the offices. Therefore, control strategy 3 is presented to address the air quality of the 

zones during occupied hours. 

  

(a) Control strategy 1 (Reference case) (a) Control strategy 1 (Reference case) 

  

(b) Control strategy 2 (b) Control strategy 2 

  

(c) Control strategy 3 (c) Control strategy 3 

Figure 4-20: Temperature profile in different control 

strategies 

Figure 4-21: Heat delivered to the thermal zones in 

different control strategies 
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3. Control scenario 3 (variable air setpoint temperature) 

As part of this control scenario, the air setpoint temperature is increased to 23 °C during 

occupied hours (Figure 4-20c). As a result, the morning peak load can be reduced, and fresh air 

can be provided to the zones from 10:00 a.m. to 5:00 p.m. The energy consumption in this flexible 

scenario is 133.5 kWh, which is less than the reference case (136.6 kWh). The following section 

will address the slab's state of charge (SOC) (i.e., thermal storage), as well as the flexibility 

associated with reducing peak loads and energy consumption over peak periods. 

4.5 State of Charge (SOC) of the slab 

The thermal inertia in the slab can provide the flexibility to reduce peak loads and shift the heat 

production of the radiant heating system in time. State of Charge (SOC) is a concept that describes 

how much energy is stored at time t relative to the total capacity, as shown in Equation 4-2 

(Reynders et al. 2018): 

𝑆𝑂𝐶 =  
𝐸𝑡ℎ(𝑡) − 𝐸𝑡ℎ,𝑚𝑖𝑛(𝑡)

𝐸𝑡ℎ,𝑚𝑎𝑥(𝑡) − 𝐸𝑡ℎ,𝑚𝑖𝑛(𝑡)
 4-2 

The SOC is the percentage of the stored thermal energy as a function of the minimum and 

maximum slab surface temperatures, as given by (Qu´ebec). 

𝑆𝑂𝐶 =  
𝑇𝑠𝑙𝑎𝑏(𝑡) − 𝑇𝑡ℎ,𝑚𝑖𝑛(𝑡)

𝑇𝑡ℎ,𝑚𝑎𝑥(𝑡) − 𝑇𝑡ℎ,𝑚𝑖𝑛(𝑡)
 4-3 

Where Tth,max is the maximum slab surface temperature, set at 26 °C for indoor thermal comfort, 

and Tth,min is the minimum slab surface temperature, considered equal to the average indoor air 

temperature. 

Figure 4-22 and Figure 4-23 illustrate heat storage and SOC of the slab in the reference case 

(control strategy 1) and flexible case (control strategy 3). It can be observed that in the reference 

case, the slab cannot be fully charged. Thus, the thermal energy storage capacity of the slab is not 

fully utilized; while using a flexible case (control strategy 3), the slab is fully charged during 

unoccupied hours and discharged during on-peak hours. This approach activates the thermal load 

flexibility of the school and allows the electricity grid to manage electricity demand when needed. 
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Figure 4-22: Heat storage and State of Charge (SOC) of the slab - reference case 

 

Figure 4-23: Heat storage and State of Charge (SOC) of the slab – flexible case 

4.5.1 Thermal load flexibility in archetype zones with hydronic radiant system 

In Figure 4-24, a flexibility strategy is applied to zones with hydronic radiant and convective 

heating systems to calculate the hourly BEFI. 

 

Figure 4-24: Average hourly BEFI – Flexible control strategy. 

By applying a flexible control strategy, available hourly BEFI provided to the grid during on-

peak hours is positive, indicating the power reduction value available compared to the reference 

case. During nighttime (off-peak hours), the BEFI is negative, showing a higher power demand 

for charging the slab and preheating the zones. Based on Figure 4-24, around 60 W/m2 energy 

flexibility can be provided to the grid in the morning and 45 W/m2 in the evening (on-peak hours).  
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4.6 Building Level Energy Flexibility 

Figure 4-25 presents energy flexibility at the building level. Zones with radiant floor and 

convective heating systems can provide around 60 W/m2 energy flexibility. Also, classrooms and 

the library with convective heating systems can provide 20 W/m2 during on-peak hours. In total, 

by implementing appropriate control strategies, the school building can provide energy flexibility 

from between 30 W/m2 to 80 W/m2 when needed by the grid. 

 

Figure 4-25: Hourly building energy flexibility in school 

In this school, the gym and offices floor area are 586 m2, and the classrooms, libraries, and 

kindergartens floor area are 2054 m2. Therefore, the school at the building level has potential 

flexibility of between 50 to 80 kW, representing 40% to 65% building energy flexibility. This 

bottom-up approach opens the path towards labelling energy flexibility in school buildings as part 

of the future smart grid and smart cities. 

4.7 Conclusion 

School buildings are an important part of the building stock; they also represent a sizeable 

portion of the total energy use in the building sector. Therefore, quantification of energy flexibility 

in school buildings has a significant role in providing a safe and efficient operation of the future 

resilient grid. This chapter presented a practical methodology that facilitates the modelling and 

implementation of appropriate control strategies in school buildings. It also presented a 

methodology for defining and calculating a dynamic energy flexibility index for buildings. The 

dynamic building energy flexibility index (BEFI) is defined in terms of key performance indicators 

relative to a reference energy consumption profile at zone level, building level, and as a percentage. 
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The application of the BEFI was presented for a fully-electric school building in Canada. This 

study illustrated how low-order lumped parameter thermal network models could be utilized to 

calculate the BEFI. Furthermore, the activation of energy flexibility through a rule-based approach 

with near-optimal setpoint profiles is investigated. Results showed that applying appropriate 

control strategies can enhance the school building energy flexibility by 40% to 65% during peak-

demand periods. In addition to improving energy flexibility in school buildings, these control 

strategies could reduce the size of HVAC units at the design stage, thereby lowering their operating 

and initial capital costs. 
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 Chapter 5: Model Predictive Control and Field Test2  

5.1 Introduction 

Model predictive control (MPC) is one of the key approaches in activating energy flexibility in 

buildings to meet smart grid needs (Killian and Kozek 2016, Drgoňa et al. 2020). MPC allows the 

building operation to be programmed based on the weather forecast, expected schedules, and 

occupants' behavior. With MPC's proactive "look ahead" approach, the building operation can be 

optimized, activating energy flexibility while maintaining satisfactory indoor environmental 

quality.  

Although several studies have investigated the application of MPC in buildings, most focused 

on energy consumption in cooling-dominated regions. In cold regions, the peak load in the 

morning and evening strains the electrical grid. For example, during winter, the electrical grid of 

Québec (Canada) is heavily stressed by peak morning (6:00 to 9:00) and evening (16:00 to 20:00) 

loads (HydroQuebec 2023). It is thus essential to reduce peak demand for the grid by using the 

energy flexibility of building load (Klein et al. 2017, Afroz et al. 2018).  

Recent international efforts have recognized the need for a systematic approach to assess the 

flexibility for demand response in buildings (Tang et al. 2021, Bai et al. 2023, Liu et al. 2023). 

The methodology of the present chapter includes following steps: 

• Developing data-driven grey-box models for representative zones and calibration of these 

models with real data,  

• Clustering weather data based on the outdoor temperature and solar irradiance,  

• Creating predefined setpoint profiles for each weather cluster, 

 

2 This work is based on a published refereed conference thesis and a peer-reviewed journal article: (a) Morovat, N., Athienitis, 

A. K., Candanedo, J. A. (2023). “Energy Flexibility Activation in School Buildings: Heuristic Model Predictive Control Method”, 

Energy Journal. (Under review), (b) Morovat, N., Athienitis, A. K., Candanedo, J. A. (2022), “A Heuristic Model Predictive Control 

Method to Activate the Energy Flexibility of School Buildings”, 7th International High-Performance Buildings Conference 2022, 

Purdue University, West Lafayette, IN, USA, July 10-14. Morovat, N., Athienitis, A. K., Candanedo, J. A. (2023), “Model 

predictive control for demand response in all-electric school buildings”, 13th Nordic Symposium on Building Physics (NSB 2023), 

Aalborg, Denmark, 12-14 June 2023. 
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• Testing of different control scenarios to assess the impact on electricity demand and 

energy performance,  

• Energy flexibility quantification to enable interaction between buildings, aggregators, and 

utilities.  

Following these steps, this chapter presents an MPC methodology to control the HVAC system 

using the established dynamic tariffs for morning and evening peaks. Also, it demonstrates its 

potential to activate the energy flexibility of an occupied fully electric school building in a cold 

climate region. This clustering methodology to identify typical weather scenarios and room types 

and using predefined setpoint profiles is a practical approach that simplifies the implementation of 

MPC in real buildings while reducing the time and costs of modeling and optimization. Also, this 

methodology helps the utility to plan ahead based on the weather clusters while limiting the 

number of decisions. The approach presented here is scalable and can be transferable to other 

school buildings.  

5.2 Methodology 

As shown in Figure 5-1, the school building’s zones are divided into the archetype zones with 

convective heating systems and zones with radiant heating systems. Then, archetype models for 

representative zones are developed. The input data, such as indoor temperature and power demand, 

are measured and collected. These data are used as inputs for the calibration of archetype data-

driven grey-box models and parameter identification. Then, the weather data (e.g., outdoor 

temperature, solar radiation) are clustered into several categories, representing different weather 

conditions (6 clusters representing two ambient temperature ranges and three solar radiation 

ranges). The developed MPC methodology uses predefined setpoint profiles to shift the building 

load from on-peak to off-peak hours. For each MPC scenario, the model runs a simulation to 

provide an optimal setpoint profile for the building and quantify energy flexibility in response to 

grid requirements. 
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Figure 5-1: General overview of the proposed control methodology. 

5.3 Model Creation 

5.3.1 Data-Driven Grey-Box Model 

The challenges of generating an accurate and generalized model are one of the most significant 

limitations of MPC and have led to MPC largely being constrained to the research field to date 

(Killian and Kozek 2016, Drgoňa et al. 2020) (Amadeh et al. 2022). Building energy models are 

typically categorized into three types: white box, black box, and grey box models. White-box 

models simulate the heating/cooling demand using physical principles, black-box models use data-

driven models, and grey-box models use physical insight and real data. Data-driven grey-box 

models have been identified as a practical approach for addressing challenges associated with 
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implementing MPC in intelligent buildings (Li et al. 2021, Joe et al. 2023). Selecting an 

appropriate level of resolution in a grey-box model is essential, as it directly impacts the tuning of 

the model parameters and, particularly, the calculation time of MPC. A high-order model 

containing too many parameters requires information that is not often available with adequate 

accuracy. An oversimplified model may not be accurate enough to be useful as a decision-making 

tool. Thus, model complexity should be chosen carefully considering the control objectives and 

constraints, such as the assessment of energy use and comfort criteria.  

Figure 5-2 shows a third-order RC thermal network with three capacitances for the zones with 

convective heating, and Figure 5-3 presents a fourth-order RC thermal network for zones with 

radiant heating system. In these thermal network models, R indicates the lumped thermal resistance 

between the connected temperature nodes; C represents the lumped capacitance of the nodes, and 

Q represents the heat addition to the nodes. Table 1 provides an overview of thermal network 

parameters and their description. 

  
Figure 5-2: RC thermal network model of the 

zones with convective system. 

Figure 5-3: RC thermal network model of the zones with 

convective and radiant floor heating systems. 

The RC models are calibrated with measured data in zones with convective heating systems 

(i.e., Classrooms) and zones with radiant floor systems (i.e., gym and offices). The accuracy of the 

reduced-order models depends on their characteristic parameters (resistances and capacitances), 

so they must be appropriately adjusted. The optimization approach establishes the equivalent 

parameters for RC circuits by minimizing the coefficient of variation of the root mean square error 

(CV-RMSE).   
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Table 7: Thermal Network Parameter Description 

Third-order model Fourth-order model 

Parameter Description Parameter Description 

1 Envelope temperature node 1 Envelope temperature node 

2 Indoor air temperature node 2 Indoor air temperature node 

3 Floor temperature node 3 Floor surface temperature node 

4 Ground temperature node 4 Pipe temperature node 

R1, ext Wall resistance, (K/W) 5 Concrete temperature node 

R1,2 Resistance between wall and air 

node (K/W) 

6 Ground temperature node 

R2,3 Resistance between floor and air 

node, (K/W) 

R1,ext Wall resistance, (K/W) 

R2, ext Infiltration, (K/W) R1,2 Resistance between wall and air node, (K/W) 

C1 Envelope capacitance, (J/K) R2,3 Resistance between floor and air node, (K/W) 

C2 Effective Air capacitance, (J/K) Rinf Infiltration, (K/W) 

C4 Floor capacitance, (J/K) R3,4 Resistance between pipe and floor surface, (K/W) 

Text Outdoor temperature, (°C) R4,5 Resistance between concrete and pipe, (K/W) 

QSG Solar heat gain, (W) R5,6 Resistance in concrete, (K/W) 

QIG Internal heat gain, (W) R6,g Resistance between ground and concrete, (K/W) 

Qaux Heating power, (W) C1 Envelope capacitance, (J/K) 

Tg Ground or connecting zone 

temperature, (°C) 

C2 Effective Air capacitance, (J/K) 

  C4 Floor capacitance (top), (J/K) 

  C5 Floor capacitance (below), (J/K) 

  Text Outdoor temperature, (°C) 

  Tg Ground or connecting zone temperature, (°C) 

  QSG Solar gain, (W) 

  QIG Internal gain, (W) 

  Qaux Heating power, (W) 

5.3.2 Data clustering as a simplification approach 

A conventional optimization approach has a high computational complexity when applied to all 

classrooms and for all weather conditions; this complexity hinders its practical implementation. 

Therefore, we propose finding the optimal setpoint profiles for representative days and zones 

instead of performing a complex optimization for all conditions. To this end, we adopt a time-

series clustering technique that determines the representative zones and weather conditions. The 

weather forecasts are divided into clear, partly cloudy, and overcast days using the k-means 

clustering technique in Python programming language. The clustering quality is assessed using 

the Silhouette index. Silhouette analysis is a method of interpretation and validation of consistency 

within data clusters. The silhouette index (ranging between +1 and -1) measures how similar an 

object is to its cluster (cohesion) compared to other clusters (separation). An average silhouette 
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index of 1 indicates dense, well-separated clusters; negative values indicate incorrect grouping. A 

cluster with the maximum average silhouette (within a specific range) is considered optimal. The 

forecast weather data was obtained from the CanMETEO® program from Natural Resources 

Canada (NRCan 2021). This approach is a pre-processing step for other models.   

5.3.3 Model predictive control formulation 

Model predictive control is a method for controlling a system that incorporates a dynamic 

model, predictions of impending disturbances (e.g., weather), and a cost function that minimizes 

over time (e.g., electricity price). An illustration of the MPC strategy employed in this study is 

shown in Figure 5-4. 

 

Figure 5-4: Diagram of the heuristic model predictive control employed. 

The weather forecast over the prediction horizon is used to solve the optimal control problem in 

MPC. The prediction horizon ranges from a few hours to a few days of generally accurate 

information about the future. The prediction horizon period is used to solve an optimization 

routine. The overall MPC framework is presented in Eq. 1 (Drgoňa et al. 2020), where some 

sections describe the system dynamics for control, and others establish boundary conditions. 

A general optimal MPC formulation is given as follows: 
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Objective: min
𝑢0,…,𝑢𝑁−1

∑𝑙(

𝑁

𝑖=1

𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖)  

Subject to ℎ(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) = 0 

                   𝑔((𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) ≥ 0 

                   𝑥1 = 𝑥,                                                                        Current state 

                   𝑥𝑖+1 = 𝑓(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 + 𝐸𝑤𝑖 , System dynamics 

5-1 

Where,  

• xi: State variables describe the current state of the system,  

• ui: controllable input variables (such as heating setpoints) that can be changed to 

enhance the building's performance, 

• wi: Uncontrollable inputs (“disturbances”) such as weather (outside temperature, solar 

radiation),  

• l (x, u, w): cost function,  

• h (x, u, w) = 0: equality constraints, 

• g (x, u, w) ≥ 0: inequality constraints (boundary conditions).  

 

In this study, MPC performs optimization starting at midnight with a 24-hour prediction 

horizon, timestep of 15 minutes. The rest of the constraints force the MPC formulation to use the 

building model and restrict the heating output to the installed capacity of each zone. The prediction 

horizon of 24 hours allows for a comprehensive forecast of future electricity prices and heating 

requirements. The convex optimization problem was solved using the cvxpy library in Python 

(Diamond and Boyd 2016). The optimization results in optimum heating output values for each 

water-to-air heat pump and the equivalent zone temperatures. 



72 

 

 

Figure 5-5: Boundary of indoor temperature for cold winter days 

In an MPC framework, enforcing a specific temperature range is a common way to achieve 

thermal comfort. Figure 5-5 presents the set point temperature for the classrooms. The indoor zone 

temperature is constrained by a lower bound, which is 18 °C at night and 21 °C during the day, 

and an upper bound, which is 27 °C at night and 24 °C during the day, in order to maintain a level 

of thermal comfort for the zone occupants. The upper bound generates the desired setpoint target 

to minimize the energy cost through load shifting by considering future weather and utility price 

signals. A lower bound constrains the minimum indoor temperature to maintain thermal comfort 

in the zone. 

The literature on optimization prefers convex models and constraints to ensure quick and 

reliable convergence to a global minimum. This thesis uses state-space representations with 

convex cost functions, models, and constraints to formulate a convex optimization problem. In 

Québec, the operating cost includes the price of the peak energy demand, which can be represented 

as a 1-norm within a convex prediction horizon. Hence, MPC is implemented in Python using 

routine CVXPy (Diamond and Boyd 2016), a convex optimizer that is solved using ECOS 

(Domahidi et al. 2013). The two key simplifications in this methodology are: (a) a clustering 

approach is used to identify typical weather scenarios and room types and (b) predefined optimal 

setpoint profiles for each cluster are considered to facilitate implementation of MPC in real 

buildings. Eq. 3 shows the optimization problem, where the objective is to minimize the electricity 

cost based on weather data clusters and predefined setpoint profiles. For each MPC scenario, the 

Acceptable temperature variation 

Lower temperature bound 

Upper temperature bound 

Occupied hours Unoccupied hours Unoccupied hours 
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model runs a simulation using one day ahead forecast weather data to quantify and activate energy 

flexibility in response to grid requirements. In Equation 5-2, the energy cost varies over the day, 

indicated by sub-index i, with higher prices during peak hours. 

Objective: min 𝐽 

Where: 𝐽 = ((∑𝑃𝑖∆𝑡

𝑁

𝑖=1

) ∙ (𝐶𝑜𝑠𝑡Energy,𝑖) + 𝑚𝑎𝑥(𝑃𝑖) ∙ (𝐶𝑜𝑠𝑡Demand,𝑖) ) 

 Subject to     𝑇𝑠𝑝 ∈ [𝑇𝑠𝑝,1, 𝑇𝑠𝑝,2, … , 𝑇𝑠𝑝,𝑛]   

                        0 ≤ 𝑃 ≤ 𝑃𝑚𝑎𝑥  

                        𝑇 ≤ 𝑇𝑖𝑛 ≤ 𝑇 

5-2 

Where Pi is the power demand at the time, N is the number of time steps across the prediction 

horizon PH, and t is the time step. The objective is to determine the room setpoint temperature 

profile (Tsp) from predefined setpoint profiles (one for each weather cluster) that reduce the energy 

cost of the based on the heuristic optimization. The space heating demand (P) is limited by the 

maximum capacity of the heating equipment (Pmax), and the interior zone temperature Tin needs to 

be kept within the allowable limits for comfort. 

5.4 Simulation results: heuristic MPC in zones with convective heating system 

5.4.1 Weather clustering 

The coldest months of the year in Montreal (January and February) are selected because this is 

when peak energy demand occurs. The solar irradiance (SI) and outdoor temperature data are 

clustered using k-means clustering method. The closest match with the centroids is then identified 

using this model. According to the average Silhouette index, the optimal number of clusters is 

three for solar radiation and two for outside temperature, as shown in Figure 5-6 and Figure 5-7.  
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(a) (b) 
Figure 5-6: a) The average silhouette index for solar irradiance and b) corresponding clusters 

  

(a) (b) 

Figure 5-7: a) The average silhouette index for outdoor temperature and b) corresponding clusters 

In this way, we can classify possible weather conditions into six groups (2 x 3). Table 8 presents 

forecast scenarios according to the clustered outdoor temperature and solar irradiance. 

Table 8: Clustering scenarios for weather forecasts 

 Level of Cloudiness 

Outdoor Temperature 
Cloudy 

(SI < 250 W/m2) 

Semi-Cloudy  

(250 < SI < 500 W/m2) 

Sunny  

(SI >500 W/m2) 

Cold day 

(Average temperature = -2.5 °C) 
Cluster 1 Cluster 2 Cluster 3 

Very cold day 

(Average temperature = -12.5 °C) 
Cluster 4 Cluster 5 Cluster 6 

This methodology makes it possible to calibrate archetype RC thermal networks for representative 

clusters. Such a clustering-based approach enables the development of archetype control-oriented 

models for decision-making while reducing the number of choices/decisions, thus avoiding the 

high computational time and costs of modelling and optimization. 

5.5 Energy Flexibility Assessment: Predefined 6:00 a.m. event 

A Building Energy Flexibility Index (BEFI) has been proposed to quantify the energy flexibility 

of the building (Athienitis et al. 2020). A description of the concept of the BEFI is presented in 

3 clusters optimized 
the Silhouette 
indicator  

 

2 clusters optimized the 

Silhouette indicator  
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chapter 2. Using outdoor air temperature and solar radiation as inputs, these benchmarking models 

predict daily power demand. The Six predefined profiles (shown in Figure 5-8) were tested on 

different clusters of weather forecasts (presented in Table 3). Figure 5-9a and Figure 5-10a present 

indoor air setpoint temperature and the power demand for classrooms under business-as-usual 

(BAU) control to evaluate the peak load reduction due to heuristic MPC implementation. For 

example, Figure 5-9b and Figure 5-10b show the power demand under a four-hour transition ramp 

in setpoint temperature during very cold and cold days. 

 
Figure 5-8: Predefined setpoint profiles and the reference case 

  

(a) Step-change (b) four-hour ramp 

Figure 5-9: Indoor air setpoint temperature and power demand during a very cold sunny day  

  

(a) Step-change (b) four-hour ramp 

Figure 5-10: Indoor air setpoint temperature and power demand during a cold cloudy day 

48 kWh 16 kWh 

110 minutes 

80 minutes 

Heating 

system is off 

22 kWh 
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For very cold days (OAT = -12.5 °C), simulations show that a lower night set-back value is 

advantageous to prevent peak load rise during on-peak hours. Building heating demand can be 

switched from peak to off-peak hours using a nearly flat set point (nighttime). Additionally, MPC 

increased thermal comfort for occupants by gradually raising the internal temperature at night 

rather than abruptly changing the set point right before occupancy began. 

 
Figure 5-11: Available flexibility with four hours ramp in setpoint temperature. 

As shown in Figure 5-11, applying a four-hour ramp during on-peak hours results in a positive 

BEFI (33 kW), indicating power reduction compared to the reference case. The BEFI is negative 

during off-peak hours (2:00 a.m. to 6:00 a.m.), meaning a higher power demand to preheat the 

zones. Figure 5-11 shows that 66 W/m2 of floor area of energy flexibility can be provided to the 

grid during morning on-peak hours. 

5.6 Energy Flexibility Assessment: Contingency Reserve 

The “contingency reserve” refers to the ability of buildings to either reduce their electrical load 

or provide additional power back to the grid in situations where the power balance between supply 

and demand is disrupted (e.g., due to a power outage). This concept is part of energy flexibility, 

where buildings actively participate in the energy system to support grid stability and efficiency. 

The first objective is to study the dynamic response of the classrooms to a downward 

temperature step change during on-peak hours of a very cold day while maintaining adequate 

comfort. Figure 5-12 and Figure 5-13 present setpoint temperature, room air temperature, power 

demand, and price signal for the reference and “flexible” scenarios, respectively.  
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Figure 5-12: Power demand, setpoint temperature, and room temperature - Reference scenario. 

 
Figure 5-13: Power demand, setpoint temperature, and room temperature - Flexible scenario. 

Figure 5-14 shows that significant peak reduction can be achieved by replacing a step change 

with a simple 1, 2, or 3-hour ramp. 

 
Figure 5-14: Impact of ramping temperature setpoint on rebound power 

20 °C 

24 °C 

20 °C 
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The results presented in Figure 5-14 show that by increasing the ramp in temperature setpoint 

from 1 hour to 3 hours, the rebound power decreases by around 50%, which causes the peak values 

of efficiency. The total BEFI provided to the grid without a ramp and three hours ramp after the 

flexibility event in the morning are shown in Figure 5-15 and Figure 5-16, respectively. 

 
Figure 5-15: Average hourly BEFI – Reference scenario with upward step change 

 
Figure 5-16: Average hourly BEFI – Flexible scenario with three hours ramp 

The results show that the BEFI is positive during peak hours by applying the proposed setpoint 

profiles, making power available for the grid. During off-peak hours (after DR events), the BEFI 

is negative, which shows higher power demand due to the power rebound for the classrooms. 

Energy flexibility of 11 kW in the morning and 8 kW in the evening can be achieved when the 

grid needs. Using the developed control strategies, achieving up to a 35% reduction in peak power 

demand during peak-demand periods while maintaining acceptable comfort levels is possible. 

According to Figure 5-16, using a ramp in setpoint temperature has an important effect on the 

potential energy flexibility. Results show that using a three-hour ramp after on-peak hours could 

Rebound Power 

demand 

27 kW 

Rebound Power 

demand 

10 kW 
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reduce the negative BEFI (rebound power) by 63 % and thus reduce the rebound effect. This action 

is essential for the stability and balance of the grid. 

5.7 Simulation results: MPC in zones with convective heating system 

In this section, the predictive control strategies in zones with convective system are presented. 

Different control strategies are investigated, including:  

a) The reference case: which is the current operation of classrooms. Figure 5-17 shows the 

classrooms to start being heated around 4:30 am until reach the lower boundary of setpoint 

temperature at 6 am. In this scenario, as seen in Figure 5-20, the peak load is 49 kW and occurs 

during the on-peak hours (6:00 to 9:00 am). Thus, in order to improve the energy flexibility of the 

building, the following control scenarios are presented. 

 

 

 

 

 

 

 

 

Figure 5-17: Indoor air temperature with flat price rate 

 

 

 

 

 

 

 

 

Figure 5-18: Indoor air temperature with rate flex M applied during morning peak hours 

 

 

 

 

 

 

 

 

 

Figure 5-19: Indoor air temperature with rate flex M applied during evening peak hours 

b) Rate flex M in the morning: To consider a case of a morning peak in a time-of-use tariff 

structure, the energy cost between 6:00 and 9:00 am is increased by a factor of 15. Figure 5-18 
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show the classrooms to start being heated around 2:30 am until heating is completely shut off at 6 

am. The over-heated space can free float during the peak period and remain within the comfort 

boundaries. As shown in Figure 5-22 the heating system can be off during morning peak hours, 

resulting in peak load reduction up to 49 kW. This pre-heating and system staging strategy has 

emerged through the minimization of operational costs. Compared to the uniform pricing case, this 

case consumes 77 kWh less than the BAU case.  

c) Rate flex M in the morning and evening: If there is an evening peak from 4:00 to 8:00 pm, 

the evening behavior is affected by a slight preheating but not as aggressively as in the morning. 

The indoor temperature is back to 21°C (Figure 5-19). This case consumes 815 kWh energy less 

than the BAU. 

 

 

 

 

 

 

 

 

Figure 5-20: The reference case, business-as-usual operation 

 
Figure 5-21: Under demand response program with flat rate 

 
Figure 5-22: Flexible case, Rate flex M during morning 

 
Figure 5-23: Flexible case, Rate flex M during morning and evening 
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5.8 Simulation results: MPC in zones with radiant floor heating system 

Radiant floor systems integrate high thermal inertia into the heating/cooling system and can be 

used to peak-shave and load-shift the building's thermal load. This section proposes near-optimal 

setpoint profiles for zones with radiant floor systems to increase energy flexibility while 

considering thermal comfort constraints. The maximum heating output is limited to the size of the 

system, which is 16 kW.  

To preheat the slab, four predefined control strategies are considered: preheating the slab at 20, 

22, 24, and 26 °C from 12:00 a.m. to 6:00 a.m. on both day clusters. Then, the slab temperature 

was reduced to 18 °C during the daytime (from 6:00 to 17:00) to discharge the slab. During 

unoccupied hours from 18:00 to 24:00, the setpoint temperature is raised to 22 °C to charge the 

slab again. Applying these predefined setpoint strategies shifts the power demand from on-peak 

hours to off-peak hours. Figure 5-24b and Figure 5-25b show the power demand on very cold and 

cold days, respectively, when the slab is preheated at 22°C during unoccupied times. It is beneficial 

to have a higher night set-back value when the outdoor air temperature is very low (for example, 

OAT = -15 °C) to avoid peak load during on-peak hours. It should be considered that using a high 

night set-back value of 26 °C on cold days (for example, OAT = -2 °C) paves the need for higher 

energy consumption and increases the risk of overheating during daytime. 

  

(a) Flat setpoint temperature (a) Flat setpoint temperature 

21 °C 21 °C 

BAU BAU 



82 

 

  
(b) Preheating at 22 °C (b) Preheating at 22 °C 

  

(c)  Preheating at 26 °C (c) Preheating at 26 °C 

Figure 5-24: Power demand in zones with floor heating 

systems during very cold sunny days 

Figure 5-25: Power demand in zones with floor heating 

system during cold cloudy days 

5.9 Energy flexibility in zones with radiant floor system 

This section calculates such a BEFI to quantify the real-time thermal load flexibility of the 

building. Eq. (B.1) – (B.3) calculate BEFI by implementing the flexibility strategy and comparing 

it with the reference case. The average BEFI per unit area in hourly intervals in zones with radiant 

hydronic floor and convective heating system is shown in Figure 5-26 for a very cold sunny day 

(OAT = -12.5 °C) and Figure 5-27 for a cold cloudy day (OAT = -2 °C).  
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Figure 5-26: Average BEFI in an hourly interval for a very cold sunny day 

 

Figure 5-27: Average BEFI in hourly intervals for a cold cloudy day 

Both preheating options at 24 °C and 26 °C yielded favorable results, with an average BEFI of 

up to 9 kW (65 W/m2) for three h. The BEFI values are highest in the early morning because the 

abrupt switch from night setback to daytime temperature results in the most considerable reduction 

in peak demand. The potential power reduction can significantly (45%) downsize the heating 

systems. A BEFI of around zero shows that flexibility is not available from the building to the 

grid.  

5.10  Field implementation results 

The developed MPC methodology was implemented through BACnet (Haakenstad 1999) in the 

case study building to test its actual performance. Ten classrooms are investigated, including five 

on the first floor and five on the second floor, with different orientations (as much as possible). 

Four classrooms are considered as the reference cases (Blue highlights in Figure 5-28), and six are 
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the flexible cases using MPC (Yellow highlights in Figure 5-28). In this way, we could compare 

the results of the flexible case with the business-as-usual one. Each classroom is 9 m × 7 m × 3.5 

m with a floor area of 63 m2.  

 

(a)  

 

(b) 

Figure 5-28: Selected classrooms for experiment at a) the first and b) second floor of the school  

By including classrooms on both floors with varying orientations, we aimed to capture various 

thermal conditions and evaluate the MPC in different scenarios. Table 9 presents each classroom's 

control strategy, location, and installed heating capacity. 

 

 

 

 

N 

N 
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Table 9: Characteristics of the selected classrooms and control strategies applied. 

Room Control strategy Location Orientation Heating capacity (kW) 

Class 140 Reference case First Floor Southeast 4.84 

Class 142 With MPC First Floor Northwest 4.84 

Class 143 With MPC First Floor Southeast 4.84 

Class 144 Reference case First Floor Northwest 4.84 

Class 146 With MPC First Floor Northwest 5.89 

Class 209 With MPC Second Floor Northwest 4.84 

Class 215 Reference case Second Floor Northwest 4.84 

Class 216 Reference case Second Floor Southeast 4.84 

Class 220 With MPC Second Floor Southeast 4.84 

Class 226 With MPC Second Floor Northeast 4.84 

As an example of results, Figure 5-29 and Figure 5-30 show power demand and average BEFI 

for two of the tested classrooms on a sunny cold day in winter with an average outdoor temperature 

of -10 °C (reaching -16 °C in the early morning). 

 
(a) 

 
(b) 

Figure 5-29: Reference (BAU) and Flexible (with MPC) classrooms in the first floor, a) power demand and b) 

Average energy flexibility 
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(a) 

 
(b) 

Figure 5-30: Reference (BAU) and Flexible (with MPC) classrooms in the second floor, a) power demand and b) 

Average energy flexibility 

Figure 5-29 presents the results for south-facing classrooms located on the first floor (i.e., class 

143 as the flexible case and class 140 as the reference case), and Figure 5-30 shows the results for 

north-facing classrooms on the second floor (i.e., class 209 as the flexible case and class 215 as 

the reference case). The results show that the power demand during on-peak hours is reduced by 

1.65 kW in the classroom on the first floor and 0.95 kW in the classroom on the second floor. 

Thus, the average energy flexibility has increased between 58% to 95%. One reason for the 

different available flexibility is that each classroom has an individual heat pump controlled by a 

separate PI controller. Thus, heat pumps have various heating responses in each classroom, which 

results in different energy flexibility. Another observation is that the power demand after peak 

hours (i.e., after 9:00 a.m.) is higher in the north-facing classroom. This could be due to the solar 

radiation effect in the south-facing zones. 

Table 6 presents the average BEFI (kW) and percentage of BEFI (%) during the morning effect 

in flexible classrooms with MPC. These results are obtained by comparing the power demand with 

their adjacent classrooms as reference cases (refer to Figure 5-28). In the case of class 226, the 
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adjacent classrooms have not been appropriately measured. Therefore, for this classroom, class 

215 is considered as the reference case. As shown in Table 10, by applying the developed MPC in 

the school, the average BEFI of between 0.8 to 1.65 kW and the average energy flexibility of 47 

% to 95 % could be achieved. 

Table 10: Average BEFI and percentage of BEFI in the flexible zones with MPC.  

Room Average BEFI – Morning Event BEFI – Morning Event (%) 

Class 142 1.25 kW 73 % 

Class 143 1.65 kW 95 % 

Class 146 1.10 kW 68 % 

Class 209 0.95 kW 58 % 

Class 220 1.30 kW 82 % 

Class 226 0.80 kW 47 % 

The proposed control methodology builds upon data-driven models and enhances school 

buildings' energy flexibility. Nonetheless, it was built to be scalable to similar mid-size school and 

commercial buildings. Moreover, it would facilitate the integration of school buildings in the future 

smart grid by adjusting the objective function in the optimization routine (e.g., peak demand, 

energy costs, and carbon intensity). Other new challenges for the grid, such as the integration of 

renewable energy sources and resiliency, could also be tackled with such a predictive control 

approach. 

5.10.1 Field test results under different control scenarios 

Three control scenarios for cold winter days are investigated. The first scenario involves reactive 

controllers in selected rooms that are considered business as usual. The second scenario 

investigates the MPC without occupancy in the classrooms (This test was conducted during spring 

break). The third scenario explores the MPC application while considering occupancy in the 

classrooms. In MPC scenarios, the objective is to minimize the peak load during peak hours in the 

morning (from 6:00 to 9:00). The reactive controllers in the first scenario are designed to respond 

to real-time data and changing conditions in the selected rooms. This approach is commonly used 

and represents the baseline control strategy. In the second scenario, without occupancy in the 

classrooms, the MPC system can optimize energy consumption by adjusting temperature setpoints 

based on real-time data and weather forecasts. Lastly, in the third scenario, considering occupancy 

in the classrooms allows for more realistic control of temperature, leading to further energy savings 

during peak hours in the morning. The summary of control scenarios is as follows: 
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Control scenario 1) Reference case (Business as usual) 

Control scenario 2) Flexibility scenario Ⅰ: MPC in classrooms without occupancy (during 

spring break in February and March) 

Control scenario 3) Flexibility scenario Ⅱ: MPC in classrooms with occupancy (during normal 

operation of the school) 

5.10.2 Reference case (Business as usual) 

The current classroom operation, considered as the reference case, is based on a reactive 

controller for the local HPs. In this scenario, as shown in Figure 5-31, the indoor temperature is 

around 24 °C during occupied hours (6:00 to 18:00), and the peak load occurs during the morning 

peak hours (6:00 to 9:00 am) shown in Figure 5-32. The energy consumption during high-price 

periods for the reference case was in the range of 2.3 kWh to 3.1 kWh, with an average of 2.5 

kWh. These high-price periods can significantly impact energy costs for the schools. Also, during 

the reference scenario, the reactive controller started heating the zones as soon as the setpoints 

changed. The time it took for the zones to reach the setpoints resulted in some thermal discomfort. 

This thermal discomfort was particularly noticeable during the morning peak hours when the 

reactive controller struggled to heat the zones to the new setpoints quickly. This delay in reaching 

the desired temperature could decrease productivity and create discomfort for students and staffs. 

Therefore, it is crucial to find a solution that minimizes this thermal discomfort while still 

optimizing energy consumption during high-price periods. By implementing a more proactive 

approach that considers occupancy patterns, weather conditions, and utility tariffs, energy 

consumption during these high-price periods can be optimized. This would reduce energy costs 

and improve comfort levels for the occupants throughout the day.  
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Figure 5-31: Indoor air temperature for control scenario 1 (reference case) 

 

Figure 5-32: Power demand for control scenario 1 (reference case) 

5.10.3 Flexibility scenario Ⅰ (MPC without occupant):  

Figure 5-33 shows the indoor temperature profile of the reference case and the flexible case 

without occupancy for each day of the experiment. During the reference case, the indoor 

temperature is almost constant during occupied hours, while in the flexible case, the indoor 

temperature drops by about 2 °C to reduce peak load and energy consumption during morning 

peak hours. This temperature reduction is achieved by leveraging the flexibility of the building 

through the implementation of MPC. By actively adjusting the indoor temperature based on the 

predicted demand, the building contributes to load shifting and reduces strain on the grid during 

peak hours. Figure 5-34 compares the power demand in the reference case and the flexible case 

with MPC. This figure shows that peak load and energy consumption are reduced during on-peak 

hours. To consider a case of a morning peak in a time-of-use tariff structure, the energy cost 

between 6:00 and 9:00 a.m. is increased by a factor of 15. To minimize the cost, the MPC controller 

followed the same 'strategy' for all days: preheating the zones before the high-price periods. The 

preheating can also be seen in Figure 5-34, which shows the power demand in a week without 

occupancy in the classrooms. Results show that the classrooms start being heated around 3:00 a.m. 

until the heating is completely shut off at 6 a.m. The heated space can free-float during the peak 

period and remain within its comfort boundaries. The heating system can be off during morning 

peak hours, resulting in a peak load reduction of up to 65%. This pre-heating and system staging 

strategy has emerged by minimizing operational costs. Compared to the uniform pricing case, this 
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case consumes 50% less than the BAU case. This pre-heating and system staging strategy reduces 

operational costs and ensures that the classrooms are comfortably heated during the peak period. 

Allowing the heated space to free-float within comfort limits optimizes energy usage and enhances 

energy flexibility. 

 

Figure 5-33: Indoor air temperature for the flexible case without occupancy compared to the reference case  

 

Figure 5-34: Power demand for the flexible case without occupancy compared to the reference case 

 

Figure 5-35: CO2 level for the flexible case without occupancy compared to the reference case 

5.10.4 Flexibility scenario Ⅱ (MPC with Occupant):  

In this case, the field test was conducted during normal operation of the school, when all students 

and teachers were in the classrooms. Each classroom has 25 students and a teacher equipped with 

occupancy detection and CO2 sensors. MPC is usually designed to minimize energy-related terms 

(e.g., energy cost) while maintaining room temperatures within a comfort band. However, when 

an end-user (e.g., a teacher) overrides the setpoint schedule, the comfort band constraint in MPC 

should be updated to reflect personal preference. Otherwise, the end user's action will be 

overridden by the MPC again, resulting in conflicts with control actions and loss of credibility 

between the technology and the end user. Thus, during the experiment, access to override the 

Free float during weekend  

Heating system off 

Preheating 

Flexibility ScenarioⅠ Reference scenario Reference scenario 
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indoor temperature is restricted by obtaining permission from the school board. This restriction 

ensures that the experiment is conducted under controlled conditions and minimizes potential 

disruptions to the control strategies.  

Figure 5-37 shows the power demand suddenly decreased near 12:30 because the students had 

lunchtime at noon and came back to the classrooms near 12:30, i.e., increasing internal heat gain. 

Another important observation is that the power demand with occupancy is 30% less compared 

with the unoccupied scenario. Also, energy consumption in flexibility scenario Ⅱ is 45% lower 

compared to flexibility scenario 1. These results show the importance of considering occupancy 

in MPC applications.  

 

Figure 5-36: Indoor air temperature for the flexible case with occupancy compared to the reference case 

 

Figure 5-37: Power demand for the flexible case with occupancy compared to the reference case 

 

Figure 5-38: CO2 level for the flexible case with occupancy compared to the reference case 

Figure 5-39 shows the distribution of the power demand. Comparison of the power demand 

between the reference, MPC without occupancy, and MPC with occupancy days in a classroom 

during the experiment days. Another observation is that the median power demand in the 

unoccupied scenario is up to 90% higher than in the flexibility scenario with occupancy. The 

Heating system off during on-peak hours 

Heating system off 

Flexibility ScenarioⅡ  Reference scenario Reference scenario 

Weekend 
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distribution of power demand during flexibility scenarios is less than the reference scenario, 

indicating smoother power demand by using MPC in the control system. Another observation is 

that the MPC scenario with flexibility has the lowest median and quartile ranges, among others. 

This suggests that the use of MPC in the control system leads to smoother power demand but also 

helps in reducing overall energy consumption. Additionally, the lower quartile range indicates that 

the flexibility scenario with occupancy and MPC is more consistent in power demand, further 

highlighting its effectiveness in optimizing energy usage. Also, the significant energy savings 

achieved through the proposed approach demonstrate the effectiveness of considering occupancy 

in control methods. The MPC controller achieved an average reduction of 49% compared to the 

reference case by reducing energy consumption to the range of 10.1 kWh to 18.3 kWh without 

occupancy and 7.3 kWh to 12.6 kWh for the flexible scenario with occupancy. The use of MPC 

controllers significantly reduced energy usage during both occupied and unoccupied times. It's 

important to note that the total peak power demand is moved to off-peak times. If more customers 

switch to MPC controllers to cut expenses, this demand shift might put pressure on the grid. Smart 

grids can help efficiently manage the shifted demand by dynamically adjusting electricity prices 

based on real-time supply and demand conditions. This would incentivize customers to shift their 

energy usage to times when the grid is less strained, ensuring a more balanced distribution of 

power and preventing overload situations. 

 

Figure 5-39: Comparison of the power demand between Baseline, MPC without occupancy, and MPC with 

occupancy days in a classroom. 

5.10.5 Flexibility quantification 

Figure 5-40 and Figure 5-41 show the BEFI per floor area for the days of the experiment in 

flexibility scenarios Ⅰ and Ⅱ. Results show that in scenario flexibility Ⅰ, the building can provide 

up to 30 W/m2 of energy flexibility during off-peak hours and up to 22 W/m2 during on-peak hours, 



93 

 

meaning a 60% and 44% power demand reduction, respectively. However, in scenario 

flexibility Ⅱ, the available energy flexibility increases to up to 38 W/m2 (i.e., 76% power demand 

reduction), significantly improving grid energy flexibility.  The increase in energy flexibility 

during scenario Ⅱ is primarily attributed to the additional internal heat gains from occupancy. The 

BEFI is negative in the early morning when the school is preheating in anticipation of the morning 

peak. This effect is more intense in the case of the MPC controller without occupancy, which 

preheats significantly more and earlier than the MPC controllers with occupancy. The presence of 

occupancy in the MPC controllers allows for a more accurate heat demand prediction, resulting in 

more efficient preheating. Additionally, the MPC controllers without occupancy may experience 

higher energy consumption due to excessive preheating, leading to a larger negative 

BEFI.  Additionally, including occupancy data enables the MPC controllers to better adapt to real-

time changes in heat demand, further enhancing grid energy flexibility.   

 

Figure 5-40: Average BEFI for the flexible case without occupancy by using MPC. The shaded areas correspond 

to high-price periods. 

 

Figure 5-41: Average BEFI for the flexible case with occupancy by using MPC. The shaded areas correspond to 

high-price periods. 
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By effectively managing school energy usage, the MPC can contribute to overall grid stability 

and reliability. Additionally, the ability to tap into the demand response resources of schools can 

help support the integration of renewable energy sources into the grid, which is presented in 

chapter 6. 

5.11 Conclusion 

This chapter presented an MPC methodology based on data-driven grey-box models and 

weather data clustering in electrically heated school buildings. A k-means clustering algorithm was 

applied to the solar irradiance and outdoor temperature data. The weather data are clustered into 

several categories, representing different weather conditions (6 clusters representing two ambient 

temperature ranges and three solar radiation ranges). The clustering results were further 

implemented into data-driven grey-box models. A third-order resistance-capacitance network for 

zones with convection systems and a fourth-order model for radiant floor systems were developed 

and calibrated using measured data. The developed MPC framework was then implemented in an 

occupied school building near Montreal, Canada. Ten classrooms are investigated, with six using 

the MPC and four as reference cases. Results showed that using MPC energy flexibility of 32 

W/m2 of floor area for the zones with a convective heating system and 65 W/m2 of floor area for 

the zones with radiant heating can be achieved during a demand response event. Moreover, using 

a three-hour ramp in setpoint temperature after peak hours could reduce the negative BEFI 

(rebound power) by 63%, which is essential for the stability and balance of the grid. According to 

the results, the school building can provide up to 100% energy flexibility (load shifting relative to 

reference) during on-peak hours while satisfying thermal comfort constraints. The proposed 

approach is scalable and can be transferable to other commercial and institutional buildings.  

Moreover, three control scenarios have been implemented and compared: 1) Reference case with 

a reactive controller, 2) Flexible scenario using MPC in Unoccupied classrooms, and 3) Flexible 

scenario using MPC in occupied classrooms. Remarkable achievements of the MPC include an 

energy flexibility of 44% in unoccupied classrooms and an energy flexibility of 76 % with MPC in 

occupied classrooms. These results underscore the MPC's potential to harness the substantial demand 

response resources available in schools, simultaneously reducing utility costs and maintaining 

comfort.  
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 Chapter 6: Model Predictive Control for Integration of 

air-base PV/T System3  

6.1 Introduction 

The increasing global demand for renewable energy sources has accelerated the development of 

photovoltaic/thermal (PV/T) systems, which simultaneously generate both electricity and heat 

(Dumoulin et al. 2021, Gaucher-Loksts et al. 2022, Aspetakis and Wang 2023). School buildings 

often have large roofs, and high energy demand due to ventilation air heating during the daytime 

and are thus an attractive type of building for integration of PV/T systems. To this purpose, system 

design, control strategies, and energy management must be developed to integrate these systems 

into existing buildings. Many new schools need to be built soon, and the old ones need renovation; 

in both cases, PV/T could be helpful as a renewable energy retrofit to enhance energy efficiency 

and flexibility. However, relatively few studies have been performed on integrating PV/T systems 

into school buildings and their optimized operation and grid interaction; it is thus essential to 

address this research gap to provide on-site electricity and heat generation in schools. 

Traditionally, on-site generation brings to mind batteries as the energy storage device; however, 

given the size of a school, such a storage system would be costly. For this reason, we are 

considering incorporating the thermal mass of the school for thermal energy storage and demand-

side management strategies.  

This chapter presents an MPC methodology for integration of air-based photovoltaic/thermal 

(PV/T) system in school buildings so that in addition to production of solar electricity they can be 

used to preheat fresh air for the classrooms during the heating season. The methodology is 

developed based on the case study school building. The PV/T system electrical capacity is set 

 

3 This work is based on a published refereed conference thesis and a peer-reviewed journal article: (a) Morovat, N., Athienitis, 

A. K., Candanedo, J. A. (2023), “Design of a model predictive control methodology for integration of retrofitted air-based PV/T 

system in school buildings”, Journal of building performance simulation. (b) Morovat, N., Athienitis, A. K., Candanedo, J. A. 

(2023), “Model Predictive Control for Integration of PV/T system in School Buildings”, The 18th Conference on Sustainable 

Development of Energy, Water and Environment Systems (SDEWES), Dubrovnik, Croatia, 24–29 September 2023. 
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equal to peak electricity demand in the classrooms. A data-driven RC thermal network model for 

the classrooms is calibrated with measured data, and a PV/T model as a renewable energy retrofit 

for energy efficiency and flexibility is developed. These models are integrated to apply MPC to 

the school building using the established dynamic tariffs for morning and evening peaks. Three 

scenarios are investigated and compared: 1) A reference case without a PV or air-based PV/T 

system, 2) Integration of a PV system and MPC strategies under a demand response scenario, and 

3) Integration of an air-based PV/T system and MPC strategies under a demand response scenario. 

6.1.1 PV/T system 

Generally, solar energy technology can be categorized into two major classes: 1) PV modules 

that can convert a portion of available solar power directly into electrical energy, and 2) solar 

thermal systems that transform solar energy into thermal energy (Sari and Said 2021). In the latter, 

electric energy is required to drive a working fluid through the solar thermal installation. By 

combining photovoltaics with the solar thermal design as an integrated photovoltaic/thermal 

(PV/T) system it is possible to eliminate or significantly reduce purchased electric energy. When 

such systems are integrated into the building, they are called building-integrated 

photovoltaic/thermal (BIPV/T).  

A typical commercial crystalline PV module converts about 15–20% of the incident solar energy 

into electricity, with the rest either reflected (5–10%) or primarily converted into heat (Abdelrazik 

et al. 2022). For a large installation of the PV/T system, such as institutional and commercial roofs, 

the peak PV temperature could reach up to 70 °C on hot sunny days (Sari and Said 2021). The rise 

in PV temperature not only reduces electricity generation but also reduces the lifespan of the 

module itself. Integrating the PV and solar thermal technology into a single component could 

reduce the overheating of PV and provide useful thermal energy for the building. This energy can 

be used for ventilation air pre-heating, water heating for direct floor heating systems, domestic hot 

water heating, and heat storage for later use. 

PV/T systems could offer a variety of potential benefits for school buildings, including: 

• Reduced energy costs: PV/T systems generate electricity and heat simultaneously, which 

can significantly reduce school energy costs (Tripanagnostopoulos et al. 2006, Delisle and 

Kummert 2016, Mehigan et al. 2018, Gaucher-Loksts et al. 2022, Zhao et al. 2023). 
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• Improved indoor air quality: PV/T systems can provide preheated fresh air and improve 

indoor air quality, especially during cold winter days when windows remain closed.  

• Reduced carbon footprint: PV/T systems help reduce school buildings' carbon footprint, 

which is essential for mitigating climate change (Buker and Riffat 2015, Asaee et al. 2017, 

Maghrabie et al. 2021, Sohani et al. 2022). 

• Improved indoor comfort: PV/T systems can be integrated into building envelopes, such 

as facades and roofs, providing shading, insulation, and ventilation, which can regulate 

indoor temperature and reduce mechanical heating and cooling (Yang et al. 2019, Yang et 

al. 2021, Zhao et al. 2022). 

Moreover, PV/T systems can provide valuable educational opportunities for students, allowing 

them to learn about renewable energy technology and its application in real-world settings (Attoye 

et al. 2018, Abdelrazik et al. 2022). 

One of the simplest and most efficient thermal applications for PV/T is preheating the supply 

air through the PV/T (Rounis et al. 2022). This reduces the thermal load on the HVAC system. 

Depending on the PV/T outlet temperature and the indoor setpoint temperature, the PV/T can either 

fully supply preheated ventilation air or boost the heating system's operation by providing air at a 

higher temperature. If the outlet air temperature exceeds the setpoint, it can be mixed with cool 

fresh air to reach the required temperature. If the heated air temperature is lower than the specified 

setpoint, it is further heated by heating coils supplied by a ground source heat pump. The solar-

heated air can further heat by passing through a heat recovery ventilator (HRV). In the Varennes 

library, Canada's first institutional net-zero building, 110 m2 of the south-facing roof is covered by 

a BIPV/T system. This library utilizes an on-site renewable system with a 110 kWp BIPV system 

where 15% of the PV arrays have heat recovery (Dermardiros and Scott Bucking PhD 2019). 

Preheated air is directed to the fresh air supply during the heating season and vented to the 

environment during summer. Oviedo-Cepeda et al. (2021) explored strategies for energy flexibility 

in a net-zero solar energy institutional building in Québec, Canada, using a machine learning 

algorithm and model predictive control. The study quantifies the impact of horizon selection on 

the building's flexibility during critical grid periods. It shows reductions in energy consumption 

ranging from 20% to 49% and 10% to 28% in morning and evening peak periods using MPC. 

Rounis et al. (2021) conducted a numerical investigation on the performance comparison between 
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single and multiple-inlet BIPV/T systems with an example of a large-scale installation on an office 

building. They developed a flow distribution model to compare thermal and electrical performance 

for cold winter and hot summer under varying wind conditions. Results indicated that the multiple-

inlet BIPV/T system might have up to 1% higher electrical efficiency and up to 24% higher thermal 

efficiency, with lower and more uniform PV temperatures. 

Gao et al. (2023) explored the use of MPC for building energy systems that combine batteries 

and PV in an office building in Japan. Results showed that the proposed framework improved 

battery safety by 81.6% and combined heat and power operation by 36.4%. It also enhanced off-

grid operation optimization by 69% compared to conventional control while maintaining thermal 

comfort. Maurer et al. (2013) investigated the integration of transparent solar thermal collectors 

into high-rise building facades, aiming to balance renewable energy generation and visual 

transparency. They addressed modelling challenges using transient systems simulation (TRNSYS) 

and evaluated the overall performance, measuring non-renewable primary energy demand, while 

exploring possibilities for energy savings through building mass as thermal storage. Hao et al. 

(2022) studied the economic performance of integrating renewable energy and storage systems 

into the electrical grid. It compared ice storage and batteries, utilizing model predictive control 

and optimal sizing for a case study in commercial buildings with chillers and on-site PV systems. 

Ice storage had lower costs but limited load-shifting capability, while batteries offered consistent 

efficiency with higher initial costs and a shorter lifespan.  

6.1.2 PV electricity self-consumption in school buildings 

School operational activities generally take place from early morning to late afternoon when 

solar electricity and heat generation are available. Hence, school buildings are excellent candidates 

for the high self-consumption of on-site electricity produced by PV. Self-consumption is “the 

fraction of photovoltaic-generated electricity consumed by the producer on-site or by associates 

directly contracted to the producer” (Villar et al. 2017). Excess electricity can be injected into the 

grid or stored to be consumed when needed. A 100% self-consumption rate means no photovoltaic 

generation is fed to the grid. PV power self-consumption has manifold benefits, such as enhancing 

grid stability with less fluctuating loads, reducing consumers’ energy costs through self-

sufficiency, and enabling the downsizing of traditional power plants in the long term to facilitate 

renewable energy integration. PV self-consumption can be improved by 1) shifting the generation 
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by using batteries (Merei et al. 2016, Yu 2021) and 2) shifting the load by controlling demand and 

thermal energy storage (Manojkumar et al. 2021, Koskela and Järventausta 2023, Zhan et al. 2023).  

This study presents an MPC methodology for integrating PV/T systems as a renewable energy 

retrofit to enhance energy efficiency and flexibility in school buildings. The methodology is 

developed based on a case study for an archetype fully-electric school building in Québec, Canada. 

The PV/T system electrical capacity is set equal to peak electricity demand in the classrooms. A 

data-driven resistance-capacitance (RC) thermal network model for the classrooms is calibrated 

with measured data, and a PV/T model is developed. These models are integrated to apply MPC 

to the school building using the established dynamic tariffs for morning and evening peaks. Energy 

performance is determined during a typical heating season in Montreal, Canada. This methodology 

is scalable and can be transferable to other institutional buildings. 

The outline of this chapter is structured as follows: Section 2 explains the methods used for 

model development, MPC implementation, and energy flexibility quantification; Section 3 

describes the case study school; Section 4 presents and discusses the results; and Section 5 provides 

the conclusion and future work. 

6.2 Methodology 

Figure 6-1 presents the methodology in this chapter, which consists of a) a resistance-

capacitance (RC) thermal network model for the classrooms is developed and calibrated with 

measured data, b) a model for PV and a model for PV/T system is established, c) an MPC 

methodology for obtaining optimal control strategies is developed, d) Optimal control strategies 

for different scenarios (i.e., reference case, with PV and with PV/T) are obtained, e) Building load 

for different scenarios is calculated, and f) energy flexibility is quantified.  
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Figure 6-1: Methodology flowchart. 

Three scenarios are investigated and compared: 1) A reference case without a PV or air-based 

PV/T system, 2) Integration of a PV system and MPC strategies under a demand response scenario, 

and 3) Integration of an air-based PV/T system and MPC strategies under a demand response 

scenario. The schematics of each configuration studied are shown in Figure 6-2. 
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a) b) 

 

c) 

Figure 6-2: Schematic of a) reference case, b) with PV retrofit, and c) with PV/T retrofit system. 

Configuration 1 serves as a baseline for comparison in the absence of solar electricity generation 

and solar heat, providing a reference point for the study. In Configuration 2, we explore integrating 

a PV system using MPC methodology. The primary objective is to enhance the energy flexibility 

and efficiency potential associated with MPC when integrating PV systems. This involves 

prioritizing on-site PV electricity consumption within the building, with any additional power 

demand being supplemented by the grid. Configuration 3 includes the option of reducing the 

heating load of the building with instantaneous heat and electricity production from PV/T, along 

with MPC as a controller. The ideal operation of this configuration is to utilize and transfer the 

solar-heated air from the PV/T cavity on a sunny day to preheat the fresh air to the building.  

Figure 6-3 presents a schematic of the PV/T system concept for the roof of the school. As shown 

in this figure, the air is mechanically driven by variable-speed fans through a 70 mm-high air 

channel, used as preheated ventilation air during the heating season, and discarded in summer.  
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Figure 6-3: Schematic of the PV/T retrofit system concept for the roof of the school 

The following section details the mathematical models of each key component developed in the 

Python programming language.  

6.2.1 Classrooms thermal model 

Data-driven grey-box models ensure both physical insight and the reliability of measured data 

(Candanedo et al. 2013, Arroyo et al. 2020, Li et al. 2021). Literature review indicates that grey-

box models are suitable for control applications and demand-side management in smart grids 

(Gouda et al. 2002, Bacher and Madsen 2011, Candanedo et al. 2013, Reynders et al. 2014). The 

model structure is derived from low-order RC thermal networks analogous to electric circuits to 

describe the thermal dynamics of building systems. The unknown parameters are then estimated 

using optimization techniques. Figure 6-4 presents a third-order RC thermal network model for 

classrooms.  
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Figure 6-4: RC thermal network for a typical classroom 

The zone envelope capacitance in this model is represented by C1, the air capacitance by C2, and 

the floor capacitance by C3. Thermal resistance R1, ext describes the resistance between the envelope 

and the exterior air, R1,2 describes the resistance between the envelope and the interior air, Rinf 

represents the infiltration between the interior air and the outside air, R2,3 refers to the resistance 

between the interior air and the floor, R3,4 refers to the floor resistances. Node 1 is the wall 

temperature node, node 2 is the indoor air temperature node, and node 3 is the floor temperature 

node. QIG is the internal heat gain added to the space from occupants, equipment and lighting, QHP 

is the heat provided by heat pump, QPV is the heat generated by PV/T, and QSG is heat from solar 

radiation. α1 is the solar absorption coefficient for the envelope, and α3 is the solar absorption 

coefficient for the floor. Equations 6-1 to 6-3 present the energy balance differential equations for 

each node: 

𝐶1
𝑑𝑇𝑤
𝑑𝑡

=
(𝑇ext − 𝑇𝑤)

𝑅1,ext
+
(𝑇𝑎 − 𝑇𝑤)

𝑅1,2
+ 𝛼1 ∙ 𝑄SG 

6-1 

𝐶2
𝑑𝑇𝑎
𝑑𝑡

=
(𝑇𝑜𝑢𝑡 − 𝑇𝑎)

𝑅inf
+
(𝑇𝑤 − 𝑇𝑎)

𝑅1,2
+
(𝑇𝑓 − 𝑇𝑎)

𝑅2,3
+ 𝑄IG + 𝑄HP + 𝑄PV 6-2 

𝐶3
𝑑𝑇𝑓

𝑑𝑡
=
(𝑇𝑎 − 𝑇𝑓)

𝑅2,3
+
(𝑇𝑔 − 𝑇𝑓)

𝑅3,4
+ 𝛼3 ∙ 𝑄𝑆𝐺 6-3 

Equations 6-4 to 6-6 are obtained by discretizing the above equations using an explicit finite 

difference scheme. In these equations, the current and the next time step are represented by the 

variables i and i+1, respectively, and the simulation's time interval is denoted by ∆t. 
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𝑇𝑤
𝑖+1 =

∆𝑡

𝐶1
(
(𝑇ext − 𝑇𝑤)

𝑅1,ext
+
(𝑇𝑎 − 𝑇𝑤)

𝑅1,2
+ 𝛼1 ∙ 𝑄SG) + 𝑇𝑤

𝑖  
6-4 

𝑇𝑎
𝑖+1 =

∆𝑡

𝐶2
(
(𝑇𝑜𝑢𝑡 − 𝑇𝑎)

𝑅inf
+
(𝑇𝑤 − 𝑇𝑎)

𝑅1,2
+
(𝑇𝑓 − 𝑇𝑎)

𝑅2,3
+ 𝑄IG + 𝑄HP + 𝑄PV) + 𝑇𝑎

𝑖 6-5 

𝑇𝑓
𝑖+1 =

∆𝑡

𝐶3
(
(𝑇𝑎 − 𝑇𝑓)

𝑅2,3
+
(𝑇𝑔 − 𝑇𝑓)

𝑅3,4
+ 𝛼3 ∙ 𝑄𝑆𝐺) + 𝑇𝑓

𝑖 6-6 

The performance of the model is assessed by comparing model predictions with BAS 

measurements. The optimization strategy utilized in this study aims to identify equivalent 

parameters for RC circuits by minimizing the coefficient of variation of the root mean square error 

(CV-RMSE), shown in Equation (6-7): 

𝐶𝑉(𝑅𝑀𝑆𝐸)(%) =  

√∑ (𝑇𝑖 − 𝑇̂𝑖)𝑛
𝑖=1 𝑛⁄

𝑇̅
× 100 6-7 

Where n is the total number of data points 𝑇𝑖 is the measured temperature, 𝑇̂𝑖 is the predicted 

temperature in time step I, and 𝑇̅ represents the average of all measurements. As per ASHRAE 

Guideline 14, which addresses the Measurement of Energy and Demand Savings, the model is 

required to maintain a CV(RMSE) of no more than 30% in relation to hourly calibration 

(measured) data (Haberl et al. 2005). 

The measured data from February 1st to February 15th is used for model calibration (Figure 6-5). 

The dataset is divided into two datasets: 60% of the dataset was used for training, while 40% was 

kept for validation purposes.  
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Figure 6-5: Calibration of thermal network model with measured data 

The calibration result complies with ASHRAE Guideline 14 with an hourly CV-RMSE of 8%. 

It should be mentioned that additional inputs are needed for higher-order models, like heat flux 

measurements, which are typically not measured in buildings. Thus, it is not possible to guarantee 

the identity of higher-order models. 

6.2.2 PV/T model 

Typically, air-based PV/T systems consist of the PV modules and the air channel underneath 

them. In this air channel, the air circulates and extracts heat from the PV modules and the back 

layer, which is part of the building envelope (exterior wall or roof with insulation). A thermal 

network model is commonly used for analyzing solar thermal systems. Figure 6-6 illustrates a 

thermal network schematic for the PV/T system studied in this thesis. The PV panel, insulation, 

air channel, and ambient surroundings of the PV/T system make up a network in which their 

interactions achieve a balanced steady state in the experiment.  
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Figure 6-6: Thermal network for PV/T models 

Where:  

• To: the ambient temperature (°C).  

• TPV: the PV temperature (°C). 

• Tma: the average air temperature inside the air channel (°C). 

• Tb: the insulation temperature (°C). 

• TR: the temperature of the adjacent room (°C). 

• Ua, Ub: the convective heat transfer coefficients from the PV and the insulation surface to 

the flowing air (W/m2∙°C). 

• Ur: the radiative heat transfer between the PV and the insulation surfaces (W/m2∙°C). 

• qu: Heat transfer inside the air channel 

• Uo: the outside convective heat transfer coefficients. 

At each node, the temperature is calculated using the following explicit finite difference 

approach: 

𝑇𝑖
𝑡+1 =

∆𝑡

𝐶𝑖
[∑𝑈𝑖𝑗

𝑡 (𝑇𝑗
𝑡 −

𝑗

𝑇𝑖
𝑡) + 𝑄̇𝑖

𝑡] + 𝑇𝑖
𝑡 6-8 
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The electrical efficiency of PV modules is related to its temperature and can be determined from 

Equation (6-9): 

𝜂PV = 𝜂STC + (1 − 𝛽PV ∙ (𝑇PV − 𝑇STC)) 6-9 

Where:  

• ηSTC: the PV module electrical coefficient under standard testing conditions (%)  

• βPV: the PV module temperature coefficient (usually between 0.004 – 0.006)  

• TPV: the measured PV module cell temperature (°C)  

• TSTC: the PV module cell temperature at standard test conditions (25 °C)  

The electrical efficiency of the module decreases as its temperature increases over 25 °C; this 

effect highlights the importance of efficiently cooling the PVs. The absorbed solar radiation and 

the electric production can be calculated as: 

𝑆𝑇𝑜𝑡𝑎𝑙 = 𝛼𝑃𝑉 ∙ 𝐴𝑃𝑉 ∙ 𝐺 6-10 

𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 𝜂PV ∙ 𝐴𝑃𝑉 ∙ 𝐺𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 6-11 

The equations corresponding to a representative control volume in the state-space model are 

shown below. Equations 6-12 correspond to energy balances at the air node. Equations 6-13 shows 

the PV surface temperature, Equation 6-14 shows thermal energy absorbed by the PV and Equation 

6-15 presents the temperature in the wall node. Equation 6-16 presents the recovered heat by PV/T 

and Equation 6-17 calculates outlet temperature from PV/T arrays.  

𝑇ma =
1

∆𝑥
∙ ∫ [

ℎ𝑐𝑃𝑉 ∙ 𝑇𝑃𝑉𝑏 + ℎ𝑐𝑖𝑛𝑠 ∙ 𝑇𝑖𝑛𝑠_𝑡

ℎ𝑐𝑃𝑉+ℎ𝑐𝑖𝑛𝑠
+ (𝑇𝑖𝑛𝑙𝑒𝑡 −

ℎ𝑐𝑃𝑉 ∙ 𝑇𝑃𝑉𝑏 + ℎ𝑐𝑖𝑛𝑠 ∙ 𝑇𝑖𝑛𝑠_𝑡

ℎ𝑐𝑃𝑉+ℎ𝑐𝑖𝑛𝑠
) ∙ 𝑒

−
𝑊𝑐ℎ𝑎𝑛𝑛𝑒𝑙∙(ℎ𝑐𝑃𝑉+ℎ𝑐𝑖𝑛𝑠)

𝑚̇∙𝑐𝑝𝑎𝑖𝑟 ]
∆𝑥

0

 6-12 

𝑇𝑃𝑉 =
𝑈𝑜𝑇0 + 𝑈𝑎𝑇𝑚𝑎 + 𝑈𝑟𝑇𝑏 + 𝑆𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

𝑈𝑜 + 𝑈𝑟 + 𝑈𝑟
 

6-13 

𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙 = 𝜂PV ∙ 𝐴𝑃𝑉 ∙ 𝐺𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 − 𝜂PV ∙ 𝐴𝑃𝑉 ∙ 𝑃𝐹 ∙ 𝐺𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 6-14 
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𝑇𝑏 =
𝑈𝑟𝑇𝑃𝑉 + 𝑈𝑏𝑇𝑚𝑎 + 𝑈3𝑇𝑟

𝑈𝑟 + 𝑈𝑏 + 𝑈3
 

6-15 

𝑞𝐴𝑖𝑟 = ℎ𝑐𝑃𝑉 ∙ (𝑇𝑃𝑉𝑏 − 𝑇ma) + ℎ𝑐𝑖𝑛𝑠 ∙ (𝑇𝑖𝑛𝑠𝑡 − 𝑇ma) 6-16 

𝑇outlet = 𝑇𝑖𝑛𝑙𝑒𝑡 +
𝑞𝑎𝑖𝑟

𝑚̇ ∙ 𝑐pair
 

6-17 

Following the steady-state approach, resolution is achieved through iterative processes. 

Assumptions are made regarding the PV and the back temperatures and then substituted. Python 

programming language is used to implement the iterative process, and temperatures are reached to 

an average convergence of ±0.3 °C. After installation of the PV/T system, a data-driven grey-box 

model could be developed based on measured data. 

6.2.3 MPC development for integration of PV/T 

MPC is a control strategy that uses a mathematical model of the system to predict its behavior 

and optimize its performance. The MPC algorithm generates a control signal that considers the 

system's current state and predicted behavior over a future time horizon. Figure 6-7 shows the 

schematic of the PV/T retrofit system in this study. The power imported from the electric grid and 

PV/T electricity and heat generation are input to the MPC algorithm. The PV/T system provides 

preheated fresh air for classrooms through a heat recovery ventilator (HRV) system. The thermal 

efficiency of the HRV system is 80 %. The HRV system exchanges heat between the delivered 

heat from PV/T and the return air from the classrooms to minimize heat loss when the output 

temperature of the PV/T system (TPV/T) is lower than the classroom's return air temperature (TRA). 

The MPC algorithm minimizes the objective function and determines optimal control strategies 

based on the weather forecast and time of use tariff. The school's local heat pumps operate using 

optimal control strategies derived from the MPC routine.  
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Figure 6-7: Conceptual representation of MPC employed 

The overall MPC formulation is presented in Equation 18 (Drgoňa et al. 2020): 

min
𝑢0,…,𝑢𝑁−1

∑𝑙(

𝑁

𝑖=1

𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖)  

Subject to  𝑥𝑖+1 = 𝑓(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 + 𝐸𝑤𝑖     System dynamics  

                   ℎ(𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) = 0 

                   𝑔((𝑥𝑖 , 𝑢𝑖 , 𝑤𝑖) ≥ 0 

                   𝑥1 = 𝑥,                                                                  Current state 

6-18 

Where x is system variables, u indicates controllable variables, w is uncontrollable inputs such 

as weather, l is the cost function, h is equality constraints, and g presents inequality constraints 

(boundary conditions).  

The indoor air temperature (Tin) is chosen as the state function, and the heating power of the 

heat pump (P) is selected as the control variable. A cost function incorporating the utility rate 

structure is implemented, and its result is compared to the typical manual control currently in 

operation. The minimization problem is performed in Python using routine CVXPy. Equation (19) 

presents the objective function, where the objective is to reduce the peak load when the energy 

cost varies over the day, with higher prices during peak hours in the morning (from 6:00 to 9:00) 

and evening (from 16:00 to 20:00), as shown in Table 1. 
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min 
𝑃
𝐽 

𝑤ℎ𝑒𝑟𝑒 𝐽 =  (∑(𝑃𝑖

𝑁−1

𝑖=1

− 𝑃𝑃𝑉)∆𝑡) ∙ (𝐶𝑜𝑠𝑡𝑖)  

 Subject to    𝑇𝑖+1 = 𝐴𝑇𝑖 + 𝐵𝑢𝑖 + 𝐸𝑤𝑖 , 𝑖 ∈ {0,1, … , 𝑁 − 1}     

                         𝑇 ≤ 𝑇𝑖𝑛 ≤ 𝑇   

                      0 ≤ 𝑃 ≤ 𝑃𝑚𝑎𝑥 

6-19 

where Pi is the total power demand (kW) and PPV is the electricity generation of the PV/T 

system (kW). N is the number of time steps across the prediction horizon PH, and t is the time 

step. 𝑇𝑖𝑛is indoor temperature,  𝑇  is the upper temperature bound and  𝑇 is the lower temperature 

bound, shown in Figure 6-8. The space heating demand (P) is limited by the maximum capacity 

of the heating equipment (Pmax).  

 

Figure 6-8: Allowable temperature variation 

The indoor zone temperature is constrained by a lower bound, which is 18 °C at night and 21°C 

during the day, and an upper bound, which is 27 °C at night and 24 °C during the day, in order to 

maintain a level of thermal comfort for the zone occupants. The upper bound generates the desired 

setpoint target to minimize the energy cost through load shifting by considering future weather 

and utility price signals. A lower bound constrains the minimum indoor temperature to maintain 

thermal comfort in the zone.  
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The developed MPC framework performs optimization starting at midnight with a 24-hour 

prediction horizon and timestep of 15 minutes. The rest of the constraints force the MPC 

formulation to use the building model and restrict the heating output to the installed capacity of 

each zone. The prediction horizon of 24 hours allows for a comprehensive forecast of future 

electricity prices and heating requirements. The optimization results in optimum heating output 

values for each water-to-air heat pump and the equivalent zone temperatures.  

Table 11: Utility rate for medium commercial buildings in Québec, Canada (Hydro Québec 2022) 

Rate flex M- During winter (1 Dec. – 31 Mar) 

Demand charge $15.16/kW 

Consumption outside peak hours 3.29¢/kWh 

Consumption during peak hours: 

Morning (6:00 to 9:00) and  

Evening (16:00 to 20:00) 

51.97¢/kWh 

6.2.4 Energy flexibility 

Dynamic energy flexibility is defined as the capability of a building to reduce or increase its 

electricity demand for a period of time needed for the grid. Energy flexibility has been calculated 

based on Equation 20. This equation calculates the building energy flexibility index (BEFI) under 

the implementation of the flexibility strategy and the reference as-usual profile. In this equation, 

the Pref refers to the power demand (i.e., HVAC loads) under business-as-usual operation, which 

is the current operation of the school. The Pflex represents the HVAC power demand under the 

MPC controller, considered the flexible case, and the Dt is the duration of the flexibility event 

needed by the grid. We presented the details of BEFI in (Athienitis et al. 2020). The calculation of 

the BEFI as a percentage compares the peak power under the flexible case and the reference as 

usual profile (Equation 21). The energy flexibility is reflected in the consumption of PV 

generation, quantified by self-consumption, which is a fraction of the total PV power generation 

consumed by the building (Equation 22). 

𝐵𝐸𝐹𝐼̅̅ ̅̅ ̅̅ ̅(𝑡, 𝐷𝑡) =
∫ 𝑃Ref𝑑𝑡 − ∫ 𝑃Flex𝑑𝑡

𝑡+𝐷𝑡

𝑡

𝑡+𝐷𝑡

𝑡

𝐷𝑡
 6-20 
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𝐵𝐸𝐹𝐼% =
𝐵𝐸𝐹𝐼̅̅ ̅̅ ̅̅ ̅(𝑡, 𝐷𝑡)

𝑃Ref
× 100 

6-21 

𝑆𝐶% =
𝑃𝑠𝑒𝑙𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑃𝑃𝑉 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

6-22 

6.3 Case study 

The case study is a two-story fully-electric school building school (Figure 6-9) located in Sainte-

Marthe-sur-le-Lac (near Montreal), Québec, Canada. There are 23 classrooms with dimensions of 

9.1 m by 7.6 m (1590 m2 total). Each classroom is equipped with a water-to-air HP and a dedicated 

thermostat, and the whole system is closely monitored with sensors. T-type thermocouples are 

used with an accuracy of 0.2 °C for a temperature range of 0 to 70 °C. Thermostat and power meter 

data were collected at 15-minute intervals in CopperCube, an on-site trend log archiver, through 

the BACnet network. 

 

Figure 6-9: Horizon-du-Lac school building 
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Figure 6-10: Horizon-du-Lac school’s roof with PV/T retrofit (Adapted from Google Maps©) 

The maximum capacity of the water to air HPs installed in the classrooms is 38 kW. A 38 kW 

PV system is considered as retrofit to cover this load. The PV/T system is 3 m long and 25 m wide 

in four arrays (300 m2 total), shown in Figure 6-10, with a PV efficiency of 18%. The total roof 

area of the school is 2596 m2, which provides enough space for the installation of the PV/T system. 

This size of PV panel could generate up to 54 kWp DC electricity. Considering a load ratio of 1.25 

and an efficiency of 0.9 for the invertor, this PV system could provide around 38kW of electricity 

for the school.  

6.4 Results 

Weather data for typical cold days in the winter is selected as the simulation scenario since the 

electrical power demand tends to peak under these conditions. Figure 6-11 presents the outdoor 

temperature and global horizontal irradiance (GHI). The Simulation Energetique Des Batiments 

(SIMEB) weather data service provided measurements of ambient temperature, relative humidity, 

wind speed and direction, and GHI for the selected location. 
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Figure 6-11: Montreal weather data – outdoor temperature and GHI in typical winter days 

The consideration of providing energy flexibility to the grid in the renewable energy retrofit of 

a building can led to a range of benefits. Buildings that are retrofitted for energy flexibility are 

more likely to be efficient, using fewer resources to meet the same needs. They are also more likely 

to be resilient in changing energy demands, as they can more easily adapt to shifting energy use. 

This flexibility is also beneficial for building owners, as it can reduce their energy bills over time. 

Figure 6-12 presents the total power demand of the classrooms and PV electricity generation for 

five working days in winter in a business-as-usual (BAU) case. As shown in Figure 6-12, the 

maximum power demand is 38 kW during peak hours. Also, the green area represents the PV 

electricity self-consumption, and the yellow represents the PV surplus electricity generation, which 

can be stored or used in the rest of the building or exported to the grid. A 100% self-consumption 

rate means no photovoltaic generation is fed to the grid. As seen in this Figure, PV generation 

could cover the power demand for sunny days and export surplus electricity to the grid. During 

cloudy days, PV electricity generation covers part of the power demand, which can be very useful 

to enhance the energy flexibility of the building. Therefore, an appropriate control strategy is 

needed to shift electricity demand and maximize PV electricity self-consumption in the school 

building. 

Sunny day 

Cloudy day 



115 

 

 

Figure 6-12: Power demand and power generation in the school building 

6.4.1 Integration of PV system  

In Québec, Canada, winter's morning and evening peaks significantly strain the electrical grid 

to provide electric power during extremely cold weather (Hydro-Québec, 2020). Integrating 

renewable energy into power grids creates challenges in balancing fluctuations and ensuring 

reliable grid operations. Therefore, it is imperative to provide predictive control strategies in school 

buildings to reduce and/or shift peak electricity demand. 

Three control scenarios for cold cloudy and cold sunny days in winter are investigated. The 

effect of PV electricity production on the net power demand has been studied in all scenarios. In 

MPC scenarios, the objective is to minimize the peak load during peak hours in the morning (from 

6:00 to 9:00) and evening (from 16:00 to 20:00). The control scenarios presented are as follows: 

Case 1) Reference case (Business as a usual case) 

Case 2) MPC with rate flex M and morning event from the grid 

Case 3) MPC with rate flex M and morning and evening events from the grid 

a) Case 1. Reference case (Business as usual case) 

This control scenario is the current operation of the classrooms, which is considered the 

reference case. In this scenario, as shown in Figure 6-13, the peak load is 34 kW on sunny days 

and 38 kW on cloudy day and occurs during the morning peak hours (6:00 to 9:00 am). The PV 

system could produce a maximum of 28 kW on sunny days and 5 kW on a cloudy day, which 

peaks at noon. Results show that for the BAU scenario on a sunny day, by using a PV system, the 

100% self-consumption Partial self-

consumption 
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building could export/store up to 18 kW of electricity during sunny days, while it cannot 

export/store any electricity during cold days. In this scenario, the peak power occurs when there is 

no PV production. Thus, to improve the energy flexibility of the building, the following control 

scenarios are presented. 

  

a) Sunny day b) Cloudy day 

Figure 6-13: Power demand under BAU 

b) Case 2. Rate flex M in the morning: To consider a case of a morning peak in a time-of-use tariff 

structure, the energy cost between 6:00 and 9:00 am is increased by a factor of 15. Results in Figure 

6-13 show that on sunny days, the classrooms start being heated around 4:00 am until the heating 

is completely shut off at 6 am. The over-heated space can free float during the peak period and 

remain within the comfort boundaries. The heating system can be off during morning peak hours, 

reducing the peak load to 34 kW. This pre-heating and system staging strategy has emerged by 

minimizing operational costs. Compared to the uniform pricing case, this case consumes 30 kWh 

less than the BAU case. Considering the PV production, it is possible to achieve power export 

during morning on-peak hours.  

Rebound power. The rebound power refers to the power surge before or after the flexibility event, 

either positively or negatively. Using the PV production, the rebound power due to turning on the 

heating systems at 9:00 am could be reduced from 28 kW to 15 kW (46% reduction). This rebound 

power is an important factor for the grid, especially after cold-load pick-up due to power outages 

during cold winter days. Figure 6-14b presents the results for a cloudy day, which shows that same 

as sunny days, the heating system could be turned off during morning peak hours. In this case, the 

heating system starts preheating the classrooms at 3:00 am, one hour earlier than on sunny days. 

Moreover, the rebound power is still high (28 kW) since the PV production is not high at 9:00 am. 

Exported  

power 
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a) Sunny day b) Cloudy day 

Figure 6-14: Power demand under morning event 

c) Case 3. Rate flex M in the morning and evening: If there is an evening peak from 4:00 to 8:00 

pm, the evening behavior is affected by a slight preheating but not as aggressively as in the morning 

since the school is not occupied after 8 pm. The peak power is before evening peak hours, which 

by using the PV production it, can be reduced from 28 kW to 21 kW, a 25% peak load reduction, 

as shown in Figure 6-15. Also, an average of 8 kW for 8 hours can be exported to the grid. This 

case consumes 122 kWh of energy less than the BAU. 

  

a) Sunny day b) Cloudy day 

Figure 6-15: Power demand under morning and evening event 

6.4.2 Integration of PV/T system  

The three control scenarios mentioned in the previous section for cold cloudy, and cold sunny 

days in winter are investigated. The effect of PV/T electricity and heat production on the net power 

demand has been studied in all scenarios.  

Figure 6-16 to Figure 6-18 show the effect of PV/T and MPC control strategies on the power 

demand and export from the building to the grid. The exported power can be increased up to 30 

on-peak 

hours 

on-peak 

hours 

on-peak 

hours 

on-peak 

hours 

on-peak 

hours 

on-peak 

hours 

Exported  

power 

Exported  

power 
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kW at noon, which is 55% more than the building with only a PV system. Also, the rebound power 

can be decreased to 10 kW, which is 50% less than the case with the PV system. In this case, the 

energy consumption is 167 kWh less than BAU, which is 36% less than the case with the PV 

system. Moreover, using PV/T during cloudy days, the power demand will decrease from 5 kW to 

2.5 kW, a 50% power demand reduction during the day. 

  

a) Sunny day b) Cloudy day 

Figure 6-16: Power demand under BAU (PV/T) 

  

a) Sunny day b) Cloudy day 

Figure 6-17: Power demand under morning event (PV/T) 

  

a) Sunny day b) Cloudy day 

Figure 6-18: Power demand under morning and evening events (PV/T) 
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As shown in these graphs, the amount of PV self-consumption is 100% on cold cloudy days. In 

cold sunny days, the surplus energy is exported to the grid. These results demonstrate the potential 

of integrating MPC control strategies and PV/T to enhance energy flexibility in school buildings. 

This approach also can help reduce the carbon footprint of school buildings and contribute to a 

more sustainable future. 

6.4.3 Energy Flexibility Quantification 

Figure 6-19 and Figure 6-20 present the energy flexibility provided by using PV/T and 

appropriate predictive control strategies. As observed in Figure 6-19, the MPC for integrating the 

PV/T system in school buildings could provide around 20 kW energy flexibility during on-peak 

hours, meaning 100% power demand reduction. In this case, energy flexibility for the three h in 

the morning equals 61 Wh/m2, and the four h in the afternoon is 31 Wh/m2 of floor area. For sunny 

days, shown in Figure 6-20, the energy flexibility for the three hours in the morning equals 65 

Wh/m2, and for the four hours in the afternoon, it is 37 Wh/m2. To achieve this energy flexibility 

while considering the thermal comfort of the students and teachers, the heating system turns on 

three hours before the morning event for cloudy days. In comparison, it must be turned on for two 

hours on sunny days. 

 

Figure 6-19: BEFI in the school with PV/T system – Cloudy day 

 

Figure 6-20: BEFI in the school with PV/T system – Sunny day  
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Table 12 provides an overview of the energy flexibility quantification for the model predictive 

control and PV/T system for sunny and cloudy days. This table presents average BEFI (kW), BEFI 

as a percentage (%), and energy reduction (kWh) during the morning (6:00 to 9:00 a.m.) and 

evening (4:00 to 8:00 p.m.) on-peak hours. Also, it presents energy reduction (kWh)due to MPC 

and PV/T systems over 24 hours. This table shows that maximum energy flexibility can be 

achieved by integrating MPC and rate flex M in morning and evening peak hours. 

Table 12: Energy flexibility and energy consumption reduction by PV/T and MPC 

Scenarios 

6:00 to 9:00 a.m. 4:00 to 8:00 p.m. 

BEFI 

(kW) 

BEFI 

(%) 

Energy 

reduction (kWh) 

BEFI 

(kW) 

BEFI 

(%) 

Energy reduction 

(kWh) 

PV/T compared to reference case 

S
u
n
n
y
 d

ay
 Case 1a 5.16 45 27.55 1.31 26 10.52 

Case 2a 16.72 144 50.17 0.78 15 3.13 

Case 3a 16.72 144 50.17 6.44 125 25.79 

C
lo

u
d
y
 d

ay
 Case 1b 1.31 9 9.20 1.44 35 10.85 

Case 2b 15.70 110 47.12 0.58 14 2.33 

Case 3b 15.70 110 47.12 5.55 135 22.20 

PV/T compared to PV case 

S
u
n
n
y
 d

ay
 Case 1a 1.34 35 4.02 0.62 50 1.86 

Case 2a 1.34 35 4.02 0.62 50 1.86 

Case 3a 1.34 35 4.02 0.62 50 1.86 

C
lo

u
d
y
 d

ay
 Case 1b 0.58 22 1.75 0.56 6 1.69 

Case 2b 0.58 22 1.75 0.56 6 1.69 

Case 3b 0.58 22 1.75 0.56 6 1.69 

Results showed that while the amount of energy reduction in a day could increase by 52%, the 

amount of energy flexibility increased by 100%. At the same time, the integration of MPC could 
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enhance the energy flexibility of the building during high-demand hours when needed by the grid. 

As shown in Table 2, using PV/T can enhance energy flexibility by 35% during the morning and 

50% during the afternoon compared to the case with just PV (i.e., without heat generation). Also, 

the preheated fresh air could increase the air quality of the building. These results show the 

importance of designing for energy flexibility in buildings. It can be achieved by integrating 

technologies such as PV/T systems and predictive control strategies using the MPC approach.  

6.5 Conclusion 

This chapter presented an MPC methodology for integration of air-based PV/T system as a 

renewable energy retrofit for energy efficiency and flexibility in school buildings. The 

methodology was developed based on a case study for an archetype fully-electric school building 

in Québec, Canada. A third-order thermal network model for the classrooms was calibrated with 

measured data, and a PV/T model was developed. These models were integrated to apply MPC to 

the school building using the established dynamic tariffs for morning and evening peaks. In this 

study, three scenarios have been investigated and compared: 1) A reference case without a PV or 

air-based PV/T system, 2) Integration of a PV system and MPC strategies under a demand response 

scenario, and 3) Integration of an air-based PV/T system and MPC strategies under a demand 

response scenario. The results showed that applying a predictive control strategy with PV/T 

integration results in a 100 % reduction in the peak demand compared to the reference case during 

peak hours and the export of surplus power to the grid. Also, the PV self-consumption increased by 

up to 50% compared to the case without a predictive control strategy. This methodology is scalable 

and can be transferable to other institutional buildings. Future research should focus on a 

comparative analysis of various MPC strategies and optimization algorithms to identify the most 

effective approach for PV/T integration in school buildings. 
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 Chapter 7: Conclusion 

This thesis investigated the energy flexibility potential in school buildings through simulation 

and experimental studies. It contributed a general methodology for the development of data-driven 

grey-box thermal models and the implementation of MPC. The methodology is applied to an 

archetype fully-electric school building near Montréal, Québec, Canada. This approach is scalable 

and transferable to other institutional or mid-size commercial buildings. 

In grey-box models, obtaining a model that provides reliable predictions and can be 

implemented in smart controllers is crucial for optimal building performance. A data-driven grey-

box approach was used to create archetype models for different thermal zones; this approach 

enables rapid development and requires much less calibration data than black-box models. Grey-

box models of different orders were designed to capture different phenomena. Archetype control-

oriented models for zones with convective systems and zones with radiant floor systems are 

developed and calibrated with measured data. The impact of model resolution and structure on the 

energy flexibility quantification is investigated. Results showed a third-order RC thermal network 

for zones with convective systems and a fourth-order model for zones with radiant floor systems 

are able to capture the dynamic of the system for control purposes. Higher-order models can be 

used to increase accuracy, but they contain too many parameters and require information that is 

not often available with adequate accuracy.  

Using these models, predictive control strategies were investigated with the aim of reducing 

peak demand in response to grid requirements and incentives. A key aim was to evaluate the 

potential of shifting electricity use in different archetype zones from on-peak hours to off-peak 

grid periods. Also, a methodology for defining and calculating a dynamic energy flexibility index 

for buildings was presented. The building energy flexibility index (BEFI) has been defined in terms 

of key performance indicators relative to a reference energy consumption profile at zone level, 

building level, and as a percentage. 

To streamline the implementation of MPC, the proposed approach employs low-order 

resistance-capacitance (RC) thermal network models, a clustering of weather conditions to identify 

typical scenarios, and a number of near-optimal setpoint profiles corresponding to each cluster. 

The calibrated RC models are used to apply MPC to the school building using the established 
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dynamic tariffs for morning and evening peaks. The weather data were clustered into several 

categories, representing different weather conditions (6 clusters representing two ambient 

temperature ranges and three solar radiation ranges). For each heuristic MPC scenario, the model 

runs a simulation using forecast weather data to quantify and activate energy flexibility in response 

to grid requirements. The developed MPC framework was applied in the school used as case study. 

The developed MPC framework is applied in six classrooms, and the results are compared with 

four classrooms with the reactive control system as reference cases. Results indicated that the 

school building can provide 45% to 95% energy flexibility (load shifting relative to reference) 

during on‑peak hours while satisfying thermal comfort constraints. 

Finally, this thesis presented an MPC methodology for the integration of air-based PV/T system 

to enhance energy flexibility in school buildings so that in addition to production of solar electricity 

they can be used to preheat fresh air for the classrooms during the heating season. The PV/T system 

electrical capacity was set equal to peak electricity demand in the classrooms. A data-driven 

grey‑box model for the classrooms is calibrated with measured data, and a PV/T model as a 

renewable energy retrofit measure for energy efficiency and flexibility is developed. These models 

are integrated to apply MPC to the school building and reduce peak demand during morning and 

evening. Three scenarios are investigated and compared: 1) A reference case without a PV or air-

based PV/T system, 2) Integration of a PV system and MPC strategies under a demand response 

scenario, and 3) Integration of an air-based PV/T system and MPC strategies under a demand 

response scenario. Results showed that using a predictive control strategy with PV/T integration 

can significantly reduce peak demand, or even eliminating it, during morning and evening 

high‑demand periods for the grid. The proposed methodology helps institutional buildings adapt 

smoothly to the necessities of the future smart grid and smart cities. 

The proposed framework can be generalized and replicated in other institutional buildings and 

help institutional buildings adapt smoothly to the necessities of the future smart grid and smart 

cities. 
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7.1 Contributions 

The major contributions from this thesis are listed below: 

• Development of archetype models for zones with convective systems and zones with 

radiant floor systems in school buildings, which can be used in other mid-size 

institutional/commercial buildings. The models can capture the dynamics of the indoor 

temperature variations and the power demand of the HVAC system. The developed models 

are calibrated with measured data. 

• Development of a new index, the Building Flexibility Index (BEFI), to be used to evaluate 

potential flexibility control scenarios for improved building-grid interaction. This was a 

collaborative effort with Hydro-Québec researchers, my supervisor, and other students in 

the lab. This methodology can be applied to different energy storage and generation 

systems, as well as to different levels of buildings from a cluster of buildings to district 

energy systems. 

• A comprehensive heuristic MPC methodology to activate energy flexibility in buildings is 

proposed.  The framework offers a practical method for the implementation of MPC as a 

supervisory control in buildings. The methodology is scalable and can be transferable to 

other buildings. 

• Implementation of the developed MPC framework in a school building during heating 

season and analyze its performance for both unoccupied and occupied conditions. 

• Design of a general MPC methodology for integrating air-based PV/T systems in school 

buildings is presented. This approach offers a renewable energy retrofit measure to enhance 

energy efficiency and flexibility so that in addition to production of solar electricity they 

can be used to preheat fresh air during the heating season. 

• Collaboration with industry partners (Hydro-Québec and CanmetEnergy) and school board 

(CSSMI) to address practical challenges in implementing the proposed methodology, 

fostering a bridge between academic research and real-world applications in the context of 

school building energy management. 

Overall, this thesis represents steps forward in developing and implementing model-based control 

strategies and renewable energy integration for energy flexibility in school buildings, applicable 

in other mid-size institutional and commercial buildings. 
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7.2 Recommendation for future works  

The future work involves extending and enhancing the presented methodology in the following 

directions: 

• Diversity in Energy Sources: The presented methodology can also be applied to buildings 

with different energy sources, such as dual fuel buildings with electricity and gas. Also 

assess the adaptability of the presented methodology to other types of buildings, such as 

residential buildings, commercial buildings, and cluster of buildings. 

• Integration of Energy Storage Systems: Explore the integration of different energy storage 

systems, such as battery storage and Electric Vehicles (EVs) as mobile energy storage, 

using the same methodology. Investigate the impact of these storage technologies on 

overall energy flexibility and identify optimal control strategies. 

• Integration of Machine Learning Techniques: Investigate how machine learning 

algorithms can improve the accuracy of predictions, particularly in dynamic weather 

conditions, and optimize the responsiveness and adaptability of the system. Using 

Reinforcement Learning (RL) with self-learning capability for online calibration of MPC is a 

promising method to develop automated building control in buildings. 

• Occupancy Modeling: Integrate occupancy modeling into the developed methodology to 

account for the influence of building occupancy on energy flexibility and thermal comfort. 

Explore how to optimize the MPC system in order to respond dynamically to varying 

occupancy levels. 

• Online Recursive Calibration: Implement online recursive calibration of models within the 

methodology to enhance accuracy over time. Explore adaptive techniques that 

continuously update the models based on real-time data, ensuring the system is robust. 
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Appendix A: School Building Details and Description 

The case study school (Figure A-1) is a fully electric building located in Sainte Marthe-sur-le-Lac 

(near Montreal, QC, Canada). The school includes the following features: 

• Location: Quebec, Canada 

• Electricity only (no natural gas) 

• In operation since 2017 

• Floor Area: 2,600 m2 (28,000 ft2) per storey with two storeys 

• 24 regular classrooms with 4 mobile classrooms 

• Approx. 570 students 

• Double-glazed window with argon gas and low-e coating 

• Geothermal - 28 loops with a depth of 100 m (330 ft) 

• ThermElect for energy storage with a max 80 kW heat output 

• DHW: two electric boilers with a capacity of 15 kW each 

• Heat Pumps: 

o Large ground source water-to-water HP 

o 36 terminal fan coil units with heat pumps 

• Heating and cooling: 

o All zones with forced air systems  

o Several zones with radiant floors (Gym and offices)  

• Centralized reverse flow heat recovery system modulated based on schedule and CO2 

(100% outdoor air during our study period) 

 

Figure A-1: Case study school – Horizon-du-Lac 
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Figure A-2 and A-3 present different zones in the school with the HVAC system in each zone. In 

this school, classrooms, kindergarten, and multipurpose room are equipped with convective system 

and the gym and offices also has radiant floor system. 

 

Figure A-2 : Plan view of the school and the HVAC system in each zones – First floor 

 

Figure A-3: Plan view of the school and the HVAC system in each zone – Second floor 

Figure A-4 presents the gym, a classroom, and mechanical room in the school. 



146 

 

  

a) Gym b) Classroom 

 

c) Mechanical room 

Figure A-4: Some photo of the school building, the gym, a classroom, and the mechanical room 

 Appendix B: HVAC system Control  

The HVAC system in the school includes a combination of a geothermal system, an electrically 

heated thermal energy storage device (ThermElect), a water-to-water heat pump (HP), several 

local water-to-air HPs, and a floor heating system. All heating systems are powered by electricity 

and connect to the electrical grid. The primary water-to-water HP, used for space heating, has a 

nominal output of 33 kW in two stages (16.5 kW per stage) and a maximum water supply 

temperature of 48.8 °C. The geothermal system with 28 loops generates low-temperature heat for 

the HP's evaporator side. ThermElect can preheat water for local water-to-air HPs and the water-
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to-water HP. A three-way valve controls the HP's supply water temperature to the zones, with a 

maximum setting of 60 °C. Additionally, there's an integrated floor heating system for space 

heating and a convective ceiling system in offices and the gym, with thermostats regulating each 

zone's indoor temperature. 

 

 
Figure B-1: HVAC system control graphical user interface 
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The HVAC system also has a reverse flow design with two exchangeable air intake and exhaust 

units, along with a two-positional damper located within the central air handling unit (shown in 

Figure B-2). Through changing position, this damper alternates the flow of outdoor intake and 

exhausted air thorough two heat exchanger cassettes to recover the heat (or cooling energy) stored 

within the cassette. 

 

Figure B-2: Heat recovery system control graphical user interface 
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Table below presents the heat pumps’ characteristics in the case study school building. There is a 

water-to-water heat pump for radiant floor system and aero-convectors, and 36 terminal fan coil 

units with water-to-air heat pumps. 
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 Appendix C: Sample of Python Codes for RC Model 

Identification, Weather Clustering, and MPC strategies 

RC model Identification 
 

""" 

Variable Names 

Uin: Conductance matrix input by user, upper triangle only, (nN x nN) (W/K) 

U: Conductance matrix (symmetrical) with added capacitance for diagonal term, (nN x 

nN) (W/K) 

C: Capacitance vector, (nN x 1) (J/K) 

F: Conductance matrix of nodes connected to a known temperature source, (nN x nM) 

(W/K) 

T: Temperature vector per timestep, (nT x nN) (degC) 

TK: Temperature vector of known temperatures per timestep, (nT x nM) (degC) 

Qin: Heat flow, only external sources, (nN x 1) (W) 

Q: Heat flow vector + external sources + capacitance from previous timestep (implicit 

only), (nN x 1) (W) 

 

nN: Number of nodes 

nM: Number of nodes with known temperatures 

nT: Number of timesteps 

 

Node Number: Object 

0: effective room node, connected to capacitor and T_ambient (in the Ms) 

 

Node Number with known temperatures: Object 

0: ambient air 

""" 

 

def mU4C3(U_env, C_env, U_air, C_air, U_floor, C_floor,U_inf, dt): 

    # Load dependencies 

    from numpy import zeros 

    from numpy import sum as npsum 

    from numpy.linalg import inv 

 

    # #### Control 

    nN = 3          # number of nodes 

    nM = 1          # number of nodes with known temperatures 

 

    #%% Nodal Connections 

    # Declare variables 

    Uin = zeros((nN,nN))     # K/W 

    F = zeros((nN,1))        # K/W 

    C = zeros((nN,1))        # J/K 

 

    # How are the nodes connected? 

    Uin[0,1] = U_air    #(1/R + U + dx/kA)**-1 

    Uin[1,2] = U_floor 

#   Uin[1,2] = (1/U_air)**-1 

 

    # Connected to temperature sources 

    F[0,0] = U_env 

    F[1,0] = U_inf 

#    F[2] = 0 #(1/U_in)**-1 

 

    # Nodes with capacitance 

    C[0,0] = C_env 
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#    C[1] = 0 

    C[1,0] = C_air 

    C[2,0] = C_floor 

 

    #%% U-matrix completion, and its inverse 

    U = -Uin - Uin.T  # U is symmetrical, non-diagonals are -ve 

    s = -npsum(U,1) 

    for i in range(0,nN): 

        U[i,i] = s[i] + F[i] + C[i]/dt 

    U_inv = inv(U) 

 

    #%% Ship it 

    return (U_inv, F, C, nN, nM) 

# Import dependencies 

# import numpy as np 

from numpy import reshape, multiply, dot, cos, pi, zeros, shape, tile 

 

# Calculate temperatures for next timesteps: T(t+1) = U^-1 * Q(t) 

# Seperated in case the explicit scheme is needed 

def calcT(U_inv, F, C, Qint, Tt, TKt, dt): 

    # Q-vector: Q = Qin + F*TM(t) + C/dt*T(t) 

    nN = U_inv.shape[0] 

    Q = Qint + reshape(dot(F,TKt),(nN,1)) + multiply(C/dt,reshape(Tt,(nN,1))) 

    return (dot(U_inv, Q)).T 

                                                                                    

# Function to calculate future temperatures 

def futureT(Q, initialT, TK, U_inv, F, C, nN, dt): 

    ft, nM = shape(TK)           # Temperature matrices 

    T = zeros((ft, nN)) # degC 

    T[0,] = initialT 

 

    for i in range(ft-1):  # Calculate future states 

        T[i+1,] = calcT(U_inv, F, C, Q[i,].reshape(nN,1), T[i,].reshape(nN,1), 

TK[i+1,].reshape(nM,1), dt) 

    return T 

# Generate a periodic input 

def periodic(mean, diff, peak_time, period, dt, nt, days): 

    # peak_time in hour of day; 3PM is 15 

    # (period, dt, nt) in seconds; 1 day = 86400s 

    # days in days, obviously 

    theta = peak_time*pi/12 

    omega = 2*pi/period 

    return days*[mean + diff/2*cos(omega*dt*t - theta) for t in range(nt)] 

# Linear ramps 

def linearRamp(T_SP_day, T_SP_dT, setback_beg, setback_end, ramp_dur, dt, nt, days=1): 

    # T_SP_day:    daytime setpoint to maintain 

    # T_SP_dT:     setback amount 

    # setback_beg: setback beginning time (occupancy departure) 

    # setback_end: setback end time (occupancy arrival) 

    # ramp_dur:    hours, ramp duration; "0" equals to a step change 

    T_SP = zeros((nt,1)) # degC; Interior temperature setpoint per timestep 

    for t in range(nt): 

        time = t*dt/3600. 

        if (setback_beg <= time and time < (setback_beg+ramp_dur)):             # 

begin setback 

            T_SP[t] = T_SP_day - (time-setback_beg)*T_SP_dT/ramp_dur 

        elif ((setback_beg+ramp_dur) <= time or time < (setback_end-ramp_dur)): # 

night time 

            T_SP[t] = T_SP_day - T_SP_dT 

        elif ((setback_end-ramp_dur) <= time and time < setback_end):           # 

revert setback 

            T_SP[t] = T_SP_day - (setback_end-time)*T_SP_dT/ramp_dur 
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        else:                                                                   # day 

time 

            T_SP[t] = T_SP_day 

    return tile(T_SP, (days,1)) 

#Load Dependencies 

import numpy as np 

import matplotlib.pylab as plt 

import matplotlib as mpl 

# Plot in notebook; comment out the line below for windowed plots %matplotlib inline 

# mpl.rc('figure', figsize=(10, 10)) 

from scipy.optimize import minimize 

import pandas as pd 

#from scipy.optimize import curve_fit 

# Import mU1C1 script 

import mU4C3 

# Extra scripts to keep this notebook simple and tidy 

import simfun 

mpl.rc('figure', figsize=(10, 8)) 

 

#%% 

# Temperatures and setpoints 

T_amb = data['Tout'].values  

T_opr = data['Tinside'].values 

Diffuse_Solar_radiation = data['Diffuse Solar Radiation'].values 

Direct_Solar_radiation = data['Direct Solar Radiation'].values 

Power = data['Power'].values 

People = data['People'].values 

 

# Total 

ntt = len(Power) 

Q_total = np.zeros((ntt,3)) 

Q_total[:,0] = 0.4*Power 

#Q_total[:,1] = 0#0.03*Power   #0.6*Power #+ Direct_Solar_radiation 

Q_total[:,1] = Power #+0.2*Direct_Solar_radiation #Diffuse_Solar_radiation# 

0.2*Direct_Solar_radiation #+ Diffuse_Solar_radiation + People#+ 

Direct_Solar_radiation 

Q_total[:,2] = Power 

#Q_total = data['Power'].values 

# Number of timesteps = number of data points loaded 

nt = len(Q_total) 

split = int(4.2/7*nt) # use 3.5 days out of 5 for training, and the rest for cross-

validation 

#Plot Imported Data 

plt.figure() 

plt.plot(Q_total[:,0],'b', lw=3,label='HP Power') 

plt.plot(Q_total[:,1],'g', lw=3,label='HP Power') 

#plt.plot(Diffuse_Solar_radiation,'m',lw=3, label='Diffuse Solar radiation') 

#plt.plot(0.2*Direct_Solar_radiation,'y',lw=3, label='Direct Solar radiation') 

#plt.plot(Equip,'r', label='Equipment') 

plt.xlabel('Timestep', fontsize = 'large') 

plt.ylabel('Heat, W', fontsize = 'large') 

plt.legend(loc='best', fontsize = 'large') 

plt.xlim(0,672) 

plt.ylim(0,4500) 

plt.grid() 

plt.show() 

#%% 

plt.figure() 

plt.plot(T_opr,'g',lw=3, label='Indoor Temperature') 

plt.plot(T_amb,'b',lw=3, label='Outdoor Temperature') 

plt.xlabel('Timestep', fontsize = 'large') 

plt.ylabel('Temperature, Deg C', fontsize = 'large') 

plt.legend(loc='best', fontsize = 'large') 
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plt.xlim(0,480) 

plt.ylim(-30,25) 

plt.grid() 

plt.show() 

#%% 

#Cost functions for the calibration 

# Euclidean distance based cost function 

def costEuclidean(x, Q, initialT, TK, dt, testT): 

    U_in, C_in = x 

    U_inv, F, C, nN, nM = mU4C3.mU4C3(U_in, C_in, dt) 

    # Calculate the future temperatures 

    T = simfun.futureT(Q, initialT, TK, U_inv, F, C, nN, dt) 

    err = T - testT                    # setpoint error 

    return np.sqrt(np.dot(err.T, err)) # sqrt[sum(error^2)] 

## NMBE based cost function [normalized mean bias error] 

def costNMBE(x, Q, initialT, TK, dt, testT): 

    U_in, C_in = x 

    U_inv, F, C, nN, nM = mU4C3.mU4C3(U_in, C_in, dt) 

    # Calculate the future temperatures 

    T = simfun.futureT(Q, initialT, TK, U_inv, F, C, nN, dt) 

    err = T - testT                    # setpoint error 

    return np.abs(np.sum(err))/(np.mean(testT)*(len(testT)-1)) 

# CV(RMSE) based cost function  

# [coefficient of variance of the root mean square error] 

def costCVRMSE(x, Q, initialT, TK, dt, testT): 

    U_env, C_env, U_air, C_air, U_floor, C_floor,U_inf= x 

    U_inv, F, C, nN, nM = mU4C3.mU4C3(U_env, C_env, U_air, C_air, U_floor, 

C_floor,U_inf, dt) 

    # Calculate the future temperatures 

    T = simfun.futureT(Q, initialT, TK, U_inv, F, C, nN, dt) 

    err = T[:,1] - testT.squeeze()                  # setpoint error 

    return 1/np.mean(testT)*np.sqrt(np.dot(err.T, err)/(len(testT)-2)) #- 

np.std(T[:,0]) 

 

#%% 

#x0 = [U_env, C_env, U_air, C_air, U_floor, C_floor,U_inf] 

x0 = [50, 4.9e7, 2.4e3, 2.3e6, 50, 5e3,1000]              # initial guess 

#x0 = [1000, 1.9e7, 1000, 0.3e7, 100]              # initial guess 

iniT = np.array([[20 ,20,20]]) 

#iniT = [19,19] 

# Extra arguments to send to cost function, Q_total, temperatures, timestep... 

args = Q_total[0:split,:].reshape(split,3), iniT, T_amb[0:split].reshape(split,1), dt, 

T_opr[0:split].reshape(split,1) 

bnds = ((0, 100), (0, 1e10), (0, 1e8), (1e5, 1e10), (0, 1e6), (0, 1e10), (0, 1e6)) # 

bounds, None = not bounded 

# minimization algorithms. The "simplex-based" Nelder-Mead algorithm 

res = minimize(costCVRMSE, x0, method='Nelder-Mead', args=args, options=('ftol': 1e-

12, 'disp': True, 'maxiter': 10000)) 

#res = minimize(costCVRMSE, x0, method='SLSQP', args=args, bounds=bnds, 

options=('ftol': 1e-15, 'disp': True, 'maxiter': 2000, 'eps': 1.4901161193847656e-08)) 

print("Best values for U and C: %s" % res.x) 

U_env_best, C_env_best, U2_air_best, C2_air_best ,U_floor_best, C_floor_best, 

U_inf_best = res.x 

 

# Calculate T for the U1C1 model using the obtained results 

U_inv, F, C, nN, __ = mU4C3.mU4C3(U_env_best, C_env_best, U2_air_best, C2_air_best 

,U_floor_best, C_floor_best, U_inf_best, dt) 

T_train = simfun.futureT(args[0], args[1], args[2], U_inv, F, C, nN, dt) 

T_cross = simfun.futureT(Q_total[split::].reshape(nt-split,3), 

                         T_train[-1], T_amb[split::].reshape(nt-split,1), 

                         U_inv, F, C, nN, dt) 
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Clustering: 
 
import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from matplotlib.ticker import MaxNLocator 

from sklearn.cluster import KMeans  

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import silhouette_score 

from sklearn.manifold import TSNE 

from google.colab import data_table 

 

def set_plot_info(ax, title='', xlabel='', ylabel='', xlim=[], ylim=[], xticks=[], 

yticks=[]): 

    # set main plot attributes 

    if len(title) > 0: 

        ax.set_title(title) 

    if len(xticks) > 0: 

        ax.set_xticks(xticks) 

        ax.set_xticklabels([str(n) for n in xticks]) 

    if len(yticks) > 0: 

        ax.set_yticks(yticks) 

        ax.set_yticklabels([str(n) for n in yticks]) 

    if len(xlim) > 0: 

        ax.set_xlim(xlim) 

    if len(ylim) > 0: 

        ax.set_ylim(ylim) 

        print('set ylim') 

    if len(xlabel) > 0: 

        ax.set_xlabel(xlabel) 

    if len(ylabel) > 0: 

        ax.set_ylabel(ylabel)     

         

def text_on_plot(ax, text, x_pos_ratio=0.0, y_pos_ratio=1.0): 

    ya, yb = ax.get_ylim() 

    xa, xb = ax.get_xlim() 

    txt_handle = ax.text(xa + x_pos_ratio * (xb - xa), ya + y_pos_ratio * (yb - ya), 

text, verticalalignment ='top', horizontalalignment='left')         

    return txt_handle 

 

# assign function 

def df_assign(df): 

    var_list=[] 

    for i in range(len(df.columns)): 

        var_list.append(df.iloc[:,i].to_numpy()) 

    return var_list 

 

# data 

def load_data(source='pkl'): 

    if source != 'pkl': 

        df = pd.read_excel (r'vl_cluster_winter.xlsx',0) 

        col = df.columns[0] 

        df[col] = pd.to_datetime(df[col], format='%Y-%m-%d %H:%M:%S:%f') 

        df = df.set_index(df[col]) 

        df = df.drop(columns=col, axis=1) 

        df[df>1e6]=np.nan 

        df.to_pickle('vl_cluster_winter.pkl') 

        

    else: 

         

        df = pd.read_pickle('vl_cluster_winter.pkl') 

         

    return df 
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df = load_data(source='excel') 

#df = load_data(source='pkl') 

 

# define the model inputs 

prod = df[["GHI"]].sum(axis=1) 

cons = df[["GHI"]].sum(axis=1) 

df = pd.concat([prod, cons], axis=1, sort=False) 

df.columns = 'prod, cons'.split(', ') 

 

#df = df['2022-01-01':'2023-01-01'] 

df_hourly = df.resample('H').mean() 

df_hourly['hour'] = df_hourly.index.hour 

 

df_prod =df_hourly[[df_hourly.columns[0], 'hour']] 

df_prod.index = df_prod.index.date 

df_prod_pivot = df_prod.pivot(columns='hour') 

 

df_cons =df_hourly[[df_hourly.columns[1], 'hour']] 

df_cons.index = df_cons.index.date 

df_cons_pivot = df_cons.pivot(columns='hour') 

 

#PV GEN 

# parameter selection 

df_pivot = df_prod_pivot #here choose what is going to be clustered 

for col in df_prod_pivot.columns: #here put the other param if pivoting 

    df_pivot[col]=df_prod_pivot[col] #here put the other param if pivoting 

 

# to be renamed after parameter selection 

param = 'PV Generation' 

 

# colors 

col_list = [] 

for i, col in enumerate(df.columns): 

    col_list.append( (param, i) ) 

df.columns = col_list   

color_list = ['darkblue', 'darkred', 'darkgreen', 'orange', 'purple','yellow', 'cyan', 

'black', 'magenta', 'gray', 'brown', 'pink', 'violet'] 

 

# number of clusters 

m_cluster = 3 

 

# make copy to df_pivot for cluster analysis 

X = df_pivot.values.copy() 

sc = MinMaxScaler() 

X = sc.fit_transform(X) 

silhouette_scores = [] 

n_cluster_list = np.arange(2,13).astype(int) 

 

# k-means 

kmeans = KMeans(n_clusters=m_cluster, init='k-means++', max_iter=100000, n_init=1, 

verbose=0, random_state=10) 

cluster_found = kmeans.fit_predict(X) 

cluster_found_sr = pd.Series(cluster_found, name='cluster') 

df_pivot = df_pivot.set_index(cluster_found_sr, append=True ) 

cluster_values = sorted(df_pivot.index.get_level_values('cluster').unique())        

 

# average silhouette test 

for n_cluster in n_cluster_list: 

    # initiate k-means with the same random state 
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    kmeans = KMeans(n_clusters=n_cluster, init='k-means++', max_iter=100000, n_init=1, 

verbose=0, random_state=10) 

    cluster_found = kmeans.fit_predict(X) 

    silhouette_scores.append(silhouette_score(X, kmeans.labels_)) 

 

# plot 

fig = plt.figure(constrained_layout=False, figsize=(14,10)) 

gs = fig.add_gridspec(nrows=2, ncols=2) 

ax0 = fig.add_subplot(gs[:-1, :]) # traces and centroids 

plt.xticks(fontsize= 20) 

plt.yticks(fontsize= 20) 

plt. xlabel('x-axis', fontsize=24)  

plt. ylabel('y-axis', fontsize=24)  

ax1 = fig.add_subplot(gs[-1, 0])  # average silhouette 

ax2 = fig.add_subplot(gs[-1, 1])  # centroids 

 

for cluster, color in zip(cluster_values, color_list): 

    df_pivot.xs(cluster, level=1).T.plot(ax=ax0, legend=False, alpha=0.15, 

color=color, label= f'Cluster (cluster)', lw=2) 

    df_pivot.xs(cluster, level=1).median().plot(ax=ax0, color=color, alpha=1, ls='-', 

lw = 2) 

    df_pivot.xs(cluster, level=1).median().plot(ax=ax2, color=color, alpha=1, ls='-', 

lw=2 ) 

 

# ax0: to be renamed and scaled 

set_plot_info(ax0, 'Daily profile of ' + param + ' - ' + str(m_cluster) + ' Clusters 

','Time (Hour)', 'GHI (W/m^2)', [0, 23], [0,700], range(0,24,2)) 

plt. xlabel('x-axis', fontsize=24)  

plt. ylabel('y-axis', fontsize=24) 

# ax1 

ax1.plot(silhouette_scores, color='darkblue', lw=1) 

ax1.plot(silhouette_scores,'o', color = 'darkred') 

set_plot_info(ax1,'Average Silhouette','Number of Clusters','Average Silhouette', [2, 

10], [])  

ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) 

plt. xlabel('x-axis', fontsize=24)  

plt. ylabel('y-axis', fontsize=24) 

# ax2: to be renamed and scaled 

set_plot_info(ax2, 'Daily Profiles', 'Hour', 'kW', [0, 23], [0,1000], range(0,24,2)) 

plt. xlabel('x-axis', fontsize=24)  

plt. ylabel('y-axis', fontsize=24) 

# validating results with t-SNE 

tsne = TSNE() 

results_tsne = tsne.fit_transform(X) 

 

# summary text 

dpt_text = '' 

for cluster, color in zip(cluster_values, color_list): 

    level_list = df_pivot.index.get_level_values('cluster').to_list() 

    pt_idx = [i for i, lv in enumerate(level_list) if lv == cluster] 

    X = results_tsne[pt_idx,0] 

    Y = results_tsne[pt_idx,1] 

    print(len(pt_idx), 'days in cluster',cluster+1) 

    # summary text on the main plot ax0 

    dpt_text += str(cluster+1) +' - '+  color + ' cluster' +' : '+ str(len(pt_idx)) +' 

days \n' 

#text_on_plot(ax0, 'Cluster Analysis Results:\n' + dpt_text, 0, 1) 

  

plt.style.use('seaborn')   

plt.tight_layout() 

plt.show() 

print('\n') 
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#df11 = df_pivot.xs(3, level=1).median() 

#print(df11) 

 

#-------------------------------------------------------------------------------------

------------------------------------------------------------------------- 

#CONS 

# parameter selection 

df_pivot = df_cons_pivot #here choose what is going to be clustered 

for col in df_cons_pivot.columns: #here put the other param 

    df_pivot[col]=df_cons_pivot[col] #here put the other param 

 

# to be renamed after parameter selection 

param = 'Consumption' 

 

# colors 

col_list = [] 

for i, col in enumerate(df.columns): 

    col_list.append( (param, i) ) 

df.columns = col_list   

color_list = ['darkblue', 'darkred', 'darkgreen', 'orange', 'purple','yellow', 'cyan', 

'black', 'magenta', 'gray', 'brown', 'pink', 'violet'] 

 

# number of clusters 

m_cluster = 4 

 

# make copy to df_pivot for cluster analysis 

X = df_pivot.values.copy() 

sc = MinMaxScaler() 

X = sc.fit_transform(X) 

silhouette_scores = [] 

n_cluster_list = np.arange(2,13).astype(int) 

 

# k-means 

kmeans = KMeans(n_clusters=m_cluster, init='k-means++', max_iter=100000, n_init=1, 

verbose=0, random_state=10) 

cluster_found = kmeans.fit_predict(X) 

cluster_found_sr = pd.Series(cluster_found, name='cluster') 

df_pivot = df_pivot.set_index(cluster_found_sr, append=True ) 

cluster_values = sorted(df_pivot.index.get_level_values('cluster').unique())        

 

# average silhouette test 

for n_cluster in n_cluster_list: 

    # initiate k-means with the same random state 

    kmeans = KMeans(n_clusters=n_cluster, init='k-means++', max_iter=100000, n_init=1, 

verbose=0, random_state=10) 

    cluster_found = kmeans.fit_predict(X) 

    silhouette_scores.append(silhouette_score(X, kmeans.labels_)) 

 

# plot 

fig = plt.figure(constrained_layout=False, figsize=(9,6)) 

gs = fig.add_gridspec(nrows=2, ncols=2) 

ax0 = fig.add_subplot(gs[:-1, :]) # traces and centroids 

ax1 = fig.add_subplot(gs[-1, 0])  # average silhouette 

ax2 = fig.add_subplot(gs[-1, 1])  # centroids 

 

for cluster, color in zip(cluster_values, color_list): 

    df_pivot.xs(cluster, level=1).T.plot(ax=ax0, legend=False, alpha=0.15, 

color=color, label= f'Cluster (cluster)', lw=1) 

    df_pivot.xs(cluster, level=1).median().plot(ax=ax0, color=color, alpha=1, ls='-', 

lw = 1) 

    df_pivot.xs(cluster, level=1).median().plot(ax=ax2, color=color, alpha=1, ls='-', 

lw=1 ) 
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# ax0: to be renamed and scaled 

set_plot_info(ax0, 'Daily profile of ' + param + ' - ' + str(m_cluster) + ' Clusters 

', 'Hour', 'kW', [0, 23], [10,25], range(0,24,1)) 

# ax1 

ax1.plot(silhouette_scores, color='darkblue', lw=1) 

ax1.plot(silhouette_scores,'o', color = 'darkred') 

set_plot_info(ax1,'Average Silhouette','Number of Clusters','Average Silhouette', [2, 

10], [])  

ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) 

# ax2: to be renamed and scaled 

set_plot_info(ax2, 'Daily Profiles', 'Hour', 'kW', [0, 23], [0,50], range(0,24,2)) 

    

# validating results with t-SNE 

tsne = TSNE() 

results_tsne = tsne.fit_transform(X) 

 

# summary text 

dpt_text = '' 

for cluster, color in zip(cluster_values, color_list): 

    level_list = df_pivot.index.get_level_values('cluster').to_list() 

    pt_idx = [i for i, lv in enumerate(level_list) if lv == cluster] 

    X = results_tsne[pt_idx,0] 

    Y = results_tsne[pt_idx,1] 

    print(len(pt_idx), 'days in cluster',cluster+1) 

    # summary text on the main plot ax0 

    dpt_text += str(cluster+1) +' - '+  color + ' cluster' +' : '+ str(len(pt_idx)) +' 

days \n' 

text_on_plot(ax0, 'Cluster Analysis Results:\n' + dpt_text, 0, 1) 

  

plt.style.use('seaborn-whitegrid')   

plt.tight_layout() 

plt.show() 

print('\n') 

 

#PV GEN AGAINST CONS 

# parameter selection 

df_pivot = df_prod_pivot #here choose what is going to be clustered 

for col in df_cons_pivot.columns: #here put the other param 

    df_pivot[col]=df_cons_pivot[col] #here put the other param 

 

# to be renamed after parameter selection 

param = 'PV Generation' 

 

# colors 

col_list = [] 

for i, col in enumerate(df.columns): 

    col_list.append( (param, i) ) 

df.columns = col_list   

color_list = ['darkblue', 'darkred', 'darkgreen', 'orange', 'purple','yellow', 'cyan', 

'black', 'magenta', 'gray', 'brown', 'pink', 'violet'] 

 

# number of clusters 

m_cluster = 6 

 

# make copy to df_pivot for cluster analysis 

X = df_pivot.values.copy() 

sc = MinMaxScaler() 

X = sc.fit_transform(X) 

silhouette_scores = [] 

n_cluster_list = np.arange(2,13).astype(int) 
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# k-means 

kmeans = KMeans(n_clusters=m_cluster, init='k-means++', max_iter=100000, n_init=1, 

verbose=0, random_state=10) 

cluster_found = kmeans.fit_predict(X) 

cluster_found_sr = pd.Series(cluster_found, name='cluster') 

df_pivot = df_pivot.set_index(cluster_found_sr, append=True ) 

cluster_values = sorted(df_pivot.index.get_level_values('cluster').unique())        

 

# average silhouette test 

for n_cluster in n_cluster_list: 

    # initiate k-means with the same random state 

    kmeans = KMeans(n_clusters=n_cluster, init='k-means++', max_iter=100000, n_init=1, 

verbose=0, random_state=10) 

    cluster_found = kmeans.fit_predict(X) 

    silhouette_scores.append(silhouette_score(X, kmeans.labels_)) 

 

# plot 

fig = plt.figure(constrained_layout=False, figsize=(9,6)) 

gs = fig.add_gridspec(nrows=2, ncols=2) 

ax0 = fig.add_subplot(gs[:-1, :]) # traces and centroids 

ax1 = fig.add_subplot(gs[-1, 0])  # average silhouette 

ax2 = fig.add_subplot(gs[-1, 1])  # centroids 

 

for cluster, color in zip(cluster_values, color_list): 

    df_pivot.xs(cluster, level=1).T.plot(ax=ax0, legend=False, alpha=0.15, 

color=color, label= f'Cluster (cluster)', lw=1) 

    df_pivot.xs(cluster, level=1).median().plot(ax=ax0, color=color, alpha=1, ls='-', 

lw = 1) 

    df_pivot.xs(cluster, level=1).median().plot(ax=ax2, color=color, alpha=1, ls='-', 

lw=1 ) 

 

# ax0: to be renamed and scaled 

set_plot_info(ax0, 'Daily profile of ' + param + ' - ' + str(m_cluster) + ' Clusters 

', 'Hour', 'GHI (W/m^2)', [0, 24], [0,1000], range(0,24,1)) 

# ax1 

ax1.plot(silhouette_scores, color='darkblue', lw=1) 

ax1.plot(silhouette_scores,'o', color = 'darkred') 

set_plot_info(ax1,'Average silhouette index','K (Number of Clusters)','Average 

Silhouette', [2, 10], [])  

ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) 

# ax2: to be renamed and scaled 

set_plot_info(ax2, 'Daily Profiles', 'Hour', 'kW', [0, 23], [0,100], range(0,24,2)) 

    

# validating results with t-SNE 

tsne = TSNE() 

results_tsne = tsne.fit_transform(X) 

 

# summary text 

dpt_text = '' 

for cluster, color in zip(cluster_values, color_list): 

    level_list = df_pivot.index.get_level_values('cluster').to_list() 

    pt_idx = [i for i, lv in enumerate(level_list) if lv == cluster] 

    X = results_tsne[pt_idx,0] 

    Y = results_tsne[pt_idx,1] 

    print(len(pt_idx), 'days in cluster',cluster+1) 

    # summary text on the main plot ax0 

    dpt_text += str(cluster+1) +' - '+  color + ' cluster' +' : '+ str(len(pt_idx)) +' 

days \n' 

text_on_plot(ax0, 'Cluster Analysis Results:\n' + dpt_text, 0, 1) 

  

plt.style.use('seaborn-whitegrid')   

plt.tight_layout() 

plt.show() 
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print('\n') 

 

#df11 = df_pivot.xs(3, level=1).median() 

#print(df11) 

 

 

# parameter selection 

df_pivot = df_cons_pivot #here choose what is going to be clustered 

for col in df_prod_pivot.columns: #here put the other param 

    df_pivot[col]=df_prod_pivot[col] #here put the other param 

 

# to be renamed after parameter selection 

param = 'Consumption' 

 

# colors 

col_list = [] 

for i, col in enumerate(df.columns): 

    col_list.append( (param, i) ) 

df.columns = col_list   

color_list = ['darkblue', 'darkred', 'darkgreen', 'orange', 'purple','yellow', 'cyan', 

'black', 'magenta', 'gray', 'brown', 'pink', 'violet'] 

 

# number of clusters 

m_cluster = 2 

 

# make copy to df_pivot for cluster analysis 

X = df_pivot.values.copy() 

sc = MinMaxScaler() 

X = sc.fit_transform(X) 

silhouette_scores = [] 

n_cluster_list = np.arange(2,13).astype(int) 

 

# k-means 

kmeans = KMeans(n_clusters=m_cluster, init='k-means++', max_iter=100000, n_init=1, 

verbose=0, random_state=10) 

cluster_found = kmeans.fit_predict(X) 

cluster_found_sr = pd.Series(cluster_found, name='cluster') 

df_pivot = df_pivot.set_index(cluster_found_sr, append=True ) 

cluster_values = sorted(df_pivot.index.get_level_values('cluster').unique())        

 

# average silhouette test 

for n_cluster in n_cluster_list: 

    # initiate k-means with the same random state 

    kmeans = KMeans(n_clusters=n_cluster, init='k-means++', max_iter=100000, n_init=1, 

verbose=0, random_state=10) 

    cluster_found = kmeans.fit_predict(X) 

    silhouette_scores.append(silhouette_score(X, kmeans.labels_)) 

 

# plot 

fig = plt.figure(constrained_layout=False, figsize=(14,10)) 

gs = fig.add_gridspec(nrows=2, ncols=2) 

ax0 = fig.add_subplot(gs[:-1, :]) # traces and centroids 

plt.xticks(fontsize= 20) 

plt.yticks(fontsize= 20) 

plt. xlabel('x-axis', fontsize=24)  

plt. ylabel('y-axis', fontsize=24)  

ax1 = fig.add_subplot(gs[-1, 0])  # average silhouette 

ax2 = fig.add_subplot(gs[-1, 1])  # centroids 

 

for cluster, color in zip(cluster_values, color_list): 

    df_pivot.xs(cluster, level=1).T.plot(ax=ax0, legend=False, alpha=0.15, 

color=color, label= f'Cluster (cluster)', lw=2) 
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    df_pivot.xs(cluster, level=1).median().plot(ax=ax0, color=color, alpha=1, ls='-', 

lw = 3) 

    df_pivot.xs(cluster, level=1).median().plot(ax=ax2, color=color, alpha=1, ls='-', 

lw=3 ) 

#print(df_pivot.xs(1, level=1).median()) 

#print(data_table.DataTable(df_pivot.xs(1, level=1).median())) 

 

#df11 = df_pivot.xs(3, level=1).median() 

#print(df11) 

# ax0: to be renamed and scaled 

set_plot_info(ax0, [], 'Time (Hour)', 'Power (kW)', [0, 23], [0,2.5], range(0,24,2)) 

 

ax0.yaxis.set_major_locator(MaxNLocator(integer=True)) 

# ax1 

ax1.plot(silhouette_scores, color='black', lw=3) 

ax1.plot(silhouette_scores,'o', color = 'darkblue') 

set_plot_info(ax1,'Average silhouette index','K (Number of Clusters)','Average 

silhouette index', [1, 10], [])  

ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) 

#ax2: to be renamed and scaled 

#set_plot_info(ax2, 'Daily Profiles', 'Time (Hour)', 'Indoor Temperature (°C)', [0, 

23], [0,150], range(0,24,2)) 

plt. xlabel('x-axis', fontsize=24)  

plt. ylabel('y-axis', fontsize=24) 

# validating results with t-SNE 

tsne = TSNE() 

results_tsne = tsne.fit_transform(X) 

 

# summary text 

dpt_text = '' 

for cluster, color in zip(cluster_values, color_list): 

    level_list = df_pivot.index.get_level_values('cluster').to_list() 

    pt_idx = [i for i, lv in enumerate(level_list) if lv == cluster] 

    X = results_tsne[pt_idx,0] 

    Y = results_tsne[pt_idx,1] 

    print(len(pt_idx), 'days in cluster',cluster+1) 

    # summary text on the main plot ax0 

    dpt_text += str(cluster+1) +' - '+  color + ' cluster' +' : '+ str(len(pt_idx)) +' 

days \n' 

text_on_plot(ax0, 0, 1) 

  

plt.style.use('seaborn-whitegrid')   

plt.tight_layout() 

plt.show() 

print('\n') 

 

MPC Code: 

 
import numpy as np 

import pandas as pd 

import cvxpy as cp 

import matplotlib.pyplot as plt 

#import scipy.optimize as so 

#from numpy.linalg import norm as norm2 

#from sklearn.model_selection import train_test_split as tts 

#from sklearn.metrics import mean_squared_error 

#from sklearn.metrics import r2_score 

#from math import sqrt 

#from google.colab import files 

#import io 

import importlib 

importlib.reload(plt) 
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"""#**Data**""" 

 

 

#%% 

 

def df_assign(df): 

    var_list=[] 

    for i in range(len(df.columns)): 

        var_list.append(df.iloc[:,i].to_numpy()) 

    return var_list 

# process data 

#data = files.upload() 

df = pd.read_excel(r'Feb.xlsx') #import data 

col = df.columns[0] 

df[col] = pd.to_datetime(df[col], format='%Y-%m-%d %H:%M:%S') #change to datetime 

df = df.set_index(df[col]) 

df = df.drop(columns=col, axis=1) 

dt = 900  #sampling rate (sec) 

Tout = df[["Text"]].sum(axis=1) #outside ambient temperature 

Tgrd = df[['Tgrd']] #ground temperature 

GVI = df[["Sol.Vert"]].sum(axis=1) * 4 #global vertical irradiance 

GVI[GVI<0] = 0  

GHI = df[["Sol.Hor"]].sum(axis=1) * 4 #global horizontal irradiance 

GHI[GHI<0] = 0  

P_pv = df[["PV-1"]].sum(axis=1) * 0 #total PV generation 

P_tot = df[["TOT-1"]].sum(axis=1) * 4 #total electrical load 

Q_sol = GVI * Awin #total incident solar radiation 

Q_hp = P_hp * COP #heat from heat pump 

P_heat = P_bb1 + P_bb2 + P_bb3 + P_hp 

 

#%% 

"""#**Simulation Setup**""" 

 

# parameters 

sph = 4 #steps per hour  

ph = int(len(df_sim.index)-1) #prediction horizon (number of steps) 

num_day = int(ph*900/3600/24) #prediction horizon (number of days) 

control_factor = 4 

ch = int(ph/control_factor) #control horizon (number of steps) 

st = 1 #start point of algorithm 

t = (np.arange(ph))*900/3600*4 #time array 

#%% 

"""#**Predictive Control**""" 

#Business as Usual case 

 

# states, inputs and disturbances 

nx, nu, nd = 4, 4, 4 #third-order(3) + battery(1)  

x = cp.Variable((nx, ph)) 

u = cp.Variable((nu, ph)) 

d = cp.Variable((nd, ph)) 

 

comfort_min, comfort_max = 18*np.ones(ph), 27*np.ones(ph) #thermal comfort boundaries 

for i in range(num_day): 

  comfort_min[int(sph*(24*i+6)):int(sph*(24*i+18))] = 21 

  comfort_max[int(sph*(24*i+6)):int(sph*(24*i+18))] = 24 

comfort_base_min, comfort_base_max = 16*np.ones(ph), 18*np.ones(ph) 

 

price = 1*np.ones(ph) #price of consumption (For BAU) 

#price = 4.33*np.ones(ph) #price of consumption (Correct) 

#for i in range(num_day): 

  #price[int(sph*(24*i+6)):int(sph*(24*i+9))] = 50.65 

  #price[int(sph*(24*i+16)):int(sph*(24*i+20))] = 50.65 
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penalty = 2000*100*np.ones(ph) #comfort violation penalty 

penalty_base = 100*100*np.ones(ph) 

#penalty_peak = 100*10 #penalty of peak demand 

penalty_peak = 1 #penalty of peak demand (For BAU) 

constraints = cons = [] 

 

cons.append(x[0,0] == 18.3,) 

cons.append(x[1,0] == 17.9,) 

cons.append(x[2,0] == 17,) 

 

cons.append(u[0,:] >= heating_min,) 

cons.append(u[0,:] <= heating_max,) 

cons.append(u[1,:] >= heating_min,) 

cons.append(u[1,:] <= heating_max,) 

cons.append(u[2,:] >= heating_min,) 

cons.append(u[2,:] <= heating_max,) 

 

cons.append(d[0,:] == df_sim['Tout'][st:st+ph],) #ambient air temperature 

cons.append(d[1,:] == df_sim['P_pv'][st:st+ph],) #PV generation 

cons.append(d[2,:] == df_sim['Q_sol'][st:st+ph],) #solar gains 

cons.append(d[3,:] == df_sim['Tgrd'][st:st+ph],) #ground temperature 

 

cost = 0 #cost initialization 

 

for j in range(0,control_factor): #control horizon loop 

  cons.append(x[0,ch*j] == x[0,ch*j-1],) #initialization of temp1 

  cons.append(x[1,ch*j] == x[1,ch*j-1],) #initialization of temp2 

  cons.append(x[2,ch*j] == x[2,ch*j-1],) #initialization of temp2 

  cons.append(x[3,ch*j] == x[3,ch*j-1],) #initialization of battery soc 

 

  for k in range((ch*j)+1,ch*(j+1)): #step loop 

    cons.append(x[0,k] == x[0,k-1] + (dt/C1)*(u[0,k] + (d[0,k]-x[0,k-1])/R1 + (x[1,k-

1]-x[0,k-1])/R2),) #state estimator 0 

    cons.append(x[1,k] == x[1,k-1] + (dt/C2)*(u[1,k] + (d[0,k]-x[1,k-1])/R3 + (x[0,k-

1]-x[1,k-1])/R2 + (x[2,k-1]-x[1,k-1])/R4),) #state estimator 1 

    cons.append(x[2,k] == x[2,k-1] + (dt/C3)*(u[2,k] + alpha3*d[2,k] + (x[1,k-1]-

x[2,k-1])/R4),) #state estimator 2 

    #cons.append(x[3,k] == x[3,k-1] + (u[3,k]*dt,) #state estimator 3 

     

    #cons.append(x[0,k] == x[0,k-1] + (dt/C1)*(u[0,k] + alpha1*d[2,k] + (d[0,k]-x[0,k-

1])/R1 + (x[1,k-1]-x[0,k-1])/R4 + (x[2,k-1]-x[0,k-1])/R5),) #state estimator 0 

    #cons.append(x[1,k] == x[1,k-1] + (dt/C2)*(u[1,k] + alpha2*d[2,k] + (d[0,k]-x[1,k-

1])/R2 + (x[0,k-1]-x[1,k-1])/R4 + (x[2,k-1]-x[1,k-1])/R6),) #state estimator 1 

    #cons.append(x[2,k] == x[2,k-1] + (dt/C3)*(u[2,k] + alpha3*d[2,k] + (d[0,k]-x[2,k-

1])/R3 + (x[0,k-1]-x[2,k-1])/R5 + (x[1,k-1]-x[2,k-1])/R6 + (d[3,k]-x[2,k-1])/R7),) 

#state estimator 2 

    #cons.append(x[3,k] == x[3,k-1] + (u[3,k]*dt,) #state estimator 3 

 

    cost += (u[0,k] + u[1,k] + u[2,k]) * price[k] #minimize heating energy cost based 

on rate flex-M (For BAU) 

    #cost += (u[0,k] + u[1,k] + u[2,k]) * 100*price[k] #minimize heating energy cost 

based on rate flex-M (Correct) 

 

    cost += cp.norm2(u[0,k] + u[1,k] + u[2,k] + u[3,k] - d[1,k]) #maximize self-

consumtion 

 

    cost += cp.maximum(comfort_min[k] - x[0,k], 0, x[0,k] - comfort_max[k]) * 

penalty[k] #penalize comfort violation 

    cost += cp.maximum(comfort_min[k] - x[1,k], 0, x[1,k] - comfort_max[k]) * 

penalty[k] 

    cost += cp.maximum(comfort_base_min[k] - x[2,k], 0, x[2,k] - comfort_base_max[k]) 

* penalty_base[k] 
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    cost += cp.norm2(u[0,k] - u[0,k-1]) #penalize high slew rate 

    cost += cp.norm2(u[1,k] - u[1,k-1]) 

    cost += cp.norm2(u[2,k] - u[2,k-1]) 

    cost += cp.norm2(u[3,k] - u[3,k-1]) 

 

  cost += (cp.norm_inf(u[0,:]) + cp.norm_inf(u[1,:]) + cp.norm_inf(u[2,:])) * 

penalty_peak #penalize peak demand 

 

  constraints.extend(cons) 

  # form and solve the problem 

  problem = cp.Problem(cp.Minimize(cost), constraints) 

  problem.solve(verbose=True, solver=cp.ECOS) 

   

# value retrieval 

T_out = d[0,:].value 

T1_flx = x[0,:].value 

T2_flx = x[1,:].value 

T3_flx = x[2,:].value 

Q1_flx = u[0,:].value 

Q2_flx = u[1,:].value 

Q3_flx = u[2,:].value 

Q_flx = Q1_flx + Q2_flx + Q3_flx 

#Q_flx = Q2_flx 

P_flx = Q_flx 

Ppv = d[1,:].value 

P_net_BAU = P_flx # - Ppv 

#%% 

# Flat rate price 

"""#**Predictive Control**""" 

 

# states, inputs and disturbances 

nx, nu, nd = 3, 4, 4  

x = cp.Variable((nx, ph)) 

u = cp.Variable((nu, ph)) 

d = cp.Variable((nd, ph)) 

 

comfort_min, comfort_max = 18*np.ones(ph), 27*np.ones(ph) #thermal comfort boundaries 

for i in range(num_day): 

  comfort_min[int(sph*(24*i+6)):int(sph*(24*i+18))] = 21 

  comfort_max[int(sph*(24*i+6)):int(sph*(24*i+18))] = 24 

comfort_base_min, comfort_base_max = 16*np.ones(ph), 18*np.ones(ph) 

 

price = 1*np.ones(ph) #price of consumption (For BAU) 

#price = 4.33*np.ones(ph) #price of consumption (Flat rate - Active this line only) 

#for i in range(num_day): 

  #price[int(sph*(24*i+6)):int(sph*(24*i+9))] = 50.65 

  #price[int(sph*(24*i+16)):int(sph*(24*i+20))] = 50.65 

 

penalty = 2000*100*np.ones(ph) #comfort violation penalty 

penalty_base = 100*100*np.ones(ph) 

#penalty_peak = 100*10 #penalty of peak demand (Correct) 

penalty_peak = 1000 #penalty of peak demand (For BAU) 

constraints = cons = [] 

 

cons.append(x[0,0] == 18.3,)  

cons.append(x[1,0] == 17.9,) 

cons.append(x[2,0] == 17,) 

 

cons.append(u[0,:] >= heating_min,) 

cons.append(u[0,:] <= heating_max,) 

cons.append(u[1,:] >= heating_min,) 

cons.append(u[1,:] <= heating_max,) 

cons.append(u[2,:] >= heating_min,) 
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cons.append(u[2,:] <= heating_max,) 

 

cons.append(d[0,:] == df_sim['Tout'][st:st+ph],) #ambient air temperature 

cons.append(d[1,:] == df_sim['P_pv'][st:st+ph],) #PV generation 

cons.append(d[2,:] == df_sim['Q_sol'][st:st+ph],) #solar gains 

cons.append(d[3,:] == df_sim['Tgrd'][st:st+ph],) #ground or adjacent zone temperature 

 

cost = 0 #cost initialization 

 

for j in range(0,control_factor): #control horizon loop 

  cons.append(x[0,ch*j] == x[0,ch*j-1],) #initialization of temp1 

  cons.append(x[1,ch*j] == x[1,ch*j-1],) #initialization of temp2 

  cons.append(x[2,ch*j] == x[2,ch*j-1],) #initialization of temp2 

  cons.append(x[3,ch*j] == x[3,ch*j-1],) #initialization of battery soc 

 

  for k in range((ch*j)+1,ch*(j+1)): #step loop 

    cons.append(x[0,k] == x[0,k-1] + (dt/C1)*(u[0,k] + (d[0,k]-x[0,k-1])/R1 + (x[1,k-

1]-x[0,k-1])/R2),) #state estimator 0 

    cons.append(x[1,k] == x[1,k-1] + (dt/C2)*(u[1,k] + (d[0,k]-x[1,k-1])/R3 + (x[0,k-

1]-x[1,k-1])/R2 + (x[2,k-1]-x[1,k-1])/R4),) #state estimator 1 

    cons.append(x[2,k] == x[2,k-1] + (dt/C3)*(u[2,k] + alpha3*d[2,k] + (x[1,k-1]-

x[2,k-1])/R4),) #state estimator 2 

    #cons.append(x[3,k] == x[3,k-1] + (u[3,k]*dt),) #state estimator 3 

     

    #cons.append(x[0,k] == x[0,k-1] + (dt/C1)*(u[0,k] + alpha1*d[2,k] + (d[0,k]-x[0,k-

1])/R1 + (x[1,k-1]-x[0,k-1])/R4 + (x[2,k-1]-x[0,k-1])/R5),) #state estimator 0 

    #cons.append(x[1,k] == x[1,k-1] + (dt/C2)*(u[1,k] + alpha2*d[2,k] + (d[0,k]-x[1,k-

1])/R2 + (x[0,k-1]-x[1,k-1])/R4 + (x[2,k-1]-x[1,k-1])/R6),) #state estimator 1 

    #cons.append(x[2,k] == x[2,k-1] + (dt/C3)*(u[2,k] + alpha3*d[2,k] + (d[0,k]-x[2,k-

1])/R3 + (x[0,k-1]-x[2,k-1])/R5 + (x[1,k-1]-x[2,k-1])/R6 + (d[3,k]-x[2,k-1])/R7),) 

#state estimator 2 

    #cons.append(x[3,k] == x[3,k-1] + (u[3,k]*dt),) #state estimator 3 

 

    #cost += (u[0,k] + u[1,k] + u[2,k]) * price[k] #minimize heating energy cost based 

on rate flex-M (For BAU) 

    cost += (u[0,k] + u[1,k] + u[2,k]) * 100*price[k] #minimize heating energy cost 

based on rate flex-M (Correct) 

 

    cost += cp.norm2(u[0,k] + u[1,k] + u[2,k] + u[3,k] - d[1,k]) #maximize self-

consumtion 

 

    cost += cp.maximum(comfort_min[k] - x[0,k], 0, x[0,k] - comfort_max[k]) * 

penalty[k] #penalize comfort violation 

    cost += cp.maximum(comfort_min[k] - x[1,k], 0, x[1,k] - comfort_max[k]) * 

penalty[k] 

    cost += cp.maximum(comfort_base_min[k] - x[2,k], 0, x[2,k] - comfort_base_max[k]) 

* penalty_base[k] 

 

    cost += cp.norm2(u[0,k] - u[0,k-1]) #penalize high slew rate 

    cost += cp.norm2(u[1,k] - u[1,k-1]) 

    cost += cp.norm2(u[2,k] - u[2,k-1]) 

    cost += cp.norm2(u[3,k] - u[3,k-1]) 

 

  cost += (cp.norm_inf(u[0,:]) + cp.norm_inf(u[1,:]) + cp.norm_inf(u[2,:])) * 

penalty_peak #penalize peak demand 

 

  constraints.extend(cons) 

  # form and solve the problem 

  problem = cp.Problem(cp.Minimize(cost), constraints) 

  problem.solve(verbose=True, solver=cp.ECOS) 

   

# value retrieval 

T_out = d[0,:].value 
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T1_flx = x[0,:].value 

T2_flat_rate = x[1,:].value 

T3_flx = x[2,:].value 

Q1_flx = u[0,:].value 

Q2_flx = u[1,:].value 

Q3_flx = u[2,:].value 

Q_flx = Q1_flx + Q2_flx + Q3_flx 

#Q_flx = Q2_flx 

P_flx = Q_flx 

#P_bat = u[3,:].value 

#soe_bat = x[3,:].value * 100 

Ppv = d[1,:].value 

P_net_predictive_flat_rate = P_flx  

 

#%% 

# Rate flex M price 

 

"""#**Predictive Control**""" 

 

# states, inputs and disturbances 

nx, nu, nd = 4, 4, 4 #third-order(3) 

x = cp.Variable((nx, ph)) 

u = cp.Variable((nu, ph)) 

d = cp.Variable((nd, ph)) 

 

comfort_min, comfort_max = 18*np.ones(ph), 27*np.ones(ph) #thermal comfort boundaries 

for i in range(num_day): 

  comfort_min[int(sph*(24*i+6)):int(sph*(24*i+18))] = 21 

  comfort_max[int(sph*(24*i+6)):int(sph*(24*i+18))] = 24 

comfort_base_min, comfort_base_max = 16*np.ones(ph), 18*np.ones(ph) 

 

#price = 1*np.ones(ph) #price of consumption (For BAU) 

price = 4.33*np.ones(ph) #price of consumption (Flat reat - Active this line only) 

for i in range(num_day): 

  price[int(sph*(24*i+6)):int(sph*(24*i+9))] = 50.65 #price of consumption (Rate flex 

M - Morning - Active this line only) 

  #price[int(sph*(24*i+16)):int(sph*(24*i+20))] = 50.65 

 

penalty = 2000*100*np.ones(ph) #comfort violation penalty 

penalty_base = 100*100*np.ones(ph) 

penalty_peak = 1000  

constraints = cons = [] 

 

cons.append(x[0,0] == 18.3,)  

cons.append(x[1,0] == 17.9,) 

cons.append(x[2,0] == 17,) 

 

cons.append(u[0,:] >= heating_min,) 

cons.append(u[0,:] <= heating_max,) 

cons.append(u[1,:] >= heating_min,) 

cons.append(u[1,:] <= heating_max,) 

cons.append(u[2,:] >= heating_min,) 

cons.append(u[2,:] <= heating_max,) 

 

cons.append(d[0,:] == df_sim['Tout'][st:st+ph],) #ambient air temperature 

cons.append(d[1,:] == df_sim['P_pv'][st:st+ph],) #PV generation 

cons.append(d[2,:] == df_sim['Q_sol'][st:st+ph],) #solar gains 

cons.append(d[3,:] == df_sim['Tgrd'][st:st+ph],) #ground or adjacent zone temperature 

 

cost = 0 #cost initialization 

 

for j in range(0,control_factor): #control horizon loop 

  cons.append(x[0,ch*j] == x[0,ch*j-1],) #initialization of temp1 
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  cons.append(x[1,ch*j] == x[1,ch*j-1],) #initialization of temp2 

  cons.append(x[2,ch*j] == x[2,ch*j-1],) #initialization of temp2 

  cons.append(x[3,ch*j] == x[3,ch*j-1],) #initialization of battery soc 

 

  for k in range((ch*j)+1,ch*(j+1)): #step loop 

    cons.append(x[0,k] == x[0,k-1] + (dt/C1)*(u[0,k] + (d[0,k]-x[0,k-1])/R1 + (x[1,k-

1]-x[0,k-1])/R2),) #state estimator 0 

    cons.append(x[1,k] == x[1,k-1] + (dt/C2)*(u[1,k] + (d[0,k]-x[1,k-1])/R3 + (x[0,k-

1]-x[1,k-1])/R2 + (x[2,k-1]-x[1,k-1])/R4),) #state estimator 1 

    cons.append(x[2,k] == x[2,k-1] + (dt/C3)*(u[2,k] + alpha3*d[2,k] + (x[1,k-1]-

x[2,k-1])/R4),) #state estimator 2 

    #cons.append(x[3,k] == x[3,k-1] + (u[3,k]*dt),) #state estimator 3 

     

    #cons.append(x[0,k] == x[0,k-1] + (dt/C1)*(u[0,k] + alpha1*d[2,k] + (d[0,k]-x[0,k-

1])/R1 + (x[1,k-1]-x[0,k-1])/R4 + (x[2,k-1]-x[0,k-1])/R5),) #state estimator 0 

    #cons.append(x[1,k] == x[1,k-1] + (dt/C2)*(u[1,k] + alpha2*d[2,k] + (d[0,k]-x[1,k-

1])/R2 + (x[0,k-1]-x[1,k-1])/R4 + (x[2,k-1]-x[1,k-1])/R6),) #state estimator 1 

    #cons.append(x[2,k] == x[2,k-1] + (dt/C3)*(u[2,k] + alpha3*d[2,k] + (d[0,k]-x[2,k-

1])/R3 + (x[0,k-1]-x[2,k-1])/R5 + (x[1,k-1]-x[2,k-1])/R6 + (d[3,k]-x[2,k-1])/R7),) 

#state estimator 2 

    #cons.append(x[3,k] == x[3,k-1] + (u[3,k]*dt),) #state estimator 3 

 

    #cost += (u[0,k] + u[1,k] + u[2,k]) * price[k] #minimize heating energy cost (For 

BAU) 

    cost += (u[0,k] + u[1,k] + u[2,k]) * 100*price[k] #minimize heating energy cost 

based on rate flex-M (Correct) 

 

    cost += cp.norm2(u[0,k] + u[1,k] + u[2,k] + u[3,k] - d[1,k]) #maximize self-

consumtion 

 

    cost += cp.maximum(comfort_min[k] - x[0,k], 0, x[0,k] - comfort_max[k]) * 

penalty[k] #penalize comfort violation 

    cost += cp.maximum(comfort_min[k] - x[1,k], 0, x[1,k] - comfort_max[k]) * 

penalty[k] 

 

    cost += cp.norm2(u[0,k] - u[0,k-1]) #penalize high slew rate 

    cost += cp.norm2(u[1,k] - u[1,k-1]) 

    cost += cp.norm2(u[2,k] - u[2,k-1]) 

    cost += cp.norm2(u[3,k] - u[3,k-1]) 

 

  cost += (cp.norm_inf(u[0,:]) + cp.norm_inf(u[1,:]) + cp.norm_inf(u[2,:])) * 

penalty_peak #penalize peak demand 

 

  constraints.extend(cons) 

  # form and solve the problem 

  problem = cp.Problem(cp.Minimize(cost), constraints) 

  problem.solve(verbose=True, solver=cp.ECOS) 

   

# value retrieval 

T_out = d[0,:].value 

T1_flx = x[0,:].value 

T2_flexM_morning = x[1,:].value 

T3_flx = x[2,:].value 

Q1_flx = u[0,:].value 

Q2_flx = u[1,:].value 

Q3_flx = u[2,:].value 

Q_flx = Q1_flx + Q2_flx + Q3_flx 

#Q_flx = Q2_flx 

P_flx = Q_flx 

Ppv = d[1,:].value 

P_net_predictive_flexM_morning = P_flx 


