

 A Deep Few-Shot Network for Protein Family Classification

Saeedeh Jamali

A Thesis

 In the Department of

 Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements

For the Degree of

Master of Science (Mathematics)

 at Concordia University

Montreal, Quebec, Canada

March 2024

© Saeedeh Jamali, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

 This is to certify that the thesis prepared

By: Saeedeh Jamali

Entitled: A Deep Few-Shot Network for Protein Family Classification

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Mathematics)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final Examining Committee:

_______________________ Chair

 Dr. Arusharka Sen

____________________ Examiner

 Dr. Arusharka Sen

 ___________________ Thesis Supervisor

 Dr. Yogendra P. Chaubey

 ____________________ Thesis Supervisor

 Dr. Ashkan Ebadi

 Approved by __

 Dr. Lea Popovic, Graduate Program Director

 __

 Dr. Pascal Sicotte Dean, Faculty of Art, and Science

_______________________ Chair

 Date: 2024-03-25

iii

Abstract

A Deep Few-Shot Network for Protein Family Classification

Saeedeh Jamali

Protein sequence analysis is arguably a challenging modern bioinformatics problem covering various

applications such as disease research, precision medicine, and therapeutics [1]. Given the emergence of

sequencing technologies and the resulting large-scale databases, protein family classification is an open

problem in bioinformatics [2]. Recent advances in computer science have opened new gates to researchers

in various scientific domains [3]. Bioinformatics, as an intermediary research field, takes advantage of these

advancements from conventional machine learning methods to large language models, and biostatistics [4].

Utilized machine learning techniques for protein family classification, are dependent on domain experts to

generate features which could be time-consuming and challenging [5] [6]. Deep learning algorithms have

shown promising results in proteomics; however, their application is limited to the availability of massive

data sets for training. Since the required data comes from experiments, it can be highly complex or

incomplete. As an alternative, few-shot models can learn and generalize from a few observations. To address

the mentioned limitations, in this research, we designed and implemented a deep few-shot network for

protein family classification1 [7] and our result showed outperformance to state-of-the-art baseline models.

To the best of our knowledge, this is the first deep network tailored for primary sequence family classification

that can highly perform with a very limited number of observations.

1 The short paper of this research work was accepted and presented at the 36th Canadian Conference 2023 on Artificial

 Intelligence (CanAI - 2023)

iv

Acknowledgments:

I would like to express my profound gratitude to my supervisors, Professor Yogen Chaubey and

Professor Ashkan Ebadi, for their exceptional guidance and mentorship throughout my journey in

this program. Not only are they outstanding researchers, but they have also shown unwavering

support. I am truly grateful and honoured for the remarkable opportunity to have been mentored

by them and for the enriching experience of learning from them during this research work and this

program.

Additionally, I extend my sincere thanks to Professor Arush Sen and all my professors at Concordia

University for their invaluable contributions through insightful discussions, comments, and

courses.

Thanks to the Mathematics and Statistics department for providing me with this great opportunity

to experience working as a Concordia University employee and having believed in how strong an

international student can be to work and study in a new country.

To my first teachers, my parents, Maman, Baba, and older sister, Nastaran, who taught me that

"Word," "Education," and "Science" are lights that overcome fear, darkness, and lies.

To my dearest Narges, Reza, Armand, Marmar, and all my friends who supported me to dare to

start and finish this challenging and wonderful journey.

v

Table of Contents

List of Figures ... vii

List of Tables .. viii

Chapter 1: Introduction ... 1

1.1 Introduction ... 1

1.1.1 Contribution ... 6

1.2 Literature Review and the Outline of Thesis .. 6

1.3 Conventional Models for Protein family classification .. 8

1.3.1 K-mer .. 8

1.4 Machine Learning ... 9

1.4.1 General Workflow of a Machine Learning Model .. 10

1.4.2 Support Vector Machines (SVM) ... 11

1.5 Deep Learning Models for Protein Family Classification ... 12

1.5.1 General Workflow of a Neural Network Model .. 12

1.5.2 Convolutional Neural Network (CNN) .. 18

1.5.3 Bidirectional Long Short-Term Memory ... 19

1.5.4 Gated Recurrent Unit Network .. 20

1.6 Few Shot Learning strategies ... 21

1.7 Transfer learning ... 23

1.7.1 ProtBert .. 25

1.8 Conclusion ... 26

Chapter 2: Deep Few-Shot Network for Protein Family Classification ... 29

2.1 Deep Few-Shot Network for Protein Family Classification .. 29

2.2 Data .. 30

2.2.1 Data Preparation .. 30

2.3 Methodology .. 31

2.3.1 Architecture of Deep Few-Shot Network for Protein Family Classification 31

2.4 Training and Validation .. 35

2.5 Model Performance Metrics (Evaluation) .. 36

2.5.1 Recall ... 36

2.5.2 Precision .. 37

2.5.3 F1 Score .. 38

2.5.4 Accuracy ... 38

vi

2.6 Testing Strategy ... 38

Chapter 3: Results and Discussion .. 39

3.1 Results .. 39

3.2 Conclusion and Future Work ... 42

References .. 44

vii

List of Figures

 Fig 1. Four protein structures

 Fig 2. Approximation of the number of published articles based on the search for deep learning

 models within the omics research field

 Fig 3. A neural network designed with one hidden layer.

 Fig 4. A network utilizing dropout technique.

 Fig 5. Stack of Encoder, Multiheaded Attention Mechanism and Scaled Dot Produced Attention

 Fig 6. The high-level architecture design of Deep Few-Shot Network for Protein Family

 Classification

 Fig 7. Training and validation accuracy for 33-way, 25-shot learning setting.

 Fig 8. Performance of the Deep Few Shot model (ProtFewShot) and three baseline models, i.e.,

 CNN, GRU, SVM for n-shot learning setting (n {5,10, 20, 25}).

viii

List of Tables

Table 1. Data distribution

Table 2. Training performance evaluation for n-shot (n-example) setup

 Table 3. Validation performance evaluation for n-shot (n-example) setup

 Table 4. Testing setup performance evaluation for n-shot (n-example)

1

Chapter 1: Introduction

1.1 Introduction

Proteins are represented through four distinct structural forms (Fig 1). The protein primary

sequence is the most cost-effective and accessible form of protein. This primary structure is

obtained by direct sequencing of the protein, resulting in a sequence of amino acids. Each amino

acid in this sequence is represented by a specific character, making it a straightforward and

commonly available format for protein analysis in a protein sequence. There are predominantly

twenty standard amino acids that frequently occur. Occasionally, this sequence also includes a few

rare amino acids. Each of these amino acids, whether common or obscure, is represented by a

unique character notation. Advanced high-throughput technologies like next-generation

sequencing [4] [8] have significantly accelerated the pace of omics-based research, which includes

the study of genes, proteins, and other biomolecules. This acceleration has deepened our

understanding of the biological mechanisms associated with specific diseases and has enhanced

the speed and efficacy of patient-specific responses to these conditions.

Fig 1. Four protein structures [9]

2

The novel approach to biomarker research, biological indicators that can predict disease risk,

diagnose conditions, or forecast treatment outcomes with high precision, grounded in data-driven

methods, results in methods of personalized medicine [10] [11] [4]. Improving the techniques for

processing and analyzing underlying data remains a key motivation for bioinformaticians and

machine/deep learning specialists. Investigating and exploring omic data, without human

intervention, is an ongoing challenge. In standard machine learning applications, feature

engineering is often employed within the data analytic pipeline to address this issue. Recently,

experts in machine learning have started utilizing advanced algorithms from the subfield of deep

learning (DL) that do not necessitate the extensive feature engineering typically required in

traditional machine learning approaches [4]. This is illustrated in Fig 2, showcasing the growing

recent interest in utilizing DL models in omics-based research.

Fig 2 Approximation of the number of published articles based on the

search for deep learning models within the omics research field [4].

This transition primarily stems from the superior capability of DL in developing predictive models

and identifying complex patterns within extensive datasets [12] which requires minimal feature

3

engineering, offering a unique advantage to analyze omics data at its most fundamental level,

bypassing the need for handcrafted features.

A major issue with employing advanced machine learning techniques, like deep learning models,

is their dependence on extensive collections of labelled data for effective generalization. Acquiring

such large datasets remains both costly and time-consuming. Moreover, the lack of labelled data

can result in poor performance of machine learning algorithms. Similar challenges also exist in

other domains, including computer vision (CV) and natural language processing (NLP) [4]. Thus,

a motivation behind this research is the adaptation of deep learning methods for the analysis of

proteomics data, aiming to be effective irrespective of the quantity of available labelled data.

Modern deep learning approaches need to be adept at handling both extensive and limited datasets,

as they play a crucial role in uncovering new insights and broadening our understanding of

diseases. These techniques are instrumental in enhancing diagnostics and formulating customized

treatment plans [4].

Before the advent of machine learning, earlier methods focused on programming computers with

a specific set of rules for each modelling task. Dealing with the intricate nature of omic data made

these early methods both time-consuming and laborious. As the availability of data increased, these

traditional approaches soon became impractical for researchers. The need for continual

adjustments and modifications to the programs, in response to the escalating complexity of the

data, rendered them inefficient. Ultimately, machine learning emerged as a more effective solution

to these challenges, surpassing the limitations of rule-based systems. With their capacity to learn

from experience, machine learning algorithms could use all available data, offering a more

dynamic and adaptable approach to data analysis [4] [11]. Machine learning algorithms have the

capability to process vast amounts of data and identify patterns that might be overlooked by

4

manually crafted rules. Now, machine learning is pivotal in uncovering new patterns and

addressing emerging hypotheses in the context of these intricate biological systems. Contemporary

machine learning methods, particularly deep learning, have revolutionized the field of

computational biology. The adoption of deep learning algorithms has expedited research by

enabling the automatic detection and analysis of patterns in large datasets, eliminating the need for

manual intervention. Similar to other information processing areas, deep learning is becoming

increasingly prominent and effective in the field of bioinformatics. This includes their use in

predicting important protein properties directly from protein sequence data. The effectiveness of

deep learning solutions lies in their capability to extract intricate, task-specific features from basic

input data. Most of the deep learning methods used for protein analysis have been adapted from

the field of natural language processing (NLP). The analysis of a protein's primary structure can

be viewed as similar to the tasks currently being performed in the field of NLP, which focuses on

learning the linguistic structure of sentences [4].

Recent advancements in NLP have highlighted the effectiveness of pre-training. In this method, a

model is first trained on a large body of unlabeled text, and then fine-tuned with labelled data for

a specific task. Pre-training enables the model to learn the statistical patterns of language, such as

the meanings of terms and possible grammatical relationships. Fine-tuning, on the other hand,

optimizes the network for a particular function, like discerning the emotional sentiment of a

sentence. Training language models on large-scale unlabeled datasets generally demand significant

computational resources. Yet, the resulting encodings from such training are versatile enough to

be applicable across a broad spectrum of subsequent tasks [13] [14] [15].

Pre-training has now become a standard in NLP, leading to the emergence of networks such as

5

ELMo [16], BERT [17] [4]. These models have achieved state-of-the-art results in language

modelling. Typically, they start by using a sub-word algorithm to re-encode the original text. This

process enables the system to deconstruct infrequently used words in the vocabulary into more

common sub-words. For instance, the word 'cars' could be divided into the word piece tokens 'car'

and 's'. By fragmenting the rare words in a corpus, the modelling process is simplified. The network

can then utilize these sub word representations to depict words, rather than relying on the original

character sequences of the words.

In recent years, the application of pre-trained techniques from the field of NLP has significantly

influenced protein bioinformatics. These techniques are trained on extensive databases of protein

sequences to extract meaningful characteristics [13] [18] [19].

A notable example built upon the principles of the BERT model is the work by Elnaggar et al. [20],

who utilized over 2.1 billion sequences of proteins to train, a set of transformer models originally

developed for NLP. These models enable the conversion of protein sequences into vector formats,

this transformer can then be effectively utilized for a range of applications, such as classifying

protein families [21] [19]. The use of these pre-trained transformer models offers numerous

benefits. They eliminate the need for creating manual, error-prone features to represent protein

sequences, leading to a more streamlined and efficient approach to protein sequence analysis and

related developments [19].

Given the limitations in the field of omics research regarding the application of deep learning

models, a highly accurate protein family classification task is an open problem. Understanding the

unknown properties and functions of proteins, based on measurable features, is crucial for

advancing disease research, precision medicine, and therapeutics. For instance, in the task of

6

protein sequence classification, we often encounter families with insufficient examples. As

previously discussed, most deep/machine learning models, such as common convolutional neural

networks (CNN), are applicable for classification tasks only when a large-scale dataset is available

[4] [12]. Metric-based meta-learning models, such as Siamese networks, offer an innovative

approach to generalizing from limited examples. These models use a distinctive structure to assess

the similarity between inputs [22], minimizing the need for extensive retraining. Siamese networks

are noted for their scalability, allowing for the inclusion of additional categories [22] [23].

1.1.1 Contribution

To address the mentioned limitations, in this research, we designed and implemented a novel deep

few-shot learning network for protein family classification. While Siamese networks have been

explored in various contexts, including object tracking [24] and COVID-19 detection from X-ray

images [22], Protein-Protein Interaction [19], to the best of our knowledge, this is the first work

that employs transfer learning and presents a few-shot deep Siamese network model for protein

family classification task. The goal of our deep few-shot learning architecture is to classify unseen

primary protein sequences that can be highly performed with a very limited number of

observations.

The effectiveness of our architecture will be tested with three different baseline architectures

including Support Vector Machines, Convolutional Neural Networks, Gated Recurrent Unit.

1.2 Literature Review and the Outline of Thesis

In this chapter, we review the relevant literature, organized into three main sections. First, we

examine the conventional models used for protein family classification. This is followed by a

7

discussion on the advantages and limitations of machine learning methods, particularly in the

context of protein family classification. In the subsequent section, we review what deep learning

methods offer as alternatives to conventional machine learning approaches for this field of science.

We conclude the chapter with a literature review of works and techniques, such as the few-shot

learning strategies that provide the necessary background for our novel architecture proposal.

Protein plays crucial roles in various functions within an organism, ranging from growth to cellular

maintenance. Differentiating between known and unknown proteins and assigning them to their

appropriate protein families can yield deeper insights into their specific functionalities and

behaviours. Protein family classification models consider the inherent nature of proteins, which are

one-dimensional sequences composed of 20 unique amino acids, referred to as the primary protein

sequence. When a new protein is discovered, researchers strive to categorize its primary sequence

into a particular family. This classification assesses the probability that the novel protein shares

similarities, in terms of properties, functions, and general behaviour, with previously identified

protein families [2]. Such understanding is vital for medical and biology research areas like disease

identification, comparative genomics, and the development of medications and drug designs [4]

[25] [26]. Traditionally, methods like X-Ray crystallography and nuclear magnetic resonance have

been employed by experts in laboratories to discern protein structures and functions. However, with

the advent of large-scale genome projects and technological advancements, there has been an

exponential increase in the number of novel protein sequences. As a result, conducting biological

experiments to characterize these protein sequences has become costly, time-intensive, and

laborious [27] [23]. Thanks to advancements in computer science and digital technologies, both

traditional and modern machine learning techniques have significantly transformed computational

8

biology and data-driven methods in bioinformatics [4]. In this section, we will discuss this progress

and its implications.

The remainder of this thesis is organized as follows: Chapter 1 continues with a review of relevant

research work. Chapter 2 discusses data methodologies and the components of our proposed

architecture. In Chapter 3, we discuss the results and conclusions, along with directions for future

research.

1.3 Conventional Models for Protein family classification

1.3.1 K-mer

The K-mer approach offers a technique for embedding bioinformatics sequences, but it's shallow

to a neural network that can't be trained beyond a single convolutional layer. This approach was

established by Karlin and Burge in 1995 [28]. K-mer methods work based on the frequency of

words and are one alignment-free method applied as the most used model in sequence comparison

and many other bioinformatics problems [5]. The method initiates by generating a comprehensive

dictionary of all potential sub-sequences that are k units long (known as a K-mer), and then each

k-length sub-sequence is moved across against the given sequence. Concurrently, a quantitative

vector is constructed wherein each element precisely represents the occurrences of its

corresponding K-mer within the sequence.

Although it forms the foundation for numerous bioinformatics methods, such as ESPRIT by Sun

et al. (2009) and SLAD by Zheng et al. (2018) for sequence binning, as well as the RDP classifier

by Wang et al. (2007) and Kraken by Wood and Salzberg (2014) for sequence annotation

generating features from words of varying lengths typically demands more complex data

frameworks, making it substantially more computationally intensive [18]. Moreover, a crucial

9

aspect to understand about the K-mer approach is that its filters, which correspond to the adjustable

weights within the network, are pre-defined and manual rather than learned which can be

problematic [5].

1.4 Machine Learning

The advent of Big Data has been instrumental in the evolution of Machine Learning (ML), a

subfield of Artificial Intelligence (AI). Machine learning focuses on creating and refining

mathematical algorithms that are capable of enhancing their performance autonomously through

experience and task modelling. This subfield has significantly transformed the methodologies

employed by biologists in modelling and analysis.

 Machine learning is a subfield of computer science that employs a series of statistical and

mathematical rules and assumptions to enable machines (such as computers), to learn from data

and make decisions or predictions based on that data [4]. A machine learning model can essentially

be viewed as a function that approximates mathematical relationships. It is designed to learn the

connection between input data (x) and output data (y), especially in cases where the precise

relationship is not initially clear. For instance, in the field of bioinformatics, a machine-learning

model might analyze numerous instances of peptide sequences (inputs) along with their

corresponding retention times (outputs). By doing so, the model is trained to predict the retention

times for other peptides that have not yet been measured. The key advantage of machine learning

lies in its ability to leverage existing data to learn a relationship between various features of the

data. Once a model is developed, it can predict future outputs based solely on input data, thereby

reducing the need and expense of additional measurements [29]. The choice of machine learning

algorithm largely depends on the nature of the input data (i.e., features) and the type of output (i.e.,

10

discrete, or continuous labels). Transforming the input data through data processing feature

engineering, which involves applying a series of mathematical functions, is a crucial step in this

process. The machine learning model efficiency is related to the quality of its input data, as this

data is essential for optimizing the model's parameters. Additionally, the method by which the input

data is processed and transformed via feature engineering can significantly influence the overall

performance of the model [4].

1.4.1 General Workflow of a Machine Learning Model

Now we discuss the general workflow when developing a machine learning model. After a machine

learning model is developed, it enters a process called training. This involves using a set of

mathematical functions to optimize the model's parameters. Throughout this iterative process, the

parameters are repeatedly estimated and evaluated on how accurately the model's predictions align

with the expected output. Then a predefined loss function (Equation 1) measures the errors of these

predictions, and adjustments are made to the parameters to minimize this loss function.

ℒ(θ) =
1

𝑁
∑ ℓ(𝑦𝑖

𝑁
𝑖=1 , 𝑓𝜃(𝑥𝑖)) (1)

In Equation 1, ℒ(𝜃) represents the loss function dependent on the parameters θ, N is the number

of examples, ℓ is a loss measure (e.g., squared error for regression or cross-entropy for

classification), 𝑦𝑖 are the true values, and 𝑓𝜃(𝑥𝑖) are the model's predictions.

This process continues until no further reduction in loss is possible, signifying that the model's

performance has peaked. The model's predictions are then validated using a separate holdout

dataset, confirming the model's effective training. This typically involves training the model on a

11

designated dataset (the training dataset) and then assessing its performance on entirely separate

datasets (known as test and validation datasets).

When a machine learning model shows high accuracy on the training dataset but underperforms on

the validation or testing sets, this is indicative of overfitting the training data [4]. This situation may

occur when a model's parameters are overly trained, losing their generalizability for the overall task,

or when the model is excessively complex (with too many trainable parameters) [4].

1.4.2 Support Vector Machines (SVM)

Support Vector Machines (SVM) is a common machine learning model that can be utilized for

analyzing bioinformatics data. SVM utilizes one or more hyperplanes in a multi-dimensional space

for predictions. The design of each hyperplane aims to maximize its distance from any individual

data point during the training process. SVM relies on a kernel function that elevates the original

data to a higher-dimensional space. Then, the model learns the hyperplane's shape by adjusting

weights. The resulting hyperplane, when translated back to the original data space, provides a

nonlinear decision boundary [4].

Lee et al. [13] used SVM for the protein family classification task, resulting in an 87.9% F1

performance metric evaluation. In another work by Yuvaraj et al. [30], the SVM model was utilized

for tumour classification using gene expression data. Additionally, SVMs have been prominently

utilized in various domains of omic research, particularly in identifying biomarkers. Moreover,

these models have played a significant role in predicting protein thermostability and localization

[4]. Shen et al. [6] developed a notable SVM-based method for protein sequence analysis. In their

study, they categorized the 20 amino acids into seven groups based on the dipoles and volumes of

their side chains. Shen et al.'s approach, aimed at predicting human protein-protein interactions

12

(PPIs) achieved a high prediction accuracy of 83.9 percent. Building on this, Guo et al. [31]

introduced a technique that combines to extract interaction data from discontinuous amino acid

segments in the sequences. Their method further enhanced the prediction accuracy, reaching 86.55

percent, when predicting PPIs in the Saccharomyces cerevisiae species.

With SVMs, users need to select a particular optimization or regularization parameter, which

influences the geometry of the hyperplane. Besides, discovering the most optimal kernel function

can be a time-consuming process [4] [32].

1.5 Deep Learning Models for Protein Family Classification

Deep learning techniques are now available for virtually every stage of proteomics research, which

enhances capabilities in feature selection, identifying peptides, and protein structure inference [29].

In the past few years, there has been a rapid increase in research focused on applying deep learning

to the field of omics. Despite deep learning offering innovative ways to analyze omics data, the

methods employed in computational biology generally lag behind the more advanced techniques

found in fields like computer vision and natural language processing [4].

1.5.1 General Workflow of a Neural Network Model

Essentially, a basic artificial neural network is composed of three layers: an input layer, one hidden

layer, and a final output layer (Fig 2). Expanding upon this structure, deep neural networks (DNNs)

feature multiple hidden layers positioned between the input and output layers. Equation (2) is a

vector of input variables for a neural network (NN), its included p elements and the network will

build a nonlinear function 𝑓(𝑋) (Equation 3), that is prediction of the response Y for this vector.

In neural network terminology, the features 𝑋1 to 𝑋𝑝 represent the units in the input layer. Fig 3

shows a basic feed-forward or forward-pass neural network designed for modelling a quantitative

13

response. The arrows signify that every input from the input layer feeds into each of the units in

the hidden layer.

Fig 3: A neural network designed with one hidden layer functions by calculating activations 𝐴𝑘 = ℎ𝑘(𝑋). These

activations are nonlinear transformations of the inputs 𝑋1, 𝑋2, …, 𝑋𝑝 here 𝑝 = 4, created through linear combinations.

Notably, these 𝐴𝑘 activations are internal to the network and not directly observable. These ℎ𝑘(.) functions to define

these transformations that are not predetermined but rather learned during the network's training process. The final

output of the network is generated by a linear model in the output layer, which takes these activations 𝐴𝑘 as its inputs

to form the overall output function 𝑓(𝑋) [33].

 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝) (2)

 𝑓(𝑋) = 𝛽0 + ∑ 𝛽𝑘
𝐾
𝑘=1 𝐴𝑘 (3)

 𝐴𝑘 = ℎ𝑘(𝑋) = 𝑔(𝑧) = 𝑔(𝑤𝑘0 + ∑ 𝛽𝑘
𝑝
𝑗=1 𝑤𝑘𝑗𝑋𝑗) (4)

The function 𝑓(𝑋) is constructed through a two-step process. Initially, the K activations 𝐴𝑘 ,

Equation (3), where k ranges from 1 to K, are determined in the hidden layer. These activations are

the results of applying functions to the input features 𝑋1, 𝑋2, …, 𝑋𝑝 utilizing a predetermined

14

nonlinear activation function 𝑔(𝑧). Each 𝐴𝑘 (Equation 4) can be viewed as a unique transformation

ℎ𝑘(𝑋) of the inputs. To complete this process, all the parameters 𝛽0, …, 𝛽𝐾 and 𝑤𝑘0, …, 𝑤𝐾𝑝 must

be estimated from the data. This estimation is typically done in the early stages of training of the

neural network.

In earlier neural network models, the sigmoid activation function was commonly used (Equation

5). This is the same as that used in logistic regression, transforming a linear function into

probabilities ranging between zero and one.

𝑔(𝑧) =
1

1+𝑒−𝑧 (5)

However, in modern neural networks, the ReLU (Rectified Linear Unit) is also used as an

activation function (Equation 6).

 𝑔(𝑧) = max(0, 𝑧) (6)

Similar to their more basic counterparts, DNNs are trained through a process of continuous

adjustment of the model's internal parameters to minimize the overall error in predictions

(Equation 7) [33].

 𝑅(𝜃) =
1

2
∑ (𝑦𝑖 − 𝑓𝜃(𝑥𝑖))

2𝑛
𝑖=1 (7)

The principal technique used for this purpose is back-propagation, initially put forward by Werbos

et al. [34] The gradient of the function 𝑅(𝜃), when assessed at a current value 𝜃 = 𝜃𝑚, is

represented by the vector composed of its partial derivatives at that specific point (Equation 8).

 𝛻𝑅(𝜃𝑚) =
𝜕𝑅(𝜃)

𝜕𝜃
| θ=θm

 (8)

15

Since the function, 𝑅(𝜃) is defined as a sum, (Equation 9), where it is the sum of 𝑅𝑖(𝜃) over 𝑛

observations, its gradient is also the sum over these 𝑛 observations. Therefore, we will focus on

examining one of these terms (Equation 10).

𝑅(θ) = ∑ 𝑅𝑖(θ)

𝑛

𝑖=1

=
1

2
∑(𝑦𝑖 − 𝑓θ(𝑥𝑖))

2
𝑛

𝑖=1

 (9)

𝑅𝑖(θ) =
1

2
(𝑦𝑖 − β0 − ∑ β𝑘𝑔 (𝑤𝑘0 + ∑ 𝑤𝑘𝑗

𝑃

𝑗=1

𝑥𝑖𝑗)

𝐾

𝑘=1

)

2

 (10)

 𝑧𝑖𝑘 = 𝑤𝑘0 + ∑ 𝑤𝑘𝑗

𝑃

𝑗=1

𝑥𝑖𝑗 (11)

∂𝑅𝑖(θ)

∂β𝑘
=

∂𝑅𝑖(θ)

∂𝑓(𝑥𝑖)
⋅

∂𝑓(𝑥𝑖)

∂β𝑘
= −(𝑦𝑖 − 𝑓(𝑥𝑖)) ⋅ g(zik) (12)

∂𝑅𝑖(θ)

∂𝑢𝑘𝑗
=

∂𝑅𝑖(θ)

∂𝑓(𝑥𝑖)
⋅

∂𝑓(𝑥𝑖)

∂𝑔(𝑧𝑖𝑘)
⋅

∂𝑔(𝑧𝑖𝑘)

∂𝑧𝑖𝑘
⋅

∂𝑧𝑖𝑘

∂𝑢𝑘𝑗
= −(𝑦𝑖 − 𝑓(𝑥𝑖)) ⋅ β𝑘 ⋅ 𝑔′(𝑧𝑖𝑘) ⋅ 𝑥𝑖𝑗 (13)

We use Equation 11 to simplify the expressions. First, we take the derivative with respect to

(Equation 12) and with respect to (Equation 13). Both formulas of Equation 12 and Equation 13

incorporate the residual term 𝑦𝑖 − 𝑓𝜃(𝑥𝑖). Equation 12 demonstrates how a portion of this residual

is allocated among the hidden units, which is proportional to the function 𝑔′(𝒛𝒌). Following this,

Equation 13 illustrates a comparable allocation process where the residual's portion is distributed

to the input 𝑗 mediated by hidden unit 𝑘. This differentiation process effectively apportions parts

of the residual to each parameter, a mechanism facilitated by the chain rule. This method is

commonly referred to as backpropagation, a fundamental concept in the domain of neural

networks. This technique was pivotal in the development of neural networks containing several

layers.

16

It operates by relaying an error signal backward through the network's layers. During this

backpropagation, the model's parameters are systematically adjusted to minimize the overall error

throughout each layer of the network [31]. During the forward pass, each layer's output is

calculated, and the activation signals are carried onward across the network with every training

iteration. To measure the error between what the network predicts and what is expected (the labels),

a loss function is employed. During training, the error signals are backpropagated through the

network via the chain rule, which computes the gradients to all the weights in each layer [32]. This

process is completed several times during training until the error between the network's prediction

and the expected output reaches an acceptable minimum level. An optimization algorithm based

on a form of stochastic gradient descent (SGD) [33] is typically used to update the weight

parameters in the network. Often, such adjustments involve a type of mini-batch gradient descent

where an optimizer based on SGD gradually fine-tunes the model's parameters. This fine-tuning is

accomplished by stochastic approximation. In recent times, a range of sophisticated learning

optimization algorithms has emerged, advancing the training efficacy of neural networks, notable

examples include Adagrad [34] and Adam [35].

When creating a deep learning model, it's crucial to employ regularization techniques to avoid

overfitting the training data. One common regularization strategy is to apply weight decay during

the training process [36]. This method imposes a penalty on the loss function if the weights in the

network are too large. Additionally, dropout [37] is a widely used regularization technique, which

involves randomly omitting a number of hidden units in each applicable layer throughout the

training, to enhance the model's ability to generalize to new data (Fig 4).

17

Fig 4: A network utilizing dropout technique, both the input and hidden layers have certain nodes marked

in grey. These grey nodes are randomly chosen and are excluded during a specific training iteration [33].

The idea is to randomly remove a percentage (φ) of the neurons in a layer during the training phase.

The remaining active neurons compensate for those that are inactive by adjusting their weights,

which are scaled up by a factor of 1/ (1 − φ). This process ensures that neurons do not become

overly dependent on specific patterns, promoting a form of regularization. Practically, dropout is

executed by setting the activations of the deactivated neurons to zero, while the overall structure

of the network remains unchanged. This technique helps in preventing overfitting and enhances

the generalization capability of the model [33].

Batch normalization [38] stands out as another significant regularization technique. It standardizes

the input features for each activation in a mini-batch by adjusting and scaling based on the batch's

mean and variance.

The upcoming sections will delve into how deep learning is applied to the fields of proteomics,

expanding an in-depth exploration of the most common models for protein family classification.

18

1.5.2 Convolutional Neural Network (CNN)

Deep learning models have been applied for complex problems such as Natural Language

Processing (NLP) with state-of-the-art performance [35] [36]. This progress in solving NLP

problems makes it possible to apply neural network architecture to bioinformatics problems [6]

[37] [36] [38] [39]. Among all deep learning models, one-dimensional Convolutional Neural

Network, (1D)-CNN is one of the most common models, which reached remarkable results for

sequence classification problems [6]. CNN, which was first introduced by LeCun and team [40],

stands as one of the most common deep learning architectures. This versatile framework has been

effectively employed in various research fields, notably achieving impressive results in computer

vision and language-related tasks. A standard CNN consists of successive layers of convolution

and pooling that work to refine the input data. Each layer is crafted to improve the input by

extracting and transforming essential features from a prespecified segment (called window) of the

data. Each convolutional layer analyzes the complete input, whether it is in the form of one-hot or

embedding encodings, by focusing on smaller segments (such as windows) and applying specific

filters, including kernel weight and bias [4]. The outcome from this layer is a weighted sum of

these filtered features, yielding a condensed representation of each window. Often, a convolutional

layer is paired with a subsequent pooling layer that further summarizes the input. The purpose of

the pooling layer is to preserve the most important features identified by the convolutional layer

while discarding any extraneous ones, thereby helping to avoid overfitting. The two prevalent types

of pooling include max-pooling, which picks out the feature with maximum values within a defined

window of the input, and mean-pooling, which computes the mean value of the features within the

same section [4]. Using a fully connected CNN model in which every input is connected to every

19

output by a learnable weight incorporating max pooling. Lee et al. achieved an F1 score of 89.7%

in protein family classification with the UniProt dataset [13].

A CNN-based deep learning framework is versatile enough to address diverse applications. These

models excel in detecting patterns that are invariant to spatial transformations directly from raw

data, e.g., images or text, thus reducing the need for pre-processing and feature engineering.

However, their effectiveness is limited when it comes to capturing long-range dependencies within

sequences. Success with CNNs often hinges on access to extensive datasets that enable the model

to train effectively and generalize findings. The following section will delve into two other

prevalent deep learning approaches used for protein family classification [4].

1.5.3 Bidirectional Long Short-Term Memory

Within the field of deep learning, Recurrent Neural Networks (RNNs) and their improved versions,

Long Short-Term Memory (LSTM) Hochreiter and Schmid Huber, 1997 [41] and Bidirectional

LSTM networks, are models that are well-suited to sequence data [4] [29] [42]. In this section, we

will discuss these models and review the results of related work in protein family classification.

RNNs have gained prominence for their ability to process sequential data. RNNs, originally

developed by Williams and others [43], have been utilized across multiple domains like natural

language processing and computer vision. Unlike CNNs, RNNs consist of a memory component

in their structure, enabling the past pattern in the sequence. Like other Deep Neural Networks

(DNNs), an RNN includes multiple hidden layers. These layers serve as the network's memory,

holding onto data about past sequences, which is continually updated and applied with each new

step in the sequence. Each layer's function is to process and modify the incoming data concerning

the preceding sequence element. Throughout its training phase, the output at each layer is

20

influenced by the immediate input and previous state on the network [4]. RNNs have garnered

impressive results in tasks like language modelling, machine translation, and speech recognition

due to their ability to precisely assess sequence log-likelihoods and their differentiability

concerning these log-likelihoods, but initially, training RNNs posed challenges because of the

vanishing gradient issue [44]. However, the development of LSTM networks and gated recurrent

unit (GRU) architectures has overcome these obstacles, paving the way for the success of RNNs

in various applications. Nevertheless, advances like long short-term memory, LSTM, and gated

recurrent unit, GRU [4] designs have resolved these issues [4] [45]. These adaptations of the RNN

architecture have made them more resistant to issues like the exploding gradient when training. In

an LSTM network, the hidden layers consist of memory blocks that house one or more LSTM units

[46]. The use of a bidirectional structure as an advance of LSTM enables the network to process

and capture information in both forward and reverse directions within protein sequences. Hanson

et al applied a bidirectional LSTM recurrent neural network to solve the problem of protein

disorder prediction [46]. In another work, Zolg et al [47]. made significant progress in predicting

the intensity of peptide fragments by training a bidirectional LSTM on fragmentation spectra from

proteome Tools. However, this approach was confined to peptides that were no longer than 20

amino acids [47].

1.5.4 Gated Recurrent Unit Network

Gated Recurrent Unit (GRU) networks enhance the traditional recurrent neural network, RNN [48]

architecture by addressing their shortcomings in maintaining information across varied time spans

and mitigating the vanishing gradient problem that arises with long sequences. GRUs incorporate

two specific mechanisms known as the update gate and the reset gate. With each new input, the

21

model calculates fresh memory content. The reset gate's role in this process is to regulate the extent

to which the previous hidden state contributes to this calculation before applying the nonlinear

activation function. Subsequently, the update gate determines the degree to which the new hidden

state should combine the new memory content with the previous hidden state. This dual-gating

system enables the GRU to effectively manage both short-term and long-term dependencies within

the data [13]. In a study by Guiyang et al., a BiGRU model was implemented to predict

phosphorylation sites during SARS-CoV-2 infection. The model regarded amino acids in protein

sequences as analogous to words in natural language, aiming to extract the characteristics present

within the sequences of proteins. The BiGRU-based model achieved accuracies of 83.9% and

83.37% for identifying phosphorylated S/T and Y sites, respectively. Lee et al. [13] applied a GRU

model for a protein family classification problem with F1 as a metric performance equal to 94.8%.

1.6 Few Shot Learning strategies

One common issue in medical research is the imbalance of data and the overall insufficiency of it.

This becomes particularly problematic in classification problems where, although there may be

ample examples for one class, there is a shortage of appropriately labelled examples for other

classes. In deep learning, access to a vast amount of data is essential for enhancing model

performance. However, acquiring such extensive datasets is often not feasible due to practical

limitations. For instance, the process of labelling data can be both costly and time-consuming [22]

[49]. Recently, Few Shot Learning (FSL), a type of meta-learning, has been introduced [50]. This

approach seeks to learn from just a few examples. Few-shot learning strategies are predominantly

utilized in the field of computer vision. The model that is used with a few-shot learning strategy

can discern patterns in the available data. As implied by its name, few-shot learning involves using

22

a small set of observations for each class, contrary to the standard practice of deep learning datasets

that is accurate based on inputting large datasets into a learning model [13], [32]. A prime example

of FSL can be seen in character generation tasks [51], where computer programs are tasked with

parsing and generating new handwritten characters from a limited set of examples. To accomplish

this, the method involves decomposing the characters into smaller, transferable elements, which

the second step is aggregating to form new characters [51]. Another classic FSL application arises

in situations where obtaining examples with supervised information is challenging or impossible

due to privacy, safety, or ethical concerns. Drug discovery is an illustrative case: it aims to explore

the properties of new molecules for potential drug identification. However, due to issues like

potential toxicity, low efficacy, or poor solubility, these new molecules often lack extensive real-

world biological data on clinical candidates. Therefore, learning efficiently from small examples

becomes crucial in such research areas [52].

Current FSL challenges are predominantly focused on supervised learning. Specifically, few-shot

classification involves training classifiers with only a limited number of labelled examples per

class. This approach has applications in various areas, such as image classification [53], sentiment

classification for short text [53], and object recognition [24]. Typically, the method employs the N-

way-K-shot classification strategy [54] where the training dataset comprises KN examples,

distributed across N classes with K examples each. Transfer learning approaches are frequently

utilized in FSL [55] [56], allowing the transfer of previously acquired knowledge from a source

task to a few-shot task. In this process, transfer learning [57] insights from a source domain or task,

for which training data is large and rich, to a target domain or task that faces a shortage of training

data [57]. In FSL, when each class is represented by only one example with supervised information,

FSL is termed one-shot learning. Conversely, if the classes lack any examples with supervised

23

information for the target, FSL is called zero-shot learning (ZSL). Since ZSL's target class doesn’t

have examples with supervised information, it relies on examples containing data from different

modalities, such as attributes to facilitate the transfer of some level of supervised knowledge,

enabling the learning process [57].

Few-shot learning represents a relatively new area of study within NLP, which has seen a growing

interest recently. Unlike the field of computer vision, where standardized benchmarks for few-shot

learning are well-established, the NLP domain still lacks such universally accepted benchmarks

and various studies in this area often showcase their performance results on large-scale datasets

[50].

1.7 Transfer learning

One common application of transfer learning [50] involves initially training a model on a specific

task within one domain, and then adapting it to another task or domain. This approach leverages

the extensive data available from the initial task or domain to create models capable of generating

well in a target task or domain, which might have limited data availability. For example, a classifier

might be developed from a model that has already learned to extract data representation such as

features or from a model trained in a different but related domain [50]. The effectiveness of pre-

training (transfer learning) is evident in computer vision [4], where fine-tuning, pre-trained deep

neural networks for specific purposes has become standard practice within this field [4]. One

example is once, the network is trained to map images into a feature space and then compares or

matches these images using metrics like Euclidean or cosine distance. Siamese networks are a

prime example of this approach. The initial application of deep metric learning in computer vision

involved a Siamese network [58], tailored for signature verification. This network was designed to

24

learn a feature set that assessed the similarity between two signature inputs. Due to the significant

similarities between techniques in NLP and computational biology, methods from one field are

often applicable to the other [4]. BERT, Bidirectional Encoder Representations from Transformers

[17], is known as a standard transformer developed for natural language processing. The

architecture of BERT centers around a multi-layered bidirectional Transformer encoder. Its novel

approach involves masked language modelling over its pre-training, where certain words or tokens

in the input are randomly obscured. The model then learns to predict these hidden tokens, a process

fundamental to its training. The entirety of BERT's structure depends on a self-attention

mechanism, also known as intra-attention, Fig 5 [59]. This mechanism (Equation 15) connects

different parts of a single sequence to form a comprehensive representation [17].

Fig 5. Stack of Encoder, Multiheaded Attention Mechanism and Scaled Dot Produced Attention

Attention(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (15)

25

In transformer models, q, k, and v represent queries, keys, and values, respectively. These are

vectors that are derived from the input tokens, words from a sentence. The tokens are first

converted into vectors x1, x2, …, xT, where T represents the total number of tokens in the input

sequence. Each input vector xi is then transformed into three different vectors: a query vector 𝑞𝑖 a

key vector 𝑘𝑖, and a value vector 𝑣𝑖. This transformation is performed using three different weight

matrices that are learned during the training process of the transformer.

Self-attention has been useful in enhancing performance across various tasks, such as reading

comprehension, abstractive summarization, and generating sentence representations independent

of the task. Through its attention mechanism, BERT effectively concentrates on diverse segments

of the input sequence during predictions, thereby it learns the context and interrelations within the

sequence. This capability enables BERT to deeply understand both context and relationships in

text sequences. The embeddings for each token in the sequence are derived from the output of

BERT's final layer [60].

1.7.1 ProtBert

Recently, transfer learning techniques from NLP have significantly influenced protein

bioinformatics [19] [20] [61]. These approaches, trained on extensive protein sequence databases,

effectively learn informative features of these sequences of proteins. For example, Elnaggar et al.

[20] utilized about 2.1 billion protein sequences to pre-train ProtTrans, a collection of transformer

models derived from NLP. These methods enable the transforming of protein sequences into vector

forms, which can be effectively used in a variety of applications, such as protein family

classification. The use of existing pre-trained transformer models offers several advantages. It

eliminates the need for manually creating complex features to represent protein sequences, leading

26

to more streamlined development of new neural network models. This approach also tends to

enhance the predictive accuracy of these models [19].

1.8 Conclusion

In this chapter, we have discussed the benefits and challenges of implementing deep learning in

protein domain research. We highlighted the potential of machine learning to advance

computational biology while acknowledging the limitations of basic machine learning models in

this field. Further on, we discussed how deep learning surpasses the limitations of traditional

methods. Despite these advancements, there remain significant challenges in applying deep

learning effectively in this area. We examined previous instances where deep learning was applied

to specific challenges in this field, noting their promising nature. However, we concluded by

identifying critical issues that need resolution for computational biologists to utilize. A primary

concern is a need for large, labelled datasets for training of deep learning models. Hence, the

amount of accessible data is a major challenge for deep learning methods in protein research,

especially for protein classification tasks. Deep learning models need more data compared to

traditional machine learning models to achieve optimal task-specific performance. Shortage of

sufficient data for the training step of a deep learning model often results in overfitting to the

training set, which in turn compromises its ability to generalize effectively. While next-generation

sequencing methods are producing vast volumes of unlabeled omic data, the scarcity of adequately

labelled data remains an issue. Additionally, if the available labels are not evenly distributed among

different classes, there's a risk that the model will be overfit to the more prevalent class, further

complicating the training process. A related issue arises when there is an imbalance in the labels;

27

the model may tend to overfit the class that is more heavily represented. This skew in label

distribution can lead to a bias in the model's performance, favouring the majority class [4]. Quality

of data is another challenge. Proteomics data, primarily derived from experimental sources, can be

complex, noisy, heterogeneous and often incomplete, with only a portion of observations having

valid labels. Besides these challenges, deep learning models require many parameters that need

significant time and financial resources for optimization. The varied lengths of biological

sequences often necessitate extensive padding, further slowing down the training process.

Additionally, testing various model architectures to find the optimal one is both time-intensive and

expensive, as each model's hyperparameters need to be precisely adjusted for the specific task [5].

Continuously analyzing and examining all omic data, without human involvement, remains a

persistent challenge. In traditional machine learning approaches, feature engineering is typically a

common step in data processing to address this issue. However, in recent times, machine learning

professionals have started using advanced algorithms from the deep learning (DL) subfield. These

algorithms reduce the necessity for extensive feature engineering but still require the specialized

domain knowledge of experts [5]. Consequently, classifying a new protein sequence still relies

heavily on feature engineering, utilizing prior knowledge and the expertise of professionals for

accurate annotation [13]. The most successful applications of DL in omic research to date have

been through supervised learning. Before starting the explanation of our promising model, which

aims to address the challenges existing in the application of deep learning for proteomics data, and

specifically for protein family classification, it is important to mention that this chapter also

reviews two strategies for deep learning models: few-shot learning and transformer learning. We

discussed how these approaches mitigate the need for large-scale datasets and explored the use of

28

transfer learning for non-manual feature selection. In the next chapter, we will delve into how these

techniques have been utilized to achieve high accuracy in our findings. These results will assist

omic data researchers in their investigations to produce groundbreaking results, not just in protein

family classification tasks but in broader research problems as well.

29

Chapter 2: Deep Few-Shot Network for Protein Family Classification

2.1 Deep Few-Shot Network for Protein Family Classification

This chapter outlines the methodology employed in the experiments. We discussed the DL

algorithms promising results in proteomics; however, their application is limited to the availability

of massive data sets for training. Since the required data comes from experiments, it can be highly

complex or incomplete [62]. As an alternative to address the mentioned limitations, techniques

adopted from computer vision such as meta-learning can be generalized from a few observations.

To rank the similarity between inputs, these networks employ a unique ranking structure, not

requiring extensive training. In this research, we implemented a few-shot deep Siamese neural

network for protein family classification. Our advanced few-shot Siamese neural network

integrates twin pre-trained transformer ProtBERT [20] models. Siamese networks, a type of metric-

based meta-learning model, excel in adapting to new tasks with a few examples as training data

aka shot. This network consists of two identical sub-networks. These twin sub-networks with

identical configurations, parameters, and weights and include an embedding extractor. The input

of the network is a pair of samples, and each sub-network processes its input. Then their outputs

are merged to evaluate the similarity between the inputs [63]. In our network, each pair of protein

sequences is processed through ProtBERT to generate sequence embeddings. ProtBERT, offered

by Elnaggar et al. (2021), has been pre-trained on an extensive dataset of 2.1 billion protein

sequences [19]. It's built upon the principles of the BERT model. The embeddings produced by

ProtBERT are passed through fully connected layers in our network, leading to the final

classification results.

30

2.2 Data

We use the UniProtKB/Swiss-Prot dataset [64]. First, we retrieved reviewed protein sequences

resulting from human protein in 20,426 (as of October 2023) with various lengths. Despite other

sequence classification networks, we do not filter out the records according to the length of

sequences, making sure the model is insensitive to the length of the sequence.

2.2.1 Data Preparation

Our dataset consists of labelled protein primary sequences from the UniProt database [64]. A total

of 20,426 protein sequences, distributed across 5098 different families. We selected sequences with

family names that resulted in 14,431 sequences being selected for training, validation, and testing.

The data was then allocated into training, validation, and test subsets, with respective distributions

of 70%, 10%, and 20%. Throughout this division, care was taken to maintain a consistent ratio of

different classes in each subset (Table 1).

Total # of sequences.

20426

Total # of sequences with Family Name

14431

Total # of Families

5098

Total # of families with at least > 25 examples (Shot)

33

 Table 1: Data distribution

31

We defined the problem of protein family classification as an N-way-K-shot classification [49]

problem, where 'K' represents the count of training examples of protein sequences for each family,

and 'N' denotes the total categories in our problem protein families or classes involved. The

objective of N-shot learning is to accurately classify new data using these limited training samples.

Modern deep learning methods need to efficiently utilize both large and small datasets. These

techniques are pivotal in uncovering new understanding and expanding our comprehension of

diseases, enhancing diagnostic accuracy, and crafting tailored treatment strategies [4].

2.3 Methodology

2.3.1 Architecture of Deep Few-Shot Network for Protein Family Classification

We utilized a deep few-shot Siamese neural network architecture applying a transformer to learn,

latent features of protein family classification based on the primary sequences of protein pairs (Fig

6). These components will be explained in detail in the following sub-sections.

Fig 6: The high-level architecture design of Deep Few-Shot Network for Protein Family Classification

32

2.3.1.1 ProtBERT

In model architecture, we employed ProtBERT as the embedding extractor. ProtBERT [20], trained

on roughly 2 billion protein sequences, employing a masked language modelling approach [17].

In the context of our research, ProtBERT interprets protein sequences as sentences, with amino

acids functioning as the 'words' or fundamental elements. Specifically, we used the BFD variant of

ProtBERT [19], which includes 30 layers, 16 attention heads, and 1,024 hidden layers. The model

was trained over approximately 23.5 days using the Lamb optimizer [65] across 128 compute

nodes, each equipped with 1,024 tensor processing units. Throughout its training, ProtBERT has

learned to identify the biophysical properties of proteins as features, drawing on the billions of

protein sequences it was exposed to during its training phase [19].

2.3.1.2 Siamese neural network

A deep Siamese neural network is utilized to analyze protein pairs. Our Siamese network contains

two identical pre-trained ProtBERT models as embedding extractors, both sharing the same

weights. The input consists of pairs of proteins, and the model learns the similarity between them

over the training phase. Initially, we built an N-way K-shot few shot data sets and built the

sequences of each protein pair. These sequences were then processed through our Siamese network

model, as depicted in Figure 6. Within this framework, we utilized the twin pre-trained ProtBERT

model to generate embeddings for each protein sequence. There are various methods to interpret

the relationship between these sequence embeddings. While some researchers prefer to concatenate

these embeddings, others focus on element-wise multiplication, commonly known as the

Hadamard product. In our methodology, we utilized an integration layer that employs the

33

Hadamard product for combining the sequence embeddings. This technique has often been

identified as particularly effective in representing the symmetric characteristics of the primary

sequence of proteins [66] [19]. We utilized this deep Siamese model since protein data contains

some classes or protein families with limited examples. Besides, the number of classes is very

large. Previous works have shown the Siamese model's outperformance compared to other deep

learning models, particularly for data where the number of classes is not known at the time of

training, when the number of classes is very large, and when the number of examples per class is

very small [67].

2.3.1.4 Classification Head

We integrated a classification head above the integration layer, consisting of fully connected layers.

This classification head is structured in a bottleneck form, incorporating a mix of dropout and

linear layers, and culminates in an output layer that employs a logistic function, sigmoid function

(Equation 14).

𝑆(𝑥) =
1

1+𝑒−𝑥 (14)

The sigmoid function stands as a frequently utilized activation function in deep/machine learning.

It is mathematically expressed as a function where the input x is a linear blend of weights and

feature values from the preceding layer. As x becomes smaller, the sigmoid function's output nears

0, whereas, with larger x values, it approaches 1. This function serves to map continuous real

numbers into a bounded interval of (0,1). Such transformation ensures that the inputs to the

subsequent layer are confined within a predictable range, thereby contributing to greater stability

34

in the network's weights. This setup enables the ranking of protein pairs, categorizing them as

either the same family class, genuine or a different family class imposite. The bottleneck design is

significant because it gradually reduces the number of neurons in each layer, enabling the network

to concentrate on relative information while discarding what is redundant or irrelevant [19].

Loss Function

The goal of our designed Siamese-based Protein family classification network is to learn a model

that can detect whether the paired proteins that are the input of the Siamese model are similar or

not and detect the family classification of unknown proteins. The classifier is trained to distinguish

between genuine instances; where protein sequences are paired from similar family classes, and

imposite instances, where protein sequences are paired with different ones. Therefore, this task is

often considered a binary classification problem [19].

Binary cross entropy is a loss function used for binary classification tasks involving two classes.

In the proposed model, the predicted labels are 0 and 1, like logistic regression. Therefore, using

the cross-entropy loss function is optimal, as it measures the disparity between the predicted and

actual labels. The formula for this function, where 'y' represents the label and 'p(y)' denotes the

predicted probability, is as

 follows:

Cross Entropy Cost Function = −
1

N
 ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))N

i=1 (15)

In binary cross-entropy, the task is to distinguish between two classes. In the provided equation,

'p' refers to the predicted probability of the occurrence of a certain class, while 'y' indicates the

actual output or label. This loss function effectively measures how well the model's probability

predictions align with the actual labels.

35

2.4 Training and Validation

For our N-way-K-shot classification [54] problem, where 'K' represents the count of training

examples, and protein sequences for each family, and 'N' denotes the total categories in our problem

protein families or classes involved, we trained the model using pairs of protein sequences derived

from training examples. In these pairs, sequences in one half were from the same class, while in

the other half, the paired sequences were from different protein family classes. The goal of Protein

family classification is to learn a model capable of identifying the similarity between pairs of

proteins and determining the family classification of proteins whose classification is unknown.

This task is commonly viewed as a binary classification problem [19] that utilized a classifier to

detect between genuine instances; where protein sequences pair with similar family classes, and

imposite instances, where protein sequences pair with different ones.

We chose protein families with at least 25 examples to accommodate various N-way, K-shot

learning scenarios (n ∈ {5,10, 20,25}). For instance, in a 5-shot learning setup, we selected five

samples from each family and then created pairs as described. By initially selecting families with

more than 25 examples and we have 33 families or classes. There our experiment was a 33-way,

K-shot learning scenarios (n ∈ {5,10, 20,25}).

We ensured the presence of the same families across all 4 datasets, facilitating a consistent

comparison of our architecture's performance. After splitting our dataset into a training set, we

created 4 different data setups for n, with n ranging from {5,10,20,25}. For each setup, we randomly

selected n sequences from each family within the training set. Within each new setup, these

sequences were used to form pairs as previously described. Half of these pairs were 'Genuine

36

pairs', consisting of two sequences from the same family class. The other half were 'Imposite pairs',

combining sequences from different family classes. The same approach was used for the

validation data set.

2.5 Model Performance Metrics (Evaluation)

For the performance evaluation of classifiers in a binary classification task, where outcomes are

labelled either genuine or positive (p) or imposite negative (n), a range of standard performance

metrics are employed.

The outcomes in binary classification are categorized into four types:

• TP: True Positive, when a positive class is correctly predicted,

• FP: False Positive, when a negative class is incorrectly predicted as positive,

• TP: True Negative, when a negative class is correctly predicted,

• FN: False Negative when a positive class is incorrectly predicted as negative.

For instance, if a prediction outcome is positive (p) and the true value is also positive (p), it is

classified as TP, but if the true value is negative (n), it falls under FP. Similarly, a prediction and

true value both being negative (𝑛) is classified as TN, while a positive true value (𝑝) predicted as

negative (𝑛) is an FN. Various metrics derived from these four outcomes, such as accuracy,

precision, recall, and F1 score, provide a comprehensive evaluation of machine learning classifiers.

2.5.1 Recall

Recall is an important model evaluation performance metric in machine/deep learning that

represents how well a model is at correctly identifying positive cases. Recall (Eq 16) is defined as

37

the ratio of True Positive (TP) predictions to the total number of actual positive examples [68]. In

essence, a higher Recall value is desirable as it implies fewer positive instances being incorrectly

predicted as negative, which is vital in applications, where failing to identify positive cases could

lead to serious repercussions such as in cancer detection models Powers

(2020).

True Positive (TP)

 Recall = (16)
True Positive (TP) + False Negative (FN)

2.5.2 Precision

Precision is defined as the number of true positive predictions divided by the total number of

positive predictions (which includes both true positives and false positives) (17). In simpler terms,

it measures the accuracy of the positive predictions made by the classifier [68] In the context of

predicting protein sequence family classes, a high precision value indicates that the classifier is

effective at correctly identifying members of a given protein family, with fewer instances of

incorrectly predicting a protein sequence as belonging to that family when it does not. This is

particularly important in biological and medical research, where accurate classification of protein

sequences can have significant implications for understanding biological processes and developing

treatments.

True Positive (TP)

 Precision = (17)

True Positive (TP) + False Positive (FP)

38

2.5.3 F1 Score

The F1 score, often referred to as the F-score or F-measure, is determined by computing the

weighted harmonic mean of precision and recall. This is exemplified in Equation (18), where the

F1 score is represented as the harmonic mean of these two metrics. The F1 score can vary from 0

to 1, indicating its range of possible values.

2.5.4 Accuracy

Accuracy is one metric for evaluating classification models. For binary classification, accuracy

can also be calculated in terms of positives and negatives as follows:

2.6 Testing Strategy

We tested our architecture with an N-way one-shot learning testing strategy [22] [50]. In this task,

within our separated testing data test, we created sets of protein sequence pairs, where each set

consisted of one protein sequence paired with N different sequences. Within each set, there was

one genuine and one imposite pair. To ensure a comprehensive and reliable evaluation, this process

was repeated for all family classes. Moreover, to enhance the reliability of the results, the testing

was done on 10 one-shot tasks, providing a robust and thorough assessment of the model's ability

to recognize and differentiate between various protein families.

39

Chapter 3: Results and Discussion

3.1 Results

 Our results, as shown in Table (2) for training setup and Table (3) for validation setup, indicate

that our proposed Deep Few-Shot Network for Protein Family Classification accurately detects

protein family classifications. Based on evaluation performance metrics, our experimental results

demonstrate a precision of 97.3% and an F1 score of 96.2% for only 25 shot (examples) for each

class. Our findings show superior performance compared to baseline models for protein family

classification, which typically utilize the entire dataset rather than a few shot, a small sample size

for training models, as is the nature of this biological dataset (Fig 7). As seen in Table (4) test setup

of our Deep few shot network can detect family class with a high F1 score 94.2%.

Training setup

Shot Size

F1

Precision

Recall

Training

Loss

5 Shot

40.5%

40.3%

55.0%

0.873

10 Shot

64.7%

63.8%

64.5%

0.336

20 Shot

82.8%

82.1%

83.6%

0.085

25 Shot

96.2%

97.3%

95.2%

0.071

Table 2: Training performance evaluation for n-shot (n-example) setup

40

Validation setup

Shot Size

F1

Precision

Recall

Training

Loss

5 Shot

38.5%

38.2%

39.8%

1.08

10 Shot

63.2%

60.9%

61.6%

0.434

20 Shot

79.6%

79.2%

80.1%

0.181

25 Shot

93.9%

94.2%

93.6%

0.079

Table 3: Validation performance evaluation for n-shot (n-example) setup

Test setup

Shot Size

F1

Precision

Recall

Cross Entropy

5 Shot

36.1%

42.1%

31.1%

0.876

10 Shot

59.6%

60.1%

59.2%

0.395

20 Shot

80.9%

79.5%

82.7%

0.198

25 Shot

94.2%

95%

93.5%

0.11

 Table 4: Testing setup performance evaluation for n-shot (n-example)

41

Fig 7: Training and validation accuracy for 33-way, 25-shot learning setting.

 We compared our deep Few-Shot Network for Protein Family Classification with 3 baseline

models. 1) CNN model, 2) SVM 3) BiGRU (Gated Recurrent Unit). We were primarily focused

on analyzing the changes in performance of baseline models with different numbers of shot sizes,

and whether the baseline models can perform well at those shot sizes. Our highly accurate offered

model ability for detecting family classes only having a few examples can be seen in Fig 6. Besides,

in the testing setup, shown in Table 4 our model resulted in 94.2% for the F1 metric with only 25

shot in the testing setup while Lee et al.[13] GRU model showed 94.8% for test F1 metric using

the entire UniProt dataset.

42

Fig 8: Performance of the Deep Few Shot model (ProtFewShot) and
three baseline models, i.e., CNN, GRU, SVM for n-shot learning

setting

3.2 Conclusion and Future Work

Although deep learning algorithms, which are mostly adopted from NLP, have shown breathtaking

performance in Proteomics data analysis, they largely depend on large-scale labelled datasets,

expert knowledge, and intervention for feature engineering. However, due to the nature of

biological data, access to such large datasets is not possible because of the complexity and

noisiness of the data. Specifically, in our research field data, there are family classes of proteins

that have few examples available. Considering these limitations, we presented a deep few-shot

learning architecture capable of detecting protein family classes with high accuracy, even when

43

only a few examples of each family are available. In our model, we used a pre-trained model,

ProtBert, that was a novel transformer for protein sequences and a fully connected model for our

classifier section and reached the high-accuracy performance. Although this pre-trained model

increased the accuracy of the model they extracted a large number of parameters that can be

officialized by solutions like distillation or sparse parameters that lead selection of a more

optimized number of parameters.

 For future work, we are working on the explainability of our deep learning architecture. It provides

insights into how the classifier makes its predictions by highlighting the features that the model

relies on. This explanatory framework aids in making the model more interpretable for end users.

44

References

[1] P. M. Sonsare and C. Gunavathi, “Investigation of machine learning techniques on proteomics: A

comprehensive survey,” Prog. Biophys. Mol. Biol., vol. 149, pp. 54–69, Dec. 2019, doi:

10.1016/j.pbiomolbio.2019.09.004.

[2] A. Wang, “Deep Learning Methods for Protein Family Classification on PDB Sequencing Data.”

arXiv, Jul. 14, 2022. Accessed: Nov. 21, 2023. Available: http://arxiv.org/abs/2207.06678

[3] A. Ghaemmaghami, A. Schiffauerova, and A. Ebadi, “Which Keyword Extraction Method Performs

Better for Emerging Technology Detection?,” in 2022 International Symposium on Multidisciplinary

Studies and Innovative Technologies (ISMSIT), Ankara, Turkey: IEEE, Oct. 2022, pp. 613–618. doi:

10.1109/ISMSIT56059.2022.9932656.

[4] Lennox,M. “Deep learning of proteomics data,” 2021. Student thesis: Doctoral Thesis › Doctor of

Philosophy, https://pure.qub.ac.uk/en/studentTheses/deep-learning-of-proteomics-data

[5] W. Zheng, L. Yang, R. J. Genco, J. Wactawski-Wende, M. Buck, and Y. Sun, “SENSE: Siamese

neural network for sequence embedding and alignment-free comparison,” Bioinformatics, vol. 35, no.

11, pp. 1820–1828, Jun. 2019, doi: 10.1093/bioinformatics/bty887.

[6] D. Zhang and M. R. Kabuka, “Protein Family Classification from Scratch: A CNN Based Deep

Learning Approach,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 18, no. 5, pp. 1996–2007,

2021, doi: 10.1109/TCBB.2020.2966633.

[7] S. Jamali, “An Explainable Deep Few-shot Network for Protein Family Classification,” Proc. Can.

Conf. Artif. Intell., Jun. 2023, doi: 10.21428/594757db.033df5af.

[8] J. Shen et al., “Predictingprotein–protein interactions based only on sequences information,” Proc.

Natl. Acad. Sci., vol. 104, no. 11, pp. 4337–4341, Mar. 2007, doi: 10.1073/pnas.0607879104. [9]

“https://www.sciencedirect.com/topics/medicine-and-dentistry/protein-structure.”

[10] C. E. Cook, M. T. Bergman, R. D. Finn, G. Cochrane, E. Birney, and R. Apweiler, “The European

Bioinformatics Institute in 2016: Data growth and integration,” Nucleic Acids Res., vol. 44, no. D1,

pp. D20–D26, Jan. 2016, doi: 10.1093/nar/gkv1352.

[11] M. Kim and I. Tagkopoulos, “Data integration and predictive modelling methods for multi-omics

datasets,” Mol. Omics, vol. 14, no. 1, pp. 8–25, 2018, doi: 10.1039/C7MO00051K.

[12] D. Grapov, J. Fahrmann, K. Wanichthanarak, and S. Khoomrung, “Rise of Deep Learning for

Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine,” Omics J. Integr.

Biol., vol. 22, no. 10, pp. 630–636, Oct. 2018, doi: 10.1089/omi.2018.0097.

[13] J. Lee et al., “BioBERT: a pre-trained biomedical language representation model for biomedical text

mining,” 2019, doi: 10.48550/ARXIV.1901.08746.

[14] “‘Semeval-2019 task 3: Emocontext contextual emotion detection in text,’ in Proceedings of the 13th

International Workshop on Semantic Evaluation, pp. 39–48”.

[15] V. Tshitoyan et al., “Unsupervised word embeddings capture latent knowledge from materials science

literature,” Nature, vol. 571, no. 7763, pp. 95–98, Jul. 2019, doi: 10.1038/s41586-019-1335-8.

[16] M. E. Peters et al., “Deep contextualized word representations,” 2018, doi:

10.48550/ARXIV.1802.05365.

45

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding,” 2018, doi: 10.48550/ARXIV.1810.04805.

[18] C.-A. Leimeister and B. Morgenstern, “kmacs: the k -mismatch average common substring approach

to alignment-free sequence comparison,” Bioinformatics, vol. 30, no. 14, pp. 2000–2008, Jul. 2014,

doi: 10.1093/bioinformatics/btu331.

[19] S. Madan, V. Demina, M. Stapf, O. Ernst, and H. Fröhlich, “Accurate prediction of virus-host protein-

protein interactions via a Siamese neural network using deep protein sequence embeddings,” Patterns

N. Y. N, vol. 3, no. 9, p. 100551, Sep. 2022, doi: 10.1016/j.patter.2022.100551.

[20] A. Elnaggar et al., “ProtTrans: Toward Understanding the Language of Life Through Self-Supervised

Learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 7112–7127, Oct. 2022, doi:

10.1109/TPAMI.2021.3095381.

[21] M. Heinzinger et al., “Modeling aspects of the language of life through transfer-learning protein

sequences,” BMC Bioinformatics, vol. 20, no. 1, p. 723, Dec. 2019, doi: 10.1186/s12859-019-3220-8

 [22] A. Ebadi, Azimi, H, Xi, P, Tremblay, S, and Wong, A, “COVID-Net FewSE: An Open-Source Deep

 Siamese Convolutional Network Model for Few-Shot Detection of COVID-19 Infection from X-Ray

 Images,”, Accessed on openjournals. waterloo: doi:10.15353/jcvis.v7i1.4891

[23] B. R. Szymczyna, R. E. Taurog, M. J. Young, J. C. Snyder, J. E. Johnson, and J. R. Williamson,

“Synergy of NMR, computation, and X-ray crystallography for structural biology,” Struct. Lond.

Engl. 1993, vol. 17, no. 4, pp. 499–507, Apr. 2009, doi: 10.1016/j.str.2009.03.001.

[24] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “Fully-Convolutional

Siamese Networks for Object Tracking,” 2016, doi: 10.48550/ARXIV.1606.09549.

[25] H. Öztürk, A. Özgür, and E. Ozkirimli, “DeepDTA: deep drug-target binding affinity prediction,”

Bioinforma. Oxf. Engl., vol. 34, no. 17, pp. i821–i829, Sep. 2018, doi:

10.1093/bioinformatics/bty593.

[26] Cancer Genome Atlas Research Network et al., “The Cancer Genome Atlas Pan-Cancer analysis

project,” Nat. Genet., vol. 45, no. 10, pp. 1113–1120, Oct. 2013, doi: 10.1038/ng.2764.

[27] P. D. Sandaruwan and C. T. Wannige, “An improved deep learning model for hierarchical

classification of protein families,” PLOS ONE, vol. 16, no. 10, p. e0258625, Oct. 2021, doi:

10.1371/journal.pone.0258625.

[28] S. Karlin, “Dinucleotide relative abundance extremes: a genomic signature,” Trends Genet. TIG, vol.

11, no. 7, pp. 283–290, Jul. 1995, doi: 10.1016/s0168-9525(00)89076-9.

[29] J. G. Meyer, “Deep learning neural network tools for proteomics,” Cell Rep. Methods, vol. 1, no. 2,

p. 100003, Jun. 2021, doi: 10.1016/j.crmeth.2021.100003.

[30] N. Yuvaraj and P. Vivekanandan, “An efficient SVM-based tumour classification with symmetry

Nonnegative Matrix Factorization using gene expression data,” in 2013 International Conference on

Information Communication and Embedded Systems (ICICES), Chennai: IEEE, Feb. 2013, pp. 761–

768. doi: 10.1109/ICICES.2013.6508193.

[31] Y. Guo, L. Yu, Z. Wen, and M. Li, “Using support vector machine combined with auto covariance to

predict protein–protein interactions from protein sequences,” Nucleic Acids Res., vol. 36, no. 9, pp.

3025–3030, May 2008, doi: 10.1093/nar/gkn159.

[32] C. Leslie, E. Eskin, and W. S. Noble, “‘The spectrum kernel: A string kernel for SVM protein

classification,’ in Biocomputing 2002, pp. 564–575, World Scientific, 2001.”.

[33] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with

Applications in R, 2nd ed. Springer International Publishing, 2021.

46

[34] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Proc. IEEE, vol. 78, no.

10, pp. 1550–1560, Oct. 1990, doi: 10.1109/5.58337.

[35] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed Representations of Words

and Phrases and their Compositionality,” 2013, doi: 10.48550/ARXIV.1310.4546.

[36] B. Alipanahi, A. Delong, M. Weirauch, and B. Frey, “Predicting the sequence specificities of DNA-

and RNA-binding proteins by deep learning,” Nat. Biotechnol., vol. 33, Jul. 2015, doi:

10.1038/nbt.3300.

[37] S. Seo, M. Oh, Y. Park, and S. Kim, “DeepFam: deep learning based alignment-free method for

protein family modelling and prediction,” Bioinformatics, vol. 34, no. 13, pp. i254–i262, Jul. 2018,

doi: 10.1093/bioinformatics/bty275.

[38] B. Szalkai and V. Grolmusz, “Near perfect protein multi-label classification with deep neural

networks,” Methods San Diego Calif, vol. 132, pp. 50–56, Jan. 2018, doi:

10.1016/j.ymeth.2017.06.034.

[39] D. Quang and X. Xie, “DanQ: a hybrid convolutional and recurrent deep neural network for

quantifying the function of DNA sequences,” Nucleic Acids Res., vol. 44, no. 11, pp. e107–e107, Jun.

2016, doi: 10.1093/nar/gkw226.

[40] Y. LeCun et al., “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Comput.,

vol. 1, no. 4, pp. 541–551, Dec. 1989, doi: 10.1162/neco.1989.1.4.541.

[41] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp.

1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.

[42] T. Bepler and B. Berger, “Learning protein sequence embeddings using information from structure.”

arXiv, Oct. 16, 2019. Accessed: Nov. 23, 2023. Available: http://arxiv.org/abs/1902.08661

[43] R. J. Williams and D. Zipser, “A Learning Algorithm for Continually Running Fully Recurrent Neural

Networks,” Neural Comput., vol. 1, no. 2, pp. 270–280, Jun. 1989, doi: 10.1162/neco.1989.1.2.270.

[44] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is

difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157–166, Mar. 1994, doi: 10.1109/72.279181.

[45] B. Krause, L. Lu, I. Murray, and S. Renals, “Multiplicative LSTM for sequence modelling.” arXiv,

Oct. 12, 2017. Accessed: Nov. 23, 2023. Available: http://arxiv.org/abs/1609.07959

[46] J. Hanson, Y. Yang, K. Paliwal, and Y. Zhou, “Improving protein disorder prediction by deep

bidirectional long short-term memory recurrent neural networks,” Bioinformatics, vol. 33, no. 5, pp.

685–692, Mar. 2017, doi: 10.1093/bioinformatics/btw678.

[47] X.-X. Zhou et al., “pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning,” Anal.

Chem., vol. 89, no. 23, pp. 12690–12697, Dec. 2017, doi: 10.1021/acs.analchem.7b02566.

[48] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated Feedback Recurrent Neural Networks.” arXiv,

Jun. 17, 2015. Accessed: Nov. 24, 2023. [Online]. Available: http://arxiv.org/abs/1502.02367 [49] V.

Vasnt Alur, “Detection of Melanoma Cancer Using Few-shot Learning,” The University of Toledo,

2021.

[50] R. R. Chowdhury and D. R. Bathula, “Influential Prototypical Networks for Few Shot Learning: A

Dermatological Case Study.” arXiv, Dec. 24, 2021. Accessed: Nov. 25, 2023. [Online]. Available:

http://arxiv.org/abs/2111.00698

[51] H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande, “Low Data Drug Discovery with One-shot

Learning.” arXiv, Nov. 10, 2016. Accessed: Nov. 25, 2023. [Online]. Available:

http://arxiv.org/abs/1611.03199

[52] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a Few Examples: A Survey on

Fewshot Learning,” ACM Comput. Surv., vol. 53, no. 3, pp. 1–34, May 2021, doi: 10.1145/3386252.

47

[53] M. Yu et al., “Diverse Few-Shot Text Classification with Multiple Metrics.” arXiv, May 19, 2018.

Accessed: Nov. 25, 2023. [Online]. Available: http://arxiv.org/abs/1805.07513

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun.

2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[55] S. Azadi, M. Fisher, V. Kim, Z. Wang, E. Shechtman, and T. Darrell, “Multi-Content GAN for

FewShot Font Style Transfer.” arXiv, Dec. 01, 2017. Accessed: Nov. 25, 2023. [Online]. Available:

http://arxiv.org/abs/1712.00516

[56] Z. Luo, Y. Zou, J. Hoffman, and L. Fei-Fei, “Label Efficient Learning of Transferable Representations

across Domains and Tasks.” arXiv, Nov. 30, 2017. Accessed: Nov. 25, 2023. [Online]. Available:

http://arxiv.org/abs/1712.00123

[57] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no.

10, pp. 1345–1359, Oct. 2010, doi: 10.1109/TKDE.2009.191.

[58] J. Bromley et al., “Signature Verification Using a ‘Siamese’ Time Delay Neural Network,” Int. J.

Pattern Recognit. Artif. Intell., vol. 07, no. 04, pp. 669–688, Aug. 1993, doi:

10.1142/S0218001493000339.

[59] “Self-Attention Using Scaled Dot-Product

Approachhttps://youtu.be/1IKrHh2X0F0?si=LI5qeP5QOtBFI70z.” YouTube video

[60] A. Vaswani et al., “Attention Is All You Need.” arXiv, Aug. 01, 2023. Accessed: Jan. 27, 2024.

[Online]. Available: http://arxiv.org/abs/1706.03762

[61] S. Min, S. Park, S. Kim, H.-S. Choi, B. Lee, and S. Yoon, “Pre-Training of Deep Bidirectional Protein

Sequence Representations with Structural Information,” 2019, doi: 10.48550/ARXIV.1912.05625.

[49] P. D. Sandaruwan and C. T. Wannige, “An improved deep learning model for hierarchical

classification of protein families,” PLOS ONE, vol. 16, no. 10, p. e0258625, Oct. 2021, doi:

[50] 10.1371/journal.pone.0258625.

[51] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese Neural Networks for One-shot Image

Recognition,” 2015. https://www.semanticscholar.org/paper/Siamese-Neural-Networks-for-One-Shot-

Image-Koch/f216444d4f2959b4520c61d20003fa30a199670a

[52] “UniProt, ‘ Proteins UniProt Knowledgebase’ From : http://www.uniprot.org, 2023.”

[53] You,Y and et L., “Large Batch Optimization for Deep Learning: Training BERT in 76 minutes”.

https://arxiv.org/pdf/2111.00856.pdf

[54] M. Chen et al., “Multifacetedprotein–protein interaction prediction based on Siamese residual

RCNN,” Bioinformatics, vol. 35, no. 14, pp. i305–i314, Jul. 2019, doi:

10.1093/bioinformatics/btz328.

[55] N. Roberts, P. S. Purushothama, V. T. Vasudevan, and S. Ravichandran, C. Zhang, W. H. Gerwick,

and G. W. Garrison, “Using deep siamese neural networks to speed up natural products research.,”

2018.

[56] K. M. Ting, “Confusion Matrix,” in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb,

Eds., Boston, MA: Springer US, 2011, pp. 209–209. doi: 10.1007/978-0-387-30164-8_157.

