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Abstract

Bolstering EV Charging Ecosystem Infrastructure Resilience and Un-
raveling Threats - A Comprehensive Study

Khaled Sarieddine, Ph.D.

Concordia University, 2024

The adoption of electric vehicles (EVs) has seen a significant rise in recent years,

driven by the need to reduce greenhouse gas emissions and create greener cities. This has

led to the development of a new EV charging ecosystem, composed of both physical and

cyber systems. The physical layer consists of high-wattage IoT charging equipment and

the power grid, while the cyber layer provides access and flexibility.

As the EV ecosystem has advanced, securing it has become crucial due to its critical

role in providing essential services. The inter-connectivity of charging equipment and the

lack of standardization make the system an attractive target for cyber attacks, with the po-

tential to disrupt and destabilize the power grid. Khaled Sarieddine’s research contributions

aim to address these security challenges. The thesis provides a comprehensive analysis of

the EV ecosystem, starting with a detailed literature review and the creation of a real-time

co-simulation testbed that includes both cyber and physical layer components. The research

develops an advanced fingerprinting technique to identify EV charging stations (EVCSs) in

the wild and investigates the malware threat landscape, discovering Mirai-infected EVCSs.

It also examines mobile applications as a potential attack vector against the power grid,

identifying vulnerabilities that could be exploited to initiate unlawful charging sessions.

Furthermore, the research assesses the security of OCPP backends worldwide, uncovering
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6 zero-day vulnerabilities in each of 16 vendors studied. These vulnerabilities impact the

infrastructure’s confidentiality, integrity, and availability (CIA triad). To mitigate the limi-

tations of centralized detection algorithms, the research develops an edge-based detection

mechanism to identify oscillatory load attacks that leverage both physical and cyber layer

features. By addressing these security challenges, this research contributes to the develop-

ment of a more secure and resilient EV charging ecosystem, ensuring the reliable and safe

provision of essential services to individuals and businesses.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

In recent years the demand for Electric Vehicles (EVs) has been increasing exponen-

tially. The main driver behind this demand is the governmental policies that have been put

in due to environmental concerns [4, 5, 6]. For example, 195 countries signed the Paris

Climate Agreement to reduce Green House Gases (GHGs). To this end, governments are

offering incentives for EV purchases ranging from rebates to road tax exemptions. Addi-

tionally, the rising gas prices also contributed to the rapid adoption of EVs worldwide [7].

In Canada, the transportation sector contributes 27% of the total emissions highlighting the

importance of the electrification of the transportation system [8].

Consequently, several public and private entities have invested heavily to accelerate the

deployment of supporting EV Charging Stations (EVCSs) in major cities. For instance,

the Government of Canada has already invested over $1 billion to support the increased

zero-emission EV adoption, with a $680 million initiative towards addressing the lack of

charging and refueling stations in Canada by 2027 [9]. Moreover, Canada also partnered

with leading automakers Volkswagen and Mercedes to help meet the growing demand for

clean transportation solutions [10]. Similar governmental investments are also being put
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into the clean automotive industry aiming to reach carbon neutrality [8]. For example, to

support the anticipated growth in EV numbers, the US government has dedicated 8 billion

USD to establishing a sufficient charging infrastructure.

The commercialization of the EVCS ecosystem is crucial to sustaining the development

of the charging infrastructure further. Thus, remote control capabilities have been instilled

into the ecosystem to ensure flexible management of the distributed infrastructure by the

user and the operator. Such capabilities, widely popular in electric vehicle fleet manage-

ment, car rental, and sharing services such as Uber and others, exposed new attack vectors

that could be used by adversaries to compromise vital services [11]. Moreover, the connec-

tion of the EVCS ecosystem to the critical infrastructure renders the electric grid dependent

on the security of integrated components [12]. Cybersecurity has become a major concern

in recent years. As part of the United States of America’s budget for the year 2024, the

Cybersecurity and Infrastructure Security Agency has been allocated a total of $3.1 billion,

representing a $145 million increase from the previous year’s budget. The funding includes

$98 million for carrying out the Cyber Incident Reporting for Critical Infrastructure Act,

as well as $425 million to strengthen the agency’s internal cybersecurity measures and an-

alytical capabilities [13]. This is after the recent cyber-attacks that hit the US crippling the

Colonial Pipeline and disrupting gas supplies inducing global hikes in prices [14]. Another

major recent cyber-attack is the SolarWinds hack that impacted around 18,000 clients that

downloaded the compromised Orion software update. The infected users include high-

security profiles such as the US Department of Energy, the US Department of Homeland

Security, the Center for Disease Control, and multiple Fortune 500 companies. The list of

victims also includes NATO, the European Parliament, and various governments [15].

Cyber-attacks against the power grid and critical infrastructure are increasing with the

rise of political tension worldwide. For example, the Stuxnet and the BlackEnergy attack

to name a few. The Stuxnet malware attack of 2010 against Iran’s nuclear facilities stands
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out as a landmark event. This incident was the first major example of state-level attacks

against the smart grid, marking a significant turning point in the field of cyber warfare. The

Stuxnet malware attack was meticulously planned and executed with great precision, as it

involved the use of a worm that was introduced into a Windows machine. The worm was

programmed to propagate to its intended target, the Siemens PLC-S7 while maintaining

the lowest possible chance of detectability. This ensured that the malware could operate

undetected for a prolonged period.

The Siemens PLC-S7 is a critical component of industrial control systems and is used

extensively in power plants, water treatment facilities, and other large-scale infrastructure

projects. The worm, once it had infected the PLC-S7, was able to access and manipulate

the centrifugal pressures, which were vital to the operation of Iran’s nuclear program. By

doing so, the malware was able to destroy 10% of Iran’s centrifuges, causing a signifi-

cant setback to their nuclear program. Its success was a testament to the capabilities of

state-sponsored cyber warfare, and it highlighted the vulnerabilities of critical infrastruc-

ture systems to cyber threats. Moreover, the 2015 Ukraine BlackEnergy malware attack

is a prime example of the devastating impact such attacks can have on power grids. This

incident marked the first confirmed instance of a successful cyber attack that left 230,000

consumers without electricity. Another notable example of successful cyber attacks against

industrial control systems is the ShadowPad malware. This malware has been used to target

a range of critical infrastructure systems, including the Indian power grid. The Shadow-

Pad attack highlights the ease with which cybercriminals can gain access to and control

critical infrastructure systems, putting the safety and security of millions of people at risk.

Finally, the Aurora Generator Test is yet another example of the devastating impact that

cyber attacks can have on power grids. This test demonstrated how malware comprising

just 30 lines of code could destroy the rotors of generators in a power grid, resulting in

widespread power outages. This test serves as a stark reminder of the critical importance
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of robust cybersecurity measures to protect against cyber threats to critical infrastructure

systems. Additionally, in recent studies, a high-wattage botnet of IoT devices such as water

heaters, air conditioners, and electric vehicle charging stations are shown to impact the grid

immensely and disturb the power grid operation [16, 17].

These examples serve as a reminder of the need for robust cybersecurity measures and

highlight the devastating impact that cyber attacks can have on critical infrastructure sys-

tems. These incidents underscore the urgent need for robust cybersecurity measures to

protect against cyber threats and ensure the safety and security of critical infrastructure

systems.

Furthermore, recent reports indicate that the EVCS ecosystem is vulnerable to re-

mote cyber attacks, which have real-life impacts. For instance, during the recent Russian-

Ukraine conflict, Russian charging stations were exploited by Ukrainian hackers and used

a backdoor to display anti-war messages and render the charging stations unavailable [18].

Similar attack vectors could be exploited in a more invasive manner which could impact the

power grid as shown in [17] by utilizing such a backdoor to inject malware into the ecosys-

tem. Moreover, various other vulnerabilities have been reported in the system that provides

various attack vectors into the ecosystem by targeting the EVCS firmware, the management

system, and the communication links/protocols [19, 20, 21, 22]. Previous studies focused

on the security of the EV ecosystem by exploring the security of the firmware, the installed

management systems, and the communication link [19, 20, 21, 23, 24]. For instance, Nasr

et al. [19] studied the security of the EVCS firmware and management systems and discov-

ered 13 severe vulnerabilities. Whereas Alcaraz et al. [20] studied the security posture of

the OCPP protocol, which is the main protocol used to control EVCSs, and discovered its

susceptibility to Man-In-the-Middle attacks.
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1.2 Contributions

Despite such efforts to explore the security of various components within the EV charg-

ing ecosystem, there is a lack of understanding about the current security posture of the EV

ecosystem. Different platforms were created to simulate individual components of the EV

ecosystem cyber or physical. Thus, there is a need for a co-simulation testbed that allows

us and other researchers to realistically study the cyber security of the EV ecosystem and

its impact on the power grid during attacks and normal behavior.

To assess the security of the ecosystem we aim to discover, and catalog charging stations

at scale and assess their security, especially focusing on the malware threat landscape. Pre-

vious work has created a fingerprinting mechanism to identify EVCSs but their results were

limited to EVCSs that possess keywords related to the EVCS ecosystem. Consequently, we

create an advanced fingerprinting technique that is used to identify EVCSs with local man-

agement systems. We then assess their security and the spread of malware in the ecosystem

as the EVCS is said to be infected with malware with little to no knowledge of it.

Moreover, we identify a lack of knowledge of the mobile applications in the EV ecosys-

tem. To improve user experience and increase system flexibility, mobile applications have

been incorporated into the EV charging ecosystem. EV charging mobile applications allow

consumers to remotely trigger actions on charging stations and use functionalities such as

start/stop charging sessions, pay for usage, and locate charging stations, to name a few. The

lack of understanding about the extended attacker capabilities and attack implications when

leveraging vulnerabilities across widely used mobile applications to perform large-scale

coordinated attacks against various stakeholders and components within the EV charging

ecosystem is studied.

We also study the security of OCPP backends which is an understudied component.

EVCSs connect to the OCPP backend using OCPP. Thus, enabling remote control of the

EVCSs using cloud management systems and mobile applications. Consequently, we study

5



the OCPP backend for injection and access control vulnerabilities. Access control vulner-

abilities that allow spoofing provide adversaries with a new attack vector to launch covert

attacks against the power grid while mitigating being discovered by operators.

Finally, we devise an edge-based detection mechanism for oscillatory load attacks. Cen-

tralized approaches fail to provide resiliency and are considered a single point of failure.

Operator-centric approaches fail to mitigate multi-operator and Man-in-the-Middle (MitM)

oscillatory load attacks against the power grid. Additionally, the created test bed is lever-

aged to evaluate a distributed mitigation technique, which can be deployed on public/private

charging stations to average out the impact of oscillatory load attacks while allowing the

power system to recover smoothly within 1 second with minimal overhead.

1.3 Thesis Organization

Chapter 2 provides detailed background on the cyber and physical components of the

EV ecosystem and their interaction. The cyber layer consists of mobile applications, a

cloud management system, an OCPP backend, OCPP communication protocol. The phys-

ical counterpart consists of the charging station hardware which is connected to the power

grid.

In Chapter 3, we create a real-time co-simulation test-bed to realistically study the cyber

security of the EV ecosystem and its impact on the power grid during attacks and normal

behavior. We demonstrate the impact of a cyber attack using the EV ecosystem on the

power grid.

In Chapter 4, we devise an advanced fingerprinting mechanism to identify EVCSs with

local management systems. The identification of EVCS takes into account features and

key indicators in their exposed web pages. It does not only consider keywords related to

the EVCS ecosystem but also utilizes Google dorking technique and translation to increase

the number of discovered EVCSs in the wild. Consequently, we assess their security using
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non-invasive techniques and asses the malware threat landscape of the EVCS ecosystem

which has been widely publicized but barely studied.

In Chapter 5, we study the EV charging mobile application as a new attack vector that

could be leveraged by adversaries along with other high-wattage IoTs to inflict harm on the

power grid. We show that an adversary could extend their capabilities to start un-authorized

charging sessions remotely to idly-connected EVCSs which has been demonstrated on two

mobile applications.

In Chapter 6, we study the OCPP backend for injection and access control vulnera-

bilities. We devise a security assessment methodology that could be used to identify vul-

nerabilities in different EV ecosystems and is adaptable to other cyber-physical systems.

We identify 6 vulnerabilities in each of the 16 different operators studied and discover the

ability to launch covert attacks against the power grid.

In Chapter 7, we devise an edge-based detection mechanism that overcomes centralized

detection mechanism limitations. Our approach mitigates the different attack vectors that

can not be detected using operator-centric mechanisms. Additionally, we develop and test

a distributed mitigation mechanism that deprives the attacker of the ability to synchronize

large electric loads.

Finally, we summarize the thesis contributions in Chapter 8 and highlight the existing

research gap that requires further consideration by the research community.
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Chapter 2

Background Information and Literature

Review

2.1 Background Information

The EV charging ecosystem is a cyber-physical system, composed of interacting hard-

ware and software components. In what follows, we provide details about these compo-

nents and their interactions. The EVCS ecosystem incorporates multiple entities that col-

laborate and interact to provide a vital service to the customers (individuals and businesses).

It is the main enabler for EVs that have been spreading rapidly due to governmental policies

that have driven their adoption. The EVCS ecosystem consists of a cyber and a physical

layer, as shown in Figure 2.1.

2.1.1 Cyber Layer

The Cyber Layer is composed of multiple software components coupled with the hard-

ware/physical counterpart. The mobile applications are publicly available and distributed

through application stores (Google Play and Play Store) These applications are needed by
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Figure 2.1: Overview of the EV charging ecosystem and its interactions.

users to control EVCSs remotely and view EVCSs’ status through their communication

with the CMS. The mobile applications could either be operator-specific (manage EVCSs

belonging to one operator) or multi-operator (manage EVCSs of multiple operators). The

multi-operator mobile applications were introduced to simplify the charging process and

enable EV roaming among different operators without the need for operator-specific sub-

scriptions. Consequently, based on the above distinction the operator-specific mobile ap-

plication communicates with the operator’s CMS, whereas the multi-operator mobile ap-

plication communicates with its owner’s backend which in turn forwards the requests to

the respective operator’s CMS using the Open Charge Point Interface (OCPI) [25].

The CMS plays an equally important role in the ecosystem since it provides API end-

points for the mobile application to communicate with the EVCS. Each operator has their

own CMS that is responsible for reservation, scheduling, payments, management, monitor-

ing, etc. The CMS is the most computationally capable component and it is considered the

main driver of the ecosystem. However, to control EVCSs, the CMS communicates with
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the EVCS using the Open Charge Point Protocol (OCPP).

The OCPP protocol is the de facto standard that is utilized to manage EVCS remotely.

The OCPP defines two main roles, a lightweight client (EVCS) and a central server (CMS),

which utilizes full-duplex communication over a TCP connection. The communication

of the OCPP protocol is in the form of transaction functional blocks, where each entity

requires a response to the initiated transaction. This standard is maintained and developed

by an alliance of multiple companies working in the industry. Moreover, a connection

is usually maintained between the EVCS and the original manufacturer which helps in

collecting logging information about the performance of the station. We have validated

these interactions between the different components and the responsibility of each entity,

with our industrial partner Hydro-Quebec, a major North American utility.

Additionally, different cyber components exist however, are not considered as a core

component of the EVCS ecosystem and the connection is optional and does not necessarily

always exist. For example, EVCSs maintain a connection with the original equipment man-

ufacturer (OEM) to share telemetry data about the health of the device and its operational

efficiency which can be used later on to identify and enhance the product. Moreover, this

connection is also used to push over-the-air (OTA) updates to ensure up-to-date software

and the delivery of security patches in a timely manner. Moreover, the smart vehicles also

are connected to their OEM cloud which is used to share telemetry data and OTAs as well.

Finally, there are mobile applications that are used by smart vehicle owners to start/stop the

engine of a vehicle, turn the conditioning, etc.

2.1.2 Physical Layer

The Physical Layer is represented by different entities. Namely, the EVCS hardware in-

cludes the human-machine interface that is used by the users to interact physically with the
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EVCS. After an EVCS is manufactured and bought by an operator, the manufacturer main-

tains a connection to push firmware updates remotely or can make the updates available

online for the operator to manage the process. Moreover, the EVs have multiple hardware

and software components including remotely accessible components such as an On-board

Diagnostic Port and a CAN bus. The EV charging ecosystem was established to match

the demand of EVs and their need to charge. Two types of EVs are dependent on the EV

charging ecosystem, which are the main foci when studying the security of the EV charging

ecosystem: Plug-in Hybrid EVs (PHEVs) and Battery EVs [23, 26]. Other types of EVs

such as Hybrid Electric Vehicles and Fuel Cell Electric Vehicles do not require external

charging [27]. Consequently, EVs connect to the charging stations using various standards

(SAE J-1772/J-2293/J-2847/J-2836, IEC 62196/61851, ISO/IEC 15118, and chAdeMO)

[17, 19, 23] which are a part of the efforts to standardize communication in the EV charg-

ing ecosystem. Moreover, the IEEE 2030.5-2018 standard defines the application layer in

the context of TCP/IP and facilitates the management of various utility functions related

to end-user energy environments. These functions include demand response, load control,

time-of-day pricing, distributed generation management, and electric vehicle integration.

While this standard primarily focuses on the application protocol and its direct interaction,

it also specifies the mechanisms for exchanging application messages, the specific con-

tent of those messages (including error messages), and the security features employed to

safeguard the application messages. The application profile defined in this standard draws

elements from various existing standards such as IEC 61968 and IEC 61850. Additionally,

the CCS (Combined Charging System) is a communication protocol and charging standard

used in EVs. It enables high-power charging by providing a single connector and commu-

nication interface for both AC and DC charging. It is widely adopted, CCS allows EVs

to negotiate charging parameters and access a network of charging stations, making it a

dominant standard in regions like Europe and North America. Moreover, ISO/IEC 15118
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provides a standardized and secure interface for exchanging information during the charg-

ing process. The standard covers both wired and wireless communication interfaces, ensur-

ing interoperability between different EVs and charging stations. It includes the Charging

Communication Controller as a key component, which is responsible for handling commu-

nication between the EV and the charging infrastructure. ISO/IEC 15118 also introduces

the concept of "Plug and Charge," allowing for automatic authentication and authoriza-

tion of the charging session without the need for additional user interactions. Additionally,

SAE J-1772, also known as the SAE Electric Vehicle Conductive Charge Coupler, is a

standard that defines the physical and electrical interface between electric vehicles (EVs)

and charging stations. It specifies the connector and signaling requirements for Level 1

and Level 2 charging, which are the common AC charging levels for EVs. The standard

ensures interoperability and safety by providing a standardized connector design for charg-

ing infrastructure. It includes provisions for communication between the vehicle and the

charging station, enabling features like power delivery control and safety interlocks. SAE

J-1772 has been widely adopted in North America and is a crucial component of EV charg-

ing infrastructure in the region.

Moreover, there are several EVCS classifications. Level 1 chargers (slow chargers) are

being replaced by Level 2 chargers, which are mostly used commercially as public EVCSs.

Moreover, Level 3 chargers (providing a higher charging rate) are being introduced to im-

prove the user experience and decrease charging times [17]. We focus on public EVCSs

deployed by companies, governmental entities (e.g., Circuit Electric and ChargePoint), or

private EVCSs that are made publicly available by the owner to earn extra income. It is

worth highlighting that the EVCSs are also connected to the power grid (critical infras-

tructure) to draw the needed power for EVs to charge. Measurement units are distributed

over the infrastructure and share information with the utility cloud. The utility utilizes this

information to ensure visibility over the power grid.
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2.2 Literature Review

2.2.1 Co-simulation

Previous works have implemented digital platforms for evaluation of cyber-physical

systems performance. We focus mainly on power grid-connected technologies. One such

example is the work in [28] where the authors survey different digital twin applications in

the field of energy storage. They demonstrated how these models can accurately capture

the behavior of battery systems, and digital models and couple it with digital data to create

a digital twin. All these implementations however are only meant to simulate an individual

aspect of their respective applications.

The work in [29] on the other hand, creates a digital twin for the integration of blockchain

into the field of photovoltaic-connected microgrids. Their work models the power flow and

the blockchain using their detailed mathematical models and evaluates the performance

of their digital twin in terms of required computing power, energy cost, and grid voltage

deviation.

Other studies have attempted to build an EV ecosystem simulator, however, their im-

plementations were restricted to specific components such as the EV, or the scheduling of

charging. In [30], the authors propose a design for a real-time simulator of the EV only.

The testbed simulates the EV powertrain such as the energy consumption monitor, control

units, mechanical transmission system, etc. Moreover, details like tire-road and aerody-

namic information were taken into consideration. However, their work only focuses on

EVs’ internal components and does not study the ecosystem as a whole. Our testbed on the

other hand focuses on the entire EV ecosystem instead of the EV itself.

In [31], the authors proposed a co-simulator to study the security of the OCPP protocol.

Their co-simulator relied on ZeroMQ, Protobus, and a publish-subscribe model to achieve
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communication between their virtual machines (VMs) hosting their EVCSs, cloud man-

agement system (CMS), and the power grid simulator. They used OpenDSS to simulate

the distribution power grid. However, this raises the question of the scalability of the used

grid, as the performance of OpenDSS relies on the computing power of the machine it is

running on. Furthermore, their method only focuses on OCPP and disregards the other es-

sential components of the EV ecosystem. On the contrary, our co-simulator includes all the

main cyber components of the EV ecosystem and can simulate the power grid’s transient

and steady-state stability in real time.

Another EV co-simulator was developed in [32] to test a control scheme used to re-

duce the frequency fluctuations caused by the intermittency of renewable energy resources.

The authors develop a control mechanism to store/inject power from the EV batteries into

the grid based on frequency fluctuations. Their co-simulator consists of a real-time power

grid simulator connected to a power amplifier, which is connected to 2 EVCSs. Although

they were able to demonstrate their method using actual EVCSs, their co-simulation was

intended to study a single aspect of EV charging and could not be used for security stud-

ies since they did not model the actual ecosystem and any of its cyber components and

communication channels.

2.2.2 Discovery

In this section, we survey and discuss previous work that tackled IoT and cyber-physical

system device discovery mechanisms and provide a detailed security assessment of cyber-

physical systems.

Different commercial search engines exist that are used to discover, catalog, and an-

notate Internet-connected devices by scanning the entire IP address space. For example,

Shodan [33] and Censys [34] are two commercial services that are used to discover de-

vices. These device search engines gather information about all devices directly connected
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to the Internet. Search engines query devices for various publicly available information.

The bulk of the data is taken from banners, which are metadata about software that’s run-

ning on a device. While these search engines provide access to structured data, they still

lack the ability to label the devices due to the wide variety of IoT devices that are connected

[19, 35].

Nasr et al. [19, 35], created an EVCS management system discovery mechanism

that leverages passive scanning device search engines. Their approach mainly identifies

charging stations that possess EVCS-related keywords and login forms in their web in-

terface/banners. They were able to discover 44 EVCS charging vendors accumulating to

27,439 EVCS hosts, where the majority of the discovered hosts are cloud management

systems. The authors utilized Shodan, Censys, and Zoomeye, however, the authors note

that they were able to discover more than 90% of the EVCS hosts using Zoomeye whereas

the others were only able to discover around 5000 hosts only. Moreover, it is worth high-

lighting that the authors disregarded the presence of EVCS hosts that do not embed EVCS

keywords or do not provide a login form thus, limiting their discovery technique. Some

charging station vendors do not provide a login form as the web interface is only used to

display the status of the charging station and might provide different services to manage

the charging station remotely such as SSH. Moreover, the authors did not take into consid-

eration the need for translation to identify EVCSs in the wild and expand the knowledge

of the ecosystem. EVCS fingerprinting is essential as it can provide utilities and attackers

with a comprehensive view of the ecosystem. Finally, the authors utilized penetration test-

ing techniques to identify vulnerabilities induced by the manufacturer/vendor such as SQL

injection, XSS, etc.

In [36], the authors created an Acquisitional Rule-based Engine (ARE) for discovering

IoT devices in the wild. ARE is an engine that creates association rules used to identify

the discovered generic IoT devices (routers, IP cameras, etc.), that leverages the Apriori
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algorithm to dynamically identify IoT devices. They extract product names that follow the

observation that a general IoT device product name is a combination of letters and numbers

(perhaps containing "-"). Moreover, they utilize device entity recognition that requires ac-

cess to a predefined list of vendors and product names. ARE engine generates rules that are

used to identify IoT devices in a fine-grained manner as compared to other existing tools.

However, due to the lack of standardization in the EVCS ecosystem, such a mechanism

fails to identify EVCSs as they do not follow a standardized naming convention and hence

a comprehensive list of vendors and their respective products does not exist. Moreover,

in [37] the authors fingerprint industrial control system management devices by actively

scanning mobile communication networks in Japan and the United States of America and

manually inspecting web pages. They were able to discover 21 device models accumu-

lating to 890 hosts. They further their study by performing penetration testing techniques

on 3 device models and identified 13 0-day vulnerabilities. Moreover, they developed and

deployed honeypots that imitate remote ICS devices and monitored attackers’ behavior to

study the imminent threat that these devices are facing. However, their work only focused

on attacker behavior disregarding the malware threat landscape. Similarly, in [38], the au-

thors work on discovering Internet-connected vehicles while developing an approach that is

similar to the approach proposed in [19], nasrchargeprint, and discovered 733 hosts belong-

ing to 12 vendors and then further studied the usage of vulnerable service and identified

that 91.6% of the vendors are running vulnerable services rendering the Internet-connected

vehicles exposed to cyber-attacks. Moreover, Costin et al. [39] utilized supervised machine

learning to classify firmware images and correlate them to the WebUI interface. Whereas,

Wang et al. [40] proposed an engine for identifying IoT devices by utilizing the similarity

between the response data of different IoT devices of the same vendor or product based

on the structure and style of the response data. Additionally, Yu et al. [41] proposed a
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firmware identification method by analyzing web page content. In contrast to other de-

vice types, EVCS has limited and non-trivial banners where most EVCMS products are

closed-sourced, in addition to the lack of banner rules for identifying them [35]. Further-

more, EVCMS’s lack of standardization among developers and vendors resulting makes it

unfeasible to use existing approaches to fingerprint EVCSs [35].

2.2.3 Attacks

In this section, we survey and discuss previous work that tackled the security of the EV

charging ecosystem’s components. The security was analyzed from various perspectives,

one of which discussed the security software component and the communication protocols,

and the implications of the security vulnerabilities on the infrastructure.

Nasr et al. [19], studied and examined the security posture of the EVCS and their

management systems. They managed to find vulnerabilities across 13 severe vulnerabil-

ity classes in firmware and management systems (mobile applications and websites). It is

worth mentioning that in [19], mobile applications were analyzed using only static analy-

sis, whereas our analysis utilizes both aspects to understand the interaction of the different

components without taking into consideration the interactions of the components and de-

sign flaws. Moreover, outside of academia Kaspersky Lab’s team [42] analyzed the security

of ChargePoint home charging station and found significant vulnerabilities in its firmware

and mobile management application.

In [19, 35], the authors highlight multiple vulnerabilities in the EVCS firmware that

could be exploited by adversaries to impact the power grid such as XSS, CSRF, SQL In-

jection, etc. The authors of [20, 43, 44] investigated the OCPP protocol from a theoretical

point of view and discovered that OCPP 1.6 and 2.0.1, which is widely adopted by the

industry, are vulnerable to MitM attacks if the adversary was able to break the TLS. Thus,

the authors in [20, 43, 44] assume attackers can compromise confidentiality and integrity
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by hijacking the communication during the early stages of the TLS handshake. Whereas,

in our work we do not assume any previous vulnerability or advanced adversarial capa-

bility. However, the adversary can not interfere with the communication at later stages

of the deployment and operation of the EVCS. In 2020, a more secure OCPP 2.0.1 was

launched. Nevertheless, it is not backward compatible, making it difficult to go forward

without making significant modifications to its products.

Furthermore, several studies were conducted to analyze the security of ISO 15118,

which is used for communication between the EVCS and the EV. For instance, in [45, 46],

the authors implemented a wireless attack to eavesdrop on the communication between the

vehicle and the EVCS to extort sensitive information using electromagnetic side-channel

attacks. Whereas in [47], the authors present attacks that impact the charging process. In

[48] on the other hand, the authors proposed and demonstrated the first EV relay attack

that allows the adversary to steal energy from other users by exploiting the ISO 15118. A

system assessment based on the CIA triad was performed in [24]. Similarly, in [49] the

ecosystem is studied against known attacks such as network and physical attacks.

To this end, while previous work has tackled the security of different components within

the EV charging ecosystem, the OCPP backend systems and mobile applications remain

unchecked for vulnerabilities.

2.2.4 Impact and Detection

In [51], the authors exploited publicly available data of EV chargers of the Manhat-

tan, New York, power grid to design a novel data-driven cyberattack strategy using state-

feedback-based partial eigenvalue relocation, which targets frequency stability of the power

grid. The current number of EVs is not adequate to create sizable impacts, however, with

the increased adoption of EVs and deployment of charging stations to match the demand,

the grid will face such attacks and impacts.
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To initiate an oscillatory load attack from the EVCS surface, several EVCSs have to

alter their charging behavior to follow a repeated on-off behavior within a very short period.

The oscillatory attacks are characterized by the EV load, duration of the attack, and the

instant of switching. These characteristics differ based on the power grid and its loaded

conditions. Two variations of the attack exist, the charging oscillatory attack, relies on

starting and stopping several charging stations. Whereas, the discharging oscillatory attack

relies on charging and discharging connected EVs through several charging stations.

Different combinations of the two variations can also be included; however, this work

focuses on the charging oscillatory attacks, whereas future studies could include the dis-

charging paradigm, vehicle-to-grid (V2G), as it gets rolled out to the public. The oscillatory

load attack takes advantage of load manipulation and alternates between a surge in demand

which causes a frequency drop on the power grid and when the system starts its recovery

and the generators start speeding up again the attacker would switch off the EVCS ini-

tiated in the first step and cause a frequency increase. This could be amplified by using

discharging oscillatory load attacks, which would cause the generators to speed up due to

the mismatch between the demand and extra generation [17].

Different types of oscillatory load attacks can be curated and are summarized as fol-

lows:

• Switching attacks:

◦ Square wave: synchronizing the compromised load and switching them be-

tween on and off [50, 52]. This attack can be made stealthier by distributing

the switching behavior on multiple EVCSs to reduce the number of events per

EVCS.

◦ Alternating sine wave: synchronizing only small portions of the compromised

load every time step T [3, 53] (stealthier than square wave attacks and detecting

them is not straightforward).
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• Dynamic attacks: the size and the trajectory of the compromised load is determined

by the attacker based on the grid behavior to achieve and maximize the impact on the

grid instability [54].

From a grid perspective, oscillatory EV loads can be manipulated to have lower power

factors [55], thus entailing a larger impact compared to residential loads [17]. Oscilla-

tory load attacks do not require huge loads or injections to cause abnormal behavior on

the power grid [50]. Even when the load is not large enough to cause generator tripping,

a sustained switching attack can cause frequency and voltage oscillations, which in turn

damages the turbines due to the constant acceleration and deceleration [17]. Moreover,

it is worth mentioning that a variation of these attacks might target inter-area frequency

as discussed in [3], these attacks are stealthy and may not be distinguished from the load

variations of the grid [3, 52] which makes oscillatory load attacks initiated by the EVCS

ecosystem a serious concern. Furthermore, other oscillatory load attacks can be used to

force different types of oscillations, such as exciting sub-synchronous resonance [56]. Fi-

nally, in the dynamic attack scenario, the adversary induces forced oscillation without the

need to excite a specific unstable mode present in the power grid [54].

It is worth noting that, the existence of various operators and the wide distribution of the

charging stations, created stealthy attack vectors (adversarial) that might exploit the charg-

ing stations of different operators to create the same impact on the power grid and hinder

the utilities’ ability to detect and localize due to the increased complexity in monitoring the

consumer loads. Consequently, to locate an attack a utility might depend on PMU mea-

surements and other artifacts however, they do not reach the granularity of identifying the

exact location of the charging station that was exploited to initiate the attack due to the

wide distribution of the charging stations and the presence of multiple operators. Granular

localization information is necessary for the utility to provide adequate countermeasures

and create plans to secure its system.
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Mohammad et al. [17] demonstrated the impact of compromising EVCSs on the power

grid and launched attacks against it. Then discussed the non-linear nature of the EV charg-

ing load and simulated multiple attacks that can be launched against the power grid using

these EVs. While the grid was able to recover after a 48 MW attack utilizing traditional

residential loads, a smaller 30 MW EV load attack can completely destabilize the grid.

Moreover, in [57], the authors study how a botnet of compromised EVs and fast-charging

direct current stations can be utilized to launch cyber attacks on the power grid and its impli-

cations on the transmission and distribution networks. Additionally, in [58, 59, 60, 61, 62]

they study the implications of EV charging on the grid and discuss some mitigation tech-

niques. Moreover, in [63] they discuss the use of SMS phishing as a social-based attack.

Where an attacker can send spoofed text messages to the users advertising a discount (20%

off when the users charge their vehicle at noon). Consequently, they studied the impact

of such an attack on the grid. However, mobile phishing attacks require knowledge of the

mobile phone numbers of EV users in a certain target area, which affects the feasibility of

acquiring such information. Furthermore, in [63] the attack depends on the susceptibility

of users to the demand and response phishing attack.

In [3], the authors studied oscillatory load attacks and devised a centralized detection

mechanism using a backpropagation neural network. The deep learning model developed

can be deployed on a central management system and targets switching attacks that are

initiated by the public charging station. Moreover, the proposed approach in [3] resulted

in a 30% false negative for swift 20 seconds attacks which translates to 30% of the attacks

being classified as normal, the uncertainty in the results motivates the need for an effi-

cient detection mechanism. It is worth mentioning that such operator-centric mechanisms

(mechanisms that are deployed on the CMS of each operator) fail to detect multi-operator

oscillatory load attacks due to their ability to view the activity of other operators.
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Different detection mechanisms have been proposed in the literature to identify physi-

cal layer attacks, such as False Data Injection [64], using recurrent neural networks [65], or

using Bad Data Detection algorithms that rely on measurement residuals [66]. Moreover,

other techniques, such as AdaBoost, random forest, and common path mining, have been

studied [67, 68, 69, 70]. Additionally, a hybrid deep learning-based Dynamic Line Rat-

ing forecasting approach is used to detect cyber-attacks based on the increase in the least

square errors [71]. These schemes, however, are aimed at detecting attacks that target the

measurements and cyber layer of the grid without delving into attacks against the actual

power consumption of the loads. The detection of oscillatory load attacks, to the best of

our knowledge, hasn’t been widely studied in previous work. It is worth mentioning that

previous work also lacks localization methods that link attacks to particular physical loca-

tions. In this approach, because of the portability and the deployment location (EVCS), the

operator can identify and localize attacks to the granularity of a charging station which al-

lows the grid operator to create better defenses against attacks. Furthermore, the detection

mechanisms that depend on state estimations and knowledge about the power grid using

different devices such as PMUs may fail under attacks that target the physical and cyber

layers simultaneously [72]. These types of attacks include steps to mislead the control

center similar to the Ukrainian power grid attack.

Moreover, in [73] the authors created an LSTM deep learning model to detect DDoS at-

tacks that can violate the availability of EVCSs by targeting the management system. They

studied different types of DDoS attacks that will affect the availability of resources. In this

work, it is not assumed that the attack has changed the attributes of network packets. Also,

no access to network packets is provided before, throughout, and after the attack unlike

[73]. EVCS logs are utilized to deploy a distributed detection mechanism on the charging

station. Consequently, the authors in [73] furthered their study to create an IDS to detect

FDI and DDoS attacks on photovoltaic controllers [74] whereas in this work oscillatory

23



load attacks on the cyber-layer of the EV ecosystem. Since these attack scenarios require

the attacker to send a single OCPP message to the EVCS every attack period (in the or-

der of seconds), the network behavior of such an attack does not resemble that of a DDos

which requires flooding the target with requests. As a result, such a detector cannot be uti-

lized to detect oscillatory load attacks. Moreover, in [75] the authors devised a ransomware

detection mechanism while assuming that the ransomware can initiate DDoS and FDI at-

tacks that might alter the state of charge thresholds. The detection mechanism is based on

assembly instructions that are generated after the ransomware starts executing, whereas in

[76], the authors proposed an early detection mechanism based on pre-attack (paranoiac)

activity that the ransomware performs before executing. In [75], the authors utilized 561

ransomware samples to train and test their deep-learning model. However, there are vari-

ous classes/families, wherein [76] the authors collected about 3000 ransomware samples,

which makes the data set created in [75] unrepresentative. Furthermore, both [75] and

[76] would fail to detect oscillatory load attacks since these attacks are not a result of any

malware/ransomware activity on the EVCS.
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Chapter 3

A Real-Time Cosimulation Testbed for

Electric Vehicle Charging and Smart

Grid Security

3.1 Methodology

This section describes the architecture of our proposed real-time EV co-simulation

testbed. Our co-simulator consists of simulated cyber and physical layer components as

well as actual communication channels as illustrated in the top-view representation in Fig-

ure 3.1. This testbed can be used for various types of studies related to EV penetration

levels, sizing of EVCSs, impact of EV charging on power grid stability, and most impor-

tantly evaluating the security of the EV ecosystem and implications of cyber-attacks on the

power grid.

The first step of developing our testbed would be the implementation of the 2 main ele-

ments of the ecosystem which are the CMS and the EVCS and establishing communication

between them through the de facto OCPP standard. We rely on the basic OCPP setup in
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Figure 3.1: Overall co-simulation real-time testbed system model

[77] and follow the actual OCPP standard [25] to implement the protocol’s functions and

communication methods. We also implement the phone apps used by users to control their

charging sessions and their communication with the CMS. To manage these emulated com-

ponents and ensure the scalability of our testbed we leverage vSphere which is a VMware

cloud computing virtualization platform deployed on a server. vSphere allows us to easily

manage extremely large numbers of VMs on which we deploy our CMS, EVCSs, mobile

apps, and all other emulated components on Linux-based VMs.

Given the connection of the EVCSs to the power grid, it is of the utmost importance

to include the grid in our co-simulation testbed. The EVCSs need to be split among the

two layers to be incorporated into our co-simulation testbed. The first layer is the EVCS

firmware simulated as part of the cyber layer and the second is the power grid EVCS load.

To simulate the power grid in real-time, we utilize Hypersim which is a power grid sim-

ulator by Opal-RT that runs on a windows VM. To achieve real-time simulations, Hypersim

runs on dedicated multi-processor hardware (OpalTagert) and is connected to the Hypersim

VM over a Local Area Network. We also chose Hypersim for its ability to interact with our
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emulated components as well as integrated Python scripting abilities.

3.1.1 EV Fleet and EVCS Aggregation

To simulate thousands of users, EVs and EVCSs, we utilized an aggregation mechanism

based on the geographic location of the EVCSs. Our aggregation approach is adaptable

and could be easily modified based on the studied scenarios and grids. For the sake of

demonstration, we aggregate the EVCSs connected at each load bus in our grid into one

VM. As for the number of vehicles in our grid, we utilize actual data based on the grid load

profile and the number of cars. The specific details are later discussed in the implementation

section. While we acknowledge that the current number of EVs is not sufficient to cause

large impact on the power grid, the exponentially increasing trend in EV adoption will

add a huge EV charging load into the grid as demonstrated in the Experimental Setup

section. To this end, after scaling the total number of vehicles to our grid, we perform

our study based on a future level of 50% EV adoption. We then determine the number

of EVCSs based on the current global EV-to-EVCS ratio and average charging rates. We

also create a data-driven model for the arrival and charging times of the EVs. To create

a realistic EV load profile we independently simulate a Poisson arrival process of EVs to

each EVCS. The charging time of these EVs is then simulated as a truncated Gaussian

distribution. The parameters of these models of the arrival and charging time are specified

for 1-hour windows for a 24-hour period. These parameters are tuned based on a real

dataset containing 5 years of records for 7,000 EVCSs. This dataset was obtained from

Hydro-Quebec as part of a legal agreement and research collaboration. Hydro-Quebec

owns and operates, through a subsidiary, the public EVCSs in Quebec.
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3.1.2 Real-Time Power Grid Simulation

For the real-time modeling of the power grid, we utilize Hypersim which allows us

to simulate the power grid with all its static and dynamic behavior. Hypersim provides

a flexible and scalable architecture along with high-speed parallel processing to enable

real-time and realistic tests to meet the rapidly evolving requirements of the energy sector.

Hypersim also allows us to observe, analyze and evaluate the impact of EVCSs on the grid

in real-time. Hypersim also includes realistic models of power grid protection mechanisms

and the ability to interact with hardware that is connected to the OpalTarget. After we

build our power grid model in Hypersim, it is incorporated within our testbed to study the

interactions between the grid and the cyber-physical layers of the EV ecosystem. Hypersim

also allows us to model any new functionality and control logic we need either by building

it directly in Hypersim or importing it from MATLAB Simulink.

To enable the EVCSs VMs to interact with their physical power load on Hypersim, we

utilize a Python API that allows the EVCS VMs to control aggregate EV load models on

the power grid buses. The delay introduced by the Python script is below 5µs which is

negligible. In an actual EVCS, this communication happens over a short wire since the

processor sits on top of the hardware making the delays also negligible. To simulate the

electric behavior of an EVCS which is a battery charger, we use the PQ-dynamic-load

model available in Hypersim. This model allows us to set the loads’ voltage sensitivity,

frequency sensitivity, harmonics, and all properties of a battery charger.

3.1.3 Cyber and Cyber-Physical Layer Emulation

To create an accurate representation of the EV ecosystem, we first need to emulate

the ecosystem’s components. As mentioned above, the cyber components are emulated on

vSphere. We have chosen vSphere as our platform keeping in mind the need for future scal-

ability as we increase the number of emulated hosts and possibly include different power
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Function From To Description

BootNotification EVCS CMS After start-up, a request is sent with information about the EVCS (e.g.
version, vendor, serial number, etc.). The receiver then responds to indicate

whether it will accept the connection.
HeartBeat EVCS CMS A message that ensures availability of the EVCS.

Get Configuration CMS EVCS Retrieve the value of configuration settings of the EVCS to understand the
available functionalities such as remote charging, smart charging, etc.

Authorize EVCS CMS Before the owner of an EV can start or stop charging through the mobile
application, the EVCS has to authorize the operation and confirm to the

CMS that an EV is connected.
Remote Start/Stop Transaction CMS EVCS After authorization, a remote start/stop transactions command can be

triggered to initiate the charging session and draw power from the grid
(Hypersim in our testbed).

Firmware Update and Status CMS EVCS A function that is used to command the EVCS to retrieve an updated
firmware from a remote entity whose location is specified via a URL.

Charging Profile CMS EVCS a request that contains information about the charging profile including the
charging schedule, charger cable limits, etc.

Set/Get/Clear Display Message CMS EVCS A set of functions that control the display screen on the HMI and set,
retrieve, toggle or clear the messages on the screen.

Meter Values EVCS CMS A function that is utilized to send periodic updates to the CMS by collecting
readings such as the power consumption, voltage, current, etc. Using these
meter values, the CMS gathers granular information about the operation of

the EVCSs.

Table 3.1: Implemented OCPP functions and description.

simulators operating in tandem. vSphere provides us with great flexibility in allocating re-

sources in an efficient manner. The emulated cyber components of the ecosystem include

the mobile applications and CMS used to provide remote capabilities and management of

the EVCSs, the EVCS firmware and its Human-Machine-Interface (HMI), as well as real-

istic models of the EV fleet connection to the chargers and their total power drawn from

the power grid. Finally, all these components are integrated together by implementing the

actual communication protocols they use.

MOBILE APPLICATION The mobile application is an essential component for the com-

mercialization of the EV ecosystem. It provides various remote capabilities such as start-

ing, stopping, and scheduling charging. These mobile applications provide a new attack

vector that could be used to impact the power grid [50] by exploiting the lack of end-end

authentication between the users and their vehicles. Thus, to study the system compre-

hensively, we create an emulated version of the mobile application and its functionalities.

For the current implementation, we focus on the starting and stopping of charging sessions

which we use to demonstrate the attack scenario described below. We create three mobile
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application VMs that represent the aggregate EV load connected to each bus in the chosen

grid. To ensure realistic emulation of the communication initiated by the mobile apps, we

use HTTPS communication between the mobile application and the CMS to emulate the

real-world communication forced by Android and iOS operating systems. Specifically, we

utilize HTTP Post requests to send information to the cloud backend and the HTTP Get

request to retrieve information and display it on the mobile app VM.

CENTRAL MANAGEMENT SYSTEM The CMS provides two vital services that are used

to enable communication between the mobile app and the EVCS. The CMS possesses a

huge amount of computing power and is usually hosted on cloud computing platforms such

as AWS, Google Cloud, and Azure. The first service is the mobile application endpoint that

is responsible to send and receive requests from the mobile application as discussed above.

The CMS will receive start and stop requests to trigger subsequent actions in the cloud

where each mobile application VM sends the ID of the EVCS it is targeting. Since we

are using aggregated EVs/EVCSs, each of our mobile app VMs also sends the number of

EVCSs it is controlling.

Furthermore, the CMS hosts an OCPP server service and has an established communi-

cation channel with the EVCSs. The CMS translates the actions triggered by the mobile

application to OCPP which is used to manage the EVCSs. The CMS OCPP server is imple-

mented over Python 3.9 following the official standard release [25] and utilized the basic

OCPP library [77].

EV CHARGING STATIONS The EVCS is the central cyber-physical component of the

EV ecosystem. The EVCS would receive requests from the CMS over the OCPP proto-

col and manages its hardware accordingly. An EVCS is made up of an OCPP client and

charging hardware that are common to all EVCSs and firmware that is specific to differ-

ent manufacturers, as well as an onboard HMI. We implement the OCPP client service on

the EVCS to emulate the behavior of a real EVCS and deploy it on a Linux-based VM to
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represent an aggregate number of EVs/EVCSs following the aggregation logic presented

above. The EVCS OCPP client initiates a connection to the CMS to establish a persistent

connection that is utilized for all subsequent requests. The OCPP client also keeps track

of internal information in a lightweight database, such as EVCS variables that show the

status of EVCS (available, busy, error), transaction IDs, etc. To emulate the physical con-

nection of the EVCS to the power grid using the Python API discussed in the Power Grid

Simulation Section.

One important function of the EVCS is to verify that an EV is connected and inform

the CMS that it can initiate a charging process. Since we are aggregating our EV charging

load, the EVCS VM needs to check with the external service hosting the EV fleet model

we discussed above for the number of connected EVs at the given bus. Then it reports this

aggregate number to the CMS by utilizing the Authorize function implemented over OCPP

and described in Table 3.1. For this work, the EVCS firmware utilizes the Pandas library

available in Python to read minute-by-minute EV load values from a CSV file generated as

discussed in our EV fleet aggregation section. This will be extended into a digital twin of

the EV fleet that changes dynamically in real-time within our testbed.

Finally, we create a representation of the HMI available at the EVCSs that allows local

authorization and payment for the charging sessions. This is emulated simply by having

a script that can locally initiate a charging session. We also simulate the HMI’s display

screen by creating the functionality to receive, write and display messages. We aim in our

future work to create a visual interface for this display instead of displaying the messages

in the console.

COMMUNICATION PROTOCOLS IMPLEMENTATION The OCPP protocol is the de facto

standard and the main communication protocol used between the CMS and EVCS. OCPP

defines two main roles, a lightweight (client/EVCS) and a central server (server/CMS).
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OCPP utilizes WebSockets that provides full-duplex communication over a TCP connec-

tion. The communication is initiated by the EVCS client when it connects to the CMS

server and provides a persistent channel. We have implemented the OCPP protocol and its

functions following the official documentation [25]. We implemented the most commonly

used version which is OCPP v1.6 and the latest version 2.0.1. It is worth noting that, we

validated our OCPP client and server implementations with production-grade EVCSs and

the CMS backend provided by Hydro-Quebec as part of a legal agreement and research

collaboration.

The communication of the OCPP protocol is in the form of transaction functional

blocks, where each entity can initiate a transaction which requires a response from the

receiving entity. Initially, when the EVCS is connected to the power outlet, it will send a

boot notification to declare its presence to the CMS. The CMS in return replies with the

current time, heartbeat interval, and notification if the connection was accepted or rejected.

The current CMS time is used to synchronize the clock of the EVCS, whereas the heartbeat

interval is used to set the heartbeat frequency of the EVCS which is used by the CMS to

validate that the EVCSs are still online. It is worth noting that because of the usage of

WebSockets, the OCPP standard mentions that the heartbeat time interval can be as low as

once every 24 hours. However, we observed in current practices, heartbeats every 180s.

We describe the OCPP functionalities we have implemented in Table 3.1.

3.2 Implementation and Demonstration

The goal of this co-simulation testbed is to generate realistic EV ecosystem behavior

for cyber security and power grid stability studies. This testbed can be used to evaluate

the security of the EV ecosystem based on actual communication channels, and realistic

implementations of the main components within this ecosystem. Our testbed can also be

used to collect realistic and real-time data on the power grid’s reaction to EV charging load
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Table 3.2: Specifications of the real-time co-simulation testbed.

Technology Specification
vSphere ESXi Version 6.0.0

Hypersim Version 2022.1
Hypersim Simulation Step Size 25µs

OpalTarget OP5707XG - RCP/HIL Virtex-7
EVCS VM 1GB 1 CPU
CMS VM 1GB 1 CPU

Mobile app VM 1GB 1 CPU
Python Interface Python 3.7

during normal operation and during EV attacks against the grid. Different types of data and

communication traffic can be monitored and studied using our testbed ranging from OCPP

traffic, mobile applications to CMS communication, EVCS interaction with the power grid,

EVCS logs, CMS logs, etc. Using the Hypersim functionalities related to power grid real-

time monitoring, we can monitor and record measurements such as voltage and current

values, power flows, frequency fluctuations, transformer loading, etc. These measurements

can be collected and logged in CSV files to be analyzed later. These measurements can

also be incorporated into grid protection mechanisms to add resilience to the power grid

whether these mechanisms exist in Hypersim or are implemented by us.

EXPERIMENTAL SETUP AND PARAMETERS:

After preparing our testbed, with the previously mentioned emulated components, we

generate multiple instances of the EVCSs and mobile apps to scale our ecosystem as re-

quired following the specification in 3.2. Given our utilization of vSphere, scaling this

environment would be rather easy to achieve.

To demonstrate the power grid portion of our co-simulation testbed, we chose to build

the WSCC 9-bus grid and implement its detailed and realistic generator models and con-

trol mechanisms in Hypersim. The WSCC grid is a simplified abstraction of the Western

Interconnect in the United States and Canada. This grid has 9 buses, 3 generators, and 3

loads totaling 315MW. For EV fleet aggregation, we consider each of the load buses as a
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geographical area and aggregate its EVCSs giving us 3 emulated EVCSs and 3 emulated

mobile applications. In case of multiple operators, each will have a CMS, 3 EVCSs, and 3

mobile apps. When the setup is complete we scale our EV fleet and our grid loads based on

the New South Wales (NSW) grid. To this end, we scale the 9-bus grid based on the NSW

load profile [78] and achieve a 24-hour load profile for our testbed. The minimum, average

and peak loads in the NSW grid are 5,897MW, 6,968MW, and 8,214MW respectively.

The total number of registered vehicles in NSW is 5,892,206 [79]. Scaled down to fit

the 9-bus grid, the number of vehicles becomes 266,367. As stated previously, we intend

to perform studies on the future impact of EVs on the grid. To this end, we assume a

50% EV penetration level giving us a total of 133,184 EVs in our environment. As per

the International Energy Agency (IEA) [80] EVCS operators, utilities, and governments

strive to maintain sufficient EVCSs to guarantee the quality of charging services. This has

resulted in a global average of 1 public EVCS for every 10 EVs on the road. According to

this ratio, our ecosystem will have a total of 13,318 EVCSs distributed proportionally on

the load buses. Furthermore, according to the IEA [80], based on the mixture of different

charging rates, the global average rate is 24kW per EVCS.

Additionally, we extract the EVCS utilization information from the dataset provided

to us by Hydro-Quebec. The average utilization rate of EVCSs is 30-32% with the peak

charging demand occurring in the afternoon. By examining the dataset, we extract average
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hourly arrival rates and charging times and simulate them as a Poisson process and trun-

cated Gaussian distribution respectively. This results in a data-driven model for our EV

load for a realistic implementation of our testbed. These details, however, vary from one

place to the other where the charging demand in New York, for example, is larger in the

morning hours. From the presented statistics and data-driven EV fleet model, we generate

the EV load profile presented in Figure 3.2. Figure 3.2 demonstrates the minute-by-minute

change in the EV load, the daily average EV load, and the magnitude of the EV attack load

used below.

ATTACKER MODEL We consider a remote adversary that can exploit the vulnerabili-

ties mentioned below to target EVCSs with connected EVs control the EV charging process

and coordinate an oscillatory attack against the grid. To demonstrate the operation of our

real-time testbed we utilize vulnerabilities discussed in previous work. The EV ecosystem

is vulnerable to remote attacks and exploitation by leveraging design flaws [50] and the

lack of trust model between the mobile app users and the EVCS they are controlling. The

advesrary can then create a botnet of genuine mobile applications to be able to utilize it as

an entry point to hijack or initiate an unauthorized charging session remotely [50]. More-

over, the adversary can control ongoing charging sessions by initiating man-in-the-middle

(MitM) attacks against OCPP communication using the OCPP vulnerabilities discovered

in [20]. Using these vulnerabilities, the adversary can leverage compromised charging ses-

sions to perform large-scale, coordinated attacks against the power grid. We also plan to

further develop our EVCS model to include attacks that compromise the firmware of the

EVCS itself which depends on specific implementations of different manufacturers.

EV ATTACK SCENARIO The EV ecosystem is connected to the power grid, which

makes it of the utmost importance to have a realistic testbed to test the EV ecosystem’s se-

curity and its impact on the power grid. In this paper, we utilize our real-time co-simulation

testbed to evaluate the impact of attacks initiated through EV charging loads against the
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power grid. However, this testbed can be used to study any other types of EV attacks on

the power grid.

Oscillatory load attacks are described by an attacker’s manipulation of the power grid’s

load following a certain oscillatory trajectory. These attacks are used to induce forced os-

cillations on the power grid’s frequency making it deviate from the normal 60Hz operating

point. This attack is initiated by increasing the power demand to cause a frequency drop

and when the system starts its recovery, the attacker would decrease the load to cause a

frequency spike. The attack load profile can follow an on/off behavior having a certain

periodicity or it can follow a certain periodic waveform such as a sine wave.

In our attack scenario, we initiate the EV load oscillations through the mobile appli-

cation and OCPP attack models described above. The attacker forces the compromised

EVCS to follow an on/off pattern to cause frequency fluctuation on the grid. Our total EV

attack load is equal to 90 MW or 3,750 EV/EVCSs split proportionally on the 3 attacked

buses. This means that the adversary will have a 12.67-hour window between 11:20 to

24:00 where enough EVs will be connected to the EVCSs. It is noteworthy that other at-

tacks are plausible with smaller compromised EV loads. A smart attacker would target

the grid when it is at its weakest point to cause the most damage. Power grids are at their

weakest point when their power demand is at its peak in the afternoon or at its lowest point

after midnight. Coincidentally, the afternoon is the same time the EV load is at its highest

(2.5 times larger than the needed attack load).

For the attack to remain stealthy and hidden from the utility operating the grid, we chose

a stealthy/slow oscillatory attack with a frequency of 1 on/off cycle every 5s. Furthermore,

this attack remains hidden from EV users since it does not require any change in user

behavior. The attacker will only compromise the EVs that are connected to their respective

EVCSs at the instance of attack. Furthermore, since an average EVCS would deliver less

than 0.9 miles of charge in 1 min (slightly varies depending on the EV properties), an attack
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Figure 3.3: Grid frequency response due to EV attack

lasting a few seconds will have an unnoticeable impact on an EV’s range.

EV ATTACK IMPACT AND DATA COLLECTION The described attack is initiated and

t=5s and will cause the frequency oscillations depicted in Figure 3.3 on all the grid’s buses

and its generators while simultaneously causing voltage fluctuations. These frequency os-

cillations and the deviation beyond 61.5Hz would trip the grid’s generator protection relays.

The entire grid in this case will lose electricity and enter into a state of blackout. We men-

tion that most utilities have a more stringent requirement and would trip their generators

when they experience 1Hz deviations. Even when the attackers control a small number of

compromised EVs which is not enough to cause major frequency violations, a sustained

attack will hinder the grid from returning to normal operation. A sustained oscillatory load

attack would damage the generator turbines due to the induced acceleration and deceler-

ation. Other implications include damaging electric appliances such as EVCSs and home

appliances by forcing to operate at frequencies and voltages outside their rated limits.

To visualize this attack, Hypersim offers a functionality called ScopeView that allows us

to monitor measurable parameters in real-time and display them in a plot format. For more

advanced applications, we collect the data directly through a Python API and store them in

CSV format then use them for data analytics later on. As such, Figure 3.3 was generated

where the instantaneous frequency values were stored in lightweight data storage and used

to plot the frequency response of the grid under attack.
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Chapter 4

EV Charging Infrastructure Discovery

to Contextualize its Deployment Security

4.1 Methodology

To understand the current threat landscape facing the EVCS ecosystem due to deploy-

ment (in)security, we describe our overall methodology for device discovery in Figure 5.1.

We also illustrate our deployment security analysis, which is among the first attempts in

the EVCS ecosystem. First, we analyze the different deployment strategies and create a

discovery mechanism that aids in identifying new EVCSs with an accessible web inter-

face to create a robust mechanism and increase the number of discovered hosts that do not

necessarily embed EVCS-related keywords. Charging station vendors might create EVCS

web interfaces that do not include any of the keywords that were utilized in [19, 35] as

a means to create their initial discovery seed (e.g., charging station, EVCS, OCPP, etc.),

but rather only include vendor or product names that require domain knowledge. Conse-

quently, we assess the security of these EVCSs in the wild by studying their deployment

security namely focusing on OWASP-Top 10 deployment security-related risks such as
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security misconfiguration, vulnerable and outdated services, etc. Finally, we provide com-

prehensive recommendations on how to secure the deployment of the EVCSs which also

requires considerable effort from the EVCS manufacturers as well.

4.1.1 Device Discovery

EVCS management systems do not expose unique services that allow their identifica-

tion unless configured incorrectly. Search engines which utilize internet-wide scans and

other protocols such as Modbus do not allow us to discover or uniquely identify EVCSs

because these services are not restricted to EVCSs and are not used by all of them. On the

other hand, some EVCSs do have a web user interface that could be used to identify them as

part of the EV ecosystem or belonging to an EVCS vendor. The challenge arises in distin-

guishing these devices among the massive number of hosts with web interfaces, noting that

in some cases these EVCSs do not have any EVCS-related keywords, especially since the

lack of standardization in the ecosystem provides a considerable challenge in identifying

these devices.

Our fingerprinting technique is visualized in Figure 5.1. We leverage the observation

that device manufacturers embed keywords in their websites that might indicate the manu-

facturer/vendor and give an indication about the device. However, another challenge exists

since there is no consolidated list of manufacturers and their web interfaces that allow us to

easily search for EVCS hosts. In this work, we aim at addressing the limitations of [19, 35],

by not limiting the search to a subset of hosts that possess EVCS keywords. Consequently,

we select networks similar to [37].
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Figure 4.1: Overall Advanced Discovery Methodology.

NETWORK SELECTION AND DEVICE SEARCH ENGINE QUERYING: While internet-

wide scans would identify an overwhelming number of WebUIs, we start our process by

selecting specific networks where the presence of EVCS is more probable. Similar to

[37], which aimed at identifying remote management systems of industrial control system

devices, we expect a higher concentration of such hosts in mobile data communication

networks which were part of the seed used to identify hosts. Consequently, we select ISPs

as a seed for our approach thus, not limiting ourselves to a predefined seed related to EVCS

keywords. We collect the WebUIs present in selected networks in Finland, France, Italy,

Germany, the United States, and Canada (e.g., Vodaphone Italia). We selected networks

in these countries as it has been shown in [19, 35] to have a high concentration of EVCS

hosts. We were able to discover new hosts in the same area showing the advantage of our

approach. The IP address range of the ISPs is obtained from publicly available AS numbers

and IP address assignment information. Consequently, we leverage device search engines
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that regularly scan the internet and gather information about these networks. Namely, we

utilize Zoomeye [1], as it showed the best performance compared to the other device search

engines.

ARTIFACT EXTRACTION AND REPORT GENERATION: Scans will provide us with

EVCS banners that exist in a certain network. Consequently, we leverage the fact that

EVCSs embed keywords in their WebUIs that could be used to uniquely identify them. It

is worth noting that the EVCSs will share highly similar WebUIs, whereas regular websites

will have a higher entropy due to the heterogeneity of the information they contain [37].

Moreover, other IoT devices, digital video recorders, and routers will also share similar

WebUIs within each family of devices. We define W as the candidate WebUI and K as

a set of fields that need to be extracted from W . Namely, we create a report for each W

that contains ∀ki ∈ KW . K includes the title of the tab, title of the page, headers (h1-

h4), file names, paragraph fields, footer, images source link, links href, and URL links in

the embedded Javascript. Consequently, each report will include a list of keywords. We

further filter our candidates by rigorously filtering based on generic IoT device keywords.

Some types of IoT devices, such as IP cameras, might embed keywords in their WebUI

that identifies them uniquely and gives us an indication that these are not EVCSs which

allows us to filter out candidates. Moreover, we further filter the reports by removing

time, date, and header information along with generic stop words using the NLTK [81]

python package. NLTK is a natural language toolkit that is used to work in computational

linguistics to tokenize and tag text, identify named entities, and remove stop words. These

generated reports provide us with a defined list of keywords that are used in our google

dork tool. Candidates that do not contain unique words are then discarded as general IoT

devices.

DORK QUERY GENERATION, AND SEARCH ENGINE: We leverage the generated re-

ports to identify unique keywords found in WebUI. To distinguish EVCS local management
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systems, we leverage the fact the vendors will embed data that would identify the produc-

t/vendor in the HTML code. Product names in the EVCS ecosystem do not conform to the

naming convention of IoT devices thus, increasing the complexity of identifying EVCSs

and rendering the methodology proposed in [36] limited to generic IoT devices. After

generating a set of reports R for the web interfaces, we identify the relevance of that doc-

ument to the EVCS ecosystem by using Google Dorks. When Google crawls the web to

index pages for its search engines, it retrieves terabytes of data. However, whenever a user

searches for something on Google, millions of records are retrieved, and following their

proprietary ranking algorithm it will show thousands of search results. Consequently, the

user will need to go through each and every document to identify how relevant it is to their

search goal. Thus, we utilize Google Dorks which is a technique used to help limit the

number of retrieved results by directing the search engine to search for these keywords

in certain websites or by curating a query that has certain criteria. Instead of searching

for the keywords on Google and checking their relevance manually, we use an advanced

searching technique that allows us to dynamically find EVCSs. This advanced search tech-

nique allows us to find information not readily available on websites. Google Dorking

can return information difficult to locate. We utilize two main websites, Chargemap [82]

and Plugshare [83], that are continuously updated as new vendors join. They provide a

platform for locating EVCSs by the users and also might include news about the EVCS

ecosystem. Such platforms continuously reflect the newest charging networks that are join-

ing and provide a comprehensive corpus for the EVCS ecosystem. We curate queries such

that we direct our search to specific websites that are related to the EVCSs. Additionally,

we also curate queries where we search for keywords extracted from the HTML banners

along with two keywords "charging" and "management system" which retrieve results that

contain the keywords along with "charging management system". These queries give us

very high confidence that the retrieved pages are related to the EVCS ecosystem. Instead
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Figure 4.2: Google dork snippet.

of manual search for information on Google and trying to create relevancy between the key-

words and the retrieved results, we utilize the Dorking technique to identify information in

unstructured data such as Plugshare and Chargemap.

Formally, we can define our query generation using Equation (1) defined below:

Let K be the set of all combinations of keywords in Report Ri

Let K be the number of keywords in Report Ri

Let k be the number of keywords chosen as input to the Query

Select c =
(
K
k

)
where k ∈ [1,K] (1)

We utilize the keyword combinations with our queries and retrieve the results. Three

different query templates were used as shown below

query1 = site:“chargemap.com" intext: "keywordc"

query2 = site:“plugshare.com" intext: “keywordc"

query3 = intext:“keywordc" "charging management system"

We show in Figure 4.2 a sample query1. As for the others, we follow a similar mech-

anism. For example, an example of the query would be intext: “SENEC" “charging" +
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“management system", where we ensure that the used keywords are related to the EVCS

ecosystem by leveraging the search algorithm that is provided by Google. The results of the

queries help us create a correlation between the keywords discovered and the EVCS ecosys-

tem. Programatically, our search queries can be formatted as “search engine/search?q=site:“chargemap.com"+intext:

“g2mobility"+&btnG=Search", where the mark (?) indicates the end of the URL, and the

(&) separates arguments, q is the start of the query, the plus mark (+) represents space, and

btnG=Search denotes that the search button is pressed on the web interface [36].

Consequently, after the results are collected, each query can then be ranked based on

its relevance using Equation (2):

ChargeScore(q) =
∑

tfEV CSk

∑
tft,didft (2)

where tf is term frequency, idf is inverse document frequency, q is the query, t is the

term in the query, and d is the results of each query that will get a score and sorted by

decreasing ChargeScore. Namely, ChargeScore is the tf-idf weighted by the EVCS key-

words term frequency. The charge score takes into account if EVCS ecosystem keywords

are found in the search results denoted by EVCSk, showing that it has greater relevance to

the EVCS ecosystem. We can then calculate the repetition of query words in the document

(tf), thus showing that query keywords are present in our search results. Finally, the relative

rarity of a term in the collection of results per query is calculated. This is denoted by the

IDF showing the unevenness of term distribution in the corpus. This measures the infor-

mativeness of the terms, which will be very low for queries with general terms. The usage

of Google-Dorking techniques alongside the ChargeScore allows us to identify accurately

which queries are the most relevant to the EVCS ecosystem. Thus, showing that the stud-

ied banner of a specific host is actually an EVCS which we later validate. The higher the

ChargeScore is, the higher our confidence that these query results might actually be for an

EVCS vendor.
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TRANSLATION MODULE AND FILTERING RESULTS: In this work, we shed light on

the importance of using translation to discover new EVCSs. EVCS vendors might cus-

tomize WebUIs and keywords based on the country of deployment. Thus, utilizing key-

words of one language to search for EVCSs will hinder the discovery of EVCS candidates.

Consequently, we translate EVCS-related keywords to different languages, mainly, Italian,

French, German, and Spanish (e.g., Système de gestion des bornes de recharge, Manage-

ment system für Ladestationen). We filter the WebUIs collected using this list of keywords

we generated which allowed us to identify EVCSs that possess EVCS-related keywords in

English as well as different languages.

VALIDATION AND SEARCH ENGINE QUERIES GENERATION: Consequently, we val-

idate the candidates by calculating the body hash of the banners to cluster them. This led

to the discovery of 28 main banner groups that we manually explore and leverage to create

search engine rules. The search engine rules are utilized to scale up our discovery mecha-

nism by leveraging a combination of artifacts that we extract from each report R that would

uniquely identify the candidate such as the title, file names, footer information, HTML at-

tribute, etc. and using them as a search query on Zoomeye [1] device search engine. It is

worth mentioning that the queries generated out of the previously mentioned artifacts ex-

tracted provide a unique signature that allows us to uniquely identify similar devices with

similar banners. Then we utilized the hash of the banners to further validate the similarity.

Finally, we filter our previous scans and query device search engines and store the results

for future analysis. To scale up the detection of devices using the hosts we identified, we

leverage devices search engines to increase our results by utilizing the keywords we deter-

mined as EVCS management system. We continuously followed the same approach and

identified 28 device signatures accumulating 33,320 EVCS hosts belonging to 22 different

vendors.
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Figure 4.3: Overall Deployment Security Analysis Framework.

4.1.2 Deployment Security

We study the susceptibility of the EVCS ecosystem to remote attacks. We aim to under-

stand the current threat facing the EVCS ecosystem. We evaluate the security, and privacy

based on the General Data Protection Regulations (GDPR) password policies compliance

among other security concerns that would expose the EVCS ecosystem to a multitude of

attacks. Moreover, we study the malware threat landscape by providing a deeper under-

standing of the current threat facing the EVCS ecosystem. To this end, we propose the

framework depicted in Figure 4.3 for analyzing the deployment of EVCSs to assess their

deployment strategies and security practices [84, 85, 86] as summarized below.

AUTHENTICATION SECRETS LEAKAGE: We evaluate the communication protocol

used by the operators to interact with the charging station management system. Namely, we

try to identify the redirection to an encrypted communication channel to secure the interac-

tion with the EVCS. Consequently, we leverage Zoomeye [1] to identify the communica-

tion protocol utilized by the charging station operators. We also confirm that by interacting

with the EVCSs and transmitting a username and a password (i.e., admin, 123) using their

portal we are able to identify authentication secrets transmitted in plaintext by inspecting
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the traffic collected using Wireshark [87]. We search for the transmitted username or pass-

word that can be leaked via the request URL and requests’ payload. SSLSTRIP ATTACK:

To check for SSLStrip attacks, we check for the lack of HTTP Strict Transport Security

(HSTS) enforcement. HSTS is a widely supported standard to protect visitors and ensure

that their browsers always connect to a website over HTTPS. HSTS exists to remove the

need for the common, insecure practice of redirecting users from http:// to https:// URLs.

We connect to the online portal while mimicking common use case scenarios. We then

utilize Burpsuite[88] to check for the lack of HSTS. Such misconfiguration means that

HTTPS redirects may be putting the operators at risk. This is classified as a medium-risk

vulnerability and represents low-hanging fruit for adversaries.

ONLINE PASSWORD BRUTE-FORCE AND RATE-LIMITING: Due to the connectivity

of EVCSs to critical infrastructure and the features that this web portal provides (firmware

update, change configuration, etc.) protecting the EVCSs from password brute force attacks

is imperative. Especially that lack of rate limiting could also lead to Denial of Service.

Consequently, we use Burp Suite [88] to test the existence of rate-limiting mechanisms. To

keep the load on the server minimal, we test the presence of defensive mechanisms by 50

attempts on the EVCS from a single computer. We continue to monitor the performance of

the EVCS to ensure that we do not impact its performance.

INSECURE CONFIGURATION: We investigate the usage of default configurations that

are found in the manufacturer’s manuals. This investigation is done to analyze the de-

ployment security followed by the operators. Operators have exposed their devices to the

Internet without taking security precautions to protect the ecosystem. Consequently, we

investigate further deployment security measures of the operator by analyzing the configu-

ration for 10 different vendors. We created an automated tool, that identifies the vendor of

the target and tries one pair of login and password from the vendor’s manuals, without try-

ing to brute-force other combinations thus, minimizing our impact on the studied systems.
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Due to ethical concerns, the tool is specifically designed to return the count of successful

logins and the IP hosts, without retrieving any information or any further access to the web

interface. We would like to highlight that this exposes the ecosystem to a Mirai-like attack

vector (Mirai originally targeted services with the default configuration and brute-forced

the login). However, we do not need to utilize brute force since we identified the specific

login pair for each vendor accurately following our discovery methodology. The impor-

tance of such testing for insecure configuration lies in lowering barriers for the adversary

to create an impact on the ecosystem and the connected power grid. The adversary can

perform denial of service on the EVCS [19, 35], on the backend [89], can perform oscilla-

tory load attacks which impact power grid stability [17, 19, 35, 50, 54]. Consequently, we

reported our results by communicating with the manufacturer or the operator to help raise

awareness.

WEAK PASSWORD POLICY AND UNINFORMED SUSPICIOUS ACTIVITIES: EVCS ven-

dors provide the operators with the ability to change the password of their accounts that

allow them to access the EVCS web portal. The password policy instilled determines the

flexibility of the operator to utilize weak passwords. Consequently, to review the password

policies we utilize open source intelligence (e.g., manuals) or through communicating with

owners of the charging stations to understand the security controls implemented for each

vendor whenever possible. Moreover, we also study the features instilled to report unin-

formed suspicious activities such as changing passwords.

BACKEND ASSESSMENT: Due to ethical/legal concerns, we refrain from using any

invasive vulnerability scanning tools to assess the backend servers. Instead, we look into

the backends’ software components as disclosed by web servers frameworks in their HTTP

response headers. The vulnerable backend utilized by the EVCSs exposes them to a wide

range of attacks and vulnerabilities if exploited by an adversary. Consequently, we study

the EVCS backend components when possible such as “Server" and “X-Powered-By" to
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determine the risks associated with them. We then match these components against the

CVE database to detect known vulnerabilities associated with these versions since a con-

siderable number of the CVEs exist with an exploitable proof of concept.

4.1.3 Malware Analysis

Next, we investigate the malware threat landscape in the EVCS ecosystem through the

methodology in Figure 4.3. We start by examining the EVCSs’ presence on a network

telescope and extracting artifacts from their network traffic. The network telescope is a

portion of IP address spaces dedicated to observing inbound Internet traffic. The main

outcome of the network telescope is to detect and log malicious traffic that originates from

malware and viruses [90] that perform scanning actions by sending probes. We utilize

the UC San Diego network telescope under CAIDA stewardship. The network is globally

routed and accounts for approximately 1
256th

of all IPv4 Internet addresses that carry almost

no legitimate traffic because there are few provider-allocated IP addresses in this prefix.

The data is pre-processed and legitimate traffic is discarded from the incoming packets.

The remaining data represent a continuous view of anomalous unsolicited traffic (e.g., the

scanning of address space by attackers or malware looking for vulnerable targets) [91].

Consequently, we correlate the EVCSs discovered from our fingerprinting methodology

with the CAIDA dataset by cross-referencing the two datsets. The detection is based on

3 million IP addresses that are detected on the darknet as scanners after monitoring traffic

from February 2022 till October 2022. Namely we collect darknet scans around every two

months on the following dates:

• 26, 27, 28 February 2022.

• 07, 08, 09, 10, 11 April 2022.

• 10, 11, 12, 13, 14 July 2022.
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• 13, 14 October 2022.

• 15 March 2023 to 13 April 2023 every two days

ACTIVE SCANNING: Moreover, we scale our fingerprinting of EVCSs on the darknet

by actively scanning the hosts with inbound traffic (∼ 2 million) on 179 ports that we col-

lected from the unique set of ports that are used by different EVCS vendors and operators as

a result of our fingerprinting mechanism. We do not limit our scanning to known traditional

HTTP and HTTPS ports due to the fact that EVCS manufacturers provide flexibility to op-

erators to assign unusual ports to access their web portals. For example, Schneider EVLink

EVCSs provide flexibility to the operator to assign a port between 1 and 9999 for hosting

the EVCS web portal. Consequently, we utilize a two-stage approach to scan EVCSs to

avoid being detected as malicious and scanning the whole port range. We first send TCP

probing requests to determine the open ports based on the received replies. To this end,

we utilize Zmap [92] which is a fast single-packet network scanner optimized for Internet-

wide network surveys. We then utilize the resulting hosts with their respective ports for

an application-layer handshake to retrieve and collect web banners using Zgrab [93] which

is a stateful application-layer scanner, written in Go language and supports HTTP/HTTPS

protocols. Consequently, after collecting the web banners, we extract artifacts following

the proposed methodology discussed in Section 4.1.1. We scale our findings of EVCSs

on the darknet by collecting web artifacts and filtering the results similar to the approach

discussed above. We utilize active scanning on the darknet hosts to minimize the impact of

our scanning on uninfected devices in the wild.

MALWARE FAMILY IDENTIFICATION: While the existence of the EVCS traffic on

the darknet is proof of malicious EVCS behavior, we further our analysis of the traffic

to identify the signature of the scanners/malware (e.g., Zmap, nmap, Mirai botnet, etc.).

Mainly, we focus in this work on the Mirai malware and its variants. We collect the inbound

traffic (∼4 million packets). We note that to identify the Mirai malware and its variants, we
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extract artifacts from the sent packets. Mirai and variants have a unique TCP SYN signature

where the probes sent by an infected device have a TCP sequence number (normally a

random 32-bit integer) equal to the destination IP address [94]. This is used to attribute

the scanning to a Mirai or a variant. It is worth highlighting that Mirai traffic originating

from an IP address that is associated with an EVCS is an indication that the EVCS is

indeed infected[94, 95, 96, 97]. We highlight that it is statistically impossible for legitimate

traffic originating from 100s of EVCSs to have a scanning signature identical to Mirai

without being infected. Additionally, the data that is retained by CIADA consists entirely

of malicious behavior since all legitimate traffic is filtered and discarded. While focusing

on network traffic limits our result, we plan in our future work to utilize active artifact

extracting tools [95] to get a deeper understanding of the other unlabelled scanners that we

discovered in the EVCS ecosystem.

4.2 Experimental Results

We provide a detailed discussion of our results that show the exposure of EVCSs to the

internet, providing a new attack vector for adversaries to exploit. Our discovery shows the

lack of proper network layer defenses to protect the charging infrastructure from remote

intruders and the lack of proper security practices by the vendors and operators as they are

both equally liable for securing this ecosystem.

4.2.1 EVCS Discovery

We illustrate in Figure 4.4a the geographical distribution of the discovered EVCSs. We

show that EVCS management systems are mainly concentrated in Europe where Finland,

Hungary, and France account for around 61% of all the discovered EVCS management

systems. While this is expected because of the chosen scanned networks, we chose other
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networks in North America and discovered a low number of EVCSs with exposed man-

agement systems. This is attributed to the fact that the EVCS operators and vendors in

North America utilize different types of EVCSs that do not deploy management systems

per device but rather connect them to the operator’s cloud management systems. Indeed, we

examine the EVCS deployment of 6 different vendors in North America and discover that

their deployment strategy and choice of EVCSs are keeping them from being discovered

using online tools as they do not possess any web interface that might leak information

indicating their correlation to the EVCS ecosystem. Partly, we attribute this to the strict

government policies and interest in the security of the EVCS ecosystem [98]. However, we

managed to identify Flo EVCSs by identifying their communication gateway that is used by

the EVCS to communicate with the back-end systems. Flo is a charging station manufac-

turer that operates in North America. Through our analysis using Open Source Intelligence

(OSINT) techniques, where we leverage, collect and analyze publicly shared information

by the manufacturer/operator (e.g., commissioning guides, installation manuals, etc.) to

get a deeper understanding of the deployment strategy, we identified that Flo charging sta-

tions are deployed with a Digi router, namely, Digi Industrial Gateway—Communication

network LTE (4G) and HSPA+. Consequently, we leverage these keywords such as Digi

to explore the report dataset that we collected using our aforementioned approach. After

careful inspection of the retrieved candidates, we were able to identify the communication

gateway. While Flo communication gateways do not provide a web interface for config-

uration, however, they do possess open SSH services that are running outdated versions.

Thus, identifying them is important for assessing the security of the infrastructure, espe-

cially since they are utilized to route OCPP traffic that is used to manage and configure the

charging station remotely.

After identifying EVCS management systems, we group the hosts based on the ex-

tracted titles. Consequently, we identified 28 clusters of devices. We notice that Ensto,
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Figure 4.4: Distribution of hosts per country and vendor.

Chago, Garo, Mennekes, and Bender possess 2 clusters each which shows that there are

variations of the same product. After further inspection, we identify that these products are

of two different firmware versions. Moreover, we identify two EVLink signatures where the

difference between these also accounts for newer firmware being deployed on the EVCS

that changes the banner and the interface. For example, older EVLink EVCSs possess

“Charging Station" as a title whereas newer ones possess “EVSE Web portal". We further

elaborate on the security concern that arises from finding multiple signatures that could be

attributed to running old firmware versions. Consequently, this shows the constant need to

update and discover new signatures to identify EVCSs of known or unknown vendors.

For our subsequent study, we utilize the wide range of open HTTP and HTTPS ports

that are known to be used to operate an EVCS management system. We note that 53%

of the discovered EVCSs operate on known HTTP and HTTPS ports (e.g., 80, 8080, 443,

8443, etc.), whereas the rest operate on unusual ports such as port 30, 10000, etc. We dis-

cover 179 unique ports where hosts operate EVCS management systems. This increases

the complexity of identifying EVCS management systems. Some EVCS vendors’ discov-

eries might be more straightforward than others. For example, Etrel EVCSs based on their

installation guide recommend operating the EVCS on port 10000 and incrementing by one

every time you need to add a new EVCS in the same location. Indeed, 90% of the Etrel
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Table 4.1: Overall results for security flaws in EVCS management systems labeled following the
threat model: On-path attacker; Remote attacker, blank: no flaw found.

Security Flaw Attack Vector # of Vendors # EVCS Hosts

Insecure Configuration 10 5,240
Vulnerable Backend 3 9,150

Insecure Authentication 18 28,046
Weak password policy 10 21,246

Uninformed Suspicious Activity 11 24,519
Online Password Bruteforce 12 22,506

EVCSs operate on port 10000 which aids in identifying this vendor in the future. Fur-

thermore, EVLink which is manufactured by Schneider, operates on more than 100 ports

with 97% of them operating on unusual ports such as 9100, 2082, etc. Thus, the policies

instilled by the manufacturer hinder the discovery of EVCSs and add a layer of complexity

in discovering them based on services and ports.

4.2.2 Remote Compromise

Following the methodology in Section 4.1. We analyzed EVCS management systems

which include 33,320 EVCS distributed over 22 vendors. We devise a non-invasive se-

curity approach that could be used on other cyber-physical systems to assess the risk of

remote exploits. Although, these vulnerabilities that we highlight might exist in other IoT

devices, however, the EVCS ecosystem is widely distributed over very large geographical

areas and connected to a very critical infrastructure. Thus, the existence of such vulnera-

bilities is concerning. Moreover, businesses are dependent on the service it is providing,

thus, providing an attack vector that would have an economic impact in case of disrup-

tion of services. Finally, this lowers the barrier for adversaries to attack the ecosystem at

scale highlighting the ecosystem’s widespread deployment insecurity. The EVCS manage-

ment system is commissioned to manage individual EVCSs remotely. Namely, the portal

provides the operator with the ability to change EVCS configuration, CMS communica-

tion, CMS control over the individual EVCS, reboot, firmware update, logs, and sensitive
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user information. The EVCS also provides power-related functionalities such as setting the

charging rate and load shedding.

In this work, we focus on studying the ability of an on-path and remote attacker to im-

pact and intrude into EVCSs by assessing the access control measures instilled. Through

our investigation, we discovered that the communication between the operator and the man-

agement systems occurs over un-encrypted channels rendering them vulnerable to Man-in-

the-Middle attacks impacting 28,046 EVCSs belonging to 22 vendors except for Hager and

Flo as they do not provide password protection but rather a status update that the EVCS is

running. EVCS provides access to their web server over HTTP without enforcing HTTPS

and HSTS to redirect the connection to a secure and encrypted one. HTTPS uses TLS

(SSL) to encrypt normal HTTP requests and responses and to digitally sign those requests

and responses. Thus, hindering any on-path adversary from eavesdropping on the commu-

nication and conserving the integrity of the data transferred.

Moreover, EVLink EVCSs are running a "mini-httpd 1.19 19dec2003" server, which

is an early version of mini-httpd with 3 known CVEs impacting 3971 hosts. We group

the hosts based on the server information and we notice the EVLink EVCSs possess two

different signatures. Namely, that is because of a software update the vendor introduced.

We notice that multiple devices do not provide any information about the backend system

showing that some of the operators have updated their firmware. However, a consider-

able number did not update their firmware and accounts for 76.73% of all the discovered

EVLink EVCSs. Moreover, we discover that a considerable number of EVCS are run-

ning vulnerable backends. Namely, SCAME that is running light httpd 1.4.28 that has 9

CVEs with 6 out of 9 that are of critical or high severity. This impacted 216 EVCS hosts.

However, we notice that some of the EVCS operators provide partial/no information about

their backend showing that the majority of the operators updated their EVCS management

systems. Finally, Hager is running TwistedWeb 12.2.0 with 2 known CVEs rated as high
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severity impacting 963 EVCSs distributed worldwide. We note that the proper security

practice is to hide the backend system operating on the EVCS and we note that the major-

ity (94%) of the vendors provided new updates that would hide such sensitive information

from adversaries.

Moreover, we study remote attacks on the EVCSs and we discover that 67.5% of the

EVCSs with password protection are vulnerable to password brute-force to the manage-

ment portal that is used to configure the EVCS. Moreover, we continue to study the pass-

word policies implemented by the vendor and the presence of intrusion monitoring in case

of a password change on the system. The password policy implemented by EVLink, En-

sto, Mennekes, Chago, Garo, Bender, EvoCharge, HyperCharge, Etrel, and SCAME is

very weak and does not have a minimum requirement of digits allowing the operator to

use any password weakening the security of the ecosystem. Whereas, the Keba charging

station forces a minimum of 10-character passwords with no two identical characters re-

peated. Moreover, we note that none of these EVCSs provide a reporting service in case of

a password change, which impacts 73.58% of the discovered EVCSs.

Finally, we test these hosts for insecure configuration by testing the default logins.

We scrape the manuals of the EVCSs we discovered by searching for default credentials

that are utilized during setup. Mainly we test that for 10 vendors EVLink, Ensto, Men-

nekes, Chago, Garo, Bender, EvoCharge, HyperCharger, Etrel, and SCAME. While other

EVCSs are provided with different ways of configuration and setup. For example, Eaton

EVCSs provide a default password to each EVCS that is found on a configuration label

in the EVCS. Consequently, we utilize our tool that connects to the EVCS management

system and attempts to log in using the default credentials that we identified through scrap-

ing the configuration guides with no impact on the host, although they are vulnerable to

brute-force attacks. Our non-invasive tool showed that 15.7% of the EVCSs discovered are

being deployed without proper security measures by the operator. We note that alongside
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we discover more than 200 EVCS cloud management systems belonging to Garo that are

operating without authentication providing the adversary with access to scheduling, sched-

ules, firmware updates, and EVCS status. Our tool could be used to provide adversaries

with a Mirai-like attack vector, noting that the original Mirai malware targeted the Tel-

net services with default credentials similar to the current situation. This could be used to

launch attacks against the EVCS ecosystem to impact the connecting critical infrastructure,

confidentiality, integrity, and availability of the ecosystem. The adversary, after connecting

to the management portal, will have access to multiple sensitive functionalities such as the

firmware update, and configuration, which could be used to hold the operator at ransom

and impact the ecosystem. Thus, highlighting the important role of both the operator and

the manufacturer’s lack of best security practices to secure the ecosystem. We provide a

comprehensive recommendation in Section 4.2.4.

4.2.3 EVCS Malware Investigation

As part of our investigative study to identify the current imminent threat that is facing

the EVCS ecosystem, we focus on identifying whether the EVCS ecosystem is a victim

of malware attacks. We then aim to identify the type of malware that is infecting the

ecosystem.

We mainly focus on Mirai which utilizes scanning activities (TCP-SYN) to find victims

on the Internet. Whenever the scanner receives a reply from a victim device, the malware

tries to either brute-force or exploit vulnerabilities in the device. The earliest versions of

Mirai started using brute force to login into unprotected telnet services. However, after

posting the Mirai-source code online, Mirai variants started to appear targeting different

services and customized towards certain vulnerabilities. As part of the cyber kill chain,

malware propagation is crucial to increase the number of infected victims. Consequently,

scanning activities are initiated by malware to probe IP addresses that are not allocated to
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any device but rather belong to CAIDA, thus showing the malicious intent of their activity

[95]. We discover 79 EVCSs that were participating in scanning activities on the Internet.

We first identify the IP addresses of EVCSs that were collected in the discovery phase,

then we investigate their presence in the Darknet. This presence of an IP on the Darknet

gives us a clear indication that the associated EVCS is participating in scanning activities.

The results are then vetted by checking that the IP address is still connected to the same

device with the same banner. Thus, we were able to confirm that the discovered devices

are indeed EVCSs. The presence of malware is able to infect the ecosystem shedding light

on the importance of securing this ecosystem proactively due to its connection to critical

infrastructure.

Consequently, we investigate the type of malware that is infecting the EVCS instances

by inspecting the packets it generates. Mirai malware creates packets with a unique sig-

nature where each probe has a unique TCP sequence number (normally a 32-bit integer),

which is equal to the destination IP address [94]. We note that the probability that the TCP

sequence number is equal to the destination IP address is 1
232

showing that this is an accurate

identification of Mirai variants [94]. Roughly, around 4 million data points were collected

between January 2021 and October 2022. Consequently, following the approach suggested

in [94, 99] we identify the scans that targeted the IPv4 space at an estimated rate of at least

five packets per second. Through this work, we show that the EVCS ecosystem is a victim

of traditional malware such as Mirai and its variants and requires extra attention due to

its connection to critical infrastructure. While malware numbers might seem small in the

EVCS ecosystem, we must keep in mind that the total number of public EVCSs is around

1.7, million which is still a very small number. In comparison, in 2016, when the Mi-

rai Malware first surfaced, there were over 14.8 billion devices and Mirai infected around

600,000, representing a ratio of 40 Mirai infections per million IoT devices. Along the

same lines, the ratio of infected EVCSs represents 33 Mirai infections per million EVCSs.
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Figure 4.5: Distribution among the discovered EVCS hosts

This is to demonstrate that even though this is a relatively new environment, it is not safe

from infection with Mirai malware families, however, it entails a greater risk due to the

connection of the EVCS to critical infrastructure.

After further investigation of the infected samples, we categorized their distribution

based on the vendor in Figure 4.5. The columns labeled Mirai and unidentified show the

percentage of each type of malware among the infected hosts from each vendor. On the

other hand, the line labeled Total shows the percentage of infected hosts from each vendor

with respect to the total discovered EVCS hosts on the darknet. SCAME EVCSs account

for 40% out of the total number of discovered hosts on the darknet followed by Keba and

Ensto accounting for 20% and 17% respectively. Moreover, the Mirai-infected EVCSs ac-

count for 70% of the infected samples. This high share of Mirai is relatively understandable

as new variants have been created and launched after the leakage of the source code. We

note that through our analysis of the Mirai EVCSs, they generate probing requests with an

average rate of 141 packets per second showing a clear indication of maliciousness in the

behavior. Whereas, for the unrecognizable scanner we identify 3 different average probing

rates (30.3, 168, and 446). The different probing rates give us a clear indication of mali-

ciousness and the possible presence of 3 different malware types other than Mirai, which

require further investigation. We plan in our future work to use a real-time artifact extractor

proposed in [95] to identify the type of these scanners. Furthermore, the presence of a low

probing rate of 17 packets per second shows that there might be stealthy malware operating
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Figure 4.6: Distribution of discovered security issues and open services among infected hosts

on the EVCS ecosystem.

We further investigate the presence of security issues on infected EVCSs. We illus-

trate the distribution of such issues in Figure 4.6, based on the malware type. We note that

these issues could be the probable entry point of the malware to the ecosystem. We note

that 30% of the discovered Mirai-infected hosts are running vulnerable backends belong-

ing to EVLink and SCAME. Whereas 16% are running with insecure configuration which

provides the adversary with admin privileges over the EVCS management system. Con-

sequently, an adversary can leverage the weak deployment security to inject malware into

the EVCS by exploiting the weak access controls implemented and gaining access to dif-

ferent injection points such as the firmware update field [19, 35]. Moreover, the adversary

could also modify the configuration of the EVCS and change the backend communication

links which would allow them to remotely control the EVCSs using the OCPP protocol.

Moreover, we note that 57% of the discovered hosts are vulnerable to brute force attacks

whereas 15% possess a weak password policy that could be utilized by malware to get ac-

cess to EVCS hosts. Moreover, we highlight that Mirai-infected EVCS hosts operate sen-

sitive services that are well known to be used by malware to propagate, especially Mirai.

The three main services are FTP, SSH, and Telnet where the majority of the Mirai-infected

device operates at least one of these services. Moreover, we note that the malware could

be infecting the embedded router of these devices exposing the ecosystem to a wide range
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of attacks. The existing vulnerabilities of the OCPP protocol allow adversaries to launch

replay attacks [20, 44]. Thus, an infected router could be used to launch replay attacks

allowing adversaries to launch oscillatory load attacks, steal electricity, and steal user in-

formation (e.g., financial information). We highlight that the responsibility behind such

security concerns falls upon the vendor and the operator. Where the vendor is responsible

for the policies implemented and the operator is responsible for the security beyond the

deployment of EVCSs.

It is worth noting that out of completeness for our malware threat landscape analysis we

investigated the presence of EVCS-specific malware by analyzing the IoTPot dataset [100]

and VirusTotal. The IoTPot dataset contains 92,056 IoT malware samples collected from

2016 to 2020 and the VirusTotal dataset contains malware samples collected from 2016

to 2022. We then extract strings using the Linux string utility to create a report for each

malware binary. We then search for EVCS-related keywords in their binaries. While we

did not find any EVCS-specific malware, we expect to see new variants as this system is

proving itself to be vulnerable to remote attacks and is already being infected by traditional

malware. To ensure the fairness of our methodology due to the originally selected networks,

we actively scan the darknet dataset to identify new unseen EVCS hosts from September

2022 till November 2022. We note that the EVCS hosts discovered are mainly found in

Europe, where 60% are found in Italy and Sweden. Whereas the rest are distributed all

over Europe (Finland, Hungary, France, Germany, Romania, Croatia) and Australia.

In 2023 alone we discovered 455 EVCS participating in unsolicited scanning. Where

57% are identified as Mirai as shown in Figure 4.7. In terms of geographical distribution

Italy was by far the country with the largest share of infected EVCS with 40.5% of infected

hosts in 2022 and 48.1% in 2023. Whereas Sweden had the second largest share at 20.25%

in 2022 and France had the second largest share in 2023 at 25.93%. Additionally, we in-

vestigated the EVCS-specific malware by leveraging the updated IoTPot data that provides
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Figure 4.7: Number of hosts discovered in 2022 and 2023

IoT malware samples from 2020 till the end of 2022. Although no specific EVCS malware

was discovered. The presence of Mirai on these EVCSs proves that general IoT malware

poses an imminent threat to the EVCS ecosystem.

4.2.4 Recommendations

Discovering devices is a double-edged sword. Security analysts and utility operators

could use it to identify EVCSs at scale, also adversaries could use it to target the EVCS

instances through their vulnerable services. Various techniques could be used to protect the

EVCS ecosystem, some of which are described below.

MANUFACTURER RECOMMENDATIONS To ensure that the newest and urgent security

patches are implemented the manufacturer should contribute to securing the ecosystem.

We recommend that manufacturers implement backward-compatible over-the-air updates

that allow them to push the newest updates with minimum interaction from the operator.

Current methods utilized allow the operator to install the firmware manually through the

configuration portal, or through OCPP, however, we notice that there is a considerable

number of operators that are not updating their firmware promptly. Moreover, we recom-

mend that the manufacturer implement a strong password policy that forces the operator to

change the password upon setup, making the EVCSs access more secure, or following the
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same method utilized by some of the Etrel EVCSs. Moreover, utilizing a notification ser-

vice to inform the respective operators of security events is recommended. Consequently,

we recommend utilizing Two two-factor authentication to increase the complexity for the

adversary in accessing these web portals.

OPERATOR RECOMMENDATIONS First, EVCS operators need to deploy a middleware

that would block untrusted traffic. This is achieved based on a traffic management filter

in which the filter rules rely on IP reputation and the abnormal behavior shown by the

scanning parties. Operators must prevent unauthorized access to their HTTP webserver

which would hinder adversaries from accessing their interface. Such techniques are basic

countermeasures to prevent the characterization of EVCSs based on the services and their

respective HTTP web server. However, more advanced techniques could be employed such

as moving target defense which increases the uncertainty and complexity for attackers by

reducing their window of opportunity and increasing the costs of their probing and attack

efforts. Thus, changing the mapping of an internal IP address and ports to a random ex-

ternal port would increase the cost of detecting the exposed services by adversaries. Thus,

an advanced management technique could be employed, where the EVCS would broadcast

regularly to the management system the path needed to access its web portal. The aim here

is to make it harder for the adversary to access services and guess information. Moreover,

we recommend following the deployment strategy adopted by ABB. Connecting to EVCSs

would be through a centralized management system that the manufacturer configures for

the operator such as the TerraConfig portal. Continuous patching by the operator is needed

with the lack of automated firmware updates by manufacturers. Finally, ensuring com-

munication occurs over encrypted and secure channels is of utmost importance to prevent

MitM attacks.
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Chapter 5

Investigating the security of ev charging

mobile applications as an attack surface

5.1 Threat Model

We consider a remote adversary with access to one or more mobile applications dis-

tributed on the Google Play Store and Apple Store. Moreover, we consider the remote ad-

versary is able to create an account on these mobile applications. Similar to [101], we do not

assume any forms of software bugs or protocol vulnerabilities. The adversary relies on un-

derstanding the interactions between the components by utilizing various analysis methods

to identify vulnerabilities and understand the interactions between the mobile application

and the CMS. The analysis methods range from reverse engineering and white-box testing

to functionality analysis, system fuzzing, and black-box analysis. The attacker aims to uti-

lize mobile applications as an entry point to target EVCSs with connected vehicles. The

adversary’s goal is to exploit design flaws in the interactions among the different entities

(e.g., EVCS, CMS, Mobile application) to hijack or initiate an unauthorized charging ses-

sion remotely without compromising legitimate user accounts. Moreover, the adversary’s

ultimate goal is to leverage illegal charging sessions to perform large-scale, coordinated
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Figure 5.1: The overall mobile application lookup and vulnerability analysis methodology.

botnet attacks against the underlying critical infrastructure (e.g., the power grid) and the

EV users.

5.2 Methodology

In this section, we elaborate on the analysis methodology to identify vulnerabilities

that allow adversarial accounts to control charging sessions for vehicles they do not own.

As shown in Figure 5.1, we combine static (reverse engineering and code review) and dy-

namic analysis techniques (functionality and traffic) to perform vulnerability analysis and

assessment of the identified mobile applications. First, we start by fetching EV charging

mobile applications, then for each product, we extract data for analysis by applying reverse

engineering techniques on their binaries. Second, we extract network traffic during the

functionality analysis while emulating the user behavior of the application; consequently,

we analyze the application states and behavioral changes to abstract the system interac-

tions and then evaluate it to find flaws. We provide details on the proposed methodology

components below.

5.2.1 Mobile Application Look Up

In this section, we discuss our selection strategy for mobile applications. According

to Statista [102], Android maintained its position as the leading mobile operating system

for mobile phones with about 73% market share. We look for EV charging mobile appli-

cations on the Google Play store, which is the main platform used by Android users to
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download applications. Furthermore, we automatically fetch 50 mobile applications from

the Google play store. Then, we choose the mobile applications and filter them based on

the features they possess by automatically searching the description for keywords such as

start/stop charging. After further analysis, we discarded 8 mobile applications that are ei-

ther EV charging calculators or not related. Our analysis focuses on mobile applications

that provide remote control functionalities to control public EVCSs, consequently, we ana-

lyze the applications manually to ensure the existence of these functionalities as they pose

a real danger to the power grid when compromised at scale [17].

Based on the prior differentiation between the applications according to their capabili-

ties, we identify and classify the applications into three types, as shown in Table 5.1. Type

1 are applications that allow users to have an overview of the ecosystem and control the

charging session, while Type 2 applications are used to perform reconnaissance activities

and can only show an overview of the system. Whereas Type 3 mobile apps are developed

to target home EVCS owners or businesses with private EVCSs, limiting its impact, espe-

cially from a power grid perspective. Type 3 apps could possess vulnerabilities, however, it

is considered out of the scope of this work as we focus on mobile applications that provide

access to public EVCSs thus, increasing the impact of an attack on the power grid. Namely,

we focus on Type 1 applications that can be used to perform attacks on the power grid be-

cause of their special capability to control the EVCS and its operations. Additionally, Type

1 and 2 can be used by an adversary to prepare for their attacks by analyzing the availability

of EVCSs and their usage trends, as discussed in Section 5.4.2.

Finally, we fetch the remaining mobile applications and download/install their APKs. It

is crucial to highlight that any security concern discovered in the communication between

the mobile application and the CMS applies to both Android applications and iOS since

they rely on the same back-end that handles their requests in most cases. Therefore, we

assume that our analysis methodology and results can be generalized to both platforms,
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Table 5.1: Types of EV charging mobile applications based on their abilities. a Indicates the mobile
application operators that possess Flaw 1 (Unverified Ownership). b Indicates the mobile application
operators that possess Flaw 2 (Improper authorization for a critical function). c Indicates the mobile
application operators that possess Flaw 1 and 2 but mitigate them by requiring information only
found physically on the EVCS HMI.

Description Type Application Names

Remote control of charging
sessions and system overview 1 Remote Start Charging: ChargeHuba,b - Electrify Canadac - PodPointa,b -

Electrify Americaa,b - EVDCa,b - Semma Connecta,b - eCharge Networka,b

- Tata Power EZ Chargec - Flo EV Charginga,b - BC Hydro EVa,b - Circuit
Électriquea,b - PlugSharea,b

Remote Start and Stop Charging: Petro-Canada EVa,b - ChargePointa,b -
vend-electrica,b - Anywhere Charginga,b - Electromapsa,b - Ionitya,b - Volta
Charginga,b - Charge Assista,b - Virtaa,b - Global Chargea,b - EV Charging By
NewMotiona,b - EV Matcha,b - EcoFactor Networka,b - FastNeda,b - EVgoa,b

- Greenlotsa,b - EVdutya,b - EV Connecta,b - NextChargea,b

System overview 2 Zap-Map - Charge Map - EVMap - Kazam EV - Chargeway - Charge Finder -
Open Charge Map - EV Stations

Home charging optimization 3 EV Energy - OptiWatt - Monta EV Charging

respectively. However, confirming this will be considered for future work.

5.2.2 Static Analysis

We aim at documenting and understanding the functionality of mobile applications and

their utilized libraries. We used static analysis to understand the security measures im-

plemented by EV charging mobile application vendors to thwart automated bot attacks by

examining libraries and artifacts found in the binary files, along with understanding the

structure of the mobile applications (Figure 5.2a) to perform a systematic functionality

analysis. Thus, we utilize reverse-engineering of the APK, which is an archive package that

contains a manifest file with the package name, activity names, hardware features support,

permission, and other configurations. The APK also contains the certificates for the appli-

cation, a lib directory holding compiled libraries used by the application, and a file with

compiled application code in the dex file format, which can be interpreted by the Dalvik

Virtual Machine (DVM) and the Android run-time environment.

We extract all the files using apktool [103], which disassembles all the resources and

extracts the application Manifest and the dex files. Consequently, we use the extracted
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dex files and convert them to a JAR file using dex2jar [104] utility. We then input the

file into jd-gui [105] to browse the underlying Java source code. We then analyze the

extracted jar files using white-box analysis techniques to check the application resources

(e.g., libraries and their functionality, certificate signing techniques used by the application

developer, etc.). Further, we extract resources from the generated reports (e.g., the activities

used in the mobile application and the flow of activities), which allow us to perform a

detailed functional analysis and identify libraries used in EV charging mobile applications

by using MobSF [106] and LiteRadar [107]. Consequently, we check the functionality of

the libraries used (e.g., Google reCAPTCHA, hCAPTCHA, Anti-location Spoofing). The

understanding created by studying the information obtained through static analysis is used

to systematically guide the following step which is the dynamic analysis.

5.2.3 Dynamic Analysis

We rely on dynamic analysis (Figure 5.2b) to complement our static analysis method

and provide a holistic and comprehensive assessment of all the interactions and function-

alities provided by the mobile application. The dynamic analysis is performed through

functionality analysis, recording user input, traffic analysis, and monitoring system state

changes.

Functionality Analysis: We perform functionality analysis to collect data and identify

system states to understand the communication between different entities. Specifically, we

seek to answer the question of “How the adversary can utilize the interaction vulnerabilities

and weaknesses to connect to a remote EVCS and control its operations?”

Guided by the static analysis that allowed us to understand the structure of each mobile

application by mapping its activity flow, we attempt to systematically cover all the possi-

ble scenarios to systematically perform a detailed functionality analysis [108, 109]. We
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Figure 5.2: Overview of the static and dynamic analysis methodologies.

analyze each mobile application by manually mimicking regular users’ behavior and op-

erations and triggering every functionality possible in the mobile application. Throughout

our analysis, we discover that some functionalities are strictly prohibited based on the loca-

tion of the device. For example, Petro-Canada EV prevents initiating charging requests if

the users’ location is not in the vicinity of the EVCS. However, to mitigate that during our

functionality analysis, we spoof the location of the device by broadcasting a location close

to the EVCS. We utilized GPS JoyStick ADB Shell [110] to spoof the device’s location.

It is worth mentioning that other applications (e.g., Electric Circuit) notify the user that

they are far away from the location of the charging station however, it does not restrict the

user from initiating a charging request. Furthermore, some applications (e.g., electromaps)

detect that the user is far from the EVCS even if the location was spoofed. This is attributed

to the IP-Geolocation services used to detect the location of the originating IP, which can

be circumvented using a VPN that routes our traffic through a private tunnel that appears

to originate from the same country as the charging station.

Traffic analysis: While emulating user behavior and performing user actions, we cap-

ture the traffic generated by the mobile application to understand the information that is be-

ing sent and the interactions between the mobile application and the CMS similar to [101].

We trigger important functionalities of the application such as sign up/in and start/stop

charging. However, most applications use trusted Certificate Authorities (CA) to protect

user privacy by encrypting the communication between the mobile application and the
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CMSs [101]. To decrypt the communication we utilize an un-rooted device with the An-

droid 7 operating system

Moreover, since Android OS with version (≥ 7.0) does not trust user-installed certifi-

cates by design. Thus, to run applications on an un-rooted device with user-installed certifi-

cates, we create a virtual space on the phone that allows running Android APKs as plugins

by utilizing VirtualXposed [111]. Consequently, we perform API hooking to bypass certifi-

cate pinning/verification by using Inspeckage Package Inspector [112]. Moreover, in some

applications we bypass certificate verification, by reverse engineering the application using

APKTool [103], followed by injecting code into the application. We then repack and sign

the application before installing it. Consequently, we utilize Burpsuite [88], which operates

as a proxy server between the mobile application and the target server to intercept, inspect,

and modify raw traffic passing in both directions. Our analysis was not intrusive, however,

it allowed us to unravel and understand the communication between the mobile application

and the CMS.

5.3 Results

We utilize different methods to infer and analyze the interaction of the main components

within the EV charging ecosystem during user and device registration and when initiating

charging requests. We extract the capabilities instilled in each mobile application. The

capabilities recorded for each mobile application include remote start charging and remote

stop charging. Moreover, we record the remote control restrictions that are implemented

by the mobile application vendors to hinder the illegal or abnormal usage of a charging

station. The vendors limit the flexibility for the user to initiate charging requests based on:

(i) location proximity of the users (i.e., must be near the target charging station to initiate

requests), (ii) IP Geolocation info (i.e., charging requests should originate from the same

country/area as the target charging station), and (iii) user entered charging station ID that
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is found on the target device.

Our preliminary analysis shows that all applications provide their users with a remote

start charging service. Moreover, only 13 (e.g., Flo EV Charging, Plugshare, etc.) mobile

applications do not provide stop-charging functionality forcing users to remove their cars

when they finish charging. It is important to note that only two applications (Petro Canada

EV and Electromaps) check the integrity of the users by validating the location of the

device, whereas only one application (Electromaps) checks the locations of the originating

IP of the charging request. Finally, two applications force the user to input a station ID or

scan a QR code to initiate charging (Tata Power EZ Charge and Electrify Canada).

5.3.1 Inferred Interactions

As described in Section 5.2.3, we leveraged dynamic traffic analysis to capture and

infer the interactions between the mobile application and the CMS. As an adversary, we

consider the communication between the EVCS and the CMS as a black box. However,

the communication between the other entities can be inferred from the different states that

the mobile application goes through while performing different actions. Moreover, while

previous work presented in [20, 25, 45, 113] complement our analysis of the communica-

tion between the EV, EVCS, and the CMS, they provide us with some additional insights

about such communication and interactions. Specifically, it has been shown that the com-

munication between the EV and the EVCS lacks proper security measures, which renders

the underlying equipment vulnerable to remote attacks. For instance, Baker et al. [45] were

able to eavesdrop on the Pulse-Width Modulation (PWM) communication, which is utilized

by IEC 61851 [114, 115] for safety-related signaling mechanism between EVs and EVCSs.

Furthermore, despite the added security features into the ISO/IEC 15118 (e.g., Signal-Level

Attenuation Characterization and TLS encryption), the works in [45, 114, 115] highlighted

the improper deployment of these features in practice. Moreover, as highlighted in [17],
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most of these security features are optional and are commonly ignored by manufacturers,

thus, rendering devices vulnerable in real life.

User and EVCS Registration. To this end, we analyzed the EVCS charging applica-

tions listed in Table 5.1 of Type 1 to infer the interaction between the different entities upon

user registration, EVCS registration, and upon sending a charging request. We identify the

main interactions with the CMS during the registration of a new user and an EV charging

station (EVCS). During user registration, each user is assigned a unique identifier, which

allows the user to log into the platform and use existing functionalities. There are sev-

eral options for the user identifiers such as email/password combination or authentication

tokens to name a few. The unique user identifier is transferred to the CMS upon user reg-

istration on a given platform and then used later for authentication purposes. On the other

hand, when an EVCS is installed and made available for the public, the operator needs to

register it with the CMS by sending/registering its unique identifier. This information gets

saved in the CMS and used by the mobile application to identify a charging station.

Initiating Charging Requests. After the user connects the vehicle to the charging

station using one of the available connectors, the user must initiate a charging request using

the mobile application by selecting the desired charging station (e.g., using a map view).

The application embeds the unique user identifier along with the selected station’s ID in

the message sent to the CMS, respectively. The CMS then sends a start charge request

to the charging station with the respective ID/info. Consequently, the EVCS checks for

any connected vehicle before initiating the charging session. Note that in case no vehicle

was connected at the time when the user initiates a charging request, the EVCS will wait

for a grace period (e.g., 5 minutes) to provide the EV owner with sufficient time to plug

the charger into the vehicle. Otherwise, if a car was found to be connected to the EVCS,

it will initiate the charging session by sending a confirmation message to the CMS, this is

inferred by monitoring the changes on the mobile application user interface. Once the CMS
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Figure 5.3: High-Level control flow graphs for the three interacting components within the ecosys-
tem.

receives the confirmation, a correlation between the user identifier and the EVCS identifier

is established. Finally, the CMS relays the charging confirmation sent by the EVCS to the

mobile application.

To put this in a better context, we describe the state transitions inferred from the anal-

ysis of different platforms provided by the various EVCS operators in the industry. We

validated the interactions that helped us derive the states of the components on a real-time

co-simulation testbed and two EVCSs acquired from one of the biggest North American

operators. Any action triggered on the mobile application has a cascading effect on the

other components and will alter the state of the other components. For example, when-

ever a user initiates a charging session from the mobile application and transitions from S2

to S3 as illustrated in Figure 5.3c, the EVCS and the CMS will transition from S2 to S3

and eventually S4, the state of each component is dependent on the actions done by the

other components. The different components making up the EVCS ecosystem are tightly

coupled. The transition of one entity from one state to the other would change the current

state of the ecosystem. An ideal system must strictly maintain the three-entity control flow

graphs. The legitimate states of the EVCS ecosystem are depicted as a 3-tuple combination.

The CMS, EVCS, and the mobile application must strictly maintain the following 3-tuple

states at all times to avoid potential attacks. For example, if an attacker is able to induce

the cloud and the EVCS to transition to state S3 while the legitimate user is still in state

S2 shows that the charging session was hijacked by a third party (adversary). Moreover,
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another 3-tuple state if triggered can also lead to similar consequences by forcing the cloud

and the EVCS to transition to state S4 whereas the legitimate user mobile application is in

state S1 or S2. Whenever a legitimate user looking to charge his vehicle using a certain

EVCS the cloud state and the EVCS state should allow future transitions rather than being

blocked. If user B is charging user A is not allowed to access the EVCS remotely. Note that

all components have the same numeric state at all times, except at S1, where the CMS can

be in S1 while the other components could be in either S1 or S2. Consequently, through

this work we aim to dissect the intricate interactions of the components to trigger illegal

states. The control flow graphs show the general operation of the EVCS ecosystem and

show the type of information that is shared during the process. Thus, through our analysis,

we identify several vulnerabilities related to the trust model adopted in these ecosystems.

Moreover, a deep understanding of a system allows us to identify flaws in the ecosystem de-

sign which are related to how the components interact with each other. Thus, we performed

a systematic unraveling of the different components and their interactions.

5.4 Identified Vulnerabilities

In what follows, we present examples of the identified vulnerabilities that can be ex-

ploited to perform remote attacks against the EV charging ecosystem and the various in-

volved stakeholders (e.g., EV consumers and the power grid). We leveraged the described

analysis methodology along with the inferred traffic/interactions in the previous sub-section

to identify vulnerabilities.

Specifically, we discovered three major security weaknesses that are inherited from de-

sign and implementation flaws in the studied EV charging mobile application (Type 1). The

EVCS charging platform does not strictly comply with the legitimate 3-tuple states. We

found that the three entities stay in multiple unexpected 3-tuple states. The first unexpected

state is (S4, S4, S1/S2); the CMS and the EVCS transition to the charging state, whereas
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the mobile application user is either still in registration or EVCS discovering state. This

illegal state combination when exploited by an adversary could allow for remote charg-

ing/discharging session hijacking.

In what follows, we elaborate further on the root cause of such behavior, the identified

vulnerabilities, and their implications. It is worth noting that some mobile applications

(e.g., EVMatch) mitigate the first unexpected state by forcing the user to reserve a spot be-

forehand. Whereas, other applications (e.g., Tata Power EZ Charge) hinder remote hijack-

ing by forcing users to scan a QR code on the EVCS. However, when statically analyzing

the mobile applications, QR codes are saved in a temporary file in the external SD card,

which allows an on-device attacker to get access to that information to hijack the charg-

ing sessions. It is worth noting that some applications hide the access to charging behind

payment gateway (e.g., buying store credit). However, adversaries can overcome this by

buying store credit, which will provide access to the charging infrastructure. In what fol-

lows we focus only on the flaws that can be used to manipulate the EVCSs for attacking

the grid.

Flaw 1 (F1): Unverified ownership. Ideally, an EV user should be the owner or autho-

rized user of the vehicle. Thus, the EV user should be the sole entity to authorize any form

of control or action on the vehicle. Interestingly, our static and dynamic analysis results

indicate that the mobile applications do not verify user ownership over target vehicles when

initiating charging requests. In other words, an EV charging mobile application user can

initiate a charging request to any vehicle connected to the network since both the mobile

application nor the CMS do not have a mechanism to bind the application user to the target

vehicle. Given that all communications of the mobile application go through the CMS, it

is imperative to have the CMS verify critical operations such as vehicle identification and

ownership management. On the other hand, access to vehicles from an unauthorized user

is not verified within the EV charging mobile application platforms. Therefore, rendering
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the EV exposed to any user who can claim ownership and control over its charging func-

tions when connected to the EVCS. Thus, leading to unexpected behaviors and potentially

exploitable states.

Flaw 2 (F2): Improper authorization for a critical function. Starting and stop-

ping charging operations on a given EVCS are considered examples of critical functions,

which could be abused by adversaries (unauthorized users) to destabilize the operations of

the EVCS and the connected power grid. This was clearly demonstrated in [17], where

the authors measured the impact of mass charging and stopping operations on the power

grid. Ideally, an EV owner/operator should be the only user authorized to perform critical

functions on the vehicle. Exposing critical functionalities essentially allows adversaries

to control charging sessions, which is considered as the first step toward initiating mass

charging attacks on the grid. Nevertheless, our analysis results indicate that there is a lack

of authorization, which allows any actor to perform critical functionalities on the connected

EVs. This is closely related to our first finding (F1), it is mainly due to the fact that the

binding step happens only based on the user and charging station IDs without further ver-

ification of the EV ownership or binding to specific mobile users. Therefore, an adversary

can utilize fake accounts to hijack sessions.

5.4.1 Attack Scenarios

An attacker can leverage the discussed vulnerabilities to launch various malicious activ-

ities against the EVCS and its operations such as remote charging sessions hijacking. To do

this, attackers need to control a number of adversarial accounts (i.e., bots), which provide

access to existing charging services through mobile applications. Note that adversaries do

not need to exploit or hijack user accounts to create the required botnet. The attackers can

easily create their own botnet of legitimate mobile application accounts. The only security

measures in place rely on SMS or email authentication/verification during account creation
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Figure 5.4: Sequence diagram depicting remote charging/discharging scenario.

(e.g., one-time password and email verification). In practice, an attacker could rent service

from online SMS and Email providers such as Twilio [116], which provide communication

APIs to handle the verification processes. Additionally, attackers can create as many fake

email accounts as needed for the verification process.

Remote Charging Session Hijacking. After analyzing the interactions of the mobile

application with the different entities, we developed an understanding how the mobile ap-

plication could be used as an attack surface against the power grid. We found that the

studied platforms are vulnerable to session hijacking. By utilizing these vulnerabilities,

attackers can initiate unauthorized EV charging sessions with the aim to impact the power

grid. Ideally, the CMS should only allow a charging request if the request is issued from

the account owner that is bound with the EV. However, we found that the CMS does not

perform any account-based authorization or check during charging. In other words, there is

a decoupling between the user account and the EV that is connected to the EVCS. The user

is coupled with the EVCS ID only. Thus, an EV connected to an EVCS can be charged

remotely regardless of whether the user initiating the request is the legitimate owner of

the EV. The CMS does not perform the necessary checks to validate whether a user is al-

lowed to perform this action, or if the user is the actual owner of the EV. Thus, allowing
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adversarial accounts to unlawfully hijack charging sessions.

As illustrated in Figure 5.4, the adversary can leverage the combination of F1 and F2

to initiate unauthorized charging requests to take control over the charging session that

should have been initiated by the actual EV owner. When the attacker uses an adversarial

account to start charging requests, the CMS will establish a connection with the adversary.

It is worth mentioning that the actions performed by the adversary are fully legitimate and

within the scope of the permitted functionalities of the ecosystem. Consequently, legitimate

EV owners can no longer control their charging session. The only way for the user to stop

the charging is by physically unplugging the EV.

After, the user’s charging session has been hijacked, the user can no longer control the

EVCS. While this could raise an alert for a security-savvy user, other users may simply

disregard this behavior as long as they see that their EV is charging. It is worth mentioning

that even the security-savvy users will not notice the attacker’s actions unless they regu-

larly check their mobile applications during the charging process. Additionally, even when

the attack is noticed by these users, the root of the problem cannot be traced back to the

adversary. Only the CMS has the knowledge to trace back the attack’s origin. However,

due to F1 and F2 described above, the CMS considers the attacker’s actions legitimate.

We describe in Table 5.1 the possible attack scenarios based on the functionalities in-

stilled in the mobile application showing that 29 out of 31 mobile applications are vulner-

able to remote mass charging attacks. We exclude Tata Power EZ Charge and Electrify

America as they require inputting the EVCS ID number that is physically placed on the

charging station HMI. Moreover, there are only 19 out of the 31 mobile applications that

provide remote start and stop of charging and allow adversaries to launch oscillatory load

attacks with their advanced control on the stopping of charging.

Remote Discharging. Vehicle-to-Grid (V2G) capabilities are one of the attractive fea-

tures of EVs that can one day transform the EV battery into a distributed storage to support
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the power grid operation. Willing EV owners would register themselves as users willing to

contribute to supporting the grid during peak hours for an incentive (e.g. financial incen-

tives larger than the cost of charging) through utilizing their mobile application. However,

as demonstrated above, the current system architecture lacks traceability and end-to-end

authentication. An adversary can hijack a session, as explained above, and register them-

selves as a legitimate user that is willing to contribute to such a V2G scheme. This allows

the adversary to gain monetary compensation by discharging other users’ vehicles. We

acknowledge that such a class of attacks is not feasible at this moment due to the shy

adoption of V2G capabilities in the ecosystem and the absence of wide-scale compensa-

tion programs. However, the advancement towards such capabilities being instilled in the

ecosystem requires improving the current ecosystem architecture and strict access control

mechanisms, for safe and secure operation.

5.4.2 Attack Feasibility

In this section, we study the feasibility of launching wide-scale coordinated charg-

ing/discharging attacks. In these attacks, we assume that users connect their EVs to the

EVCSs before starting a charging session. We also assume that the vehicle remains con-

nected for a period of time after the end of the charging. In the aims to understand user

behavior and predict it, the authors in [117] highlight that EV owners do not necessarily

start charging right after plugging in. Additionally, a time window exists between plugging

in and charging an EV, which is the time a user needs to pull out the phone to start a charg-

ing session. Moreover, according to Almeghrebi et al., [118], another time window exists,

where customers leave their vehicles for an extended time when parking at the workplace

or overnight beyond finishing charging. Some users even leave their vehicles for longer

than 24 hours. This attack window is only applicable to mobile applications that provide

remote start and stop services. These time windows are exploitable by the adversary that
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can utilize them to launch remote session hijacking.

In [119], the authors utilize a multistep hybrid LSTM neural network to predict EVCS

occupancy. They base their analysis on public charging data from the City of Dundee, UK

in 2018. The number of charging stations plug-in simultaneously during the day fluctuates

reaching 300 charging sessions at 10:00 a.m. during the weekend and 400 charging ses-

sions during the weekday. The number of charging sessions starting at peak times during

the day is expected to increase as more customers adopt electric vehicles as a means of

transportation with the rapid and increased deployment of public charging stations. Thus,

the feasibility of remote charging session hijacking at scale increases.

To execute an attack by exploiting these vulnerabilities, an adversary needs information

about the user’s behavior. By understanding user behavior, the adversary can time and

coordinate the attack to increase its success rate. The attacker can extract information,

from the mobile applications (Type 1 and Type 2), similar to [120], where the authors

predicted user behavior based on arrival time, duration, departure time, etc. An adversary

can utilize the online interface (mobile application/web portals) to gather information. The

information we gathered through a tool we devised is the start charge time (arrival time),

and departure time if a vehicle connected within the attack windows. We used Appium

[121] to automate mobile application scraping which can be used for web applications

scraping. We then identify target EVCS and monitor their utilization and status. We collect

information about the EVCSs that are in use, allowing us to track arrival and departure

times. Moreover, whenever the station’s status changes from “in-use” to “available”, we

send a probe charging request to check if there is an EV connected to the EVCS. The

collected data is used to model user behavior and allow us and the attacker to target peak

EV connectivity hours to hijack charging sessions at scale [119].
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Figure 5.5: EVCS device registration with the
CMS using our real-time co-simulation test-bed.

Figure 5.6: Session confirmation showing the
success of our attack by hijacking the charging of
an idle vehicle.

5.4.3 Attack Demonstration and Verification

In this section, we evaluate and verify our observations, inferences, and conclusions by

using a real-time co-simulation test bed. We create a replica of the real EVCS ecosystem

by integrating real charging station hardware with a production-grade CMS. The EVCS

hardware utilizes OCPP v1.6 and communicates with the CMS backend to perform de-

vice registration initially which is described in Chapter 3. The EVCS and the CMS then

continuously communicate with each other over WebSockets to ensure that the EVCS is

alive by either sending a heartbeat notification or through the WebSockets ping-pong re-

quest/response. Indeed, during device registration, the EVCS will send an HTTP request

to the CMS backend which gets upgraded to a WebSocket connection. The HTTP header

includes the EVCS identification number which could be the serial number or an operator-

defined ID as demonstrated in Figure 5.5. Consequently, we were able to confirm and ver-

ify our observations and inferences regarding the interactions of the different components

discussed previously.

Accordingly, we aim to demonstrate our new attack vector to verify our conclusions on

the vulnerabilities that exist in the EVCS mobile operators. To leverage the aforementioned

design flaws that rely on the authentication scheme adopted by the different EVCS mobile

operators we first identify two EVCSs mainly in heavily populated areas. We monitor these
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EVCSs and record their utilization by gathering information from the mobile interface of

the applications for 3 days starting the 8th of November 2022 till the 10th of November

2022. During that time we performed reconnaissance to understand the utilization of the

EVCS. EVCS1 showed heavy arrival during evening hours (between 6:30 PM and 7:30

PM) whereas EVCS2 showed heavy arrival between 4:00 PM and 5:00 PM. We note that

to identify the utilization and arrival we note the change in the state of the EVCS. When

charging an EV, the EVCS shows an “in-use” state rendering it unavailable to other users.

Consequently, on the 11th of November 2022 we execute our attack as a proof of concept

on the EVCSs. We leverage the lack of rate limiting to send multiple charging requests

every 3-4 minutes from the adversarial account we created using the legitimate mobile ap-

plication channels. After sustaining the attack for almost 30 minutes starting at 6:30 PM

for EVCS1 and starting at 4:00 PM for EVCS2. Consequently, at 7:01 PM and at 4:18

PM we were able to successfully hijack the charging session of the EVCS1 and EVCS2

respectively. Consequently, we show in Figure 5.6 the confirmation of a successful charg-

ing of a vehicle that does not belong to us for almost 3 hours. Moreover, we would like

to note that the attack was demonstrated and verified on two different mobile applications,

i.e., one that only allows a start charge functionality and another that allows remote start

and stops charging functionality. We also note that vulnerabilities that allow the adversary

to remotely start and stop a session could be used in combination with other High-wattage

IoTs to impact the power grid. In [16], the authors demonstrate the impact of controlling

a large botnet swarm of high-wattage IoTs that could be used to impact the power grid by

launching load-altering attacks. Load-altering attacks impact the power grid by inducing

grid instability (e.g., frequency instability). Finally, the same attack workflow could be

launched to impact the power grid using the other mobile applications as they follow the

same procedures and policies to authenticate users.
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5.5 Attack Implications

In what follows, we discuss the remote charging session hijacking attack scenario along

with its implications on the power grid and EV users, respectively.

5.5.1 Attack Implications on the Power Grid

As demonstrated in the analysis, attackers can leverage the identified vulnerabilities

to compromise user accounts and perform synchronized large-scale cyber-attacks against

the integrated infrastructure [22, 113, 122, 123]. With the EV charging ecosystem being

a new and wide attack surface, it is an attractive target for exploitation by organizations

with enough resources to conduct large-scale attacks against the power grid, by utilizing

the mobile application to perform stealthy attacks.

Consequently, an adversary could initiate a distributed botnet attack utilizing thousands

of malicious accounts to send charging requests and hijack as many sessions as possible

to amplify the attack. The behavior of arrival and departure at charging stations almost

coincides with the demand behavior of the power grid [120], as demonstrated in the utility

demand curve of California, United States of America [124] and New South Wales (NSW),

Australia [125]. Additionally, by exploiting the identified vulnerabilities and initiating

the remote charging session hijacking attack (Section 5.4.1) during the described attack

windows (Section 5.4.2), an adversary can remotely orchestrate hijacked charging sessions

to synchronize a wide scale attack that can disrupt the power grid operations.

In this section, we study the impact of synchronized mass charging attacks on power

system economics (i.e., generation cost and transmission line losses). We then examine

how adversaries with some knowledge of the grid topology can craft targeted mass charging

attacks in order to overload and trip transmission lines. Finally, we study the power grid

stability subject to oscillatory load attacks that can cause violation of the safe frequency

operation limits and load shedding. Oscillatory load attacks can be performed using 16 of
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the applications that provide on-and-off remote control capabilities without requiring the

user to scan a QR code.

To amplify the attack impact on the grid, an adversary with knowledge of the grid

can craft targeted and smarter attacks. A small number of compromised charging sessions

with enough knowledge of weak buses allow the adversary to disrupt the power grid op-

erations. Power grid information can be estimated through monitoring the measurements

of the power grid to estimate the topology, using MILP programming, machine learning,

and voltage and load monitoring [17, 126, 127, 128, 129, 130, 131, 132]. Various stability

techniques and strategies could then be used by adversaries to locate the most sensitive/vul-

nerable buses, such as PV and QV curves [17, 133].

We demonstrate the impact of the attacks on the 7-bus test case introduced by Glover

et al. [134] (Figure 5.7a), which is commonly used for research purposes [17]. We utilize

this grid due to its built-in optimal power dispatching capabilities, unlike the work in [113].

Moreover, this 7-bus test case provides the generation costs formulas that will allow us

to study the economic impacts on the utility. To achieve a close to realistic simulation of

the power grid behavior during peak and off-peak demand hours, we scaled the grid loads

based on the NSW [125] power grid load profile using Equation 1.

HourlyLoadScaled =
GloverLoad×HourlyLoadNSW

AverageLoadNSW

(1)

To this end, we use PowerWorld [135] which is a power simulator that allows us to

analyze the steady-state power flow, transient stability, generation costs, and other power

system operations. Unlike [16, 17], here we study the economical aspects of an attack such

as generation cost and line losses respectively. Along with that, we also take into account

the load shedding mechanism that is used by the utility to regulate power generation in case

of a sudden drop in frequency below certain thresholds [136] to demonstrate more realistic

attack implications. The different attack simulations and results are demonstrated below. In
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Figure 5.7: Overview of the (a) Glover book 7-bus grid and (b) the impact of the line tripping attack
scenario.

what follows, the attack is initiated by compromising 84 MW of EV load that is equivalent

to 7636 EVs charging at the 11 kW Level 2 chargers. The current numbers of EVCSs and

EVs are not enough to mount such attacks, however, the growth in the EV numbers will

soon provide a large enough surface to make it possible [17]. It is worth noting that mobile

applications allow cross-product communication and control, thus, increasing the scale of

the attack as more vendors join these platforms. Moreover, as the EVCS market move

towards wide adoption of level 3 chargers, the higher power entails higher risk.

Economical impact. The attacker can cause the power utility to incur economic losses

by launching EV attacks against the power grid. To study the economic impacts of a mass

charging attack on the grid, we examine the transmission line losses and the power gen-

eration cost during different loading conditions and under different attack scenarios. To

perform mass-charging attacks 30 applications allow us to perform such an attack, whereas

the rest prevent remote mass-charging by forcing the adversary to scan a QR. We used

the scaled load profile to demonstrate the incurred cost and losses at different grid load-

ing conditions. Namely, we focused on the peak load (943 MW), the average load (800

MW), and the minimum load (677 MW) conditions that we will refer to later as off-peak

load. We simulate 3 different attack scenarios against the test grid by (1) distributing the

attack load randomly, (2) distributing the attack load equally among the 6 load buses and

(3) distributing the attack load proportionally among the different load buses. It is worth
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highlighting that Scenario (1) represents a random distribution of the EV charging attack

load to simulate an adversary with no knowledge of the grid topology. Scenarios (2) and

(3) represent attacks by an adversary with limited knowledge of the grid and geographical

knowledge of load size and EV distribution respectively.

Generally speaking, the attacks will increase the transmission losses under all loading

conditions. However, under higher loading conditions, the same attack will cause more

incremental losses due to the increased power flow in the lines. Line losses are calculated

as Ploss = Rline × I2 thus at higher loading conditions, the same attack load will result in

more losses. It is worth noting that under the different attack scenarios, the total incremental

line losses were almost equal. This is due to the fact that, the total load of the different

attack scenarios is the same and that we do not have any extra long transmission lines

that will have significantly different losses under different attack load distributions. The

normal and incremental losses are demonstrated in Figure 5.8a. The no-attack losses under

the different loading conditions were 3.1 MW (off-peak), 3.4 MW (average), and 4.3 MW

(peak), which lead to an increase of 16.13% at off-peak loading conditions, 17.65% during

average loading conditions and 18.6% during peak conditions. Thus, this simulation clearly

demonstrates that the attack impact on system losses is amplified when the power demand

was the highest, which also coincides with the time during which EV connection to the

chargers is the highest.

In the case of attacks against generation cost, each attack scenario differs based on

the optimal power dispatch performed by the utility to reduce the overall cost. Figure

5.8b presents the total generation cost of the system when no attack occurs and during

the three attack scenarios mentioned above. As Figure 5.8b demonstrates, the total added

cost due to the attack is higher during peak loading conditions across all attacks. More

importantly, the proportional attack scenario caused the highest extra cost. To put things

into context, the no-attack cost at off-peak, average, and peak loading conditions were
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Figure 5.8: Incurred (a) transmission losses and (b) costs due to various attack scenarios.

$14,545.28/Hour, $16,009.39/Hour, and $18,438.10/Hour respectively. The added cost due

to the proportional attack is $1,423.83/Hour under off-peak conditions, $1,426.45/Hour

under average conditions, and $1,451.95/Hour under peak conditions. This demonstrates

how an attacker can force the utility to increase its generation and incur extra costs.

One aspect not present in the simulation was the usage of peak generation units. This

was left out due to the absence of these units in the Glover grid in Figure 5.7a. These

units are usually fast-ramping units used by utilities and power grid operators during peak

hours when the large baseline generation units do not have sufficient capacity to supply

all the load. These peak generation units are usually operated for a few hours a day only

due to their high operation cost. This means that if the attack occurs at a time when peak

generators are being utilized, the extra cost would be higher. Another aspect of repeated

long-term attack worth mentioning, is that mass charging attacks, especially at peak hours,

will cause extra transformer loading. This extra loading would reduce its lifetime and

would require more frequent maintenance intervals causing extra maintenance costs.

An attacker with a long-term target of causing the utility to incur extreme losses can

repeat the hijacking of charging sessions over long periods of time. For instance, launching

the above attack for one hour during peak times every day for an entire year will create

an extra generation cost totaling $529,962 for the utility based on the Glover grid and

the generators’ cost functions. To put things into a better context, scaling this attack up

to the NSW grid will cause $4,615,967 extra cost for the utility per year. To this end, an
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Figure 5.9: Frequency behavior over time (a) without load shedding, and (b) with load shedding.

attacker might choose to compromise a smaller number of EV charging sessions and choose

different sets of EVs every day to remain stealthier and still cause millions of dollars of

losses to the utility in extra generation costs.

Overloading and tripping transmission lines. Another type of impact that might be

desired by the attacker is causing line overloading and tripping by crafting a targeted attack

against the grid. This attack has more severe and immediate consequences since it can leave

consumers without electricity. In the previous set of attacks, some lines got highly loaded

but none of them reached an overloaded state. The same EV load however can be used by

attackers with topology knowledge to target certain lines in order to cause cascading line

failure. The attacker will only require knowledge of the topology and estimate values of the

loads and power flows but not the line parameters. This information can be found online

and in multiple public access databases and websites.

To simulate such attacker behavior, we targeted bus 4 and bus 5 with a synchronized

20 MW and 64 MW EV charging attack respectively. This attack overloaded and tripped

the line connecting bus 1 and bus 2 after which multiple lines would be overloaded and

tripped. In total, seven lines would trip successively in the order shown in Figure 5.7b. The

successive line tripping would lead to islanding each of buses 1, 3, 4, and 5. While the

load at bus 4 will be supplied by power from the generator at the same bus, the loads at bus

3 and 5 will lose their power supply and thus the grid will lose a total of 280 MW which
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Table 5.2: Attack Scenario description and impact.

# Time(s) System State Action Action By Impact (state change)

1 15 System is operating
normally

Total attack load of 40
MW initiated

Attacker System frequency starts dropping

2 17.9 Frequency drops be-
low 59.3

5% load shedding Utility 5% of total consumers lose electricity.
System frequency starts rising

3 25 The frequency peaks
and is regulated by
the automatic genera-
tor control

Turning off all com-
promised charging
sessions

Attacker System frequency spikes

4 27.5 The frequency starts
dropping due to the
automatic generation
control

Automatic action of
generation control
system “no human
intervention”

Automatic System frequency is being reduced to
stabilize the system

5 32 The frequency was re-
duced by the auto-
matic generation con-
trol

Total attack load of 80
MW initiated

Attacker System frequency starts dropping faster
than step 1 due to the larger attack load
and the reduced generation after load
shedding

6 33 Frequency drops be-
low 59.3

5% load shedding Utility Additional 5% of total consumers lose
electricity (10% total). System fre-
quency starts rising

7 37 The frequency peaks
and is regulated by
the automatic genera-
tor control

Turning off all com-
promised charging
sessions

Attacker Causes a larger spike in frequency than
step 3 since the EV load that was turned
off is larger than that of step 3

8 39.4 Frequency exceeds
61.8 Hz [136]

Generators should
be tripped instanta-
neously

Utility Sequential generator tripping until sys-
tem frequency stabilizes.

>8 >39.4 Utility trips genera-
tors immediately. The
system inertia drops.

The attack impact is
larger causing more
tripping.

Attacker As more generators are tripped, the sys-
tem reaches a state of blackout.

represents a loss of electricity to 35% of the consumers.

Power grid instability. Another attack that takes advantage of load manipulation is an

oscillatory load attack that can impact the frequency stability of the power grid. This attack

revolves around the concept of creating a demand surge to cause a frequency drop on the

grid followed by a drop in demand to cause the frequency to overshoot. In the first step, the

attacker will use the compromised accounts and hijack charging sessions to initiate mass

charging to increase the power load. This extra power load would create an imbalance

between the increased load and the generated power causing the generators to slow down

resulting in a frequency drop. The second step of this attack happens when the system starts

its recovery. The attacker would switch off the compromised charging sessions, initiated

in the first step, to cause a frequency increase that is amplified by the operator’s effort to

increase the speed in response to the initial step. The attacker would then alternate between

89



these steps for the desired duration. The impact can be amplified by launching the attack

when the system has lower inertia due to the presence of a high share of renewable energy

resources.

Given the dependence of the grid’s transient behavior on the generator and turbine

models, we utilized the automatic control models common to studies similar to ours. It

is important to note that the utilization of different control models will change the exact

values of the simulation but the general shape and behavior remain the same. This demon-

strates that the attacks can be successful under different conditions, but their magnitudes

might need to be scaled based on the different conditions to achieve the desired impact. In

our study, we used the machine model “GENSAL”, the exciter model “IEEE T1” and the

turbine governor model “IEEE G2”.

The oscillatory load attack is simulated against the grid in Figure 5.7a by initiating the

oscillatory load behavior described above on buses 3 and 5. The attack is initiated by start-

ing a mass charging session equivalent to 20 MW ( at time t=15s and stopping it at t=25s

after the system starts to increase generator speed to compensate and the frequency starts to

rise. This charging and stopping behavior are repeated periodically every 10 seconds while

increasing the attack load at each bus by 5.5 MW every cycle. The frequency behavior of

the grid that results after such an attack is demonstrated in Figure 5.9a where we can see

the frequency fluctuation due to the oscillatory load behavior. The importance of this attack

is that it does not require huge loads to cause the frequency fluctuations depicted in Figure

5.9a. Even when the compromised EV numbers are much less than in the example above,

a sustained oscillation will hinder the system’s return to normal operation. Sustaining this

attack would damage the turbines due to the constant acceleration and deceleration.

In the previous example, we assumed no grid protection mechanism was used by the

utility and that the attacker followed a semi-naive approach in which the attack period is

predetermined and does not change as a result of actual conditions on the grid. In this
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iteration of the attack, we assume the utility will utilize load shedding when the frequency

drops below preset thresholds. The threshold that is violated in the attack is the 59.3 Hz

threshold after which the utility will immediately disconnect 5% of the total load in order

to compensate for the fast dropping frequency [136]. This utility behavior is depicted in

Figure 5.9b by the squares at time t=17.9s and t=33s. The behavior depicted in Figure 5.9b

is a response to a more advanced oscillatory load attack requiring the attacker to know and

observe the actual grid response to tune the attack load and period. The attacker and utility

interaction at every step is summarized in Table 5.2.

An extension of the oscillatory load attack can be achieved by utilizing the reverse

power discharge through the V2G functionality similar to a work performed in [3]. By

initiating this V2G at the instance we stop the mass charging, the attacker can cause a

larger frequency spike. It is worth mentioning, that by instilling V2G capabilities in mobile

applications the adversary can then utilize it to increase the oscillatory attack effect on the

grid.
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Chapter 6

Uncovering Covert Attacks on EV

Charging Infrastructure: How OCPP

Backend Vulnerabilities Could

Compromise Your System

6.1 Threat Model and Analysis Methodology

In this paper, we provide a security analysis framework to assess the OCPP backends

of multiple operators and to discover their vulnerabilities. Unlike previous works, the pre-

cursors of our attack do not rely on a set of assumed and unverified vulnerabilities. In what

follows, we detail the adversarial objectives, required assets, and adversarial capabilities.

We also present the required precursors of the attack, which are attainable from online

sources by the attacker.
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Figure 6.1: An overview of the EV charging ecosystem’s cyber/physical layers. The phantom CMS
is added only to show a unique and advanced attack scenario (AS5).

6.1.1 Threat Model

An adversary can utilize reverse engineering methods and penetration testing tech-

niques along with the flexibility provided by the EVCS operators to study the commu-

nication between a legitimate EVCS and the OCPP backend on the charging management

system. The objective of the adversary is twofold: (i) monitor and collect the communi-

cated messages between the OCPP backend and the EVCSs to acquire sensitive informa-

tion such as the device identity information and OCPP backend links;

and (ii) implement a phantom EVCS and a phantom CMS using the acquired artifacts to

substitute the legitimate EVCS and CMS (Figure 6.1) while hijacking the communication

between the CMS and the actual EVCS within the ecosystem. By doing so, the adversary

aims to fabricate and/or manipulate the exchanged messages to impede the CMS visibility

over its infrastructure. The adversary also aims to hijack and substitute legitimate EVCSs
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to monitor ongoing communications. These capabilities can be also used to cause a DoS

that impacts the network of EVCSs and the CMS.

Note that the different components of the ecosystem are considered trustworthy, and

non-malicious. Thus, the adversary does not need to infiltrate other components. Instead,

the adversary only focuses on interfering with the communication process with the OCPP

backend. Therefore, the main objective of the adversary is to use the security weaknesses of

the OCPP backend to substitute the legitimate EVCS with a phantom one while hijacking

the communication between the CMS and the actual EVCS within the ecosystem. Never-

theless, to achieve these objectives, the adversary must perform further operations, detailed

in the following subsections:

Reconnaissance and Feasibility

The adversary needs to collect the required information to prepare for the intended

attack. This information includes the EVCS IDs and the OCPP backend link, which is used

by the numerous EVCSs to communicate with the CMS remotely. Such information could

be obtained from various online resources. For instance, an adversary can utilize one of the

numerous online EV charging maps provided by operators to get the IDs of the deployed

EVCSs. Moreover, one can purchase a private EVCS and link it to an operator that supports

the deployment of private charging stations within their network. Note that these operators

often allow private EVCSs to connect to their backends to become visible as part of the

operator’s public charging network. To enable this feature, the operator will provide the

private EV owner with the OCPP backend link and assigns an ID to their EVCS. The

EVCS IDs can be either assigned/generated by the operator (e.g., randomly generated ID)

or obtained from the device itself (e.g., serial numbers) [137]. Additionally, the adversary

can collect such information by leveraging online device search engines and/or a series of

penetration testing techniques, which have been verified to be feasible in previous work:
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Figure 6.2: OCPP backend discovered on Zoomeye [1].

• Discover OCPP backends using online device search engines such as Zoomeye [1],

Shodan [33], and Censys [138]. As demonstrated in Figure 6.2, the adversary can per-

form a simple lookup into these repositories using EVCS-related keywords (e.g.,“OCPP

backend”), to obtain information about deployed CMS and their OCPP backends.

• Utilize online device discovery techniques along with security analysis methodologies

to identify severe vulnerabilities (e.g., XSS, SQL Injection, and CSRF), which enable

hacking into the deployed EVCSs and their management systems [17, 19, 35]. Once the

EVCS is compromised, the adversary will be able to extract the EVCS ID and the OCPP

backend link.

• Use the device search engines to discover EVCSs that are configurable over the internet

(e.g., with no authentication, or with weak/default credentials). The adversary can dis-

cover EVCSs in the wild and then exploit the usage of default credentials to configure

the EVCS, as discovered in [23, 50]. Once logged in, the adversary can learn the ID and

OCPP backend link (Figure 6.3).

It is worth noting that EVCS IDs can have different types/forms. For instance, some

of these IDs represent the EVCS’s serial numbers, MAC addresses, or randomly generated

numbers that are assigned by operators to the deployed devices [137]. Therefore, some of

these IDs are guessable and could be brute-forced. Consequently, upon utilizing any of the

above-mentioned methods, the adversary could access the OCPP backend link and obtain
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Figure 6.3: EVCS discovered using Zoomeye [1] that publicly exposes the critical information,
namely the EVCS ID.

the EVCS IDs for a given operator. For example, in Figure 6.3, we illustrate an example of

a discoverable EVCS using an online device search engine (Zoomeye [1]). After inspecting

the discovered host, we were able to obtain all its information, including its EVCS ID, since

the operator intentionally provided this information on the EVCS’s web interface.

EVCS Commissioning Breakdown

To discover the OCPP backend vulnerabilities, a testbed is used to identify the vulnera-

bilities and help us create Proof of Concepts (PoC)s that were later used on the 16 live sys-

tems to prove the existence of the same vulnerabilities [Anonymized]. The testbed enables

us to perform an in-depth analysis while achieving a realistic understanding of the system

without performing any intrusive actions on the real-life deployed systems. To achieve a

realistic implementation, the testbed was validated in terms of the OCPP client and server

implementations with production-grade EVCSs and CMS backends. Thus, making our

testbed implementation a replica of production systems. The testbed implementation mim-

ics the deployment of 16 live operators worldwide and takes into consideration TLS and

authentication mechanisms. The testbed is described in Chapter 3. However, through our

work, we show that EVCS operators need to raise the security bar by using more rigorous

authentication and authorization mechanisms. Moreover, the testbed is used to identify the

vulnerabilities and help us create PoC that were later used on the 16 live systems to prove

the existence of the same vulnerabilities. We leverage the implemented testbed to ana-

lyze the EVCS commissioning and registration procedure when adding a new device to the
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operator’s OCPP backend. It is worth highlighting that studying the commissioning proce-

dure of the EVCS allows us to understand the authentication mechanism and the workflow

that is implemented by the backend systems. As shown in Figure 6.4, the commissioning

procedure for any EVCS consists of the following main steps:

i. Whenever a new EVCS is connected to the network, the responsible personnel (e.g.,

technician) for commissioning the EVCS will use the assigned EVCS ID to register

the device on the operator’s CMS and establish an OCPP backend link.

ii. The operator will establish the OCPP backend link, which is an independent Web-

Socket endpoint that is always listening for connections from the connected EVCSs.

In WebSockets, the client initiates the communication by sending an HTTP request

that gets upgraded into WebSocket communication.

iii. The user will input the OCPP backend link into the configuration page, which can be

accessed remotely or locally.

iv. At this stage, the EVCS will reboot automatically to reconfigure itself to the new

settings. During this brief time, the EVCS will be offline as it tries to configure itself

and establish communication with the CMS.

v. The EVCS returns to its idle state and initiates the boot sequence where the EVCS

communicates with the CMS aiming to establish a WebSocket communication.

vi. The EVCS will start a TCP handshake with the OCPP backend.

vii. A WebSocket handshake is then initiated by upgrading the HTTP handshake into a

full-duplex communication. This is because WebSocket communication is based on a

single TCP connection, whereas HTTP is half-duplex.
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Figure 6.4: EVCS commissioning lifecycle.

viii. At the final step, an OCPP full-duplex communication is established using Web-

Sockets technology. This enables seamless bi-directional communication between

the EVCS and the CMS.

Note that beyond Step vii, the EVCS will follow the OCPP boot sequence, which incor-

porates a request-response mechanism where the EVCS sends a BootNotification

request that contains information about the EVCS such as IMSI/ICCID values, Model,

and SerialNumber information, to name some. Consequently, the CMS replies with a

BootNotification confirmation. Moreover, the CMS then sends a GetConfiguration

request to retrieve the configuration items defined by the OCPP such as authorizing remote

transactions and number of connectors. Then, the EVCS remains idle (ready to charge),

while waiting for incoming requests from the CMS or manual demands for charging by EV

users.

As shown in Figure 6.5, the content of a captured packet from the exchanged traffic

between an EVCS and the CMS within our testbed reveals sensitive information such as

the device registration information (EVCS ID) and the OCPP backend link (anonymized in

the Figure). This sensitive information is necessary for creating the connection between the

client EVCS and the OCPP backend on CMS server. To generalize our findings in terms of

the EVCS commissioning procedure across different operators and EV charging stations,

we examined sixteen widely deployed CMS, which are operated by different vendors. Our

analysis indicates that the described EVCS commissioning and registration procedures are
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GET /ocpp/AL0012************ HTTP/1.1 
Host: ******************************** 
Upgrade: websocket 
Connection: Upgrade 
Sec-WebSocket-Key: yc00jOdENekBP7wdb6P1lg== 
Sec-WebSocket-Version: 13 
Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits 
Sec-WebSocket-Protocol: ocpp1.6 
User-Agent: Python/3.10 websockets/10.3 
 
HTTP/1.1 101 Switching Protocols 
Date: Thu, 08 Dec 2022 18:46:11 GMT 
Connection: upgrade 
Upgrade: websocket 
Sec-WebSocket-Accept: SX/d29VizNfPapmpmC4xjyxGHQI= 
Sec-WebSocket-Protocol: ocpp1.6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.5: HTTP and WebSocket Handshake.

common across various deployments of the EV charging ecosystem. Additionally, the

device commissioning procedure is backend-specific and does not rely on the EVCS that is

connected to the OCPP backend.

6.1.2 OCPP Backend Vulnerabilities

To this end, we inspect the vulnerabilities of the OCPP backend against the OWASP

Top 10 security risks [139]. We use our implemented testbed to investigate vulnerabilities

associated with injection attacks, along with access control and authentication weaknesses.

Given the identified weaknesses, we create a list of PoC exploits to validate the vulnerabili-

ties and test them on the analyzed CMS that is supported by 16 different operators/vendors.

The list of used PoC exploits is available in the following GitHub repository [Anonymized].

In what follows, we provide further details about the two examined classes of security

weaknesses, which allow the adversary to compromise the OCPP backend:

Injection Vulnerabilities

We analyze the OCPP communication through disassembly and the breakdown of the

communication flow. We focus on finding entry points that lack input cleansing and val-

idation. Thus, to find insertion points (e.g., GET/POST parameters), we perform system

99



fuzzing on the WebSocket handshake using various crafted payloads by intercepting HTTP

request/response traffic using Burpsuite [88]. The payloads include but are not limited to,

remote code execution, SQL Injection, and directory traversal, to name a few. The pay-

loads are used with our PoCs to analyze the systems and infer whether they incorrectly

interpreting the used payloads. Note that the PoCs will not inflict any harm to the tested

systems and can only be used to indicate if the analyzed system is exploitable or not. The

payloads of the PoCs can be found in the following GitHub repository [140]. Additionally,

we provide an attack script in our GitHub repository [Anonymized], which can be used to

reproduce the tests and confirm the identified vulnerabilities. However, we do not provide

any details of how to extend this exploit to launch any of the proposed attack scenarios.

Note that the input parameters can be modified to perform further testing. For instance,

as shown in Figure 6.3, we modified the EVCS identifier to inject a payload and confirm

that the OCPP backend logic does not accept manipulated input parameters. Additionally,

we manipulated several OCPP packets such as the BootNotification and sent them to the

backend to test the security of the backend against OCPP manipulation. Consequently,

we tested other OCPP packets sent by the EVCS, which include parameters such as the

response to GetDiagnostics and GetConfiguration OCPP requests. Our analysis verified

that the tested OCPP backends utilize strict input validation and sanitization mechanisms

that prohibit an adversary from hijacking the execution flow by forcing the OCPP backend

to interpret malicious payloads. Thus, we confirm that the deployed security mechanisms

by the OCPP backend will protect the EV ecosystem against the aforementioned injection

attacks.
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Figure 6.6: Access control and authentication vulnerability analysis.

Access Control and Authentication Vulnerabilities

Access control and authentication failures have been ranked first and seventh in the

OWASP Top 10 security risks [139]. Moreover, these security risks will allow the adver-

sary to exploit the system and set foot into the OCPP backend. The analysis of the OCPP

backend in our testbed shows that the authentication mechanism is based on the value of

the registered EVCS ID, which is sent as part of the Get parameter. Given that such in-

formation is discoverable (as described in Section 6.1.1), we develop a phantom EVCS to

imitate the functionalities of the OCPP Client that is found on the EVCS. We illustrate the

setup for our access control testing mechanism in Figure 6.6. We create a generic phantom

EVCS, which can be used to test any OCPP backend without the need for further customiza-

tion. The phantom EVCS was implemented in Python [77], and by following the standard

documentation that can be found on our anonymized GitHub repository [Anonymized].

Moreover, the phantom EVCS imitates a legitimate charging station by exchanging OCPP

messages including HeartBeat notifications that are used to ensure that the client is al-

ways alive. Finally, the phantom EVCS is running OCPP v1.6, which is the most widely

deployed version of OCPP by EVCS operators worldwide.

Throughout our analysis, the objective of the adversary is to create a phantom EVCS

that can connect to the OCPP backend to obtain the OCPP backend link and pose as a

legitimate charging station in the network. This can be done following two assumptions:

(i) by using the ID of a registered charging station to create a phantom EVCS, which re-

places the legitimate EVCS by hijacking the OCPP backend link; and (ii) by utilizing other

non-registered EVCS IDs to establish a connection with the backend. Ideally, the OCPP
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GET /ocpp/AL0012************ HTTP/1.1 
Host: ******************************** 
Upgrade: websocket 
Connection: Upgrade 
Sec-WebSocket-Key: Y0uV9twZ1VSMufPeKuuFlA== 
Sec-WebSocket-Version: 13 
Sec-WebSocket-Extensions: permessage-deflate; client_max_window_ bits 
Sec-WebSocket-Protocol: ocpp1.6 
User-Agent: Python/3.10 websockets/10.3 
 
HTTP/1.1 101 Switching Protocols 
Date: Fri, 11 Nov 2022 23:23:34 GMT 
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Figure 6.7: TCP flow of OCPP backend acceptance of the connection from the phantom EVCS
(test date: Nov. 11, 2022).

backend should refuse to connect to the phantom EVCS in these two cases. However,

our analysis results indicate that the OCPP backend can only detect/block communication

with phantom devices that utilize non-registered IDs. While on the other hand, a registered

EVCS ID can be used with a phantom device to replace legitimate charging stations and

hijack the OCPP backend link successfully, as shown in Figure 6.7. Moreover, we discov-

ered that the CMS does not limit the number of connections that are made from different

devices that use the same EVCS ID. Therefore, we were able to create more than one phan-

tom EVCS at a time (e.g., tested with up to 10 devices) while establishing a successful

connection to the OCPP backend. Finally, we verified these findings by testing the vulner-

ability on 16 real-life OCPP backend deployments. Note that we refrain from mentioning

the operators’ names due to the sensitivity of the services provided by them and the fact

that revealing such vulnerabilities might impact the security of their operation on the power

grid.
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6.1.3 Ethical Consideration and Responsible Disclosure

OCPP Backend Discovery, Analysis, and Testing

To discover OCPP backends, we relied on passive Internet scanning data previously col-

lected by third-party device search engines (e.g., Shodan [33] and Zoomeye [1]). No active

scans have been done. We note that the discovered vulnerabilities on the live systems did

not impact their performance. We discovered them through also coordinated testing/stag-

ing environments provided by some of the operators. We also validated with the operators

that the PoCs do not cause harm to the analyzed systems while monitoring the tested assets.

Additionally, we did not observe any damaging outcome from testing the PoCs with the op-

erators that provided testing environments. We note that the PoCs contain passive payloads

that do not exploit the vulnerabilities and in the worst-case scenario any unexpected side

effects. Additionally, we extend previous work to implement new tests using the created

co-simulation testbed [141]. Their implementation has been validated and verified to be a

replica of a production-grade environment. Thus, we performed some tests on it to prevent

impacting real systems.

Responsible Disclosure

As part of our ethical consideration, the vulnerabilities were documented and disclosed

to the affected parties prior to the publication of our findings. The presented discoveries are

dated back to November 11, 2022. Thus, the vendors/developers were provided with more

than 7 months to validate these vulnerabilities before publishing the results. Among the 16

EVCS vendors/operators, only two have acknowledged the discovered vulnerabilities while

asking to remain anonymous in our reporting. Additionally, while the vendors verified the

identified vulnerabilities, they refrained from assigning CVEs due to the sensitivity of the

environment and the fact that publishing such results would expose their live infrastructures

to possible cyber-attacks. Note that the remaining 14 vendors/operators have not responded
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to us to date. We initiated a coordinated vulnerability disclosure with impacted operators

and notified them about the attack vector, feasibility, and impact. The notification cam-

paigns were initiated in November 2022 and continued till July 2023. In the notification,

we also provided the operators with mitigation mechanisms that would limit the attackers’

ability.

Data Privacy

We obtained an approved institutional review board (IRB) based on data retention/-

management policy regarding the gathered data and hosts. Specifically, we retained data

collected from the OCPP Backends for the duration of the analysis, after which, to preserve

the privacy of data and reliability, we removed from our machines, all data gathered during

the study of the affected host instances.

6.2 Analysis Results

In this section, we discuss how the vulnerabilities can be leveraged to perform different

attacks. This is the first work that discovers vulnerabilities in the EV charging ecosys-

tem that can be leveraged to perform wide-scale attacks against operators’ cloud systems

rather than individual EVCSs. Consequently, we discuss the attack workflows in detail and

present the different attack scenarios that leverage such vulnerabilities.

6.2.1 OCPP Backend Vulnerabilities Analysis

As described in Section 6.1.2, our analysis indicates that an adversary can implement

one or more phantom EVCS using registered charging station IDs and use them to hi-

jack the OCPP backend links to impersonate legitimate EVCS. Indeed, our analysis results

demonstrate the lack of proper security measures to protect the OCPP backend, which

104



implies a series of security weaknesses and vulnerabilities. As shown in Table 6.1, we

identified vulnerabilities showing their related CWEs [142]. CWEs provide a systematic

and standardized way for classifying all software weaknesses and vulnerabilities [143]. In

what follows, we list and describe the 6 zero-day vulnerabilities we discovered. It is worth

highlighting that a zero-day vulnerability is a security flaw discovered before the vendor/-

operator rectifies the issue after becoming aware of its existence [144].

• Improper and Weak Authentication: by leveraging the phantom EVCS and successfully

connecting to the OCPP backend we discover improper authentication where the phan-

tom EVCS claimed the identity of a legitimate EVCS and the backend did not prove that

the claim is incorrect. However, we note that the tested OCPP backends utilize an authen-

tication mechanism based on the EVCS ID. This means that only phantom EVCSs using

registered IDs will be able to connect to the backend thus, partially limiting the breach

into the ecosystem. However, once a legitimate EVCS ID is exploited by our phantom

EVCS, the authentication mechanism fails to prove the identity of the client.

• Improper Restriction of Communication Channel to Intended End Points: the OCPP

backends establish communication channels for phantom EVCSs and do not properly

ensure it is interacting with the correct client. The phantom EVCS is able to hijack and

substitute a legitimate EVCS and gain the same level of access.

• Improper Control of Interaction Frequency: the OCPP backend does not control the num-

ber of parallel connections that could be made from the phantom EVCSs possessing the

same source IP utilizing the same legitimate EVCS IDs. To test that we connect 10

phantom EVCSs in parallel without being restricted.

• Improper Restriction of Excessive Authentication Attempts: this is closely related to the

previous CWE, however, in this case, we utilize an unregistered EVCS ID. The OCPP

backend did not attempt to block our connections making it susceptible to EVCS ID
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Table 6.1: Vulnerabilities discovered in each of the 16 live CMS operators’ backends.

Vulnerability
CWE

Specific EV Ecosystem Vulnerability

Improper and Weak Authentication
284/287

When a phantom EVCS claims to have a given identity the
backend does not sufficiently verify and validate that.

Improper Restriction of Communication Channel to In-
tended Endpoints

923
Attackers can spoof the real EVCS using a phantom
EVCS, thus gaining the same level of access as the real
EVCS and continuing to communicate without validating
the identity ever again.

Improper Control of Interaction Frequency
799

The backend does not limit the interaction with the EVCS
which allows a phantom EVCS/real EVCS to send exces-
sive messages leading to DDoS.

Improper Restriction of Excessive Authentication At-
tempts

307
The backend does not implement a mechanism by which it
can block repeated connections to it allowing the attacker
to easily brute force the correct EVCS IDs or even launch
a DoS attack on the authentication endpoint.

Session Fixation
384

The backend maintains all previous sessions open with all
EVCSs having the same ID but only communicates to the
last EVCS with that given ID

Reliance on Single Factor in a Security Decision
654

The authentication process of an EVCS relies solely on the
EVCS ID that can easily be obtained by the attacker

guessing attacks.

• Session Fixation: after connecting the phantom EVCS the OCPP backend establishes a

new client session without invalidating the legitimate one. The legitimate EVCS now is

unavailable and does not receive any information from the backend although, a session

exists and is maintained by both entities.

• Reliance on Single Factor in a Security Decision: the tested OCPP backends rely on only

the EVCS ID for authentication, which is considered as part of the root cause problem

that has led to the discovery of these vulnerabilities.

The different vulnerabilities discovered show a very concerning trend in the develop-

ment and deployment of the OCPP backends. The different vulnerabilities are chained

together to provide an attack vector that exploits authentication vulnerabilities in the differ-

ent attack workflows described below. Moreover, we validated our discovery on 16 real-life

OCPP backends that are distributed worldwide. We discovered a set of vulnerabilities that

can be used by the adversary to infiltrate networks of EVCSs without being detected by the
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operator’s CMS. It is crucial to highlight that such attacks not only impact the EV charg-

ing stations and their users but also can have a significant impact on the operations of the

interconnected power grid. Thus, introducing a new attack vector against the EV ecosys-

tems and the connected critical infrastructure. Additionally, we would like to highlight that

these vulnerabilities cannot be mitigated by simply adopting the newer version of OCPP

that includes a TLS encryption mechanism. While TLS provides a mechanism for both

entities (OCPP Client and OCPP Backend) to communicate securely and encrypt the data,

preventing unauthorized parties from eavesdropping or tampering with the information, it

does not provide an authentication mechanism and a patch for the presented vulnerabilities.

To examine this issue further, in our testbed, we utilize a secure WebSocket configuration.

Yet, the attacks remained successful since its success is independent of any encryption.

Additionally, we tested our attack on the testbed after deploying OCPP 2.0.1 including its

TLS mechanism, yet the attack success was not impacted. In all of these tests, the vul-

nerabilities still existed and the attacks remained successful. Especially, the discovered

vulnerabilities are due to backend implementation and its security controls. Additionally,

such vulnerabilities are not currently impacting the performance of live systems because

they are not actively exploited in the wild. In what follows, we provide further information

on the proposed attack workflows along with a discussion of possible attack scenarios.

6.2.2 Attack Workflow

In this section, we present details of two attack workflows and validate them on our cre-

ated testbed [Anonymized]. We use the testbed to avoid performing any intrusive action on

the live systems. The testbed provides a real-life replica of a production-grade EV charging

ecosystem that has been validated by our industrial partner, Hydro-Quebec, which is one

of the biggest utilities in North America. Thus, providing a realistic security assessment.

Testbed Setup. We leverage our created testbed to simulate legitimate EVCS and register
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its device ID by establishing a WebSocket connection and following the commissioning

steps, as described in Section 6.1.1. After that, we follow similar steps to add our phan-

tom EVCS using the registered ID that belongs to the legitimate EVCS. We notice that

the OCPP backend accepts the connection from the phantom EVCS while replying with

the GetConfiguration request, which confirms the device registration. Furthermore,

we initiate a RemoteStartTransaction from the backend and note that the phantom

EVCS will receive it exclusively. This indicates that the OCPP backend will always main-

tain its communication with the most recently registered client only. On the other hand,

we verify that both legitimate and phantom EVCSs will perceive active connections to the

OCPP backend by continuously sending ping-pong messages to the backend.

In addition to the testbed analysis, we leverage a list of created PoC exploits to test the

vulnerabilities on real-life OCPP backend deployments in each of the 16 operators/vendors.

We discuss our analysis results by presenting two attack workflows:

Attack Workflow 1 - Remote EVCS Substitution. As illustrated in Figure 6.8, we show-

case the overall procedure that could be followed by an attacker to remotely replace legiti-

mate victim EVCS(s) on the operator’s network. Note that the legitimate EVCS (victim) in

this case is assumed to be temporarily offline. This could happen due to any reason with the

power or Internet connection, or due to software-related procedures (e.g., rebooting). Given

this offline window, the adversary will leverage a phantom EVCS to send a WebSocket

Connection using the ID of the offline victim EVCS. The OCPP backend confirms that the

ID is found in the database of registered EVCSs and then allows the consequent commu-

nication with the phantom EVCS, thus establishing an OCPP connection. At this stage,

the cloud will show that the EVCS is online whereas, in fact, the legitimate EVCS is still

offline.

To verify our findings, we analyzed examples of publicly accessible OCPP backend

deployments, which reveal the EVCS IDs (as described in Section 6.1.1). Specifically, we
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Figure 6.8: EVCS substitution and OCPP connection hijacking attack PoC workflows.

look up registered EVCSs that have an “offline” status. We leverage our list of PoC ex-

ploits (GitHub repository [Anonymized]), which are used to infer the vulnerabilities with-

out causing harm to the systems, to test the vulnerabilities on the selected 16 OCPP back-

end deployments in the wild. Interestingly, we were successful in replacing all the victim

EVCSs with our phantom devices while tricking the CMS to update the status of the EVCS

to “online”. Finally, we verified the status update in relation to our phantom EVCS deploy-

ment by disconnecting the device and observing the status of the EVCS, which turned to

“offline”, respectively.

Attack Workflow 2 - Remote EVCS OCPP Connection Hijacking. In this attack work-

flow, we study the effects of leveraging our phantom EVCS to impersonate an online EVCS,

which is actively communicating with the OCPP backend. The legitimate EVCS main-

tains an ongoing OCPP connection over a WebSocket by sending ping-pong messages

to maintain an open connection. In parallel, we run our phantom EVCSs with the IDs of

the legitimate EVCSs as they continue to operate normally. Surprisingly, our analysis re-

veals that the phantom EVCS receives the GetConfiguration request from the OCPP

backend, which verifies the accepted connection to the backend. Thus, the backend will be

fooled to communicate with the phantom EVCS for future requested operations.

To this end, we leverage the created PoC for this attack workflow (GitHub reposi-

tory [Anonymized]) to test the vulnerabilities on selected examples from the 16 deployed
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OCPP backends. Our analysis reveals that regardless of the number of newly established

connections, the OCPP backend will always accept them as long as use a registered EVCS

ID. Indeed, the CMS will only check for a valid/registered EVCS ID without further val-

idation/verification of the received messages or the total number of existing connections.

This will cause the CMS to connect and interact with any phantom EVCS, which is abus-

ing a registered EVCS’s ID. Additionally, the connection between the legitimate EVCS

and the OCPP backend was still maintained, as the victim EVCS will continue to send the

ping-pong messages to maintain its WebSocket connection. This clearly demonstrates a

session fixation security issue. Ideally, the OCPP backend should maintain one connection

at a time with respect to a given EVCS ID. Finally, this attack could be extended to multi-

ple EVCSs due to the lack of rate limiting on the accepted request by the analyzed real-life

OCPP backend deployments from 16 operators. This could open the door for brute forcing

attacks by adversaries who will attempt to guess the EVCS IDs.

6.2.3 Attack Scenarios

In this section, we discuss possible Attack Scenarios (AS) by following the described

attack flows and leveraging the identified vulnerabilities in the OCPP backend:

AS1 - OCPP Backend Denial of Service. We leverage attack workflows 1 & 2 to launch

10 phantom EVCSs that have the same valid (registered) device ID. We note that the

OCPP backend accepts all registration requests while maintaining a consequent connec-

tion with each one of the devices. Following the same approach, the adversary can con-

sume the resources of the backend by launching many phantom EVCSs while causing a

large-scale DDoS attack, which is leveraging the lack of rate limiting and improper access

control mechanisms. The adversary can also use automated scripts to generate and coor-

dinate a significant number of requests (e.g., Authorize, BootNotification, and

DataTransfer) from the existing phantom EVCS towards the OCPP backend within
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a short period. These messages are usually initiated by the EVCS, and as described in

[89], they can be utilized by adversaries to impact the availability of the backend and cause

possible DoS.

AS2 - EVCS Denial of Service. As described in attack workflow 2, while the communica-

tion link with the OCPP backend was hijacked by the impersonating EVCS, the legitimate

EVCS will continue its normal operation and remain unaware of the situation. Conse-

quently, all the remote functionalities provided by the OCPP protocol will no longer be

received by the legitimate EVCS and it becomes virtually out of service. Note that during

normal operations, EVCS users will launch the corresponding mobile applications to re-

quest charging sessions for their EVs. Ideally, the CMS forwards these requests to the real

EVCS. During this attack, all charging requests will be forwarded to the phantom EVCS,

and deprive the legitimate EVCS from receiving any request (i.e., DoS).

AS3 - Data Collection and Poisoning. Data mining is crucial for modern companies that

tend to perform extensive data logging to get a deeper understanding of their business.

Therefore, EVCS operators will leverage the information collected about EVCS utilization

to plan future expansions, study user behavior [145], predict attacks on their network, and

monitor fleets, to name a few. However, an adversary can leverage attack workflows 1

and 2 to interfere with the communication by substituting the real EVCS in the charging

infrastructure. This results in two possible attack scenarios:

AS3.1 - Passive Attack. Attackers can eavesdrop on the communication being sent from

the CMS to the phantom EVCSs to gather information regarding the utilization of legiti-

mate EVCSs. Such information can be used later by adversaries to plan and initiate coor-

dinated attacks on the power grid [35].

AS3.2 - Active Attack. The adversary can utilize phantom EVCSs to actively inject fake/-

tailored information about the utilization of the existing EVCSs (e.g., by changing their

status or charging rate). This is done to skew the operator’s data mining process while
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gradually poisoning the data collection to degrade the downstream behaviors of any learn-

ing models that might be implemented by the operator [146]. Thus, data poisoning will

detrimentally impact the infrastructure especially when the operators rely on this data to

detect future attacks, as proposed in [147].

AS4 - Firmware Theft. The EVCS vendors usually employ proprietary firmware as a part

of their CMS, which could be installed on their charging stations. To keep these firmware

up-to-date, the EVCS operators will leverage the OCPP protocol to initiate UpdateFirmware

requests from the OCPP backend, which in return will automatically fetch the new firmware

from the remote host. Therefore, an adversary can utilize phantom EVCSs in listening

mode to monitor the OCPP communications for the UpdateFirmware request to steal

any new software/firmware updates. As described in previous work [19, 35], an adversary

can dissect the collected firmware image to perform in-depth security analysis by dump-

ing/mounting the embedded filesystem to explore the various directories and files and dis-

cover entry points for remote attacks.

AS5 - Persistent Covert Attacks. Covert attacks aim at compromising the EV charging

ecosystem while covering the adversary’s actions from being detected. The objective of

the adversary is to keep the infrastructure available while remaining persistent in the sys-

tem (e.g., as a man-in-the-middle) to perform subsequent actions/attacks. As illustrated in

Figure 6.9, this is a two-stage attack, which combines OCPP backend and EVCS firmware

vulnerabilities.

At the first stage, the adversary will leverage EVCS firmware vulnerabilities [17, 19, 35]

to exploit its management system and access its configuration page. The attacker will then

update the configured OCPP backend URL of the real operator on the EVCS to redirect

the communication to the phantom CMS using the new OCPP backend link. At this stage,

the legitimate EVCS will be disconnected from the operator. This impacts the availability

of EVCS, which could be detected by the operator (e.g., reported by consumers). Second,
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Figure 6.9: An overview of the two-stage persistent covert attacks (AS5).

to achieve a covert/stealthy attack, the adversary will leverage attack workflow 2 to hijack

the OCPP backend and register a set of phantom EVCSs that will replace the legitimate

EVCS (i.e., using the same device IDs). The operator’s CMS will perceive the legitimate

EVCSs to be connected/functional since it cannot differentiate between the phantom and

legitimate EVCSs. Finally, to maintain a stealthy/covert attack, the adversary will leverage

the connections between the phantom CMS and EVCSs to relay all the exchanged messages

between the legitimate operators’ CMS and the real EVCSs. As a result, the adversary can

propagate the attack to impact the integrity and the confidentiality of the ecosystem and

even extend it to impact the availability while leaving the operator completely oblivious.

To this end, we implement the covert attack scenario on our testbed. Specifically, we

implemented the OCPP backend using the documentation provided in [77] to develop the

introduced phantom CMS. In what follows, we extend AS5 to devise further covert attack

scenarios.

AS5.1 - Stealthy Information Theft. This attack is a stealthy extension of AS3.1 where

the adversary can collect all the information sent by the legitimate CMS and EVCS to build

a full database of the actual operation of the charging network of a specific operator.

AS5.2 - Stealthy Firmware Theft. This attack represents a stealthy extension of AS4

where the adversary can now remain connected to the CMS without impacting the avail-

ability of the legitimate EVCSs. By doing so, the attacker can keep collecting the new

firmware releases without raising any alarms with the operator. Collecting these updates

allows the attacker to dissect this firmware and perform reverse engineering to find further
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EVCS vulnerabilities.

AS5.3 - Stealthy Data Poisoning. This attack represents a stealthy extension of AS3.2.

Due to its stealth, this attack can be scaled to much larger extents than AS3.2 and perform

long-term data poisoning campaigns to skew the operator’s datasets and machine learning

models away from the real behavior of the ecosystem.

AS5.4 - Stealthy Ransom Attack. An adversary can leverage the covert attack setup

to demand ransom from the operators. This can be done by increasing the proportion

of the controlled EVCS within the network to maximize the impact of any consequent

DoS attacks on the overall operations. The attacker will then demand a ransom from the

operator to release control of their infrastructure. Note that the operator CMS will perceive

a normal connection to all its EVCSs and therefore, making it extremely difficult to locate

the compromised EVCSs within its network.

AS5.5 - Stealthy Power Grid Attack. The adversary can launch attacks on the power

grid without the operator having any visibility over the actual behavior of the EV charging

infrastructure. Note that the power grid is required to maintain a constant frequency of

50/60 Hz based on the specific standards in each geographic region. However, following

our proposed covert attacks, an adversary can synchronize the operations of the controlled

EVCSs to force the grid to deviate from the normal operation point and induce forced

oscillations that can damage this grid. This is done by forcing synchronized switching

behaviors (e.g., charging ON and OFF) to cause the frequency oscillations on the power

grid [17, 19, 50].

6.3 Discussion

In this section, we use simulation analysis to discuss a stealthy power grid attack ex-

ample (AS5.5). Additionally, we recommend generic countermeasures to remediate the

targeted systems and mitigate future attacks.
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Figure 6.10: WSCC 9-bus grid.

Demonstration of AS5.5. To this end, we use simulation analysis to demonstrate Attack

Scenarios 5.5 (AS5.5) and test it on the Western System Coordinating Council (WSCC) 9-

bus grid [148], as shown in Figure 6.10. This setup is an approximation of the WSCC to an

equivalent system with nine buses and three generators, which is commonly used for grid

stability testing when simulating the Western Interconnect in the U.S. and Canada [149].

The simulation was performed using Hypersim, a real-time power grid simulator developed

by OPAL-RT [150]. The simulation time-step is 50µs.

We use the simulated grid to demonstrate the impact of AS5.5 in the form of a coor-

dinated switching attack. Switching attacks are the manipulation of the power grid’s load

following a certain oscillatory trajectory often periodic to induce forced oscillations in the

power grid’s frequency causing it to deviate from safe operating points. The attack is ini-

tiated by increasing the power demand to cause a frequency drop followed by a sudden

decrease in load to force a frequency spike. To simulate this scenario, we initiate the EVCS

load oscillations every 5 seconds (at t=5) followed by an On/Off pattern to cause frequency

fluctuation on the grid.

In this iteration of AS5.5, we consider that the adversaries successfully compromised

3,750 EVCSs to be used to attack the grid. As per the International Energy Agency, the

average charging rate of a public EVCS is 24kW [151]. As a result, the attacker in this

scenario initiates an EVCS switching attack having a magnitude of 90 MW. The impact of

this attack on the power grid’s frequency is demonstrated in Figure 6.11. The impact of this
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attack causes the frequency to oscillate continuously and to deviate beyond the safe limit of

61.5 Hz (2.5% deviation). Beyond 61.5 Hz at t=9.8 seconds (4.8 seconds after attack start),

the generator protection relays will trip to protect them from further damage [152]. Thus,

this attack will result in a blackout on the grid leaving the consumers without electricity.

This simulation demonstrates the feasibility and severity of such attacks, which impact all

consumers connected to the power grid while causing huge financial losses [153].

Mitigation and Prevention. Mitigating the discussed vulnerabilities in this work requires

the joint effort of the operator and the vendor. The vendor would be required to provide

security features that aid the operator in securing the ecosystem. The root issue that enables

the discussed attacks is the lack of proper authentication and authorization mechanisms in

the OCPP backend. Therefore, maintaining the authenticity of the EVCS and the OCPP

backend is crucial for the system and data integrity. In what follows, we provide general

recommendations to mitigate future attacks:

Strict Device Authentication

The authentication mechanism is based on a single factor, which is the EVCS ID, which

raises a big concern, thus there should be a strict device authentication mechanism. To

ensure that we suggest embedding unique client certificates into each EVCS. These certifi-

cates can be managed by a distributed storage technology like blockchain to ensure their

authenticity. This would require the vendor to alter their firmware to instill this ability.

Each message sent by the client should then be signed by a certificate and upon commu-

nication, the cloud should be able to verify the authenticity of the message. Thus, making

it hard for the adversary to fool the OCPP backend. Additionally, TLS which is origi-

nally used to protect data-in-transit can be extended to use certificates to authenticate the

different components. However, three techniques can be implemented.

• Client-side authenticated TLS. This would prevent server spoofing which would
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         (b) Figure 6.11: Frequency output under AS5.5 with 3,750 compromised EVCSs.

leave the adversary able to spoof the EVCS and create phantom EVCSs

• Server-side authenticated TLS. This would only prevent client spoofing and the cre-

ation of phantom EVCSs.

• Mutually authenticated TLS. This type of mitigation would prevent server and EVCS

spoofing and the creation of phantom EVCS. However, it does not prevent DDoS

attacks.

Mutually authenticated TLS is recommended. This ensures that the parties at each end

of the connection are who they claim to be. Both entities will be able to verify that they both

have the correct private key. our work shows the (in)security of the OCPP backends and

its widespread. While these security best practices are well known, the EVCS ecosystem

operators are not meeting the minimum security bar to ensure a reliable and secure system.

Such changes require firmware updates and development from the vendor and the operator

at the same time to instill security controls. However, the presence of multiple operators and

multiple vendors that supply each operator makes it challenging to drive standardization

among them. The mutual authentication using TLS certificates, however, does not address

the vulnerabilities categorized by CWEs 799, 307, and 384. We address their possible

solutions below.
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Routine Security Checks

The device ID should be routinely changed for all EVCSs and generated randomly us-

ing an algorithm that leverages hard-to-guess information and does not follow a specific

pattern. Additionally, we suggest performing authorization checks routinely without trust-

ing devices and following a zero-trust approach. The OCPP backend should maintain strict

1-1 communication with the device without allowing other entities to utilize their com-

munication information. This can be done by maintaining a status table for each online

entity and checking against the database continuously and routinely. Moreover, the oper-

ator should implement rate limiting on their endpoint preventing excessive authentication

and connection requests. We plan in our future work to elaborate further on the mitigation

procedure.

Limitations and Future Work. We discuss some limitations of this work and possible

ways to address them. While we analyzed 16 widely used OCPP backend implementa-

tions to verify the identified vulnerabilities in various vendors/operators, it is worth noting

that obtaining information about all available operators and their deployed systems is a

challenging task. This is due to the sensitive nature of their operation and the proprietary

nature of these systems, which are often closed to analysis, even for research purposes. Ad-

ditionally, we relied on the authenticity of the identified vulnerabilities reported in recently

published work (e.g., Nasr et al. [35]) to discuss the feasibility of exploiting the EVCS

firmware as a part of attack scenarios (e.g., covert attacks AS5). However, while some

vendors have partially addressed these vulnerabilities, the majority of the studied systems

in previous work remain vulnerable and exploitable. In our future work, we will extend

the existing testbed to include further components while performing an active analysis/ex-

ploitation within the EV charging ecosystem. Finally, we plan to purchase various actual

EVCSs to extend our testbed and perform more realistic and vendor-specific analysis to

determine the security posture of the OCPP backend implementation.
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Chapter 7

Edge-based detection and localization of

adversarial oscillatory load attacks

orchestrated by compromised EV

charging stations

7.1 Threat Model

An adversary that can compromise and control a large number of EVCSs is considered.

There are multiple attack vectors that can be used by the adversary to impact the power grid

that is taken into consideration in the detection mechanism. Namely, the different attack

vectors are described below:

• The internal components of an electric vehicle that have internet connectivity such

as the On-Board Diagnostics (OBD) port that can be accessed physically or wire-

lessly and grant access to the Controller Area Network (CAN) bus, which could be

leveraged by the attacker to control the vehicle and its charging [22].

119



Power Grid

Utility operator

Intercept grid 
measurements

Distributed 
coordination of 

EVCSs

Intercept 
operator 

commands

Forward 
operator 

commands

1

Inject false data

2

34

5

Figure 7.1: Overview of the covert attack.

• The mobile application which is the component responsible and the enabler for the

commercialization of the EVCS ecosystem could be used by the adversary by lever-

aging the lack of end-end authentication between the user and his vehicle [50], al-

lowing the adversary to opportunistically take advantage of connected vehicles to the

charging station.

• CMSs are vulnerable to remote attacks. The adversary can exploit one or more opera-

tors’ management systems (multi-operator) the adversary can perform attacks against

the power grid by commanding a large distributed EVCS botnet. The adversary could

create different combinations of attacks by leveraging multiple CMSs.

• The OCPP protocol is also taken into consideration which has been found vulnerable

to MitM attacks that could be used to initiate and bypass any protection mechanism

deployed on the cloud [20].

Consequently, unlike in [3], the attacker, after gaining control of the EVCSs, can launch

various types of oscillatory load attacks not limited to inter-area oscillation oscillatory load

attacks. Moreover, the adversary does not necessarily take advantage only of public charg-

ing stations but could also leverage privately owned charging stations.

The attacker is assumed to have the capability to launch covert attacks [154] as illus-

trated in Figure 7.1. The adversary, as shown in Step 2, controls a considerable number of
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EVCSs and can command a coordinated oscillatory load attack against the grid. However,

to thwart the utility operator’s detection mechanisms, the adversary intercepts (Step 2) mea-

surements and readings that the operator collects to monitor and estimate the state of the

grid and injects false data (Step 3) which deceives the physical-layer detection mechanism

hosted by the utility operator, and thus renders the grid oblivious of the grids’ actual state.

It is worth mentioning that the adversary injects data that resembles the normal behavior

of the grid. Consequently, the utility operator sends commands to the power grid compo-

nents (e.g., generators) to perform some actions to stabilize the grid based on historical data

(e.g., load demand trends), thus the adversary intercepts these commands (Step 4) and for-

wards them to the false data injector so that the operator can see expected data trends and

would not trigger an alarm at the physical layer (Step 5). The attacker can establish covert

channels by injecting malware/ransomware [75] (e.g., BlackEnergy malware injected into

Ukraine’s power grid [155], Stuxnet Malware infected Iran power grid [156]) into the net-

worked controller and arbitrarily alter the control logic. In this work, these threat vectors

are addressed using these detection and mitigation mechanisms. Where the attacker’s main

goal is to induce forced oscillations that would impact the frequency of the grid.

Now, oscillatory load attacks require the coordination of numerous charging stations

simultaneously, and it is acknowledged that the current number of EVCSs is not enough to

launch the proposed attacks. However, with the current exponential increase in the adoption

of electric vehicles and the rapid deployment of EVCSs to match the adoption rate, such

attacks pose a great threat to power grid stability. To demonstrate the feasibility of such

attacks the New South Wales (NSW) grid is chosen, whose size is similar to the NE-39 bus

grid used in the dataset collection. The NSW grid has an average load of 6989MW [157]

and a total number of registered vehicles of 5,892,206 [158]. Scaled to fit the 6097MW 39-

bus grid, the total number of vehicles in the grid would be 5,155,681. Assuming a future

projection of 50% EV penetration, the grid will contain over 2.5 million EVs. As per the
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International Energy Agency (IEA) [80], based on the mixture of available EVCSs, the av-

erage charging rate per EVCS is 24kW. Based on these statistics, these attacks only require

a small portion of the available EVs to be successful. The largest attack magnitude, for

instance, constitutes 30% of the grid load. This translates to only 3% of the available EVs.

By comparison, the smallest attack magnitude only requires 1% of the available EVs.When

this analysis is performed for the 9-bus system, used in the distributed mitigation section,

it is noticed that it only requires 2.6% of the available EVs when 50% penetration level is

assumed.

7.2 Methodology and System Model

In this section, the detection and mitigation methodology and conceptual model are

discussed. A discussion of the system model is provided, followed by a detailed discussion

of the distributed detection methodology. The data-set curation and collection are also

discussed. Finally, the distributed mitigation methodology is discussed, and an overview

of the real-time co-simulation testbed is provided on which the mitigation mechanism [2]

is demonstrated.

7.2.1 System Model

This approach attempts to ensure fault tolerance in the deployment of the detection

mechanism while handling oscillatory and adversarial oscillatory attacks. To mitigate

covert sophisticated attacks that allow adversaries to deceive traditional physical-layer de-

tection mechanisms, detection should occur at different levels of the interconnected system

to build resiliency into it. To address the limitation of previous work, e.g., [3] and other cen-

tralized detection mechanisms, a deep learning model deployed on the EVCS is proposed

since, the EVCS possesses the ability to collect information about the true operations of the
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Figure 7.2: Illustrate the different blocks used to simulate the cyber-attack scenarios.

charging stations and power characteristics (e.g., frequency). This presents an advantage

over CMS-based detectors where a compromised OCPP connection allows the adversary

to inject bi-directional false data that would affect the detection mechanism deployed there.

Moreover, the EVCS is the component that is utilized by adversaries to perform physical at-

tacks by compromising other components (e.g., mobile application, CMS, or OCPP). Thus,

securing the EVCSs would prevent attacks initiated from any vulnerable point in the EVCS

ecosystem. Finally, centralizing the detection mechanisms creates a single point of failure,

and maximizes the risk of exposing the deep learning model, and polluting the data since

recent incident reports and studies show the vulnerability of the system at scale. Whereas

the deployment of a deep learning model on the EVCS would hinder the ability of the

adversary due to the distributed and independent operation of charging stations (increased
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resiliency).

Consequently, it is illustrated in Figure 7.2 the different blocks that simulate the cyber-

attack scenarios. Namely, an adversary follows three steps to launch attacks against the

power grid. From a cyber layer perspective, the adversary aims at changing the behav-

ior of the charging station through different attack vectors that ultimately, achieve similar

results. In the first stage of the attack, the adversary should choose the attack vector. Dif-

ferent attack vectors could be exploited that are described in section 7.1. Namely, the

adversary could exploit the mobile application and take advantage of idle vehicles con-

nected to the charging stations by leveraging the lack of end-end authentication between

the driver and their vehicle [50]. Moreover, the adversary could attack the cloud system of

the operators to gain control over the charging stations remotely and change their charg-

ing behavior [17]. Additionally, the adversary could intrude on the OCPP connection [20]

breaking the integrity of the system and allowing the adversary to act as a MitM. In the

second stage of the attack, the adversary will perform reconnaissance. The adversary will

monitor the behavior of charging stations through the mobile application to understand the

utilization behavior of the EVCS. The adversary then selects charging stations based on the

different attack vectors mentioned. Finally, the adversary will be able to synchronize the

on/off behavior of the targetted EVCSs to cause forced frequency oscillations on the power

grid. However, using the proposed approach a machine-learning model is deployed on each

EVCS that utilizes measurements from the EVCS to feed the machine learning models with

information. The EVCS collects the frequency and the events are then encoded and fed into

the machine learning model that bakes them into the decision-making process. Since the

EVCS is the final element in the attack chain, the mentioned attacks cannot surpass it as

the case with the centralized approach that can be surpassed using MitM. Using MitM to

hijack the OCPP connection would result in the centralized detection mechanism not being

able to see any of the requests being sent to the EVCS thus the attacker would avoid the
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Figure 7.3: EVCS log showing the different features that could be extracted from the charging
station logs.
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Figure 7.4: Flow chart describing the detection mechanism.

detection mechanism altogether.

Consequently, to deploy a deep learning model on the charging station, new features

should be derived compared to the work of [3], which utilizes information that only the

CMS has access to (e.g., change in a load of vehicles during a certain δ time). Thus,

the usage of various deep learning techniques is investigated to detect attacks against the

power grid initiated by the EVCS ecosystem. To the best of our knowledge, this work is

among the first to investigate a decentralized cyber-detection mechanism deployed on the

EVCS ecosystem to protect the grid from the new vulnerabilities of this cyber-physical

system. Residential and public charging stations both have log files to record all the oper-

ations/events of this station. In Figure 7.3 a sample EVCS log is shown where each trans-

action might include the following information: EVCS ID, operation type (e.g., charging,
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or stop), operation date, start operation time, stop operation time, charging rate, type of the

charger, and the variation of the frequency of the load bus that the EVCS is connected to

overtime. It is worth noting that the OCPP protocol provides a functional block that enables

charging stations to send periodic meter values (e.g., voltage, reactive power, etc.). Thus,

using the telemetry data collected by the charging station, the power grid frequency, which

is directly linked to the speed of the generators, can be directly recorded by the EVCS

with high granularity by measuring the period of the voltage waveforms that are sampled

over time. It is worth highlighting that electric devices (e.g., charging stations) will ex-

hibit the same frequency as the bus they are connected to. Thus, to collect grid frequency

measurements the utility monitors and collects measurements from the buses which inci-

dentally have connected EVCSs. The recent industrial technology advances increased the

connectivity of cyber-physical systems that are monitored and controlled by Supervisory

Control and Data Acquisition (SCADA) systems that use advanced computing, sensors,

control systems, and communication networks [159]. SCADA systems allow power grid

operators to gather real-time telemetry data about the grid. This information that the grid

operator can acquire from the buses can be used for training deep learning models since,

when deploying the model each charging station should be able to gather this information

by itself.

Accordingly, the charging station can store each operation in its log file and use it to

detect anomalies in the usage of the charging station, which indicates that there is a pos-

sible attack initiated from the EVCS ecosystem against the grid. This information can be

updated in the log file actively. However, since the utility (power grid operator) is the main

entity affected by oscillatory attacks, it will take responsibility to gather information from

different operators and distribute trained global models to the connected EVCSs. Collabo-

ration with the utility by various EVCS operators is mandatory to allow a collective view of
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multi-operator attacks. The utility will use past data to train and deploy deep learning mod-

els on the charging stations to alleviate any future privacy concerns the operators might

have about sharing their data. This work focuses on public charging stations to create a

distributed detection mechanism. Due to the unique features that have been intentionally

chosen to address the limitations introduced by a cloud-centric detection mechanism, the

detection mechanism is applicable to private charging stations as well. The unique features

that were used to ensure the flexibility and the ability of this solution to make stand-alone

decisions on any charging station without requiring it to communicate with the management

system and share information about the utilization of the charging station. This makes this

approach privacy-preserving and suitable for application on private EVCSs in addition to

public EVCSs.

DETECTION MECHANISM: Figure 7.4 gives an overview of the proposed detection

mechanism to be deployed at the charging station. When an EVCSe receives a charging re-

quest (kth request), the EVCSe retrieves the events that occurred in the last t1 seconds from

its logs. Similarly, it retrieves the frequency readings that have occurred and are collected

within the same period from its logs. This information is fed into a machine/deep learn-

ing model to detect maliciousness of the events that occurred within the last t1 seconds. By

leveraging the combination of the cyber data (series of events) and physical data (frequency

on the power grid) that are tightly coupled in case of a coordinated oscillatory load attack,

a deep learning model is created that will extract the temporal and spatial relationships be-

tween the sequence of readings over time. The observed behavior of the charging station

and the underlying infrastructure is used to characterize oscillatory load attacks and differ-

entiate them from the normal functioning of a charging station. It is worth highlighting,

that the t1 seconds is a rolling window, and the detection mechanism is real-time. It only

requires the t1 window to detect the attack. This also means that no additional extensive

data logs are required to be kept on the EVCSe since the proposed algorithm will not use
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any of the data prior to the t1 rolling window.

MITIGATION MECHANISM: If the deep learning model labels the sequence of events

as malicious, the EVCSe will create a delay block that will randomly delay request between

0 to 4 seconds to disrupt the synchronization of the oscillatory load attack and notifies the

CMS and grid operator by sending the EVCS ID and location. The mitigation mecha-

nism allows distributed and independent decision-making for each charging station, thus

ensuring fault tolerance in the proposed mitigation mechanism. Consequently,to test this

mitigation mechanism on the proposed testbed which is used to study the impact of the

EV ecosystem on the power grid. The results (discussed later) show the effectiveness of

neutralizing the impact of an oscillatory load attack on the generator’s speed and minimiz-

ing the risk and the costs incurred by a successful attack. It is worth highlighting that the

independence of the proposed techniques from the features or artifacts that need a global

knowledge of the ecosystem and grid provides the flexibility needed to deploy the proposed

detection-mitigation mechanism on any EVCS.

7.2.2 Distributed Detection Mechanism Methodology

Given the limited number of previous works, which discuss the detection and localiza-

tion of oscillatory load attacks, along with the limitation of previous detection approaches,

the aim is to deploy an edge-based AI-enabled detection mechanism on the charging station

itself by leveraging cyber and physical characteristics (e.g., charging events and power grid

frequency variation) to identify and characterize malicious and benign behaviors. More

specifically, the devised methodology attempts to leverage the behavioral characteristics of

an oscillatory load attack to propose an effective edge-based, decentralized oscillatory load

attack detection.

To achieve the objectives, understanding the normal behavior of charging stations by
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examining a real-life EVCS dataset is crucial. This dataset was obtained from Hydro-

Quebec as part of a legal agreement and research collaboration. Hydro-Quebec owns and

operates, through a subsidiary, the public EVCSs in Quebec. This data is used to understand

the behavior of the public EVCSs ensuring normal behavior and extracting certain features

that allow the utility to build its own realistic data-driven normal EVCS behavior. First,

identify the state changes of a charging station. The charging station alternates between

three states: idle, charging, and discharging. The discharging state is when the vehicle is

used to inject power into the power grid using the V2G technology that is available in some

EVCSs. A few pilot projects have been launched worldwide (e.g., Pacific Gas and Electric

Company (PG&E) in California) and they use the EV load to support the power grid during

peak hours. Whenever a charging station receives a charging request it transitions from idle

to charging, and when it receives a stop charge request the charging station goes back to

the idle state. However, the duration that the charging station spends in any of the states

needs to be understood since the oscillatory load attack is tightly coupled with the total

attack load and the time spent in each state. The dataset is acquired from 7,000 EVCSs

located in different geographical locations of Quebec from 2018 to early 2022 to cover all

four seasons of Canada and their corresponding influence on charging behavior. The data

contains multiple principal metrics about charging sessions (e.g., start time, end time, and

duration of charging). The normal behavior of the charging stations falls under two general

observations 1) normal behavior of a charging station with charging > 5 minutes; 2) switch-

ing behavior of an individual charging station that does not impact the grid. Consequently,

the charging behavior of one heavily utilized and one lightly utilized EVCS located around

the downtown area in Montreal is analyzed. The average duration of EVCS 1 (Figure

7.5a)is 24 minutes with a minimum of 55 seconds. Whereas EVCS 2 recorded an average

duration of 8 minutes with a minimum of 26 seconds. After further analysis of EVCS 2

(Figure 7.5b), a switching behavior is observed at 8:33 A.M which was followed by two
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other switches at 8:34 and 8:35. Similar behavior was repeated at 9:47, 15:21, 17:11, and

19:15. The two charging station behavior patterns are identified based on their utilization

where their hardware specifications are the same (providing an 11 kW charging rate). It is

worth mentioning that, a switching behavior occurring simultaneously on numerous charg-

ing stations would be considered a coordinated oscillatory load attack. This observation

shows that the behavior of a charging station by itself is not enough to detect oscillatory

load attacks because it might cause numerous false positives and false negatives due to the

presence of a switching behavior during the normal operation of a charging station. As

the number of charging stations increases, this phenomenon is expected to increase among

charging stations. Moreover, since detection occurs on the charging station that does not

have any information about other charging stations, by coupling the events happening on

the charging station with the frequency readings over the studied t1 time. The frequency is

a global variable shared between all charging stations that are connected to the same bus,

which allows the charging station to gain global knowledge of the EVCSs connected to the

same bus while keeping the detection local to itself. During a synchronized oscillatory load

attack, events that occur on the EVCSs are tightly coupled with grid behavior. Therefore,

the events that occur on the charging station (e.g., start time, end time, and duration) and

the grid behavior (e.g., frequency) over time are coupled. Hence, using the mentioned fea-

tures, this approach aims to detect and localize a synchronized oscillatory load attack with

the fine granularity of identifying the charging stations that were compromised to perform

such attacks.

DATA SYNTHESIS AND COLLECTION: A crucial part of the proposed detection mech-

anism is creating a comprehensive and realistic dataset that resembles both normal and ma-

licious behaviors. Since the existence of such attack data is scarce in real life and due to the

unique features chosen, a realistic data-driven EV load profile is created. To achieve this,

a Poisson arrival process of EVs to each EVCS is simulated independently. The charging
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Figure 7.5: Normal charging behavior of two different charging stations.

time of these EVs is then simulated as a truncated Gaussian distribution. The parameters

of the arrival and charging time models are specified for different periods during the day

and for different seasons. These parameters are tuned based on the Hydro-Quebec EVCS

dataset. Finally, the impact of normal charging on the power grid is simulated along with

the behavior of the power grid as a result of the different oscillatory load attacks launched.

The simulated dataset will be used to train the proposed detection model due to the lack of

real data with the required granularity (0.5 seconds) published online. This work focuses

on anomaly detection for the detection of synchronized oscillatory load attacks. To this

end, the behavior of the EVCSs and grid under normal and attack conditions are coupled.

As mentioned above, this method offers the coupling of the cyber events occurring on the

charging station to the physical data, i.e., power grid frequency behavior.

The normal arrival of new charging requests at a charging station is coupled with the

normal frequency behavior of the bus to which the charging station is connected. The ar-

rival of charging requests during an oscillatory load attack is coupled with the abnormal

frequency behavior of the bus to which the charging station is connected. To this end, the

IEEE New England 39-bus system [160] was built in MATLAB Simulink to gather the

required power grid data. MATLAB-Simulink 2020a Specialized Power Systems Toolbox

which is widely used for system stability studies [161] is used. The Simulink Power System
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Toolbox models all the different components of the power system (i.e., loads, lines, trans-

formers, generators, and generator control systems). Given the dynamic behavior of the

power system, it is mostly governed by the control system of the generators and the models

commonly adopted by stability studies are used i.e., round rotor type synchronous machine

block of Simulink, generator exciter model IEEE T1, turbine speed governor IEEE G2, and

a power system stabilizer based on IEEE Std 421.5. The simulations were performed with

a simulation step size of 1ns.

The implemented model would allow the study of the transient and steady-state behav-

ior of the system. To simulate the normal frequency fluctuations of a power grid, random

load blocks to all load buses were added. IEEE grid models have constant loads which

usually represent the average load of the bus. However, real consumer behavior is random

during a short span of a few minutes such that its average is what is reported and planned

by utilities. This gives rise to the need to simulate small random perturbations in loads

of the power system which would lead to normal frequency variations. The random load

blocks added to all load buses are constituted of a random number generator and a dynamic

load block which are provided in Simulink. The magnitude of the random number gener-

ator is scaled by the nominal load of the bus it is connected to and a multiplication block

with a percentage cap that is changed in every simulation run. This setup is used to control

the real and reactive power of the dynamic load block. The power factor of the random

load block is maintained at 0.8 lagging to simulate benign consumer load variation. In half

the simulations, the random source was set to follow a Gaussian distribution and in the

other half, it followed a Uniform distribution to increase the randomness in the data and

simulate close to real-life load perturbation. To avoid the pattern effect of pseudo-random

number generators and to ensure true randomness, the Mersenne Twister algorithm with

a period length of 219937 − 1 is used and the shuffle command before every simulation is

run to randomly select new seeds for the random number generator and guarantee further
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Figure 7.6: Normal charging behavior of two different charging stations.

randomness.

The constructed system is used to create a dataset of 5,000 normal (no attack) scenarios

and 5,000 oscillatory load attack scenarios by collecting cyber layer measurements, EVCS

events, and physical layer measurements, grid frequency, from the simulated system. The

normal dataset constitutes 80% of a behavior similar to EVCS 1 in (Figure 7.5a), whereas

the other 20% follow the behavior similar to EVCS 2 in (Figure 7.5b). note that the be-

havior depicted in Figure 7.5 demonstrates the normal behavior of two charging stations

that are found in the dataset acquired from the industrial partner Hydro-Quebec. Figure

7.6 represents the probability of the charging session duration of the 2 aforementioned

EVCSs. These 2 histograms were constructed based on the entire records extending from

2018 to 2022. These 2 histograms demonstrate how both EVCSs have charging sessions

whose duration is less than 100s. Figure 7.6b also demonstrates how EVCS 2 has dou-

ble the probability of experiencing charging sessions with a duration of less than 100s as

compared to EVCS 2.

Due to the similarity between charging station 2 and an EVCS under attack, frequency

recordings are included as part of the decision-making process. Moreover, the following 4

scenarios are identified and classified as normal behavior. Denoted by λ is the arrival rate

used for the Poisson process that was used to simulate the arrival of vehicles to an EVCS

following the work in [3]. The data was obtained from an industrial partner to determine
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the different average arrival rates of EVs to the EVCSs across the province of Quebec in

Canada:

• Very slow charging station switching (normal charging request start and stop) and normal

bus frequency behavior. Charging events with a very low arrival rate (e.g., λ < 6 event

per 60 minutes), while the grid shows a normal frequency fluctuation.

• Very slow charging station switching and abnormal bus frequency behavior. Charging

events with a low arrival rate (e.g., λ < 6 event per 60 minutes), while the grid shows

abnormal fluctuation in the frequency. This abnormal grid behavior can either result from

some sudden benign disturbance on the grid or from an attack that does not involve the

charging station in question.

• Slow charging station switching and normal bus frequency behavior. Charging events

with a high arrival rate (λ > 6 events per 60 minutes), with a normal frequency fluctua-

tion as a result of normal consumer behavior.

• Fast charging station switching and normal bus frequency behavior. Charging events

with a very high arrival rate (λ > 6 per 60 seconds), coupled with normal frequency

fluctuation. This case represents a few actual cases that were monitored where the EV

owner connects and disconnects a few times a minute at the time of arrival. Furthermore,

the absence of any abnormal frequency behavior means the absence of any abnormal

behavior on the power grid and thus the absence of a synchronized attack.

Two cases of attack behavior can be identified including fast charging station switching

with abnormal bus frequency where the adversary performs periodic attacks and records the

events and the frequency fluctuation. The attack frequency was as fast as 1Hz. The second

case is slow charging station switching with abnormal bus frequency where an adversarial

attacker with more resources can compromise more charging stations than required for the
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attack and distribute the switching behavior among them to remain stealthier. If the attack

for example requires n charging stations switching at a frequency of f Hz, the attacker can

compromise m × n charging stations and switch them at a frequency of f
m

to obtain an

identical aggregate effect but with a fraction of the switches on every charging station and

remain stealthier.

The switching of the charging stations is crafted in a way such that the aggregate load

on the buses adheres to the following behavior. For the slow switching attack scenario, the

load is distributed such that the aggregate switching load has a duty cycle (the proportion

of time during which an electrical device is operated) of 35%, 50%, and 60% each consti-

tuting a third of all cases. Moreover, all three oscillatory load attack variations are crafted

with an aggregate period between 1s and 2 s (0.5 -1 Hz) and an aggregate attack magni-

tude between 10% and 30% of the bus load. This provides a comprehensive dataset that

simulates the different types of oscillatory load attacks (switching and dynamic) that are

discussed in Chapter 2 The different types of attacks differ in their magnitude, periodicity,

time of the attack, and stealthiness; however, their collective impact on the power grid is

comparable in terms of forcing abnormal frequency oscillations. Consequently, this work

aims at detecting oscillatory load attacks to mitigate their impact on the power grid.

Using the normal and attack data discussed above, the detector was trained on a wide ar-

ray of data spanning a wide range of attack durations, duty cycles, and instances of switch-

ing which resulted in a wide range of frequency disturbances. This is performed to train the

detector to identify general attack behavior rather than a single specific type of attack (du-

ration, frequency, instance of switching). This allows the Deep Learning model to correctly

classify attacks that it has never been trained simply by extracting features that resemble

the wide variety of attacks it had been trained on.

Given the obtained dataset of cyber events on the charging station and with frequency
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data from the grid, a time-series selection/representation approach is adopted. After cou-

pling the two features that vary with time, where one of these features (events on charging

station) affects the other feature (frequency) it transforms the problem from a time series

classification to a multivariate time-series classification with two axes of difficulty. Tempo-

ral and spatial relationships are learned and mined using deep learning techniques to extract

the variation of the features concerning time and how features vary from each other.

Each charging station monitors the previous 120 seconds in rolling windows whenever

it receives a request and fetches readings from its log file. The events and frequency are

recorded every 0.5 seconds, which results in 240 readings for each feature per instance. The

rolling window size and the number of readings are fixed, due to simulation environment

limitations of 120, and 240 respectively. In this study, deep learning models are devised to

detect attacks and optimize them to detect attacks after 5 seconds and 10 seconds of attack

start, which are called detector-5 and detector-10, respectively. This means that the last 5

seconds or 10 seconds of the 120-second window will have attack features whereas the rest

would be normal behavior. We use these two attack windows to identify attacks early as

compared to previous work that depended on monitoring 20 seconds of the attack to make a

detection [3]. Through this approach, the proposed detection mechanism can successfully

detect almost all attacks as early as 5 seconds by only viewing the beginning of the attack.

Since the proposed methodology is based on a rolling window, this allows the algorithm to

identify attacks if any false negatives occur in previous windows. Furthermore, since this

algorithm utilizes a rolling window, it can start detecting the attacks, with some degree of

success, as soon as 1s after the attack starts. Decreasing the size of the attack windows

and optimizing for it would decrease the accuracy of the machine/deep learning model

as stealthy attack scenarios would be misclassified. In the stealthy version of the attacks,

the attacker launches slow oscillatory attacks as well as distributes the switching among

multiple charging stations. This means that in short windows of time, the charging station
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behavior would look normal since only one event or possibly no events at all occur making

their behavior look completely normal. Consequently, 5-second attack windows are chosen

to detect a wide variety of attacks without compromising on accuracy. The window rolls

in intervals of 1s (split into two 0.5s sub-intervals) which means that the proposed detector

can start recognizing the attacks within 1s of their attack start.

FEATURE SELECTION: Given the obtained dataset of events coupled with their power

grid frequency readings, two feature selection/representation approaches were adopted. A

sequence of observations that are taken sequentially in time, defines the data to be time

series. Consequently, to use a set of time series D = X N
i=1 as input for the deep learning

algorithms, and maps each time series X of set D into a matrix of N rows and M columns

by choosing M data points of the two variables (events and frequency) from each time

series Xi as elements of the feature vector. This allows the deep learning model to take

into account temporal and spatial information and find the correlation between the events

and the frequency.

CLASSIFICATION MODELS: Given the features selected and the complexity of relat-

ing cyber data and physical data to perform the classification, a classification algorithm is

needed to handle this data and preserve its properties.To this end, different deep-learning

classification models are implemented and evaluated. Specifically, Recurrent Neural Net-

works (RNNs) are used to capture the order, occurrences, and structure of the events. A

special type of RNN is leveraged, namely Long Short-Term Memory (LSTM). LSTMs pre-

serve the errors that will be backpropagated through layers that allow LSTMs to continue

learning over many time steps. LSTM is unique in its capability to learn what information

to store in long-term memory. LSTM also allows the neural network to identify patterns

and sequences in the data by learning temporal relationships between multiple time steps

while utilizing memory gates. These features allow LSTM to capture the temporal relations

between events in a multivariate time-series data classification problem.
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A special type of Convolutional Neural Network is explored, namely a 2D Convo-

lutional LSTM. In the proposed multivariate time series classification, it is important to

capture spatial interpretation and relationships. The events that occur on the charging sta-

tion, in case of synchronized switching attacks, are tightly coupled with the power grid

behavior. Capturing spatial information between the cyber layer and physical layer fea-

tures allows the algorithm to capture the correlation between events on the EVCS and the

power grid frequency behavior. Thus, ConvLSTM nodes possess convolutional capabili-

ties to handle spatial information and LSTM capabilities to handle temporal information,

solving dual-axis data relationships [162, 163]. ConvLSTMs were used to overcome the

major limitation of LSTMs in finding spatial relationships between features over multiple

time steps [162]. Unlike LSTM which flattens the data and loses any spatial relationships,

ConvLSTM replaces the LSTM gate in each LSTM cell with convolution operation made

up of several filters of square matrix kernels. By doing so, ConvLSTM captures underlying

spatial features by convolution operations in multiple-dimensional data while preserving

the temporal relationship between the data as well. We compare to vanilla LSTM to show

how the ConvLSTM can improve the detection by identifying spatio-temporal relationships

between the features studied.

MODEL EVALUATION AND COMPARISON: Several standard methods were followed to

evaluate the overall effectiveness of the implemented classification models to compare their

outcomes. More specifically metrics such as accuracy, recall, precision, and F-measure are

used. Moreover, a confusion matrix is also used, which is a useful method for discussing

the effectiveness of the implemented deep learning models. The confusion matrix shows

the number of data instances that were classified correctly using the model (true positive

and true negative) and the number of data instances that were misclassified by the model

(false negative, false positive).
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Algorithm 1: Algorithm describing the conceptual model of the detection and
mitigation mechanisms

Inputs : CSlog : Charging station logs,; //Events and frequency logs
1 Conv − LSTM5: the detector-5 deep learning model,; //model for detection within

the first 5 seconds
2 Conv − LSTM10: the detector-10 deep learning model ; //model for detection within

the first 10 seconds
Output: Ltest: the prediction class for the test sample in CSlog .

d1: the delay of the incoming requests.
3 while True do
4 foreach Event ei(t) ∈ CSlog do
5 do in parallel
6 Epriori ← collect events that happened prior to ei in the last 5 seconds
7 Fpriori ← collect frequency readings that happened prior to ei in the last 5 seconds

8 Epriori ← encode(Epriori) ; //encode the events to 0s and 1s
9 Fpriori ← collect frequency readings that happened prior to ei in the last 10 seconds

10 Fpriori ← scale(Fpriori) ; //scale the data to enhance the machine
learning prediction and minimize the bias of the machine
learning

11 xi ← (Epriori, Fpriori) ; //events and frequency readings tuple that
is used as an input to the model M1

12 L1 ← Conv-LSTM5( xi); //predict the class of the behavior
recorded

13 while L1 or L2 is Abnormal do
14 d1 ← Random Delay0<d≤4seconds ; //continue generating random

delays to the new incoming requests
15 do in parallel
16 wait(d1)
17 executeEvent(ei)

18 do in parallel
19 NotifyOperator() ; //Report abnormal behavior to the

operator/utility

20 do in parallel
21 Epriori ← collect events that happened prior to ei in the last 10 seconds

22 Epriori ← encode(Epriori) ; //encode the events to 0s and 1s
23 Fpriori ← collect frequency readings that happened prior to ei in the last 10 seconds

24 Fpriori ← scale(Fpriori) ; //scale the data to enhance the machine
learning prediction and minimize the bias of the machine
learning

25 xi ← (Epriori, Fpriori) ; //events and frequency readings tuple
that is used as an input to the model M2

26 L2 ← Conv − LSTM10(xi) ; //apply the detector-10 deep learning
model to decrease false negatives

27 while L1 or L2 are Abnormal do
28 d1 ← Random Delay0<d≤4seconds; //If any of them is abnormal add

a delay
29 do in parallel
30 wait(d1)
31 executeEvent(ei)

32 do in parallel
33 NotifyOperator() ; //Report abnormal behavior to the

operator/utility

34 if L1 and L2 is not Abnormal then
35 d1 ← 0; //If the prediction of both models did not show

abnormal behavior then stop the mitigation mechanism
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Figure 7.7: Co-simulation architecture [2]

7.2.3 Distributed Mitigation Methodology

This work aims to mitigate the impact of oscillatory load attacks in a distributed and

lightweight manner and assist the power grid to return to its normal state easily.

Consequently, in this section, a lightweight and distributed mitigation mechanism against

oscillatory load attacks is evaluated and discussed. After locally detecting the attacks within

5 seconds on an EVCS as discussed in the previous sections, a charging station can either

discard a request or create a random delay by taking this decision independently. In [3], the

authors proposed a centralized physical-layer mitigation technique that requires the util-

ity to upgrade its existing generators with new control mechanisms. While the oscillations

were successfully damped using their method, the oscillations on the power grid were never

completely eliminated. Moreover, a centralized cyber-layer mitigation technique can only

mitigate attacks launched through the cyber infrastructure of public charging stations. Due

to the aforementioned limitations, a lightweight and distributed mitigation mechanism that

can be deployed on the charging station itself (public and/or private) is proposed. After

detecting attacks, each station independently creates a random delay for all incoming re-

quests to break the attacker’s synchronization ability and hence minimize the impact on
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the grid after a persistent attack. The main goal is to create a lightweight and distributed

cyber-layer mitigation mechanism that aligns with the EVCS ecosystem deployment. The

charging stations are characterized by low computing power which motivated the need for

an independent mitigation mechanism. Consequently, the effectiveness of using the ran-

dom delay to mitigate the impact of forced oscillations on the power grid is studied. In

future work, with the aim to minimize the delay, we plan to utilize deep learning tech-

niques that tailor the delay to each attack type based on the behavior and the load on the

grid. In Algorithm 1, the conceptual model of the algorithm and how it is integrated with

the mitigation mechanism is described. The detection is an online algorithm that runs in

real time to detect oscillatory load attacks. The detector-5 detection model detects attacks

early and the detector-10 detection model detects any false negative data samples that re-

sulted from the first step. This two-step continuous detection technique is implemented to

lower the false negative impact on the power grid and provide continuous monitoring over

the ecosystem, when the first detection technique detects an attack it creates a random delay

for any new request ranging between 0 and 4 seconds. However, this delay is removed if

the detector-5 and detector-10 deep learning models stop classifying the rolling windows as

attacks. Consequently, the detector-10 model can then be utilized to minimize the number

of false negatives that might have been misclassified by the detector-5 deep learning model.

7.3 Experimental Results

As described in section 7.2.2, this work focuses on oscillatory load attacks initiated by

exploiting vulnerabilities in the EV charging ecosystem. Periodic and stealthy attacks were

studied where an attacker with enough resources can group charging stations and alternate

the switching between different groups leading to inconspicuous behavior on the charging

station.
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7.3.1 Distributed Detection Mechanism Results

The proposed multivariate time series representation is used by taking the temporal and

spatial relationship of the two features (events and frequency) into consideration. Several

deep learning models were implemented such as LSTM for temporal relationships and

ConvLSTM from Spatiotemporal relationships between the multivariate time series. The

proposed models are tested on detector-5 and detector-10.

DATA PRE-PROCESSING: To feed the data to the deep learning algorithms, the fea-

tures are encoded by converting the events (start and stop) to numerical values. Moreover,

the frequency readings are normalized by re-scaling the data and fitting all the frequency

data points between 0 and 1. To preserve the shape of the original distribution and the

information embedded in it, the normalization can be represented as follows:

xinormalized =
xi −min(X)

max(X)−min(X)
(1)

Where xi is any value from the feature x (e.g., frequency), min(X) is the minimum value

from the feature, and max(X) is the maximum value of the feature.MinMaxScaler is used

to normalize the frequency feature vectors and obtain xinormalized. Finally, each class (nor-

mal and abnormal) is mapped using binary label encoding, to 0 or 1. After that, the data is

split into training (80%) and testing (20%) subsets.

MODEL SELECTION AND EVALUATION: Different deep-learning models are studied

to classify oscillatory load attacks based on behavioral events on the charging station and

their consequent effect on the power grid as represented by the frequency readings. The

structure and layers of these models are described in the following sub-sections, along with

the evaluation results. Moreover, the Adam Optimizer [164] is chosen for this classifica-

tion problem. Adam outperforms other optimizers, such as Root Mean Square Propagation

(RMSprop) and Adaptive Gradient Algorithm (AdaGrad), because of its bias-correction

which helps Adam towards the end of the optimization as gradients become sparser [165].
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Systematic enhancement of the outcomes requires iterative layer addition to a simple model

(fewer layers) until a relatively good fit is reached (no under-fitting or over-fitting). Conse-

quently, hyper-parameter tuning is performed using the Random Search algorithm. Finally,

the hyperparameters that yielded the highest F-measure among the runs are identified. The

parameters tuned are the learning rate in the Adam optimizer, the proportion of drops, the

number of neurons in a layer, the size of batches, the number of epochs, filter size, and ker-

nel size. Finally, the speed of each model is evaluated as a measure of their computational

performance and the training time to measure the complexity of the model.

HYPER-PARAMETER TUNING AND APPLIED RANDOM SEARCH: It is worth men-

tioning different techniques were applied to decrease overfitting and achieve a good fit on

training data. Dropping techniques were used, which refer to dropping out/ignoring units

(i.e., neurons) during the training phase with a certain probability [166]. Moreover, batch

normalization technique is used to stabilize the distribution of inputs (over a mini-batch) to

a given layer during training. This helps in dramatically reducing the number of training

epochs required to train deep networks [167]. After applying hyper-parameter tuning to

find the best parameters to achieve a good fit since there exists a large number of variables

that can be tuned to enhance the training. Finally, binary cross-entropy as a loss function is

used.

For each model, a Random Search is applied and a refined Random Search algorithm to

tune the hyperparameters that will yield the best results. In a deep learning model, various

parameters contribute to finding the best fit for the training data (e.g., learning rate, decay,

batch size, etc.). The Random Search algorithm uses a random combination of these values

and trains the deep learning model on all these combinations. In the first step of the 2-step

Random Search, 500 different combinations of these hyperparameters are generated, and

selected the combination that resulted in the highest F1 score. The random search uses all

of these 500 combinations and trains the deep learning model 500 times. The model and
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Figure 7.8: Structure of the Long-Short Term Memory Model.

the parameters that achieved the highest F1 score were selected. For refined results, in the

second step of (refined) Random Search 100 different combinations of hyperparameters are

generated in the 10% realm of the ones found in the first step, to try enhancing the results

further. The random search performs similarly to meta-heuristics and grid search, however,

with a lower computational cost [168].

In the following subsections, the analysis of the performance of the deep learning algo-

rithms that were implemented to detect switching attacks is presented. The deep learning

model that shows the highest F-measure score is selected, as it is more representative of

the false negatives and false positives in the data. Moreover, the judgment is based on the

number of false-negative, where an attack is misclassified as normal.

LONG-SHORT TERM MEMORY (LSTM): The LSTM model as a benchmark against

other spatiotemporal deep learning models. The developed LSTM architecture is depicted

in Figure 7.8 and consists of the following layers:

• Input Layer: The input of the network is 240 x 2 of encoded events and frequency reading

collected over time.

• LSTM Layer: This is the main building block of an LSTM deep neural network and is

responsible for learning the order dependency in the feature space.

• Fully Connected Layers 1 and 2: After the LSTM layer, a fully connected layer is added
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with a Leaky ReLU activation function. To decrease overfitting batch normalization is

applied along with a dropout. The output is then fed into another fully connected layer

with a Leaky RelU activation function. The Leaky ReLU activation function was devel-

oped to overcome one of the major shortcomings of the ReLU activation function. The

ReLU activation function faces the "Dead ReLU” issue that occurs during backpropa-

gation when no learning happens as the new weight remains equal to the old weight.

Followed by batch normalization and a dropout layer. The output of these layers is three-

dimensional, consequently, a copy of the output is collapsed into one dimension.

• Fully Connected Layer 3: The one-dimensional output is then fed to a connected layer

initialized by a truncated normal distribution. Consequently, the last layer combines the

features learned in previous layers and applies a Sigmoid function to output a probability

between 0 and 1 that indicated the class of the data samples.

The LSTM Algorithm’s optimal hyper-parameters achieved through the refined Ran-

dom Search are presented in Table 7.1. Based on the optimal number of training epochs

and the optimal batch size, the detector-5 and detector-10 LSTM algorithms were trained

over 714 and 1200 iterations respectively. After running the random search (500 runs),

a relatively good accuracy is achieved (97.5%) and F-measure scores (97.493%) on the

detector-5 dataset. Moreover, a 500-run random search is run to tune the LSTM model

on the detector-10 dataset which achieved a better accuracy (99.4%) and F-measure scores

(99.405%) as shown in Table 7.2. In the experiments, it is crucial to look at how well the

model classified attacks. The confusion matrix (Table 7.3) shows that using the detector-5

dataset, 972 attack samples were classified correctly, whereas 40 data samples were mis-

classified. Moreover, using the detector-10 dataset, 1002 attacks out of the 1012 attacks

were classified correctly using the proposed novel Long Short-Term Memory deep learn-

ing model, and around 1% of the attacks were incorrectly classified. This confirms that

oscillatory load attacks need more in-depth analysis to improve the accuracy of the model
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Table 7.1: Optimized Hyper-Parameters for the Implemented Models

detector-5 detector-10

LSTM ConvLSTM2D LSTM ConvLSTM2D

Learning Rate 0.014717 0.0001939 0.00070810 0.0001
Drops 0.34 0.2 0.2 0.18

Batches 56 30 40 34
Units 1 146 150 119 176
Units 2 180 32 104 16
Units 3 32 - 32 -
Epochs 5 6 6 7
Filter 1 - 4 - 5

Kernel Size 1 - 6x6 - 5x5
Filter 2 - 8 - 8

Kernel Size 2 - 5x5 - 5x5

especially since the detector-5 dataset achieved a high false negative (3%). It is worth

mentioning, that the smaller the attack window viewed by the detection system the earlier

attacks are detected. Moreover, it is noted that the behavior of charging stations in normal

conditions has some similarities with charging stations under stealthy attacks. The attacker,

in stealthy attacks, tries to mimic the normal behavior of a charging station by dividing the

switching behavior across different groups of charging stations and alternating the switch-

ing between them, which could be the reason for such misclassification. Although the

misclassification is not huge, the impact that might occur out of successful attacks would

cause a devastating impact on the power grid that could lead to tripping lines and overload-

ing generators.

The proposed models were evaluated based on the training time and the time to make

a prediction on the 20% test set provided. The training time of the best-performing LSTM

deep learning model is 4 minutes for both datasets. The time to train the model is a good

indicator of the complexity of the model and the resources needed for future enhancements.

Moreover, the time to predict the labels of the 2000 sample test set for the detector-5 dataset

and detector-10 dataset is 6 and 12 seconds, respectively, which equates to 0.003 seconds

and 0.006 seconds on average for each data sample. The speed of each model is a measure

of its computational performance.

CONVOLUTIONAL LONG-SHORT TERM MEMORY (CONVLSTM2D): ConvLSTM
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Figure 7.9: Structure of the Convolutional Long-Short Term Memory Model.

Table 7.2: Classifiers Outcomes

detector-5 detector-10

LSTM ConvLSTM2D LSTM ConvLSTM2D

Accuracy 97.500 99.400 99.400 99.800
F-measure 97.493 99.405 99.405 99.803

Recall 96.047 99.111 99.012 99.901
Precision 98.982 99.702 99.801 99.704

which is an LSTM variant. ConvLSTM is a type of recurrent neural network for multi-

variate spatiotemporal detection. It has convolutional structures that combine the ability of

a convolutional neural network to incorporate spatial and temporal correlations into model-

ing and automatically capture the shared structures across variables (events and frequency).

The developed ConvLSTM architecture, depicted in Figure 7.9, consists of the following

layers:

• Input Layer: The input of the network is 240 x 2 of encoded events and frequency reading

collected over time.

• ConvLSTM Layer 1: This is the main building block of the ConvLSTM deep learning

network and is responsible for finding spatiotemporal relationships in the multivariate

time series. To decrease overfitting batch normalization is applied with a dropout.
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Table 7.3: Confusion Matrices for LSTM and ConvLSTM

detector-5 detector-10

LSTM ConvLSTM2D LSTM ConvLSTM2D

N A N A N A N A
N 978 10 985 3 986 2 985 3
A 40 972 9 1003 10 1002 1 1011

Table 7.4: Classifiers Time

detector-5 detector-10

LSTM ConvLSTM2D LSTM ConvLSTM2D

Training Time 0:04:25 1:45:28 00:04:31 02:27:53
Prediction Time (s) 0.003 0.011 0.006 0.014

• Fully Connected Layer 1: After the ConvLSTM layer, the output is fed into a fully con-

nected layer with a leaky ReLU activation function and followed by batch normalization

and dropout.

• ConvLSTM Layer 2: The output is then fed into a second convolutional LSTM layer to

derive further Spatiotemporal correlations from the features. Consequently, followed by

batch normalization and a dropout layer. Moreover, the output is then flattened into a

one-dimensional vector of numbers.

• Fully Connected Layer 2: The one-dimensional output after flattening is then inputted

into a fully connected layer initialized by a truncated normal distribution. Consequently,

the last layer combines the learned weights in previous layers and applies a Sigmoid

function to output a probability between 0 and 1 that indicates the class of the data sam-

ples.

The ConvLSTM Algorithm’s optimal hyper-parameters achieved through the refined

Random Search are presented in Table 7.1. Based on the optimal number of training epochs

and the optimal batch size, the detector-5 and detector-10 ConvLSTM algorithms were

trained over 1602 and 1652 iterations respectively. After running the random search (500

runs) on the detector-5 dataset, good accuracy (99.4%) and F-measure scores (99.405%) are
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achieved. Moreover, the deep ConvLSTM model on the detector-10 dataset were tested and

achieved better accuracy (99.8%) and F-measure score (99.803%). The confusion matrix

for both datasets of the ConvLSTM model is depicted in Table 7.3. The classifier was able

to correctly classify 985 out of 988 normal samples and 1003 out of 1012 attack samples.

The performance of the classifier improved as the attack window in the detector-10 dataset

increased. This shows that 0.99% and 0.099% of the attacks were misclassified for both

datasets, as compared to the LSTM that achieved a 3.952% and 0.99% false negative rate. It

is important to note that the number of misclassified attacks (false negatives) is an important

indicator in choosing the best model to detect oscillatory load attacks.The risk of oscillatory

load attacks is increasing as a result of the rapid deployment of charging stations [17].

It is acknowledged that the current deployment (number) of charging stations does not

allow attackers to impact the power grid, however, with the current advancement and push

towards electrifying the transportation system that is being enforced by governments such

attacks will entail great risk.

Consequently, the training time of the best ConvLSTM model is evaluated and accumu-

lated to 2 hours approximately. The time consumed during training is substantial compared

to the LSTM. This result is expected due to the increase in the number of training parame-

ters tuned (e.g., filter and kernel sizes) that will allow the model to perform convolutional

techniques on the input data to extract spatiotemporal relationships. The LSTM variant is

labor-intensive in terms of training. However, the computational time of the ConvLSTM

model is 22 and 28 seconds which amounts to 0.011 and 0.014 seconds on average per data

sample for the detector-5 and detector-10 datasets.
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7.3.2 Distributed Mitigation Results

To evaluate the distributed mitigation mechanism, various oscillatory load attacks are

launched to study the impact on the grid on the 9-Bus system, which is a simplified abstrac-

tion of the Western System Coordinating Council (WSCC) [169] grid in North America.

This grid model is a 3-phase balanced transmission grid model. The test-bed setup is re-

strained to the 9-Bus system however, the general behavior of the different power grids is

similar. Thus, the mitigation mechanism is easily reproducible on different power grids.

After detecting the attacks within 5 seconds, every charging station adds a random delay to

every request with the aim of depriving the adversary of the ability to synchronize attacks

on multiple charging stations. Random delays are introduced with a maximum of 4 seconds

that are chosen based on the sensitivity analysis performed in [170], which implies a de-

crease in user performance, and thus behavioral intentions begin to flatten when the delays

extend to 4 seconds or longer in web interfaces. Moreover, according to [171, 172, 173],

a 4-second delay is deemed tolerable and can even increase to 10 seconds before heavily

impacting the user experience. Similarly, in [3] the authors suggested discarding a request

if an attack is detected. However, if a false positive attack is detected, the quality of service

with respect to a valid customer is affected, which would lead to user frustration. As a

consequence, a random delay topped at 4 seconds is used to preserve the quality of service.

Moreover, if the maximum delay is increased from 4 to 10 seconds a similar reduction in

attack impact is observed. However, 4 seconds was utilized due to its ability to eliminate

the forced frequency oscillations caused by a persistent oscillatory load attack while reduc-

ing the impact on the overall user experience. This is especially true in the case of false

positives where the legitimate user should not be subjected to a large delay. Users will not

tolerate substantial delays between initiating or stopping a charging session and the actual

start or stop of the session. A maximum delay of 4 seconds fits the guidelines provided by

various studies that evaluate and benchmark the acceptable response time when designing
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Figure 7.10: The variation of the generator’s speed as a result of an oscillatory load attack.

User Interfaces (UX/UI) in different contexts without affecting user experience [171, 172].

Norman Nielsen Group are world leaders in UX/UI and has identified that the user can

tolerate a 0 to 10 seconds delay making the 0 to 4 seconds a tighter bound. Moreover, other

more recent studies that focused on the opportunities and limitations afforded by online

tools/interface providers suggest the five-second rules as a design guideline for moderated

test sessions, which is still longer than the maximum delay of 4 seconds [173].

In what follows, an EV attack equivalent to 84MW load on one bus is demonstrated.

This attack is equivalent to about 7636 EVs charging at the 11kW Level 2 chargers. Al-

though such a number might be relatively high, the growth in the EV numbers will soon

provide a large enough surface to make it possible [17]. Relative to today’s average charg-

ing rate of 24kW, the attacker would only need to compromise 3500 EVCS. Moreover, as

the EVCS market moves towards wide adoption of level 3 chargers, the number of needed
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compromised charging stations decreases. Level 3 chargers are DC fast chargers that de-

liver a charging rate of 40kW to 360kW, which means that to perform the same attack

scenario 2100 EVs charging at 40 kW or as little as 233 charging at 360kW superchargers

are needed.

Now, oscillatory load attacks take advantage of load manipulation to impact the fre-

quency stability of the power grid. This attack revolves around the concept of creating

a demand surge to cause a frequency drop on the grid followed by a drop in demand to

cause the frequency to overshoot. The adversary uses the compromised load to create an

imbalance between the increased load and the generated power, causing the generators to

slow down, hence resulting in a frequency drop. Consequently, the attacker switches off

the compromised load to cause an increase in the frequency and the generator speed in re-

sponse to the adversary’s actions. The attacker alternates between charging and stopping or

discharging to disturb and impact the grid. The variation of the power generation speed due

to an oscillatory load attack with a 2.4 seconds period (1.2 seconds on and 1.2 seconds off)

is demonstrated in Figure 7.10. The sustained attack hinders the system’s recovery causing

fluctuations in the speed that would damage the turbines and decrease their lifetime due

to the constant acceleration and deceleration. Different attacks could be launched by an

adversary, however, a random delay between 0 to 4 seconds encompasses the wide range of

attacks and is enough to mitigate this family of attacks. The switching attack demonstrated

is persistent through the whole 60-second window of the simulation. The attack impact

was neutralized even though the attacker continues the coordinated on/off behavior. The

attack is no longer as impactful as before due to depriving the adversary of the ability to

synchronize the actual behavior of the EVCSs. Thus, the behavior of each charging station

would differ from the other as a result of the randomized delay. Thus, the total aggregate

load, as demonstrated in Figure 7.11, fluctuates slightly around 50% of the total aggregate
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Figure 7.11: Load profile after mitigation.

attacker EVCS load. In future work, we will work on a mitigation mechanism that will uti-

lize deep learning techniques to classify attacks based on their duty cycle to create a smart

mitigation mechanism that minimizes the random delay needed.

As shown in Figure 7.11, the attack was launched (step 1) and detected (step 2) after

5 seconds using the proposed novel detection mechanism and consequently, the different

charging stations independently initiate their mitigation mechanism and induce a random

delay between 0 and 4 seconds to attenuate the impact on the power grid and the gener-

ators and prevent attacker synchronization. The main aim here is to stabilize the system

by ensuring the disturbance does not impact the system’s performance. Figure 7.11 illus-

trates the attack load and its variation over time after implementing the proposed mitigation

technique on the test bed (behavior of the grid after step 2). In the first few seconds, two

peaks are observed showing the switching on and off due to an attack before detection,

followed by a gradual distribution of the attack load over a period of 50 seconds as a re-

sult of the random delay of consequent start and stop requests. It is clear in Figure7.11

how the added random delay causes the discrete behavior of the attack load, especially

beyond the 40s. The frequency variation after a mitigated attack is shown in Figure 7.12,
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Figure 7.12: The variation of the generator’s speed as a result of an oscillatory load attack followed
by mitigation.

which demonstrates the effectiveness of the proposed approach in eliminating the oscilla-

tions caused by the same sustained attack that is shown in Figure 7.10.To demonstrate the

worst-case scenario that all the attacks are detected by the end of the first 5s of the attack

and not before, the initiation of the mitigation technique is delayed till t=10s which is 5

seconds after the attack started. This lightweight mitigation scheme prevents the attacker

from synchronizing an attack thus, eliminating the attacker’s ability to impact the power

grid. The randomization of the attack load over time results in a gradual increase in the

load rather than instantaneous spikes and drops which allows the grid’s generators to cope

with the change in demand (behavior after step 2). Along with that, as shown in Figure

7.12, the generator speed starts to get damped at t=11s in 1s of detecting the attack. It is

worth mentioning that the system requires 2s to return back to its normal frequency range

after the mitigation mechanism is executed. The mitigation strategy was successful in elim-

inating the impact of the attack on the power grid without the need for adding a physical
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control layer to the power grid. Furthermore, the proposed cyber-layer mitigation scheme

is comparable to physical layer mitigation schemes. In [3], the control scheme was able to

limit the forced oscillation to a safe threshold after 15s of the attack initiation as compared

to the 2s. Furthermore, the proposed mitigation mechanism is able to completely eliminate

the attack impact reducing the need for continuous acceleration and deceleration of the

generators, unlike physical layer mitigation mechanisms that can dampen the dangerous

oscillations but can never eliminate them.

Figure 7.11 demonstrates that after detection, the attack load would increase gradually

to reach around 48 MW (half the total attack load). This would result in the grid’s ability

to return to stability since the attack load oscillations have been eliminated. It is worth

mentioning that if the attack utilizes the V2G ability of the EVCSs, the proposed mitigation

would result in an EV attack load centered around zero, which is even better for the stability

of the grid and allows the generator to regulate their speeds easily.

7.4 Evaluation, Comparison, and Discussion

To detect oscillatory load attacks, an approach that leverages the behavioral characteris-

tics of the charging station and the power grid is proposed. This approach is used to detect

oscillatory load attacks initiated from the EV charging ecosystem regardless of the specific

exploits and vulnerabilities used to compromise the different components that constitute

it. The events at the charging station are directly related to the behavior of the power grid,

making them the most important data on the cyber layer of the ecosystem.

7.4.1 Discussion of Obtained Results

Furthermore, the result demonstrated that such coordinated attacks have a unique sig-

nature constituting the charging event and the frequency on the power grid. Moreover,
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some attacks disguised as normal behavior (stealthy attacks) might go undetected. Based

on the previous experiments, the choice of features significantly impacted the accuracy and

allowed the detection of oscillatory load attacks with high recall and precision values. The

detection system on the detector-5 dataset (5 seconds attack window) and the detector-10

dataset (10 seconds attack windows) are evaluated. The precision and recall for LSTM

and ConvLSTM improved as the attack window increases from 5 seconds to 10 seconds,

as summarized in Table 7.2. The LSTM was less effective on the detector-5 dataset and

achieved an F-measure score of 97.493%. However, the LSTM performance improved

on the detector-10 dataset. It is observed that the improvement for other metrics studied

(accuracy, precision, recall, and a number of false negative samples). The number of mis-

classified samples decreased from 40 to 10 when the LSTM model viewed a 10-second

attack window, as shown in Table 7.3. Moreover, the detector-5 LSTM model misclassified

stealthy and non-stealthy attacks whereas, the ConvLSTM only misclassified a few stealthy

attacks achieving a low false negative on stealthy attacks with less than 1.7% (0.88% of to-

tal attacks). The same stealthy attacks were later detected in the detector-10 ConvLSTM

model decreasing the misclassified stealthy attacks to 0.19% (0.099% of total attacks) us-

ing the detector-10 detector. Moreover, the other types of non-stealthy attacks were all

detected using detector-5 ConvLSTM. This shows that detecting stealthy oscillatory load

attacks is not as trivial as other types of attacks and a two-step detection mechanism is best

suited to provide redundancy and effectiveness to the detection mechanism to help secure

the vital services provided by the power grid. It is worth noting that the detection mech-

anism works on a rolling basis as long as the charging station is receiving requests, thus,

improving the detection ability of the proposed approach. The rolling window detector-5

detector will detect attacks in any smaller time frame but it is worth highlighting that it was

optimized for detection after 5 seconds to be able to detect stealthy attacks. The detector-5

detector was tested (without retaining) on windows containing only the first second of the
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attack behavior, and it was able to identify a third of the attacks within 1s of their initiation,

achieving a recall of 33.3%. In this test, only 3 normal data samples were misclassified as

attacks which are consistent with the results of the original detector-5 model. In the stealthy

version of the attacks, the attacker launches slow oscillatory attacks as well as distributes

the switching among multiple charging stations. This makes the behavior of individual

EVCSs in short windows of time look normal since only one event or possibly no events at

all occur. Indeed, this is aligned with the finding where the detector-5 model misclassified

the stealthy attacks within the first second and labeled them as normal. This shows the

need for a rolling window model. Consequently, the detector-5 model was chosen to avoid

a compromise between the impact on the grid and the accuracy of the model. In a real-life

deployment, the distributed mitigation mechanism in 1 will start mitigating the attacks as

soon as the detector classifies a window as an anomaly and does not need to wait for 5

seconds after the attack is initiated.

Moreover, the deep learning model ConvLSTM, an LSTM variant, achieved a better

performance than the LSTM on the two datasets. The ConvLSTM showed improvement

over LSTM on the detector-5 dataset achieving a 99.405% F-measure score. Moreover,

the ConvLSTM also achieved a 99.803% F-measure score on the detector-10 dataset. It

is important to note that the performance of the model detector-5 dataset is crucial for the

evaluation since early detection of the attack is needed. The LSTM did not perform as well

on the detector-5 dataset compared to the detector-10 dataset, whereas the ConvLSTM us-

ing the convolutional filters on the input allowed the deep learning model to learn intricate

patterns of the attack data which allowed it to effectively classify samples. The ConvL-

STM substitutes the matrix multiplication of the LSTM at each gate with convolutional

operations that allowed it to extract the spatiotemporal relationships between the multiple

timesteps over recorded variables (events and frequency). This relationship is the most

crucial aspect in detecting oscillatory load attacks where ConvLSTM showed improved
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performance over the LSTM [174]. Moreover, the fully connected LSTM has to unfold

the inputs to 1D vectors before processing them, thus losing all the spatial information

during the process. Thus, to preserve the spatial features the ConvLSTM uses 3D tensors

that preserve the spatial information and determine the future state of a cell by taking into

consideration the local neighbors of a cell [162]. The ConvLSTM reaps the benefits of

the LSTM with temporal data and the benefits of a convolutional neural network with spa-

tial data, which was important in this study of the two features over multiple timesteps.

The ConvLSTM was able to learn the patterns of the attack with only 5-second windows.

Indeed, the performance of both classifiers on the detector-10 dataset is expected to be bet-

ter, since the impact of the switching would increase tremendously showing a significant

change in the behavior. Moreover, the number of misclassified samples, most importantly

the false negatives, is crucial to evaluate the efficiency of the detection model and how

much the classifiers can be trusted to identify attacks. The analysis presented in Table 7.3

shows that the LSTM misclassified 40 and 10 attack samples as normal for the two datasets,

which allows the adversary to execute a wider range of adversarial attacks as compared to

the ConvLSTM which only misclassified 9 and 1 data samples for the detector-5 and the

detector-10 datasets, respectively.

The ConvLSTM outperformed the LSTM in various aspects. However, training the

ConvLSTM model took around two hours and a half as compared to the LSTM model

which took about 4 minutes. The training time is tolerable in the system model because

it is assumed that training is performed by a central authority with enough resources and

has access to data from various operators and does not impact the prediction of attacks.

Moreover, the prediction time of the ConVLSTM is still in the order of milliseconds which

means that although its complex structure requires extra training time, its performance once

deployed is not hindered by this complexity. The complexity of the ConvLSTM model

arises from the structure of the ConvLSTM layer that utilizes matrix multiplication along
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with the kernels and the filters used that increase the trainable parameters in the model

drastically leading to high training time. Moreover, the increase in the training time of

the ConvLSTM is also due to the batch size and the learning rate where increasing the

batch size leads to a poor generalization over the data samples and a small learning rate

requires more training epochs given the smaller changes made to the weights each update.

In this approach a compromise was made between the training time and the accuracy to

provide a reliable deep learning model that is able to effectively detect attacks. Moreover,

the ConvLSTM and its convolutional mechanisms applied to features helped detect oscil-

latory switching attacks with as little as a 5-second attack window. Further, to compare the

computational performances of the devised classifiers, their speed is measured in terms of

the time required to complete the classification experiments. As illustrated in Table 7.4,

the LSTM performed significantly faster than the convolutional LSTM, with 0.003 seconds

to complete the classification. Whereas ConvLSTM performed relatively slower, with a

computational time of 0.011 seconds. However, the time required by the ConvLSTM is

tolerable since the output of the deep learning is almost instantaneous.

7.4.2 Comparison with Existing Detectors

The deep learning model depends on the behavioral characteristics (logged by the

charging station during operation). The characteristics allow distributed decision-making

where each charging station acts independently. To the best of our knowledge, we are the

first to enable a distributed detection mechanism of oscillatory load attacks where models

do not need to be deployed on a central management system to perform accurate detection.

In [3], the authors devised a detection algorithm that depends on two charging events and

the number of vehicles connecting within ∆ time. The number of vehicles is an artifact

that is only known to the CMS of a specific operator and is not shared. However, in this

approach, the frequency reading of the power grid is utilized, which is a shared variable
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(artifact) among the charging stations of different operators connected to the same bus.

These features enable the detection of multi-operator and stealthy sophisticated attacks and

distribute the detection mechanism. The deep learning model can be deployed on every

charging station, where each EVCS can make its decision solely based on the artifacts

(events and frequency) that can be collected by the EVCS independently.

Furthermore, since this approach is deployed on the charging station itself it prevents

MitM attacks that can be launched by an adversary on the OCPP traffic exchange between

the CMS and the EVCS itself [20] to control charging stations and perform oscillatory

load attacks. The detection approach mitigates various attack vectors by deploying the

deep learning model on the component that is used to create an impact (EVCS). It is worth

mentioning, that the detection mechanism could be deployed on privately owned charging

stations (i.e. EVCSs owned and operated by shopping centers, malls, and parking lot op-

erators who might not be willing to share their utilization information with a central entity

needed in [3]. Furthermore, the detection approach requires viewing only 5s of the os-

cillatory switching attacks as compared to [3] that was tested on 20, 30, and 40 seconds

attack periods and resulted in 30%, 10%, 5% false negative rates, respectively. In Table

7.5 a detailed comparison between the decentralized proposed approach and the approach

proposed in [3] is provided.

This work highlights that the cyber and physical layer features are a crucial component

in enhancing the false negatives rate. The detection mechanism aided in discovering the

relationship between cyber layer information represented by events and the physical layer

which is represented by frequency recording of the bus that the EVCS is connected to.

Moreover, stealthy attacks that utilize slow switching behavior might be erroneously clas-

sified by detection mechanisms relying on the cyber data alone. Thus, the spatiotemporal

relationship of hybrid data coming from both layers is shown to be suitable to help solve

the shortcomings of pure cyber-layer detection mechanisms. While the approach proposed
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Table 7.5: Comparison between the decentralized approach and the centralized approach proposed
in [3].

Key Differences Centralized Detection/Mitigation (Approach
Proposed in [3])

Decentralized Detection/Mitigation (Our approach)

Processing All processing is done on a central server or a set of
servers

Processing is distributed on the individual EVCSs

Data Collection Data is collected from all public charging stations Data is collected locally at each EVCS and does not
require sharing with any third-party entity

Communication Communication between the server and the EVCS
is critical and requires a reliable and fast network

connection

The EVCS takes decisions independently of each
other without requiring communication and

incurring any delays
Security Detection is more vulnerable to attacks since it has a

single point of failure and or compromise could
bring down the entire system

Decentralized detection is more resilient and the
adversary would need to compromise the all the

EVCSs individually to remain successful
Accuracy 92% 99.4%

False Negatives 30% 0.8%
False Positives <1% (not clearly stated) 0.3%

Speed of detection 20+ seconds 5 seconds

in [3] is aimed to solve a similar problem using a centralized detection mechanism the pro-

posed approach in this work shows improvement over it in terms of resiliency and fault

tolerance due to the deployment strategy followed.

7.4.3 Robustness and Limitations

In this approach, adversarial oscillatory attacks that other detection mechanisms fail to

detect are addressed (e.g., multi-operator, stealthy, and MitM oscillatory load attacks). This

improves the robustness of this model and increases the spectrum of various oscillatory load

attacks that could be detected by this approach. Considering that the approach’s scope is

only to detect coordinated oscillatory load attacks based on the combination of cyber and

physical behavioral characteristics, the experiments were performed on the New England

39-Bus System. Data samples from different power grids were not included. Attacks on the

grids have various impacts. For example, an attack on a 9-Bus system might not have the

same consequences on a 39-Bus system. However, this approach is easily reproducible to

make it operational on other power grids. Although this work contributes to understanding

and detecting oscillatory load attacks, however, it faces a few current limitations. For

instance, the work relies on a supervised learning approach, which cannot classify new,
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previously unseen attacks. To overcome this limitation, unsupervised approaches can be

considered complementary approaches to face the emergence of any adversarial attacks.

Additionally, the proposed approach can be leveraged as a stepping stone to develop new

cyber-layer defense mechanisms that prevent and detect oscillatory load attacks.

In this work, it is assumed that the charging station is honest, thus, the adversary can

evade this detection mechanism by compromising the charging station itself. However,

the adversary needs to compromise all the charging stations needed to mount attacks. The

distributed nature of the detection mechanism makes it hard for the adversary to mount

attacks easily and ensures fault tolerance in the system, unlike centralized detection mech-

anisms that provide a single point of failure. Moreover, adversaries need to hack and exploit

charging stations with different firmware versions which would require the attacker to find

vulnerabilities in the different types of charging stations. Finally, in future work we plan to

use federated learning to assist in preserving the privacy of the records during the training

period without the need for the power grid operator to get charging behavior data to create

an AI-enabled detection model.

Moreover, it is important to note that to evade the mitigation technique, the attacker

needs to guess the random number generator (if the operator/manufacturer used a weak

random number generator). However, each charging station creates a random delay inde-

pendently of the other hindering the adversary from discovering the random delay of all

the charging stations that are being exploited to mount an oscillatory load attack. Through

this work, it is shown that a simple and lightweight random delay mechanism provides

an efficient countermeasure to adversaries trying to launch oscillatory load attacks. This

mechanism is compatible with the nature of the ecosystem as it doesn’t require coordination

with the other charging stations which would create an overhead for charging stations that

are equipped with limited computing power. However, we plan in the future work to create

a framework to support the grid using V2G and mitigate the impact of EVCS cyber-attacks.
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Chapter 8

Conclusion and Future Directions

The current security posture of the EV charging ecosystem requires an in-depth analysis

of the various components. The wide spread of insecurity highlighted through this thesis

sheds light on the need to raise the security bar for the stakeholders in this ecosystem to en-

sure a reliable ecosystem. In this thesis, we studied the security of the different components

of the EVCS ecosystem. We created a real-time co-simulation platform that allows secu-

rity researchers to study the security of the ecosystem as a whole, unlike previous work that

simulated individual components. Consequently, we have created an advanced discovery

mechanism to identify EVCSs in the wild to study their security we then use non-invasive

techniques to evaluate the security posture concerning remote compromise. Finally, we

also study the malware threat landscape and create the first baseline study. Moreover, we

also study an understudied component the OCPP backend where we discover 6 zero-days

in each of the 16 operators we studied which allows adversaries to launch covert attacks

that impact the operator’s visibility over the infrastructure among other attacks. Finally, we

devise a distributed deep learning algorithm to identify oscillatory load attacks by carefully

choosing features that enable the federated aspect of the decision-making. Additionally,

we devise a distributed mitigation mechanism to prevent the adversary from synchronizing

attacks which would allow them to create oscillatory load attacks. In the future, we plan
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Table 8.1: Contributions during the Ph.D. Program

Title Citation

A Real-Time Cosimulation Testbed for Electric Vehicle
Charging and Smart Grid Security

Sarieddine, K., Sayed, M. A., Jafarigiv, D., Atallah, R.,
Debbabi, M., & Assi, C. (2023). A Real-Time Cosimulation

Testbed for Electric Vehicle Charging and Smart Grid Security.
IEEE Security & Privacy.

EV Charging Infrastructure Discovery to Contextualize its
Deployment Security

Sarieddine, K., Sayed, M. A., Assi, C., Atallah, R., Torabi, S.,
Khoury, J., ... & Bou-Harb, E. (2023). EV Charging

Infrastructure Discovery to Contextualize its Deployment
Security. IEEE Transactions on Network and Service

Management.
Investigating the security of EV charging mobile applications as

an attack surface
Sarieddine, K., Sayed, M. A., Torabi, S., Atallah, R., & Assi, C.

(2023). Investigating the security of ev charging mobile
applications as an attack surface. ACM Transactions on

Cyber-Physical Systems, 7(4), 1-28.
Uncovering Covert Attacks on EV Charging Infrastructure:

How OCPP Backend Vulnerabilities Could Compromise Your
System

Sarieddine, K., Sayed, M. A., Torabi, S., Attallah, R., Jafarigiv,
D., Assi, C., & Debbabi, M. (2024, June). Uncovering Covert
Attacks on EV Charging Infrastructure: How OCPP Backend

Vulnerabilities Could Compromise Your System. In
Proceedings of the 2024 ACM on Asia Conference on

Computer and Communications Security
Edge-based detection and localization of adversarial oscillatory
load attacks orchestrated by compromised EV charging stations

Sarieddine, K., Sayed, M. A., Torabi, S., Atallah, R., & Assi, C.
(2024). Edge-based detection and localization of adversarial

oscillatory load attacks orchestrated by compromised EV
charging stations. International Journal of Electrical Power &

Energy Systems, 156, 109735.

to create passive and highly interactive honeypots that imitate an EVCS to collect traffic

and malware samples that would help us understand the threat landscape further. For future

work, we plan to study EVCS backends that do not use the standard OCPP communication

(e.g., Tesla) to identify the different attack vectors and threats that the ecosystem faces.

Finally, devising a monitoring scheme for the ecosystem that would take into account the

different components in the ecosystem (cloud, mobile app, backend, etc.).

The bulk of the report focuses on the work that has been performed by the student as part

of the Ph.D. program. The different contributions have already been published/accepted for

publication in top venues are summarized in Table 8.1. Other collaborations with different

colleagues through out my Ph.D. are summarized in Table 8.2.
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Table 8.2: Other Co-authorships during the Ph.D. program

Title Citation

On ransomware family attribution using pre-attack paranoia
activities

Molina, R. M. A., Torabi, S., Sarieddine, K., Bou-Harb, E.,
Bouguila, N., & Assi, C. (2021). On ransomware family

attribution using pre-attack paranoia activities. IEEE
Transactions on Network and Service Management, 19(1),

19-36.
A Data-Driven Framework for Improving Public EV Charging

Infrastructure: Modeling and Forecasting
Al-Dahabreh, N., Sayed, M. A., Sarieddine, K., Elhattab, M.,

Khabbaz, M. J., Atallah, R. F., & Assi, C. (2023). A
Data-Driven Framework for Improving Public EV Charging

Infrastructure: Modeling and Forecasting. IEEE Transactions
on Intelligent Transportation Systems.

Quality of Service Evaluation and Forecast for EV Charging
Based on Real-World Data

Atallah, R., Al-Dahabreh, N., Sayed, M. A., Sarieddine, K.,
Elhattab, M., Khabbaz, M., & Assi, C. (2023, June). Quality of

Service Evaluation and Forecast for EV Charging Based on
Real-World Data. In 2023 19th International Conference on

Wireless and Mobile Computing, Networking and
Communications (WiMob) (pp. 280-285). IEEE.

Electric Vehicle Switching Attacks Against Subsynchronous
Stability of Power Systems

Abazari, A., Sarieddine K., Ghafouri M., Atallah R., D.
Jafarigiv, & Assi C. “Electric Vehicle Switching Attacks

Against Subsynchronous Stability of Power Systems”
submitted to IEEE Transactions on Industrial Informatics

PEACE: Physics-Enabled Autoencoder Detection of Unknown
Load-Altering Attacks in Smart Grids

M. A. Sayed, Nathalie Wehbe, K. Sarieddine, R. Atallah, C.
Assi, & M. Debbabi. PEACE: Physics-Enabled Autoencoder
Detection of Unknown Load-Altering Attacks in Smart Grids.
Submitted to IEEE Power & Energy Society General Meeting

(PESGM).
GridWatch: Load-Altering Attack Detection and Localization

Mechanism Powered by a Physics-Assisted Feature Fusion
Hybrid Neural Network

M. A. Sayed, K. Sarieddine, Nathalie Wehbe, M. Arfaoui, R.
Atallah, M. Debbabi, & C. Assi. GridWatch: Load-Altering
Attack Detection and Localization Mechanism Powered by a

Physics-Assisted Feature Fusion Hybrid Neural Network.
Submitted IEEE transactions on Smart Grid.
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